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SOME PROPERTIES OF DEVELOPMENTS
OF CONFORMAL STRUCTURES

ON THREE-DIMENSIONAL MANIFOLDS
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M. E. KAPOVICH

1. The study of the properties of developments of conformal structures begun in [1]
continued in this paper. Definitions of the conformal structure, development, holonomy
homomorphism and holonomy group can be found, for example, in [1] or [2]. In what
follows the development of a conformal structure on M will always be denoted by d: M .

D = d(M) c S”;p: M — M is the universal covering; also, G will be the group oft
covering transformations, d.: G — H = d. (C) the holonomy homomorphism, H the
holonomy group, and D the domain of the development. The structure K is said to
be relatively complete if d: Ad —* D is a covering. If Ad is a compact three-dimensional
manifold with Iirj(M)I = , then from [1] it follows that a structure being relatively
complete is equivalent to D being distinct from 3 and equivalent (excluding a certab
narrow class of structures) to the action of the group H on D being discontinuous.
Our aim is to characterize relatively complete conformal structures on certain classes of
three-dimensional manifolds in terms of the holonomy group.

A Schottky manifold of genus (r, p) is defined to be the connected sum of r manifolds
homeomorphic to 52 x S1 and of p manifolds homeomorphic to 8’ x S x S (here
r + p > 0). An orientable closed three-dimensional manifold will be called an almost
trivial Seifert fibration (ATSF) if it is finitely covered by 8 x 1, where S is a surface
of genus g > 1. It is known (see [3]) that Al is an ATSF if and only if it is closed
orientable and admits an (H2 x R,Isom(H2 x Rfl-structure. Let M(3) be the group
of all orientation-preserving Mdbius transformations of 53 If r is a discrete group, its
discontinuity set will be denoted by R(F), and the limit set L(F) = S3\R(r). A group
C C M(3) is called a Schottky group of genus (r,p) if it is obtained by a Klein combination
of r cyclic loxodromic groups (with the spherical fibers as the fundamental domains) and
p parabolical free Abelian groups of rank 3 (with fundamental domains homeomorphic
to a parallelepiped). Let L = {x C R3: x2 = = 0} U {co} and M(L) = {-y C
-y(L) = L}. A group H c M(L) is said to be almost discrete if NIL is a discrete group
and the subgroup of H consisting of rotations around L is isomorphic to Z. If H C M(L)
and L(H) = L, then H is called a Fuchsian group. If C C M(3) is conjugate to the
Fuchsian group by a homeomorphism, then C will be called a quasi-Fuchsian group.

2. In the formulations of the theorems it will be assumed everywhere that (M, K) is
a closed three-dimensional conformal manifold.

THEOREM 1. (a) Let the holonomy group H of the manifold (M.K) be a Schottky
group of genus (r.p). Then the domain of the development is R(H), d: Ad — D is a
homeomorphism, and Ad is a Schottky manifold of genus (r, p).

(b) Let Al be a Schottky manifold and let K be a relatively complete conformal structure
on M. The holonomy group H is a Schottky group.

THEOREM 2. If Ad is an almost trivial Seifert fibration, then there exists a Fuchsian
group H acting freely in S2\L such that M is homeomorphic to R(H)/H.
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THEOREM 3. (a) If the holonomy group H of the manifold (M,K) is either quasi

&chsian or cunjugate in M(3) to the subgroup M(L), then K is a relatively complete

conformtIl structure and either M is an ATSF or is finitely covered b a Schottky manifold

of genus (r,O), or A’! is a lens space. I

(b) If M is an ATSF and K is a relatively complete conformal structure on M, then

the holoflomu group H is either quasi-Fuchsian or almost discrete.

- : . For the proof of Theorems 1 and 3 we need the following lemma.

Y LEMMA. Let (M,K) be a compact conformal n-dimensional manifold, and let N be

a closed proper subset of S” containing more than one point and invariant under the

holonomy group H. Let d’(D\N) = U,, M be the decomposition into connected

components and dj: M — = d(M) the restriction of d to M.

Then, for any i e I, d: M — D is a covering.

PROOF OF THEOREM 1. (a) It is not hard to see that the limit set of the Schottky

group H is a discontinuum with simply-connected complement and R(H)/H is a Schottky

manifold of the same genus as the group H. Assertion (a) is implied by these two facts

k and the lemma.

(b) Let M be a Schottky manifold and K a relatively complete conformal structure.

‘ In this case the domain of the development D is an invariant component of H (see [1]).
We choose in H, if necessary, a subgroup H0 of finite index without torsion, and we

•t. consider the subgroup Go = d:’(H0) which has finite index in G. It is not hard to see
that Mo = M/G0 is a finite-sheeted covering of M and fl/H0. Kurosh’s theorem on
the subgroup of a free product, Kneser’s theorem, and the fact that M is a Poincaré
manifold easily imply that M0 is again a Schottky manifold. We prove that H0 is a
finite extension of a Schottky group (in this case 711 (11(H)) = {1} and d: M — D is a
homeomorphism).

