Thin position for knots and 3-manifolds:
a unified approach

HUGH HOWARDS, YO AV RIECK, AND JENNIFER SCHULTENS

Contents

1 Introduction 1

2 Thin position 2
2.1 Thinpositionforknots. . . . . . . . . . . . . ... .. e 3
2.2 Thin position for 3-manifolds . . . . . .. ... ... ... .. .. .. .. ...,
2.3 Thin position for knots in 3-manifolds . . . . . ... ... ... ......... 6
2.4 Othersettings. . . . . . . . . o 0 7

3 A counting argument (or why forgetfulness is practically rrelevant) 8

4 Key features of thin position 9

5 Adigression: Strongly irreducible generalized Heegaardplittings 12

6 Additivity properties 14

7 Work of Heath and Kobayashi 17
7.1 A search method for thin position of links . . . . .. ... ... ......... 20
7.2 Essential Tangle Decomposition from Thin Positionofr&kL. . . . . . . . .. .. 20
7.3 Locally thin position foralink. . . . . .. .. .. .. .. ... .. ........ 21

8 Compressibility of thin levels 21

9 2-fold branched covers 23

10 Questions 24

Bibliography 24

1 Introduction

Thin position for knots and for 3-manifolds have become dasols for 3-manifold topologists
and knot theorists. When David Gabai first introduced théonoodf thin position for knots as an
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ad hoc tool in studying foliations of 3-manifolds he may navé foreseen the widespread interest
this notion would engender. Thin position for knots featuprominently in the work of Mark
Culler, Cameron McA Gordon, John Luecke and Peter Shaleoecnimg Dehn surgery on knots
as well in the proof by Cameron McA Gordon and John Lueckekhats are determined by their
complements. It also played a crucial role in Abigail Thoogs proof that there is an algorithm to
recognizeS?; Rubinstein’s original argumeng]] used the related concept ofinimax sweepouts
andnormal surfaces

A knot in thin position appears to be ideally situated fromnmgoints of view. This is
demonstrated, for instance, by the work of Daniel J. HeathTaauyoshi Kobayashi. There is also a
growing expectation that some knot invariants can be caledimost efficiently by employing thin
position.

Later, Martin Scharlemann and Abigail Thompson introdueerklated, but not completely
analogous, notion of thin position for 3-manifolds. At figéance, their theory appeared elegant but
of little use. It took a number of years for the strength ofrtlieeory to come to fruition. This theory
has now become one of the fundamental tools in the study ofidfoids. Moreover, it has proved
more natural than the notion of thin position for knots. Th&s prompted Martin Scharlemann
and Abigail Thompson to begin reworking the notion of thirsgion for knots under the guise of
“slender knots”. Their work is beyond the scope of this &stic

The aim of this article is to introduce the novice to the notaf thin position for knots and
3-manifolds. The emphasis here is to underline the formallogry of the definitions. Each of these
notions is defined more naturally elsewhere. For the mostralatiefinition of thin position for
knots, seed]. And for a more extensive treatment of thin position for tqy@see 23]. For the most
natural definition of thin position for 3-manifolds, s&&/]. The added formality here is designed
to unify the two definitions. This should allow an easy adaptaof the underlying framework to
numerous other settings. In this paper we avoid some of thie teohnical details; for an extensive
introduction to the subject se2]).

We wish to thank Dave Bayer for suggesting this project, Wi&tharlemann for helpful
discussions, and the referee for many helpful suggestions.

2 Thin position

To define thin position in a general setting, we need theviotlg: A pair of manifolds N, M) with

N C M. A constraintC that may be placed on the se}, of Morse functions onN, M). A
functiong : £ — R, for £ the set of ordered pairs of level sets of the elementdtf A well
ordered set®. And finally, a functionf : R — . We note thagg maps intoR" (for somen that
depends on the manifold and the knot); we ideni&fywith R°° with all but the firstn coordinates
set to zero. Intuitivelyg measures the complexity of individual levels antbr (N, M).

Remark.In fact, the definition can be made a little more general @oes not need to be a manifold.
As an example, below we discuss a few settings vixiis a graph.

Let (N,M), C, g, O andf be as required. Set

C = {h e M | h satisfiesC }.

Givenh € C, denote the critical values df, in increasing order, by,, ..., c,. Note that since
h is a Morse function on pairs, a critical value lofis a critical value either oh|y or of h|y. For
i =1,...,n, choose aregular valug such thatc;_; < rj < ¢;. Consider the finite sequence

(N (), At re) - -, (M), Dl (rn))
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of ordered pairs of level sets dfand the corresponding ordered 2n-tuple

(@hIN*(ra), hiyt (), -, g(hl (rn), hig'(rn))) € R" € R*.
Set
Wh(N) = f(g(hly" (r2), iy (r0). - gl (), bl (ro))-
We call w,(N) the width of N relative toh. Set
w(N) = min{ wy(N) | h € C}.
We call w(N) the width of (N,C, g, O,f). We say that,C, g, O,f) is in thin position if it is
presented together with € C such thatw(N) = wy(N).
If rj is such that

g(hln (ri- ), hly*(ri—a)) < alhly (), hiy'(r)) > a(hly*(risa), iyt (riga)
where< and> are in the dictionary order, then we ceﬂiml(ri), h=1(r;)) a thick level. Ifr; is such
that

g(hln (ri-2), hl*(ri-2)) > ol (), hly (i) < (bl (ria), bl (ris)

in the dictionary order, then we cam]gl(ri), h=1(r;)) a thin level.

2.1 Thin position for knots

The notion of thin position for knots was introduced by D. @ialiHe designed and used this notion
successfully to prove Property R for knots. We here spedifyM), C, g, O andf as used in the
context of thin position for knots. Let

(N,M) = (K, S%)

be aknot type. Tak€ to be the requirement that the Morse function(K, S) — R has exactly two
critical points onS® (a maximum,co, and a minimum—oo); we call such a function a (standard)
height function ofS3. In considering thin position for knots, we may visualize Morse function
as projection onto the vertical coordinate. The fact thaimay do so derives from the constraint
placed on the Morse functions under consideration.

Let g be the function that takes the ordered pair

(hlic (i) b))
of level sets of a Morse functioh to
xX(hli (i)
And let © be N andf : R* — Z the function defined by

f(X17---7Xn):ZXi

Thus in this case, we proceed as follows: Given a Morse fandti: (K, S®) — R of pairs such
that h|y is a height function, lety, . .., ¢y be the critical points oh. Note that since these critical
points are critical points of eithér|x or of h|gs, exactly two of these critical points will be critical
points ofh|gs. Note further that one of these critical points lies belolcgtical points ofh|x and
the other lies above all critical points bfi .

