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Abstract

We provide a new self contained proof of the following result of H. Schubert:
If K is a (p, q)-torus knot, then the bridge number of K is min(p, q).

Nearly 50 years ago, Horst Schubert had a premonition of what later became
known as JSJ decompositions. He realized that a knot can have only finitely many
companion tori. This followed from his work in “Knoten und Vollringe” [1] and “Über
eine numerische Knoteninvariante” [2]. In “Über eine numerische Knoteninvariante”
[2], he introduced the notion of bridge number for a knot and established a number
of properties. Many of these properties are of independent interest. For instance, the
fact that a (p, q)-torus knot has bridge number min{p, q} is used quite frequently.
We here provide a self contained proof of this fact. This proof differs from Schubert’s
in that it relies on the consideration of Morse functions on S

3 whose level sets are
spheres (except for the maximum and minimum) and on the foliations they induce
on S

3. A trick involving symmetry further simplifies the argument. I wish to thank
Ray Lickorish and Marty Scharlemann who fostered my interest in Schubert’s work
and Michel Boileau who suggested that a more contemporary proof of this theorem
would be a welcome addition to the existing literature.

In the following K will be a knot in S3 and h : S3 → R a Morse function with
exactly two critical points. This last assumption guarantees that h induces a foliation
of S3 by spheres, along with one maximum that we denote by ∞ and one minimum
that we denote by −∞.

Definition 1. If the minima of h|K occur below all maxima of h|K , then we say
that K is in bridge position with respect to h. The bridge number of K, b(K), is the
minimal number of maxima required for h|K. (Note that this number is independent
of whether or not we require K to be in bridge position. Indeed, if h|K has n maxima,
then the maxima of h|K can be raised, and the minima of h|K lowered, to obtain a
copy of K in bridge position with n maxima.)

Definition 2. Let T be a torus and suppose that K is homotopically nontrivially
contained in T . Then T is taut with respect to b(K), if the number of critical points
of h|T is minimal subject to the condition that h|K has b(K) maxima.

Definition 3. Consider the singular foliation, FT , of T induced by h|T . Let σ be a leaf
corresponding to a saddle singularity. Then σ consists of two circles, s1, s2, wedged
at a point. If either s1 or s2 is inessential in T , then we call σ an inessential saddle.
Otherwise, σ is an essential saddle.
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We first prove a result that extends [3, Lemma 1].

Lemma 1. (The Pop Over Lemma) Let h, K, T,FT be as above. Suppose that FT

contains inessential saddles. Then there is an isotopy of T , that does not raise (but
possibly lowers) the number of critical points of h|K or of h|T , after which there is an
inessential saddle σ in FT for which the following hold:

1) s1 bounds a disk D1 ⊂ T such that FT restricted to D1 contains only disjoint
circles and one maximum or minimum; and

2) D1 ∩ K = ∅; and

3) for L the level surface of h containing σ, D1 cobounds a 3-ball B with a disk
D̃1 ⊂ L, such that B does not contain ∞ or −∞, and such that s2 does not meet B

(i.e., such that s2 lies in L − D̃1).

Proof: To satisfy the first condition, we must merely choose σ to be an inessential
saddle in FT that is innermost in T .

To see that the second condition is satisfied, consider the disk D1 in T bounded
by s1. It contains exactly one extreme point. We may assume that this extreme point
is a maximum. All other level sets are circles. Here K ∩ D1 can’t contain any closed
curves, so it consists of a collection of arcs. By transversality, the endpoints of the
arcs do not lie on s. We may assume that each arc in this collection has exactly one
maximum; indeed, if this is not the case, then we can replace the collection of arcs
with an isotopic collection in which each arc has exactly one maximum and thereby
lower the number of maxima of h|K. Now an outermost arc from this collection can
be isotoped out of D1 in such a way that the number of critical points of h|K remains
unchanged.

Figure 1: Before isotoping the arcs

Figure 2: After isotoping the arcs
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Verifying the third condition requires a more intricate argument. Here L − ∂D1

consists of two disks, D̂1 and D̂2. Together with D1, both D̂1 and D̂2 cobound 3-balls
B̂1, B̂2, respectively. One of these 3-balls, say B̂2, contains either ∞ or −∞ and
the other contains neither. Since we are assuming that the critical point of D1 is a
maximum, B̂2 contains ∞.

