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Abstract. We give a lower bound to the dimension of a contractible mani-
fold on which a given group can act properly discontinuously. In particular,
we show that the n-fold product of nonabelian free groups cannot act prop-
erly discontinuously on R2n−1.

1. Introduction

In [vK33] van Kampen developed an obstruction theory for embeddings of
finite n-complexes into R2n. We will briefly review van Kampen’s theory in
Sect. 2. It is natural (and straightforward) to remove the dimension restric-
tions and talk about a cohomological obstruction to embedding a complex
into Rm . Complexes where this obstruction does not vanish will be called
m-obstructor complexes. The precise definition will be given below (see
Definition 4). For example, the utilities graph (the join of two 3-point sets)
is a 2-obstructor complex, and van Kampen proved that the n-fold join of
3-point sets is a (2n − 2)-obstructor complex.

We introduce the notion of the obstructor dimension obdim Γ of a dis-
crete group Γ (see Definition 10). For example, when the group is hyper-
bolic or CAT(0) and the boundary contains an m-obstructor complex, then
obdim Γ ≥ m + 2. In particular, obdim Fn

2 = 2n (F2 is the free group of
rank 2) since the boundary of Fn

2 is the n-fold join of Cantor sets and thus
contains the complex considered by van Kampen.

The main theorem in this paper is the following.

Theorem 1. If obdim Γ ≥ m then Γ cannot act properly discontinuously
on a contractible manifold of dimension < m.

� All three authors gratefully acknowledge the support by the National Science Founda-
tion.
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For example, Fn
2 cannot act properly discontinuously on R2n−1.

In [BF] the methods of this paper are used to prove:

Theorem 2. [BF] Let G be a connected semisimple Lie group, K ⊂ G
a maximal compact subgroup, G/K the associated contractible manifold
(i.e., the symmetric space when the center of G is finite) and Γ a lattice
in G. If Γ acts properly discontinuously on a contractible manifold W, then
dim W ≥ dim G/K.

There is an application of our results to Geometric Topology. The cele-
brated theorems of Whitney [Whi44a], [Whi44b] state that every n-manifold
can be embedded inR2n and immersed (for n > 1) intoR2n−1. A less known
theorem of Stallings [St], [DR93] asserts that every n-complex is homotopy
equivalent to a complex that embeds in R2n. It is therefore natural to ask
whether every n-complex can be immersed up to homotopy into R2n−1.

Corollary 3. Let X = X1×X2×· · ·×Xn be the n-fold product of connected
graphs Xi with the first betti number 2. Then X does not immerse up to
homotopy into R2n−1.

Proof. Suppose X � Y and Y immerses in R2n−1. Then Y has a thicken-
ing (an immersed in R2n−1 regular neighborhood) which is an aspherical
(2n − 1)-manifold with fundamental group Fn

2 . But then the universal cov-
ering action violates Theorem 1. 	


It appears that the above complex is the first example of an aspherical
simplicial complex of dimension n ≥ 3 which does not immerse up to
homotopy into R2n−1. A detailed study of thickenings in the case when
K = Sm∪αen has 3 cells was carried out by Cooke [Coo79]. In particular, he
constructs such complexes where the minimal thickenings have arbitrarily
large codimension.

2. Obstructor complexes

In this section we briefly recall the work of van Kampen [vK33]. At the
time his paper was written, cohomology theory was still not fully developed
and many of the details were elaborated later in [Sha57] (see also [Wt65]).
Van Kampen constructed an n-complex that does not embed into R2n. Van
Kampen’s complex is the (n + 1)-fold join of the 3-point set, generalizing
the well-known non-planar “utilities” graph. Flores [Flo35] showed that the
n-skeleton of the (2n+ 2)-simplex works just as well, thus generalizing the
other standard example of a non-planar graph, namely the complete graph
on 5 vertices. Flores reduced the claim to the Borsuk-Ulam theorem and no
additional cohomological arguments were needed.

In what follows, we shall also need examples of complexes that embed in
an even dimensional Euclidean space, but not in one of lower dimension. We
will follow the standard practice and blur the distinction between a simplicial
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complex and its geometric realization. All (co)homology groups are taken
with coefficients in Z2.

Definition 4. Fix a non-negative integer m. A finite simplicial complex K
of dimension ≤ m is an m-obstructor complex if the following holds:

1. There is a collection
Σ = {{σi, τi}k

i=1

}

of unordered pairs of disjoint simplices of K with dim σi + dim τi = m
that determine an m-cycle (over Z2) in

⋃
{σ × τ ⊂ K × K |σ ∩ τ = ∅}/Z2

where Z2 acts by (x, y) �→ (y, x).
2. For some (any) general position map f : K → R

m the (finite) number

k∑

i=1

| f(σi) ∩ f(τi)|

is odd.
3. For every m-simplex σ ∈ K the number of vertices v such that the

unordered pair {σ, v} is in Σ is even.

It turns out (see [Sha57], [Wt65], [FKT]) that Van Kampen’s obstruction
(conditions (1) and (2) above) is the only obstruction to the existence of
embeddings of complexes of dimension ≥ 3 into R2n. For 2-dimensional
complexes there are other obstructions as well, see [FKT], [Kr00].

