# STABILITY INEQUALITIES AND UNIVERSAL SCHUBERT CALCULUS OF RANK 2 

ARKADY BERENSTEIN<br>Department of Mathematics University of Oregon<br>Eugene, OR 97403, USA<br>arkadiy@uoregon.edu

MICHAEL KAPOVICH<br>Department of Mathematics<br>University of California<br>Davis, CA 95616, USA<br>kapovich@math.ucdavis.edu


#### Abstract

The goal of the paper is to introduce a version of Schubert calculus for each dihedral reflection group $W$. That is, to each "sufficiently rich" spherical building $Y$ of type $W$ we associate a certain cohomology theory $H_{B K}^{*}(Y)$ and verify that, first, it depends only on $W$ (i.e., all such buildings are "homotopy equivalent"), and second, $H_{B K}^{*}(Y)$ is the associated graded of the coinvariant algebra of $W$ under certain filtration. We also construct the dual homology "pre-ring" on $Y$. The convex "stability" cones in $\left(\mathbb{R}^{2}\right)^{m}$ defined via these (co)homology theories of $Y$ are then shown to solve the problem of classifying weighted semistable $m$-tuples on $Y$ in the sense of [KLM1]; equivalently, they are cut out by the generalized triangle inequalities for thick Euclidean buildings with the Tits boundary $Y$. The independence of the (co)homology theory of $Y$ refines the result of [KLM2], which asserted that the Stability Cone depends on $W$ rather than on $Y$. Quite remarkably, the cohomology ring $H_{B K}^{*}(Y)$ is obtained from a certain universal algebra $A_{t}$ by a kind of "crystal limit" that has been previously introduced by BelkaleKumar for the cohomology of flag varieties and Grassmannians. Another degeneration of $A_{t}$ leads to the homology theory $H_{*}(Y)$.


## 1. Introduction

Alexander Klyachko in [K] solved the old problem on eigenvalues of sums of hermitian matrices. His solution was to interpret the eigenvalue problem as an existence problem for certain parabolically stable bundles over $\mathbb{C P}^{1}$, so that the inequalities on the eigenvalues are stated in terms of the Schubert calculus on Grassmannians. Klyachko's work was later generalized by various authors to cover general semisimple groups; see, e.g., [BS], [KLM1]. The stable bundles were replaced in [KLM1] with semistable weighted configurations on certain spherical buildings and the eigenvalue problem was interpreted as a triangle inequalities problem for the vector-valued distance function on nonpositively curved symmetric spaces and Euclidean buildings. Still, the solution depended heavily on (and was formulated in terms of) Schubert calculus on generalized Grassmannians $G / P$, where $G$ is a (complex or real) semisimple Lie group and $P$ 's are maximal parabolic subgroups of $G$.

The present work is a part of our attempt to generalize Lie theory to the case
DOI: 10.1007/s00031-011-9161-6
Received September 7, 2010. Accepted July 6, 2011. Published online September 9, 2011.
of nonexistent Lie groups having noncrystallographic dihedral groups $W=I_{2}(n)$ (of order $2 n$ ) as their Weyl groups. For such Weyl groups, one cannot define $G$ and $P$, but there are spherical (Tits) buildings $Y$, whose vertex sets serve as generalized Grassmannians $G / P$. Moreover, we also have thick discrete and nondiscrete Euclidean buildings for the groups $I_{2}(n)$ (see $[\mathrm{BK}]$ ), so both problems of existence of semistable weighted configurations and of computation of triangle inequalities for vector-valued distance functions on Euclidean buildings certainly make sense. The goal of this paper is to compute these inequalities (by analogy with [BS], [KLM1]) in terms of the Borel model for $H^{*}(G / P)$ and to verify that they solve the problem of existence of semistable weighted configurations and the equivalent problem of computation of triangle inequalities in the associated affine buildings.

Our main results can be summarized as follows.
Let $\mathfrak{Y}$ be a rank 2 affine building with the Weyl group $W=I_{2}(n)$ and let $\Delta$ denote the positive Weyl chamber for $W$. We then obtain a $\Delta$-valued distance function $d_{\Delta}(x, y)$ between points $x, y \in \mathfrak{Y}$; see [KLM1] or [KLM3]. Then

Theorem 1. There exists a geodesic m-gon $x_{1} \cdots x_{m}$ in $\mathfrak{Y}$ with the $\Delta$-side-lengths $\lambda_{1}, \ldots, \lambda_{m}$ if and only if the vectors $\lambda_{1}, \ldots, \lambda_{m}$ satisfy the Weak Triangle Inequalities (the stability inequalities):

$$
\begin{equation*}
w\left(\lambda_{i}-\lambda_{j}^{*}\right) \leq \Delta^{*} \sum_{k \neq i, k \neq j} \lambda_{k}^{*}, \quad w \in W \tag{1}
\end{equation*}
$$

taken over all distinct $i, j \in\{1, \ldots, m\}$.
Here $\lambda^{*}=-w_{\circ}(\lambda)$ is the vector contragredient to $\lambda\left(w_{\circ} \in W\right.$ is the longest element). The order $\leq_{\Delta^{*}}$ is defined with respect to the obtuse cone $\Delta^{*}$ dual to $\Delta$ :

$$
\Delta^{*}=\{\nu \mid \nu \cdot \lambda \geq 0, \forall \lambda \in \Delta\} .
$$

(Recall that $\lambda \leq_{\Delta^{*}} \nu \Longleftrightarrow \nu-\lambda \in \Delta^{*}$.)
The key idea behind the proof is that although we do not have smooth homogeneous manifolds $G / P$, we still can define some kind of Schubert calculus on the sets of "points" $Y_{1}$ and "lines" $Y_{2}$ in appropriately chosen Tits buildings $Y$ (replacing $G / P$ 's). We define certain "homology pre-rings" $H_{*}\left(Y_{l}, \widehat{\mathbf{k}}\right), l=1,2$ ("Schubert precalculus") which reflect the intersection properties of "Schubert cycles" in $Y_{l}$. We then show that this calculus is robust enough to solve the existence problem for weighted semistable configurations.

We next promote the cohomology pre-rings to rings. To this end, we introduce the universal Schubert calculus, i.e., we define a cohomology ring $H^{*}(Y, \mathbf{k})=A_{t}$ for each reflection group of rank 2, based on a generalization of the Borel model for the computation of cohomology rings of flag varieties. One novelty here is that in the definition of $A_{t}$ we allow $t \in \mathbb{C}^{\times}$, thereby providing an interpolation between cohomology rings of complex flag manifolds; for $t$ a primitive $n$th root of unity, $A_{t}$ defines $H^{*}(Y, \mathbf{k})$, the cohomology rings of the buildings $Y$ with the Weyl group $W=I_{2}(n)$. We therefore think of the family of rings $A_{t}$ as the "universal Schubert calculus" in rank 2. An odd feature of the rings $A_{t}$ is that even for the
values of $t$ which are roots of unity, the structure constants of $A_{t}$ are typically irrational ( $t$-binomials), so we do not have a natural geometric model for these $A_{t}$. In order to link $A_{t}$ to geometry, we define a (trivial) deformation $A_{t, \tau}, \tau \in \mathbb{R}_{+}$, of $A_{t}$. Sending $\tau$ to 0 we obtain an analogue of the Belkale-Kumar degeneration $H_{B K}^{*}(Y, \mathbf{k})=\operatorname{gr}\left(A_{t}\right)$ of $A_{t}$. On the other hand, by sending $\tau$ to $\infty$, we recover the pre-ring $H_{*}(Y, \widehat{\mathbf{k}})$ given by the Schubert precalculus. Therefore, $A_{t}$ interpolates between $H_{B K}^{*}(Y, \mathbf{k})$ and $H_{*}(Y, \widehat{\mathbf{k}})$. The same relation holds for the cohomology rings of "Grassmannians," $B_{t}^{(l)}=H^{*}\left(Y_{l}, \mathbf{k}\right) \subset A_{t}$, their Belkale-Kumar degenerations $H_{B K}^{*}\left(Y_{l}, \mathbf{k}\right)=\operatorname{gr}\left(B_{t}^{(l)}\right)$ and pre-rings $H_{*}\left(Y_{l}, \widehat{\mathbf{k}}\right)$. We then observe (Section 16) that the system of strong triangle inequalities defined by $H_{*}(Y, \widehat{\mathbf{k}})$ also determines the Stability Cone $\mathcal{K}_{m}(Y)$ for the building $Y$. In Section 17 we introduce systems of linear inequalities determined by certain based rings $A$, generalizing $A_{t}$. Specializing these inequalities to the case $A=A_{t}$, using the results of Section 16, we recover the Stability Cones $\mathcal{K}_{m}(Y)$. Therefore, the systems of inequalities defined by $A_{t}, B_{t}^{(l)}, \operatorname{gr}\left(A_{t}\right), \operatorname{gr}\left(B_{t}^{(l)}\right)$ and $H_{*}(X)$ are all equivalent. In this section, we also prove that the system of Weak Triangle Inequalities, determined by $H_{B K}^{*}\left(Y_{l}, \mathbf{k}\right)$, equivalently, $H_{*}\left(Y_{l}, \widehat{\mathbf{k}}\right),(l=1,2)$ is irredundant. This is reminiscent of the result by Ressayre who proved irredundancy of the Beklale-Kumar inequalities in the context of complex reductive groups.

After this paper was submitted, we received a preprint [C] by Carlos Ramos Cuevas, in which he gives an alternative proof of Theorem 1. His proof does not rely upon development of Schubert precalculus, but rather on direct geometric arguments.

Acknowledgments. Our collaboration on this project started at the AIM workshop "Buildings and Combinatorial Representation Theory" in 2007 and we are grateful to AIM for this opportunity. The first author was supported by the NSF grant DMS-08-00247. The second author was supported by the NSF grants DMS-05-54349 and DMS-09-05802. We are grateful to the referees for useful suggestions and corrections.

## 2. Coxeter complexes

Let $A$, the apartment, be either the Euclidean space $E=E^{N}$ or the unit $N-1$-sphere $S=S^{N-1} \subset E^{N}$ (we will be primarily interested in the case of the Euclidean plane and the circle). If $A=S$, a Coxeter group acting on $A$ is a finite group $W$ generated by isometric reflections. If $A=E$, a Coxeter group acting on $A$ is a group $W_{\text {af }}$ generated by isometric reflections in hyperplanes in $A$, so that the linear part of $W_{\text {af }}$ is a Coxeter group acting on $S$. Thus, $W_{\text {af }}=\Lambda \rtimes W$, where $\Lambda$ is a certain (countable or uncountable) group of translations in $E$. We will use the notation $\mathbf{1}$ for the identity in $W$ and $w_{\circ}$ for the longest element of $W$ with respect to the word-length function $\ell: W \rightarrow \mathbb{Z}$ with respect to the standard Coxeter generators $s_{i}$.

Definition 1. A spherical or Euclidean ${ }^{1}$ Coxeter complex is a pair $(A, G)$, of the

[^0]form $(S, W)$ or $\left(E, W_{\text {af }}\right)$. The number $N$ is called the rank of the Coxeter complex.
A wall in the Coxeter complex $(A, G)$ is the fixed-point set of a reflection in $G$. A half-apartment in $A$ is a closed half-space bounded by a wall. A regular point in a Coxeter complex is a point which does not belong to any wall. A singular point is a point which is not regular.

Remark 1. Note that in the spherical case, there is a natural cell complex in $S$ associated with $W$. However, in the affine case, when $W_{\text {af }}$ is nondiscrete, there will be no natural cell complex attached to $W_{\text {af }}$.

Chambers in $(S, W)$ are the fundamental domains for the action $W \curvearrowright S$, i.e., the closures of the connected components of the complement to the union of walls. We will use the notation $\Delta_{\mathrm{sph}}$ for a fixed (positive) fundamental domain.

An affine Weyl chamber in $\left(A, W_{\mathrm{af}}\right)$ is a fundamental domain $\Delta=\Delta_{\mathrm{af}}$ for a conjugate $W^{\prime}$ of $W$ in $W_{\text {af }}$, i.e., it is a cone over $\Delta_{\text {sph }}$ with the tip at a point $o$ fixed by $W^{\prime}$.

A vertex in $(A, G)$ is a (component of, in the spherical case) 0-dimensional intersection of walls. We will consider almost exclusively only essential Coxeter complexes, i.e., complexes that have at least one vertex. Equivalently, these are spherical complexes where the group $G$ does not have a global fixed point and those Euclidean Coxeter complexes where $W$ does not have a fixed point in $S$.

In the spherical case, the notion of type is given by the projection

$$
\theta: S \rightarrow S / W=\Delta_{\mathrm{sph}}
$$

where the quotient is the spherical Weyl chamber.
Let $s_{i} \in W$ be one of the Coxeter generators. We define the relative length functions $\ell_{i}$ on $W$ as follows: $\ell_{i}(w)$ is the length of the shortest element of the coset $w\left\langle s_{i}\right\rangle \subset W /\left\langle s_{i}\right\rangle$. In the case when $W$ is a finite dihedral group, $\ell_{i}(w)$ equals the combinatorial distance from the vertex $w\left(\zeta_{i}\right)$ to the positive chamber $\Delta_{\mathrm{sph}}$ in the spherical Coxeter complex $\left(S^{1}, W\right)$. Here, $\zeta_{i}$ is the vertex of $\Delta_{\text {sph }}$ fixed by $s_{i}$.

## 3. Metric concepts

Notation 2. Let $Y, Z$ be subsets in a metric space $X$. Define the (lower) distance $d(Y, Z)$ as

$$
\inf _{y \in Y, z \in Z} d(y, z)
$$

If $Z$ is a singleton $\{z\}$, we abbreviate $d(\{z\}, Y)$ to $d(z, Y)$. In the examples we are interested in, the above infimum is always realized.

For a subset $Y \subset X$, we let $B_{r}(Y)$ denote the closed $r$-neighborhood of $Y$ in $X$, i.e.,

$$
B_{r}(Y):=\{x \in X \mid d(x, Y) \leq r\}
$$

For instance, if $Y=\{y\}$ is a single point, then $B_{r}(Y)=B_{r}(y)$ is the closed $r$-ball centered at $y$. Similarly, we define "spheres centered at $Y$ "

$$
S_{r}(Y):=\{x \in X \mid d(x, Y)=r\} .
$$

A metric space $X$ is called geodesic if every two points in $X$ are connected by a (globally distance-minimizing) geodesic. Most metric spaces considered in this paper will be geodesic. Occasionally, we will have to deal with metrics on disconnected graphs. In this case we declare the distance between points in distinct connected components to be infinite.

For a pair of points $x, y$ in a metric space $X$ we let $\overline{x y}$ denote a closed geodesic segment (if it exists) in $X$ connecting $x$ and $y$. Because, most of the time, we will deal with spaces where every pair of points is connected by the unique geodesic, this is a reasonable notation.

We refer to $[\mathrm{B}]$ or $[\mathrm{BH}]$ for the definition of a $\operatorname{CAT}(k)$ metric space. We will think of the distances in CAT(1) spaces as angles and, in many cases, denote these distances $\angle(x y)$.

The following characterization of 1-dimensional CAT(1) spaces will be important:

A 1-dimensional metric space (a metric graph) is a CAT(1) space if and only if the length of the shortest embedded circle in $X$ is $\geq 2 \pi$.

If $G$ is a metric graph, where each edge is given the length $\pi / n$, then the CAT(1) condition is equivalent to the assumption that the girth of $G$ is $\geq 2 n$.

Fix an integer $n \geq 2$. Similarly to [BK], a type-preserving map of bipartite graphs $f: G \rightarrow G^{\prime}$ is said to be $(n-1)$-isometric if:

1. $\forall x, y \in V(G), d(x, y)<n-1 \Rightarrow d(f(x), f(y))=d(x, y)$.
2. $\forall x, y \in X, d(x, y) \geq n-1 \Rightarrow d(f(x), f(y)) \geq n-1$.

Here $d$ is the combinatorial path-metric on $G$, which is allowed to take infinite values on points which belong to distinct connected components. One can easily verify that the concept of an $(n-1)$-isometric map is equivalent to the notion of a type-preserving map graphs which preserves the bounded distance on the graphs defined in $[\mathrm{Te}]$.

## 4. Buildings

## Spaces modeled on Coxeter complexes

Let $(A, G)$ be a Coxeter complex (Euclidean or spherical).
Definition 2. A space modeled on the Coxeter complex $(A, G)$ is a metric space $X$ together with an atlas where charts are isometric embeddings $A \rightarrow X$ and the transition maps are restrictions of the elements of $G$. The maps $A \rightarrow X$ and their images are called apartments in $X$. Note that (unlike in the definition of an atlas in a manifold) we do not require the apartments to be open in $X$.

Therefore, all $G$-invariant notions defined in $A$ extend to $X$. In particular, we will talk about vertices, walls, chambers, etc.

Notation 3. We will use the notation $\Delta_{i}$ for chambers in spherical buildings.
The rank of $X$ is the rank of the corresponding Coxeter complex.
A space $X$ modeled on $(A, G)$ is called discrete if the group $G$ is discrete. This is automatic in the case of spherical Coxeter complexes since $G$ is finite in this case.

A spherical building modeled on $(S, W)$ is a CAT(1) space $Y$ modeled on $(S, W)$ which satisfies the following condition:

Axiom ("Connectedness"). Every two points $y_{1}, y_{2} \in Y$ are contained in a common apartment.

The group $W$ is called the Weyl group of the spherical building $Y$.
Spherical buildings of rank 2 (with the Weyl group of order $\geq 4$ ) are called generalized polygons. They can be described combinatorially as follows:

A building $Y$ is a bipartite graph of girth $2 n$ and valence $\geq 2$ at every vertex, so that every two vertices are connected by a path of the combinatorial length $\leq n$. To define a metric on $Y$, we identify each edge of the graph with the segment of length $\pi / n$.

A Euclidean (or affine) building modeled on $\left(A, W_{\text {af }}\right)$ is a $\mathrm{CAT}(0)$ space $X$ modeled on $\left(A, W_{\text {af }}\right)$ which satisfies the following conditions:

Axiom 1 ("Connectedness"). Every two points $x_{1}, x_{2} \in X$ belong to a common apartment.

Axiom 2. There is an extra axiom (comparing to the spherical buildings) of "Angle rigidity", which will be irrelevant for the purposes of this paper. It says that for every $x \in X$, the space of directions $Y=\Sigma_{x}(X)$ satisfies the following:

$$
\forall \xi, \eta \in Y, \quad \angle(\xi, \eta) \in W \cdot \angle(\theta(\xi), \theta(\eta))
$$

Here $\theta: Y \rightarrow \Delta_{\text {sph }}$ is the type projection. We refer to $[\mathrm{BK}],[\mathrm{KL}],[\mathrm{P}]$ for the details. Note that Axiom 2 is redundant in the case of discrete Euclidean buildings.

The finite Coxeter group $W$ (the linear part of $W_{\text {af }}$ ) is called the Weyl group of the Euclidean building $X$.

A building $X$ is called thick if every wall in $X$ is the intersection of (at least) three apartments.

We now specialize our discussion of buildings to the case of rank 2 (equivalently, 1-dimensional) spherical buildings.

Chambers $\Delta_{1}, \Delta_{2}$ in a spherical building $Y$ are called antipodal if the following holds. Let $A \subset Y$ be an apartment containing both $\Delta_{1}, \Delta_{2}$ (it exists by the Connectedness Axiom). Then $\Delta_{1}=-\Delta_{2}$ inside $A$. More generally, if $Y$ is a bipartite graph of diameter $n$, then two edges $e_{1}, e_{2}$ of $Y$ are called antipodal if the minimal distance between vertices of these edges is exactly $n-1$.

Let $W=I_{2}(n)$ be the dihedral group of order $2 n$. We regard the type of a vertex $x$ (denoted type $(x)$ ) of a bipartite graph (in particular, of a spherical building with the Weyl group $W$ ) to be an element of $\mathbb{Z} / 2$. We let $W_{l}, l=1,2$ denote the stabilizer of the vertex of type $l$ in the positive (spherical) chamber $\Delta_{+}$ of $W$.

Let $Y$ be a rank 2 spherical building with the Weyl group $W$; we will use two metrics on $Y$ :

1. The combinatorial path-metric $d=d_{Y}$ between the vertices of $Y$, where each edge is given the unit length. This metric extends naturally to the rest of $Y$ : we will occasionally use this fact.
2. The (angular) path metric $\angle$ on $Y$ where every edge has the length $\pi / n$.

Given a subset $Z \subset Y$ we let $B_{r}(Z)$ and $S_{r}(Z)$ denote the closed $r$-ball and $r$-sphere in $Y$ with respect to the combinatorial metric.

The building $Y$ has two vertex types identified with $l \in \mathbb{Z} / 2$; accordingly, the vertex set of $Y$ is the disjoint union $Y_{1} \cup Y_{2}$ of the Grassmannians of type $l=1,2$. When $l$ is fixed, by abusing the notation, we will denote by $B_{r}(Z)$ (and $S_{r}(Z)$ ) the intersection of the corresponding ball (or the sphere) with $Y_{l}$. We will only use these concepts when $Z$ is a vertex or a chamber $\Delta$ of a spherical building. The balls $B_{r}(\Delta) \subset Y_{l}$ will serve as Schubert cycles in the Grassmannian $Y_{l}$, while the spheres $S_{r}(\Delta)$ will play the role of (open) Schubert cells.

## 5. Weighted configurations and geodesic polygons

## Weighted configurations

Let $Y$ be a spherical building modeled on $(S, W)$. We recall that $\angle$ denotes the angular metric on $Y$. Given a collection $\mu_{1}, \ldots, \mu_{m}$ of nonnegative real numbers ("weights") we define a weighted configuration on $Y$ as a map

$$
\psi:\{1, \ldots, m\} \rightarrow Y, \quad \psi(i)=\xi_{i} \in Y
$$

We thus get $m$ points $\xi_{i}, i=1, \ldots, m$ on $Y$ assigned the weights $\mu_{i}, i=1, \ldots, m$. We will use the notation

$$
\psi=\left(\mu_{1} \xi_{1}, \ldots, \mu_{m} \xi_{m}\right)
$$

Let $\theta: Y \rightarrow \Delta_{\mathrm{sph}}$ denote the type-projection to the spherical Weyl chamber. Given a weighted configuration $\psi=\left(\mu_{1} \xi_{1}, \ldots, \mu_{m} \xi_{m}\right)$ on $Y$, we define $\theta(\psi)$, the type of $\psi$, to be the $m$-tuple of vectors

$$
\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \Delta^{m}
$$

where $\lambda_{i}=\mu_{i} \theta\left(\xi_{i}\right)$.
Following [KLM1], for a finite weighted configuration $\psi=\left(\mu_{1} \xi_{1}, \ldots, \mu_{m} \xi_{m}\right)$ on $Y$, we define the function

$$
\text { slope }_{\psi}: Y \rightarrow \mathbb{R}, \quad \operatorname{slope}_{\psi}(\eta)=-\sum_{i=1}^{m} \mu_{i} \cos \left(\angle\left(\eta, \xi_{i}\right)\right)
$$

Definition 3. A weighted configuration $\psi$ is called semistable if the associated slope function is $\geq 0$ on $Y$.

It is shown in [KLM1] that $\operatorname{slope}_{\psi}$ coincides with the Mumford's numerical stability function for weighted configurations on generalized flag-varieties. What is important is the fact that the above notion of stability, unlike the stability conditions in algebraic and symplectic geometry, does not require a group action on a smooth manifold. (Actually, it does not need any group at all.)

