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Abstract. The goal of the paper is to introduce a version of Schubert calculus for
each dihedral reflection group W . That is, to each “sufficiently rich” spherical building
Y of type W we associate a certain cohomology theory H∗

BK(Y ) and verify that, first,
it depends only on W (i.e., all such buildings are “homotopy equivalent”), and second,
H∗
BK(Y ) is the associated graded of the coinvariant algebra of W under certain filtration.

We also construct the dual homology “pre-ring” on Y . The convex “stability” cones in
(R2)m defined via these (co)homology theories of Y are then shown to solve the problem
of classifying weighted semistable m-tuples on Y in the sense of [KLM1]; equivalently,
they are cut out by the generalized triangle inequalities for thick Euclidean buildings
with the Tits boundary Y . The independence of the (co)homology theory of Y refines
the result of [KLM2], which asserted that the Stability Cone depends on W rather than on
Y . Quite remarkably, the cohomology ring H∗

BK(Y ) is obtained from a certain universal
algebra At by a kind of “crystal limit” that has been previously introduced by Belkale–
Kumar for the cohomology of flag varieties and Grassmannians. Another degeneration
of At leads to the homology theory H∗(Y ).

1. Introduction

Alexander Klyachko in [K] solved the old problem on eigenvalues of sums of
hermitian matrices. His solution was to interpret the eigenvalue problem as an
existence problem for certain parabolically stable bundles over CP1, so that the in-
equalities on the eigenvalues are stated in terms of the Schubert calculus on Grass-
mannians. Klyachko’s work was later generalized by various authors to cover gen-
eral semisimple groups; see, e.g., [BS], [KLM1]. The stable bundles were replaced
in [KLM1] with semistable weighted configurations on certain spherical buildings
and the eigenvalue problem was interpreted as a triangle inequalities problem for
the vector-valued distance function on nonpositively curved symmetric spaces and
Euclidean buildings. Still, the solution depended heavily on (and was formulated
in terms of) Schubert calculus on generalized Grassmannians G/P , where G is a
(complex or real) semisimple Lie group and P ’s are maximal parabolic subgroups
of G.

The present work is a part of our attempt to generalize Lie theory to the case
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of nonexistent Lie groups having noncrystallographic dihedral groups W = I2(n)
(of order 2n) as their Weyl groups. For such Weyl groups, one cannot define
G and P , but there are spherical (Tits) buildings Y , whose vertex sets serve
as generalized Grassmannians G/P . Moreover, we also have thick discrete and
nondiscrete Euclidean buildings for the groups I2(n) (see [BK]), so both problems
of existence of semistable weighted configurations and of computation of triangle
inequalities for vector-valued distance functions on Euclidean buildings certainly
make sense. The goal of this paper is to compute these inequalities (by analogy
with [BS], [KLM1]) in terms of the Borel model for H∗(G/P ) and to verify that
they solve the problem of existence of semistable weighted configurations and the
equivalent problem of computation of triangle inequalities in the associated affine
buildings.

Our main results can be summarized as follows.
Let Y be a rank 2 affine building with the Weyl group W = I2(n) and let ∆

denote the positive Weyl chamber for W . We then obtain a ∆-valued distance
function d∆(x, y) between points x, y ∈ Y; see [KLM1] or [KLM3]. Then

Theorem 1. There exists a geodesic m-gon x1 · · ·xm in Y with the ∆-side-lengths
λ1, . . . , λm if and only if the vectors λ1, . . . , λm satisfy the Weak Triangle Inequali-
ties (the stability inequalities):

w(λi − λ∗j ) ≤∆∗

∑

k 6=i,k 6=j
λ∗k, w ∈ W, (1)

taken over all distinct i, j ∈ {1, . . . ,m}.
Here λ∗ = −w◦(λ) is the vector contragredient to λ (w◦ ∈ W is the longest

element). The order ≤∆∗ is defined with respect to the obtuse cone ∆∗ dual to ∆:

∆∗ = {ν | ν · λ ≥ 0, ∀λ ∈ ∆}.

(Recall that λ ≤∆∗ ν ⇐⇒ ν − λ ∈ ∆∗.)
The key idea behind the proof is that although we do not have smooth homoge-

neous manifolds G/P , we still can define some kind of Schubert calculus on the sets
of “points” Y1 and “lines” Y2 in appropriately chosen Tits buildings Y (replacing

G/P ’s). We define certain “homology pre-rings” H∗(Yl, k̂), l = 1, 2 (“Schubert
precalculus”) which reflect the intersection properties of “Schubert cycles” in Yl.
We then show that this calculus is robust enough to solve the existence problem
for weighted semistable configurations.

We next promote the cohomology pre-rings to rings. To this end, we introduce
the universal Schubert calculus, i.e., we define a cohomology ring H∗(Y,k) = At
for each reflection group of rank 2, based on a generalization of the Borel model
for the computation of cohomology rings of flag varieties. One novelty here is
that in the definition of At we allow t ∈ C×, thereby providing an interpolation
between cohomology rings of complex flag manifolds; for t a primitive nth root of
unity, At defines H