2.1. Discussion and basic properties

Let K be an m-obstructor complex. If f and f ′ are two general position
maps K → R

m choose a general position homotopy H between them.
Standard reasoning (by “watching H”) shows that in the presence of item 1
(in Definition 4) the two integers from item 2 for f and f ′ differ by an even
integer. In particular, item 2 implies that K does not embed inRm; indeed for
every map K → R

m there exist two disjoint simplices of K whose images
intersect.

We will view Σ as a subcomplex of
⋃{σ × τ ⊂ K × K |σ ∩ τ = ∅}/Z2.

Then item 1 states that Σ is a m-pseudomanifold over Z2, meaning that
every (m−1)-cell is the face of an even number of m-cells, and in particular
we have the fundamental class [Σ] ∈ Hm(Σ). Similarly, the collection Σ̃ of
ordered pairs corresponding to the pairs in Σ can be viewed as a subcomplex
of

⋃{σ × τ ⊂ K × K |σ ∩ τ = ∅} and is an m-pseudomanifold. Further,
(x, y) �→ (y, x) is the deck transformation of the natural double cover
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Σ̃ → Σ. Let φ : Σ → RP∞ be a classifying map for this double cover. We
note that item 2 is equivalent to the requirement that

〈φ∗(wm), [Σ]〉 �= 0 ∈ Z2

where wm ∈ Hm(RP∞) is the nonzero class. Indeed, we can perturb
f : K → R

m to a map F = ( f, g) : K → R
m × R = Rm+1 so that

F(σi) ∩ F(τi) = ∅ for all i. Then we have a classifying map φ : Σ →
RPm ⊂ RP∞ defined by

φ({x, y}) = line through F(x) and F(y)

where a point of RPm is viewed as the set of parallel lines in Rm . Then
〈φ∗(wm), [Σ]〉 can be computed as the “degree” of φ, which in turn is the
number of points of Σ mapped to the “vertical lines” pt×R, i.e., the number
from item 2.

We could have defined the notion of an m-obstructor complex by re-
quiring only items 1 and 2. This definition would then be equivalent to the
requirement that Φ∗(wm) �= 0, where Φ : (

K × K \ ∆
)
/Z2 → RP∞ is

the classifying map (∆ ⊂ K × K is the diagonal), and this would be closer
in spirit to van Kampen’s work. We impose item 3 to ensure that the Join
Lemma and the Linking Lemma below hold. A restatement of item 3 is
that the projection map π : Σ̃ → K (say to the second coordinate) has
the property that the pullback of every m-cocycle evaluates trivially on the
fundamental class [Σ̃].

Van Kampen’s obstruction theory can be summarized in the following
proposition.

Proposition 5. Suppose that K is an m-obstructor complex and that W is
a contractible m-manifold. Then for every map F : K → W there exist
disjoint simplices σ and τ in K such that F(σ) ∩ F(τ) �= ∅. In particular,
K does not embed into W.

Proof. The case of W = Rm was discussed above. For the general case,
assume on the contrary that F : K → W violates the proposition. Define
φ : Σ → W×W \∆/Z2 by φ({x, y}) = {F(x), F(y)}. The following lemma
then implies that Σ classifies into RPm−1, a contradiction. 	

Lemma 6. Suppose W is a contractible manifold of dimension m. Then
the space W × W \ ∆/Z2 of unordered pairs of points in W is homotopy
equivalent to RPm−1.

Proof. We may assume that n > 2 since otherwise W is homeomorphic to
R

n. Let U ⊂ W be a (small) open set homeomorphic to Rn. Consider the
diagram

U ×U \∆ ↪→ W × W \∆

↓ ↓
(U ×U \∆)/Z2 ↪→ (W × W \∆)/Z2.
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Note that U×U\∆ fibers over U with fiber U\ pt � Sn−1; thus U×U\∆ �
Sn−1 and similarly W × W \∆ � Sn−1; moreover, inclusion

U ×U \∆ ↪→ W × W \∆

is a homotopy equivalence. Since for n > 2 the two spaces in the first row
of the above diagram are simply-connected, it follows that

(U ×U \∆)/Z2 ↪→ (W × W \∆)/Z2

induces an isomorphism in homotopy groups, and is therefore a homotopy
equivalence. 	


In the simplest instance, the lemma below states that the utilities graph
embedded in R3 links every push-off of itself.

Lemma 7 (The Linking Lemma). Suppose W is a contractible (m + 1)-
manifold, K is an m-obstructor complex and G : K × [0,∞) → W is a
(continuous) proper map. Then there exist two disjoint simplices σ, τ in K
such that G(σ × {0}) ∩ G(τ × [0,∞)) �= ∅.

Proof. Again we first consider the case W = Rm+1. Assuming the con-
trary, consider the homotopy Ht : Σ̃ → Sm defined by declaring that
Ht(x, y) is the class of parallel rays containing the ray from G(x, 0) through
G(y, t). Then H0 : Σ̃ → Sm covers a classifying map and therefore has de-
gree 1. Let B be a Euclidean ball centered at the origin containing G(K×{0})
and assume that t is chosen so that G(K × {t}) ∩ B = ∅. There is a homo-
topy Ls of Ht defined by setting Ls(x, y) to be the equivalence class of rays
containing the ray from (1 − s)G(x, 0) through G(y, t). Now L1 visibly
factors through the projection π : Σ̃ → K and therefore by item 3 in the
definition of obstructor complexes the degree of L1, and hence of Ht , is 0.
Contradiction.

