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SOME PROPERTIES OF DEVELOPMENTS
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ON THREE-DIMENSIONAL MANIFOLDS
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1. The study of the properties of developments of conformal structures begun in 1) i1
continued in this paper. Definitions of the conformal structure, development, holonom i
homomorphism and holonomy group can be found, for example, in [1] or [2]. In what|
follows the developmentl of a conformal structure on M will always be denoted by d: M -,/
D = d(M ) € 8% p: M — M is the universal covering; also, G will be the group oﬂ
covering transformations, d.: G — H = d.(G) the holonomy homomorphism, H the!
holonomy group, and D the domain of the development. The structure K is said to|
be relatively complete if d: M — D is a covering. If M is a compact three-dimensiona]!
manifold with [r,(M}| = oo, then from (1] it follows that a structure being relatively
complete is equivalent to D being distinct from S* and equivalent (excluding a certain
narrow class of structures) to the action of the group H on D being discontinuous,
Our aim is to characterize relatively complete conformal structures on certain classes of.
three-dimensional manifolds in terms of the holonomy group.

A Schottky manifold of genus (r,p) is defined to be the connected sum of r manifolds
homeomorphic to 52 x S! and of p manifolds homeomorphic to S! x §! x S! (here
r+p > 0). An orientable closed three-dimensional manifold will be called an almaost
trivial Seifert fibration (ATSF) if it is finitely covered by S, x S!, where S, is a surface
of genus g > 1. It is known (see [3]) that M is an ATSF if and only if it is closed,
orientable and admits an (H? x R,Isom(H? x R))-structure. Let M(3) be the group
of all orientation-preserving Mobius transformations of S3. If T is a discrete group, its
discontinuity set will be denoted by R(T'), and the limit set L({T') = S\ R(T'). A group
G C M(3) is called a Schottky group of genus (r, p) if it is obtained by a Klein combination
of r cyclic loxedromic groups (with the spherical fibers as the fundamental domains) and
p parabolical free Abelian groups of rank 3 {with fundamental domains homeomorphic
to a parallelepiped). Let L = {z € R®: z; = 23 = 0} U {00} and M(L) = {y € M(3);
L) = L}. A group H C M(L) is said to be almost discrete if H|y is a discrete group
and the subgroup of H consisting of rotations around L is isomorphic to Z. If # ¢ M(L)
and L(H} = L, then H is called a Fuchsian group. If G C M(3) is conjugate to the
Fuchsian group by a homeomorphism, then G will be called a quasi-Fuchsian group.

2. In the formulations of the theorems it will be assumed everywhere that (M, K) is
a closed three-dimensional conformal manifold.

THEOREM 1. (a) Let the holonomy group H of the manifold (M, K) be a Schottky
group of genus (r,p). Then the domain of the development is R(H), d: M — D is a
homeomorphism, and M is a Schotiky manifold of genus (r,p).

(b) Let M be a Schottky manifold and let K be a relatively complete conformal structure
on M. The holonomy group H is a Schottky group. ’

THEOREM 2. If M is an almost trivial Seifert fibration, then there ezists a Fuchsian
group H acting freely in S*\L such that M is homeomorphic to R(H )/H.
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" THEOREM 3. (a) If the holonomy group H of the manifold (M, K) is either quasi-
" puchsian or conjugate in M(3) to the subgroup M(L), then K i3 a relatively complete
3 caﬂf‘"'mal structure and either M is an ATSF or is finitely covered by a Schottky manifold
| of genus (r,0), or M i3 a lens space. !

§ . (b) If M is an ATSF and K is a relatively complete conformal structure on M, then
e ihe holonomy group H is either quasi-Fuchasian or almost discrete.

3. For the proof of Theorems 1 and 3 we need the following lemma.

| LEMMA. Let (M, K) be a compact conformal n-dimensional manifold, and let N be
. closed proper subset of S™ containing more than one point and invariani under the
bolonomy group H. Let d='(D\N) = |J;c; M; be the decomposition into connected

., : ”mponenta and d;: A;I,- - D= d,(M,-) the restriction of d to 1‘3.-.

Then, for anyi € I, di: M; — D; is a covering.

PROOF OF THEOREM 1. (a) It is not hard to see that the limit set of the Schottky
" group H is a discontinuum with simply-connected complement and R(H)/H is a Schottky
. menifold of the same genus as the group H. Assertion (a} is implied by these two facts

~ and the lemma.

(b) Let M be a Schottky manifold and K a relatively complete conformal structure.
" In this case the domain of the development D is an invariant component of H (see [1]).
We choose in H, if necessary, a subgroup Hp of finite index without torsion, and we
consider the subgroup Go = d;'(Hp) which has finite index in G. It is not hard to see
that Mo = M /Go is a finite-sheeted covering of M and D/Hp. Kurosh’s theorem on
the subgroup of a free product, Kneser's theorem, and the fact that M is a Poincaré
manifold easily imply that Mo is again a Schottky manifold. We prove that Hp is a
~ finite extension of a Schottky group (in this case 7 (R(H)) = {1} andd: M — Disa
i = homeomorphism).
j Let My = R(T')/T, where I is a Schottky group; then D/Hy = X = R(T')/F, where
. Fis the group of homeomorphisms containing I" as a subgroup of finite index (here we
consider Mp and X as topological manifolds without conformal structure), Using the
© resultsof [4] weobtain X =Y # A; # .- # A,, where # is the symbol for the connected
~ sum, |7;(A;)| < oo, and 7(Y) is a torsion-free group. Since R(I') is simply-connected,

