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1 Introduction

Thin position for knots and for 3-manifolds have become basic tools for 3-manifold topologists
and knot theorists. When David Gabai first introduced the notion of thin position for knots as an

http://www.ams.org/mathscinet/search/mscdoc.html?code=@secclass 
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ad hoc tool in studying foliations of 3-manifolds he may not have foreseen the widespread interest
this notion would engender. Thin position for knots featured prominently in the work of Mark
Culler, Cameron McA Gordon, John Luecke and Peter Shalen concerning Dehn surgery on knots
as well in the proof by Cameron McA Gordon and John Luecke thatknots are determined by their
complements. It also played a crucial role in Abigail Thompson’s proof that there is an algorithm to
recognizeS

3; Rubinstein’s original argument [21] used the related concept ofminimax sweepouts
andnormal surfaces.

A knot in thin position appears to be ideally situated from many points of view. This is
demonstrated, for instance, by the work of Daniel J. Heath and Tsuyoshi Kobayashi. There is also a
growing expectation that some knot invariants can be calculated most efficiently by employing thin
position.

Later, Martin Scharlemann and Abigail Thompson introduceda related, but not completely
analogous, notion of thin position for 3-manifolds. At firstglance, their theory appeared elegant but
of little use. It took a number of years for the strength of their theory to come to fruition. This theory
has now become one of the fundamental tools in the study of 3-manifolds. Moreover, it has proved
more natural than the notion of thin position for knots. Thishas prompted Martin Scharlemann
and Abigail Thompson to begin reworking the notion of thin position for knots under the guise of
“slender knots”. Their work is beyond the scope of this article.

The aim of this article is to introduce the novice to the notion of thin position for knots and
3-manifolds. The emphasis here is to underline the formal analogy of the definitions. Each of these
notions is defined more naturally elsewhere. For the most natural definition of thin position for
knots, see [3]. And for a more extensive treatment of thin position for knots, see [23]. For the most
natural definition of thin position for 3-manifolds, see [27]. The added formality here is designed
to unify the two definitions. This should allow an easy adaptation of the underlying framework to
numerous other settings. In this paper we avoid some of the more technical details; for an extensive
introduction to the subject see [22].

We wish to thank Dave Bayer for suggesting this project, Marty Scharlemann for helpful
discussions, and the referee for many helpful suggestions.

2 Thin position

To define thin position in a general setting, we need the following: A pair of manifolds (N, M) with
N ⊂ M . A constraintC that may be placed on the set,M, of Morse functions on (N, M). A
function g : L → R

∞ , for L the set of ordered pairs of level sets of the elements ofM. A well
ordered setO . And finally, a functionf : R

∞ → O . We note thatg maps intoR
n (for somen that

depends on the manifold and the knot); we identifyR
n with R

∞ with all but the firstn coordinates
set to zero. Intuitively,g measures the complexity of individual levels andf for (N, M).

Remark.In fact, the definition can be made a little more general, asN does not need to be a manifold.
As an example, below we discuss a few settings wereN is a graph.

Let (N, M), C, g, O and f be as required. Set

C = {h ∈ M | h satisfiesC }.

Given h ∈ C , denote the critical values ofh, in increasing order, byc0, . . . , cn . Note that since
h is a Morse function on pairs, a critical value ofh is a critical value either ofh|N or of h|M . For
i = 1, . . . , n, choose a regular valuer i such thatci−1 < r i < ci . Consider the finite sequence

(h|−1
N (r1), h|−1

M (r1)) . . . , (h|−1
N (rn), h|−1

M (rn))
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of ordered pairs of level sets ofh and the corresponding ordered 2n-tuple

(g(h|−1
N (r1), h|−1

M (r1)), . . . , g(h|−1
N (rn), h|−1

M (rn))) ∈ R
n ∈ R

∞.

Set
wh(N) = f (g(h|−1

N (r1), h|−1
M (r1)), . . . , g(h|−1

N (rn), h|−1
M (rn))).

We call wh(N) the width ofN relative toh. Set

w(N) = min{ wh(N) | h ∈ C}.

We call w(N) the width of (N, C, g,O, f ). We say that (N, C, g,O, f ) is in thin position if it is
presented together withh ∈ C such thatw(N) = wh(N).

If r i is such that

g(h|−1
N (r i−1), h|−1

M (r i−1)) < g(h|−1
N (r i), h|−1

M (r i )) > g(h|−1
N (r i+1), h|−1

M (r i+1))

where< and> are in the dictionary order, then we call (h|−1
N (r i), h−1(r i)) a thick level. Ifr i is such

that
g(h|−1

N (r i−1), h|−1
M (r i−1)) > g(h|−1

N (r i), h|−1
M (r i )) < g(h|−1

N (r i+1), h|−1
M (r i+1))

in the dictionary order, then we call (h|−1
N (r i), h−1(r i )) a thin level.

2.1 Thin position for knots

The notion of thin position for knots was introduced by D. Gabai. He designed and used this notion
successfully to prove Property R for knots. We here specify (N, M), C, g, O and f as used in the
context of thin position for knots. Let

(N, M) = (K, S3)

be a knot type. TakeC to be the requirement that the Morse functionh : (K, S3) → R has exactly two
critical points onS

3 (a maximum,∞, and a minimum,−∞); we call such a function a (standard)
height function ofS3. In considering thin position for knots, we may visualize our Morse function
as projection onto the vertical coordinate. The fact that wemay do so derives from the constraint
placed on the Morse functions under consideration.

Let g be the function that takes the ordered pair

(h|−1
K (r i ), h−1(r i))

of level sets of a Morse functionh to
χ(h|−1

K (r i))

And let O be N and f : R
∞ → Z the function defined by

f (x1, . . . , xn) =
∑

i

xi

Thus in this case, we proceed as follows: Given a Morse function h : (K, S3) → R of pairs such
that h|M is a height function, letc0, . . . , cn be the critical points ofh. Note that since these critical
points are critical points of eitherh|K or of h|S3 , exactly two of these critical points will be critical
points ofh|S3 . Note further that one of these critical points lies below all critical points ofh|K and
the other lies above all critical points ofh|K .

Now, for i = 1, . . . , n, choose regular valuesr i such thatci−1 < r i < ci . Consider pairs of
level surfaces

(h|−1
K (r i), h|−1

S3 (r i))
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Figure 1: Thin position for knots

and
g(h|−1

K (r i ), h|−1
S3 (r i )) = χ(h|−1

K (r i )) = #|K ∩ (h|S3)−1(r i )|

Note that here
h|−1

K (r1)) = h|−1
K (rn)) = ∅

and thus
g(h|−1

K (r1), h|−1
S3 (r1)) = g(h|−1

K (rn), h|−1
S3 (rn)) = 0.