## Vector-valued distance functions

Let $X$ be a Euclidean building modeled on $\left(A, W_{\text {af }}\right)$. We next define the $\Delta$-valued distance function $d_{\Delta}$ on $X$, following [KLM1], [KLM2]. (The reader should not confuse $d_{\Delta}$ with the $W_{\text {af }}$-valued distance on $X$ that could be used in order to axiomatize buildings; see [W].) Here $\Delta=\Delta_{\text {af }}$ is an (affine) Weyl chamber of $\left(A, W_{\text {af }}\right)$. We first define the function $d_{\Delta}$ on $A$. Let $o \in A$ denote the point fixed by $W$. We regard $o$ as the origin in the affine space $A$, thus giving $A$ the structure of a vector space $V$. Given two points $x, y \in A$, we consider the vector $v=\overrightarrow{x y}=y-x$ and project it to a vector $\bar{v} \in \Delta$ via the map

$$
V \rightarrow V / W=\Delta
$$

Then $d_{\Delta}(x, y):=\bar{v}$. It is clear from the construction that $W_{\text {af }}$ preserves $d_{\Delta}$. Suppose now that $x, y \in X$. By the Connectedness Axiom, there exists an apartment $\phi: A \rightarrow X$ whose image contains $x$ and $y$. We then set

$$
d_{\Delta}(x, y):=d_{\Delta}\left(\phi^{-1}(x), \phi^{-1}(y)\right) \in \Delta .
$$

Since the transition maps between the charts are in $W_{\text {af }}$, it follows that the distance function $d_{\Delta}$ on $X$ is well-defined. Note that $d_{\Delta}$ is, in general, nonsymmetric:

$$
\begin{equation*}
d_{\Delta}(x, y)=\lambda \Longleftrightarrow d_{\Delta}(y, x)=\lambda^{*}, \quad \lambda^{*}=-w_{\circ}(\lambda) \tag{2}
\end{equation*}
$$

where $w_{\circ} \in W$ is the longest element. Hence, unless $w_{\circ}=-1, d_{\Delta}(x, y) \neq d_{\Delta}(y, x)$.
A (closed) geodesic $m$-gon on $X$ is an $m$-tuple of points $x_{1}, \ldots, x_{m}$, the vertices of the polygon. Since (by the CAT(0) property of $X$ ) for every two points $x, y \in X$ there exists a unique geodesic segment $\overline{x y}$ connecting $x$ to $y$, the choice of vertices uniquely determines a closed 1-cycle in $X$, called a geodesic polygon. We will use the notation $x_{1} \cdots x_{m}$ for this polygon. The $\Delta$-side-lengths of this polygon are the vectors $\lambda_{i}=d_{\Delta}\left(x_{i}, x_{i+1}\right)$, where $i$ is taken modulo $m$.

The following is proven in [KLM2]:
Theorem 4. Let $Y$ be a thick spherical building modeled on $(S, W)$ and $X$ be a thick Euclidean building modeled on $\left(A, W_{\mathrm{af}}=\Lambda \rtimes W\right)$, for an arbitrary $\Lambda$. Then:

There exists a weighted semistable configuration $\psi$ of type $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ on $Y$ if and only if there exists a closed geodesic $m$-gon $x_{1} \cdots x_{m}$ in $X$ with the $\Delta$-sidelengths $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$.

In particular, the existence of a semistable configuration (or a geodesic polygon) depends only on $W$ and nothing else. The way it will be used in our paper is to construct special spherical buildings modeled on $\left(S^{1}, I_{2}(n)\right)$ (buildings satisfying Axiom A), to which certain "transversality arguments" from [KLM1] apply.
Definition 4. Given a thick spherical building $X$ with the Weyl group $W$, we let $\mathcal{K}_{m}(X)$ denote the set of vectors $\vec{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ in $\Delta^{m}$, so that $X$ contains a semistable weighted configuration of the type $\vec{\lambda}$. We will refer to $\mathcal{K}_{m}(X)$ as the Stability Cone of $X$. (These cones are also known as Eigenvalue Cones in
the context of Lie groups and Lie algebras.) When $W$ is fixed, we will frequently abbreviate $\mathcal{K}_{m}(X)$ to $\mathcal{K}_{m}$ since this cone depends only on the dihedral group $W$.

Note that the conicality of $X$ is clear since a positive multiple of a semistable weighted configuration is again semistable. What is not obvious is that $\mathcal{K}_{m}(X)$ is a convex polyhedral cone. We will see in Section 12 (as a combination of the results of this paper and [KLM1]) that this is indeed always the case.

## 6. $m$-pods

Fix an integer $n \geq 2$. Let $r_{1}, \ldots, r_{m}$ be positive integers such that

$$
r_{i}+r_{j} \geq n, \quad \forall i \neq j
$$

Given this data, we define an $m$-pod $T$ as follows.
Let $B$ denote the bipartite graph which is the disjoint union of the edges $\Delta_{1}$, $\ldots, \Delta_{m}$. These edges will be the bases of the $m$-pod $T$. Add to $B$ the vertex $z$ of type $l \in\{1,2\}$, the center of $T$. Now, connect $z$ to the appropriate vertices $x_{i} \in \Delta_{i}$ by the paths $p_{i}$ of the combinatorial lengths $r_{i}$, so that

$$
r_{i} \equiv \operatorname{type}\left(x_{i}\right)+\operatorname{type}(z)(\bmod 2), \quad i=1, \ldots, m
$$

(The above equation uniquely determines each $x_{i}$.) The resulting graph is the $m$ $\operatorname{pod} T$. The paths $p_{i}$ are the legs of $T$. It is easy to define the type of the vertices of $T$ (extending those of $x_{1}, \ldots, x_{m}, z$ ), so that $T$ is a bipartite graph.


Figure 1. A $3-$ pod, $n=3$ or $n=4$

Suppose now that $Y$ is a bipartite graph of girth $\geq 2 n, \Delta_{1}, \ldots, \Delta_{m} \subset Y$ are mutually antipodal edges and $r_{1}, \ldots, r_{m}$ are positive integers so that

$$
r_{i}+r_{j} \geq n, \quad \forall i \neq j
$$

We define a new bipartite graph $Y^{\prime}$ by attaching the $m$-pod $T$ with legs of the lengths $r_{i}, i=1, \ldots, m$, and with the bases $\Delta_{1}, \ldots, \Delta_{m}$ :

$$
Y^{\prime}:=Y \cup_{B} T, \quad B=\Delta_{1} \cup \cdots \cup \Delta_{m}
$$

where the attaching map identifies the bases of $T$ with the edges $\Delta_{i} \subset Y$ preserving the type.

Lemma 5. The graph $Y^{\prime}$ still has girth $\geq 2 n$.
Proof. Since $r_{i}+r_{j} \geq n$ for $i \neq j$ and the edges $\Delta_{i} \subset Y$ are mutually antipodal, the only thing we need to avoid is having $i \neq j$ so that $r_{i}+r_{j}=n$ and $d_{Y}\left(x_{i}, x_{j}\right)=n-1$. Suppose such $i, j$ exist. Then

$$
\operatorname{type}\left(x_{i}\right)+\operatorname{type}\left(x_{j}\right) \equiv r_{i}+r_{j}=n(\bmod 2)
$$

and

$$
\operatorname{type}\left(x_{i}\right)+\operatorname{type}\left(x_{j}\right) \equiv d_{Y}\left(x_{i}, x_{j}\right)=n-1(\bmod 2)
$$

Contradiction.

## 7. Buildings and free constructions

We define a class of rank 2 spherical buildings $X$ with the Weyl group $W=I_{2}(n)$ satisfying:

## Axiom A.

1. Each vertex of $X$ has infinite valence; in particular, $X$ is thick.
2. For each $m \geq 3$ the following holds. Let $\Delta_{i}, i=1, \ldots, m$ be pairwise antipodal chambers in $X$ and let $0<r_{i} \leq n-1, i=1, \ldots, m$, be integers so that

$$
r_{i}+r_{j} \geq n, \quad \forall i \neq j
$$

Then there exist infinitely many vertices $\eta \in X$ of both types, so that

$$
d\left(\eta, \Delta_{i}\right) \leq r_{i} .
$$

In other words, the intersection of metric spheres

$$
I=\bigcap_{i} S_{r_{i}}\left(\Delta_{i}\right)
$$

contains infinitely many vertices of both types.

Remark 2.

1. For the purposes of the proof of Theorem 19, it suffices to have property (2) for a fixed infinite collection $\Delta_{1}, \Delta_{2}, \ldots$ of pairwise antipodal chambers. Moreover, it suffices to assume that the intersection $I$ contains at least 2 vertices of each type (rather than an infinite number). However, for the purposes of developing "Schubert precalculus", it is important to have Axiom A as stated above.
2. Clearly, Axiom A fails for finite buildings. However, it also fails for some infinite buildings. For instance, it fails for the Tits buildings associated with the complex algebraic groups $\operatorname{Sp}(4, \mathbb{C})$ and $G_{2}(\mathbb{C})$.

Buildings satisfying Axiom A constitute the class of "sufficiently rich" buildings mentioned in the Introduction: For these buildings we will develop "Schubert precalculus" later in the paper.

Lemma 6. Let $X$ be a thick rank 2 spherical building satisfying Axiom A. Let $\Delta_{1}, \ldots, \Delta_{m}$ be pairwise antipodal chambers in $X$. Then there exists a chamber $\Delta_{m+1}$ antipodal to all chambers $\Delta_{1}, \ldots, \Delta_{m}$.

Proof. Let $r_{i}:=n-1$. Then, by Axiom A, there exists a vertex $x \in X$ so that

$$
d\left(x, \Delta_{i}\right)=r_{i}, \quad i=1, \ldots, m
$$

For each $i$ we let $x_{i} \in \Delta_{i}$ be the vertex realizing $d\left(x, \Delta_{i}\right)$. Since $X$ has infinite valence at $x$, there exists a vertex $y \in X$ incident to $x$, which does not belong to any of the geodesics $\overline{x x_{i}}, i=1, \ldots, m$. It is then clear that $d\left(y, \Delta_{i}\right)=n$, $i=1, \ldots, m$. Therefore, the chamber $\Delta_{m+1}:=\overline{x y}$ is antipodal to all chambers $\Delta_{1}, \ldots, \Delta_{m}$.

Remark 3. It is not hard to prove that if $X$ is a thick building with Weyl group $I_{2}(n)$, then the conclusion of the above lemma holds for $m=2$ without any extra assumptions.

We now prove the existence of thick buildings satisfying Axiom A.
Theorem 7. For each $n$ there exists a thick spherical building $X$ with Weyl group $W \cong I_{2}(n)$, with countably many vertices and satisfying Axiom A. Moreover, every (countable) graph of girth $\geq 2 n$ embeds in a (countable) building satisfying Axiom A.

Proof. We first recall the free construction of rank 2 spherical buildings (see [Ti], [Ro], [FS]):

Let $Z$ be a connected bipartite graph of girth $\geq 2 n$. Given every pair of vertices $z, z^{\prime} \in Z$ of distance $n+1$ from each other, we add to $Z$ an edge-path $p$ of the combinatorial length $n-1$ connecting $z$ and $z^{\prime}$; similarly, for every pair of vertices in $Z$ of distance $n$ from each other, we add an edge-path $q$ of the combinatorial length $n$ connecting $z$ and $z^{\prime}$. Let $\bar{Z}$ denote the graph obtained by attaching paths $p$ and $q$ to $Z$ in this manner. The notion of type extends to the vertices of the paths $p$ and $q$ so that the new graph $\bar{Z}$ is again bipartite. One easily sees that the bipartite graph $\bar{Z}$ again has girth $\geq 2 n$ and that each vertex has valence $\geq 2$. The free construction based on a connected graph $Z_{0}$ of girth $\geq 2 n$ consists in the inductive application of the bar-operation: $Z_{i+1}:=\overline{Z_{i}}$. Then the direct limit
of the resulting graphs is a thick building. We modify the above procedure by supplementing it with the operation $Z \hookrightarrow Z^{\prime}$ described below.

Let $Z$ be a bipartite graph of girth $\geq 2 n$. We define a new graph $Z^{\prime}$ as follows. For every vertex-type $l=1,2$, every $m \geq 3$, every $m$-tuple of mutually antipodal edges $\Delta_{i}$ in $Z$ and integers $0<r_{i}<n-1, i=1, \ldots, m$, satisfying

$$
r_{i}+r_{j} \geq n, \quad \forall i \neq j
$$

we attach to $Z$ an $m$-pod $T$ with the bases $\Delta_{1}, \ldots, \Delta_{m}$, center of the type $l$ and the legs of the lengths $r_{1}, \ldots, r_{m}$, respectively. Denote the graph obtained from $Z$ by attaching all these $m$-pods by $Z^{\prime}$. Then $Z^{\prime}$ is a bipartite graph. Applying Lemma 5 repeatedly, we see that $Z^{\prime}$ still has girth $\geq 2 n$.

We now proceed with the inductive construction of the building $Y$. We start with $X_{0}$, which is an arbitrary connected bipartite graph of girth $\geq 2 n$.

Then set $X_{1}:=X_{0}^{\prime}$ (by attaching $m$-pods for all $m$ to all $m$-tuples of pairwise antipodal chambers). Take $X_{2}:=\overline{X_{1}}$ (i.e., it is obtained from $X_{1}$ as in the free construction) and continue this 2 -step process inductively: for every even $N=2 k$ set $X_{N+1}:=X_{N}^{\prime}$ and $X_{N+2}:=\overline{X_{N+1}}$.

Let $Y$ denote the increasing union of the resulting graphs. Then, clearly, $Y$ is a connected infinite bipartite graph.

Lemma 8. $Y$ is a thick building modeled on $W$, satisfying Axiom $A$.
Proof. 1. Clearly, $Y$ has girth $\geq 2 n$. Note that for each $N$, the natural inclusion $X_{N} \rightarrow X_{N+1}$ is 1-Lipschitz (distance-decreasing). Moreover, by the construction, the maps $X_{N} \rightarrow X_{N+1}$ are $n-1$-isometric in the sense of Section 3. By the construction, if $x, y \in X_{N}$ ( $N$ is odd) are vertices within distance $d \geq n+1$, then

$$
d_{X_{N}}(x, y)>d_{X_{N+1}}(x, y)
$$

(as there will be a pair of vertices $u, v$ within distance $n+1$ on the geodesic $\overline{x y} \subset X_{n}$, the distance $d(u, v)$ in $X_{N+1}$ becomes $\left.n-1\right)$. Thus,

$$
d_{X_{N+2 s}}(x, y) \leq n, \quad \text { where } \quad s=d-(n+1)
$$

Therefore, $Y$ has the diameter $n$. For every vertex $y \in Y$ there exists a vertex $y^{\prime} \in Y$ which has the (combinatorial) distance $n$ from $y$. Therefore, attaching the $q$ paths in the bar-operation assures that there are infinitely many half-apartments in $Y$ connecting $y$ to $y^{\prime}$. In particular, there are infinitely many apartments containing $y$ and $y^{\prime}$. This implies that $Y$ is a thick (with each vertex having infinite valence) spherical building with the Weyl group $W=I_{2}(n)$.
2. In order to check Axiom A, let $\Delta_{1}, \ldots, \Delta_{m} \subset Y$ be antipodal chambers and $r_{1}, \ldots, r_{m}$ be positive integers so that

$$
r_{i}+r_{j} \geq n, \quad \forall i \neq j
$$

Then there exists $k_{0}$ so that $\Delta_{1}, \ldots, \Delta_{m} \subset X_{k_{0}}$. Since the maps $X_{k} \rightarrow Y$ are distance-decreasing, it follows that there exists $k_{1} \geq k_{0}$ so that $\Delta_{1}, \ldots, \Delta_{m} \subset X_{k_{1}}$
are antipodal. Therefore, by the construction, for every odd step of the induction there will be two (new) $m$-pods with the legs of the lengths $r_{1}, \ldots, r_{m}$ and centers of the type $l=1,2$ attached to the bases $\Delta_{1}, \ldots, \Delta_{m}$. Therefore, the intersections

$$
\bigcap_{i=1}^{m} S_{r_{i}}\left(\Delta_{i}\right) \subset X_{k}, \quad k \geq k_{1}
$$

will contain at least $\left(k-k_{1}\right) / 2$ vertices of both types. Since the maps $\iota: X_{N} \rightarrow$ $X_{N+k}, k \geq 0$ are $(n-1)$-isometric, $\iota\left(S_{r}(\Delta)\right) \subset S_{r}(\Delta) \subset X_{N+k}$. Therefore, $Y$ satisfies Axiom A.

This concludes the proof of Theorem 7.
One can modify the above construction by allowing the transfinite induction, but we will not need this. More interestingly, one can modify the construction of $Y$ to obtain a rank 2 spherical building $X$ which satisfies the following universality property (with $n$ fixed):
Axiom U. Let $G$ be an arbitrary finite connected bipartite graph of girth $\geq 2 n$, let $H \subset G$ be a (possibly disconnected) subgraph and $\phi: H \rightarrow X$ be a morphism (a distance-decreasing embedding preserving the type of vertices). Then $\phi$ extends to a morphism $G \rightarrow X$.

The Axiom U is somewhat reminiscent of the Kirszbraum's property; see, e.g., [LPS].

Thus, Axiom A is a special case of the Axiom U, defined with respect to a particular class of graphs $G$ (i.e., $m$-pods), their subgraphs (the sets of vertices $x_{i}$ of valence 1) and maps $\phi$ (sending $x_{i}$ 's to vertices of antipodal chambers). With this in mind, the construction of (countably infinite) buildings satisfying Axiom U is identical to the proof of Theorem 7.

## 8. Highly homogeneous buildings satisfying Axiom A

The goal of this section is to show that the "highly homogeneous" buildings constructed by K. Tent in [Te] satisfy Axiom A. This will give an alternative proof of Theorem 7 .

We need several definitions. From now on, fix an integer $n \geq 2$.
Definition 5. Let $G$ be a finite graph with the set of vertices $V(G)$ and the set of edges $E(G)$. Define the weighted Euler characteristic of $G$ as

$$
y(G)=(n-1)|V(G)|-(n-2)|E(G)| .
$$

Define the class of finite graphs $\mathcal{K}$ as the class of bipartite graphs $G$ satisfying the following:
(1) $\operatorname{girth}(G) \geq 2 n$.
(2) If $G$ contains a subgraph $H$ which in turn contains an embedded $2 k$-cycle, $k>2 n$, then

$$
y(H) \geq 2 n+2
$$

We convert $\mathcal{K}$ to a category, also denoted $\mathcal{K}$, by declaring morphisms between graphs in $\mathcal{K}$ to be label-preserving embeddings of bipartite graphs which are $(n-1)$ isometric maps with respect to the combinatorial metrics on graphs.

A bipartite graph $U$ is called a $\mathcal{K}$-homogeneous universal model if it satisfies the following:
(1) $U$ is terminal for the category $\mathcal{K}$, i.e., every finite subgraph in $U$ belongs to $\mathcal{K}$ and for every graph $G \in \mathcal{K}$ there exists an $(n-1)$-isometric embedding $G \rightarrow U$.
(2) If $G \in \mathcal{K}$ and $\phi, \psi: G \rightarrow U$ are ( $n-1$ )-isometric embeddings, then there exists an automorphism

$$
\alpha: U \rightarrow U
$$

so that $\alpha \circ \phi=\psi$.
The main result of [ Te ] is
Theorem 9. The category $\mathcal{K}$ admits a $\mathcal{K}$-homogeneous universal model $X$.
Most of the proof of the above theorem deals with establishing that the category $\mathcal{K}$ satisfies the following amalgamation (or pull-back) property:

Every diagram

extends to a commutative diagram


The universal graph $X$ as in Theorem 9 is then shown in $[\mathrm{Te}]$ to be a rank 2 thick spherical building with the Weyl group $W=I_{2}(n)$, such that the automorphism group $\operatorname{Aut}(X)$ of $X$ acts transitively on the set of apartments in $X$, so that the stabilizer of every apartment is infinite and contains $W$. Moreover, $\operatorname{Aut}(X)$ also acts transitively on the set of simple $2(n+1)$-cycles in $X$.

Proposition 10. The universal graph $X$ as above satisfies Axiom $A$.
Proof. Let $r_{1}, \ldots, r_{m}$ be positive integers so that

$$
r_{i}+r_{j} \geq n, \forall i \neq j
$$

Let $T$ be an $m$-pod with the bases $\Delta_{1}, \ldots, \Delta_{m}$ and the legs of the length $r_{1}, \ldots, r_{m}$. Since $T$ contains no embedded cycles, it is an object in $\mathcal{K}$. In particular, the graph
$B$ which is the disjoint union of the bases $\Delta_{1}, \ldots, \Delta_{m}$, is also an object in $\mathcal{K}$. Since the chambers $\Delta_{i}$ are super-antipodal in $T$ (i.e., $\Delta_{i}, \Delta_{j}$ are at the distance $\geq n-1$ for all $i \neq j$ ), it follows that the embedding $B \rightarrow T$ is a morphism in $\mathcal{K}$. Then, by repeatedly using the amalgamation property, we can amalgamate $N$ copies of $T$ along $B$ to obtain a graph $G_{N}$ which is again an object in $\mathcal{K}$.

Let $\Delta_{1}, \ldots, \Delta_{m}$ be a collection of antipodal chambers in $X$. Then the identity embedding $\psi: \Delta_{1} \cup \cdots \cup \Delta_{m} \rightarrow X$ is also a morphism in $\mathcal{K}$.

We claim that

$$
\bigcap_{i=1}^{m} B_{r_{i}}\left(\Delta_{i}\right)
$$

contains infinitely many vertices of each type $l=1,2$.
Indeed, the disjoint union of the chambers $\Delta_{i}$ determines a bipartite graph $B \subset X$. Form an $m$-pod $T$ with the union of bases $B$, legs of the lengths $r_{1}, \ldots, r_{m}$ and the center $z$ of the type $l$. Let $G_{N}$ be the graph obtained by amalgamating $N$ copies of $T$ as above along the bases. Clearly,

$$
\bigcap_{i=1}^{m} B_{r_{i}}\left(\Delta_{i}\right) \subset G_{N}
$$

contains $N$ vertices of the type $l$, the centers of the $m$-pods $T$. Since $G_{N} \in \mathcal{K}$, and $X$ is terminal with respect to $\mathcal{K}$, it follows that there exists an $(n-1)$-isometric embedding $\phi: G_{N} \rightarrow X$. Because $\phi$ is distance-decreasing, the intersection

$$
\bigcap_{i=1}^{m} B_{r_{i}}\left(\phi\left(\Delta_{i}\right)\right) \subset X
$$

also contains $N$ vertices of the type $l$.
We thus obtain two morphisms $\phi, \psi: B \rightarrow X$, where $\psi$ is the identity embedding. By the property 2 of a $\mathcal{K}$-homogeneous universal model, there exists an automorphism $\alpha: X \rightarrow X$ so that $\alpha \circ \phi=\psi$. Therefore,

$$
\bigcap_{i=1}^{m} B_{r_{i}}\left(\Delta_{i}\right) \subset X
$$

contains at least $N$ vertices of the type $l$, namely, the images of the centers of the $m$-pods $T \subset G_{N}$ under $\alpha \circ \phi$. Since $N$ was chosen arbitrarily, the proposition follows.

## 9. Intersections of balls in buildings satisfying Axiom A

In this section we prove several basic facts about cardinalities of intersections of balls in buildings satisfying Axiom A.

Lemma 11. Suppose that $X$ is a thick spherical building with the Weyl group $W=I_{2}(n)$. Let $r_{1}+r_{2}=n-1$ and $\Delta_{1}, \Delta_{2}$ be nonantipodal chambers (i.e., they are within distance $\leq n-2)$. Then $B_{r_{1}}\left(\Delta_{1}\right) \cap B_{r_{2}}\left(\Delta_{2}\right)$ contains vertices of both types.