∗(Y,k), the cohomology rings of the buildings Y with the Weyl
group W = I2(n). We therefore think of the family of rings At as the “universal
Schubert calculus” in rank 2. An odd feature of the rings At is that even for the
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values of t which are roots of unity, the structure constants of At are typically
irrational (t-binomials), so we do not have a natural geometric model for these At.
In order to link At to geometry, we define a (trivial) deformation At,τ , τ ∈ R+,
of At. Sending τ to 0 we obtain an analogue of the Belkale–Kumar degeneration
H∗
BK(Y,k) = gr(At) of At. On the other hand, by sending τ to ∞, we recover the

pre-ring H∗(Y, k̂) given by the Schubert precalculus. Therefore, At interpolates

between H∗
BK(Y,k) and H∗(Y, k̂). The same relation holds for the cohomology

rings of “Grassmannians,” B
(l)
t = H∗(Yl,k) ⊂ At, their Belkale–Kumar degenera-

tions H∗
BK(Yl,k) = gr(B

(l)
t ) and pre-rings H∗(Yl, k̂). We then observe (Section 16)

that the system of strong triangle inequalities defined by H∗(Y, k̂) also determines
the Stability Cone Km(Y ) for the building Y . In Section 17 we introduce systems
of linear inequalities determined by certain based rings A, generalizing At. Spe-
cializing these inequalities to the case A = At, using the results of Section 16, we
recover the Stability Cones Km(Y ). Therefore, the systems of inequalities defined

by At, B
(l)
t , gr(At), gr(B

(l)
t ) and H∗(X) are all equivalent. In this section, we also

prove that the system of Weak Triangle Inequalities, determined by H∗
BK(Yl,k),

equivalently, H∗(Yl, k̂), (l = 1, 2) is irredundant. This is reminiscent of the result
by Ressayre who proved irredundancy of the Beklale–Kumar inequalities in the
context of complex reductive groups.

After this paper was submitted, we received a preprint [C] by Carlos Ramos
Cuevas, in which he gives an alternative proof of Theorem 1. His proof does not
rely upon development of Schubert precalculus, but rather on direct geometric
arguments.

Acknowledgments. Our collaboration on this project started at the AIM work-
shop “Buildings and Combinatorial Representation Theory” in 2007 and we are
grateful to AIM for this opportunity. The first author was supported by the NSF
grant DMS-08-00247. The second author was supported by the NSF grants DMS-
05-54349 and DMS-09-05802. We are grateful to the referees for useful suggestions
and corrections.

2. Coxeter complexes

Let A, the apartment, be either the Euclidean space E = EN or the unit
N − 1-sphere S = SN−1 ⊂ EN (we will be primarily interested in the case of the
Euclidean plane and the circle). If A = S, a Coxeter group acting on A is a finite
group W generated by isometric reflections. If A = E, a Coxeter group acting
on A is a group Waf generated by isometric reflections in hyperplanes in A, so
that the linear part of Waf is a Coxeter group acting on S. Thus, Waf = ΛoW ,
where Λ is a certain (countable or uncountable) group of translations in E. We
will use the notation 1 for the identity in W and w◦ for the longest element of W
with respect to the word-length function ` : W → Z with respect to the standard
Coxeter generators si.

Definition 1. A spherical or Euclidean1 Coxeter complex is a pair (A,G), of the

1Also called affine.
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form (S,W ) or (E,Waf ). The number N is called the rank of the Coxeter complex.

A wall in the Coxeter complex (A,G) is the fixed-point set of a reflection in G.
A half-apartment in A is a closed half-space bounded by a wall. A regular point in
a Coxeter complex is a point which does not belong to any wall. A singular point
is a point which is not regular.

Remark 1. Note that in the spherical case, there is a natural cell complex in S
associated with W . However, in the affine case, when Waf is nondiscrete, there
will be no natural cell complex attached to Waf .

Chambers in (S,W ) are the fundamental domains for the action W y S, i.e.,
the closures of the connected components of the complement to the union of walls.
We will use the notation ∆sph for a fixed (positive) fundamental domain.

An affine Weyl chamber in (A,Waf) is a fundamental domain ∆ = ∆af for a
conjugate W ′ of W in Waf , i.e., it is a cone over ∆sph with the tip at a point o
fixed by W ′.

A vertex in (A,G) is a (component of, in the spherical case) 0-dimensional
intersection of walls. We will consider almost exclusively only essential Coxeter
complexes, i.e., complexes that have at least one vertex. Equivalently, these are
spherical complexes where the group G does not have a global fixed point and
those Euclidean Coxeter complexes where W does not have a fixed point in S.

In the spherical case, the notion of type is given by the projection

θ : S → S/W = ∆sph,

where the quotient is the spherical Weyl chamber.
Let si ∈ W be one of the Coxeter generators. We define the relative length

functions `i on W as follows: `i(w) is the length of the shortest element of the
coset w〈si〉 ⊂W/〈si〉. In the case when W is a finite dihedral group, `i(w) equals
the combinatorial distance from the vertex w(ζi) to the positive chamber ∆sph in
the spherical Coxeter complex (S1,W ). Here, ζi is the vertex of ∆sph fixed by si.

3. Metric concepts

Notation 2. Let Y, Z be subsets in a metric space X. Define the (lower ) distance
d(Y, Z) as

inf
y∈Y,z∈Z

d(y, z).

If Z is a singleton {z}, we abbreviate d({z}, Y ) to d(z, Y ). In the examples we are
interested in, the above infimum is always realized.

For a subset Y ⊂ X, we let Br(Y ) denote the closed r-neighborhood of Y in
X, i.e.,

Br(Y ) := {x ∈ X | d(x, Y ) ≤ r}.

For instance, if Y = {y} is a single point, then Br(Y ) = Br(y) is the closed r-ball
centered at y. Similarly, we define “spheres centered at Y ”

Sr(Y ) := {x ∈ X | d(x, Y ) = r}.
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A metric space X is called geodesic if every two points in X are connected
by a (globally distance-minimizing) geodesic. Most metric spaces considered in
this paper will be geodesic. Occasionally, we will have to deal with metrics on
disconnected graphs. In this case we declare the distance between points in distinct
connected components to be infinite.

For a pair of points x, y in a metric space X we let xy denote a closed geodesic
segment (if it exists) in X connecting x and y. Because, most of the time, we will
deal with spaces where every pair of points is connected by the unique geodesic,
this is a reasonable notation.