Now, fori = 1,...,n, choose regular valuas such thatc;_1 < ri < ¢;. Consider pairs of
level surfaces

(hl (i), hlzs-(ri))
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Figure 1: Thin position for knots

and
gl (ri), i (ri)) = x(hliM(ri)) = #K N (hlge) (1))
Note that here
hlic'(r)) = hlic*(ra)) = 0
and thus
g(hiic *(ra), his(r2)) = g(hli *(rm), higs'(rn)) = 0.
This yields the ordered n-tuple
O, #K N (hlss) H(r2)], ..., #K N (hlgs)~*(rn-1)|,0)
And thus
wn(K, %) = 0+ #K N (hlss) " H(r2)| + - - +#K N (hlsa) " H(ra-1)| + O
In Figurel, the knot pictured schematically has
Wh(K,S®) =0+2+4+6+44+6+8+6+4+24+0=42

The width of K,S®) is the smallest possible relative width,(K), as h ranges over all height
functions onS3. In the usual computation of width, one considers only @itpoints ofh|x , one
thus considers two fewer critical points and two fewer ragploints and is thus not compelled to
add the 0’s in the sum.

2.2 Thin position for 3-manifolds

The notion of thin position for 3-manifolds was pioneeredSsharlemann and Thompson. We
here specify I, M), C, g, O andf as used in the context of thin position for 3-manifolds. Let
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2—handles
» = genus 2
1—hap/‘\ dles
F. =2 xgenus ]
2-han~—" dles \ ' s _g )
1-handles r = genus .

Figure 2: Thin position for 3-manifolds

N = M and letM be a closed 3-manifold. L&l be the vacuous requirement (we consider all Morse
functions). Letg be the function that takes the ordered pair

(h(ri), 0)
of level sets of a Morse functioh to
#hL(r)| + s — x(h~(ri)),

wheres is the number o? components ifh~(r;). Let © be N> in the dictionary order. Finally,
let f : R — Z°° be the function that takes the ordeneduple &, ..., X,), deletes all entries;

for which eitherxi_; > X or Xi+1 > X and then arranges the remaining entries (that is, the local
maxima) in nonincreasing order.

Thus in this case, we proceed as follows: We identif§, ¥1) with M. Let h be a Morse
function

h: M — R.

Letcg, ..., Cy be the critical points oh and fori = 1,...,n, choose regular values such that
Ci_1 < Ij < ¢i. Consider the level surfaces

hil(rl)) R hil(rn)
and
gh(ri)) = #h =1 (r)| + 5 — x(h(r7))
wheres; is the number of spherical componentshof'(r;). This yields the ordered n-tuple

@#h ()] + 51— x(h (D), -+ #h™ ()| + s — x(h ()

The functionf picks out the values |[#1(r1)| + s1 — x(h~1(r1)) for the thick levels ofh and
arranges them in non increasing order. Thus

wh(K, S%) = F(#h™(ro) + st — x(hH(re), -+, #h ()] + s — x(h™*(rn))))

andw(N) is the smallest such sequence arising for a Morse funttion M, in the dictionary order.
The schematic in Figur2 describes a decomposition of the 3-torus

T3 =8t x st x st

Note that a torus or a sphere will never appear as a thick Iewelthin presentation df'®, and a
single genus 2 surface is insufficient. So the widttéfis:

Wh(T3) = (3, 3).
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2.3 Thin position for knots in 3-manifolds

We here suggest a more general application of the notionimfbsition to knots in 3-manifolds.
This notion differs from the standard notion of thin positior knots inS® in that we do not restrict
our attention to specific height functions. In the setting@3ahanifolds we wish to pick Morse
functions optimal with respect to both the 3-manifold anel khot.

Remark 2.1 The first application of thin position for knots in generalmifalds was given in 1997

in two independent Ph.D. dissertation: Feist (unpublilaed Rieck L7]. However, their approach

is different from ours and is described below. An similarm@geh to the one presented here can be
found in [B] and [1].

We here specify theN, M), C, g, O andf we have in mind. LeM be a closed 3-manifold
and letN = K be a knot contained iM. Let C be the vacuous requirement. Lgebe the function
that takes the ordered pair

(M)~ (r), h ()
of level sets of a Morse functioh to
260 (r)| — x (W) + 2#hl ()] = x(hli (7).

(Here the last two terms just count the number of poimltq;g#(ri)\. The cumbersome notation aims
to emphasize the equal weight of the 3-manifold and the krotd let O be Z> in the dictionary
order. Finally, letf : R* — N° be the function that takes the ordereduple ,...,x,) and
rearranges the entries so they are in nonincreasing order.

Thus in this case, we proceed as follows: Given a Morse fancti
h: (K,M) — R,

let cp,...,cn be the critical points oh. Fori = 1,...,n, choose regular values such that
Ci_1 < ri < ¢i. Consider the pairs

(Nl (re), h2(ra)), -+ (Bl (), b))
then
g((hlic(r), (i) = 2#h™ ()] — x(h™ (i) + 24l ()] — x(hlic (ri)).-
This yields the ordered n-tuple
@#h(r1)| — x(h™(ra)) + 2#h[ (r0)| — x(hlic(r), - -
260~ (rn)| — x(h™4(rn)) + 24l (rn)] — x(hlic " ()
The functionf rearranges the entries in non increasing order. Thus
wh(@, M) = F(@#ANh1(r)] — x(h1(r0) + 24l ()] — x(hl (o), - -
2#h™(rn)| — x(h™*(rn)) + 2#hii H(r)] — x(hlic*(rn))))

andw(K, M) is the smallest such sequence arising for Morse function@&oM), in the dictionary
order.

The schematic in Figur8 gives g((h—(r;), h|(r;))) for a knot in T3 = St x S x S* with
respect to a specific Morse function. Here

wh(K, T3) = (10,10, 8,8,8,8,6,6,6,4,4,2,2,0,0).
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Figure 3: Thin position for knots in 3-manifolds

2.4 Other settings

There are other settings to which our general theory applés will not work them out in detall
here. One which deserves to be mentioned is that of manifeidlsboundary. This setting has
been studied along with the case of closed 3-manifolds asdtich2.2. But in those studies, the
functions considered are not in fact Morse functions, btiteraMorse functions relative boundary,
i.e., functions that are Morse functions except that theycanstant on boundary components.