Proof. Let $A \subset X$ denote an apartment containing $\Delta_{1}, \Delta_{2}$. It suffices to consider the case when the distance between the chambers is exactly $n-2$ (as the chambers get closer the intersection only increases). We will assume that $r_{1}>0, r_{2}>0$ and will leave the remaining cases to the reader. Then $A$ will contain unique vertices $x, y$ (of distinct type) so that

$$
d\left(x, \Delta_{1}\right)=r_{1}, \quad d\left(x, \Delta_{2}\right)=r_{2}-1, \quad d\left(y, \Delta_{1}\right)=r_{1}-1, \quad d\left(y, \Delta_{2}\right)=r_{2}
$$

Thus, $x, y \in B_{r_{1}}\left(\Delta_{1}\right) \cap B_{r_{2}}\left(\Delta_{2}\right)$. (Note that if $d\left(\Delta_{1}, \Delta_{2}\right)=n-2$ then $\{x, y\}=$ $B_{r_{1}}\left(\Delta_{1}\right) \cap B_{r_{2}}\left(\Delta_{2}\right)$.)
Lemma 12. For every thick spherical building $X$ with the Weyl group $W=I_{2}(n)$, and every pair of antipodal chambers $\Delta_{1}, \Delta_{2} \subset X$, and nonnegative integers $r_{1}, r_{2}$ satisfying $r_{1}+r_{2}=n-1$, the intersection

$$
B_{r_{1}}\left(\Delta_{1}\right) \cap B_{r_{2}}\left(\Delta_{2}\right)
$$

consists of exactly two vertices, one of each type.
Proof. Let $A \subset X$ be an apartment containing $\Delta_{1}, \Delta_{2}$. It is clear that the intersection

$$
B_{r_{1}}\left(\Delta_{1}\right) \cap B_{r_{2}}\left(\Delta_{2}\right) \cap A
$$

consists of exactly two vertices $u, v$, one of each type. Let $\alpha \subset A$ denote the subarc of length $n-1$ connecting vertices $x_{i}$ of the chambers $\Delta_{i}, i=1,2$, so that $u \in \alpha$. Suppose there is a vertex $z \in X \backslash A$, type $(z)=$ type $(u)$, so that

$$
d\left(z, \Delta_{i}\right)=r_{i}, i=1,2 .
$$

Then it is clear that $d\left(x_{i}, z\right)=r_{i}, i=1,2$ and we thus obtain a path (of length $n-1$ )

$$
\beta=\overline{x_{1} z} \cup \overline{z x_{2}}
$$

connecting $x_{1}$ to $x_{2}$. Since $d\left(x_{1}, x_{2}\right)=n-1$, it follows that $\beta$ is a geodesic path in $X$. Thus, we have two distinct geodesics $\alpha, \beta \subset X$ of the length $n-1$ connecting $x_{1}, x_{2}$. The union $\alpha \circ \beta$ is a (possibly nonembedded) homologically nontrivial cycle of length $2(n-1)$ in $X$. This contradicts the fact that $X$ has girth $2 n$.

Corollary 13. Under the assumptions of Lemma 12, let $\Delta_{1}, \ldots, \Delta_{m}$ be antipodal chambers in $X$. Then
(1) If $r_{1}, \ldots, r_{m}$ are nonnegative integers so that $r_{1}+r_{2}=n-1$ and $r_{3}=\cdots=$ $r_{m}=n-1$, then the intersection of balls

$$
I:=\bigcap_{i} B_{r_{i}}\left(\Delta_{i}\right)
$$

consists of exactly two vertices (one of each type).
(2) If $r_{1}, \ldots r_{m}$ are integers so that $\sum_{i} r_{i}<(n-1)(m-1), 0 \leq r_{i} \leq n-1, i=$ $1, \ldots, m$ then the above intersection of balls $I$ is empty.

Proof. The first assertion follows from Lemma 12, since $B_{r_{i}}\left(\Delta_{i}\right)=X, i \geq 3$. To prove the second assertion we note that there are $i \neq j \in\{1, \ldots, m\}$ so that $r_{i}+r_{j}<n-1$. Therefore, $B_{r_{i}}\left(\Delta_{i}\right) \cap B_{r_{j}}\left(\Delta_{j}\right)=\varnothing$ since $d\left(\Delta_{i}, \Delta_{j}\right)=n-1$.
Lemma 14. Let $X$ be a building with the Weyl group $W=I_{2}(n)$, satisfying Axiom A. Suppose that $r_{i}, i=1, \ldots, m$ are positive integers so that

$$
\begin{equation*}
r_{k} \leq n-1, k=1, \ldots, m \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i} r_{i} \geq(n-1)(m-1) \tag{4}
\end{equation*}
$$

Then for every m-tuple of antipodal chambers $\Delta_{1}, \ldots \Delta_{m}$ in $X$, one of the following mutually exclusive cases occurs:
(a) Either the intersection

$$
\bigcap_{i} B_{r_{i}}\left(\Delta_{i}\right)
$$

contains infinitely many vertices of both types $l=1,2$.
(b) Or (4) is the equality, for two indices, $i \neq j, r_{i}+r_{j}=n-1$ and for all $k \notin\{i, j\}$ the inequality (3) is the equality.

Proof. If $r_{i}+r_{j} \geq n$ for all $i \neq j$, the assertion follows from Axiom A (namely, the alternative (a) holds). Suppose that, say, $r_{1}+r_{2} \leq n-1$. Then

$$
\sum_{i=1}^{m} r_{i} \leq(n-1)+\sum_{i=3}^{m} r_{i} \leq(n-1)(m-1)
$$

Since $\sum_{i} r_{i} \geq(n-1)(m-1)$, we see that $r_{1}+r_{2}=n-1, r_{3}=\cdots=r_{m}=n-1$ and $\sum_{i=1}^{m} r_{i}=(n-1)(m-1)$. The fact that (a) and (b) cannot occur simultaneously follows from Lemma 12.

Recall that $X_{l}$ denotes the set of vertices of type $l$ in $X$. By combining Lemma 14 and Corollary 13, we obtain

Corollary 15. Suppose that $X$ satisfies Axiom A. Let $\Delta_{1}, \ldots, \Delta_{m}$ be antipodal chambers in $X$ and let $r_{1}, \ldots, r_{m}$ be nonnegative integers so that $r_{i} \leq n-1$, $i=1, \ldots, m$. Then the following are equivalent:
(1) $\bigcap_{i} B_{r_{i}}\left(\Delta_{i}\right) \cap X_{l}$ is a single point for $l=1,2$.
(2) After renumbering the indices, $r_{1}+r_{2}=n-1$ and $r_{3}=\cdots=r_{m}=n-1$.

Moreover, if $\sum_{i} r_{i} \geq(n-1)(m-1)$ then $\bigcap_{i} B_{r_{i}}\left(\Delta_{i}\right)$ contains vertices of both types.

## 10. Pre-rings

A pre-ring is an algebraic system $R$ with the usual properties of a ring, except that the operations are only partially defined. (By analogy with groupoids, the prerings should be called ringoids; however, this name is already taken for something else.)

The standard examples of pre-rings which are used in calculus are $\widehat{\mathbb{R}}=\mathbb{R} \cup \pm \infty$ and $\widehat{\mathbb{C}}=\mathbb{C} \cup \infty$. Below is a similar example which we will use in this paper. For a ring $R$ define the pre-ring $\widehat{R}:=R \cup \infty$. The algebraic operations in $\widehat{R}$ are extended from the ring $R$ as follows:

1. Addition and multiplication are commutative and associative; 0 and 1 are neutral elements with respect to the addition and multiplication.
2. Moreover, we have

| addition | $x \neq \infty$ | $\infty$ |
| :---: | :---: | :---: |
| $y \neq \infty$ | $x+y$ | $\infty$ |
| $\infty$ | $\infty$ | undefined |


| multiplication | 0 | $x \in R \backslash\{0\}$ | $\infty$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| $y \in R \backslash\{0\}$ | 0 | $x y$ | $\infty$ |
| $\infty$ | 0 | $\infty$ | $\infty$ |

Remark 4. It is customary to assume that $0 \cdot \infty$ is undefined, but in the situation we are interested in (where pre-rings will appear as degenerations of rings), we can assume that $0 \cdot \infty=0$.

## 11. Schubert precalculus

From now on, we fix a thick spherical building $X$ satisfying Axiom A. (Much of our discussion however, uses only the fact that $X$ is a spherical building with the Weyl group $I_{2}(n)$.)

Our next goal is to introduce a Schubert precalculus in X. According to a theorem of Kramer and Tent $[\mathrm{KT}]$, for $n \notin\{2,3,4,6\}$, there are no thick spherical buildings with the Weyl group $I_{2}(n)$ that admit structure of an algebraic variety defined over an algebraically closed field. Since we are interested in general $n \geq 2$, this forces the algebro-geometric features of the buildings described below to be quite limited.

Let $l \in\{1,2\}$ be a type of vertices of $X$. We will think of the set $X_{l}$ of vertices of type $l$ as the $l$ th "Grassmannian". Let $\Delta \subset X$ be a chamber and $0 \leq r \leq n-1$ be an integer. We define the "Schubert cell" $C_{r}(\Delta) \subset X_{l}$ to be the $r$-sphere $S_{r}(\Delta)$ in $X_{l}$ centered at $\Delta$ and having radius $r$ :

$$
C_{r}(\Delta)=\left\{x \in X_{l} \mid d(x, \Delta)=r\right\} .
$$

(We suppress the dependence on $l$ in the notation for the Schubert cell.) The number $r$ is the "dimension" of the cell. We define the "Schubert cycle" $\overline{C_{r}(\Delta)}$, the "closure" of the Schubert cell $C_{r}(\Delta)$, as the closed $r$-ball centered at $\Delta$ :

$$
\overline{C_{r}(\Delta)}:=B_{r}(\Delta) \cap X_{l} .
$$

The number $r$ is the "dimension" of this cycle. Thus, each $r$-dimensional Schubert cycle is the union of $r+1$ Schubert cells which are the "concentric spheres". By taking $r=n-1$, we see that $X_{l}$ is a Schubert cycle of dimension $n-1$.

There is much more to be said here, but we defer this discussion to another paper.

## Homology

The coefficient system for our homology pre-ring is the pre-ring $\widehat{R}$ defined in Section 10. The simplest case will be when $R=\mathbb{Z} / 2$; then $\widehat{R}$ consists of three elements: $0,1, \infty$. This example will actually suffice for our purposes, but our discussion here is more general. We will suppress the coefficients in the notation for $H_{*}\left(X_{l}, \widehat{R}\right)$ in what follows.

Let $W=I_{2}(n)$. We declare $d=n-1$ to be the formal dimension of $X_{l}$. Set $r^{*}:=d-r$ for $0 \leq r \leq d$. Fix a (positive) chamber $\Delta_{+} \subset X$.

Using the Schubert precalculus we define the homology pre-ring $H_{*}\left(X_{l}\right)(l=$ $1,2)$ with coefficients in $\widehat{R}$, by declaring its (additive) generators in each dimension $0 \leq r \leq n-1$ to be the Schubert classes $\left[\overline{C_{r}(\Delta)}\right]$, where $\Delta$ are chambers in $X$. We declare

$$
C_{r}:=\left[\overline{C_{r}(\Delta)}\right]=\left[\overline{C_{r}\left(\Delta_{+}\right)}\right]
$$

for every $\Delta$ and set

$$
H_{r}\left(X_{l}\right)=0, \quad \text { for } \quad r<0, \quad \text { and } r>d .
$$

The "fundamental class" in $H_{d}\left(X_{l}\right)$ is represented by $X_{l}=B_{d}\left(\Delta_{+}\right)$. We declare a collection of cycles $\overline{C_{r_{i}}\left(\Delta_{i}\right)}, i \in I$, to be transversal if the chambers $\Delta_{i}, i \in I$ are pairwise antipodal. Using this notion of transversality we define the intersection product on $H_{*}\left(X_{l}\right)$ as follows.

Consider two antipodal chambers $\Delta_{1}, \Delta_{2}$. For $0 \leq r_{1}, r_{2} \leq n-1$,

$$
\overline{C_{r_{1}}\left(\Delta_{1}\right)} \cap \overline{C_{r_{2}}\left(\Delta_{2}\right)}=B_{r_{1}}\left(\Delta_{1}\right) \cap B_{r_{2}}\left(\Delta_{2}\right),
$$

is the "support set" of the product class

$$
\left[\overline{C_{r_{1}}\left(\Delta_{1}\right)}\right] \cdot\left[\overline{C_{r_{2}}\left(\Delta_{2}\right)}\right] \in H_{r_{3}}\left(X_{l}\right),
$$

where $r_{3}^{*}=r_{1}^{*}+r_{2}^{*}$, i.e., $r_{3}=r_{1}+r_{2}-(n-1)$. The product class itself is a multiple $a \cdot\left[\overline{C_{r_{3}}\left(\Delta_{+}\right)}\right]$of the standard generator. To compute $a \in \widehat{R}$, we declare that the classes $c=C_{r_{3}}$ and $c^{*}=C_{r_{3}^{*}}$ are "Poincaré dual" to each other:

$$
c=P D\left(c^{*}\right)
$$

as their dimensions add up to the dimension $d$ of the fundamental class. Therefore, take a chamber $\Delta_{3}$ antipodal to both $\Delta_{1}, \Delta_{2}$ : it exists by Lemma 6. Then $a \in \widehat{R}$ is the cardinality of the intersection:

$$
\begin{equation*}
\overline{C_{r_{1}}\left(\Delta_{1}\right)} \cap \overline{C_{r_{2}}\left(\Delta_{2}\right)} \cap \overline{C_{r_{3}^{*}}\left(\Delta_{3}\right)} . \tag{5}
\end{equation*}
$$

Remark 5. Here and in what follows we are abusing the terminology and declare the cardinality of an infinite set to be $\infty$.This is justified, for instance, by the fact that Theorem 7 yields buildings that have countably many vertices and our convention amounts to $\aleph_{0}=\infty \in \widehat{R}$.

As we will see below, the cardinality of the intersection is 0,1 or $\infty$; these cardinalities are naturally identified with the elements of $\widehat{R}$.

One can easily check (see below) that $a$ does not depend on the choice of cycles representing the given homology classes. In particular, the fundamental class is the unit in the pre-ring $H_{*}\left(X_{l}\right)$.

We then compute $a$ using the results of Section 9:

1. If $r_{1}+r_{2}<n-1$ then $a=0$ (Corollary 13(2)).
2. If $r_{1}+r_{2}=n-1$ then $a=1$ : the Schubert cycles $\overline{C_{r_{i}}\left(\Delta_{i}\right)}, i=1,2$, are Poincaré dual to each other (Lemma 12).
3. Suppose now that $r_{1}+r_{2}>n-1$. We will apply Lemma 14 to the triple intersection (5); observe that $r_{1}+r_{2}+r_{3}^{*}=2(n-1)$, i.e., inequality (3) in Lemma 14 is the equality in this case. Then, by Lemma 14:

3a. If $r_{1}, r_{2}<n-1$ then $a=\infty$.
3b. If $r_{i}=n-1$ for some $i=1,2$, then $r_{3-i}+r_{3}^{*}=n-1$ and $a=1$.
Thus, the triple intersection (5) is finite $\Longleftrightarrow$ it consists of a single vertex in $X_{l}$ $\Longleftrightarrow$ two of the three classes among $C_{r_{1}}, C_{r_{2}}, C_{r_{3}^{*}}$ are Poincaré dual to each other and the remaining class is the fundamental class.

Lemma 16. Let $C_{r_{i}} \in H_{r_{i}}\left(X_{l}\right), i=1, \ldots, m$ be the generators (Schubert classes) so that

$$
r_{1}+\cdots+r_{m}=d(m-1) \Longleftrightarrow \sum_{i=1}^{m} r_{i}^{*}=d
$$

i.e., the product of these classes (in some order) equals a $[p t]$, where $p t=\overline{C_{0}\left(\Delta_{+}\right)}$. Then $a \in \widehat{R}$ is the cardinality of the intersection

$$
\bigcap_{i=1}^{m} B_{r_{i}}\left(\Delta_{i}\right)
$$

where $\Delta_{1}, \ldots, \Delta_{m}$ are pairwise antipodal chambers (which exist by Lemma 6).
Proof. First of all, without loss of generality we may assume that none of the classes $C_{r_{i}}$ is the unit $\left[X_{l}\right]$ in $H_{*}\left(X_{l}\right)$. Note that, since $r_{1}+\cdots+r_{m}=d(m-1)$, in the computation of the product of $C_{r_{1}}, \ldots, C_{r_{m}}$ we will never encounter the multiplication by zero. Then (after permuting the indices), the product of the classes $C_{r_{1}}, \ldots, C_{r_{m}}$ will be of the form

$$
\cdots\left(C_{r_{1}} \cdot C_{r_{2}}\right) \cdots .
$$

By the definition, $C_{r_{1}} \cdot C_{r_{2}}=a_{12} C_{r}$, where

$$
r^{*}=r_{1}^{*}+r_{2}^{*}
$$

The element $a_{12} \in \widehat{R}$ is the cardinality of the intersection

$$
B_{r_{1}}\left(\Delta_{1}\right) \cap B_{r_{2}}\left(\Delta_{2}\right) \cap B_{r^{*}}(\Delta)
$$

where $\Delta_{1}, \Delta_{2}, \Delta$ are pairwise antipodal. In view of the above product calculations $1-3$, and the fact that $r_{1} \neq d, r_{2} \neq d$, we see that $a_{12}=\infty$ (since $a_{12}=0$ is
excluded), unless $r=d, r_{1}=r_{2}^{*}$ and, therefore, $c_{2}=P D\left(c_{1}\right)$. In the latter case, $B_{r^{*}}(\Delta)=X_{l}$ and, hence, $a_{12}$ is the cardinality (equal to 1 ) of the intersection

$$
B_{r_{1}}\left(\Delta_{1}\right) \cap B_{r_{2}}\left(\Delta_{2}\right)
$$

Since

$$
\sum r_{i}=d(m-1), \quad 0 \leq r_{i} \leq d, \quad i=1, \ldots, m
$$

we conclude that $r_{3}=\cdots=r_{m}=d$. Thus, $m=2$ and $a=a_{12}=1$ in this case.
If $a_{12}=\infty$ then it follows from the definition of $\widehat{R}$ that $a=\infty$, since, in the computation of the product of $C_{r_{1}}, \ldots, C_{r_{m}}$ we will never multiply by zero. On the other hand, in this case the classes $C_{r_{1}}, C_{r_{2}}$ are not Poincaré dual to each other and Lemma 14 implies that the intersection

$$
\bigcap_{i=1}^{m} B_{r_{i}}\left(\Delta_{i}\right) \subset X_{l}
$$

is also infinite. Lemma follows.
Corollary 17. $H_{*}\left(X_{l}, \widehat{R}\right)$ is a pre-ring.
Proof. The only thing which is unclear from the definition is that the product is associative. To verify associativity, we have to show that

$$
\begin{equation*}
\left(\left(C_{r_{1}} C_{r_{2}}\right) C_{r_{3}}\right) \cdot C_{r_{4}}=\left(C_{r_{1}}\left(C_{r_{2}} C_{r_{3}}\right)\right) \cdot C_{r_{4}} \tag{6}
\end{equation*}
$$

where $C_{r_{i}} \in H_{r_{i}}\left(X_{l}\right)$ are the generators and

$$
r_{1}+r_{2}+r_{3}+r_{4}=(4-1)(n-1) .
$$

However, the equality (6) immediately follows from the above lemma.
Similarly to the definition of the Schubert precalculus on the Grassmannians $X_{l}$, we define the Schubert precalculus on the "flag-manifold" $\mathrm{Fl}(X)$ associated with $X$, i.e., the set of edges $E(X)$ of the graph $X$ underlying the building $X$. The set $E(X)$ will be identified with the set of mid-points of the edges. We have two projections

$$
p_{l}: E(X) \rightarrow X_{l}, \quad l=1,2
$$

sending each edge to its end-points. We will think of these projections as " $\mathbb{P}^{1}$ bundles." Accordingly, we define Schubert cycles in $\mathrm{Fl}(X)$ by pull-back of Schubert cycles in $X_{l}$ via $p_{l}$ :

$$
\overline{C_{r, l}(\Delta)}:=p_{l}^{-1}\left(\overline{C_{r-1}(\Delta)}\right), \quad r=1, \ldots, n
$$

while 0 -dimensional cycles in $\operatorname{Fl}(X)$ are, of course, just the edges of $X$. In terms of the metric geometry of $X$, the cycles $\overline{C_{r+1, l}}(\Delta)$ are described as follows. Fix a chamber $\Delta$. Define the Schubert cell $C_{r, l}(\Delta)$ to be the set of chambers $\Delta^{\prime} \subset X$ so that the distance between the midpoints $\operatorname{mid}(\Delta), \operatorname{mid}\left(\Delta^{\prime}\right)$ of $\Delta, \Delta^{\prime}$ equals $r$ and
the minimal distance $r-1$ between $\Delta, \Delta^{\prime}$ is realized by a vertex of type $l$ in $\Delta^{\prime}$. Here the convention is that $C_{r, l}(\Delta)=C_{r, l+1}(\Delta)$ for $r=0, r=n=\operatorname{girth}(X) / 2$, since for these values of $r$ the minimal distance is realized by vertices of both types. The corresponding Schubert cycles $\overline{C_{r, l}(\Delta)}$ are defined by adding to $C_{r, l}(\Delta)$ all the chambers $\Delta^{\prime \prime}$ contained in the geodesics connecting $\operatorname{mid}(\Delta), \operatorname{mid}\left(\Delta^{\prime}\right)$, for $\Delta^{\prime} \in C_{r, l}(\Delta)$. The notion of transversality as in the case of $X_{l}$, is given by taking antipodal chambers. The Poincaré Duality is defined by

$$
P D\left(\left[\overline{C_{r, l}(\Delta)}\right]\right)=\left[\overline{C_{n-r, 3-l}(\Delta)}\right], \quad l=1,2 .
$$

The reader will verify that this is consistent with the property that the intersection

$$
\overline{C_{r, l}\left(\Delta_{1}\right)} \cap \overline{C_{n-r, 3-l}\left(\Delta_{2}\right)}
$$

is a single point. We declare that the homology classes $\left[\overline{C_{r, l}(\Delta)}\right]$ are independent of $\Delta$ and set up the notation

$$
C_{r, l}:=C_{w}:=\left[\overline{C_{r, l}(\Delta)}\right],
$$

where $w \in W$ is the unique element such that $w(\Delta) \in C_{r, l}(\Delta)$. Then the Poincaré Duality takes the form

$$
P D\left(C_{w}\right)=C_{w_{\circ} w},
$$

where $w_{\circ} \in W$ is the longest element.
We declare that $C_{r, l}, r=0, \ldots, n, l=1,2$, form a basis of $H_{*}(\mathrm{Fl}(X))$, where $r=$ $\operatorname{dim}\left(C_{r, l}\right)$. We also require the pull-back maps $p_{l}$ to be pre-ring homomorphisms. It remains to define the intersection products of the form

$$
C_{r_{1}, 1} \cdot C_{r_{2}, 2}, \quad 0 \leq r_{1}, r_{2} \leq n .
$$

Analogously to the product in $H_{*}\left(X_{l}\right)$, we take two antipodal chambers $\Delta_{1}, \Delta_{2}$ and set

$$
C_{r_{1}, 1} \cdot C_{r_{2}, 2}=a_{1} C_{r_{3}, 1}+a_{2} C_{r_{3}, 2}, \quad a_{l} \in \widehat{R}, l=1,2,
$$

where $r_{3}:=r_{1}+r_{2}-n$ (i.e., $\left.\left(n-r_{1}\right)+\left(n-r_{2}\right)=n-r_{3}\right)$. In order to compute $a_{l}$ 's we take the third chamber $\Delta_{3}$ antipodal to $\Delta_{1}, \Delta_{2}$, and let $a_{l}$ denote the cardinality of the intersection

$$
\overline{C_{r_{1}, 1}\left(\Delta_{1}\right)} \cap \overline{C_{r_{2}, 2}\left(\Delta_{2}\right)} \cap \overline{C_{r_{3}, 3-l}\left(\Delta_{3}\right)} .
$$

With these definitions, we obtain a homology pre-ring $H_{*}(\mathrm{Fl}(X), \widehat{R})$ abbreviated to $H_{*}(X, \widehat{R})$ or even $H_{*}(X)$. The proof of the following proposition is similar to the case of $H_{*}\left(X_{l}\right)$ and is left to the reader:
Proposition 18. Let $X$ be a thick building with the Weyl group $I_{2}(n)$, satisfying Axiom $A$. Then $H_{*}(X)$ is an associative and commutative pre-ring, generated by the elements $C_{r, l}, l=1,2, r=0, \ldots, n$, subject to the relations:
(1) $C_{0,1}=C_{0,2}$ (the class of a point $\left.[\mathrm{pt}]\right)$,
$C_{n, 1}=C_{n, 2}=1$ is the unit in $H_{*}(X)$ (the "fundamental class");
(2) $C_{r_{1}, l} \cdot C_{r_{2}, l}=0$ if $r_{1}+r_{2} \leq n, \quad l=1,2$;
(3) $C_{r_{1}, l} \cdot C_{r_{2}, l}=\infty$ if $n<r_{1}+r_{2}, l=1,2$;
(4) $C_{r_{1}, 1} \cdot C_{r_{2}, 2}=1$ if $r_{1}+r_{2}=n$;
(5) $C_{r_{1}, 1} \cdot C_{r_{2}, 2}=0$ if $r_{1}+r_{2}<n$;
(6) $C_{r_{1}, 1} \cdot C_{r_{2}, 2}=\infty C_{r_{3}, 1}+\infty C_{r_{3}, 2}$ if $r_{1} \neq n, r_{2} \neq n, r_{1}+r_{2}>n$, where $r_{3}=\left(r_{1}+r_{2}\right)-n$.