We refer to [B] or [BH] for the definition of a CAT(k) metric space. We will
think of the distances in CAT(1) spaces as angles and, in many cases, denote these
distances ∠(xy).

The following characterization of 1-dimensional CAT(1) spaces will be impor-
tant:

A 1-dimensional metric space (a metric graph) is a CAT(1) space if and only if
the length of the shortest embedded circle in X is ≥ 2π.

If G is a metric graph, where each edge is given the length π/n, then the CAT(1)
condition is equivalent to the assumption that the girth of G is ≥ 2n.

Fix an integer n ≥ 2. Similarly to [BK], a type-preserving map of bipartite
graphs f : G→ G′ is said to be (n− 1)-isometric if:

1. ∀x, y ∈ V (G), d(x, y) < n− 1 ⇒ d(f(x), f(y)) = d(x, y).
2. ∀x, y ∈ X, d(x, y) ≥ n− 1 ⇒ d(f(x), f(y)) ≥ n− 1.

Here d is the combinatorial path-metric on G, which is allowed to take infinite
values on points which belong to distinct connected components. One can easily
verify that the concept of an (n − 1)-isometric map is equivalent to the notion of
a type-preserving map graphs which preserves the bounded distance on the graphs
defined in [Te].

4. Buildings

Spaces modeled on Coxeter complexes

Let (A,G) be a Coxeter complex (Euclidean or spherical).

Definition 2. A space modeled on the Coxeter complex (A,G) is a metric space
X together with an atlas where charts are isometric embeddings A → X and the
transition maps are restrictions of the elements of G. The maps A → X and their
images are called apartments in X . Note that (unlike in the definition of an atlas
in a manifold) we do not require the apartments to be open in X .

Therefore, all G-invariant notions defined in A extend to X . In particular, we
will talk about vertices, walls, chambers, etc.

Notation 3. We will use the notation ∆i for chambers in spherical buildings.

The rank of X is the rank of the corresponding Coxeter complex.
A space X modeled on (A,G) is called discrete if the group G is discrete. This

is automatic in the case of spherical Coxeter complexes since G is finite in this
case.
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A spherical building modeled on (S,W ) is a CAT(1) space Y modeled on (S,W )
which satisfies the following condition:

Axiom (“Connectedness”). Every two points y1, y2 ∈ Y are contained in a com-
mon apartment.

The group W is called the Weyl group of the spherical building Y .
Spherical buildings of rank 2 (with the Weyl group of order ≥ 4) are called

generalized polygons. They can be described combinatorially as follows:
A building Y is a bipartite graph of girth 2n and valence ≥ 2 at every vertex, so

that every two vertices are connected by a path of the combinatorial length ≤ n.
To define a metric on Y , we identify each edge of the graph with the segment of
length π/n.

A Euclidean (or affine ) building modeled on (A,Waf) is a CAT(0) space X
modeled on (A,Waf) which satisfies the following conditions:

Axiom 1 (“Connectedness”). Every two points x1, x2 ∈ X belong to a common
apartment.

Axiom 2. There is an extra axiom (comparing to the spherical buildings) of “Angle
rigidity”, which will be irrelevant for the purposes of this paper. It says that for
every x ∈ X , the space of directions Y = Σx(X) satisfies the following:

∀ξ, η ∈ Y, ∠(ξ, η) ∈W · ∠(θ(ξ), θ(η)).

Here θ : Y → ∆sph is the type projection. We refer to [BK], [KL], [P] for the details.
Note that Axiom 2 is redundant in the case of discrete Euclidean buildings.

The finite Coxeter group W (the linear part of Waf) is called the Weyl group of
the Euclidean building X .

A building X is called thick if every wall in X is the intersection of (at least)
three apartments.

We now specialize our discussion of buildings to the case of rank 2 (equivalently,
1-dimensional) spherical buildings.

Chambers ∆1,∆2 in a spherical building Y are called antipodal if the following
holds. Let A ⊂ Y be an apartment containing both ∆1,∆2 (it exists by the
Connectedness Axiom). Then ∆1 = −∆2 inside A. More generally, if Y is a
bipartite graph of diameter n, then two edges e1, e2 of Y are called antipodal if the
minimal distance between vertices of these edges is exactly n− 1.

Let W = I2(n) be the dihedral group of order 2n. We regard the type of
a vertex x (denoted type(x)) of a bipartite graph (in particular, of a spherical
building with the Weyl group W ) to be an element of Z/2. We let Wl, l = 1, 2
denote the stabilizer of the vertex of type l in the positive (spherical) chamber ∆+

of W .
Let Y be a rank 2 spherical building with the Weyl group W ; we will use two

metrics on Y :
1. The combinatorial path-metric d = dY between the vertices of Y , where each

edge is given the unit length. This metric extends naturally to the rest of Y : we
will occasionally use this fact.
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2. The (angular) path metric ∠ on Y where every edge has the length π/n.

Given a subset Z ⊂ Y we let Br(Z) and Sr(Z) denote the closed r-ball and
r-sphere in Y with respect to the combinatorial metric.

The building Y has two vertex types identified with l ∈ Z/2; accordingly, the
vertex set of Y is the disjoint union Y1 ∪Y2 of the Grassmannians of type l = 1, 2.
When l is fixed, by abusing the notation, we will denote by Br(Z) (and Sr(Z))
the intersection of the corresponding ball (or the sphere) with Yl. We will only use
these concepts when Z is a vertex or a chamber ∆ of a spherical building. The
balls Br(∆) ⊂ Yl will serve as Schubert cycles in the Grassmannian Yl, while the
spheres Sr(∆) will play the role of (open) Schubert cells.

5. Weighted configurations and geodesic polygons

Weighted configurations

Let Y be a spherical building modeled on (S,W ). We recall that ∠ denotes the
angular metric on Y . Given a collection µ1, . . . , µm of nonnegative real numbers
(“weights”) we define a weighted configuration on Y as a map

ψ : {1, . . . ,m} → Y, ψ(i) = ξi ∈ Y.