For the case of a general W , replace the definition of Ht by Ht(x, y) =
(G(x, 0),G(y, t)) ∈ W × W \ ∆, and replace the ball B by a compact set
in which G(K × {0}) can be homotoped to a point. 	


2.2. Examples

The n-complexes of van Kampen and of Flores are (2n)-obstructor com-
plexes in our terminology1. The collection Σ consists of all pairs of disjoint
n-simplices. The case of the iterated join of three points can be verified
inductively noting that the three-point set is a 0-obstructor complex and
using the Join Lemma. Note that item 3 is vacuous in both examples (for
n > 0).

Lemma 8 (The Cone Lemma). If K is an m-obstructor complex, then the
cone cK is an (m + 1)-obstructor complex.

1 Although we will not need the Flores’ complexes in what follows.
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Proof. Let Σ = Σ(K ) = {{σi, τi}} be the cycle for K . We define Σ(cK )
to have twice as many elements: for every {σi, τi} ∈ Σ put {cσi, τi} and
{σi, cτi} into Σ(cK ). It is straightforward to check items 1 and 3.

To verify item 2, choose a general position map f : K → R
m , and let

( f, g) : K → R
m × R be a perturbation to a general position map. Put the

cone point high above the hyperplane Rm × {0} and let G̃ : cK → R
m+1 be

the natural extension of ( f, g). Then

|G̃(cσi) ∩ G̃(τi)| + |G̃(σi) ∩ G̃(cτi)| = | f(σi) ∩ f(τi)|

and the claim follows. 	

Lemma 9 (The Join Lemma). If K j is an m j-obstructor complex for
j = 1, 2 then the join K1 ∗ K2 is an (m1 + m2 + 2)-obstructor complex.

Proof. Let Σ j = Σ(K j) = {{σ j
i , τ

j
i }} be the cycle for K j , j = 1, 2. We

define Σ(K1 ∗ K2) to have 2|Σ1||Σ2| elements: for each {σ1
i , τ

1
i } ∈ Σ1 and

{σ2
l , τ

2
l } ∈ Σ2 we put the following two pairs in Σ(K1∗K2): {σ1

i ∗σ2
l , τ

1
i ∗τ2

l }
and {σ1

i ∗ τ2
l , τ

1
i ∗ σ2

l }. Item 3 is vacuous for Σ(K1 ∗ K2) as there are no
(m1 + m2 + 2)-simplices in Σ(K1 ∗ K2).

To verify that Σ(K1 ∗ K2) is a cycle, suppose first that σ ∗ τ and σ ′ ∗ τ ′
are disjoint simplices of K1 ∗ K2 (with σ and σ ′ simplices of K1 and τ, τ ′
simplices of K2) and that the sum of their dimensions is m1 + m2 + 1. If
dim(σ)+dim(σ ′) > m1 or if dim(τ)+dim(τ ′) > m2 then the corresponding
(m1 +m2 + 1)-cell is not a face of any (m1 +m2 + 2)-cells in Σ(K1 ∗ K2).
So without loss of generality we may assume that dim(σ)+ dim(σ ′) = m1
and dim(τ)+ dim(τ ′) = m2 − 1. Since {τ, τ ′} represents an (m2 − 1)-cell,
item 1 for K2 implies that there is an even number m2-cells {τ̃p, τ

′} and
{τ, τ̃ ′q} in Σ2 that contain {τ, τ ′}. Since {σ ∗ τ̃p, σ

′ ∗τ ′} and {σ ∗τ, σ ′ ∗ τ̃ ′q} are
precisely the (m1 +m2 + 2)-cells in Σ(K1 ∗ K2) that contain {σ ∗ τ, σ ′ ∗ τ ′}
the verification of item 1 in this case is finished.

Now suppose that σ ∗ τ and σ ′ ∗ τ ′ are disjoint simplices of K1 ∗ K2
and that the sum of their dimensions is m1 + m2 + 1. The number of
ways of enlarging this cell to an (m1 + m2 + 2)-cell in Σ(K1 ∗ K2) is
either 0 (if {σ, σ ′} /∈ Σ1) or it equals the number of vertices v ∈ K2 such
that {τ, v} ∈ Σ2, which is even by item 3 for K2. Thus item 1 is verified
for Σ(K1 ∗ K2).

It remains to verify item 2. Let f j : K j → R
m j be general position maps

and I j the total number of intersection points of f j-images of unordered
pairs of simplices in Σ j . View Rmi as Rmi × {0} ⊂ Rmi+1 and Rm1+m2+2 as
R

m1+1×Rm2+1. Perturb f j to a general position map G̃ j = ( f j, gj) : K j →
R

m j ×R = Rm j+1 and let G : K1 ∗K2 → R
m1+m2+2 be the linear join of G̃1

and G̃2. The number of intersection points of G-images of unordered pairs
of simplices in Σ(K1 ∗ K2) is I1 I2. The details are left to the reader. 	
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3. The main theorem

Recall that a (continuous) map h : A → B is proper if the preimages of
compact sets are compact. We say that maps h1 : A1 → B and h2 : A2 → B
into a metric space B diverge (from each other) if for every D > 0 there
are compact sets Ci ⊂ Ai such that h1(A1 \ C1) and h2(A2 \ C2) are
> D apart. If K is a finite complex, we define the open cone cone(K ) =
K×[0,∞)/K×{0}. If K is also an obstructor complex, we say that a proper
map h : cone(K )→ B is expanding if for disjoint simplices σ, τ in K the
maps h|cone(σ) and h|cone(τ) diverge. It will also be convenient to make
the analogous definition on the level of 0-skeleta. Triangulate cone(K )
so that cone(σ) is a subcomplex whenever σ is a simplex of K . We say
that a proper map h : cone(K )(0) → B is expanding if for all pairs σ, τ
of disjoint simplices in K the restrictions h|cone(σ)(0) and h|cone(τ)(0)

diverge. We also equip cone(K )(0) with the edge-path metric, so that a map
h : cone(K )(0) → B is Lipschitz if there is a uniform upper bound on the
distance between the images of adjacent vertices in cone(K )(0).