## 12. The stability inequalities

Suppose that $X$ is a rank 2 thick spherical building with the Weyl group $W \cong$ $I_{2}(n)$, satisfying Axiom A. We continue with the notation from Section 11. Recall that $\angle$ is a path metric on $X$ so that the length of each chamber is $\pi / n$.

We start with few simple observations. Let $C_{r}(\Delta)$ be a Schubert cell in $X_{l}$ and $\eta \in C_{r}(\Delta)$, i.e., $d(\eta, \Delta)=r$. Then the point $\zeta$ in $\Delta$ nearest to $\eta$ has the type $l+r$ $(\bmod 2)$. In particular, $\zeta$ depends only on the cell $C_{r}(\Delta)$ (and not on the choice of $\eta$ in the cell). Let $\xi \in \Delta$ be a point within $\angle$-distance $\tau$ from $\zeta$. Then

$$
\angle(\eta, \xi)=r \frac{\pi}{n}+\tau
$$

In particular, this angle is completely determined by the angle $\tau$, by the type of $\eta$ and the fact that we are dealing with the Schubert cell $C_{r}(\Delta)$. In particular, it follows that for each $\eta \in \overline{C_{r-1}(\Delta)}=\overline{C_{r}(\Delta)} \backslash C_{r}(\Delta)$, we have

$$
\angle(\eta, \xi)<r \frac{\pi}{n}+\tau
$$

where $\xi$ is defined as above. We now introduce the following system of inequalities WTI (weak triangle inequalities) on $m$-tuples of vectors $\vec{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)=$ $\left(\mu_{1} \xi_{1}, \ldots, \mu_{m} \xi_{m}\right)$, with $\xi_{i}^{0} \in \Delta_{+}$and $\mu_{i} \in \mathbb{R}_{+}$.

Each Grassmannian $X_{l}$ (or, equivalently, the choice of a vertex $\zeta$ of the standard spherical chamber $\Delta_{+}$) will contribute a subsystem $\mathrm{WTI}_{l}$ of the triangle inequalities. Consider all possible $m$-tuples $\left(w_{1}, \ldots, w_{m}\right)$ of elements of $W$, so that all but two $w_{i}$ 's are equal to $w_{\circ}$ (the longest element of $W$ ) and the remaining elements $w_{i}, w_{j}$ are "Poincaré dual" to each other $\left(w_{i}=P D_{l}\left(w_{j}\right)\right)$, i.e., their relative lengths $r_{i}=\ell_{l}\left(w_{i}\right), r_{j}=\ell_{l}\left(w_{j}\right)$ in $W / W_{l}$ satisfy

$$
r_{i}+r_{j}=n-1
$$

In other words, the corresponding Schubert cycles

$$
C_{r_{i}}=\left[\overline{C_{r_{i}}\left(\Delta_{+}\right)}\right], \quad C_{r_{j}}=\left[\overline{C_{r_{j}}\left(\Delta_{+}\right)}\right]
$$

in $X_{l}$ have complementary dimensions and thus are Poincaré dual to each other:

$$
C_{r_{i}}=P D\left(C_{r_{j}}\right) .
$$

See Section 11. Equivalently, we are considering $m$-tuples of integers $0 \leq r_{k} \leq$ $m-1$, which, after permutation of indices, have the form

$$
\left(r_{1}, \ldots, r_{m}\right)=\left(r_{1}, r_{2}=n-1-r_{1}, n-1, \ldots, n-1\right)
$$

Note that $\ell_{l}\left(w_{\circ}\right)=n-1$, thus $\ell_{l}\left(w_{i}\right)=r_{i}, i=1, \ldots, m$.
Lastly, for every such tuple

$$
\vec{w}=\left(w_{1}, \ldots, w_{m}\right)=\left(w_{\circ}, \ldots, w_{\circ}, w_{i}, \ldots, P D\left(w_{i}\right), \ldots, w_{\circ}\right)
$$

we impose on the vector $\vec{\lambda}$ the inequality

$$
\begin{equation*}
\sum_{j}\left\langle\lambda_{j}, w_{j}(\zeta)\right\rangle=\sum_{j} \mu_{j} \cdot \cos \angle\left(\xi_{j}, w_{j}(\zeta)\right) \leq 0 \tag{7}
\end{equation*}
$$

denoted $\mathrm{WTI}_{l, \vec{w}}$. The collection of all these inequalities constitutes the system of inequalities WTI.

Theorem 19. For any rank 2 thick spherical building $X$ satisfying Axiom $A$ with the Weyl group $I_{2}(n)$, one has:
(i) The Stability Cone $\mathcal{K}_{m}(X)$ (see Definition 4) is cut out by the inequalities WTI.
(ii) Moreover, if $\vec{\lambda} \in \mathcal{K}_{m}(X)$, then there exists a semistable weighted configuration $\psi=\left(\mu_{1} \xi_{1}^{\prime}, \ldots, \mu_{m} \xi_{m}^{\prime}\right)$ on $X$ of the type $\vec{\lambda}$ so that the points $\xi_{i}^{\prime}, i=1, \ldots, m$, belong to mutually antipodal chambers in $X$.

Proof. Our proof essentially repeats the one in [KLM1, Theorem 3.33]. We present it here for the sake of completeness.

1 (Existence of a semistable configuration). We begin by taking a collection of chambers $\Delta_{1}, \ldots, \Delta_{m} \subset X$ in "general position," i.e., they are mutually antipodal. (In [KLM1] one instead takes a generic configuration of Schubert cycles in the generalized Grassmannian, representing the given homology classes.) Then for each $i=1, \ldots, m$ we place the weight $\mu_{i}$ at the point $\xi_{i}^{\prime} \in \Delta_{i}$ that has the same type as $\xi_{i}$. We claim that the resulting weighted configuration $\psi$ in $X$ is semistable. Suppose not. Then, according to the "Harder-Narasimhan Lemma" [KLM1, Theorem 3.22], there exists $l \in\{1,2\}$ so that in the Grassmannian $X_{l}$ there exists a unique point $\eta$ with the minimal (negative) slope with respect to $\psi$ :

$$
\operatorname{slope}_{\psi}(\eta)=-\sum_{i} \mu_{i} \cos \left(\angle\left(\eta, \xi_{i}^{\prime}\right)\right)<0
$$

i.e.,

$$
\sum_{i} \mu_{i} \cos \left(\angle\left(\eta, \xi_{i}^{\prime}\right)\right)>0
$$

Consider the Schubert cells

$$
C_{r_{i}}\left(\Delta_{i}\right), \quad i=1, \ldots, m
$$

where $r_{i}=d\left(\Delta_{i}, \eta\right)$ is the (combinatorial) distance between the chamber $\Delta_{i}$ and the vertex $\eta \in X_{l}$. Thus,

$$
\eta \in J=\bigcap_{i=1}^{m} C_{r_{i}}\left(\Delta_{i}\right) \subset \bar{J}=\bigcap_{i=1}^{m} B_{r_{i}}\left(\Delta_{i}\right) \subset X_{l} .
$$

By the observations in the beginning of this section, the function slope ${ }_{\psi}$ is constant on $J$. Since $\operatorname{slope}_{\psi}$ attains a unique minimum on $X_{l}$, it follows that $J=\{\eta\}$. Moreover, if

$$
\eta^{\prime} \in \bar{J} \backslash J
$$

then

$$
\operatorname{slope}_{\psi}\left(\eta^{\prime}\right)=-\sum_{i} \mu_{i} \cos \left(\angle\left(\eta^{\prime}, \xi_{i}^{\prime}\right)\right)<\operatorname{slope}_{\psi}(\eta)
$$

which contradicts the minimality of $\eta$. Therefore, the intersection $\bar{J}$ is the single point $\eta$. Thus, the product in $H_{*}\left(X_{l}\right)$ of the Schubert classes $\left[\overline{C_{r_{i}}\left(\Delta_{i}\right)}\right], i=$
$1, \ldots, m$, is $[p t]$ and the latter occurs exactly when (after permuting the indices) the $n$-tuple $\left(r_{1}, \ldots, r_{m}\right)$ has the form

$$
\left(r_{1}, \ldots, r_{m}\right)=\left(r_{1}, r_{2}=r_{1}^{*}, n-1, \ldots, n-1\right)
$$

see Corollary 15. Let $\vec{w}=\left(w_{1}, w_{2}, w_{3}, \ldots, w_{m}\right)=\left(w_{1}, w_{\circ} w_{1}, w_{\circ}, \ldots, w_{\circ}\right)$ be the corresponding tuple of elements of the Weyl group $W$. Note that

$$
\angle\left(\xi_{k}^{\prime}, \eta\right)=\angle\left(\xi_{k}, w_{k}(\zeta)\right)
$$

since $\eta \in C_{r_{k}}\left(\Delta_{k}\right)$ and $w_{k}(\zeta) \in C_{r_{k}}\left(\Delta_{+}\right), k=1, \ldots, m$. Therefore,

$$
0>\operatorname{slope}_{\psi}(\eta)=-\sum_{i} \mu_{i} \cos \left(\angle\left(\eta, \xi_{i}^{\prime}\right)\right)=-\sum_{i} \mu_{i} \cos \left(\angle\left(\xi_{k}, w_{k}(\zeta)\right)\right) .
$$

The inequality $\mathrm{WTI}_{l, \vec{w}}$ however requires that

$$
\sum_{i} \mu_{i} \cos \left(\angle\left(\xi_{i}, w_{i}(\zeta)\right)\right) \leq 0
$$

Contradiction. Therefore, $\psi$ is a semistable configuration.
2. Suppose that $\psi=\left(\mu_{1} \xi_{1}^{\prime}, \ldots, \mu_{m} \xi_{m}^{\prime}\right)$ is a weighted semistable configuration on $X$ of the type

$$
\vec{\lambda}=\left(\mu_{1} \xi_{1}, \ldots, \mu_{m} \xi_{m}\right)
$$

Consider an $m$-tuple $\vec{w}=\left(w_{1}, w_{2}, w_{3}, \ldots, w_{m}\right)=\left(w_{1}, w_{\circ} w_{1}, w_{\circ}, \ldots, w_{\circ}\right)$ of elements of $W$ as in the definition of the inequalities WTI (after permuting the indices we can assume that the tuple has this form). We will show that $\vec{\lambda}$ satisfies the inequality $\mathrm{WTI}_{l, \vec{w}}$ for $l=1,2$. Fix $l$ and let $\zeta \in \Delta_{+}$denote the vertex of type $l$. Let $r_{1}, \ldots, r_{m}$ be the relative lengths of $w_{1}, \ldots, w_{m}$ in $W / W_{l}$. Let $\Delta_{i} \subset X$ denote a chamber containing $\xi_{i}^{\prime}$. Note that $\overline{C_{r_{i}}\left(\Delta_{i}\right)}=X_{l}$ for each $i \geq 3$ since $r_{i}=n-1$. According to Lemmas 11, 12, the intersection

$$
\bigcap_{k=1}^{m} \overline{C_{r_{k}}\left(\Delta_{k}\right)}=\overline{C_{r_{1}}\left(\Delta_{1}\right)} \cap \overline{C_{r_{2}}\left(\Delta_{2}\right)} \subset X_{l}
$$

contains a vertex $\eta \in X_{l}$ (possibly nonunique since $\Delta_{1}, \Delta_{2}$, a priori, need not be antipodal). Therefore,

$$
d\left(\eta, \Delta_{i}\right) \leq r_{i}=d\left(w_{i}(\zeta), \Delta_{+}\right), \quad i=1, \ldots, m .
$$

Accordingly,

$$
\angle\left(\eta, \xi_{i}^{\prime}\right) \leq \angle\left(w_{i}(\zeta), \xi_{i}\right), \quad i=1, \ldots, m
$$

since $\xi_{i}=\theta\left(\xi_{i}^{\prime}\right) \in \Delta_{+}$. Therefore,

$$
0 \leq \operatorname{slope}_{\psi}(\eta)=-\sum_{i} \mu_{i} \cos \left(\angle\left(\eta, \xi_{i}^{\prime}\right)\right) \leq-\sum_{i} \mu_{i} \cos \left(\angle\left(w_{i}(\zeta), \xi_{i}\right)\right)
$$

and

$$
\sum_{i} \mu_{i} \cos \left(\angle\left(w_{i}(\zeta), \xi_{i}\right)\right) \leq 0
$$

and, thus, $\vec{\lambda}$ satisfies $\mathrm{WTI}_{l, \vec{w}}$.

Corollary 20. Theorem 19(i) holds for all 1-dimensional thick spherical buildings ( not necessarily satisfying Axiom A) with the Weyl group $I_{2}(n)$.
Proof. We consider two thick spherical buildings $X, X^{\prime}$, where $X$ satisfies Axiom A. According to Theorem $4, \mathcal{K}_{m}(X)=\mathcal{K}_{m}\left(X^{\prime}\right)$. The corollary follows from Theorem 19 and the existence of buildings satisfying Axiom A.

We now convert the system of weak triangle inequalities WTI to the form which appears in Theorem 1. For

$$
\vec{w}=\left(w_{1}, \ldots, w_{m}\right)=\left(w_{1}, w_{\circ} w_{1}, w_{\circ}, \ldots, w_{\circ}\right)
$$

and $\lambda_{i}=m_{i} \xi_{i}, i=1, \ldots, n$, we set $w:=w_{1}^{-1}$. Then, for $i \geq 3$,

$$
\left\langle\lambda_{i}, w_{i}(\zeta)\right\rangle=\left\langle w_{i}^{-1} \lambda_{i}, \zeta\right\rangle=\left\langle w_{\circ} \lambda_{i}, \zeta\right\rangle=-\left\langle\lambda_{i}^{*}, \zeta\right\rangle,
$$

while

$$
\begin{aligned}
& \left\langle\lambda_{2}, w_{2}(\zeta)\right\rangle=\left\langle w_{2}^{-1}\left(\lambda_{2}\right), \zeta\right\rangle=-\left\langle w\left(\lambda_{2}^{*}\right), \zeta\right\rangle, \\
& \left\langle\lambda_{1}, w_{1}(\zeta)\right\rangle=\left\langle w\left(\lambda_{1}\right), \zeta\right\rangle .
\end{aligned}
$$

Therefore, the inequality

$$
\sum_{j}\left\langle\lambda_{j}, w_{j}(\zeta)\right\rangle \leq 0
$$

is equivalent to

$$
\left\langle w\left(\lambda_{1}\right), \zeta\right\rangle-\left\langle w\left(\lambda_{2}^{*}\right), \zeta\right\rangle \leq\left\langle\sum_{j=3}^{m} \lambda_{j}^{*}, \zeta\right\rangle
$$

Since these inequalities hold for both vertices $\zeta$ of $\Delta_{+}$, we obtain

$$
w\left(\lambda_{1}-\lambda_{2}^{*}\right) \leq_{\Delta^{*}} \sum_{j=3}^{m} \lambda_{j}^{*}, \quad w \in W .
$$

This proves Theorem 1.
Corollary 21. Let $X$ be a thick spherical building. Then the Stability Cone $\mathcal{K}_{m}(X)$ is a convex polyhedral cone.

Proof. It suffices to consider the case when $X$ does not have a spherical factor, i.e., its Coxeter complex $(S, W)$ is essential: $W$ has no global fixed points in $S$. The assertion of the corollary was proven in [KLM1], [KLM2] for all thick spherical buildings $X$ with the crystallographic Weyl group $W$, i.e., $W$ appearing as Weyl groups of complex semisimple Lie groups. If $W=W_{1} \times \cdots \times W_{k}$ is a finite Coxeter group (with $W_{i}$ Coxeter groups with connected Dynkin diagrams) which is a Weyl group of a thick spherical building $X$, then each $W_{i}$ is either crystallographic or is a finite dihedral group $I_{2}(n)$, see $[\mathrm{Ti}]$. It is immediate from the definition of semistability that

$$
\mathcal{K}_{m}(X)=\mathcal{K}_{m}\left(X_{1}\right) \times \cdots \times \mathcal{K}_{m}\left(X_{k}\right),
$$

where $X_{1}, \ldots, X_{k}$ are irreducible factors of $X$ with respect to its joint decomposition into irreducible spherical subbuildings: the $X_{i}$ 's are thick irreducible spherical buildings with essential Coxeter complexes and Weyl groups $W_{i}, i=1, \ldots, k$. It therefore follows from the above result of [KLM1, KLM2] and Theorem 19 that each $\mathcal{K}_{m}\left(X_{i}\right)$, and, hence, $\mathcal{K}_{m}(X)$, is a convex polyhedral cone.

## 13. The universal dihedral cohomology algebra $A_{t}$

In this section we construct a family of algebras $A_{t}, t \in \mathbb{C}^{\times}$as a universal deformation of the cohomology ring of the flag variety for each rank 2 complex Kac-Moody group $G$ (including Lie groups $G=\mathrm{SL}_{3}, S p_{4}, G_{2}$ ). It turns out that the complexification $\mathbb{C} \otimes A_{t}$ is isomorphic to the coinvariant algebra of the dihedral group $W=W_{t}$ acting on $\mathbb{C}^{2}$ with the parameter $t$, i.e., $t^{2}+t^{-2}$ is the trace of the generator of the maximal normal cyclic subgroup of $W$.

For each integer $k \geq 0$ define the $t$-integer $[k]_{t}$ by

$$
[k]_{t}:=\frac{t^{k}-t^{-k}}{t-t^{-1}}=t^{1-k}+t^{3-k}+\cdots+t^{k-3}+t^{k-1}
$$

It is well-known (and easy to see) that for $k, \ell \geq 0$ one has

$$
\begin{equation*}
[k]_{t}[\ell]_{t}=[|k-\ell|+1]_{t}+[|k-\ell|+3]_{t}+\cdots+[|k+\ell|-1]_{t} . \tag{8}
\end{equation*}
$$

Now define the $t$-factorials $[m]_{t}!:=[1]_{t}[2]_{t} \cdots[\ell]_{t}$ and the $t$-binomial coefficients by:

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{t}=\frac{[m]_{t}!}{[k]_{t}![m-k]_{t}!}
$$

Note that, like the usual binomials, $t$-binomials $\left[\begin{array}{c}m \\ k\end{array}\right]_{t}$ extend naturally to $k \in \mathbb{N}$ and $m \in \mathbb{R}_{+}$, although we will use them only for $k \in \mathbb{N}, m \in \mathbb{Z}$. The $t$-binomial coefficients satisfy the symmetry

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{t}=\left[\begin{array}{c}
n \\
n-k
\end{array}\right]_{t}
$$

and the Pascal recursion:

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]_{t}=t^{k}\left[\begin{array}{c}
m-1 \\
k
\end{array}\right]_{t}+t^{k-m}\left[\begin{array}{c}
m-1 \\
k-1
\end{array}\right]_{t} .
$$

Proposition 22. Each $t$-binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{t}$ belongs to $\mathbb{Z}\left[t+t^{-1}\right]$.
Proof. We need the following result.
Lemma 23. For all $k, \ell \geq 0$ we have

$$
\left[\begin{array}{c}
\ell+k  \tag{9}\\
k
\end{array}\right]_{t}=\sum_{0 \leq m \leq k \ell} c_{m} \cdot[m+1]_{t}
$$

where each $c_{m} \in \mathbb{Z}_{\geq 0}$.
Proof. Let $V_{1}=\mathbb{C}^{2}$ be the natural $\mathrm{SL}_{2}(\mathbb{C})$-module. Denote $V_{\ell}=S^{\ell} V_{1}$ so that $\operatorname{dim} V_{\ell}=\ell+1$. Clearly, each $V_{\ell}$ is a simple module. For each $k \geq 0$ let $V_{\ell, k}=S^{k} V_{\ell}$; then $\operatorname{dim} V_{\ell, k}=\binom{\ell+k}{k}$. Recall that for each finite-dimensional $\mathrm{SL}_{2}(\mathbb{C})$-module $V$ the character $\operatorname{ch}(V)$ is a function of $t \in \mathbb{C}^{\times}$defined by

$$
\operatorname{ch}(V)=\operatorname{Tr}\left(\left.\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right)\right|_{V}\right) .
$$

It is easy to see that $\operatorname{ch}\left(V_{\ell}\right)=[\ell+1]_{t}$ and $\operatorname{ch}\left(V_{\ell, k}\right)=\left[\begin{array}{c}\ell+k \\ k\end{array}\right]_{t}$. Using the decomposition of $V_{\ell, k}$ into simple $\mathrm{SL}_{2}$-modules

$$
V_{\ell, k}=\sum_{0 \leq m \leq k \ell} c_{m} \cdot V_{m}
$$

where each $c_{m} \in \mathbb{Z}_{\geq 0}$ and applying $\operatorname{ch}(\cdot)$ to it, we obtain (9). Lemma follows.
Observe, furthermore, that the obvious recursion $[m+1]_{t}=[2]_{t}[m]_{t}-[m-1]_{t}$, which is a particular case of (8), proves (by induction) that each $t$-number $[m+1]_{t}$ belongs to $\mathbb{Z}\left[t+t^{-1}\right]=\mathbb{Z}\left[[2]_{t}\right]$.

Combining this observation with (9), we finish the proof of the proposition.
Let $A^{\prime}$ be the algebra over $\mathbb{C}(t)$ generated by $\sigma_{1}, \sigma_{2}$ subject to the relations

$$
\sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{1}, \quad\left(\sigma_{1}-t \sigma_{2}\right)\left(\sigma_{1}-t^{-1} \sigma_{2}\right)=0
$$

It is convenient to rewrite the second relation as:

$$
\begin{equation*}
[2]_{t} \sigma_{1} \sigma_{2}=\sigma_{1}^{2}+\sigma_{2}^{2} \tag{10}
\end{equation*}
$$

Lemma 24. The following relations hold in $A^{\prime}$ :

$$
\begin{equation*}
[k+\ell]_{t} \sigma_{1}^{k} \sigma_{2}^{\ell}=[k]_{t} \sigma_{1}^{k+\ell}+[\ell]_{t} \sigma_{2}^{k+\ell} \tag{11}
\end{equation*}
$$

for all $k, \ell \geq 0$. In particular, the monomials $\sigma_{i}^{k}, i \in\{1,2\}, k \geq 0$ form a $\mathbb{C}(t)$ linear basis of $A^{\prime}$.