We thus get m points ξi, i = 1, . . . ,m on Y assigned the weights µi, i = 1, . . . ,m.
We will use the notation

ψ = (µ1ξ1, . . . , µmξm).

Let θ : Y → ∆sph denote the type-projection to the spherical Weyl chamber.
Given a weighted configuration ψ = (µ1ξ1, . . . , µmξm) on Y , we define θ(ψ), the
type of ψ, to be the m-tuple of vectors

(λ1, . . . , λm) ∈ ∆m,

where λi = µiθ(ξi).

Following [KLM1], for a finite weighted configuration ψ = (µ1ξ1, . . . , µmξm) on
Y , we define the function

slopeψ : Y → R, slopeψ(η) = −
m∑

i=1

µi cos(∠(η, ξi)).

Definition 3. A weighted configuration ψ is called semistable if the associated
slope function is ≥ 0 on Y .

It is shown in [KLM1] that slopeψ coincides with the Mumford’s numerical
stability function for weighted configurations on generalized flag-varieties. What
is important is the fact that the above notion of stability, unlike the stability
conditions in algebraic and symplectic geometry, does not require a group action
on a smooth manifold. (Actually, it does not need any group at all.)
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Vector-valued distance functions

Let X be a Euclidean building modeled on (A,Waf ). We next define the ∆-valued
distance function d∆ on X , following [KLM1], [KLM2]. (The reader should not
confuse d∆ with the Waf -valued distance on X that could be used in order to
axiomatize buildings; see [W].) Here ∆ = ∆af is an (affine) Weyl chamber of
(A,Waf). We first define the function d∆ on A. Let o ∈ A denote the point
fixed by W . We regard o as the origin in the affine space A, thus giving A the
structure of a vector space V . Given two points x, y ∈ A, we consider the vector
v = −→xy = y − x and project it to a vector v̄ ∈ ∆ via the map

V → V/W = ∆.

Then d∆(x, y) := v̄. It is clear from the construction that Waf preserves d∆. Sup-
pose now that x, y ∈ X . By the Connectedness Axiom, there exists an apartment
φ : A→ X whose image contains x and y. We then set

d∆(x, y) := d∆(φ
−1(x), φ−1(y)) ∈ ∆.

Since the transition maps between the charts are inWaf , it follows that the distance
function d∆ on X is well-defined. Note that d∆ is, in general, nonsymmetric:

d∆(x, y) = λ ⇐⇒ d∆(y, x) = λ∗, λ∗ = −w◦(λ), (2)

where w◦ ∈W is the longest element. Hence, unless w◦ = −1, d∆(x, y) 6= d∆(y, x).
A (closed ) geodesic m-gon on X is an m-tuple of points x1, . . . , xm, the vertices

of the polygon. Since (by the CAT(0) property of X) for every two points x, y ∈ X
there exists a unique geodesic segment xy connecting x to y, the choice of vertices
uniquely determines a closed 1-cycle in X , called a geodesic polygon. We will use
the notation x1 · · ·xm for this polygon. The ∆-side-lengths of this polygon are the
vectors λi = d∆(xi, xi+1), where i is taken modulo m.

The following is proven in [KLM2]:

Theorem 4. Let Y be a thick spherical building modeled on (S,W ) and X be a
thick Euclidean building modeled on (A,Waf = ΛoW ), for an arbitrary Λ. Then:

There exists a weighted semistable configuration ψ of type (λ1, . . . , λm) on Y if
and only if there exists a closed geodesic m-gon x1 · · ·xm in X with the ∆-side-
lengths (λ1, . . . , λm).

In particular, the existence of a semistable configuration (or a geodesic polygon)
depends only on W and nothing else. The way it will be used in our paper is to
construct special spherical buildings modeled on (S1, I2(n)) (buildings satisfying
Axiom A), to which certain “transversality arguments” from [KLM1] apply.

Definition 4. Given a thick spherical building X with the Weyl group W , we let

Km(X) denote the set of vectors
−→
λ = (λ1, . . . , λm) in ∆m, so that X contains

a semistable weighted configuration of the type
−→
λ . We will refer to Km(X) as

the Stability Cone of X . (These cones are also known as Eigenvalue Cones in

962



STABILITY INEQUALITIES AND UNIVERSAL SCHUBERT CALCULUS

the context of Lie groups and Lie algebras.) When W is fixed, we will frequently
abbreviate Km(X) to Km since this cone depends only on the dihedral group W .

Note that the conicality of X is clear since a positive multiple of a semistable
weighted configuration is again semistable. What is not obvious is that Km(X)
is a convex polyhedral cone. We will see in Section 12 (as a combination of the
results of this paper and [KLM1]) that this is indeed always the case.

6. m-pods

Fix an integer n ≥ 2. Let r1, . . . , rm be positive integers such that

ri + rj ≥ n, ∀i 6= j.

Given this data, we define an m-pod T as follows.

Let B denote the bipartite graph which is the disjoint union of the edges ∆1,
. . ., ∆m. These edges will be the bases of the m-pod T . Add to B the vertex z
of type l ∈ {1, 2}, the center of T . Now, connect z to the appropriate vertices
xi ∈ ∆i by the paths pi of the combinatorial lengths ri, so that

ri ≡ type(xi) + type(z) (mod 2), i = 1, . . . ,m.

(The above equation uniquely determines each xi.) The resulting graph is the m-
pod T . The paths pi are the legs of T . It is easy to define the type of the vertices
of T (extending those of x1, . . . , xm, z), so that T is a bipartite graph.

z
x

x

x

Figure 1. A 3-pod, n = 3 or n = 4
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Suppose now that Y is a bipartite graph of girth ≥ 2n, ∆1, . . . ,∆m ⊂ Y are
mutually antipodal edges and r1, . . . , rm are positive integers so that

ri + rj ≥ n, ∀i 6= j.