One can consider the setting in which this requirement ippied. ThenN, M), C, g, O andf
are as follows:M is a 3-manifold andN = M (as above we identifyM, M) with M). There are no
requirements on the Morse functions (except that they bes&lfamctions, in particular, transverse
to OM). And g is the function that takes the ordered pair

@, h(r7))
of level sets of a Morse functioh to
#Hh ()| +s — x(h™(r))

Where s is the number of spheres in~1(r;), and © is N in the dictionary order. Finally,
f : R*® — N is the function that takes the orderaetuple 1, ...,X,), deletes all entries; for
which eitherx;_; > X; or ;.1 > X and then arranges the remaining entries in nonincreasawey.or
Much of the theory of Scharlemann and Thompson should caeyto this setting.

As mentioned above, the definition of thin position for a kiKoin a 3-manifoldM given by
Feist and Rieck]7] is different than the definition above. It does not take extoount critical points
of the manifold. We can retrieve it by considering Morse fiores with the following constraints:
all the critical points ofM of index zero or one are ih~!(—oo, —1), all the critical points oM
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of index two or three are in—1(1, 00), and the knot in contained in~1(—1, 1). The width is then
calculated as if$° by summing the number of time¢ intersects each level:

Wn(K, M) = 0+ #K N (h[m) " (r2)| + - - + #K N (hlwm) " (rn-1)| + O

Another important setting is graphs embedded in 3-marsfoldlthough this paper is about
knots and 3-manifolds, we can generalize the definitioniafgibsition by allowingN to be a graph.
A simple application of this was given by Rieck and Sedgwit$] Wwhere the authors considered
a bouquet of circles (that is, a connected graph with a singleex). The constraint imposed is
equivalent to: all the critical points d#l of index zero or one are ih~1(—oo, —1), all the critical
points of M of index two or three are im~1(1, ), the vertex is at level 1, and the interiors of
all the edges are ih~1(—1,1). Again, the width was calculated as$i. A more sophisticated
approach was taken by Scharlemann and Thomp26nahd Goda, Scharlemann and Thompson
[4], who considered trivalent graphs (that is, graphs withioes of valence 3 only) it$3. They
used the standard height function 8 Roughly speaking, they treated a vertex as a critical point
Generically, every vertex has two edges above and one baldweértex) or two edges below and
one above (a\ vertex). The treatment of vertices is similar to that of minima and of vertices
to that of maxima.

3 A counting argument (or why forgetfulness is practically rrelevant)

In this section we discuss a counting argument that relateslifferent widths if these widths are
computed identically except at the final stage. 1.e.NfN1), C andg are identical, butD andf
differ in a prescribed way.

As a warm up, consider the lemma below. It is based on a comie@iint McCrory. We
say that a knoK in S® is in bridge position with respect to the height functionif all its maxima
occur above all its minima. The bridge numberkois the smallest possible number of maxima as
h ranges over all height functions &% (see B2]). In sectioné we give a more detailed discussion
of bridge position and its relationship to thin position.

Lemma3.1 (Clint McCrory) LetK be aknot irS3. If thin position is necessatrily bridge position
and the bridge number & is n, thenw(K) = 2n?.

Proof: Suppose the knot is in thin position with respechtand is also in bridge position. Then the
knot hask maxima andk minima, fork > n. If we denote the critical values in increasing order by
Co, .- ,Ck_1,Ck,-..,Cox, thency, ..., ck_1 are minima and, . . ., Cox are maxima. Thus

hi(re) = 2,h[M(r2) = 4, -+, h[H(re) = 2K
hl (rer) = 2k — 2,h[ H(rer2) = 2k — 4, -+ hjcH(ra) = 2

—1,,.
See Figurel. There each dot correspondsmé# in the case wher& = 5.

Note how the total number of dotsk8. (This is merely a geometric visualization of the Gauss
summation formula.) Thusm(K) = 2k?. Now since bridge number i8, we see thah can be
chosen so thatv,(K) = 2n?. Since thin position is necessarily bridge position, ildois that
w(K) = 2n?. |

A slightly more general version of this lemma allows us to paoite the width of a knot from
the thick and thin levels of a knot in thin position. This mgeneral lemma was included i24].
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Figure 4: Calculating width

Lemma 3.2 Let §,,...,S, be the thick levels oK andF;,,... Fj_, the thin levels. Set
_ | KNS, | | KNF; | Then

aj, > andby = ——".
k k—1
wK) =2 af —2> b,
=1 =1

Proof: We prove this by repeated use of the Gauss Summation Forrnmufzrticular, we use the
Gauss summation formula on the squares arising from thigddde Then note that when we do
so, we count the small squares arising from the thin leveilsetwTo compensate, we subtract the
appropriate sums. See Figuse O

One consequence of this Lemma is the following: When defitig position for knots in
the traditional way as above, the relevant information stwaed in the thick and thin levels. An
alternate definition would thus be to uBE® instead ofZ for O and to letf be the function that
picks outg(h];l(ri)) for the thick and thin levels. This would be slightly morgdrmative than
the traditional definition. Then, if also rearranges the remaining entries in non increasingr,ord
we lose information. In the applications of thin positionkobts to the study of 3-manifolds these
subtleties in the definitions appear to be irrelevant.

4 Key features of thin position

The notion of thin position was introduced by D. Gabai wittpadfic purpose in mind. It provided

a way of describing a positioning of knots 8 that made certain arguments about surfaces in the
knot exterior possible. The key feature of thin position oknot lies in the absence of disjoint
pairs of upper and lower disks with respect to a regular valwé a Morse function: An upper
(lower) disk for a knotK with respect to the regular level of a Morse functionh is a disk D
whose boundary decomposes into two aresand 3, such thate € K, 8 € h™1(r) and such that
h(a) > h(r) (h(a) < h(r)) for all a in the interior ofa.. We emphasize that parts of the interior of a
upper (lower) disk may be below (above)1(r).

Now suppose thaK is in thin position with respect to the Morse functitin Further suppose
that D is an upper disk folK with respect tor and E is a lower disk forK with respect tor. If
DN E = 0, then we may isotope the portion &f in dD just belowh=1(r) and the portion oK
in OE just aboveh—(r) to obtain a presentation ¢f that intersecth—(r) four fewer times. See
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Figure 5: A cancellation principle
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Figure 6: Two disks describing an isotopy

NI

7N

Figure 7: After the isotopy

Figure6 and Figurer. It follows that after this isotopy the width is reduced byetty four if K has
exactly one maximum oD aboveh~(r) and exactly one minimum o@E below h=(r); if K
has more critical points 08D aboveh~1(r) or 9E below h~1(r) the width is reduced by more than
four. (Note that ifD dips belowh=1(r) or E above it, during the isotopy the width may increase,
temporarily.)