Proof. We proceed by induction in $\min (k, \ell)$. Indeed, if $k=0$ or $\ell=0$, we have nothing to prove. Otherwise, using (10) and the inductive hypothesis, we obtain:

$$
\begin{aligned}
{[k+\ell]_{t} \sigma_{1}^{k} \sigma_{2}^{\ell} } & =[k+\ell]_{t}\left(\sigma_{1} \sigma_{2}\right) \sigma_{1}^{k-1} \sigma_{2}^{\ell-1}=\frac{[k+\ell]_{t}}{[2]_{t}}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) \sigma_{1}^{k-1} \sigma_{2}^{\ell-1} \\
& =\frac{[k+\ell]_{t}}{[2]_{t}}\left(\sigma_{1}^{k+1} \sigma_{2}^{\ell-1}+\sigma_{1}^{k-1} \sigma_{2}^{\ell+1}\right) \\
& =\frac{1}{[2]_{t}}\left([k+1]_{t} \sigma_{1}^{k+\ell}+[\ell-1]_{t} \sigma_{2}^{k+\ell}+[k-1]_{t} \sigma_{1}^{k+\ell}+[\ell+1]_{t} \sigma_{2}^{k+\ell}\right) \\
& =\frac{1}{[2]_{t}}\left([k+1]_{t}+[k-1]_{t}\right) \sigma_{1}^{k+\ell}+\frac{1}{[2]_{t}}\left([\ell-1]_{t}+[\ell+1]_{t}\right) \sigma_{2}^{k+\ell} \\
& =[k]_{t} \sigma_{1}^{k+\ell}+[\ell]_{t} \sigma_{2}^{k+\ell}
\end{aligned}
$$

by (8).
Furthermore, the relations (11) guarantee that the monomials $\sigma_{i}^{k}, i \in\{1,2\}, k \geq$ 0 span $A^{\prime}$. To verify their linear independence, let us compute the Hilbert series $h\left(A^{\prime}, z\right)$ of $A^{\prime}$. Clearly, the Hilbert series of the polynomial algebra $\mathbb{C}(t)\left[\sigma_{1}, \sigma_{2}\right]$ is $1 /(1-z)^{2}$ and the Hilbert series of any principal ideal $I$ in $\mathbb{C}(t)\left[\sigma_{1}, \sigma_{2}\right]$ generated
by a quadratic polynomial is $z^{2} /(1-z)^{2}$. Therefore, the Hilbert series of the quotient algebra $\mathbb{C}(t)\left[\sigma_{1}, \sigma_{2}\right] / I$ is

$$
\frac{1}{(1-z)^{2}}-\frac{z^{2}}{(1-z)^{2}}=\frac{1+z}{1-z}=1+\sum_{k \geq 1} 2 z^{k}
$$

Applying this to our algebra $A^{\prime}=\mathbb{C}(t)\left[\sigma_{1}, \sigma_{2}\right] /\left\langle\left(\sigma_{1}-t \sigma_{2}\right)\left(\sigma_{1}-t^{-1} \sigma_{2}\right)\right\rangle$ we see that each graded component of $A^{\prime}$ is 2 -dimensional, which verifies the linear independence of the monomials. The lemma is proved.

Denote by $\sigma_{i}^{[k]}:=\frac{1}{[k]_{t}!} \sigma_{i}^{k}, i=1,2, k \geq 0$ the divided powers of $\sigma_{i}, i=1,2$. Denote by $A$ the subalgebra of $A^{\prime}$ generated over $\mathbb{Z}\left[t+t^{-1}\right]$ by all $\sigma_{i}^{[k]}, i \in\{1,2\}$, $k \geq 0$.

Proposition 25. The following relations hold in $A$ :

$$
\sigma_{1}^{[k]} \sigma_{1}^{[\ell]}=\left[\begin{array}{c}
k+\ell  \tag{12}\\
k
\end{array}\right]_{t} \sigma_{1}^{[k+\ell]}, \quad \sigma_{2}^{[k]} \sigma_{2}^{[\ell]}=\left[\begin{array}{c}
k+\ell \\
k
\end{array}\right]_{t} \sigma_{2}^{[k+\ell]}
$$

for all $k, \ell \geq 0$;

$$
\sigma_{1}^{[k]} \sigma_{2}^{[\ell]}=\left[\begin{array}{c}
k+\ell-1  \tag{13}\\
k-1
\end{array}\right]_{t} \sigma_{1}^{[k+\ell]}+\left[\begin{array}{c}
k+\ell-1 \\
\ell-1
\end{array}\right]_{t} \sigma_{2}^{[k+\ell]}
$$

for all $k, \ell \geq 0$.
In particular, the monomials $\sigma_{i}^{[k]}, i=1,2, k \geq 0$, form $a \mathbb{Z}\left[t+t^{-1}\right]$-linear basis in $A$, and the relations (12) and (13) are defining for $A$.

Proof. We have

$$
\sigma_{i}^{[k]} \sigma_{i}^{[\ell]}=\frac{1}{[k]_{t}![\ell]_{t}!} \sigma_{i}^{k+\ell}=\frac{[k+\ell]_{t}}{[k]_{t}![\ell]_{t}!} \sigma_{i}^{[k]} \sigma_{i}^{[\ell]}
$$

for $i \in\{1,2\}, k \geq 0$, which verifies (12). Furthermore, (11) implies that

$$
\begin{aligned}
\sigma_{1}^{[k]} \sigma_{2}^{[\ell]} & =\frac{1}{[k]_{t}![\ell]_{t}!} \sigma_{1}^{k} \sigma_{2}^{\ell}=\frac{1}{[k]_{t}![\ell]_{t}![k+\ell]_{t}}\left([k]_{t} \sigma_{1}^{k+\ell}+[\ell]_{t} \sigma_{2}^{k+\ell}\right) \\
& =\frac{[k+\ell-1]_{t}!}{[k-]_{t}![\ell]_{t}!} \sigma_{1}^{[k+\ell]}+\frac{[k+\ell-1]_{t}!}{[k]_{t}![\ell-1]_{t}!} \sigma_{2}^{[k+\ell]},
\end{aligned}
$$

which verifies (13).
Since all structure constants of $A$ are $t$-binomial coefficients, Proposition 22 guarantees that $A$ is defined over $\mathbb{Z}\left[t+t^{-1}\right]$.

Since, as a $\mathbb{Z}\left[t+t^{-1}\right]$-module, $A$ is spanned by all products of various $\sigma_{i}^{[k]}$ and each such monomial is a $\mathbb{Z}\left[t+t^{-1}\right]$-linear combination of divided powers $\sigma_{i}^{[\ell]}$, $i \in\{1,2\}, \ell \geq 0$ by (12) and (13), we see that the divided powers span $A$ as a $\mathbb{Z}\left[t+t^{-1}\right]$-module. It is also clear that the divided powers $\sigma_{i}^{[\ell]}, i \in\{1,2\}, \ell \geq 0$ are $\mathbb{Z}\left[t+t^{-1}\right]$-linearly independent because that was the case in $A^{\prime}$ by Lemma 24 . Therefore, relations (12) and (13) are defining. The proposition is proved.

Now we will use the standard algebraic trick of specializing a formal parameter $t$ into a nonzero complex number $t_{0}$. Clearly, this is impossible to do for $A^{\prime}$ because it is defined over $\mathbb{C}(t)$, but it is a perfectly reasonable to do so for the algebra $A$ which is defined over $\mathbb{Z}\left[t+t^{-1}\right]$. Indeed, for each $t_{0} \in \mathbb{C}^{\times}$we define $\tilde{A}_{t_{0}}=R_{0} \otimes_{R} A$, where $R=\mathbb{Z}\left[t+t^{-1}\right], R_{0}=\mathbb{Z}\left[t_{0}+t_{0}^{-1}\right] \subset \mathbb{C}$, where $R_{0}$ is regarded as an $R$-module via the evaluation homomorphism $R \rightarrow R_{0}$ which takes $t$ to $t_{0}$. By the construction, $\tilde{A}_{t_{0}}$ is a free $\mathbb{Z}\left[t_{0}+t_{0}^{-1}\right]$-module, e.g., it has a basis $\sigma_{i}^{[k]}, i \in\{1,2\}, k \geq 0$.

With a slight abuse of notation, from now on we will denote by $t$ a nonzero complex number so that $\tilde{A}_{t}, t \in \mathbb{C}^{\times}$is the family of unital $\mathbb{Z}\left[t+t^{-1}\right]$-algebras with the presentation (12) and (13) (and $\sigma_{1}^{[0]}=\sigma_{2}^{[0]}=1$ ).

For each $t \in \mathbb{C}^{\times} \backslash\{-1,1\}$ define $n_{t} \in \mathbb{Z} \sqcup\{\infty\}$ to be the order of $t^{2}$ in the multiplicative group $\mathbb{C}^{\times}$. If $t= \pm 1$, we set $n_{ \pm 1}:=\infty$. Thus, $n_{t}=\infty$ unless $t^{2}$ is a primitive $n$th root of unity and $n>1$, in which case, $n_{t}=n$.

Note that if $n_{t}=n<\infty$, then $[n]_{t}=0$ and $[n-k]_{t}=-t^{n}[k]_{t}$ for $0 \leq k \leq n$. In turn, this implies $\left[\begin{array}{c}m \\ k\end{array}\right]_{t}=0$ for all $m \geq n_{t}, 1 \leq k \leq m-1$ and

$$
\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{t}=-t^{n}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{t}
$$

hence

$$
\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{t}=\left(-t^{n}\right)^{k}=1
$$

which are most of the structure constants in (12) and (13). In particular, the following relations hold in $\tilde{A}_{t}$

$$
\sigma_{1}^{[k]} \sigma_{1}^{[n-k]}=\sigma_{2}^{[k]} \sigma_{2}^{[n-k]}=0, \quad \sigma_{1}^{[k]} \sigma_{2}^{[n-k]}=\sigma_{12}^{[n]}
$$

for all $1 \leq k<n=n_{t}$, where

$$
\sigma_{12}^{[n]}:=\left(-t^{n}\right)^{k-1} \sigma_{1}^{[n]}+\left(-t^{n}\right)^{k} \sigma_{2}^{[n]} .
$$

Now define the algebra $A_{t}, t \in \mathbb{C}^{\times}$over $\mathbb{Z}\left[t+t^{-1}\right] \subset \mathbb{C}$ as follows:
If $n_{t}=\infty$, then $A_{t}:=\tilde{A}_{t}$.
If $n_{t}=n<\infty$ ( i.e., $t^{2} \neq 1$ is the $n$th primitive root of unity), then $A_{t}$ is a subalgebra of $\tilde{A}_{t}$ generated by all $\sigma_{1}^{[k]}, \sigma_{2}^{[k]}, k=0,1, \ldots, n-1$ and by $\sigma_{12}^{[n]}$.

It is easy to see that in both cases the algebra $A_{t}$ is $\mathbb{Z}$-graded via $\operatorname{deg} \sigma_{i}^{[k]}=k$. Moreover, in the second case, $\operatorname{deg} \sigma_{12}^{[n]}=n$ is the top degree in $A_{t}$, as $[n]_{t}=0$.

For $t \in \mathbb{C}^{\times}$let $W_{t}:=\left\langle s_{1}, s_{2}: s_{1}^{2}=s_{2}^{2}=1,\left(s_{1} s_{2}\right)^{n_{t}}=1\right\rangle$ be the dihedral group. Here it is understood that for $t= \pm 1$ we have the relation $s_{1} s_{2}=1$ and for $t$ which is not a root of unity, we have the tautological relator $\left(s_{1} s_{2}\right)^{0}=1$. Define the $W_{t}$-action on the weight lattice

$$
\Lambda_{t}=\mathbb{Z}\left[t+t^{-1}\right] \cdot \sigma_{1}+\mathbb{Z}\left[t+t^{-1}\right] \cdot \sigma_{2}
$$

by:

$$
\begin{equation*}
s_{i}\left(\sigma_{j}\right)=\sigma_{j}-\delta_{i j}\left(2 \sigma_{j}-\left(t+t^{-1}\right) \sigma_{3-i}\right) \tag{14}
\end{equation*}
$$

for all $i, j \in\{1,2\}$.
Recall that if $W$ is a group acting on a vector space $V$, then the coinvariant algebra $S(V)_{W}$ is the quotient $S(V) /\left\langle S(V)_{+}^{W}\right\rangle$, where $S(V)_{+}^{W}$ stands for all $W$ invariants in the algebra of the constant-term-free polynomials

$$
S(V)_{+}=\sum_{k>0} S^{k}(V)
$$

(The computations of $S(V)_{W}$ below, in the case of $W_{t}$ with $t$ a root of unity, present a very special case of the computation of coinvariant algebras for arbitrary finite groups; see, e.g., [H].)

The following proposition explains the origin of the algebra $A_{t}$ :
Proposition 26. For each $t \in \mathbb{C}^{\times}$the algebra $\mathbb{C} \otimes A_{t}$ is naturally isomorphic to the coinvariant algebra of $W_{t}$ acting on the vector space $V=\mathbb{C} \otimes \Lambda_{t}$. In particular, $W_{t}$ naturally acts on $A_{t}$ via:

$$
\begin{equation*}
s_{i}\left(\sigma_{j}^{[k]}\right)=\sigma_{j}^{[k]}-\delta_{i j}\left(2 \sigma_{j}^{[k]}-\left(t^{k}+t^{-k}\right) \sigma_{3-i}^{[k]}\right) \tag{15}
\end{equation*}
$$

for all $i, j \in\{1,2\}, 0 \leq k<n_{t}$ and (whenever $1<n_{t}=n<\infty$ )

$$
s_{i}\left(\sigma_{12}^{[n]}\right)=-\sigma_{12}^{[n]}
$$

for $i=1,2$.
Proof. Denote $z_{1}=\sigma_{1}-t \sigma_{2}, z_{2}=t^{-1} \sigma_{2}-\sigma_{1}$ and let

$$
e_{2}=-z_{1} z_{2}=\left(\sigma_{1}-t \sigma_{2}\right)\left(\sigma_{1}-t^{-1} \sigma_{2}\right)=\sigma_{1}^{2}+\sigma_{2}^{2}-\left(t+t^{-1}\right) \sigma_{1} \sigma_{2}
$$

(see (10)). It is easy to see that under the action (14), one has

$$
\begin{equation*}
s_{1}\left(z_{1}\right)=z_{2}, \quad s_{1}\left(z_{2}\right)=z_{1}, \quad s_{2}\left(z_{1}\right)=t^{2} z_{2}, \quad s_{2}\left(z_{2}\right)=t^{-2} z_{2} \tag{16}
\end{equation*}
$$

Hence, $e_{2}$ is invariant under the $W_{t}$-action.
Now assume that $[k]_{t}!\neq 0$ for all $k$, i.e., $n_{t}=\infty$. Then the algebra $\mathbb{C} \otimes A_{t}$ is just the quotient of $\mathbb{C}\left[\sigma_{1}, \sigma_{2}\right]$ by the quadratic ideal generated by $e_{2}$.

On the other hand, it is easy to see, using (16), that the $W_{t}$-invariant algebra $\mathbb{C}\left[\sigma_{1}, \sigma_{2}\right]^{W_{t}}$ is generated by $e_{2}$. Therefore, the coinvariant algebra $\mathbb{C}\left[\sigma_{1}, \sigma_{2}\right]_{W_{t}}$ is also the quotient $\mathbb{C}\left[\sigma_{1}, \sigma_{2}\right] /\left\langle e_{2}\right\rangle$. This proves the proposition in the case when $n_{t}=\infty$.

Assume that now $n_{t}=n<\infty$ or, equivalently, $[k]_{t}!\neq 0$ for $k<n$ and $[k]_{t}!=0$ for $k \geq n$. Therefore, Proposition 25 guarantees that $\mathbb{C} \otimes A_{t}$ is a commutative algebra generated by $\sigma_{1}, \sigma_{2}$ subject to the relations

$$
\begin{equation*}
e_{2}=0, \quad \sigma_{1}^{n}=\sigma_{2}^{n}=0 \tag{17}
\end{equation*}
$$

(In fact, $\sigma_{12}^{n}=\sigma_{1} \sigma_{2}^{n-1}$ by (13) because $[n-1]_{t}=-t^{n}$.)
Again, it is easy to see, using (16), that the $W_{t}$-invariant algebra $\mathbb{C}\left[\sigma_{1}, \sigma_{2}\right]^{W_{t}}$ is generated by $e_{2}$ and $e_{n}=z_{1}^{n}+z_{2}^{n}$. Therefore, the coinvariant algebra $\mathbb{C}\left[\sigma_{1}, \sigma_{2}\right]_{W_{t}}$
is the quotient $\mathbb{C}\left[\sigma_{1}, \sigma_{2}\right] /\left\langle e_{2}, e_{n}\right\rangle$. To finish the proof it suffices to show that the ideals $\left\langle\sigma_{1}^{n}, \sigma_{2}^{n}\right\rangle$ and $\left\langle e_{n}\right\rangle$ are equal in $\mathbb{C}\left[\sigma_{1}, \sigma_{2}\right] /\left\langle e_{2}\right\rangle$. Indeed, taking into account that $z_{1} z_{2}=0$ in $\mathbb{C}\left[\sigma_{1}, \sigma_{2}\right] /\left\langle e_{2}\right\rangle$ and that

$$
\sigma_{2}=\frac{z_{1}+z_{2}}{t^{-1}-t}, \quad \sigma_{1}=\frac{t^{-1} z_{1}+t z_{2}}{t^{-1}-t}
$$

we obtain:

$$
\begin{aligned}
\sigma_{1}^{n} & =\frac{\left(z_{1}+z_{2}\right)^{n}}{\left(t^{-1}-t\right)^{n}}=\frac{z_{1}^{n}+z_{2}^{n}}{\left(t^{-1}-t\right)^{n}} \\
\sigma_{2}^{n} & =\frac{\left(t^{-1} z_{1}+t z_{2}\right)^{n}}{\left(t^{-1}-t\right)^{n}}=\frac{t^{-n} z_{1}^{n}+t^{n} z_{2}^{n}}{\left(t^{-1}-t\right)^{n}}=t^{n} \frac{z_{1}^{n}+z_{2}^{n}}{\left(t^{-1}-t\right)^{n}}
\end{aligned}
$$

because $t^{2 n}=1$. This proves the equality of ideals, hence the equality of quotients $\mathbb{C} \otimes A_{t}=\mathbb{C}\left[\sigma_{1}, \sigma_{2}\right]_{W_{t}}$.

In particular, this verifies that $W_{t}$ naturally acts on $\mathbb{C} \otimes A_{t}$. To obtain (15), note that $W_{t}$ preserves the component $\mathbb{C} \cdot \sigma_{1}^{k}+\mathbb{C} \cdot \sigma_{2}^{k} \subset \mathbb{C} \otimes A_{t}$ which is the $k$ th symmetric power of $\mathbb{C} \cdot \sigma_{1}+\mathbb{C} \cdot \sigma_{2}\left(\right.$ if $\left.n<n_{t}\right)$, and therefore, $W_{t}$ acts on the former space in the same way as in the latter space, i.e., by (14) where $t$ is replaced with $t^{k}$. The proposition is proved.

It is convenient to label the above basis of $A_{t}$ by the elements of the dihedral group $W_{t}$ :

$$
\sigma_{w}= \begin{cases}\sigma_{i}^{[k]} & \text { if } \ell(w)=k<n_{t} \text { and } \ell\left(w s_{i}\right)<\ell(w),  \tag{18}\\ \sigma_{12}^{\left[n_{t}\right]} & \text { if } \ell(w)=n_{t}<\infty\end{cases}
$$

for $w \in W_{t}$, where $\ell: W \rightarrow \mathbb{Z}_{\geq 0}$ is the length function.
The following result is an equivalent reformulation of Proposition 25.
Proposition 27. For each $t \in \mathbb{C}^{\times}$the elements $\sigma_{w}, w \in W_{t}$ form a $\mathbb{Z}\left[t+t^{-1}\right]$ linear basis of $A_{t}$ and the following relations are defining:

- If $\ell(u)+\ell(v)>n_{t}$, then $\sigma_{u} \sigma_{v}=0$.
- If $u=\underbrace{\cdots s_{j} s_{i}}_{k}, v=\underbrace{\cdots s_{j} s_{i}}_{\ell}$ and $k+\ell \leq n_{t}$ and $\{i, j\}=\{1,2\}$, then

$$
\sigma_{u} \sigma_{v}=\left[\begin{array}{c}
k+\ell \\
k
\end{array}\right]_{t} \sigma_{w}
$$

where $w=\underbrace{\cdots s_{j} s_{i}}_{k+\ell}\left(\right.$ e.g., the right-hand side is 0 if $k+\ell=n_{t}$ and $\left.k, \ell>0\right)$.

- If $u=\underbrace{\cdots s_{2} s_{1}}_{k}, v=\underbrace{\cdots s_{1} s_{2}}_{\ell}$ and $k+\ell<n_{t}$, then

$$
\sigma_{u} \sigma_{v}=\left[\begin{array}{c}
k+\ell-1 \\
k-1
\end{array}\right]_{t} \sigma_{w_{1}}+\left[\begin{array}{c}
k+\ell-1 \\
\ell-1
\end{array}\right]_{t} \sigma_{w_{2}}
$$

where

$$
w_{1}=\underbrace{\cdots s_{2} s_{1}}_{k+\ell}, \quad w_{2}=\underbrace{\cdots s_{1} s_{2}}_{k+\ell}
$$

- If $u=\underbrace{\cdots s_{2} s_{1}}_{k}, v=\underbrace{\cdots s_{1} s_{2}}_{\ell}$ and $k+\ell=n_{t}, k \leq \ell$, then

$$
\sigma_{u} \sigma_{v}=\left[\begin{array}{c}
n_{t}-1 \\
k-1
\end{array}\right]_{t} \sigma_{w_{\circ}}=\sigma_{w_{\circ}}
$$

where $w_{\circ}=\underbrace{\cdots s_{2} s_{1}}_{n_{t}}$ is the longest element of the (finite) group $W_{t}$.
Note that when $\theta=t+t^{-1} \in \mathbb{R}$, all structure constants of $A_{t}$ are real numbers. We can refine this as follows.

Corollary 28. The structure constants of $A_{t}$ are nonnegative if and only if either $t=e^{\pi \sqrt{-1} / n}$ or $t>0$.

Proof. Indeed, the structure constants are $t$-binomials, which are nonnegative for $t=e^{\pi \sqrt{-1} / n}$ or $t>0$, since $[m]_{t} \geq 0$ for $1 \leq m \leq n$. On the other hand, if, say, $n=n_{t}<\infty$ but $t$ is not of the form $e^{\pi \sqrt{-1} / n}$, then there exists $1 \leq m \leq n$ so that $[m]_{t}<0$.

Remark 6. The above corollary is just one of many hints pointing to the existence of (possibly noncommutative, in view of nonintegrality of the structure constants) complex-algebraic varieties serving as flag-manifolds for noncrystallographic finite dihedral groups.

Let $G$ be a complex Kac-Moody group with the Cartan matrix

$$
\left(\begin{array}{cc}
2 & -a_{12} \\
-a_{21} & 2
\end{array}\right)
$$

where $a_{12}$ and $a_{21}$ are arbitrary positive integers (if $a_{12} a_{21} \leq 3$, then $G$ is a finitedimensional simple Lie group of rank 2 ). Let $t \in \mathbb{C}^{\times}$be such that $t+t^{-1}=\sqrt{a_{12} a_{21}}$. In particular, the Weyl group of $G$ is naturally isomorphic to $W_{t}$. Let $B \subset G$ be a Borel subgroup. It is well-known (see, e.g., $[\mathrm{KK}]$ ) that the cohomology algebra $H^{*}(G / B)$ has a basis of Schubert classes $\left[X_{w}\right], w \in W_{t}$.

The following is the main result of the section.
Theorem 29. Let $G$ and $B$ be as above and $c_{1}, c_{2} \in \mathbb{C}^{\times}$be any numbers such that $c_{1} / c_{2}=\sqrt{a_{12} / a_{21}}$ and $\mathbb{Z}\left[c_{1}, c_{2}\right] \supset \mathbb{Z}\left[t+t^{-1}\right]$. Then the association

$$
\begin{equation*}
\left[X_{w}\right] \mapsto c_{i}^{\lceil k / 2\rceil} c_{3-i}^{\lfloor k / 2\rfloor} \cdot \sigma_{w} \tag{19}
\end{equation*}
$$

for all $w \in W_{t}$, where $i \in\{1,2\}$ is such that $\ell\left(w s_{i}\right)<\ell(w)=k$, defines a $W_{t^{-}}$ equivariant isomorphism

$$
\begin{equation*}
H^{*}\left(G / B, \mathbb{Z}\left[c_{1}, c_{2}\right]\right) \leadsto \mathbb{Z}\left[c_{1}, c_{2}\right] \otimes A_{t} \tag{20}
\end{equation*}
$$

Proof. It suffices to prove that (19) defines a $W_{t}$ equivariant isomorphism

$$
\begin{equation*}
H^{*}(G / B, \mathbb{C}) \widetilde{\rightarrow} \mathbb{C} \otimes A_{t} \tag{21}
\end{equation*}
$$

Recall that the action of the Weyl group $W$ of $G$ on the root space $Q_{\mathbb{C}}=$ $\mathbb{C} \cdot \alpha_{1}+\mathbb{C} \cdot \alpha_{2}$ is given by:

$$
s_{i}\left(\alpha_{j}\right)= \begin{cases}-\alpha_{i} & \text { if } i=j \\ \alpha_{i}+a_{i j} \cdot \alpha_{j} & \text { if } i \neq j\end{cases}
$$

for $i, j \in\{1,2\}$.
It follows from [KK, Prop. 3.10] that the algebra $H^{*}(G / B, \mathbb{Z})$ satisfies the following Chevalley formula:

$$
\begin{equation*}
\left[X_{w}\right]\left[X_{s_{i}}\right]=\sum_{w_{1}, w_{2}, j} \omega_{i}^{\vee}\left(w_{2}^{-1}\left(\alpha_{j}\right)\right) \cdot\left[X_{w_{1} s_{j} w_{2}}\right], \tag{22}
\end{equation*}
$$

where the summation is over all $w_{1}, w_{2} \in W$, and $j \in\{1,2\}$ such that $w=w_{1} w_{2}$, $\ell(w)=\ell\left(w_{1}\right)+\ell\left(w_{2}\right)$, and $\ell\left(w_{1} s_{j} w_{2}\right)=\ell(w)+1$. Here $\omega_{i}^{\vee}, i \in\{1,2\}$, denotes the dual basis in $Q^{*}$ of the basis $\alpha_{1}, \alpha_{2}$.