Note that if h : cone(K ) → B is a proper expanding map, then there
is t0 ≥ 0 such that the map G : K × [0,∞) → B defined by G(x, t) =
h([x, t+ t0]) satisfies G(σ ×{0})∩G(τ×[0,∞)) = ∅ for any two disjoint
simplices σ, τ of K .

A proper map h : A → B between proper metric spaces is uniformly
proper if there is a proper function φ : [0,∞)→ [0,∞) such that

dB(h(x), h(y)) ≥ φ(dA(x, y))

for all x, y ∈ A. This notion is weaker than the notion of a quasi-isometric
embedding, which would require φ to be a linear function.

Let Γ be a finitely generated group equipped with the word-metric with
respect to some finite generating set. We make the following definitions.

Definition 10. The obstructor dimension obdim(Γ) is defined to be 0 for
finite groups, 1 for 2-ended groups, and otherwise m + 2 where m is the
largest integer such that for some m-obstructor complex K and some trian-
gulation of the open cone cone(K ) as above there exists a proper, Lipschitz,
expanding map f : cone(K )(0) → Γ. If no maximal m exists we set
obdim(Γ) = ∞.

Remark 11. Clearly, one can replace Γ in the above definition by any quasi-
isometric proper metric space. In particular, if Γ acts cocompactly, properly
discontinuously, and isometrically on a proper geodesic metric space X, we
can substitute X for Γ. Moreover, if Γ is of type Fm+1 (see e.g., [Br82]) so
that X can be chosen to be m-connected, then f can be extended to a proper,
expanding map f̃ : cone(K ) → X with a uniform bound on the diameter
of the image of any simplex. One advantage of having the (continuous) map
defined on the whole cone is that the requirement that the map be Lipschitz
can be dropped: one can always triangulate cone(K ) to make the same map
Lipschitz.
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Note that if Γ is infinite and not 2-ended, then we can take K to consist
of 3 points, so obdim(Γ) ≥ 2.

Definition 12. The uniformly proper dimension updim(Γ) is the smallest
integer n such that there is a contractible n-manifold W equipped with
a proper metric dW so that there is a Lipschitz, uniformly proper map
g : Γ → W and so that in addition there is a contractibility function
ρ : (0,∞) → (0,∞) such that any ball of radius r centered at a point of
the image of g is contractible in the ball of radius ρ(r) centered at the same
point. If no such n exists we set updim(Γ) = ∞.

Remark 13. One usually requires of the contractibility function that the
statement about balls be true regardless of where the center is. If we omit
the requirement altogether, the invariant would be trivial: every finitely
generated group admits a uniformly proper map into [0,∞). Just choose
an injective map g : Γ → N ⊂ [0,∞). The largest metric on [0,∞) that
makes g 1-Lipschitz and makes all [n, n+ 1] isometric to a standard closed
interval (of length dependent on n) is proper. Of course, this metric is not
a path-metric, but insisting on path-metrics would only raise the dimension
by 1: For every Γ there is a proper path-metric onR2 and a uniformly proper
map Γ → R

2.

Definition 14. The action dimension actdim(Γ) is the smallest integer n
such that Γ admits a properly discontinuous action on a contractible n-
manifold. If no such n exists, then actdim(Γ) = ∞.

Denote also by gdim(Γ) the geometric dimension of Γ, i.e., the mini-
mal n such that Γ admits a properly discontinuous action on a contractible
n-complex. Recall that for virtually torsion-free groups Γ, gdim(Γ) is con-
jectured to be equal to the virtual cohomological dimension vcdim of Γ
and that the only potential counterexamples would have gdim = 3 and
vcdim = 2 (see [Br82]).

We note that updim(Γ) ≤ actdim(Γ) by choosing a proper invariant
metric on W and taking an orbit of the action, and that for torsion-free
groups Γ we have actdim(Γ) ≤ 2 ·gdim(Γ) by the Stallings theorem cited in
the introduction. Alternatively, we could find a (2n)-dimensional thickening
of an n-complex by immersing it in R2n and taking a regular neighborhood.
The inequality actdim(Γ) ≤ 2 · gdim(Γ) is false for groups with torsion;
indeed, the free product A5 ∗ A5 acts properly discontinuously on a tree but
not on the plane. On the other hand, Γ = A5 ∗ A5 contains a free subgroup
Γ′ of finite index, hence 2 = actdim(Γ′) < actdim(Γ).

The main theorem is:

Theorem 15. obdim(Γ) ≤ updim(Γ).