We define a new bipartite graph Y ′ by attaching the m-pod T with legs of the
lengths ri, i = 1, . . . ,m, and with the bases ∆1, . . . ,∆m:

Y ′ := Y ∪B T, B = ∆1 ∪ · · · ∪∆m,

where the attaching map identifies the bases of T with the edges ∆i ⊂ Y preserving
the type.

Lemma 5. The graph Y ′ still has girth ≥ 2n.

Proof. Since ri+rj ≥ n for i 6= j and the edges ∆i ⊂ Y are mutually antipodal, the
only thing we need to avoid is having i 6= j so that ri+rj = n and dY (xi, xj) = n−1.
Suppose such i, j exist. Then

type(xi) + type(xj) ≡ ri + rj = n (mod 2)

and

type(xi) + type(xj) ≡ dY (xi, xj) = n− 1 (mod 2).

Contradiction. �

7. Buildings and free constructions

We define a class of rank 2 spherical buildingsX with the Weyl groupW = I2(n)
satisfying:

Axiom A.
1. Each vertex of X has infinite valence; in particular, X is thick.
2. For each m ≥ 3 the following holds. Let ∆i, i = 1, . . . ,m be pairwise

antipodal chambers in X and let 0 < ri ≤ n− 1, i = 1, . . . ,m, be integers so that

ri + rj ≥ n, ∀i 6= j.

Then there exist infinitely many vertices η ∈ X of both types, so that

d(η,∆i) ≤ ri.

In other words, the intersection of metric spheres

I =
⋂

i

Sri(∆i)

contains infinitely many vertices of both types.
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Remark 2.
1. For the purposes of the proof of Theorem 19, it suffices to have property (2)

for a fixed infinite collection ∆1,∆2, . . . of pairwise antipodal chambers. Moreover,
it suffices to assume that the intersection I contains at least 2 vertices of each
type (rather than an infinite number). However, for the purposes of developing
“Schubert precalculus”, it is important to have Axiom A as stated above.

2. Clearly, Axiom A fails for finite buildings. However, it also fails for some
infinite buildings. For instance, it fails for the Tits buildings associated with the
complex algebraic groups Sp(4,C) and G2(C).

Buildings satisfying Axiom A constitute the class of “sufficiently rich” buildings
mentioned in the Introduction: For these buildings we will develop “Schubert
precalculus” later in the paper.

Lemma 6. Let X be a thick rank 2 spherical building satisfying Axiom A. Let
∆1, . . . ,∆m be pairwise antipodal chambers in X. Then there exists a chamber
∆m+1 antipodal to all chambers ∆1, . . . ,∆m.

Proof. Let ri := n− 1. Then, by Axiom A, there exists a vertex x ∈ X so that

d(x,∆i) = ri, i = 1, . . . ,m.

For each i we let xi ∈ ∆i be the vertex realizing d(x,∆i). Since X has infinite
valence at x, there exists a vertex y ∈ X incident to x, which does not belong
to any of the geodesics xxi, i = 1, . . . ,m. It is then clear that d(y,∆i) = n,
i = 1, . . . ,m. Therefore, the chamber ∆m+1 := xy is antipodal to all chambers
∆1, . . . ,∆m. �

Remark 3. It is not hard to prove that if X is a thick building with Weyl group
I2(n), then the conclusion of the above lemma holds for m = 2 without any extra
assumptions.

We now prove the existence of thick buildings satisfying Axiom A.

Theorem 7. For each n there exists a thick spherical building X with Weyl group
W ∼= I2(n), with countably many vertices and satisfying Axiom A. Moreover, ev-
ery (countable ) graph of girth ≥ 2n embeds in a (countable ) building satisfying
Axiom A.

Proof. We first recall the free construction of rank 2 spherical buildings (see [Ti],
[Ro], [FS]):

Let Z be a connected bipartite graph of girth ≥ 2n. Given every pair of vertices
z, z′ ∈ Z of distance n + 1 from each other, we add to Z an edge-path p of the
combinatorial length n− 1 connecting z and z′; similarly, for every pair of vertices
in Z of distance n from each other, we add an edge-path q of the combinatorial
length n connecting z and z′. Let Z denote the graph obtained by attaching paths
p and q to Z in this manner. The notion of type extends to the vertices of the
paths p and q so that the new graph Z is again bipartite. One easily sees that
the bipartite graph Z again has girth ≥ 2n and that each vertex has valence ≥ 2.
The free construction based on a connected graph Z0 of girth ≥ 2n consists in
the inductive application of the bar-operation: Zi+1 := Zi. Then the direct limit

965



ARKADY BERENSTEIN AND MICHAEL KAPOVICH

of the resulting graphs is a thick building. We modify the above procedure by
supplementing it with the operation Z ↪→ Z ′ described below.

Let Z be a bipartite graph of girth ≥ 2n. We define a new graph Z ′ as follows.
For every vertex-type l = 1, 2, every m ≥ 3, every m-tuple of mutually antipodal
edges ∆i in Z and integers 0 < ri < n− 1, i = 1, . . . ,m, satisfying

ri + rj ≥ n, ∀i 6= j,

we attach to Z an m-pod T with the bases ∆1, . . . ,∆m, center of the type l and
the legs of the lengths r1, . . . , rm, respectively. Denote the graph obtained from
Z by attaching all these m-pods by Z ′. Then Z ′ is a bipartite graph. Applying
Lemma 5 repeatedly, we see that Z ′ still has girth ≥ 2n.

We now proceed with the inductive construction of the building Y . We start
with X0, which is an arbitrary connected bipartite graph of girth ≥ 2n.