This yields the ordered n-tuple

(0, #|K ∩ (h|S3)−1(r2)|, . . . , #|K ∩ (h|S3)−1(rn−1)|, 0)

And thus

wh(K, S3) = 0 + #|K ∩ (h|S3)−1(r2)| + · · · + #|K ∩ (h|S3)−1(rn−1)| + 0

In Figure1, the knot pictured schematically has

wh(K, S3) = 0 + 2 + 4 + 6 + 4 + 6 + 8 + 6 + 4 + 2 + 0 = 42

The width of (K, S3) is the smallest possible relative widthwh(K), as h ranges over all height
functions onS

3. In the usual computation of width, one considers only critical points ofh|K , one
thus considers two fewer critical points and two fewer regular points and is thus not compelled to
add the 0’s in the sum.

2.2 Thin position for 3-manifolds

The notion of thin position for 3-manifolds was pioneered byScharlemann and Thompson. We
here specify (N, M), C, g, O and f as used in the context of thin position for 3-manifolds. Let
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Figure 2: Thin position for 3-manifolds

N = M and letM be a closed 3-manifold. LetC be the vacuous requirement (we consider all Morse
functions). Letg be the function that takes the ordered pair

(h−1(r i), ∅)

of level sets of a Morse functionh to

#|h−1(r i )| + si − χ(h−1(r i)),

wheresi is the number ofS2 components inh−1(r i). Let O beN
∞ in the dictionary order. Finally,

let f : R
∞ → Z

∞ be the function that takes the orderedn-tuple (x1, . . . , xn), deletes all entriesxi

for which eitherxi−1 > xi or xi+1 > xi and then arranges the remaining entries (that is, the local
maxima) in nonincreasing order.

Thus in this case, we proceed as follows: We identify (M, M) with M . Let h be a Morse
function

h : M → R.

Let c0, . . . , cn be the critical points ofh and for i = 1, . . . , n, choose regular valuesr i such that
ci−1 < r i < ci . Consider the level surfaces

h−1(r1), · · · , h−1(rn)

and

g(h−1(r i)) = #|h−1(r i)| + si − χ(h−1(r i ))

wheresi is the number of spherical components ofh−1(r i). This yields the ordered n-tuple

(#|h−1(r1)| + s1 − χ(h−1(r1)), · · · , #|h−1(rn)| + sn − χ(h−1(rn))).

The functionf picks out the values #|h−1(r1)| + s1 − χ(h−1(r1)) for the thick levels ofh and
arranges them in non increasing order. Thus

wh(K, S3) = f ((#|h−1(r1)| + s1 − χ(h−1(r1)), · · · , #|h−1(rn)| + sn − χ(h−1(rn))))

andw(N) is the smallest such sequence arising for a Morse functionh on M , in the dictionary order.

The schematic in Figure2 describes a decomposition of the 3-torus

T
3

= S
1 × S

1 × S
1.

Note that a torus or a sphere will never appear as a thick levelin a thin presentation ofT3, and a
single genus 2 surface is insufficient. So the width ofT

3 is:

wh(T3) = (3, 3).
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2.3 Thin position for knots in 3-manifolds

We here suggest a more general application of the notion of thin position to knots in 3-manifolds.
This notion differs from the standard notion of thin position for knots inS

3 in that we do not restrict
our attention to specific height functions. In the setting of3-manifolds we wish to pick Morse
functions optimal with respect to both the 3-manifold and the knot.

Remark 2.1 The first application of thin position for knots in general manifolds was given in 1997
in two independent Ph.D. dissertation: Feist (unpublished) and Rieck [17]. However, their approach
is different from ours and is described below. An similar approach to the one presented here can be
found in [5] and [1].

We here specify the (N, M), C, g, O and f we have in mind. LetM be a closed 3-manifold
and letN = K be a knot contained inM . Let C be the vacuous requirement. Letg be the function
that takes the ordered pair

((h|K)−1(r i), h−1(r i ))

of level sets of a Morse functionh to

2#|h−1(r i)| − χ(h−1(r i )) + 2#|h|−1
K (r i )| − χ(h|−1

K (r i )).

(Here the last two terms just count the number of points #|h|−1
K (r i )|. The cumbersome notation aims

to emphasize the equal weight of the 3-manifold and the knot.) And let O be Z
∞ in the dictionary

order. Finally, letf : R
∞ → N

∞ be the function that takes the orderedn-tuple (x1, . . . , xn) and
rearranges the entries so they are in nonincreasing order.

Thus in this case, we proceed as follows: Given a Morse function

h : (K, M) → R,

let c0, . . . , cn be the critical points ofh. For i = 1, . . . , n, choose regular valuesr i such that
ci−1 < r i < ci . Consider the pairs

(h|−1
K (r1), h−1(r1)), · · · , (h|−1

K (rn), h−1(rn))

then
g((h|−1

K (r1), h−1(r i))) = 2#|h−1(r i)| − χ(h−1(r i)) + 2#|h|−1
K (r i)| − χ(h|−1

K (r i)).

This yields the ordered n-tuple

(2#|h−1(r1)| − χ(h−1(r1)) + 2#|h|−1
K (r1)| − χ(h|−1

K (r1)), · · · ,

2#|h−1(rn)| − χ(h−1(rn)) + 2#|h|−1
K (rn)| − χ(h|−1

K (rn)))

The functionf rearranges the entries in non increasing order. Thus

wh(∅, M) = f ((2#|h−1(r1)| − χ(h−1(r1)) + 2#|h|−1
K (r1)| − χ(h|−1

K (r1)), · · · ,

2#|h−1(rn)| − χ(h−1(rn)) + 2#|h|−1
K (rn)| − χ(h|−1

K (rn))))

andw(K, M) is the smallest such sequence arising for Morse functions on (K, M), in the dictionary
order.

The schematic in Figure3 gives g((h−1(r i), h|−1
K (r i))) for a knot in T

3 = S
1 × S

1 × S
1 with

respect to a specific Morse function. Here

wh(K, T3) = (10, 10, 8, 8, 8, 8, 6, 6, 6, 4, 4, 2, 2, 0, 0).
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Figure 3: Thin position for knots in 3-manifolds

2.4 Other settings

There are other settings to which our general theory applies. We will not work them out in detail
here. One which deserves to be mentioned is that of manifoldswith boundary. This setting has
been studied along with the case of closed 3-manifolds as in Section2.2. But in those studies, the
functions considered are not in fact Morse functions, but rather Morse functions relative boundary,
i.e., functions that are Morse functions except that they are constant on boundary components.

One can consider the setting in which this requirement is dropped. Then (N, M), C, g, O andf
are as follows:M is a 3-manifold andN = M (as above we identify (M, M) with M ). There are no
requirements on the Morse functions (except that they be Morse functions, in particular, transverse
to ∂M ). And g is the function that takes the ordered pair

(∅, h−1(r i))

of level sets of a Morse functionh to

#|h−1(r i)| + si − χ(h−1(r i))

Where si is the number of spheres inh−1(r i), and O is N
∞ in the dictionary order. Finally,

f : R
∞ → N

∞ is the function that takes the orderedn-tuple (x1, . . . , xn), deletes all entriesxi for
which eitherxi−1 > xi or xi+1 > xi and then arranges the remaining entries in nonincreasing order.
Much of the theory of Scharlemann and Thompson should carry over to this setting.