If s2 ⊂ D̂2, we may take B = B̂1, so suppose s2 ⊂ D̂1. In this case, consider a
monotone arc α beginning at the maximum of D1, passing only through maxima of
T and ending at ∞. Note that by transversality, K does not meet any maxima of
T , so α can be taken to be disjoint from K. Let a1, . . . , an be the points at which α

meets T , with an the highest such point.

Let β be the subarc of α between an and ∞ and let C ′ be a collar neighborhood
of β. After a small isotopy, T ∩C ′ consists of a small disk D = an×disk ⊂ T . Let C ′′

be a small 3-ball centered at ∞ that is disjoint from T . Set C = C ′∪C ′′ and consider
T ′ = (T −D)∪ (∂C −D). This describes an isotopy of T that replaces B̂1 by B̂1 ∪C

and replaces B̂2 by B̂2 −C. After a small tilt which turns h|T ′ into a Morse function,
the maximum an of h|T has turned into a maximum of h|T ′ at a higher level. No
critical points need have been introduced for hK and the number of critical points of
h|T ′ is the same as that of h|T .

By induction, we may assume that α is disjoint from T except at its initial point.
Then if s2 ⊂ D̂1, this same construction using β = α describes an isotopy of T

augmenting B̂1 to contain ∞ and shrinking B̂2 to exclude ∞ without introducing any
critical points of h|K or h|T . We may then choose B to be the shrunk version of B̂2.
q.e.d.

Figure 3: The arc α

The following Lemma is [3, Lemma 2]. We include it here for completeness.

Lemma 2. (The Pop Out Lemma) Let h, K, T,FT be as above. If T is taut with
respect to b(K), then there are no inessential saddles in F T .
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Proof: Suppose there are inessential saddles. Alter T as in Lemma 1 so that there
is an inessential saddle σ satisfying the conclusions of Lemma 1. We may assume
that D1 contains a maximum and lies above L. (The other case is analogous.) Here
(K ∪ T ) ∩ int(B) can be shrunk horizontally and lowered via an isotopy to lie just
below D̃1 (and above any critical points of h|K or h|T below D̃1). This does not
change the nature or number of critical points of h|K or h|T .

Now D1 ⊂ T can be replaced by D̃1 to obtain T̃ . After a small tilt of T̃ , h|
T̃

is
a Morse function. Furthermore, T̃ is isotopic to T . Yet h|

T̃
has two fewer critical

points than hT . (A maximum and an inessential saddle have been cancelled). This
contradicts the assumption that T is taut with respect to b(K). q.e.d.

Remark 4. Consider a bicollar N of an essential saddle σ in T . It has three boundary
components, c1, c2, c3. Here ci is parallel to si for i = 1, 2. Furthermore, χ(N) = −1,
so χ(T − N) = 1. Since N , and hence also T − N , has three boundary components,
T − N consists of one annulus and one disk. It follows that c3 bounds a disk D3. In
particular, c1 and c2 are parallel on T .

Theorem 1. Suppose K is a (p, q)-torus knot. Then b(K) = min{p, q}.

Proof: We may assume that T is taut with respect to b(K) and let σ be the highest
saddle in FT . By Lemma 2, σ is essential. Let c1, c2, be as above and assume that c1

and c2 are contained in the same level surface L. Let D̂1, D̂2 be the (disjoint) disks
bounded by c1, c2 in L. As σ is the highest saddle in FT , any curve in T ∩interior(D̂i)
bounds a disk lying above L. This implies that D̂i is isotopic to a disk whose interior
is disjoint from T . Since ∂D̂i is an essential curve in T that bounds a disk in S

3 − T

it is either a meridian or a longitude of T . Moreover, if ∂D̂1 is a meridian, then so
are ∂D̂2, c1 and c2, and if ∂D̂1 is a longitude, then so are ∂D̂2, c1 and c2. In either
case, K ∩ ci ≥ min{p, q} for i = 1, 2. Now let N , D3 be as in Remark 4 and consider
K ∩ (N ∪ D3). In N ∪ D3, the points K ∩ ci ≥ min{p, q} for i = 1, 2 are connected
by arcs. Since all these points occur at the same level each such arc contains at least
one maximum. It follows that b(K) ≥ min{p, q}.

To see that b(K) ≤ min{p, q}, consider Figure 4. q.e.d.

Figure 4: A realization of the bridge number of the (5, 4)-torus knot
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