Then set X1 := X ′
0 (by attaching m-pods for all m to all m-tuples of pairwise

antipodal chambers). Take X2 := X1 (i.e., it is obtained from X1 as in the free
construction) and continue this 2-step process inductively: for every even N = 2k
set XN+1 := X ′

N and XN+2 := XN+1.
Let Y denote the increasing union of the resulting graphs. Then, clearly, Y is

a connected infinite bipartite graph.

Lemma 8. Y is a thick building modeled on W , satisfying Axiom A.

Proof. 1. Clearly, Y has girth ≥ 2n. Note that for each N , the natural inclusion
XN → XN+1 is 1-Lipschitz (distance-decreasing). Moreover, by the construction,
the maps XN → XN+1 are n − 1-isometric in the sense of Section 3. By the
construction, if x, y ∈ XN (N is odd) are vertices within distance d ≥ n+ 1, then

dXN
(x, y) > dXN+1

(x, y)

(as there will be a pair of vertices u, v within distance n + 1 on the geodesic
xy ⊂ Xn, the distance d(u, v) in XN+1 becomes n− 1). Thus,

dXN+2s
(x, y) ≤ n, where s = d− (n+ 1).

Therefore, Y has the diameter n. For every vertex y ∈ Y there exists a vertex
y′ ∈ Y which has the (combinatorial) distance n from y. Therefore, attaching the q-
paths in the bar-operation assures that there are infinitely many half-apartments in
Y connecting y to y′. In particular, there are infinitely many apartments containing
y and y′. This implies that Y is a thick (with each vertex having infinite valence)
spherical building with the Weyl group W = I2(n).

2. In order to check Axiom A, let ∆1, . . . ,∆m ⊂ Y be antipodal chambers and
r1, . . . , rm be positive integers so that

ri + rj ≥ n, ∀i 6= j.

Then there exists k0 so that ∆1, . . . ,∆m ⊂ Xk0 . Since the maps Xk → Y are
distance-decreasing, it follows that there exists k1 ≥ k0 so that ∆1, . . . ,∆m ⊂ Xk1
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are antipodal. Therefore, by the construction, for every odd step of the induction
there will be two (new) m-pods with the legs of the lengths r1, . . . , rm and centers
of the type l = 1, 2 attached to the bases ∆1, . . . ,∆m. Therefore, the intersections

m⋂

i=1

Sri(∆i) ⊂ Xk, k ≥ k1,

will contain at least (k − k1)/2 vertices of both types. Since the maps ι : XN →
XN+k, k ≥ 0 are (n − 1)-isometric, ι(Sr(∆)) ⊂ Sr(∆) ⊂ XN+k. Therefore, Y
satisfies Axiom A. �

This concludes the proof of Theorem 7. �

One can modify the above construction by allowing the transfinite induction,
but we will not need this. More interestingly, one can modify the construction of
Y to obtain a rank 2 spherical building X which satisfies the following universality
property (with n fixed):

Axiom U. Let G be an arbitrary finite connected bipartite graph of girth ≥ 2n,
let H ⊂ G be a (possibly disconnected) subgraph and φ : H → X be a morphism
(a distance-decreasing embedding preserving the type of vertices). Then φ extends
to a morphism G→ X .

The Axiom U is somewhat reminiscent of the Kirszbraum’s property; see,
e.g., [LPS].

Thus, Axiom A is a special case of the Axiom U, defined with respect to a
particular class of graphs G (i.e., m-pods), their subgraphs (the sets of vertices xi
of valence 1) and maps φ (sending xi’s to vertices of antipodal chambers). With
this in mind, the construction of (countably infinite) buildings satisfying Axiom U
is identical to the proof of Theorem 7.

8. Highly homogeneous buildings satisfying Axiom A

The goal of this section is to show that the “highly homogeneous” buildings
constructed by K. Tent in [Te] satisfy Axiom A. This will give an alternative proof
of Theorem 7.

We need several definitions. From now on, fix an integer n ≥ 2.

Definition 5. Let G be a finite graph with the set of vertices V (G) and the set
of edges E(G). Define the weighted Euler characteristic of G as

y(G) = (n− 1)|V (G)| − (n− 2)|E(G)|.

Define the class of finite graphs K as the class of bipartite graphs G satisfying
the following:

(1) girth(G) ≥ 2n.
(2) If G contains a subgraph H which in turn contains an embedded 2k-cycle,

k > 2n, then
y(H) ≥ 2n+ 2.
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We convert K to a category, also denoted K, by declaring morphisms between
graphs in K to be label-preserving embeddings of bipartite graphs which are (n−1)-
isometric maps with respect to the combinatorial metrics on graphs.

A bipartite graph U is called a K-homogeneous universal model if it satisfies the
following:

(1) U is terminal for the category K, i.e., every finite subgraph in U belongs to
K and for every graph G ∈ K there exists an (n − 1)-isometric embedding
G → U .

(2) If G ∈ K and φ, ψ : G → U are (n − 1)-isometric embeddings, then there
exists an automorphism

α : U → U

so that α ◦ φ = ψ.

The main result of [Te] is

Theorem 9. The category K admits a K-homogeneous universal model X.

Most of the proof of the above theorem deals with establishing that the category
K satisfies the following amalgamation (or pull-back ) property:

Every diagram

X1

X0

-

X2

-

extends to a commutative diagram

X1

X0
-

-

X3 .

-

X2

-
-

The universal graphX as in Theorem 9 is then shown in [Te] to be a rank 2 thick
spherical building with the Weyl group W = I2(n), such that the automorphism
group Aut(X) of X acts transitively on the set of apartments in X , so that the
stabilizer of every apartment is infinite and contains W . Moreover, Aut(X) also
acts transitively on the set of simple 2(n+ 1)-cycles in X .