As mentioned above, the definition of thin position for a knotK in a 3-manifoldM given by
Feist and Rieck [17] is different than the definition above. It does not take intoaccount critical points
of the manifold. We can retrieve it by considering Morse functions with the following constraints:
all the critical points ofM of index zero or one are inh−1(−∞,−1), all the critical points ofM
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of index two or three are inh−1(1,∞), and the knot in contained inh−1(−1, 1). The width is then
calculated as inS3 by summing the number of timesK intersects each level:

wh(K, M) = 0 + #|K ∩ (h|M)−1(r2)| + · · · + #|K ∩ (h|M)−1(rn−1)| + 0

Another important setting is graphs embedded in 3-manifolds. Although this paper is about
knots and 3-manifolds, we can generalize the definition of thin position by allowingN to be a graph.
A simple application of this was given by Rieck and Sedgwick [19] where the authors considered
a bouquet of circles (that is, a connected graph with a singlevertex). The constraint imposed is
equivalent to: all the critical points ofM of index zero or one are inh−1(−∞,−1), all the critical
points of M of index two or three are inh−1(1,∞), the vertex is at level 1, and the interiors of
all the edges are inh−1(−1, 1). Again, the width was calculated as inS3. A more sophisticated
approach was taken by Scharlemann and Thompson [26] and Goda, Scharlemann and Thompson
[4], who considered trivalent graphs (that is, graphs with vertices of valence 3 only) inS3. They
used the standard height function onS

3. Roughly speaking, they treated a vertex as a critical point.
Generically, every vertex has two edges above and one below (a Y vertex) or two edges below and
one above (aλ vertex). The treatment ofY vertices is similar to that of minima and ofλ vertices
to that of maxima.

3 A counting argument (or why forgetfulness is practically irrelevant)

In this section we discuss a counting argument that relates two different widths if these widths are
computed identically except at the final stage. I.e., if (N, M), C and g are identical, butO and f
differ in a prescribed way.

As a warm up, consider the lemma below. It is based on a commentby Clint McCrory. We
say that a knotK in S

3 is in bridge position with respect to the height functionh, if all its maxima
occur above all its minima. The bridge number ofK is the smallest possible number of maxima as
h ranges over all height functions onS3 (see [32]). In section6 we give a more detailed discussion
of bridge position and its relationship to thin position.

Lemma 3.1 (Clint McCrory) Let K be a knot inS
3. If thin position is necessarily bridge position

and the bridge number ofK is n, thenw(K) = 2n2 .

Proof: Suppose the knot is in thin position with respect toh and is also in bridge position. Then the
knot hask maxima andk minima, fork ≥ n. If we denote the critical values in increasing order by
c0, . . . , ck−1, ck, . . . , c2k , thenc0, . . . , ck−1 are minima andck, . . . , c2k are maxima. Thus

h|−1
K (r1) = 2, h|−1

K (r2) = 4, · · · , h|−1
K (rk) = 2k

h|−1
K (rk+1) = 2k− 2, h|−1

K (rk+2) = 2k− 4, · · · , h|−1
K (r2k) = 2.

See Figure4. There each dot corresponds toh|−1
K (r i )

2 in the case wherek = 5.

Note how the total number of dots isk2. (This is merely a geometric visualization of the Gauss
summation formula.) Thuswh(K) = 2k2 . Now since bridge number isn, we see thath can be
chosen so thatwh(K) = 2n2 . Since thin position is necessarily bridge position, it follows that
w(K) = 2n2.

A slightly more general version of this lemma allows us to compute the width of a knot from
the thick and thin levels of a knot in thin position. This moregeneral lemma was included in [25].
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Figure 4: Calculating width

Lemma 3.2 Let Si1, . . . , Sik be the thick levels ofK and Fj1, . . . , Fjk−1 the thin levels. Set

ail =
| K ∩Sil |

2 andbjl =
| K ∩Fil |

2 . Then

w(K) = 2
k∑

l=1

a2
il − 2

k−1∑

l=1

b2
jl .

Proof: We prove this by repeated use of the Gauss Summation Formula.In particular, we use the
Gauss summation formula on the squares arising from thick levels. Then note that when we do
so, we count the small squares arising from the thin levels twice. To compensate, we subtract the
appropriate sums. See Figure5.

One consequence of this Lemma is the following: When definingthin position for knots in
the traditional way as above, the relevant information is captured in the thick and thin levels. An
alternate definition would thus be to useN

∞ instead ofZ for O and to letf be the function that
picks outg(h|−1

K (r i )) for the thick and thin levels. This would be slightly more informative than
the traditional definition. Then, iff also rearranges the remaining entries in non increasing order,
we lose information. In the applications of thin position ofknots to the study of 3-manifolds these
subtleties in the definitions appear to be irrelevant.

4 Key features of thin position

The notion of thin position was introduced by D. Gabai with a specific purpose in mind. It provided
a way of describing a positioning of knots inS3 that made certain arguments about surfaces in the
knot exterior possible. The key feature of thin position fora knot lies in the absence of disjoint
pairs of upper and lower disks with respect to a regular valuer of a Morse function: An upper
(lower) disk for a knotK with respect to the regular levelr of a Morse functionh is a disk D
whose boundary decomposes into two arcs,α andβ , such thatα ∈ K , β ∈ h−1(r) and such that
h(a) > h(r) (h(a) < h(r)) for all a in the interior ofα. We emphasize that parts of the interior of a
upper (lower) disk may be below (above)h−1(r).

Now suppose thatK is in thin position with respect to the Morse functionh. Further suppose
that D is an upper disk forK with respect tor and E is a lower disk forK with respect tor . If
D ∩ E = ∅, then we may isotope the portion ofK in ∂D just belowh−1(r) and the portion ofK
in ∂E just aboveh−1(r) to obtain a presentation ofK that intersectsh−1(r) four fewer times. See
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Figure 5: A cancellation principle
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h
−1
(r)

D

E

Figure 6: Two disks describing an isotopy

h
−1
(r)

Figure 7: After the isotopy

Figure6 and Figure7. It follows that after this isotopy the width is reduced by exactly four if K has
exactly one maximum on∂D aboveh−1(r) and exactly one minimum on∂E below h−1(r); if K
has more critical points on∂D aboveh−1(r) or ∂E below h−1(r) the width is reduced by more than
four. (Note that ifD dips belowh−1(r) or E above it, during the isotopy the width may increase,
temporarily.)