Let M0 = R(F)/r, where F is a Schottky group; then fl/H0 = X = 11(F)/F, where
F is the group of homeomorphisms containing F as a subgroup of finite index (here we
consider M0 and X as topological manifolds without cdnformaF structure). Using the
results of [4] we obtain X = V # A1 # # A,, where # is the symbol for the conneted

• sum, Iwi(AH < , and wi(Y) is a torsion-free group. Since R(F) is simply-connected,
thenF=E1* ... *Eq*Fi,whereEj_wi(Aj), Fjiri(V),andL(Fi)CL(F)=L(F)
and is also a discontinuum. The results in [5] imply that F1 R * * R, where L(111)

• is a singleton or a two-point set and each of the groups R contains a Mobius Abelian
subgroup of finite index. Since X is covered by a domain in 53, then X is a Poincaré
manifold and again applying Kneser’s theorem it is not hard to see that

Y
= T1 . •#Tk#(52 x S’)# . (5 x 5’),

where T has 8’ x 8’ x S as a finite-sheeted covering. Lifting the spheres (partitioning
• into a connected sum) to the domain D and passing, if necessary, to a subgroup of finite

• index in H0, we ascertain that H0 is actually a finite extension of a Schottky group (see
[6]).

PROOF OF THEOREM 2. Following [1], we identify H2 x R with the space V =

{(x,r,w) E R3;r > O} on which we introduce the metric ds2 = (dx2 + dr2)/r2 + dço2.
Let q: Y — 83\L, q(x, r, p) = (x, r cos p, r sin ). If G C Isom(Y, ds2), then there is
a natural homomorphism d.: G —* M(L). Since M is an almost trivial Seifert fibration,
there exists a group G C Isom(Y, ds2), acting freely and disconnectedly on Y, such that
V/c is homeomorphic to M. It is easy to see that G can be chosen so that the niaximnal
normal cyclic subgroupinG is generated by the shift k: (x,r,c) — (x,r,cp+2ir). Then ‘

q.(G) = H is a Fuchsian group acting freely on 83\L. Obviously M = Y/G = (8\L)/H.’
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PROOF OF THEOREM 3. (a) Let N = L if NC M(L), and N = L(H) if H S a
quasi-Fuchsian group. Without loss of generality we may suppose that n(M)I = , as

otherwise (M, K) = 53/C, where G is a finite Mobius group leaving L invariant (it is easy

to see that in this case Al is a lens space). We assume that D = 53• Then d(S3\Ar)

is a connected set and the lemma implies that di: M1 —, S3\N is a covering (here

M1 = d’(53\N)). If d1 is a homeomorphism, then arguments analogous to the pro0

of assertion (a) of Theorem 1 lead immediately to a contradiction. Let d1: M1 —, S3\N

be a nontrivial covering, zEN, yE t’(x), and let U and V be neighborhoods of x and

y respectively such that d(v: V — U is a homeomorphism. We choose a loop
‘

in U\v
•!

such that ([y]) is a subgroup determining the covering d1. Let the left of ‘y be the path

in V. Obviously dj: —. -y is not a homeomorphism. The contradiction thus obtained

proves that D # 53 and K is a relatively complete structure. If H is an almost discrete

group, then M is an ATSF (see [1]). If H is quasi-Fuchsian, then M is finitely covered

by the manifold M0 = M/Go, where C0 = d’(H0) is a torsion-free subgroup of finite

index in H. Obviously 11(H)/Ho is an ATSF, M0 covers 11(H)/H0. and consequently

ill and M are also ATSF. As Al is compact, only one possibility remains: L(H) is a

discontinuum lying on L and 11(H)/H is a compact manifold. It is not hard to see that 4,
such a group H is a finite extension of a Schottky group of genus (r, 0) and M = 11(H)/H.

(b) Let 4W be an ATSF, and K a relatively complete conformal structure on Al. If the

holonomy group H is not discrete, then it is almost discrete (see [1]); consequently we

need only consider the case of a discontinuous action H on D. Let H0 be a torsion-free

subgroup of finite index in H, G = d;’(H0), M0 = M/Go, and 11 = D/H0. It is easy

to see that 11 is an ATSF. Therefore 11 admits an S’-action (see 13] or 171). Since H

is a discrete group, then K C ker d., where K is a maximal normal cyclic subgroup of

Go. It is not hard to prove that in this case the S’-action on R lifts to an S’-action

on D inducing the identity automorphism of H0. Arguing analogously to [8J, we can

extend this S1-action to the whole sphere 53, and 8’ will act on 53\D as the identity.

Using the results of 191 it is easy to prove that S3\D is an unknotted topological circle

in 53 and R(I1) = 11(H) = 12. Since 11 = D/H0 is an ATSF. application of Theorem

2 immediately gives us that H0 is a quasi-Fuchsian group. One may suppose that the

branched covering R D/H is regular and has the covering group F. The results of

[10] imply that the action of the finite group r is equivalent to the action of the finite

group of automorphisms of the conformal structure K’ introduced on 11 by the Fuchsian

group F ((R,K’) = (S3\L)/F). This now implies assertion (b) in the theorem.

In conclusion the author expresses his gratitude to N. A. Gusevskil for repeated dis

cussion of the questions studied in this paper, and also to S. L. Knislikal’ for his com

prehensive support and attention.
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