Proposition 10. The universal graph X as above satisfies Axiom A.

Proof. Let r1, . . . , rm be positive integers so that

ri + rj ≥ n, ∀i 6= j.

Let T be anm-pod with the bases ∆1, . . . ,∆m and the legs of the length r1, . . . , rm.
Since T contains no embedded cycles, it is an object in K. In particular, the graph
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B which is the disjoint union of the bases ∆1, . . . ,∆m, is also an object in K. Since
the chambers ∆i are super-antipodal in T (i.e., ∆i,∆j are at the distance ≥ n− 1
for all i 6= j), it follows that the embedding B → T is a morphism in K. Then,
by repeatedly using the amalgamation property, we can amalgamate N copies of
T along B to obtain a graph GN which is again an object in K.

Let ∆1, . . . ,∆m be a collection of antipodal chambers in X . Then the identity
embedding ψ : ∆1 ∪ · · · ∪∆m → X is also a morphism in K.

We claim that
m⋂

i=1

Bri(∆i)

contains infinitely many vertices of each type l = 1, 2.
Indeed, the disjoint union of the chambers ∆i determines a bipartite graph

B ⊂ X . Form anm-pod T with the union of bases B, legs of the lengths r1, . . . , rm
and the center z of the type l. Let GN be the graph obtained by amalgamating
N copies of T as above along the bases. Clearly,

m⋂

i=1

Bri(∆i) ⊂ GN

contains N vertices of the type l, the centers of the m-pods T . Since GN ∈ K, and
X is terminal with respect to K, it follows that there exists an (n − 1)-isometric
embedding φ : GN → X . Because φ is distance-decreasing, the intersection

m⋂

i=1

Bri(φ(∆i)) ⊂ X

also contains N vertices of the type l.
We thus obtain two morphisms φ, ψ : B → X , where ψ is the identity em-

bedding. By the property 2 of a K-homogeneous universal model, there exists an
automorphism α : X → X so that α ◦ φ = ψ. Therefore,

m⋂

i=1

Bri(∆i) ⊂ X

contains at least N vertices of the type l, namely, the images of the centers of
the m-pods T ⊂ GN under α ◦ φ. Since N was chosen arbitrarily, the proposition
follows. �

9. Intersections of balls in buildings satisfying Axiom A

In this section we prove several basic facts about cardinalities of intersections
of balls in buildings satisfying Axiom A.

Lemma 11. Suppose that X is a thick spherical building with the Weyl group
W = I2(n). Let r1 + r2 = n − 1 and ∆1,∆2 be nonantipodal chambers (i.e., they
are within distance ≤ n − 2 ). Then Br1(∆1) ∩ Br2(∆2) contains vertices of both
types.
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Proof. Let A ⊂ X denote an apartment containing ∆1,∆2. It suffices to consider
the case when the distance between the chambers is exactly n−2 (as the chambers
get closer the intersection only increases). We will assume that r1 > 0, r2 > 0 and
will leave the remaining cases to the reader. Then A will contain unique vertices
x, y (of distinct type) so that

d(x,∆1) = r1, d(x,∆2) = r2 − 1, d(y,∆1) = r1 − 1, d(y,∆2) = r2.

Thus, x, y ∈ Br1(∆1) ∩ Br2(∆2). (Note that if d(∆1,∆2) = n − 2 then {x, y} =
Br1(∆1) ∩ Br2(∆2).) �

Lemma 12. For every thick spherical building X with the Weyl group W = I2(n),
and every pair of antipodal chambers ∆1,∆2 ⊂ X, and nonnegative integers r1, r2
satisfying r1 + r2 = n− 1, the intersection

Br1(∆1) ∩ Br2(∆2)

consists of exactly two vertices, one of each type.

Proof. Let A ⊂ X be an apartment containing ∆1,∆2. It is clear that the inter-
section

Br1(∆1) ∩ Br2(∆2) ∩A

consists of exactly two vertices u, v, one of each type. Let α ⊂ A denote the subarc
of length n− 1 connecting vertices xi of the chambers ∆i, i = 1, 2, so that u ∈ α.
Suppose there is a vertex z ∈ X \A, type(z) = type(u), so that

d(z,∆i) = ri, i = 1, 2.

Then it is clear that d(xi, z) = ri, i = 1, 2 and we thus obtain a path (of length
n− 1)

β = x1z ∪ zx2
connecting x1 to x2. Since d(x1, x2) = n−1, it follows that β is a geodesic path in
X . Thus, we have two distinct geodesics α, β ⊂ X of the length n− 1 connecting
x1, x2. The union α◦β is a (possibly nonembedded) homologically nontrivial cycle
of length 2(n− 1) in X . This contradicts the fact that X has girth 2n. �

Corollary 13. Under the assumptions of Lemma 12, let ∆1, . . . ,∆m be antipodal
chambers in X. Then

(1) If r1, . . . , rm are nonnegative integers so that r1+r2 = n−1 and r3 = · · · =
rm = n− 1, then the intersection of balls

I :=
⋂

i

Bri(∆i)

consists of exactly two vertices (one of each type).
(2) If r1, . . . rm are integers so that

∑
i ri < (n− 1)(m− 1), 0 ≤ ri ≤ n− 1, i =

1, . . . ,m then the above intersection of balls I is empty.
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Proof. The first assertion follows from Lemma 12, since Bri(∆i) = X, i ≥ 3. To
prove the second assertion we note that there are i 6= j ∈ {1, . . . ,m} so that
ri + rj < n− 1. Therefore, Bri(∆i) ∩ Brj (∆j) = ∅ since d(∆i,∆j) = n− 1. �

Lemma 14. Let X be a building with the Weyl groupW = I2(n), satisfying Axiom
A. Suppose that ri, i = 1, . . . ,m are positive integers so that

rk ≤ n− 1, k = 1, . . . ,m, (3)

and ∑

i

ri ≥ (n− 1)(m− 1). (4)

Then for every m-tuple of antipodal chambers ∆1, . . .∆m in X, one of the following
mutually exclusive cases occurs:

(a) Either the intersection ⋂

i

Bri(∆i)

contains infinitely many vertices of both types l = 1, 2.
(b) Or (4) is the equality, for two indices, i 6= j, ri + rj = n − 1 and for all

k /∈ {i, j} the inequality (3) is the equality.