To make sense out of this isotopy from the point of view of thasition, note that we may
instead keepX fixed and alteth in accordance with the isotopy. We obtain a new Morse functio
i that coincides witth outside of a neighborhood & U E and such that

Wiy (K) < wh(K) — 4.
But this contradicts the fact th#t is in thin position with respect ta.

The situation is similar iD N E consists of one point. There the relative width can be redluce
by a count of 2 or more. See Figuseand Figureo.

Finally, consider the case in whidb N E consists of two points. Then one subard<ofies in
0D, another in0E and the two meet in their endpoints. It follows théatcan be isotoped into the
level surfacen—1(r). In the context of knots 53, h=1(r) is a 2-sphere and it then follows thist
is trivial.

In the applications of thin position for knots to problemsimanifold topology the key feature
used is the absence of disjoint upper and lower disks witheetgo a regular value. This property
is termed locally thin by D.J. Heath and T. Kobayashi who $tigmte this property in/].

When M. Scharlemann and A. Thompson introduced their nati¢inin position for 3-manifolds

D

-1

E

Figure 8: Two disks describing an isotopy
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Figure 9: After the isotopy

in [27], they established a number of properties enjoyed by a 3foldrin thin position. LetM be

a 3-manifold in thin position with respect to the Morse fuocth. An upper (lower) compressing
disk with respect to the regular valueis a disk whose boundary is an essential curvéii(r)
whose interior, neaéD lies above (belowh—1(r); we further impose that it N h~(r) consists
entirely of curves that are inessentiallin(r). This is analogous to an upper (lower) disk dipping
below (above) the levei—1(r). Note that since the curves of Binh—(r) are inessential in=(r),

an upper (lower) diskD may be isotoped (relative to the boundary) to lie entirelgpvab(below)
h=1(r). However, this flexibility built into this somewhat cumiseme definition is necessary for
some applications.

This gives an analogy with the situation for knotsSitt If there are upper and lower disks with
respect tar, then their boundaries must intersect.

In fact, 3-manifolds in thin position enjoy a broader spectrof properties. Some of these
can be phrased in the language of Heegaard splittingsompression body Vis a 3-manifold
obtained from a closed (and possibly empty) surfac®V by takingd_W x | (and, perhaps, some
balls) and attaching 1-handles aloigW x {1} C 9_W x |, wherel = [0,1]. Thend_W is
identified witho_W x {0} andOW\ 0_W is denoted); W. Dually, a compression body is obtained
from a connected surface, W by attaching 2-handles 9, W x {0} C 0, W x | and 3-handles
to any resulting 2-spheres. A Heegaard splitting of a clddedanifold M is a decomposition,
M = V Us W, into two handlebodiesy, W, such thatS = 9,V = 0, W. A Heegaard splitting
M = V UsW is strongly irreducible if for any disk[¥, 9D) C (V, 0, V) with 0D essential in0 V
and disk E, OE) C (W, 9, W) with 9E essential i), W, END = 9D N JE # (). A surfaceF in
a 3-manifoldM is incompressible if there is no disk M with boundary an essential curve &n
and interior disjoint fromF.

Some key properties that follow from those established bysbtharlemann and A. Thompson
in [27] for a 3-manifold in thin position are the following: 1) Ewethin level is incompressible.
2) The thin levels cut the 3-manifold into (not necessardymmected) submanifolds. 3) Each such
submanifold contains one thick level. 4) The thick level de$ a strongly irreducible Heegaard
splitting on the submanifold.

5 Adigression: Strongly irreducible generalized Heegaardplittings

Strongly irreducible generalized Heegaard splittingsedes to be mentioned in this context. A
strongly irreducible generalized Heegaard splitting ofra@hnifold is a sequence of disjoint surfaces
S, F1, ..., Fko1, & that has the following properties: 1 bounds a handlebody or cuts off a
compression body; 2 andF; cobound a compression body afdcorresponds t@. ; 3) F; and
S.1 cobound a compression body afd1 corresponds t@, ; 4) S bounds a handlebody or cuts
off a compression body; 5) the interiors of the aforemermtbhandlebodies and compression bodies
are disjoint; 6)F; is incompressible an& is weakly incompressible. (Note th& are strongly
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irreducible Heegaard surfaces for the componentd @it open alongJX_; F;.) We emphasize that
the surface above may be disconnected.

A Heegaard splitting corresponds to a handle decompositioich corresponds to a Morse
function. Changing the order in which handles are attaclesges this Morse function by inter-
changing the levels of the critical points, calleiandle slide Given a 3-manifoldvl and a Morse
functionf corresponding to a Heegaard splitting= V UsW we may consider all Morse functions
on M that differ fromf only by handle slides. From the point of view here, this gives condition
C that we impose on our Morse functions. Combinfdgvith g, O andf as in the definition of thin
position for 3-manifolds yields a conditional version oirtiposition for 3-manifolds. A manifold
decomposition that is thin in this conditional sense isathiin untelescopingf M = VUsW. More
specifically, the untelescoping, denoted 8y F1,...,Fx_1,, is obtained by labeling the thick
level surfaces bys and the thin level surfaces . The results in27] still apply in this situation.
It follows that Sy, F1, ..., Fk_1, S is a strongly irreducible generalized Heegaard splitting.

The idea of untelescoping has been used very successfulie istudy of Heegaard splittings
and topics related to Heegaard splitting. We have the fatiguneta-theorem:

Meta-theorem 5.1 If a property holds for strongly irreducible Heegaard sipiifs, then a related
property holds for for all Heegaard splittings.

Here is the idea behind this. Suppose you want to prove amcgntaperty, let's call itX, and
suppose that you can prove it for strongly irreducible Haegjaplittings. Then you should be able
to prove X for essential surfaces, as these are much better behavedhd&te’s what you do: you
prove X for Fj, since they are essential. Then f§r since they are strongly irreducible Heegaard
splitting (although beware—they are splittings of mardlvith boundary!). Finally you retrieve
the original Heegaard splitting via a very well understogut@cess called amalgamatidsil]. Now
all that'’s left is to askwhat is the related property that survives this ordeal?

One of the first explicit applications of this meta-theoream de seen in the following two
theorems concerning tunnel numbers of knots. The tunnebeuf a knot is the least number of
disjoint arcs that must be drilled out of a knot complementhitain a handlebody. A collection of
such arcs is called a tunnel systems of the knot. Tunnelragsté knots correspond to Heegaard
splittings.

A concept that deserves to be mentioned here is the followArighot is smallif its complement
contains no closed essential surfaces. It follows that ihat ks small, then any tunnel system
realizing the tunnel number of the knot corresponds to agtyarreducible Heegaard splitting.