To make sense out of this isotopy from the point of view of thinposition, note that we may
instead keepK fixed and alterh in accordance with the isotopy. We obtain a new Morse function
h′ that coincides withh outside of a neighborhood ofD ∪ E and such that

wh′(K) ≤ wh(K) − 4.

But this contradicts the fact thatK is in thin position with respect toh.

The situation is similar ifD ∩ E consists of one point. There the relative width can be reduced
by a count of 2 or more. See Figure8 and Figure9.

Finally, consider the case in whichD ∩ E consists of two points. Then one subarc ofK lies in
∂D, another in∂E and the two meet in their endpoints. It follows thatK can be isotoped into the
level surfaceh−1(r). In the context of knots inS3, h−1(r) is a 2-sphere and it then follows thatK
is trivial.

In the applications of thin position for knots to problems in3-manifold topology the key feature
used is the absence of disjoint upper and lower disks with respect to a regular value. This property
is termed locally thin by D.J. Heath and T. Kobayashi who investigate this property in [7].

When M. Scharlemann and A. Thompson introduced their notionof thin position for 3-manifolds

h
−1
(r)

D

E

Figure 8: Two disks describing an isotopy
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h
−1
(r)

Figure 9: After the isotopy

in [27], they established a number of properties enjoyed by a 3-manifold in thin position. LetM be
a 3-manifold in thin position with respect to the Morse function h. An upper (lower) compressing
disk with respect to the regular valuer is a disk whose boundary is an essential curve inh−1(r)
whose interior, near∂D lies above (below)h−1(r); we further impose that intD ∩ h−1(r) consists
entirely of curves that are inessential inh−1(r). This is analogous to an upper (lower) disk dipping
below (above) the levelh−1(r). Note that since the curves of intD∩h−1(r) are inessential inh−1(r),
an upper (lower) diskD may be isotoped (relative to the boundary) to lie entirely above (below)
h−1(r). However, this flexibility built into this somewhat cumbersome definition is necessary for
some applications.

This gives an analogy with the situation for knots inS
3: If there are upper and lower disks with

respect tor , then their boundaries must intersect.

In fact, 3-manifolds in thin position enjoy a broader spectrum of properties. Some of these
can be phrased in the language of Heegaard splittings. Acompression body Wis a 3-manifold
obtained from a closed (and possibly empty) surface∂−W by taking∂−W× I (and, perhaps, some
balls) and attaching 1-handles along∂−W × {1} ⊂ ∂−W × I , where I = [0, 1]. Then ∂−W is
identified with∂−W×{0} and∂W\∂−W is denoted∂+W. Dually, a compression body is obtained
from a connected surface∂+W by attaching 2-handles to∂+W × {0} ⊂ ∂+W × I and 3-handles
to any resulting 2-spheres. A Heegaard splitting of a closed3-manifold M is a decomposition,
M = V ∪S W, into two handlebodies,V, W, such thatS = ∂+V = ∂+W. A Heegaard splitting
M = V ∪S W is strongly irreducible if for any disk (D, ∂D) ⊂ (V, ∂+V) with ∂D essential in∂+V
and disk (E, ∂E) ⊂ (W, ∂+W) with ∂E essential in∂+W, E∩ D = ∂D ∩ ∂E 6= ∅. A surfaceF in
a 3-manifoldM is incompressible if there is no disk inM with boundary an essential curve onF
and interior disjoint fromF .

Some key properties that follow from those established by M.Scharlemann and A. Thompson
in [27] for a 3-manifold in thin position are the following: 1) Every thin level is incompressible.
2) The thin levels cut the 3-manifold into (not necessarily connected) submanifolds. 3) Each such
submanifold contains one thick level. 4) The thick level defines a strongly irreducible Heegaard
splitting on the submanifold.

5 A digression: Strongly irreducible generalized Heegaardsplittings

Strongly irreducible generalized Heegaard splittings deserve to be mentioned in this context. A
strongly irreducible generalized Heegaard splitting of a 3-manifold is a sequence of disjoint surfaces
S1, F1, . . . , Fk−1, Sk that has the following properties: 1)S1 bounds a handlebody or cuts off a
compression body; 2)Si andFi cobound a compression body andSi corresponds to∂+ ; 3) Fi and
Si+1 cobound a compression body andSi+1 corresponds to∂+ ; 4) Sk bounds a handlebody or cuts
off a compression body; 5) the interiors of the aforementioned handlebodies and compression bodies
are disjoint; 6)Fi is incompressible andSi is weakly incompressible. (Note thatSi are strongly
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irreducible Heegaard surfaces for the components ofM cut open along∪k
i=1Fi .) We emphasize that

the surface above may be disconnected.

A Heegaard splitting corresponds to a handle decompositionwhich corresponds to a Morse
function. Changing the order in which handles are attached changes this Morse function by inter-
changing the levels of the critical points, called ahandle slide. Given a 3-manifoldM and a Morse
function f corresponding to a Heegaard splittingM = V∪SW we may consider all Morse functions
on M that differ from f only by handle slides. From the point of view here, this givesus a condition
C that we impose on our Morse functions. CombiningC with g, O andf as in the definition of thin
position for 3-manifolds yields a conditional version of thin position for 3-manifolds. A manifold
decomposition that is thin in this conditional sense is called an untelescopingof M = V∪SW. More
specifically, the untelescoping, denoted byS1, F1, . . . , Fk−1, Sk , is obtained by labeling the thick
level surfaces bySi and the thin level surfaces byFi . The results in [27] still apply in this situation.
It follows that S1, F1, . . . , Fk−1, Sk is a strongly irreducible generalized Heegaard splitting.

The idea of untelescoping has been used very successfully inthe study of Heegaard splittings
and topics related to Heegaard splitting. We have the following meta-theorem:

Meta-theorem 5.1 If a property holds for strongly irreducible Heegaard splittings, then a related
property holds for for all Heegaard splittings.

Here is the idea behind this. Suppose you want to prove a certain property, let’s call itX, and
suppose that you can prove it for strongly irreducible Heegaard splittings. Then you should be able
to proveX for essential surfaces, as these are much better behaved. Now here’s what you do: you
proveX for Fi , since they are essential. Then forSi , since they are strongly irreducible Heegaard
splitting (although beware—they are splittings of manifolds with boundary!). Finally you retrieve
the original Heegaard splitting via a very well understood aprocess called amalgamation [31]. Now
all that’s left is to ask:what is the related property that survives this ordeal?

One of the first explicit applications of this meta-theorem can be seen in the following two
theorems concerning tunnel numbers of knots. The tunnel number of a knot is the least number of
disjoint arcs that must be drilled out of a knot complement toobtain a handlebody. A collection of
such arcs is called a tunnel systems of the knot. Tunnel systems of knots correspond to Heegaard
splittings.

A concept that deserves to be mentioned here is the following: A knot is smallif its complement
contains no closed essential surfaces. It follows that if a knot is small, then any tunnel system
realizing the tunnel number of the knot corresponds to a strongly irreducible Heegaard splitting.