In particular, if $\ell\left(w s_{i}\right)<\ell(w)$, then the only nonzero summand in the righthand side of (22) corresponds to $w_{1}=1$ and $w_{2}=w$, and $j$ such that $\ell\left(s_{j} w\right)=$ $\ell(w)+1$. Furthermore, if $\ell\left(w s_{i}\right)>\ell(w)$, then the right-hand side has two summands, first of which comes with $w_{2}=1, w_{1}=w$, and the second with $w_{1}=1$, $w_{2}=w$. Therefore,

$$
\begin{align*}
& {[\underbrace{X \cdots s_{j} s_{i}}_{k}]\left[X_{s_{i}}\right]=\omega_{i}^{\vee}(\underbrace{s_{i} s_{j} \cdots s_{i^{\prime}}}_{k}\left(\alpha_{3-i^{\prime}}\right))[\underbrace{X \cdots s_{j} s_{i}}_{k+1}]}  \tag{23}\\
& {[\underbrace{\ldots s_{i} s_{j}}_{k}]\left[X_{s_{i}}\right]=[\underbrace{\underbrace{}_{k+1} s_{j} s_{i}}_{k+1}]+\omega_{i}^{\vee}(\underbrace{s_{i} s_{j} \cdots s_{i^{\prime}}}_{k}\left(\alpha_{3-i^{\prime}}\right))[\underbrace{\alpha_{k+1}}_{k \cdots s_{i} s_{j}}]} \tag{24}
\end{align*}
$$

for all $k<n_{t}$ and $i, j$ such that $\{i, j\}=\{1,2\}$, where $i^{\prime}$ stands for the appropriate index $i$ or $j$ (depending on $k \bmod 2$ ). In particular, if $k=1$, we obtain:

$$
\begin{aligned}
{\left[X_{s_{1}}\right]^{2} } & =\omega_{1}^{\vee}\left(s_{1}\left(\alpha_{2}\right)\right)\left[X_{s_{2} s_{1}}\right], \\
{\left[X_{s_{2}}\right]^{2} } & =\omega_{2}^{\vee}\left(s_{2}\left(\alpha_{1}\right)\right)\left[X_{s_{2} s_{1}}\right], \\
{\left[X_{s_{1}}\right]\left[X_{s_{2}}\right] } & =\left[X_{s_{1} s_{2}}\right]+\left[X_{s_{2} s_{1}}\right]
\end{aligned}
$$

which implies the following quadratic relation in $H^{*}(G / B, \mathbb{Z})$ :

$$
\begin{equation*}
a_{21}\left[X_{s_{1}}\right]^{2}+a_{12}\left[X_{s_{2}}\right]^{2}=a_{12} a_{21}\left[X_{s_{1}}\right]\left[X_{s_{2}}\right] . \tag{25}
\end{equation*}
$$

To utilize the identities (23) and (24), we need the following obvious result.
Lemma 30. Let $w=\underbrace{\cdots s_{i} s_{j}}_{k} \in W_{t}$, where $\{i, j\}=\{1,2\}$. Then

$$
w\left(\alpha_{i}\right)=\left[k+1-\varepsilon_{k}\right]_{t} \alpha_{i}+\sqrt{\frac{a_{j i}}{a_{i j}}} \cdot\left[k+\varepsilon_{k}\right]_{t} \alpha_{j}
$$

where $t+t^{-1}=\sqrt{a_{12} a_{21}}$ and $\varepsilon_{k}= \begin{cases}1 & \text { if } k \text { is odd, } \\ 0 & \text { if } k \text { is even. }\end{cases}$
By combining this lemma with (23), we obtain:

$$
\begin{align*}
& {[\underbrace{\ldots s_{j} s_{i}}_{k}]\left[X_{s_{i}}\right]=\left(\sqrt{\frac{a_{i j}}{a_{j i}}}\right)^{\varepsilon_{k}}[k+1]_{t} \cdot[X \underbrace{\ldots s_{j} s_{i}}_{k+1}],}  \tag{26}\\
& {[X \underbrace{\ldots s_{i} s_{j}}_{k}]\left[X_{s_{i}}\right]=[X \underbrace{X \cdots s_{j} s_{i}}_{k+1}]+\left(\sqrt{\frac{a_{i j}}{a_{j i}}}\right)^{\varepsilon_{k}}[k+1]_{t} \cdot[X \underbrace{X \cdots s_{i} s_{j}}_{k+1}] .} \tag{27}
\end{align*}
$$

Furthermore, (26) implies that

$$
\begin{equation*}
\left[X_{s_{i}}\right]^{k}=\left(\sqrt{\frac{a_{i j}}{a_{j i}}}\right)^{\lfloor k / 2\rfloor}[k]_{t}!\cdot[\underbrace{X \ldots s_{j} s_{i}}_{k}] . \tag{28}
\end{equation*}
$$

In turn, this implies that $H^{*}(G / B, \mathbb{C})$ is generated by $\left[X_{s_{1}}\right],\left[X_{s_{2}}\right]$, satisfying (25) and the relations

$$
\begin{equation*}
\left[X_{s_{1}}\right]^{n_{t}}=\left[X_{s_{2}}\right]^{n_{t}}=0 \tag{29}
\end{equation*}
$$

if $n_{t}<\infty$. Pick $r_{1}, r_{2} \in \mathbb{C}^{\times}$such that $r_{1} / r_{2}=\sqrt{a_{21} / a_{12}}$ and define

$$
\varphi: \sigma_{1} \mapsto r_{1}\left[X_{s_{1}}\right], \quad \varphi: \sigma_{2} \mapsto r_{2}\left[X_{s_{2}}\right] .
$$

In view of the relation (25), we obtain

$$
\varphi\left(\sigma_{1}\right)^{2}+\varphi\left(\sigma_{2}\right)^{2}=\sqrt{a_{12} a_{21}} \varphi\left(\sigma_{1} \sigma_{2}\right)
$$

Since $t+t^{-1}=\sqrt{a_{12} a_{21}}$, we conclude that $\varphi$ preserves the defining quadratic equation (10) of $A_{t}$. The equation (29) implies that $\varphi$ preserves the last two relators in (17) provided that $n=n_{t}<\infty$. Thus, $\varphi$ extends a surjective homomorphism of algebras $\varphi: \mathbb{C} \otimes A_{t} \rightarrow H^{*}(G / B, \mathbb{C})$.

Clearly, this homomorphism is an isomorphism because it preserves the natural $\mathbb{Z}$-grading and because the respective graded components of both algebras are of the same dimension. Furthermore, let us show that for each $w \in W_{t}$ one has:

$$
\begin{equation*}
\varphi\left(\sigma_{w}\right)=r_{i}^{\lceil\ell(w) / 2\rceil} r_{j}^{\lfloor\ell(w) / 2\rfloor}\left[X_{w}\right]^{\ell(w)} \tag{30}
\end{equation*}
$$

where $i \in\{1,2\}$ is such that $\ell\left(w s_{i}\right)<\ell(w)$ and $\{i, j\}=\{1,2\}$. Indeed, if $\ell(w)<$ $n_{t}$, then

$$
\begin{aligned}
\varphi\left(\sigma_{w}\right) & =r_{i}^{\ell(w)} \frac{1}{[k]_{t}!}\left[X_{s_{i}}\right]^{\ell(w)}=r_{i}^{\ell(w)}\left(\frac{r_{j}}{r_{i}}\right)^{\lfloor\ell(w) / 2\rfloor}\left[X_{w}\right]^{\ell(w)} \\
& =r_{i}^{\lceil\ell(w) / 2\rceil} r_{j}^{\lfloor\ell(w) / 2\rfloor}\left[X_{w}\right]^{\ell(w)} .
\end{aligned}
$$

If $\ell(w)=n_{t}<\infty$ (i.e., $w$ is the longest element of $W$ ), then $\left[n_{t}\right]_{t}=0$ and, using (13) with $k=1$ and (27) respectively, we obtain:

$$
\sigma_{w s_{1}} \sigma_{1}=\sigma_{w}, \quad\left[X_{w s_{1}}\right]\left[X_{s_{1}}\right]=\left[X_{w}\right] .
$$

Thus applying $\varphi$ to the first of these relations, we obtain (taking into account that $r_{1}=r_{2}$ when $n_{t}$ is odd and using the already proved case of (30) with $w^{\prime}=w s_{1}$, $i=2$ ):

$$
\begin{aligned}
\varphi\left(\sigma_{w}\right) & =\varphi\left(\sigma_{w s_{1}} \sigma_{1}\right)=\varphi\left(\sigma_{w s_{1}}\right) \varphi\left(\sigma_{1}\right) \\
& =r_{2}^{\left\lceil\left(n_{t}-1\right) / 2\right\rceil} r_{1}^{\left\lfloor\left(n_{t}-1\right) / 2\right\rfloor}\left[X_{w s_{1}}\right] r_{1}\left[X_{s_{1}}\right]=\left(r_{1} r_{2}\right)^{n_{t} / 2}\left[X_{w}\right] .
\end{aligned}
$$

Finally, taking $r_{i}=1 / c_{i}, i=1,2$, we see that the isomorphism $\varphi^{-1}$ is given by (19) and its restriction to $H^{*}\left(G / B, \mathbb{Z}\left[c_{1}, c_{2}\right]\right)$ becomes (20). The $W$-equivariancy of both $\varphi$ and $\varphi^{-1}$ follows.

Remark 7. A computation of the rings $H^{*}(G / B, \mathbb{Z})$ for rank 2 complex KacMoody groups $G$ appeared in [Kit, Sect. 10]. We are grateful to Shrawan Kumar for this reference.

Remark 8. We can take

$$
c_{i}=\sqrt{\frac{a_{i, 3-i}}{\operatorname{gcd}\left(a_{12}, a_{21}\right)}}, \quad i=1,2
$$

in Theorem 29. Then $\mathbb{Z}\left[c_{1}, c_{2}\right] \supset \mathbb{Z}\left[t+t^{-1}\right]$ because $t+t^{-1}=c_{1} c_{2} \cdot \operatorname{gcd}\left(a_{12}, a_{21}\right)$. In particular, if the Cartan matrix is symmetric, i.e., $a_{12}=a_{21}$, then the isomorphism (20) is over $\mathbb{Z}$ because $c_{1}=c_{2}=1$ and $\mathbb{Z}\left[c_{1}, c_{2}\right]=\mathbb{Z}\left[t+t^{-1}\right]=\mathbb{Z}$.

In view of Theorem 29, we will refer to the algebra $A_{t}$ as the universal dihedral cohomology and to the basis $\left\{\sigma_{w}\right\}$ as the universal Schubert classes. Under under various specializations of $t$ it computes either cohomology rings of complex flag manifolds associated with complex Kac-Moody groups, or cohomology rings of "yet to be defined" flag-manifolds for noncrystallographic finite dihedral groups or nondiscrete infinite dihedral groups.

We call a complex number $t$ admissible if either
(1) (finite case) $t=e^{ \pm \pi \sqrt{-1} / n}$ for some $n \in \mathbb{Z}_{>0}$, or
(2) (hyperbolic case) $t$ is a positive real number.

Then for every admissible $t,[k]_{t}>0$ for all $0 \leq k<n_{t}$. For an admissible $t$ let $W_{t}^{(i)}=\left\{w \in W_{t} \mid \ell\left(w s_{3-i}\right)=\ell(w)+1\right\}, i=1,2$.

Notation 31. Denote by $B_{t}^{(i)}, i=1,2$, the subalgebras of $A_{t}$ generated by $X^{(i)}=$ $\left\{\sigma_{w} \mid w \in W_{t}^{(i)}\right\}$.

The subalgebras $B_{t}^{(i)}$ play the role of the cohomology rings of the "Grassmannians" $Y_{i}, i=1,2$ of spherical buildings $Y$ modeled on $\left(S^{1}, W_{t}\right)$, where $t$ is a root of unity. It follows from Proposition 25 that $X^{(i)}$ is a basis of $B_{t}^{(i)}$, e.g.,
$\operatorname{dim} B_{t}^{(i)}=\left|W_{t}^{(i)}\right|=n_{t}-1$, and that, moreover, the ring $B_{t}^{(i)}$ is naturally isomorphic to the cohomology ring

$$
H^{*}\left(\mathbb{C P}^{n}\right), \quad n=n_{t}
$$

Similarly, we will think of the algebra $A_{t}, t=e^{ \pm \pi \sqrt{-1} / n}$, as the cohomology ring of the "flag manifold" $\mathrm{Fl}(Y)$.

## 14. Belkale-Kumar type filtration of $\boldsymbol{A}_{\boldsymbol{t}}$

In this section, we construct a filtration on $A_{t}$ (and its subalgebras $B_{t}^{(i)}, i=1,2$ ) in the sense of Proposition 32, using a Belkale-Kumar type function $\varphi: W_{t} \rightarrow \mathbb{R}$. In the case when $t$ is the $n$th primitive root of unity, the associated graded algebra $A_{t, 0}=g r A_{t}$ will play the role of the Belkale-Kumar cohomology of spherical buildings $Y$ with finite Weyl group $I_{2}(n)$, which is "Poincaré dual" to the homology pre-ring $H_{*}(\mathrm{Fl}(Y))$ defined by the Schubert precalculus on $Y$.

Definition 6. Let $\mathbf{k}$ be a field and $A$ be an associative $\mathbf{k}$-algebra with a basis $\left\{b_{x} \mid x \in X\right\}$ so that

$$
\begin{equation*}
b_{x} b_{y}=\sum_{z \in X} c_{x, y}^{z} b_{z} \tag{31}
\end{equation*}
$$

for all $x, y \in X$, where $c_{x, y}^{z} \in \mathbf{k}$ are structure constants. Furthermore, given an ordered abelian semi-group $\Gamma$ (e.g., $\Gamma=\mathbb{R}$ ), we say that a function $\varphi: X \rightarrow \Gamma$ is concave if

$$
\varphi(x)+\varphi(y) \geq \varphi(z)
$$

for all $x, y, z \in X$ such that $c_{x, y}^{z} \neq 0$.
Proposition 32. In the notation (31), for each concave function $X \rightarrow \Gamma$ we have:
(a) $A$ is filtered by $\Gamma$ via $A_{\leq \gamma}:=\sum_{x \in X: \varphi(x) \leq \gamma} \mathbf{k} \cdot b_{x}$.
(b) The multiplication in the associated graded algebra $A_{0}=g r A$ is given by:

$$
\begin{equation*}
b_{x} \circ b_{y}=\sum_{z \in X: \varphi(z)=\varphi(x)+\varphi(y)} c_{x y}^{z} b_{z} . \tag{32}
\end{equation*}
$$

for all $x, y \in X$, where $c_{x y}^{z} \in \mathbf{k}$ are the structure constants of $A$.
Proof. Part (a). Assume that $\varphi(x) \leq \gamma_{1}, \varphi(y) \leq \gamma_{2}$, i.e., $b_{x} \in A_{\leq \gamma_{1}}, b_{y} \in A_{\leq \gamma_{2}}$. Then each $z$ such that $c_{x y}^{z} \neq 0$ satisfies $\varphi(z) \leq \varphi(x)+\varphi(y) \leq \gamma_{1}+\gamma_{2}$, i.e., $b_{z} \in A_{\gamma_{1}+\gamma_{2}}$. Therefore, $b_{x} b_{y} \in A_{\gamma_{1}+\gamma_{2}}$. This proves (a). Part (b) immediately follows.

Remark 9. The algebra $A_{0}$ is the Belkale-Kumar degeneration of $A$. It was introduced by Belkale and Kumar in [BKu] in the special case of cohomology rings of flag-manifolds $G / B$, where $G$ is a complex semisimple Lie group and $B$ is its Borel subgroup. In order to relate our definition to that of $[\mathrm{BKu}]$, note that,
given a concave function $\varphi$, Belkale and Kumar define the deformation $A_{\tau}$ of $A=H^{*}(G / B, \mathbb{C})$ by

$$
b_{x} \odot_{\tau} b_{y}:=\sum_{z \in X} \tau^{\varphi(x)+\varphi(y)-\varphi(z)} c_{x y}^{z} b_{z}
$$

Setting $\tau=1$ one recovers the original algebra $A$, while sending $\tau$ to zero one obtains the degeneration $A_{0}=\operatorname{gr}(A)$ of $A$.

Our goal is to generalize the function $\varphi$ defined in [BKu] to the case of algebras $A_{t}$ (for admissible values of $t$ ), so that our function $\varphi$ will specialize to the BelkaleKumar function in the case $n=3,4,6$. Note that concavity of $\varphi$ was proven in $[\mathrm{BKu}]$ as a consequence of the complex-algebraic nature of the variety $G / B$. In our case, such variety does not exist and we prove concavity by a direct calculation.

For $t \in \mathbb{C}^{\times}$define the action of the dihedral group $W_{t}$ on the 2-dimensional root lattice

$$
Q=Q_{t}=\mathbb{Z}\left[t+t^{-1}\right] \cdot \alpha_{1}+\mathbb{Z}\left[t+t^{-1}\right] \cdot \alpha_{2}
$$

by:

$$
s_{i}\left(\alpha_{j}\right)= \begin{cases}-\alpha_{i} & \text { if } i=j \\ \alpha_{i}+[2]_{t} \cdot \alpha_{j} & \text { if } i \neq j\end{cases}
$$

for $i, j \in\{1,2\}$.
The above action extends to the weight lattice

$$
\Lambda=\Lambda_{t}=\mathbb{Z}\left[t+t^{-1}\right] \cdot \omega_{1}+\mathbb{Z}\left[t+t^{-1}\right] \cdot \omega_{2}
$$

by:

$$
s_{i}\left(\omega_{j}\right)=\omega_{j}-\delta_{i j} \iota\left(\alpha_{i}\right)
$$

for all $i, j \in\{1,2\}$, which is consistent with (14). Here $\iota: Q \rightarrow \Lambda$ is a $\mathbb{Z}\left[t+t^{-1}\right]$ linear map given by:

$$
\iota\left(\alpha_{1}\right)=2 \omega_{1}-\left(t+t^{-1}\right) \omega_{2}, \quad \iota\left(\alpha_{2}\right)=2 \omega_{2}-\left(t+t^{-1}\right) \omega_{1}
$$

For each $i \in\{1,2\}$ define the map $[\cdot]_{i}: W_{t} \rightarrow Q$ recursively by $[1]_{i}=0$ and

$$
\left[s_{j} w\right]_{i}=\delta_{i j} \alpha_{i}+s_{j}\left([w]_{i}\right)
$$

Note that the map $[\cdot]_{i}$ satisfies:

$$
\iota\left([w]_{i}\right)=\omega_{i}-w\left(\omega_{i}\right) .
$$

Define the functions $\Phi_{i}: W_{t} \rightarrow \mathbb{Z}\left[t+t^{-1}\right], i=1,2$, by

$$
\begin{equation*}
\Phi_{i}(w)=\left|[w]_{i}\right| \tag{33}
\end{equation*}
$$

where $\left|g_{1} \alpha_{1}+g_{2} \alpha_{2}\right|=g_{1}+g_{2}$.

Proposition 33. For any $w \in W_{t}, i=1,2$, we have:

$$
\Phi_{i}(w)= \begin{cases}{\left[\begin{array}{l}
\ell(w)+1 \\
2
\end{array}\right]_{q}} & \text { if } \ell\left(w s_{i}\right)<\ell(w),  \tag{34}\\
{\left[\begin{array}{c}
\ell(w) \\
2
\end{array}\right]_{q}} & \text { if } \ell\left(w s_{i}\right)>\ell(w),\end{cases}
$$

where $q=t^{1 / 2}$ and $\ell: W \rightarrow \mathbb{Z}$ is the word-length function on $W$ with respect to the generating set $s_{1}, s_{2}$. In particular, the function $\Phi:=\Phi_{1}+\Phi_{2}$ is given by the formula:

$$
\begin{equation*}
\Phi(w)=\left([\ell(w)]_{q}\right)^{2} \tag{35}
\end{equation*}
$$

Proof. We need the following obvious result:
Lemma 34. For each $k \in \mathbb{Z}$ denote

$$
\alpha_{k}:= \begin{cases}\alpha_{1} & \text { if } k \text { is odd } \\ \alpha_{2} & \text { if } k \text { is even } .\end{cases}
$$

Let $w=\underbrace{\cdots s_{j} s_{i}}_{k} \in W_{t}$, where $\{i, j\}=\{1,2\}$. Then

$$
w\left(\alpha_{j}\right)=[k]_{t} \alpha_{i+k}+[k+1]_{t} \alpha_{j+k}, \quad[w]_{i}=\alpha_{i}+[2]_{t} \alpha_{i+1}+\cdots+[k]_{t} \alpha_{i+k-1}
$$

Proof. The assertion directly follows from Lemma 30 with $a_{12}=a_{21}=t+t^{-1}$.

Furthermore, using the second identity of Lemma 34 we obtain for any $w \in W_{t}$ with $\ell\left(w s_{i}\right)<\ell(w)$ :

$$
\left|[w]_{i}\right|=[1]_{t}+[2]_{t}+\cdots+[\ell(w)]_{t} .
$$

Using the fact that $[m]_{t}=[2 m]_{q} /[2]_{q}$ for $q=t^{1 / 2}$ and any $m$, we obtain

$$
\begin{aligned}
\left|[w]_{i}\right| & =[1]_{t}+[2]_{t}+\cdots+[\ell(w)]_{t}=\frac{1}{[2]_{q}}\left([2]_{q}+[4]_{q}+\cdots+[2 \ell(w)]_{q}\right) \\
& =\frac{1}{[2]_{q}}[\ell(w)]_{q}[\ell(w)+1]_{q}
\end{aligned}
$$

which proves (34), since $\Phi_{i}(w)=\Phi_{i}\left(w s_{3-i}\right)=\left|[w]_{i}\right|$.
We now prove (35). Indeed, for any $w \in W_{t}$ let $i$ be such that $\ell\left(w s_{i}\right)<\ell(w)$. Applying part (34), we obtain:

$$
\Phi(w)=\left|[w]_{i}\right|+\left|[w]_{3-i}\right|=\left[\begin{array}{c}
\ell(w)+1 \\
2
\end{array}\right]_{q}+\left[\begin{array}{c}
\ell(w) \\
2
\end{array}\right]_{q}=\left([\ell(w)]_{q}\right)^{2}
$$

The proposition is proved.
The following theorem is the main result of the section.