Theorem 5.2 (Morimoto—Schultens6]) If K1, Ky are small knots, then
t(K1#K2) > t(Ky1) + t(Kp)

Itis easy to see thatK1#K,) < t(K1) +t(K2)+ 1, so this result is quite tight. The meta-theorem
was also used to bound below the degeneration of tunnel nuimbknots that are not necessarily
small:

Theorem 5.3 (Scharlemann—Schulten24])
2
t(K1#Ky) > g(t(Kl) + 1(K2))

We now describe another application of our meta-theorem. nét ks called_m-smalif the
meridian does not bound an essential surface; by Lemma @fJ3 all small knots inS? are
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m-small. However, minimal tunnel systems of m-small knasdt always correspond to strongly
irreducible Heegaard splittings. Lét be a knot andt its tunnel number. Denote the bridge
number of a knotK with respect to a genus Heegaard splitting by;(K). Morimoto observed
that if by(K;) = 1 (such knots are also called, 1) knots) then the tunnel number degenerate:
t(K1#K2) < t(K1) + t(Kp) + 1. He conjectured that this is a necessary and sufficientitbamd
and proved this conjecture for m-small knotsSA [15]. This was generalized by applying the
meta-theorem:

Theorem 5.4 (Kobayashi—RieckI4]) LetKi C My,...,Ky C M, be m-small knots.
Thent(#' ;K1) < X' t(Ki) + n— 1 if and only if there exists a non-empty proper subset
I € {1,...,n} so thatb;(#ec Ki) = 1.

Oddly enough, the exact same meta-theorem that led to therajeation of Morimoto’s
Conjecture for m-small knots, also led to disproving it:

Theorem 5.5 (Kobayashi-Rieck12][13]) There exist knot¥1, Ko C S® so thatby (K1) > 1
andb;(Ky) > 1 but:

t(K1#K2) < t(Kq) + t(K2).

6 Additivity properties

Widths of knots behave erratically under connected sum ofknProgress in understanding this
phenomenon is obstructed by the fact that little is knownualtlee width of specific knots. A.
Thompson was one of the first to investigate knots in thintjpssin their own right. A knot is called
meridionally planar smal{or mp-small) if the meridian does not bound an essentialidioeral
surface. By definition m-small knots are mp-small. As margib above, by the highly technical
Lemma 2.0.3 from 2], small knots are m-small; thus, the family of mp-small ksxabntains all
small knots.

Thompson proved the following theorem, s&88]{

Theorem 6.1 (Thompson) If K ¢ S* is mp-small then a height functidm realizing the width of
K has no thin levels.

The idea of the proof is: a thin level would give a meridion&nar surface. Compressing this
surface yields an incompressible meridional planar sarf@me amount of work then shows that
this incompressible meridional planar surface has an #akeamponenti(e., a component that is
not a boundary parallel annulus). In Secti®bwe discuss generalizations of this theorem.

Thus an mp-small kndK in thin position has some number (say of maxima andm minima
and all the maxima are above the minima. By LenBrithe width ofK is exactly

w(K) = 2n?.

Let b be the bridge number df, that is. Clearlym > b. On the other hand, after placirg in
bridge position its width is 8, showing thatb > m. We conclude tham is the bridge number.
This is summarized in the following corollary which is soimeds referred to informally by saying
that for mp-small knots “thin position = bridge position”:

Corollary 6.2 (Thompson) If the knotK in S® is mp-small, then thin position fak is bridge
position.
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Figure 10: Connected sum of knots

The greatest challenge in this and many other investigatibthin position for knots is that thin
levels need not be incompressible. This fact is used to adgarby D. Heath and T. Kobayashi in
[6] to produce a canonical tangle decomposition of a knot arjff]ito produce a method to search
for thin presentations of a knot. M. Tomova has made stridasderstanding this phenomenon,
see B4]. We discuss these theories below. B],[D. Heath and T. Kobayashi also exhibit a
knot containing a meridional incompressible surface thatdt realized as a thin level in a thin
presentation of the knot. This propounds the idea that andposing sphere for a connected sum
need not be realized as a thin level in a thin presentationcofrgposite knot.

One thing we do know concerning additivity properties of thidf knots is the following:
W(K1#K2) < w(Kz) +w(Kz) — 2

To see this, stack a copy & in thin position on top of a copy df, in thin position. The width of
the connected sum is then bounded above by the relative widkie resulting presentation.

A result of Y. Rieck and E. Sedgwick proven ia{] can be paraphrased as follows:
Theorem 6.3 (Rieck-Sedgwick) If Ki,K, are mp-small knots, then thin position B§#K, is
related to thin position oK1, Ko as pictured in FigurdO. In particular,

W(K1#K?2) = w(Ky1) +W(K2) — 2

Given a presentation df#K5 in thin position and a decomposing sph&gY. Rieck and E.
Sedgwick proceed as follows: They first show that the comakestim must have a thin level. This
is accomplished as follows: For a mp-small kot Thompson'’s result together with Lemr8al
givesw(K) = 2b(K)?, whereb(K) is the bridge number dk . A result of Schubert9), states that
the bridge number of knots is subadditive, i.e., that

b(K1#K2) = b(K1) + b(K2) — 1.
A standard computation shows that the function
fx,y) =xy—x—-y—+1
is strictly greater than O fox,y > 2. Thus since bridge number is always at least 2,
W(K1) + W(Ks) — 2 = 2b(K1)? + 2b(K2)? — 2 < 2(b(K1) + b(K2) — 1)%.

Hence thin position can't be bridge position éi#K,, there must be a thin level.



16 Hugh Howards, Yo'av Rieck, and Jennifer Schultens

Figure 11: A swallow-follow torus

Their next steps are more technical: They show that for ampm@osing annulus in the
complement ofK1#K5, a spanning arc can be isotoped into a thin level. Finallyy tthow that
a thin level containing the spanning arc of a decomposingilasmmust in fact be a decomposing
annulus. This establishes their result.

Note that the application of Schubert’s Theorem above shibatdor any knotk; andK,, after
placing K1#K5 in thin position a bridge position is not obtained, in thessethat there is a thin
sphere. However, counting the number of maxima in Figurshows that:

Corollary 6.4 (Rieck-Sedgwick) If Ky andK, are mp-small knots, then the number of maxima
for K1#K> in thin position is the bridge number &h#K,.

Examples of Scharlemann and Thomps2§ suggest that this is not always the case.

The proofs in R9], [32], [20] do not carry over to knots in general. To give some idea of the
complexity of the situation, we illustrate the problemshwtie strategy in32]. Rather than working
with decomposing spheres and annuli, that strategy empglogiow-follow tori. See Figurd 1.