Theorem 5.2 (Morimoto–Schultens [16]) If K1, K2 are small knots, then

t(K1#K2) ≥ t(K1) + t(K2)

It is easy to see thatt(K1#K2) ≤ t(K1)+ t(K2)+1, so this result is quite tight. The meta-theorem
was also used to bound below the degeneration of tunnel number for knots that are not necessarily
small:

Theorem 5.3 (Scharlemann–Schultens [24])

t(K1#K2) ≥
2
5

(t(K1) + t(K2))

We now describe another application of our meta-theorem. A knot is called m-smallif the
meridian does not bound an essential surface; by Lemma 2.0.3of [2] all small knots inS

3 are
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m-small. However, minimal tunnel systems of m-small knots do not always correspond to strongly
irreducible Heegaard splittings. LetK be a knot andt its tunnel number. Denote the bridge
number of a knotK with respect to a genust Heegaard splitting byb1(K). Morimoto observed
that if b1(K1) = 1 (such knots are also called (t, 1) knots) then the tunnel number degenerate:
t(K1#K2) < t(K1) + t(K2) + 1. He conjectured that this is a necessary and sufficient condition
and proved this conjecture for m-small knots inS

3 [15]. This was generalized by applying the
meta-theorem:

Theorem 5.4 (Kobayashi–Rieck [14]) Let K1 ⊂ M1, . . . , Kn ⊂ Mn be m-small knots.

Then t(#n
i=1K1) < Σn

i=1t(Ki) + n − 1 if and only if there exists a non-empty proper subset
I ⊂ {1, . . . , n} so thatb1(#i∈I Ki) = 1.

Oddly enough, the exact same meta-theorem that led to the generalization of Morimoto’s
Conjecture for m-small knots, also led to disproving it:

Theorem 5.5 (Kobayashi–Rieck [12][13]) There exist knotsK1, K2 ⊂ S
3 so thatb1(K1) > 1

andb1(K2) > 1 but:

t(K1#K2) ≤ t(K1) + t(K2).

6 Additivity properties

Widths of knots behave erratically under connected sum of knots. Progress in understanding this
phenomenon is obstructed by the fact that little is known about the width of specific knots. A.
Thompson was one of the first to investigate knots in thin position in their own right. A knot is called
meridionally planar small(or mp-small) if the meridian does not bound an essential meridional
surface. By definition m-small knots are mp-small. As mentioned above, by the highly technical
Lemma 2.0.3 from [2], small knots are m-small; thus, the family of mp-small knots contains all
small knots.

Thompson proved the following theorem, see [33]:

Theorem 6.1 (Thompson) If K ⊂ S3 is mp-small then a height functionh realizing the width of
K has no thin levels.

The idea of the proof is: a thin level would give a meridional planar surface. Compressing this
surface yields an incompressible meridional planar surface. Some amount of work then shows that
this incompressible meridional planar surface has an essential component (i.e., a component that is
not a boundary parallel annulus). In Section8 we discuss generalizations of this theorem.

Thus an mp-small knotK in thin position has some number (saym) of maxima andm minima
and all the maxima are above the minima. By Lemma3.1the width ofK is exactly

w(K) = 2m2.

Let b be the bridge number ofK , that is. Clearly,m ≥ b. On the other hand, after placingK in
bridge position its width is 2b2 , showing thatb ≥ m. We conclude thatm is the bridge number.
This is summarized in the following corollary which is sometimes referred to informally by saying
that for mp-small knots “thin position = bridge position”:

Corollary 6.2 (Thompson) If the knot K in S
3 is mp-small, then thin position forK is bridge

position.
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Figure 10: Connected sum of knots

The greatest challenge in this and many other investigations of thin position for knots is that thin
levels need not be incompressible. This fact is used to advantage by D. Heath and T. Kobayashi in
[6] to produce a canonical tangle decomposition of a knot and in[8] to produce a method to search
for thin presentations of a knot. M. Tomova has made strides in understanding this phenomenon,
see [34]. We discuss these theories below. In [6], D. Heath and T. Kobayashi also exhibit a
knot containing a meridional incompressible surface that is not realized as a thin level in a thin
presentation of the knot. This propounds the idea that a decomposing sphere for a connected sum
need not be realized as a thin level in a thin presentation of acomposite knot.

One thing we do know concerning additivity properties of width of knots is the following:

w(K1#K2) ≤ w(K1) + w(K2) − 2

To see this, stack a copy ofK1 in thin position on top of a copy ofK2 in thin position. The width of
the connected sum is then bounded above by the relative widthof the resulting presentation.

A result of Y. Rieck and E. Sedgwick proven in [20] can be paraphrased as follows:

Theorem 6.3 (Rieck-Sedgwick) If K1, K2 are mp-small knots, then thin position ofK1#K2 is
related to thin position ofK1, K2 as pictured in Figure10. In particular,

w(K1#K2) = w(K1) + w(K2) − 2

Given a presentation ofK1#K2 in thin position and a decomposing sphereS, Y. Rieck and E.
Sedgwick proceed as follows: They first show that the connected sum must have a thin level. This
is accomplished as follows: For a mp-small knotK , Thompson’s result together with Lemma3.1
givesw(K) = 2b(K)2 , whereb(K) is the bridge number ofK . A result of Schubert [29], states that
the bridge number of knots is subadditive, i.e., that

b(K1#K2) = b(K1) + b(K2) − 1.

A standard computation shows that the function

f (x, y) = xy− x− y + 1

is strictly greater than 0 forx, y ≥ 2. Thus since bridge number is always at least 2,

w(K1) + w(K2) − 2 = 2b(K1)2
+ 2b(K2)2 − 2 < 2(b(K1) + b(K2) − 1)2.

Hence thin position can’t be bridge position forK1#K2, there must be a thin level.
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Figure 11: A swallow-follow torus

Their next steps are more technical: They show that for any decomposing annulus in the
complement ofK1#K2, a spanning arc can be isotoped into a thin level. Finally, they show that
a thin level containing the spanning arc of a decomposing annulus must in fact be a decomposing
annulus. This establishes their result.

Note that the application of Schubert’s Theorem above showsthat for any knotK1 andK2, after
placing K1#K2 in thin position a bridge position is not obtained, in the sense that there is a thin
sphere. However, counting the number of maxima in Figure10 shows that:

Corollary 6.4 (Rieck-Sedgwick) If K1 and K2 are mp-small knots, then the number of maxima
for K1#K2 in thin position is the bridge number ofK1#K2.

Examples of Scharlemann and Thompson [28] suggest that this is not always the case.

The proofs in [29], [32], [20] do not carry over to knots in general. To give some idea of the
complexity of the situation, we illustrate the problems with the strategy in [32]. Rather than working
with decomposing spheres and annuli, that strategy employsswallow-follow tori. See Figure11.

GivenK1#K2 and a decomposing sphereS, consider a collar neighborhood of (K1#K2)∪S in S
3.