Proof. The special cases when obdim(Γ) ≤ 1 are clear. Let K be an m-
obstructor complex and f : cone(K )(0) → Γ a proper, Lipschitz, expand-
ing map. Let W be a contractible n-manifold with a proper metric and
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g : Γ → W a uniformly proper Lipschitz map satisfying the contractibility
function requirement. Consider the composition g f : cone(K )(0) → W .
Now extend g f inductively over the skeleta of cone(K ) to get a map
G : cone(K )→ W . Using the contractibility function, we can arrange that
the diameter of the image of each simplex of cone(K ) is uniformly bounded.
It follows that G is a proper expanding map, and therefore n ≥ m + 2 by
the Linking Lemma 7. 	


This theorem immediatately implies the following chain of inequalities
(with the last inequality only for torsion-free groups):

obdim(Γ) ≤ updim(Γ) ≤ actdim(Γ) ≤ 2 gdim(Γ) (1)

The second inequality can be strict. The Baumslag-Solitar group

B = 〈x, t|xt = t2x〉
is not a 3-manifold group and so actdim(B) = 2·gdim(B) = 4. On the other
hand, obdim(B) = updim(B) = 3. The group B admits a uniformly proper
map into H3 and the universal cover of the presentation 2-complex admits
a proper expanding map defined on the open cone on the tripod, which
is a 1-obstructor complex. All three invariants in (1) are monotone, in the
sense that if Γ′ is a finitely generated subgroup of Γ, then anydim(Γ′) ≤
anydim(Γ). We also note that both obdim and updim are invariant under
quasi-isometries. This is not the case for actdim (even for torsion-free
groups) as there are examples of torsion-free groups that are not 3-manifold
groups but contain 3-manifold groups as finite index subgroups [KK].

Lemma 16.

obdim(Γ1 × Γ2) ≥ obdim(Γ1)+ obdim(Γ2)

while
updim(Γ1 × Γ2) ≤ updim(Γ1)+ updim(Γ2)

and
actdim(Γ1 × Γ2) ≤ actdim(Γ1)+ actdim(Γ2).

Proof. The latter two statements are obvious, while the first one follows
from the Join Lemma 9. The product cone(K1) × cone(K2) can naturally
be viewed as cone(K1 ∗ K2) and the product map into Γ1 ×Γ2 satisfies the
requirements. (If one of the two groups is 2-ended, use the Cone Lemma
instead.) 	

Corollary 17. In particular, we see that for Γ = Fn

2 all three invariants
obdim, updim and actdim are 2n and the inequalities in the chain (1) are
equalities.

If Γ has a reasonable boundary, it may be easier to compute obdim(Γ).
The following definition is taken from [Bes96].
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Definition 18. Let Γ be a group. A Z-structure on Γ is a pair (X̃, Z) of
spaces satisfying the following four axioms.

• X̃ is a Euclidean retract.
• Z is a Z-set in X̃.
• X = X̃ \ Z admits a covering space action of Γ with compact quotient.
• The collection of translates of a compact set in X forms a null-sequence

in X̃, i.e., for every open cover U of X̃ all but finitely many translates are
U-small.

A space Z is a boundary of Γ if there is a Z-structure (X̃, Z) on Γ.

For example, torsion-free hyperbolic groups and CAT(0) groups2 admit
a boundary. However, unlike for hyperbolic groups, boundary of a CAT(0)-
group G is not uniquely determined by G (up to a homeomorphism) [CK00].

Corollary 19. Suppose Z is a boundary of Γ and f : K → Z is a map
from an m-obstructor complex that sends disjoint simplices disjointly (e.g.
f could be an embedding). Then obdim(Γ) ≥ m + 2.

Proof. Let X, X̃ be as in the definition. Since Z is a Z-set in X̃ , there is
a homotopy H : K × [0, 1] → X̃ with H(x, 0) = ∗, H(x, 1) = f(x) and
H(K×(0, 1])∩ Z = ∅. Restricting to K×[0, 1) and reparametrizing yields
an expanding map cone(K )→ X. 	


It is convenient to introduce the notation

“K ⊂ ∂Γ”

to mean that there is a proper expanding Lipschitz map cone(K )(0) → Γ as
in the definition of obdim. The above corollary implies

K ⊂ ∂Γ ⇒ “K ⊂ ∂Γ”

Example 20. The n-fold join of Cantor sets is a boundary of Fn
2 and it

contains van Kampen’s (2n−2)-obstructor complex. Thus obdim(Fn
2 ) = 2n

and all inequalities in the chain (1) are equalities.

Remark 21. It seems to be believed by the experts that there are n-dimen-
sional torsion-free hyperbolic groups Γ with boundary the Menger universal
(n − 1)-dimensional compactum. For such a group all inequalities would
be equalities as well, but no such examples of hyperbolic groups are known
except for small n.

Somewhat more generally, consider a group G acting discretely isomet-
rically on a CAT(0)-space X with the ideal boundary D = ∂∞X. (We do not
assume that this action is cocompact.) Pick a base point x ∈ X and C ∈ R+.
The C-cone limit set ΛC(G) of G consists of points ξ ∈ D such that for
the geodesic ray ρ in X emanating from x and representing ξ , there exists
an infinite sequence gn ∈ G such that d(gnx, ρ) ≤ C. The arguments from
Corollary 19 imply

2 I.e. groups which admit discrete cocompact isometric action on a CAT(0)-space.
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Corollary 22. If for some C, ΛC(G) contains an m-obstructor complex,
then obdim(G) ≥ m.