GivenK#K5 and a decomposing spheBeconsider a collar neighborhood df#K,)USin S2.
Its boundary consists of two tori. A torus isotopic to eitbéthese tori is called a swallow-follow
torus. Figurellillustrates the case in whicK; is a figure eight knot an&; is a trefoil.

Swallow-follow tori often prove more effective in studyiegnnected sums of knots, in large part
because they are closed surfaces. The argumeBjridils in settings where the swallow-follow
torus is too convoluted. See Figut2

The philosophical correspondence between tunnel numhbdrsteongly irreducible generalized
Heegaard splittings on the one hand and bridge position lEndobsition of knots deserves to be
investigated more closely. Suffice it to say that this cqroeslence played a role in the discovery
of the argument yielding the inequality below. The lack ofjeleeracy for tunnel numbers of small
knots is mirrored by their lack of degeneracy of width. Néveless, more generally, tunnel numbers
do degenerate under connected sum and so might their widthScharlemann and A. Thompson
conjecture that there are knots whose width remains canstaler connected sum with a 2-bridge
knot. See28].

Finally, a lower bound on the width of the connected sum imsof the widths of the summands
was established ir2p|:
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Figure 12:Convoluted portion of a swallow follow torus

Theorem 6.5 (Scharlemann-Schultensfor any two knot¥1, K>,

W(K1#K2) > maxw(Kz), w(Kz))
Corollary 6.6 (Scharlemann-Schultensfor any two knot€1, K5,
1
W(K1#K2) > E(W(Kl) + wW(K2))

The fact that width of 3-manifold behaves well from many peiof view has initiated recon-
siderations of the notion of thin position for knots. Oneempted to redefine the notion of thin
position for knots so as to avoid the difficulties it engesdeBcharlemann and Thompson have
defined a notion of “slender knots” which lies outside of thegse of this article.

7 Work of Heath and Kobayashi

D.J. Heath and T. Kobayashi were the first to use the possdtgpressibility of thin levels to
advantage. They made great strides in understanding msumgsiselated to thin position of knots.
In this section we briefly summarize their results. Detaiidltese results may be found in three of
their joint papers: [5], [6], and [7]. The illustrations al® are each worth a thousand words. Our
brief summary requires a number of definitions. Some of taes@nalogous to other definitions in
this survey, but are given here in a slightly different cahte

Given a link L in S®, our height functionh(x), can be thought of as resulting from looking at
S® — 2 points = S? x R. This restriction ofh(x) to S? x R is then simply projection onto th&
factor. We letp(x) be the projection onto th&? factor. Consider a meridional 2-sphe®ethat is, a
2-sphere irS® that intersectd. in points. (In the complement df, the remnant o has boundary
consisting of meridians.)

The 2-spheréS s said to bébowl likeif all of the (see Figurél.3) following hold:
1) S=F,UF; andF1 N Fy = 0F1 = 0Fy;
2) F1 is a 2-disc contained in a level plane;
3) h|g, is a Morse function with exactly one maximum or minimum;
4) p(F1) = p(F2);
5) plg, : F2 — p(F2) is a homeomorphism;
6) all points of intersection with. lie in F.
A bowl like 2-sphere idlat face up(flat face dowhif F; is above (below), with respect tch.
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Figure 13: A bowl like 2-sphere (flat face up)

Let F = h~%(r), for some regular value of h, be a thick 2-sphere fdr. Let Ng (N1) be a thin
2-sphere lying directly above (belovi). Let D be a disc such thalD = « U 3 with « a subarc
of L containing a single critical point which is a maximum, afid= D N F. Similarly, let D’ be
a disc such thabD’ = o/ U #’ with o/ a subarc ofL containing a single critical point which is a
minimum, ands’ = D’ N F. Assume that the interiors ¢f and 5’ are disjoint and thatv U o' is
not a complete component &f. ThenD andD’ are calleda bad pair of discs They are callec
strongly bad disc paiif DN Ng =0 = D’ N N;.

Let S= S U---US be a collection of bowl like 2-spheres for a linkand Cy, ... C, be
the closure of the components 8t — S. Note that eacl§ separate$® into two sides. The one
not containing the 2 points that have been removed ffhis considered to lie insid&. For
i=1,...,n, Cjisapunctured copy of the 3-ball lying insid& FurthermoreCg is the component
which does not lie interior to an§ , andC; (i = 1, ..., m) is the component lying directly inside of
S.

Let L = LN Cj. We define thin (thick) level disk analogously to thin (thid&vel spheres. We
say thatlL;,i = 0, is in bridge positionif there exists some thick 2-disk; C C; for L; such that
all maxima (minima) ofL; are above (belowD;, and every flat face down (up) bowl like 2-sphere
§ contained in the “inner boundary" &; (whereC; meets§ for j # i) is above (belowD;. We
say thatLg is in bridge positionif there exists some thick 2-sphef c Cy for Lo having the
analogous properties. Finally, let be a portion of the link_ lying inside the bowl like 2-sphere
S. We also say that’ is in bridge positionif there exists some thick 2-disR for L’ such that all
maxima (minima) ofL’ are above (below].

We wish to associate a graph with the above information. ®ehd we will suppose that,
given SandCy, ..., C, as above, the following properties are satisfied. If they toe system is
said to enjoyProperty 1

(1) ForeachCj, (j =0,1,...,m), we have one of the following:
(@) There are both a maximum and a minimunidh Cj; or
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Figure 14: The Figure 8 knot in bridge position

(b) There does not exist a critical point bfin C;.
(2) There exists a level 2-spheFg in Cp such that both of the following hold:

(@) every flat face down (up, respectively) bowl like 2-sghir 9Cy lies above (below,
respectively)Fq; and

(b) every maximum (minimum, respectively) bfin Cy (if one exists) lies above (below,
respectively)Fp, and it is lower (higher, respectively) than the flat face dofup,
respectively) bowl like 2-spheres #Cg.

(3) Foreach, (i=1,...,m), there exists a level disk; properly embedded i€; such that both
of the following hold:

(a) every flat face down (up, respectively) bowl like 2-sgher OC; lies above (below,
respectively)F; , and

(b) every maximum (minimum, respectively) bfin C; (if one exists) lies above (below, re-
spectively)F;, and itis lower (higher, respectively) than the face dowp) (espectively)
bowl like 2-spheres iWC; — §.