Its boundary consists of two tori. A torus isotopic to eitherof these tori is called a swallow-follow
torus. Figure11 illustrates the case in whichK1 is a figure eight knot andK2 is a trefoil.

Swallow-follow tori often prove more effective in studyingconnected sums of knots, in large part
because they are closed surfaces. The argument in [32] fails in settings where the swallow-follow
torus is too convoluted. See Figure12.

The philosophical correspondence between tunnel numbers and strongly irreducible generalized
Heegaard splittings on the one hand and bridge position and thin position of knots deserves to be
investigated more closely. Suffice it to say that this correspondence played a role in the discovery
of the argument yielding the inequality below. The lack of degeneracy for tunnel numbers of small
knots is mirrored by their lack of degeneracy of width. Nevertheless, more generally, tunnel numbers
do degenerate under connected sum and so might their widths.M. Scharlemann and A. Thompson
conjecture that there are knots whose width remains constant under connected sum with a 2-bridge
knot. See [28].

Finally, a lower bound on the width of the connected sum in terms of the widths of the summands
was established in [25]:
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Figure 12:Convoluted portion of a swallow follow torus

Theorem 6.5 (Scharlemann-Schultens)For any two knotsK1, K2,

w(K1#K2) ≥ max(w(K1), w(K2))

Corollary 6.6 (Scharlemann-Schultens)For any two knotsK1, K2,

w(K1#K2) ≥
1
2

(w(K1) + w(K2))

The fact that width of 3-manifold behaves well from many points of view has initiated recon-
siderations of the notion of thin position for knots. One is tempted to redefine the notion of thin
position for knots so as to avoid the difficulties it engenders. Scharlemann and Thompson have
defined a notion of “slender knots” which lies outside of the scope of this article.

7 Work of Heath and Kobayashi

D.J. Heath and T. Kobayashi were the first to use the possible compressibility of thin levels to
advantage. They made great strides in understanding many issues related to thin position of knots.
In this section we briefly summarize their results. Details on these results may be found in three of
their joint papers: [5], [6], and [7]. The illustrations alone are each worth a thousand words. Our
brief summary requires a number of definitions. Some of theseare analogous to other definitions in
this survey, but are given here in a slightly different context.

Given a linkL in S
3, our height function,h(x), can be thought of as resulting from looking at

S
3 − 2 points = S

2 × R. This restriction ofh(x) to S
2 × R is then simply projection onto theR

factor. We letp(x) be the projection onto theS2 factor. Consider a meridional 2-sphereS, that is, a
2-sphere inS3 that intersectsL in points. (In the complement ofL, the remnant ofS has boundary
consisting of meridians.)

The 2-sphereS is said to bebowl like if all of the (see Figure13) following hold:
1) S= F1 ∪ F2 andF1 ∩ F2 = ∂F1 = ∂F2;
2) F1 is a 2-disc contained in a level plane;
3) h|F2 is a Morse function with exactly one maximum or minimum;
4) p(F1) = p(F2);
5) p|F2 : F2 → p(F2) is a homeomorphism;
6) all points of intersection withL lie in F1.
A bowl like 2-sphere isflat face up(flat face down) if F1 is above (below)F2 with respect toh.
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Figure 13: A bowl like 2-sphere (flat face up)

Let F = h−1(r), for some regular valuer of h, be a thick 2-sphere forL. Let N0 (N1) be a thin
2-sphere lying directly above (below)F . Let D be a disc such that∂D = α ∪ β with α a subarc
of L containing a single critical point which is a maximum, andβ = D ∩ F . Similarly, let D′ be
a disc such that∂D′ = α′ ∪ β′ with α′ a subarc ofL containing a single critical point which is a
minimum, andβ′ = D′ ∩ F . Assume that the interiors ofβ andβ′ are disjoint and thatα ∪ α′ is
not a complete component ofL. ThenD and D′ are calleda bad pair of discs. They are calleda
strongly bad disc pairif D ∩ N0 = ∅ = D′ ∩ N1.

Let S = S1 ∪ · · · ∪ Sn be a collection of bowl like 2-spheres for a linkL and C0, . . . Cn be
the closure of the components ofS3 − S. Note that eachSi separatesS3 into two sides. The one
not containing the 2 points that have been removed fromS

3 is considered to lie insideSi . For
i = 1, . . . , n, Ci is a punctured copy of the 3-ball lying insideSi . Furthermore,C0 is the component
which does not lie interior to anySi , andCi (i = 1, ..., m) is the component lying directly inside of
Si .

Let Li = L ∩ Ci . We define thin (thick) level disk analogously to thin (thick) level spheres. We
say thatLi, i 6= 0, is in bridge positionif there exists some thick 2-diskDi ⊂ Ci for Li such that
all maxima (minima) ofLi are above (below)Di , and every flat face down (up) bowl like 2-sphere
Sj contained in the “inner boundary" ofCi (whereCi meetsSj for j 6= i ) is above (below)Di . We
say thatL0 is in bridge positionif there exists some thick 2-sphereD0 ⊂ C0 for L0 having the
analogous properties. Finally, letL′ be a portion of the linkL lying inside the bowl like 2-sphere
S. We also say thatL′ is in bridge positionif there exists some thick 2-diskD for L′ such that all
maxima (minima) ofL′ are above (below)D.

We wish to associate a graph with the above information. To this end we will suppose that,
given S and C0, . . . , Cn as above, the following properties are satisfied. If they are, the system is
said to enjoyProperty 1.

(1) For eachCj , (j = 0, 1, ..., m), we have one of the following:

(a) There are both a maximum and a minimum ofL in Cj ; or
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Figure 14: The Figure 8 knot in bridge position

(b) There does not exist a critical point ofL in Cj .

(2) There exists a level 2-sphereF0 in C0 such that both of the following hold:

(a) every flat face down (up, respectively) bowl like 2-sphere in ∂C0 lies above (below,
respectively)F0; and

(b) every maximum (minimum, respectively) ofL in C0 (if one exists) lies above (below,
respectively)F0, and it is lower (higher, respectively) than the flat face down (up,
respectively) bowl like 2-spheres in∂C0.

(3) For eachi , (i = 1, ..., m), there exists a level diskFi properly embedded inCi such that both
of the following hold:

(a) every flat face down (up, respectively) bowl like 2-sphere in ∂Ci lies above (below,
respectively)Fi , and

(b) every maximum (minimum, respectively) ofL in Ci (if one exists) lies above (below, re-
spectively)Fi , and it is lower (higher, respectively) than the face down (up, respectively)
bowl like 2-spheres in∂Ci − Si .