4. Short exact sequences

We now investigate the obstructor dimension of a group G that fits in a short
exact sequence

1 → H → G
π→ Q → 1

where all groups are finitely generated. The natural guess is that

obdim G ≥ obdim H + obdim Q (2)

and this is what we prove under certain technical assumptions on π (admits
a Lipschitz section) and H (weakly convex). All groups are equipped with
word metrics. We note that some restrictions are clearly neccessary for (2)
to hold. For instance, Rips in [Rip82] constructs examples of epimorphisms
G → Q where G is a 2-dimensional hyperbolic group and Q is a prescribed
finitely generated group, so that the kernel H is finitely generated (and is
neither finite nor 2-ended). Note that G can be assumed to have Menger
curve boundary [KK00]. Then obdim(G) = 4, obdim H ≥ 2 and Q can be
chosen to have obdim(Q) as large as one likes. See also Example 28.

Definition 23. We say that a finitely generated group Γ is weakly convex
if there is a collection of (discontinuous, of course) paths {φz,w : [0, 1] →
Γ}z,w∈Γ and a constant M > 0 satisfying the following properties:

1. φz,w(0) = z and φz,w(1) = w.
2. There is a function γ : [0,∞)→ [0,∞) such that

d(z, w) ≤ R #⇒ diam(Im(φz,w)) ≤ γ(R).
3. For all z, w ∈ Γ there is ε > 0 such that φz,w sends subintervals of length
< ε to sets of diameter < M.

4. If d(z, z′) ≤ 1 and d(w,w′) ≤ 1 then for all t ∈ [0, 1]
d(φz,w(t), φz′,w′(t)) ≤ M.

Remark 24. The paths are to be thought of as being piecewise constant. We
could avoid talking about discontinuous functions by requiring that they
be defined only on the rationals in [0, 1]. It is more standard to think of
paths in Γ as eventually constant 1-Lipschitz functions defined on non-
negative integers; however, for what follows it is important that all paths
be defined on the same bounded set. It is possible to reparametrize such
paths by “constant speed” paths defined on [0, 1]. The collection of paths
as above is usually called a “combing” (except for the domain being [0, 1]).
Condition 2 is then a weak version of the requirement that the combing be
quasi-geodesic and it follows automatically if the combing is equivariant
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(i.e., φgz,gw = Lg ◦ φz,w, where Lg : Γ → Γ denotes left translation by g).
Condition 3 is the replacement of the 1-Lipschitz requirement. Condition 4
is the “Fellow Traveller” property.

If Γ and Γ′ are quasi-isometric and one is weakly convex, so is the other.
Hyperbolic groups, CAT(0) groups, and semi-hyperbolic groups [AB95]
are weakly convex.

We can regard the given paths in the definition of weak convexity as
a recipe for extending maps into Γ defined on the (ordered) vertices of a
1-simplex to the whole 1-simplex. It is easy to see that one can similarly
extend maps defined on the vertices of an n-simplex for any n > 0, with the
constant M = M(n) above depending on n. By

∆n = {
(t0, t1, · · · , tn) ∈ Rn+1

∣∣ti ≥ 0, t0 + t1 + · · · + tn = 1
}

we denote the standard n-simplex, and by In,k the standard face inclusion
∆n−1 ↪→ ∆n onto the face tk = 0 given by

In,k(t0, t1, · · · , tn−1) = (t0, t1, · · · , 0, · · · , tn−1).

Proposition 25. Let Γ be a weakly convex group. Then for every n > 0 there
is a constant M(n) and for every (n+1)-tuple (z0, z1, · · · , zn) ∈ Γn+1 there
is a function φz0,z1,··· ,zn : ∆n → Γ such that

• φz0,z1,··· ,zn(vk) = zk where vk ∈ ∆n is the vertex with tk = 1.
• There is a function γn : [0,∞)→ [0,∞) such that

d(zi, z j) ≤ T for all i, j #⇒ diam(Im(φz0,z1,··· ,zn)) ≤ γn(T )

• For all z0, z1, · · · , zn there is ε > 0 such that the φz0,z1,··· ,zn -images of
sets of diameter < ε have diameter < M(n).

• If d(zi, wi) ≤ 1 then

d(φz0,z1,··· ,zn(t), φw0,w1,··· ,wn (t)) ≤ M(n)

• φz0,z1,··· ,zn ◦ In,k = φz0,z1,··· ,ẑk,··· ,zn .

Proof (sketch). Functions φz0,z1,··· ,zn are constructed by induction on n, with
the case n = 1 being the definition. The inductive step consists of defining
φz0,z1,··· ,zn on the boundary of ∆n so that the last item above holds and then
extending to the interior by coning off from the first vertex. More precisely,
if ψ : [0, 1] → ∆n is a linear map with ψ(0) = v0 and ψ(1) belongs to the
face with t0 = 0 then

φz0,z1,··· ,zn(ψ(t)) = φz0,w(t)

where w ∈ Γ is the image of ψ(1) under the (partially defined) φz0,z1,··· ,zn .
Checking the properties listed above is straightforward (by construction,
the restriction of the function to a face containing v0 is already the cone on
the opposite face). 	
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Theorem 26. Let
1 → H → G

π→ Q → 1

be a short exact sequence of finitely generated groups. Suppose that H is
weakly convex and that π admits a Lipschitz section s : Q → G. Then

obdim G ≥ obdim H + obdim Q.