Theorem 35. The functions

$$
\varphi_{i}: X^{(i)} \rightarrow \mathbb{R}, \quad \varphi_{i}\left(\sigma_{w}\right)=-\Phi_{i}(w)
$$

$i=1,2$, and

$$
\varphi: X \rightarrow \mathbb{R}, \quad \varphi\left(\sigma_{w}\right)=-\Phi(w)
$$

(see Proposition 33) are both concave in the sense of Definition 6; in particular, they define filtrations on $B_{t}^{(i)}$ and $A_{t}$, respectively, in the sense of Proposition 32. Moreover, the equalities

$$
\varphi\left(\sigma_{u}\right)+\varphi\left(\sigma_{v}\right)=\varphi\left(\sigma_{w}\right), \quad \varphi_{i}\left(\sigma_{u}\right)+\varphi_{i}\left(\sigma_{v}\right)=\varphi_{i}\left(b_{w}\right)
$$

are achieved if and only if either:

1. For the function $\varphi, u=1$ or $v=1$, or $\ell(u)+\ell(v)=\ell(w)=n$, provided that $n<\infty$.
2. For the function $\varphi_{i}, u=1$ or $v=1$, or $\ell(u)+\ell(v)=\ell(w)=n-1$, provided that $n<\infty$.

Proof. Recall that a function $f: I \rightarrow \mathbb{R}$ defined on an interval $I \subset \mathbb{R}$ is called superadditive (resp. subadditive) if

$$
\begin{equation*}
f(x+y) \geq f(x)+f(y), \quad \text { resp. } \quad f(x+y) \leq f(x)+f(y) \tag{36}
\end{equation*}
$$

for all $x, y, x+y \in I$. If $f$ is convex, continuous, and $f(0)=0$ then $f$ is superadditive on $I=\mathbb{R}_{+}$; see [HP, Theorem 7.2.5]. Moreover, it follows from the proof of [HP, Theorem 7.2.5] that if $f$ is strictly convex then (36) is a strict inequality unless $x y=0$.

Let $t \in \mathbb{C}$ be an admissible number, $n:=n_{t}$; let $q:=t^{1 / 2}$ so that $q \in \mathbb{R}_{+}$if $t>0$ and $q=e^{\sqrt{-1} Q}, Q=\pi / 2 n$ if $t$ is a root of unity. Define the functions

$$
\begin{aligned}
& F(x)=\left[\begin{array}{c}
x+1 \\
2
\end{array}\right]_{q}, \quad 0 \leq x \leq n-1, \\
& G(x):=\left([x]_{q}\right)^{2}, \quad 0 \leq x \leq n
\end{aligned}
$$

where $x$ are nonnegative real numbers.
Proposition 36. The functions $F$ and $G$ are superadditive. Moreover, inequality (36) is equality if and only if $x y(n-1-x-y)=0$ (for the function $F$ ) and $x y(n-x-y)=0($ for the function $G)$.

Proof. We have

$$
\begin{aligned}
& F(x)=\frac{[x]_{q}[x+1]_{q}}{[2]_{q}}=\frac{f(x)}{\left(q-q^{-1}\right)^{2}\left(q+q^{-1}\right)}, \quad f(x)=\left(q^{x}-q^{-x}\right)\left(q^{x+1}-q^{-x-1}\right), \\
& G(x)=\frac{g(x)}{\left(q-q^{-1}\right)^{2}}, \quad g(x)=\left(q^{x}-q^{-x}\right)^{2} .
\end{aligned}
$$

In particular, $F(0)=G(0)=0$.
We first consider the hyperbolic case (i.e., $q>0$ ). Then the denominators of both $F$ and $G$ are positive and numerators are equal to

$$
f(x)=q^{2 x+1}+q^{-2 x-1}-q-q^{-1}, \quad g(x)=q^{2 x}+q^{-2 x}-2 .
$$

It is elementary that both functions are strictly convex on $[0, \infty)$ because $f^{\prime \prime}(x)>0$ and $g^{\prime \prime}(x)>0$. Hence, $F$ and $G$ are superadditive with equality in (36) if and only if $x y=0$.

We therefore assume now that $q$ is a root of unity. One can check that in this case $F$ and $G$ are neither convex nor concave on their domains, so we have to use a direct calculation in order to show superadditivity. The denominators of the functions $F$ and $G$ are both negative since they equal to $-8 \sin ^{2}(Q) \cos (Q)$ and $-4 \sin ^{2}(Q)$, respectively.

Consider the functions $f(x)$ and $g(x)$. It is easy to see that

$$
\begin{aligned}
f(z)-f(x)-f(y) & =\left(q^{x}-q^{-x}\right)\left(q^{y}-q^{-y}\right)\left(q^{x+y+1}+q^{-x-y-1}\right) \\
g(z)-g(x)-g(y) & =\left(q^{x}-q^{-x}\right)\left(q^{y}-q^{-y}\right)\left(q^{z}+q^{-z}\right)
\end{aligned}
$$

Therefore, if $x, y, z \in[0, n-1]$ with $z=x+y$ then:

$$
f(z)-f(x)-f(y) \leq 0
$$

with equality if and only if $x y(n-1-z)=0$ and

$$
g(z)-g(x)-g(y) \leq 0
$$

with equality if and only if $x y(n-z)=0$ because

$$
\left(q^{x}-q^{-x}\right)\left(q^{y}-q^{-y}\right)=-4 \sin (Q x) \sin (Q y) \leq 0, \quad q^{u}+q^{-u}=2 \cos (Q u) \geq 0
$$

for any $x, y, u \in[0, n]$.
Thus both functions $f$ and $g$ are subadditive. Since the denominators in $F$ and $G$ are constant and negative, these functions are superadditive with equality in (36) if and only if $x y=0$ or $x+y=n-1$ (for $F$ ) and $x+y=n$ (for $G$ ).

We can now finish the proof of Theorem 35. We have

$$
\Phi_{i}(w):=\left|[w]_{i}\right|=F(\ell(w)), \quad w \in W^{(i)}, 0 \leq \ell(w) \leq n-1
$$

and

$$
\Phi(w)=\left|[w]_{1}\right|+\left|[w]_{2}\right|=G(\ell(w)), \quad w \in W, 0 \leq \ell(w) \leq n
$$

Observe that, since $A_{t}$ is graded by the length function of $W_{t}$,

$$
c_{u v}^{w} \neq 0 \Rightarrow \ell(w)=\ell(u)+\ell(v)
$$

where $c_{u v}^{w}$ are the structure constants:

$$
\sigma_{u} \cdot \sigma_{v}=\sum_{w} c_{u v}^{w} \sigma_{w}
$$

Therefore, superadditivity of the functions $F$ and $G$ is equivalent to concavity of the functions $\varphi=-\Phi$ and $\varphi_{i}=-\Phi_{i}$. The equality cases in Theorem 35 immediately follow as well.

Corollary 37. The rings $A_{t}$ and $B_{t}^{(i)}, i=1,2$, admit Belkale-Kumar degenerations $\operatorname{gr}\left(A_{t}\right)$ and $\operatorname{gr}\left(B_{t}^{(i)}\right)$ given by the functions $\varphi$ and $\varphi_{i}$, respectively.
Remark 10. We do not know a natural topological interpretation for the rings $\operatorname{gr}\left(A_{t}\right)$ and $\operatorname{gr}\left(B_{t}^{(i)}\right)$.

## 15. Interpolating between homology pre-ring and the ring $\operatorname{gr}\left(A_{t}\right)$

Let $\mathbf{k}$ be a field. In this section we construct an interpolation between the homology pre-rings $H_{*}(X, \widehat{\mathbf{k}}), H_{*}\left(X_{l}, \widehat{\mathbf{k}}\right)$ and the $\mathbf{k}$-algebras $\operatorname{gr}\left(A_{t}\right), \operatorname{gr}\left(B_{t}^{(l)}\right), t=$ $e^{\pi \sqrt{-1} / n}$, which are the Belkale-Kumar degenerations of $A_{t}, B_{t}^{(l)}$ introduced in Section 14. Thereby, we link the geometrically defined homology pre-rings and the algebraically defined cohomology rings of $X, X_{l}, l=1,2$.

Below we again abuse the terminology and use the notation $\infty$ for the infinity in the one-point compactification of $\mathbb{R}$ and for the element of $\widehat{\mathbf{k}}$. Accordingly, we equip $\mathbf{k}$ with the discrete topology and set

$$
\lim _{\tau \rightarrow \infty} f(\tau) a=\infty
$$

whenever $a \in \mathbf{k}^{\times}$and $\lim _{\tau \rightarrow \infty} f(\tau)=\infty$.

1. Interpolation for $A_{t}$. Using the Belkale-Kumar function $\varphi=-\Phi$ as in the previous section, we define the (trivial) family of algebras $A_{t, \tau}$ as in Remark 9, with multiplication given (for $\tau>0$ ) by

$$
\sigma_{u} \odot_{\tau} \sigma_{v}:=\sum_{w: \ell(w)=\ell(u)+\ell(v)} \tau^{\varphi(u)+\varphi(v)-\varphi(w)} c_{u v}^{w} \sigma_{w}
$$

where $c_{u v}^{w}$ are the structure constants in $A_{t}$. Then, as $\tau \rightarrow 0$, the algebra $A_{t, \tau}$ degenerates to $\operatorname{gr}\left(A_{t}\right)$. Now, let $\tau \rightarrow \infty$. Recall that $\varphi(u)+\varphi(v)-\varphi(w)>0$ unless it equals to zero (Proposition 36); the latter corresponds to the degenerate cases, i.e., products of Poincaré dual classes $\sigma_{u}, \sigma_{v}$ or classes where $\sigma_{u}=1$ or $\sigma_{v}=1$. Therefore, the limit pre-ring $A_{t, \infty}$ has structure constants $\hat{c}_{u v}^{w}$ equal to $0,1, \infty$.

Here $\hat{c}_{u v}^{w}=0$ occurs unless $\ell(w)=\ell(u)+\ell(v)$, and $u, v, w \in W^{(i)}, i=1,2$; in the latter case $\hat{c}_{u v}^{w}=\infty$ except for the degenerate cases, in which the structure constants are equal to 1 . Hence, in view of Proposition 18, we obtain a degreepreserving isomorphism of pre-rings $A_{t, \infty} \cong H_{*}(X, \widehat{\mathbf{k}})$ given by

$$
\sigma_{w} \mapsto C_{w_{\circ} w}, \quad w \in W .
$$

2. Interpolation for $B_{t}^{(l)}, l=1,2$. The argument here is identical to the case of $A_{t}$, except the isomorphism is given by

$$
\begin{equation*}
\sigma_{w} \mapsto C_{n-1-r} \in H_{*}\left(X_{l}, \widehat{\mathbf{k}}\right), \quad r=\ell_{l}(w) \tag{37}
\end{equation*}
$$

We conclude that the relation between $H_{B K}^{*}(X, \mathbf{k}):=\operatorname{gr}\left(A_{t}\right)$ and $H_{*}(X, \widehat{\mathbf{k}})$ is that of "mirror partners": they are different degenerations of a common ring $A_{t}$.

## 16. Strong triangle inequalities

In this section we introduce a redundant system of inequalities equivalent to WTI. This equivalence will be used in the following section.

Let $W=I_{2}(n)$ with the affine Weyl chamber $\Delta \subset \mathbb{R}^{2}, \mathbf{k}$ a field and $\widehat{\mathbf{k}}$ the corresponding pre-ring. Define the subset

$$
\Sigma_{A, m} \subset W^{m}
$$

consisting of $m$-tuples $\left(u_{1}, \ldots, u_{m}\right)$ of elements of $W$ so that

$$
\begin{equation*}
\prod_{i} C_{u_{i}}=a \cdot C_{\mathbf{1}}, \quad a \in \widehat{\mathbf{k}}^{\times} \tag{38}
\end{equation*}
$$

in the pre-ring $H_{*}(X, \widehat{\mathbf{k}})$, where $X$ is a thick spherical building with the Weyl group $W$ satisfying Axiom A. We then define cones $K\left(\Sigma_{A, m}\right) \subset \Delta^{m}$ by imposing the inequalities

$$
\sum_{i} u_{i}^{-1}\left(\lambda_{i}\right) \leq_{\Delta^{*}} 0
$$

for the $m$-tuples $\left(u_{1}, \ldots, u_{m}\right) \in \Sigma_{A, m}$. We will refer to the defining inequalities of $K\left(\Sigma_{A, m}\right)$ as Strong Triangle Inequalities, or STI.

Recall that $\mathcal{K}_{m}=\mathcal{K}_{m}(X) \subset \Delta^{m}$ is the Stability Cone of $X$, cut out by the inequalities WTI; see Section 12. Then, clearly,

$$
K\left(\Sigma_{A, m}\right) \subset \mathcal{K}_{m}
$$

since the system STI contains the WTI. The following is the main result of this section:

Theorem 38.

$$
K\left(\Sigma_{A, m}\right)=\mathcal{K}_{m} .
$$

Proof. Observe that $u_{i} \neq \mathbf{1}$ for $i=1, \ldots, m$, for otherwise the product in the left-hand side of (38) is zero. We first establish some inequalities concerning the relative lengths of elements of $W$ :
Proposition 39. Let $w_{i} \in W \backslash\{\mathbf{1}\}, i=1, \ldots, m$, be such that

$$
\prod_{i=1}^{m} C_{w_{i}}=C_{\mathbf{1}}
$$

in the pre-ring $H_{*}(X, \widehat{\mathbf{k}})$. Then for $k=1,2$, we have:

$$
\sum_{i=1}^{m} \ell_{k}\left(w_{i}\right) \geq(m-1)(n-1)
$$

In other words, for $r_{i}:=\ell_{k}\left(w_{i}\right)$,

$$
\prod_{i=1}^{m} C_{r_{i}} \neq 0
$$

in the pre-ring $H_{*}\left(X_{k}, \widehat{\mathbf{k}}\right)$.

Proof. Let $u_{i}, u \in W^{(j)}$ be such that

$$
\prod_{i=1}^{s} C_{u_{i}}=a C_{u}, \quad a \neq 0
$$

in the pre-ring $H_{*}(X, \widehat{\mathbf{k}})$. Then

$$
\sum_{i=1}^{s}\left(n-\ell\left(u_{i}\right)\right)=n-\ell(u)
$$

Since $\ell\left(u_{i}\right)=\ell_{k}\left(u_{i}\right)+\delta_{j k}, \ell(u)=\ell_{k}(u)+\delta_{j k}$, it follows that

$$
\begin{equation*}
\sum_{i=1}^{s} \ell_{k}\left(u_{i}\right)=\ell_{k}(u)+(s-1)\left(n-\delta_{j k}\right) \tag{39}
\end{equation*}
$$

We next observe that if $w_{i} \in W^{(j)}$, then

$$
\prod_{i=1}^{m} C_{w_{i}}
$$

is never a nonzero multiple of $C_{\mathbf{1}}$. Hence, after permuting the indices, for the elements $w_{i}$ as in the proposition, we obtain:

$$
w_{1}, \ldots, w_{m^{\prime}} \in W^{(1)}, \quad w_{m^{\prime}+1}, \ldots, w_{m} \in W^{(2)}
$$

and for $m=m^{\prime}+m^{\prime \prime}$, we have $1 \leq m^{\prime}, m^{\prime \prime} \leq m-1$. Therefore,

$$
\begin{equation*}
\prod_{i=1}^{m^{\prime}} C_{w_{i}}=a^{\prime} C_{w^{\prime}}, \quad \prod_{i=m^{\prime}+1}^{m} C_{w_{i}}=a^{\prime \prime} C_{w^{\prime \prime}} \tag{40}
\end{equation*}
$$

where $a^{\prime}, a^{\prime \prime} \neq 0$ in $\widehat{\mathbf{k}}$, and $w^{\prime} \in W^{(1)}, w^{\prime \prime} \in W^{(2)}$. Moreover,

$$
C_{w^{\prime}} C_{w^{\prime \prime}}=C_{\mathbf{1}}
$$

in $H_{*}(X, \widehat{\mathbf{k}})$. Therefore, by applying equations (39) to the product decompositions (40), we obtain

$$
\sum_{k=1}^{m} \ell_{k}\left(w_{i}\right)=\ell_{k}\left(w^{\prime}\right)+\ell_{k}\left(w^{\prime \prime}\right)+m n-2 n+1-M
$$

where $M=m^{\prime} \delta_{1 k}+m^{\prime \prime} \delta_{2 k} \leq m-1$. Since $\ell\left(w^{\prime}\right)+\ell\left(w^{\prime \prime}\right)=n$, it follows that

$$
\ell_{k}\left(w^{\prime}\right)+\ell_{k}\left(w^{\prime \prime}\right)=n-\delta_{1 k}-\delta_{2 k}=n-1
$$

Hence, we obtain

$$
\sum_{k=1}^{m} \ell_{k}\left(w_{i}\right)=(m-1) n-M \geq(m-1)(n-1)
$$

We are now ready to prove the theorem. We have to show that every $\vec{\lambda}=$ $\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in \mathcal{K}_{m}$ satisfies the inequality

$$
\sum_{i=1}^{m} w_{i}^{-1}\left(\lambda_{i}\right) \leq_{\Delta^{*}} 0
$$

for every $\left(w_{1}, \ldots, w_{m}\right) \in \Sigma_{A, m}$. The latter is equivalent to two inequalities

$$
\sum_{i=1}^{m}\left\langle\lambda_{i}, w_{i}\left(\zeta_{k}\right)\right\rangle=\sum_{i=1}^{m}\left\langle w_{i}^{-1}\left(\lambda_{i}\right), \zeta_{k}\right\rangle \leq 0, \quad k=1,2,
$$

where $\zeta_{k}, k=1,2$ are the vertices of the fundamental domain $\Delta_{\mathrm{sph}} \subset S^{1}$ of $W$.
Suppose that this inequality fails for some $k$ and an $m$-tuple $\left(u_{1}, \ldots, u_{m}\right) \in$ $\Sigma_{A, m}$. Since $\vec{\lambda} \in \mathcal{K}_{m}$, according to Theorem 19 , there exists a semistable weighted configuration $\psi=\left(\mu_{i} \xi_{i}\right)$ in $X$ of the type $\vec{\lambda}$, so that the points $\xi_{i}$ belong to mutually antipodal spherical chambers $\Delta_{1}, \ldots, \Delta_{m}$ in $X$. Since

$$
\prod_{i=1}^{m} C_{w_{i}}=C_{\mathbf{1}}
$$

for $r_{i}:=\ell_{k}\left(w_{i}\right)$, by combining Corollary 15 and Proposition 39, we see that the intersection

$$
\bigcap_{i=1}^{m} C_{r_{i}}\left(\Delta_{i}\right)
$$

contains a vertex $\eta$ of type $\zeta_{k}$. Thus, as in the proof of Theorem 19,

$$
\operatorname{slope}_{\psi}(\eta)=-\sum_{j}\left\langle\lambda_{j}, w_{j}\left(\zeta_{k}\right)\right\rangle<0
$$

This contradicts the semistability of $\psi$.

## 17. Triangle inequalities for associative commutative algebras

We now put the concept of stability inequalities into a more general context by associating a system of monoids $K_{m}(A)$ (generalizing the Stability Cones) to certain commutative and associative rings (which generalize the rings $A_{t}$ ). One advantage of this formalism is to eliminate dependence on the existence of the longest element $w_{\circ} \in W$ and to get more natural sets of inequalities. We also establish linear isomorphisms of cones $K_{m}\left(A_{t}\right)$ (defined "cohomologically") applying the above formalism to the algebras $A_{t}$ and the Stability Cones $\mathcal{K}_{m+1}(Y)$ (defined "homologically"). We conclude this section by showing that the system WTI is irredundant.

Let $\Lambda$ be a free abelian group (or a free module over an integral domain).
Definition 7. We say that a family of sub-monoids $K_{m} \subset \Lambda^{m+1}, m \geq 1$ is coherent if:
(1) The natural $S_{m}$-action on the first $m$-factors of $\Lambda^{m+1}$ preserves $K_{m}$.
(2) For any $\left(\lambda_{1}, \ldots, \lambda_{m} ; \mu\right) \in \Lambda^{m+1}$ and $0<\ell<m$ the following are equivalent:

- $\left(\lambda_{1}, \ldots, \lambda_{m} ; \mu\right) \in K_{m}$.
- There exists $\mu^{\prime} \in \Lambda$ such that $\left(\lambda_{1}, \ldots, \lambda_{m} ; \mu^{\prime}\right) \in K_{m}$ and

$$
\left(\mu^{\prime}, \lambda_{m+1}, \ldots, \lambda_{\ell} ; \mu\right) \in K_{\ell+1-m}
$$

This definition is a natural generalization of the Stability Cone $\mathcal{K}_{m+1}(Y)$ (which describes $m+1$-tuples of $\Delta$-valued side-lengths of polygons in Euclidean buildings $\mathfrak{Y}$ (see Section 5). The first property generalizes the fact that the existence of a polygon with the $\Delta$-side-lengths $\left(\lambda_{1}, \ldots, \lambda_{m+1}\right)$ is equivalent to the existence of a polygon with the $\Delta$-side-lengths $\left(\lambda_{\sigma(1)}, \ldots, \lambda_{\sigma(m)}, \lambda_{m+1}\right)$, where $\sigma \in S_{m}$ is a permutation. The second property generalizes the fact that gluing polygons in $\mathfrak{Y}$ along a common side produces a new polygon.

Below we will interpret a coherent family of sub-monoids as above, as a commutative and associative (multivalued) operad.

For any subsets $S \subset \Lambda^{m+1}=\Lambda^{m} \times \Lambda, S^{\prime} \subset \Lambda^{\ell+1}=\Lambda \times \Lambda^{\ell}$ define the set $S^{\prime} \circ S^{\prime} \subset \Lambda^{m+k}=\Lambda^{m} \times \Lambda^{\ell}$ to be the set of all $\left(\lambda, \lambda^{\prime}\right) \in \Lambda^{m} \times \Lambda^{\ell}$ such that there exists $\mu \in \Lambda$ such that $(\lambda, \mu) \in S$ and $\left(\mu, \lambda^{\prime}\right) \in S^{\prime}$. In other words, if we regard $S, S^{\prime}$ as correspondences $\Lambda^{m} \rightarrow \Lambda$ and $\Lambda \rightarrow \Lambda^{\ell}$, then $S \circ S^{\prime}$ is their composition. The following is immediate:
Lemma 40. The second coherence condition is equivalent to:

$$
K_{m} \circ K_{\ell}=K_{m+\ell-1}
$$

for all $m, \ell \geq 1$.
The following result is obvious.
Lemma 41. If $K_{m}, m \geq 0$ is a coherent family, then each $K_{m}, m \geq 3$, is the set of all $\left(\lambda_{1}, \ldots, \lambda_{m} ; \mu\right) \in \Lambda^{m+1}$ such that there exists a sequence $\mu_{1}, \ldots, \mu_{m}=\mu$ of elements in $\Lambda$ such that: $\left(\lambda_{1}, \lambda_{2} ; \mu_{1}\right) \in K_{2}$ and $\left(\mu_{k}, \lambda_{k+2} ; \mu_{k+1}\right) \in K_{2}$ for $k=$ $1, \ldots, m-1$.

We explain the naturality of the coherence condition below. To any submonoid $K_{m} \subset \Lambda^{m+1}, m \geq 1$ we associate an $m$-ary operation on subsets of $\Lambda$ as follows. For any subsets $S_{1}, S_{2}, \ldots, S_{m} \subset \Lambda$ define $S_{1} \bullet S_{2} \bullet \ldots \bullet S_{m} \subset \Lambda_{+}$to be the image of the intersection $S_{1} \times \cdots \times S_{m} \times \Lambda \cap K_{m}$ under the projection to the ( $m+1$ )st factor. In particular, if each $S_{i}=\left\{\lambda_{i}\right\}$ is a single element set, then

$$
\lambda_{1} \bullet \cdots \bullet \lambda_{m}=\left\{\mu \in \Lambda_{+} \mid\left(\lambda_{1}, \ldots, \lambda_{m} ; \mu\right) \in K_{m}\right\} .
$$

In general,

$$
S_{1} \bullet \cdots \bullet S_{m}=\bigcup_{\left(\lambda_{1}, \ldots, \lambda_{m}\right) \in S_{1} \times \cdots \times S_{m}} \lambda_{1} \bullet \cdots \bullet \lambda_{m}
$$

Lemma 42. If a family of submonoids $K_{m} \subset \Lambda^{m+1}$, $m \geq 1$ is coherent, then the above operations are:
(a) commutative, i.e., $S_{\sigma(1)} \bullet \cdots \bullet S_{\sigma(m)}=S_{1} \bullet \cdots \bullet S_{m}$ for any permutation $\sigma$ of $\{1, \ldots, m\}$;
(b) associative, i.e., $S_{1} \bullet \cdots \bullet S_{k} \bullet\left(S_{k+1} \bullet \cdots \bullet S_{\ell}\right) \bullet S_{\ell+1} \bullet \cdots \bullet S_{m}=S_{1} \bullet \cdots \bullet S_{m}$ for all $1 \leq k \leq \ell \leq m$ (i.e., informally speaking, these operations comprise a symmetric associative operad; see e.g., $[\mathrm{MSS}]$ ).