A spatial graph Gis a 1-complex embedded in the 3-sphere.G is a signed vertex graphif
each vertex ofG is labeled with either a+ or a−. Thewidth of G is defined as follows. Suppose
that the vertices ofG labeled with+ (−, respectively) have the same height and are higher (lower,
respectively) than any other point inG. Suppose further thath|G−{vertices} is a Morse function. We
say thatG is in bridge positionif each maximum inG− {vertices} is higher than any minimum of
G−{vertices}. In general, letr1, . . . , rn−1 (r1 < · · · < rn−1) be regular values between the critical
values inG−{vertices}. Then define the width ofG to be the followingw(G) = Σ

n−1
i=1 |G∩h−1(r i )|.

For a signed vertex graph in bridge positionthe bridge numberis |F ∩ G|/2 whereF is a level
2-sphere such that every maximum ofG is aboveF and every minimum ofG is below F . The
minimum of the bridge numbers for all possible bridge positions ofG is thebridge indexof G.

Let L, Cj (j = 0, 1, ..., m) be as above. We can obtain a signed vertex graphGj from (Cj, L∩Cj )
as follows: In the case thatj = 0, shrink each component of∂C0 to a vertex. Then pull up (down,
respectively) the vertices obtained from flat face down (flatface up, respectively) 2-spheres so that
they lie in the same level. We obtain the signed vertex graphG0 by assigning + to the former and -
to the latter. By (2) of Property 1, we see thatG0 is in a bridge position.

Suppose thatj 6= 0. In this case we may deformCj by an ambient isotopy,ft , of S
3 which

does not alter the flat face ofSj so thatf1(Cj) appears to be of typeC0. This isotopy moves infinity
"into" Cj . For details see for instance the "Popover Lemma" in [32]. Then we apply the above
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argument to (f1(Cj), f1(L ∩ Cj)) and obtain a signed vertex graphGj in bridge position. We say that
Gj (j = 0, 1, ..., m) is asigned vertex graph associated to S. In this process we reversedSj and made
no other changes; thus the resulting signed graph is the sameas the signed graph in the casej = 0
but the sign of the vertex corresponding toSj is reversed.

Let L, Cj (j = 0, 1, ..., m) be as above. Then we can take a convex 3-ballRj in the interior ofCj

such that each component of (L ∩ Cj) − Rj is a monotonic arc connectingRj and a component of
∂Cj , and such that
(1) R0 lies below (above, respectively) the flat face down (up, respectively) bowl like 2-spheres in
∂C0;
(2) Ri (i = 1, ..., m) lies below (above respectively) the flat face down (up respectively) bowl like
2-spheres in∂Ci − Si .

We call Rj a cocoonof L associated toS.

7.1 A search method for thin position of links

Let L be a link of bridge indexn and suppose that there is a list of all those meridional, essential,
mutually non parallel planar surfaces in the exterior ofL, that have at most 2n − 2 boundary
components. LetS= ∪m

i=1Si be a union of 2-spheres inS3 as above. Then we can obtain a number
of systems of signed vertex graphs as follows: For eachi, (i = 1, ..., m), we assign + to one side of
Si and - to the other. Note that there are 2m ways to make such assignments. LetC0, C1, . . . , Cm be
as above. Then for eachj, (j = 0, 1, ..., m) the collar of each component of∂Cj is assigned either
a + or a -. By regarding each component of∂Cj as a very tiny 2-sphere, we obtain a signed vertex
graph, sayGj , from L ∩ Cj .

Now we assume, additionally, that we know the bridge indicesof all the signed vertex graphs
obtained in this manner. Then, for each system of signed vertex graphs, we take minimal bridge pre-
sentations, sayG0, G1, ..., Gm, of the signed vertex graphs. We expand the vertices ofG0, G1, ..., Gm

to make + vertices (- vertices, respectively) flat face down (up, respectively) bowl like 2-spheres.
Then we combine the pieces, applying the inverse of deformations to obtain a position ofL, say
L′ , and a union of bowl like 2-spheresS′ with respect to whichL′ satisfies Property 1 above.
Let R0, R1, ..., Rm be the cocoons ofL′ associated toS′ . Then consider all possible orders on
{R0, R1, ..., Rm} which are compatible with relative positions inL′ . All such orders are realized as
a position of L.

The following if Theorem 2 of [8]:

Theorem 7.1 (Heath–Kobayashi)There is a thin position ofL that is realized through the process
described above.

7.2 Essential Tangle Decomposition from Thin Position of a Link

We say that two linksL and L′ in S
3 areh-equivalentif there exists an ambient isotopy,ft , such

that f0(L) = L, f1(L) = L′ and such that for everyx ∈ L we haveh(f1(x)) = h(x).

The following are Proposition 3.7 and Main Theorem 4.3 of [6]:

Proposition 7.2 (Heath–Kobayashi)If a link L has the property that thin position differs from
bridge position, then there exists an ambient isotopyfs, such thatL′ = f1(L) is h-equivalent toL and
L′ has a tangle decomposition by a finite number of non-trivial,non-nested, flat face up, bowl like
2-spheres, each of which is incompressible in the link complement. In this decomposition we have
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a tangle “on top" (aboveP) with all of the incompressible 2-spheres below it connected by vertical
strands.

Theorem 7.3 (Heath–Kobayashi)Let L be a link in thin position, andS as above. Then there
exists an ambient isotopy forL to a link L′ so that there exists a collection of incompressible bowl
like 2-spheresS′ for L′ such that there is a one to one correspondence between the components of
S

3 − S′ that contain maximum (and minimum) ofL′ and the components ofS3 − S that contain
maximum (and minimum) ofL.

7.3 Locally thin position for a link

Perhaps the greatest weakness of thin position, as with manyknot invariants that are defined in terms
of a global minimum, is that it is hard to determine. On the other hand, many of its applications rely
only on local properties of thin position. In order to address this issue, Heath and Kobayashi define
a local version of thin position.

Definition 7.4 A link L is said to be in local thin position if it satisfies the following two properties
with respect to the height functionh:

(1) no thick 2-sphere forL has a strongly bad pair of discs, and

(2) There exists a decomposition ofL with bowl like 2-spheresS1, . . . , Sn such that eachSi is
incompressible and∂ -incompressible, and so thatL is in bridge position in the complement
of ∪Si .

They prove [7, Main Theorem 3.1]:

Theorem 7.5 (Heath–Kobayashi)Every non-splittable link has a locally thin presentation.

For the unknot they prove [7, Corollary 3.4]:

Corollary 7.6 (Heath–Kobayashi)Any locally thin position of the unknot is trivial.

And for 2-bridge knots [7, Corollary 3.5]:

Corollary 7.7 (Heath–Kobayashi)Any locally thin position of a 2-bridge knot is in 2-bridge
position.

These corollaries both show the strength and the weakness oflocal thin position. It is not as
easy to compute as one might hope or this would mean that recognizing the unknot and 2-bridge
knots would be easy, but in exchange it contains significant information when it is computed.