Proof. If H (or Q) is finite, then G is quasi-isometric to Q (or H) and
equality holds. If H (or Q) is 2-ended, we can use KH = point (or KQ =
point) in the proof below and appeal to the Cone Lemma. If both H
and Q are 2-ended, then G is virtually Z × Z and thus obdim(G) = 2,
obdim(H) = obdim(Q) = 1, so equality again holds.

Let α : cone(KH )
(0) → H and β : cone(KQ)

(0) → Q be proper
Lipschitz expanding maps defined on the vertices of a fine triangulation of
the cones on obstructor complexes KH and KQ . Define

f : cone(KH ∗ KQ)
(0) = cone(KH )

(0) × cone(KQ)
(0) → G

by
f(x, y) = α(x) · sβ(y).

Claim 1. f is a proper map.

Indeed, let (xi, yi) be a sequence in cone(KH )
(0) × cone(KQ)

(0) leaving
every finite set. If the sequence π f(xi, yi) = β(yi) ∈ Q leaves every
finite set, the same is true for f(xi, yi) ∈ G. Otherwise, after passing to
a subsequence, we may assume that the sequence π f(xi, yi) = β(yi) ∈ Q
stays in a finite set D ⊂ Q. Then sβ(yi) stays in the finite set s(D). Since β
is a proper map, the sequence yi ∈ cone(KQ)

(0) stays in a finite set, and thus
the sequence xi ∈ cone(KH )

(0) leaves every finite set. Since α is a proper
map, we see that the sequence f(xi, yi) = α(xi) · sβ(yi) leaves every finite
set.

Claim 2. If σ = σH ∗σQ and τ = τH ∗τQ are disjoint simplices of KH ∗KQ ,
then f |cone(σ)(0) and f |cone(τ)(0) diverge.

Indeed, let (xi, yi) and (x ′i, y′i) be sequences in cone(σH )
(0) × cone(σQ)

(0)

and cone(τH )
(0) × cone(τQ)

(0) respectively, leaving every finite set. Note
that π is a Lipschitz map, so if one of two sequences π f(xi, yi) = β(yi) and
π f(x ′i, y′i) = β(y′i) leaves every finite set in Q, then dQ(β(yi), β(y′i))→∞
(since β|cone(σQ)

(0) and β|cone(τQ)
(0) diverge) and consequently

dG
(

f(xi, yi), f(x ′i, y′i)
) →∞.

Now assume that both sequences β(yi) and β(y′i) are contained in a fixed
finite set D ⊂ Q. Then we have

dG
(

f(xi, yi), f(x ′i, y′i)
) = dG

(
α(xi) · sβ(yi), α(x

′
i) · sβ(y′i)

) =
dG

(
1, sβ(yi)

−1α(xi)
−1α(x ′i)sβ(y

′
i)
)
.
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Since sβ(yi) and sβ(y′i) stay in a finite set and

dH

(
1, α(xi)

−1α(x ′i)
) = dH(α(xi), α(x

′
i))→∞

it follows that dG(1, α(xi)
−1α(x ′i))→∞ and

dG
(
1, sβ(yi)

−1α(xi)
−1α(x ′i)sβ(y

′
i)
) →∞,

and the claim is proved.
The remaining problem is that f is not Lipschitz.

Claim 3. The restriction of f to {q} × cone(KQ)
(0) is Lipschitz with the

Lipschitz constant independent of q.

Indeed, let x, y be two adjacent vertices in cone(KQ)
(0).

dG( f(q, x), f(q, y)) = dG(α(q) · sβ(x), α(q) · sβ(y)) = dG(sβ(x), sβ(y))

and the claim follows from the assumption that s is Lipschitz.
For every p ∈ cone(KQ)

(0) let f p denote the restriction of f to the
slice cone(KH )

(0) × {p}. Recall that Lsβ(p) is the left translation by sβ(p)
and it induces an isometry between H = π−1(1) (with the G-metric) and
π−1(β(p)).

Claim 4. L−1
sβ(p) f p : cone(KH )

(0) × {p} → H is Lipschitz with respect
to the word-metric on H (but the Lipschitz constant depends on p). In
particular, f p : cone(KH )

(0) × {p} → G is Lipschitz.

Indeed, L−1
sβ(p) f p(x, p) = sβ(p)−1 · α(x) · sβ(p) which is Lipschitz.

We next order all vertices of cone(KH ) and then extend (simplex-by-
simplex) L−1

sβ(p) f p for each p to the map F̃p : cone(KH )× {p} → H using
the weak convexity of H and Proposition 25. Then define

f̃ p = Lsβ(p)F̃p : cone(KH )× {p} → π−1(p).

Let
f̃ : cone(KH )× cone(KQ)

(0) → G

be defined as f̃ p on each cone(KH )× {p}.
We now note that for n = dim cone(KH ) and for M = M(n) from

Proposition 25 we have that:

• For each p ∈ cone(KQ)
(0) there is ε(p) > 0 so that sets of diameter

< ε(p) in a simplex of cone(KH )× {p} are sent by f̃ to sets of diameter
< M.

• If p, p′ are adjacent vertices in cone(KQ) then f̃ (x, p) and f̃ (x, p′) are
kM-close for any x ∈ cone(KH ), where k is a Lipschitz constant for sβ.
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For each p ∈ cone(KQ)
(0) choose a positive integer m(p) so that the

simplices of the m(p)th barycentric subdivision of σ × {p′} have diameter
< ε(p′) for all vertices p′ at distance ≤ 1 from p.