Proof. Part (a) is an obvious consequence of the first coherence condition.
We will now prove (b). Because of the already established commutativity, it suffices to verify the assertion for $k=0$. Also it suffices to proceed in the case when each $S_{i}=\left\{\lambda_{i}\right\}$ is a one-element set. That is, it suffices to prove that

$$
\left(\lambda_{1} \bullet \cdots \bullet \lambda_{\ell}\right) \bullet \lambda_{\ell+1} \bullet \cdots \bullet \lambda_{m}=\lambda_{1} \bullet \cdots \bullet \lambda_{m} .
$$

The left-hand side is the set of all $\mu \in \Lambda$ such that $\left(\mu^{\prime}, \lambda_{\ell+1}, \ldots, \lambda_{m} ; \mu\right) \in K_{m+1-\ell}$ for some $\mu^{\prime} \in \Lambda$ satisfying $\left(\lambda_{1}, \ldots, \lambda_{\ell} ; \mu\right) \in K_{\ell}$. By the second coherence condition, this is the set of all $\mu \in \Lambda$ such that $\left(\lambda_{1}, \ldots, \lambda_{m} ; \mu\right) \in K_{m}$. But this set is exactly the right-hand side of the above equation. This proves (b).

The lemma is proved.
We now construct families of monoids associated with some associative commutative algebras. Let $\preceq$ be a partial order on $\Lambda$ compatible with the addition. This is equivalent to choosing a submonoid $\mathcal{M}$ ( the "positive root cone") such that $-\mathcal{M} \cap \mathcal{M}=\{0\}$, so that $\lambda \preceq \mu$ if and only if $\mu-\lambda \in \mathcal{M}$ (therefore, $\mathcal{M}=\{\lambda \in \Lambda: 0 \preceq \lambda\}$ ).

Let $A$ be a commutative associative $\mathbf{k}$-algebra as in Section 14 with the basis labeled by a set $X \subset \operatorname{End}(\Lambda)$ (i.e., the basis acts linearly on $\Lambda$ ). We define the structure coefficients $c_{x_{1}, \ldots, x_{m}}^{y} \in \mathbf{k}$ via

$$
b_{x_{1}} \cdots b_{x_{m}}=\sum_{y \in X} c_{x_{1}, \ldots, x_{m}}^{y} b_{y}
$$

for all $x_{1}, \ldots, x_{n} \in X$.
Given this data, we define:

- The dominant cone $\Lambda_{+}$to be the set of all $\lambda \in \Lambda$ such that $x(\lambda) \preceq \lambda$ for all $x \in X$.
- For each $m \geq 0$ a subset $K_{m}(A) \subset \Lambda_{+}^{m+1}=\Lambda_{+}^{m} \times \Lambda_{+}$to be the set of all $\left(\lambda_{1}, \ldots, \lambda_{m} ; \mu\right) \in \Lambda_{+}^{m+1}$ such that

$$
\begin{equation*}
y(\mu) \preceq x_{1}\left(\lambda_{1}\right)+\cdots+x_{m}\left(\lambda_{m}\right) \tag{41}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{m}, y \in X$ such that $c_{x_{1}, \ldots, x_{m}}^{y} \neq 0$ (with the convention that $\left.K_{0}(A)=\Lambda_{+}\right)$.
The following is immediate:
Lemma 43. The set $K_{m}(A)$ is a submonoid of $\Lambda^{m+1}$ invariant under the $S_{m}$ action on the first $m$ factors.

Lemma 44. In the notation of Lemma 40 we have:

$$
\begin{equation*}
K_{m}(A) \circ K_{l}(A) \subseteq K_{m+l-1}(A) \tag{42}
\end{equation*}
$$

for all $m, l \geq 1$.
Proof. Indeed, let $\left(\lambda_{1}, \ldots, \lambda_{m+l-1} ; \mu\right) \in K_{m}(A) \circ K_{l}(A)$. This means that there exists $\mu_{1} \in \Lambda_{+}$such that $\left(\lambda_{1}, \ldots, \lambda_{m} ; \mu_{1}\right) \in K_{m}(A)$ and $\left(\mu_{1}, \lambda_{m+1}, \ldots, \lambda_{m+l-1} ; \mu\right) \in$ $K_{l}(A)$. Or, equivalently,

$$
\begin{align*}
y_{1}\left(\mu_{1}\right) & \preceq x_{1}\left(\lambda_{1}\right)+\cdots+x_{m}\left(\lambda_{m}\right),  \tag{43}\\
y(\mu) & \preceq y_{1}^{\prime}\left(\mu_{1}\right)+x_{m+1}\left(\lambda_{m+1}\right)+\cdots+x_{m+l-1}\left(\lambda_{m+l-1}\right)
\end{align*}
$$

for all $x_{1}, \ldots, x_{m+l-1}, y_{1}, y \in X$ such that $c_{x_{1}, \ldots, x_{m}}^{y_{1}} \neq 0$ and $c_{y_{1}^{\prime}, x_{m+1}, \ldots, x_{m+l-1}}^{y} \neq 0$. Now fix arbitrary $x_{1}, \ldots, x_{m+l-1}, y \in X$ such that $c_{x_{1}, \ldots, x_{m+l-1}}^{y} \neq 0$. Because of the associativity of multiplication in $A$ this implies the existence of $y_{1}$ such that $c_{x_{1}, \ldots, m}^{y_{1}} \neq 0$ and $c_{y_{1}, x_{m+1}, \ldots, x_{m+l-1}}^{y} \neq 0$. Therefore, we can take $y_{1}^{\prime}=y_{1}$ in (43) and add the inequalities (43). Hence, after canceling the term $y_{1}\left(\mu_{1}\right)$, we obtain

$$
y(\mu) \preceq x_{1}\left(\lambda_{1}\right)+\cdots+x_{m+l-1}\left(\lambda_{m+l-1}\right) .
$$

The latter inequality holds for all $x_{1}, \ldots, x_{m+l-1}, y \in X$ such that $c_{x_{1}, \ldots, x_{m+l-1}}^{y} \neq$ 0 , hence $\left(\lambda_{1}, \ldots, \lambda_{m+l-1} ; \mu\right) \in K_{m+l-1}(A)$. The lemma is proved.

Thus, in view of Lemmas 40, 43, and 44 the coherence of $K_{m}(A), m \geq 1$ depends entirely on whether or not the inclusion (42) is an equality.

Problem 45. Classify all commutative and associative algebras $A$ with basis labeled by $X \subset \operatorname{End}(\Lambda)$ such that

$$
\begin{equation*}
K_{m}(A) \circ K_{l}(A) \supseteq K_{m+l-1}(A) . \tag{44}
\end{equation*}
$$

We now specialize to the case associated with finite dihedral Weyl groups. Let $W=W_{t}$, where $t=e^{\pi \sqrt{-1} / n}$, acting on the 2-dimensional real vector space $V$. We assume that $\mathbb{R} \otimes \Lambda=V^{*}$; let $\mathcal{M}=\Delta^{*} \subset V^{*}$ be the dual cone to the positive (affine) Weyl chamber $\Delta \subset V$ of $W$ (with respect to the simple roots $\alpha_{1}, \alpha_{2}$ ), i.e., $\left.\Delta^{*}=\{\mu \mid\langle\lambda, \mu\rangle \geq 0, \forall \lambda \in \Delta\}\right)$. We take the based ring $A:=A_{t}$, with the basis $\left\{\sigma_{w} \mid w \in W_{t}\right\}$; accordingly, we take the based rings $B^{(i)}:=B_{t}^{(i)}, i=1,2$. Thus, for $\zeta \in V, \lambda \in \mathbb{R} \otimes \Lambda$, we have

$$
\left\langle\sigma_{w}(\lambda), \zeta\right\rangle=\left\langle w^{-1}(\lambda), \zeta\right\rangle=\langle\lambda, w(\zeta)\rangle .
$$

Let $A_{0}, B_{0}^{(i)}$ be the associated graded algebras of $A, B^{(i)}$ with respect to the filtrations defined by the concave function $\varphi, \varphi_{i}$ given by (33) as in Theorem 35. Define

$$
K_{m}(B)=K_{m}\left(B^{(1)}\right) \cap K_{m}\left(B^{(2)}\right), \quad K_{m}\left(B_{0}\right)=K_{m}\left(B_{0}^{(1)}\right) \cap K_{m}\left(B_{0}^{(2)}\right)
$$

Clearly,

$$
K_{m}(A) \subset K_{m}(B) \subset K_{m}\left(B_{0}\right), \quad K_{m}(A) \subset K_{m}\left(A_{0}\right) \subset K_{m}\left(B_{0}\right)
$$

The following is the main result of the section. This is an analogue of the main result of $[\mathrm{BKu}]$ in the context of arbitrary finite dihedral groups. Recall that $\lambda^{*}=-w_{\circ} \lambda$; see (2).

Theorem 46. Assume that $t=e^{\pi \sqrt{-1} / n}$. Then for each $m \geq 2$ we have:

$$
K_{m}\left(B_{0}\right)=K_{m}(B)=K_{m}\left(A_{0}\right)=K_{m}(A) .
$$

Moreover, the above cones are isomorphic to the Stability Cone $\mathcal{K}_{m+1}(Y)$ for any thick spherical building $Y$ with the Weyl group $W$ via the linear map

$$
\Theta:\left(\lambda_{1}, \ldots, \lambda_{m} ; \mu\right) \mapsto\left(\mu_{1}=\lambda_{1}^{*}, \ldots, \mu_{m}=\mu_{m}^{*}, \mu_{m+1}=\mu\right)
$$

Proof. Our goal is to relate the defining inequalities for the cone $K_{m}(A)$ to Strong Triangle Inequalities; it will then follow that

$$
K_{m}\left(B_{0}\right)=K_{m}(A) .
$$

Set $P D(w)=w_{\circ} w$ in $W$. Observe that for $u_{1}, \ldots, u_{m}, v \in W$ and $\lambda_{1}, \ldots, \lambda_{m}, \mu \in$ $V^{*}$,

$$
\begin{gathered}
\sum_{i=1}^{m} \sigma_{u_{i}}\left(\lambda_{i}\right) \geq_{\Delta^{*}} \sigma_{v}(\mu) \Longleftrightarrow \\
\sum_{i=1}^{m} u_{i}^{-1}\left(\lambda_{i}\right) \geq_{\Delta^{*}}-v^{-1} w_{\circ} \mu^{*}=-P D(v)^{-1} \mu^{*} \Longleftrightarrow \\
\sum_{i=1}^{m} u_{i}^{-1}\left(\lambda_{i}\right)+ \\
P D(v)^{-1} \mu^{*} \geq_{\Delta^{*}} 0 \Longleftrightarrow \\
\\
\sum_{i=1}^{m+1} u_{i}^{-1}\left(\lambda_{i}\right) \geq_{\Delta^{*}} 0
\end{gathered}
$$

where $u_{m+1}:=P D(v)$ and $\lambda_{m+1}:=\mu^{*}$. Setting $w_{i}:=P D\left(u_{i}\right), \mu_{i}:=\lambda_{i}^{*}$, we see that

$$
\sum_{i=1}^{m+1} u_{i}^{-1}\left(\lambda_{i}\right) \geq_{\Delta^{*}} 0 \Longleftrightarrow \sum_{i=1}^{m+1} w_{i}^{-1}\left(\mu_{i}\right) \leq_{\Delta^{*}} 0
$$

Moreover,

$$
\begin{align*}
c_{u_{1}, \ldots, u_{m}}^{v} & \neq 0 \text { in } A \Longleftrightarrow \\
c_{u_{1}, \ldots, u_{m+1}}^{w_{o}} & \neq 0 \text { in } A \Longleftrightarrow \\
\prod_{i=1}^{m+1} C_{w_{i}} & =a C_{\mathbf{1}}, \quad a \neq 0 \text { in } H_{*}(Y, \widehat{\mathbf{k}}) . \tag{45}
\end{align*}
$$

Recall that the system of inequalities

$$
\sum_{i=1}^{m+1} w_{i}^{-1}\left(\mu_{i}\right) \leq_{\Delta^{*}} 0, \forall\left(w_{1}, \ldots, w_{m+1}\right), \quad \text { so that (45) holds }
$$

is the system of Strong Triangle Inequalities. Therefore, the maps $u_{i} \mapsto P D\left(u_{i}\right)$, $i=1, \ldots, m+1$, and

$$
\left(\lambda_{1}, \ldots, \lambda_{m} ; \mu\right) \mapsto\left(\mu_{1}=\lambda_{1}^{*}, \ldots, \mu_{m}=\mu_{m}^{*}, \mu_{m+1}=\mu\right)
$$

determine a natural bijection between the set of defining inequalities for the cone $K_{m}(A)$ and the set of Strong Triangle Inequalities. Similarly, we obtain a bijection between the defining inequalities of $K_{m}\left(B_{0}\right)$ and the set of Weak Triangle Inequalities. However, Strong Triangle Inequalities and Weak Triangle Inequalities determine the same cone, the Stability Cone $\mathcal{K}_{m+1}$; see Theorem 38. Therefore, the map

$$
\Theta:\left(\lambda_{1}, \ldots, \lambda_{m} ; \mu\right) \mapsto\left(\mu_{1}=\lambda_{1}^{*}, \ldots, \mu_{m}=\mu_{m}^{*}, \mu_{m+1}=\mu\right)
$$

determines the linear isomorphisms of the cones

$$
K_{m}(A) \rightarrow \mathcal{K}_{m+1}, \quad K_{m}\left(B_{0}\right) \rightarrow \mathcal{K}_{m+1} .
$$

In particular, $K_{m}(A)=K_{m}(B)=K_{m}\left(B_{0}\right)$. The theorem follows.
Corollary 47. $K_{m}(A)$ is invariant under $*: \lambda \rightarrow \lambda^{*}, \lambda \in \Delta$.
Proof. Let $Y$ be a thick spherical building as above. Then $*$ extends to an isometry *: $Y \rightarrow Y$. Since isometries preserve the (semi)stability condition, it follows that $\mathcal{K}_{m+1}=\mathcal{K}_{m+1}(Y)$ is invariant under $*$. Since $\Theta$ is $*$-equivariant, it follows that $K_{m}(A)$ is invariant under $*$ as well.

Corollary 48. For the algebra $A$ as above we have

$$
K_{m}(A) \circ K_{l}(A)=K_{m+l-1}(A) .
$$

Proof. Let $\mathfrak{Y}$ denote a thick Euclidean building modeled on $\left(\mathbb{R}^{2}, W\right)$. In view of the above theorem, we can interpret $K_{k}(A)$ as the set of $m+1$-tuples $\left(\lambda_{1}, \ldots, \lambda_{m} ; \mu\right)$ which are $\Delta$-valued side-lengths of "disoriented" geodesic $k+1$-gons $P=y_{0} \ldots y_{k}$ in $\mathfrak{Y}$, so that

$$
d_{\Delta}\left(y_{i-1}, y_{i}\right)=\lambda_{i}, 1 \leq i \leq k, \quad d_{\Delta}\left(y_{0}, y_{k}\right)=\mu .
$$

(Note that the last side of $P$ has the orientation opposite to the rest.) For $k=$ $m+l-1$, subdivide such a polygon by the diagonal $\overline{y_{0} y_{l}}$ in two disoriented polygons

$$
P^{\prime}:=y_{0} y_{1} \ldots y_{l}, \quad P^{\prime \prime}=y_{0} y_{l} \ldots y_{k}
$$

Then the $\Delta$-side lengths of these polygons are given by the tuples

$$
\left(\lambda_{1}, \ldots, \lambda_{l} ; \mu^{\prime}\right) \in K_{l}(A), \quad\left(\mu^{\prime}, \lambda_{l+1}, \ldots, \lambda_{k} ; \mu^{\prime \prime}\right) \in K_{m}(A)
$$

where

$$
\mu^{\prime}=d_{\Delta}\left(y_{0}, y_{l}\right), \quad \mu^{\prime \prime}=\mu
$$

Hence, $K_{m+l-1}(A) \subset K_{m}(A) \circ K_{l}(A)$.

Theorem 49. The system of inequalities (1) is irredundant.
Proof. The system of inequalities (1) is nothing but the linear system

$$
\begin{equation*}
\left\langle w\left(\lambda_{i}-\lambda_{j}^{*}\right), \zeta_{l}\right\rangle \leq\left\langle\sum_{k \neq i, k \neq j} \lambda_{k}^{*}, \zeta_{l}\right\rangle, \quad l=1,2, \quad w \in W \tag{46}
\end{equation*}
$$

Fix regular vectors $\lambda_{l} \in \Delta, l=1, \ldots, m, l \neq i, l \neq j$ (i.e., vectors from the interior of the Weyl chamber $\Delta$ ); then pick a vector $\lambda_{j} \in \Delta$ so that the distance from $\lambda_{j}$ to the boundary of $\Delta$ is at least $\left|\lambda_{K}^{*}\right|$, where

$$
\lambda_{K}^{*}:=\sum_{k \neq i, j} \lambda_{k}^{*}
$$

Note that the vector $\lambda_{K}^{*}$ is again regular. Set

$$
P=P_{\lambda_{1}, \ldots, \lambda_{i-1}, \lambda_{i+1}, \ldots \lambda_{m}}=\lambda_{j}^{*}+\operatorname{Hull}\left(W \cdot \lambda_{K}^{*}\right) \subset \Delta .
$$

Here Hull denotes the convex hull in $\mathbb{R}^{2}$. Then, for fixed $\lambda_{l}, l \neq i$ as above, the solution set to the Weak Triangle Inequalities (1) is exactly the polygon $P$. Since $\lambda_{K}^{*}$ is regular, $P$ is a $2 m$-gon. Moreover, for each side of $P$ exactly one of the defining inequalities (46) is an equality.

## Belkale-Kumar inequalities

In the context of complex algebraic reductive groups $G$, Belkale and Kumar [ BKu ] gave a certain description of the Stability Cone $\mathcal{K}_{m+1}$ using the rings $H_{B K}^{*}(G / P)$, where $P$ runs through the set of standard maximal parabolic subgroups of $G$, corresponding to the fundamental weights. In the context of rank 2 spherical buildings $X$, using our language, the system of Belkale-Kumar inequalities, imposed on vectors

$$
\left(\lambda_{1}, \ldots, \lambda_{m} ; \mu\right) \in \Delta^{m+1}
$$

reads as follows: For every $\left(x_{1}, \ldots, x_{m} ; y\right) \in\left(W^{(k)}\right)^{m+1}, k=1,2$, so that $c_{x_{1}, \ldots, x_{m}}^{y} \neq$ 0 in $\operatorname{gr}\left(B^{(k)}\right)$, we impose the inequality:

$$
\sum_{i=1}^{m}\left\langle\zeta_{l}, x_{i}\left(\lambda_{i}\right)\right\rangle \geq\left\langle\zeta_{l}, y(\mu)\right\rangle
$$

We now observe that under the map $H_{*}\left(X_{k}, \widehat{\mathbf{k}}\right) \rightarrow H_{B K}^{*}\left(X_{l}, \mathbf{k}\right):=\operatorname{gr}\left(B^{(k)}\right)$, determined by the inverse to the map (37), the "infinities" in $H_{*}\left(X_{k}, \widehat{\mathbf{k}}\right)$ correspond to zeroes in $H_{B K}^{*}(X, \mathbf{k})$. Accordingly, the structure constants equal to 1 match structure constants equal to 1 . Since the system WTI is irredundant, we conclude that the system of Belkale-Kumar inequalities for $W=I_{2}(n)$ is also irredundant. Hence, Theorem 49 is an analogue (for $W=I_{2}(n)$ ) of a much deeper theorem by N. Ressayre [Re], who proved the irredundancy of Belkale-Kumar inequalities for arbitrary reductive groups.

## References

[B] W. Ballmann, Lectures on Spaces of Nonpositive Curvature, DMV Seminar, Vol. 25, Birkhauser Verlag, Basel, 1995.
[BK] A. Berenstein, M. Kapovich, Affine buildings for dihedral groups, Geometria Dedicata, to appear.
[BKu] P. Belkale, S. Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math. 166 (2006), no. 1, 185-228.
[BS] A. Berenstein, R. Sjamaar, Projections of coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion, J. Amer. Math. Soc. 13 (2000), 433-466.
[BH] M. Bridson, A. Haefliger, Metric Spaces of Nonpositive Curvature, Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer-Verlag, Berlin, 1999.
[C] C. Ramos-Cuevas, Generalized triangle inequalities in thick Euclidean buildings of rank 2, preprint, arXiv:1009.1316v1, 2010.
[FS] M. Funk, K. Strambach, Free constructions, in: Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, pp. 739-780.
[HP] E. Hille, R. Phillips, Functional Analysis and Semi-Groups, 3d printing of the revised edition of 1957, American Mathematical Society Colloquium Publications, Vol. XXXI, American Mathematical Society, Providence, RI, 1974. Russian transl.: Э. Хилле, Р. Филлипс, Функииональный анализ и полугруппь, ИЛ, M., 1962.
[H] H. Hiller, Geometry of Coxeter groups, Research Notes in Mathematics, Vol. 54, Pitman, Boston, 1982.
[KLM1] M. Kapovich, B. Leeb, J. Millson, Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity, J. Diff. Geom. 81 (2009), 297-354.
[KLM2] M. Kapovich, B. Leeb, J. Millson, Polygons in buildings and their refined side lengths, Geom. Funct. Anal. 19 (2009), no. 4, 1081-1100.
[KLM3] M. Kapovich, B. Leeb, J. Millson, The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra, Memoirs of AMS, Vol. 192, 2008.
[Kit] N. Kitchloo, On the topology of Kac-Moody groups, preprint, arXiv:0810.0851, 2008.
[KL] B. Kleiner, B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Publ. Math. Inst. Hautes Études Sci. 86 (1997), 115-197.
[K] A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. 4 (1998), 419-445.
[KK] B. Kostant, S. Kumar, The nil Hecke ring and the cohomology of G/P for a KacMoody group G, Adv. Math. 62 (1986), 187-237.
[KT] L. Kramer, K. Tent, Algebraic polygons, J. Algebra 182 (1996), no. 2, 435-447.
[LPS] U. Lang, B. Pavlović, V. Schroeder, Extensions of Lipschitz maps into Hadamard spaces, Geom. Funct. Anal. 10 (2000), no. 6, 1527-1553.
[MSS] M. Markl, S. Snider, J. Stasheff, Operads in Algebra, Topology and Physics, Math. Surveys Monogr., Vol. 96, Amer. Math. Soc., Providence, RI, 2002.
[P] A. Parreau, Immeubles affines: construction par les normes et étude des isométries, in: Crystallographic Groups and their Generalizations' (Kortrijk, 1999), Contemp. Math., Vol. 262, Amer. Math. Soc., Providence, RI, 2000, pp. 263-302.
[Re] N. Ressayre, Geometric invariant theory and the generalized eigenvalue problem, Invent. Math. 180 (2010), no. 2, p. 389-441.
[Ro] M. Ronan, Lectures on Buildings, Perspectives in Mathematics, Vol. 7, Academic Press, 1989.
[Te] K. Tent, Very homogeneous generalized n-gons of finite Morley rank, J. London Math. Soc. (2) 62 (2000), no. 1, 1-15.
[Ti] J. Tits, Endliche Spiegelungsgruppen, die als Weylgruppen auftreten, Invent. Math. 43 (1977), no. 3, 283-295.
[W] R. Weiss, Structure of Affine Buildings, Annals of Math. Studies, Vol. 168, Princeton University Press, Princeton, NJ, 2008.


[^0]:    ${ }^{1}$ Also called affine.