then F = E) .- % E, * Fy, where E; = m(A;), Fy =7 (Y), and L(F;) C L(F) = L{I")
and is also a discontinuum. The results in [5] imply that F} = Ry *---* R,, where L(R;)
is a singleton or a two-point set and each of the groups R; contains a Mébijus Abelian
subgroup of finite index. Since X is covered by a domain in S3, then X is a Poincaré
manifold and again applying Kneser’s theorem it is not hard to see that

Y =Ty #Th#t(S? x S)#--- #(S* x §1),

where T; has 8! x §! x §! as a finlite-sheeted covering. Lifting the spheres (partitioning
into a connected sum) to the domain D and passing, if necessary, to a subgroup of finite
}ndex in Hy, we ascertain that Hy is actually a finite extension of a Schottky group (see
6]).

PROOF OF THEOREM 2. Following [1], we identify H? x R with the space ¥ =
{(z,7,0) € R3r > 0} on which we introduce the metric ds? = (dz® + dr?)/r? + d?.
Let g: Y — S3N\L, g(z,r,0) = (z,7 cos p, 7 sin p). If G C Isom(Y,ds?), then there is
a natural homomorphism d.: G — M(L). Since M is an almost trivial Seifert fibration,
there exists a group G C Isom(Y, ds?), acting freely and disconnectedly on Y, such that
Y/G is homeomorphic to M. I is easy to see that G can be chosen so that the maximal
normal cyclic subgroup in G is generated by the shift k: (z,r, 0} — (2,7, © + 27). Then
9.(G) = H is a Fuchsian group acting freely on S3\L. Obviously M = Y/G = (S°\L)/H.'
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PROOF OF THEOREM 3. (a) Let N = L if H € M(L), and N = L(H) if His 5 |
quasi-Fuchsian group. Without loss of generality we may suppose that |m (M)| =00, as
otherwise (M, K) = S3/G, where G is a finite Mobius group leaving L invariant (it is eagy 5
to see that in this case M is a lens space). We assume that D = §3. Then d~'(S%\N) - ;
is a connected set and the lemma implies that d;: M) — S3\N is a covering (here %
M, = d~(S3\N)). If d; is a homeomorphism, then arguments analogous to the proof
of assertion (a) of Theorem 1 lead immediately to a contradiction. Let dy: My — S3\n
be a nontrivial covering, z € N, y € d~!(z), and let U and V be neighborhoods of z ang
y respectively such that dly: V - U isa homeomorphism. We choose a loop v in U\N
such that ([y]) is a subgroup determining the covering di. Let the left of -y be the path i
5 in V. Obviously dy: § — ~ is not a homeomorphism. The contradiction thus obtaineq =
proves that D # S? and K is a relatively complete structure. If H is an almost discrete
group, then M is an ATSF (see [1]). If H is quasi-Fuchsian, then M is finitely covered
by the manifold My = M /Go, where Gg = d7!(Hy) is a torsion-free subgroup of finite
index in H. Obviously R(H)/Hp is an ATSF, My covers R(H)/Hy, and consequently
Mg and M are also ATSF. As M is compact, only one possibility remains: L(H) isa = |
discontinuum lying on L and R(H)/H is a compact manifold. It is not hard to see that
such a group H is a finite extension of a Schottky group of genus (r,0) and M = R(H)/H,

(b) Let M be an ATSF, and K a relatively complete conformal structure on M. If the
holonomy group H is not discrete, then it is almost discrete (see [1]); consequently we
need only consider the case of a discontinuous action Hon D. Let Hg be a torsion-free
subgroup of finite index in H, Go = d;!(Hq), Mo = M/Go, and R = D/Hy. 1t is easy
to see that R is an ATSF. Therefore R admits an S'-action (see [3] or [7]). Since H
is a discrete group, then K C ker d., where K is a maximal normal eyclic subgroup of
Go. It is not hard to prove that in this case the S'-action on R lifts to an § Laction
on D inducing the identity automorphism of Hp. Arguing analogously to [8], we can
extend this Sl-action to the whole sphere S3, and 5! will act on $3\D as the identity,
Using the results of [9] it is easy to prove that 53\ D is an unknotted topological circle
in §% and R(Ho) = R(H) = D. Since R = D/Hp is an ATSF, application of Theorem
2 immediately gives us that Hy is a quasi-Fuchsian group. One may suppose that the
branched covering R — D/H is regular and has the covering group T’ The results of
[10] imply that the action of the finite group T is equivalent to the action of the finite
group of automorphisms of the conformal structure K' introduced on R by the Fuchsian
group F ((R, K') = (§%\L)/F). This now implies assertion (b) in the theorem.

In conclusion the author expresses his gratitude to N. A. Gusevskil for repeated dis-
cussion of the questions studied in this paper, and also to S. L. Krushkal’ for his com-
prehensive support and attention.
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