A spatial graph Gis a 1-complex embedded in the 3-sphef@.is a signed vertex graplif
each vertex ofG is labeled with either & or a —. Thewidth of Gis defined as follows. Suppose
that the vertices o6 labeled with+ (—, respectively) have the same height and are higher (lower,
respectively) than any other point &. Suppose further that|c_vericeg is @ Morse function. We
say thatG is in bridge positionif each maximum inG — {verticeg is higher than any minimum of
G — {verticeg. In general, lety,...,rp_1 (r1 < --- < rp—1) be regular values between the critical
values inG — {verticeg . Then define the width o to be the followingw(G) = XL /GNh=(r})|.

For a signed vertex graph in bridge positithe bridge numbeis |F N G|/2 whereF is a level
2-sphere such that every maximum @fis aboveF and every minimum ofG is below F. The
minimum of the bridge numbers for all possible bridge positi of G is thebridge indexof G.

LetL, G (j =0,1,...,m) be as above. We can obtain a signed vertex g@dihom (Cj, LNG;)
as follows: In the case that= 0, shrink each component 0ICy to a vertex. Then pull up (down,
respectively) the vertices obtained from flat face down {flaé up, respectively) 2-spheres so that
they lie in the same level. We obtain the signed vertex g@glby assigning + to the former and -
to the latter. By (2) of Property 1, we see ti@g is in a bridge position.

Suppose thaj # 0. In this case we may defori@; by an ambient isotopyf;, of S® which

does not alter the flat face & so thatf;(C;) appears to be of typ€q. This isotopy moves infinity
"into" Cj. For details see for instance the "Popover Lemma'3i#].[ Then we apply the above
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argument tof(Cj), f1(L N Cj)) and obtain a signed vertex gra@j in bridge position. We say that
G ( =0,1,...,m) is asigned vertex graph associated tdisthis process we revers&land made
no other changes; thus the resulting signed graph is the aarie signed graph in the cgse 0
but the sign of the vertex correspondingSais reversed.

LetL,Cj (j =0,1,...,m) be as above. Then we can take a convex 3-Railh the interior ofC;
such that each component df (| C;) — R, is a monotonic arc connecting and a component of
0C;, and such that
(1) Ry lies below (above, respectively) the flat face down (up, eetpely) bowl like 2-spheres in
8Co;

@) R (i = 1,...,m) lies below (above respectively) the flat face down (up retpay) bowl like
2-spheres i0C; — §.

We call R, a cocoonof L associated t&.

7.1 A search method for thin position of links

Let L be a link of bridge indexn and suppose that there is a list of all those meridional,ntisge
mutually non parallel planar surfaces in the exteriorLgfthat have at mostr2— 2 boundary
components. LeB= UM, S be a union of 2-spheres & as above. Then we can obtain a number
of systems of signed vertex graphs as follows: For éa¢h= 1, ..., m), we assign + to one side of
S and - to the other. Note that there arg \Rays to make such assignments. GgtCy, ..., Cy, be

as above. Then for eagh (j = 0,1, ..., m) the collar of each component OIC; is assigned either
a+ ora-. By regarding each componentass; as a very tiny 2-sphere, we obtain a signed vertex
graph, sayG;, fromL N Cj.

Now we assume, additionally, that we know the bridge indimfesll the signed vertex graphs
obtained in this manner. Then, for each system of signeéwgraphs, we take minimal bridge pre-
sentations, sagg, G1, ..., G, of the signed vertex graphs. We expand the vertic&€3y064, ..., Gy
to make + vertices (- vertices, respectively) flat face doum fespectively) bowl like 2-spheres.
Then we combine the pieces, applying the inverse of defeomato obtain a position of, say
L’, and a union of bowl like 2-sphereS with respect to whichL’ satisfies Property 1 above.
Let Ry, Ry, ..., Rm be the cocoons of’ associated t&8. Then consider all possible orders on
{Ro, Ry, ..., Rm} which are compatible with relative positionslin. All such orders are realized as
a position of L.

The following if Theorem 2 of §]:

Theorem 7.1 (Heath—Kobayashi) There is a thin position df that is realized through the process
described above.

7.2 Essential Tangle Decomposition from Thin Position of a ink

We say that two linkd. and L’ in S® areh-equivalentf there exists an ambient isotopf, such
thatfo(L) = L, f1(L) = L’ and such that for every € L we haveh(f1(x)) = h(x).

The following are Proposition 3.7 and Main Theorem 4.36f [

Proposition 7.2 (Heath—Kobayashi)If a link L has the property that thin position differs from
bridge position, then there exists an ambient isofigpguch that.’ = f,(L) is h-equivalent ta. and

L’ has a tangle decomposition by a finite number of non-triviah-nested, flat face up, bowl like
2-spheres, each of which is incompressible in the link cemyght. In this decomposition we have
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a tangle “on top" (abov®) with all of the incompressible 2-spheres below it connédte vertical
strands.

Theorem 7.3 (Heath—Kobayashi)Let L be a link in thin position, an& as above. Then there
exists an ambient isotopy far to a link L’ so that there exists a collection of incompressible bow!
like 2-spheresS for L' such that there is a one to one correspondence between tipwaents of

S® — S that contain maximum (and minimum) &f and the components 6° — S that contain
maximum (and minimum) of .

7.3 Locally thin position for a link

Perhaps the greatest weakness of thin position, as with kratynvariants that are defined in terms
of a global minimum, is that it is hard to determine. On thesotand, many of its applications rely
only on local properties of thin position. In order to addréss issue, Heath and Kobayashi define
a local version of thin position.

Definition 7.4 A link L is said to be in local thin position if it satisfies the followgitwo properties
with respect to the height functidm

(1) no thick 2-sphere fok. has a strongly bad pair of discs, and

(2) There exists a decomposition bfwith bowl! like 2-spheress, ..., S, such that eacls is
incompressible an@-incompressible, and so thitis in bridge position in the complement
of US.

They prove ¥, Main Theorem 3.1]:

Theorem 7.5 (Heath—Kobayashi) Every non-splittable link has a locally thin presentation.

For the unknot they prover[ Corollary 3.4]:

Corollary 7.6 (Heath—Kobayashi)Any locally thin position of the unknot is trivial.

And for 2-bridge knotsT, Corollary 3.5]:

Corollary 7.7 (Heath—Kobayashi)Any locally thin position of a 2-bridge knot is in 2-bridge
position.

These corollaries both show the strength and the weakndssaifthin position. It is not as
easy to compute as one might hope or this would mean thatmiedog the unknot and 2-bridge
knots would be easy, but in exchange it contains signifigaotination when it is computed.