8 Compressibility of thin levels

Ying-Qing Wu began an investigation of the thin levels for knots in thin position. He proved the
following about the thinnest thin level, i.e., the thin level that meets the knot in the fewest number
of points, see [35]:

Theorem 8.1 (Wu) If K is in thin position with respect toh, then the thinnest thin level ofK is
incompressible.
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Figure 15: The portionsα andβ of L

Wu’s strategy is to show that if a thin level is compressible,then the surface obtained by
compressing it is parallel to another thin level. His resultthen follows by induction. He also
demonstrates applications of this result: He uses it to givean alternative proof of the Rieck-Sedgwick
Theorem.

Maggy Tomova continued this investigation in [34]. She proved more refined results about
compressing disks for thin levels of links in thin position.Her results rely on a number of concepts,
observations and lemmas. We give a very brief overview, for details see [34]. In particular, note that
the description below relies on many technical lemmas.

Suppose the linkL in S
3 is in thin position. Further suppose thatP = h−1(r) is a thin level

for K and thatD is a compressing disk forP in the complement ofK . We may assume that the
interior of D lies entirely above or entirely belowP, say, the former. To help our visualization of the
situation, we imagineD as a cylinder lying vertically over∂D and capped off with the maximum,
∞, of h. It is then clear thatD partitions the portion ofL lying aboveP into two subsets. Denote
the portions ofL aboveP that are separated byD by α andβ . See Figure15.

Now play off α versusβ . An alternating thin level is a thin levelP′ = h−1(r ′) aboveP such
that the first minimum aboveP′ lies onα and the first maximum belowP′ lies onβ or vice versa.
As it turns out, alternating thin levels necessarily exist;furthermore, for any adjacent alternating
thin levels, either the portion ofα or the portion ofβ lying between the two alternating thin levels
is a product.

Interestingly, if we number the alternating thin levels above P by A1, . . . , An, such that
h(Aj−1) < h(Aj), then the sequencew1, . . . , wn defined bywj = #|K ∩ Aj| is strictly decreasing.
The class of alternating thin levels can be enlarged to include other thin levels that satisfy certain
technical properties enjoyed by alternating thin levels. The resulting class of surfaces are the
potentially alternating surfaces. Compressing disks suchasD can then be assigned a height: Assign
D the heightk if D ∩ Ak−1 6= ∅ but D ∩ Ak = ∅.

The short ball for a compressing diskD for P is the ball bounded byD and a subdisk ofP
that contains the shorter ofα or β , i.e., that portion of the knot whose absolute maximum is lower
than that of the other. (By transversality, these two maximado not lie on the same level.) The
compressing diskD for P is reducible if there is a diskE whose interior lies in the short ball forD,
whose boundary is partitioned into an arcτ on D and an arcω on P and for whichω is essential
in P− (∂D ∪ L). A compressing disk is irreducible if it is not reducible.
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Figure 16: Two disks of the same height

A key result is the following:

Theorem 8.2 (Tomova) SupposeD andD′ are two irreducible compressing disks forP, andα,α′

are the strands ofL lying in the corresponding short balls. Thenheight(D) = height(D′) implies
α = α′ . Otherwise,α ∩ α′ = ∅.

Corollary 8.3 (Tomova) Any two distinct irreducible compressing disks forP of the same height
must intersect.

See Figure16.

Theorem 8.4 (Tomova) There exists a collection of disjoint irreducible compressing disks forP
that contains one representative from each possible height.

In certain situations, these results suffice to guarantee unique compressing disks for thin levels!

9 2-fold branched covers

Let K be a knot inS3 and letM be the 2-fold branched cover ofS3 over K . It is natural to ask
the following question: How is thin position ofK related to thin position ofM? This question is
investigated in [10]. (A related question about the behavior of the Heegaard genus under double
covers was investigated in [18]).

A height function onS3 lifts to a Morse function onM . The thick and thin levels ofK andM are
related as follows: Denote the thick levels ofK by S1, . . . , Sn and the thin levels byL1, . . . , Ln−1.
Here theSi ’s and Li ’s are spheres that meet the knot some (even) number of times.In fact, each
Si meetsK at least 4 times and eachLi meetsK at least 2 times. Denote the surface inM
corresponding toSi by S̃i and the surface inM corresponding toLi by L̃i . If Si meetsK exactly
2l times, thenS̃i is a closed orientable surface of genusl − 1. And if Li meetsK exactly 2l times,
then L̃i is a closed orientable surface of genusl − 1.

Compressing disks for̃Si may be constructed by taking a diskD in S
3 that is disjoint from

L1, . . . , Ln−1, whose interior is disjoint fromS1, . . . , Sn and whose boundary is partitioned into an
arc a in Si and an arcb in K that has exactly one critical point. (Such a disk is called a strict
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upper/lower disk.) The 2-fold branched coverD̃ of D has its boundary oñSi and is a compressing
disk for S̃i . This illustrates the fact that̃Li−1 andS̃i and alsoL̃i andS̃i cobound compression bodies.

Now if K is in thin position, then one may ask whether or not the manifold decomposition that
M inherits is in thin position.

Theorem 9.1 (Howards–Schultens)If K is a 2-bridge knot or a 3-bridge knot, then the manifold
decomposition thatM inherits is in thin position.

This result is not true for knots in general. Consider for instance torus knots. For torus
knots the manifold decomposition that their 2-fold branched cover inherits is not necessarily in
thin position. To see this, consider the following: The complement of a torus knot is a Seifert
fibered space fibered over the disk with two exceptional fibers. This places restrictions on the
type of incompressible surfaces that can exist. In particular, it rules out meridional surfaces. For
a discussion of incompressible surfaces in Seifert fibered spaces, see for instance [9] or [11]. It
follows thatK is mp-small.

Now Thompson’s Theorem (Theorem6.1) implies that thin position forK is bridge position.
Bridge numbers for torus knots can be arbitrarily large. Specifically, if K is a (p, q)-torus knot, then
the bridge number ofK is min{p, q}. This was proved by Schubert in [29]. For a more contemporary
and self contained proof see [30]. Thus forK in thin position, the manifold decomposition that the
2-fold branched cover inherits is a Heegaard splitting of genus min{p,q}

2 − 1.

On the other hand, the 2-fold branched cover ofS
3 over a torus knot is a small Seifert fibered

space. Specifically, the 2-fold branched cover ofS
3 over the (p, q)-torus knot is a Seifert fibered

space fibered overS2 with three exceptional fibers of ordersp, q, 2. (Such manifolds are also called
Brieskorn manifolds.) But any such manifold possesses Heegaard splittings of genus 2.

10 Questions

The following questions deserve to be considered:

1) Develop a less unwieldy notion of thin position for knots.

2) Find an algorithm to detect the width of a knot. In light of the discussion at the end of Section7
we ask: find an algorithm to place a knot in local thin positionfor knots.

3) Characterize the compressibility of thin levels for knots in thin position.

4) Construct knots of arbitrarily large width.

5) Apply the concept of thin position in completely different settings.
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