We now define a triangulation of cone(KH ) × cone(KQ). Start with
a decomposition into cells of the form σ × τ where τ is a simplex of
cone(KQ) and σ is a simplex of the k(τ)th barycentric subdivision of a sim-
plex of cone(KH ) with k(τ) = min{m(p), p ∈ τ(0)}. Now triangulate each
such cell inductively on the dimension so that the vertex set of the triangu-
lation is precisely

{(v, p)|p ∈ cone(KQ)
(0), v is a vertex of the m(p)th

barycentric subdivision of cone(KH )}
The restriction of f̃ to the vertex set is now a Lipschitz function.

Claim 5. This restriction is still proper and expanding.

The proof closely follows proofs of Claims 1 and 2. If the sequence β(yi)
(resp. one of the sequences β(yi) or β(y′i)) leaves every finite set, the proof is
exactly the same as in Claims 1 and 2. Otherwise, without loss of generality,
the sequence f̃ (xi, yi) (resp. sequences f̃ (xi, yi) and f̃ (x ′i, y′i)) belong to
finitely many slices of the form cone(KH )×{p} and therefore lie a bounded
distance away from sequences considered in Claims 1 and 2 coming from
the vertices of the original triangulation. The proof follows. 	

Corollary 27. If G = H � Q with H and Q finitely generated and H
weakly convex, then obdim G ≥ obdim H + obdim Q. 	

Example 28. Let G = Fn

2 . Defineφ : G → Z by sending the basis elements
of each factor to 1 ∈ Z. Let H = Ker(φ). It is easy to see that H contains
a copy of Fn

2 and thus obdim(G) = obdim(H) = 2n. Therefore G = H�Z,
but obdim(H)+ obdim(Z) = 2n + 1 > obdim(G). It follows that H is not
weakly convex, and one knows [B76] that H is of type Fn−1 (in particular,
it is finitely generated for n ≥ 2, finitely presented for n ≥ 3, etc.).

Remark 29. Example 28 shows that in the above corollary weak convexity
of H is a necessary assumption.

We now apply the above theorem to the group Out(Fn) of outer auto-
morphisms of Fn = 〈x1, · · · , xn〉, the free group of rank n. Recall [CV86]
that the virtual cohomological dimension of Out(Fn) is 2n − 3 (n > 1) and
that Out(Fn) is virtually torsion-free. It follows from the Stallings theo-
rem that obdim(Out(Fn)) ≤ 4n − 6. We note that equality holds, since
Out(Fn) contains as a subgroup a group of the form F2n−4

2 � F2. Indeed,
choose F2 < Aut(F2) that injects into Out(F2) and let it act diagonally on
F2n−4

2 . The corresponding semi-direct product is realized by the subgroup
of Aut(Fn) that injects into Out(Fn) as follows. Send an element

u = (w3, v3, ..., wn, vn, α) ∈ F2n−4
2 � F2, wi, vi ∈ F2 = 〈x1, x2〉,

α ∈ F2 ⊂ Aut(F2)
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to the automorphism φu of Fn which acts on 〈x1, x2〉 as the automorphism
α and maps xi (i ≥ 3) to wi xiv

−1
i . The reader will verify that u �→ φu

is indeed a monomorphism F2n−4
2 � F2 to Aut(Fn) whose image projects

injectively to Out(Fn).
We conjecture that obdim for the mapping class group of a closed ori-

ented surface of genus g is 6g − 6, the dimension of the associated Te-
ichmüller space. This is analogous to Theorem 2 stated in the Introduc-
tion.

Let Bn denote the braid group on n strands. As evidence for the conjecture
in the previous paragraph, we note that obdim Bn = 2n − 3 (n ≥ 2). This
can be seen as follows. Denote by Pn < Bn the pure braid group on n
strands. Then Pn = Fn−1 � Pn−1 so the statement that obdim Pn = 2n − 3
follows by induction from Corollary 27. But obdim Bn = obdim Pn since
Pn has finite index in Bn.

5. Questions

We conclude this note with the following questions about the invariants
introduced in this paper.
1. Is obdim Γ = updim Γ for all Γ? The answer is probably negative as
stated, but the question should be interpreted liberally: Is updim Γ detected
homologically? (Compare this with a theorem of Kuratowsky and Clay-
tor [Cl24] that a 1-dimensional continuum without global cut-points is
planar provided that it contains neither the complete graph on five vertices,
nor the “utility” graph.)
2. Suppose Mi is a compact aspherical ni-manifold with all boundary com-
ponents aspherical and incompressible, i = 1, ..., k. If Mi is not homotopy
equivalent to an (ni − 1)-manifold, and if G = π1(M1)× · · · × π1(Mk), is
actdim G = n1 + · · · + nk? Update (November 2001): Sung Yil Yoon has
answered this question in the affirmative in his PhD thesis [Yoon].
3. Is the assumption of the existence of a Lipschitz section in Theorem 26
necessary if in addition H , G, Q have finite type (i.e., have finite Eilenberg-
MacLane spaces)?
4. What is actdim(Γ) for uniform/nonuniform S-arithmetic groups? Every
such group acts on the product of symmetric spaces and buildings. A natural
guess is that the answer equals the sum of dimensions of the symmetric
spaces plus twice the sum of dimensions of the buildings.
5. Are there groups of finite type (i.e., groups of type FP) which are not
weakly convex? For instance, are the fundamental groups of 3-dimensional
Nil-manifolds weakly convex?
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