8 Compressibility of thin levels

Ying-Qing Wu began an investigation of the thin levels footain thin position. He proved the
following about the thinnest thin level, i.e., the thin letleat meets the knot in the fewest number
of points, see35):

Theorem 8.1 (Wu) If K is in thin position with respect th, then the thinnest thin level &f is
incompressible.
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Figure 15: The portions: and 3 of L

Wu’s strategy is to show that if a thin level is compressiliteen the surface obtained by
compressing it is parallel to another thin level. His reshin follows by induction. He also
demonstrates applications of this result: He uses it to@yivaternative proof of the Rieck-Sedgwick
Theorem.

Maggy Tomova continued this investigation i84]. She proved more refined results about
compressing disks for thin levels of links in thin positidfier results rely on a number of concepts,
observations and lemmas. We give a very brief overview, éaits see34]. In particular, note that
the description below relies on many technical lemmas.

Suppose the link in S® is in thin position. Further suppose that= h=1(r) is a thin level
for K and thatD is a compressing disk foP in the complement oK. We may assume that the
interior of D lies entirely above or entirely belo®, say, the former. To help our visualization of the
situation, we imagind as a cylinder lying vertically ovefD and capped off with the maximum,
oo, of h. Itis then clear thaD partitions the portion of. lying aboveP into two subsets. Denote
the portions ofL aboveP that are separated iy by o and 3. See Figurel5.

Now play off a versus/3. An alternating thin level is a thin levé? = h=1(r’) aboveP such
that the first minimum abov®”’ lies ona and the first maximum beloWw’ lies on 3 or vice versa.
As it turns out, alternating thin levels necessarily exiatthermore, for any adjacent alternating
thin levels, either the portion af or the portion of3 lying between the two alternating thin levels
is a product.

Interestingly, if we number the alternating thin levels abdd by A;, ..., A,, such that
h(Ai—1) < h(A), then the sequencer, ..., w, defined byw; = #K N Aj| is strictly decreasing.
The class of alternating thin levels can be enlarged to declother thin levels that satisfy certain
technical properties enjoyed by alternating thin levelshe Tesulting class of surfaces are the
potentially alternating surfaces. Compressing disks sg&hcan then be assigned a height: Assign
D the heightk if DN A1 # 0 but D N A = 0.

The short ball for a compressing digk for P is the ball bounded by and a subdisk oP
that contains the shorter of or 3, i.e., that portion of the knot whose absolute maximum iselow
than that of the other. (By transversality, these two maxilnanot lie on the same level.) The
compressing disb for P is reducible if there is a disk whose interior lies in the short ball f@,
whose boundary is partitioned into an aron D and an arcv on P and for whichw is essential
in P— (0D UL). A compressing disk is irreducible if it is not reducible.
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Figure 16: Two disks of the same height

A key result is the following:

Theorem 8.2 (Tomova) Supposé andD’ are two irreducible compressing disks Rranda, o/
are the strands df lying in the corresponding short balls. Thaeigh{D) = heigh({D’) implies
a =a'. Otherwiseo Nao' = 0.

Corollary 8.3 (Tomova) Any two distinct irreducible compressing disks frof the same height
must intersect.

See Figurel6.

Theorem 8.4 (Tomova) There exists a collection of disjoint irreducible compneglisks forP
that contains one representative from each possible height

In certain situations, these results suffice to guarantepiarcompressing disks for thin levels!

9 2-fold branched covers

Let K be a knot inS® and letM be the 2-fold branched cover & over K. It is natural to ask
the following question: How is thin position df related to thin position oM? This question is
investigated in 10]. (A related question about the behavior of the Heegaardigg@mder double
covers was investigated idg]).

A height function ors? lifts to a Morse function oM. The thick and thin levels df andM are
related as follows: Denote the thick levelskfby S, ..., S, and the thin levels by, ..., Ly_1.
Here theS’s and L;’s are spheres that meet the knot some (even) number of timdact, each
S meetsK at least 4 times and eadh meetsK at least 2 times. Denote the surfaceNh
corresponding t&§ by § and the surface iM corresponding td; by L. If § meetsK exactly
2l times, thenS is a closed orientable surface of geus 1. And if L; meetsk exactly 2 times,
thenL; is a closed orientable surface of gedus 1.

Compressing disks fo§ may be constructed by taking a di§kin S® that is disjoint from
L1,...,Lnh_1, whose interior is disjoint frong, . . . , S, and whose boundary is partitioned into an
arcain § and an ard in K that has exactly one critical point. (Such a disk is calledriats



24 Hugh Howards, Yo'av Rieck, and Jennifer Schultens

upper/lower disk.) The 2-fold branched covBrof D has its boundary o and is a compressing
disk for §. Thisillustrates the fact thd;_, and§ and alsol; and§ cobound compression bodies.

Now if K is in thin position, then one may ask whether or not the mé&hdecomposition that
M inherits is in thin position.

Theorem 9.1 (Howards—Schultens)If K is a 2-bridge knot or a 3-bridge knot, then the manifold
decomposition thalt! inherits is in thin position.

This result is not true for knots in general. Consider fortanse torus knots. For torus
knots the manifold decomposition that their 2-fold brarttlsever inherits is not necessarily in
thin position. To see this, consider the following: The céenpent of a torus knot is a Seifert
fibered space fibered over the disk with two exceptional fibéFhis places restrictions on the
type of incompressible surfaces that can exist. In padictl rules out meridional surfaces. For
a discussion of incompressible surfaces in Seifert fibepades, see for instanc@][or [11]. It
follows thatK is mp-small.

Now Thompson’s Theorem (Theorednl) implies that thin position foK is bridge position.
Bridge numbers for torus knots can be arbitrarily large.cHjally, if K is a (o, g)-torus knot, then
the bridge number df is min{p, q} . This was proved by Schuberti®9]. For a more contemporary
and self contained proof seg(. Thus forK in thin position, the manifold decomposition that the
2-fold branched cover inherits is a Heegaard splitting cm’ug;éw —-1.

On the other hand, the 2-fold branched coverS&fover a torus knot is a small Seifert fibered
space. Specifically, the 2-fold branched coverSéfover the p, g)-torus knot is a Seifert fibered
space fibered ove$? with three exceptional fibers of ordepsg, 2. (Such manifolds are also called
Brieskorn manifolds.) But any such manifold possesses abgegsplittings of genus 2.

10 Questions

The following questions deserve to be considered:
1) Develop a less unwieldy notion of thin position for knots.

2) Find an algorithm to detect the width of a knot. In light bétdiscussion at the end of Section
we ask: find an algorithm to place a knot in local thin positionknots.

3) Characterize the compressibility of thin levels for kot thin position.
4) Construct knots of arbitrarily large width.

5) Apply the concept of thin position in completely diffetesettings.
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