Proof. If ri + rj ≥ n for all i 6= j, the assertion follows from Axiom A (namely,
the alternative (a) holds). Suppose that, say, r1 + r2 ≤ n− 1. Then

m∑

i=1

ri ≤ (n− 1) +

m∑

i=3

ri ≤ (n− 1)(m− 1).

Since
∑

i ri ≥ (n−1)(m−1), we see that r1+r2 = n−1, r3 = · · · = rm = n−1 and∑m
i=1 ri = (n− 1)(m− 1). The fact that (a) and (b) cannot occur simultaneously

follows from Lemma 12. �

Recall that Xl denotes the set of vertices of type l in X . By combining Lemma
14 and Corollary 13, we obtain

Corollary 15. Suppose that X satisfies Axiom A. Let ∆1, . . . ,∆m be antipodal
chambers in X and let r1, . . . , rm be nonnegative integers so that ri ≤ n − 1,
i = 1, . . . ,m. Then the following are equivalent:

(1)
⋂
i Bri(∆i) ∩Xl is a single point for l = 1, 2.

(2) After renumbering the indices, r1 + r2 = n− 1 and r3 = · · · = rm = n− 1.

Moreover, if
∑
i ri ≥ (n − 1)(m − 1) then

⋂
iBri(∆i) contains vertices of both

types.

10. Pre-rings

A pre-ring is an algebraic system R with the usual properties of a ring, except
that the operations are only partially defined. (By analogy with groupoids, the pre-
rings should be called ringoids; however, this name is already taken for something
else.)

971



ARKADY BERENSTEIN AND MICHAEL KAPOVICH

The standard examples of pre-rings which are used in calculus are R̂ = R∪±∞
and Ĉ = C∪∞. Below is a similar example which we will use in this paper. For a
ring R define the pre-ring R̂ := R∪∞. The algebraic operations in R̂ are extended
from the ring R as follows:

1. Addition and multiplication are commutative and associative; 0 and 1 are
neutral elements with respect to the addition and multiplication.

2. Moreover, we have

addition x 6= ∞ ∞
y 6= ∞ x+ y ∞
∞ ∞ undefined

multiplication 0 x ∈ R \ {0} ∞
0 0 0 0

y ∈ R \ {0} 0 xy ∞
∞ 0 ∞ ∞

.

Remark 4. It is customary to assume that 0 · ∞ is undefined, but in the situation
we are interested in (where pre-rings will appear as degenerations of rings), we can
assume that 0 · ∞ = 0.

11. Schubert precalculus

From now on, we fix a thick spherical building X satisfying Axiom A. (Much of
our discussion however, uses only the fact that X is a spherical building with the
Weyl group I2(n).)

Our next goal is to introduce a Schubert precalculus in X . According to a the-
orem of Kramer and Tent [KT], for n /∈ {2, 3, 4, 6}, there are no thick spherical
buildings with the Weyl group I2(n) that admit structure of an algebraic variety
defined over an algebraically closed field. Since we are interested in general n ≥ 2,
this forces the algebro-geometric features of the buildings described below to be
quite limited.

Let l ∈ {1, 2} be a type of vertices of X . We will think of the set Xl of vertices
of type l as the lth “Grassmannian”. Let ∆ ⊂ X be a chamber and 0 ≤ r ≤ n− 1
be an integer. We define the “Schubert cell” Cr(∆) ⊂ Xl to be the r-sphere Sr(∆)
in Xl centered at ∆ and having radius r:

Cr(∆) = {x ∈ Xl | d(x,∆) = r}.

(We suppress the dependence on l in the notation for the Schubert cell.) The
number r is the “dimension” of the cell. We define the “Schubert cycle” Cr(∆),
the “closure” of the Schubert cell Cr(∆), as the closed r-ball centered at ∆:

Cr(∆) := Br(∆) ∩Xl.

The number r is the “dimension” of this cycle. Thus, each r-dimensional Schubert
cycle is the union of r + 1 Schubert cells which are the “concentric spheres”. By
taking r = n− 1, we see that Xl is a Schubert cycle of dimension n− 1.

There is much more to be said here, but we defer this discussion to another
paper.
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Homology

The coefficient system for our homology pre-ring is the pre-ring R̂ defined in Section
10. The simplest case will be when R = Z/2; then R̂ consists of three elements:
0, 1,∞. This example will actually suffice for our purposes, but our discussion here
is more general. We will suppress the coefficients in the notation for H∗(Xl, R̂) in
what follows.

Let W = I2(n). We declare d = n − 1 to be the formal dimension of Xl. Set
r∗ := d− r for 0 ≤ r ≤ d. Fix a (positive) chamber ∆+ ⊂ X .

Using the Schubert precalculus we define the homology pre-ring H∗(Xl) (l =

1, 2) with coefficients in R̂, by declaring its (additive) generators in each dimension
0 ≤ r ≤ n−1 to be the Schubert classes [Cr(∆)], where ∆ are chambers in X . We
declare

Cr := [Cr(∆)] = [Cr(∆+)]

for every ∆ and set

Hr(Xl) = 0, for r < 0, and r > d.

The “fundamental class” in Hd(Xl) is represented by Xl = Bd(∆+). We declare a
collection of cycles Cri(∆i), i ∈ I, to be transversal if the chambers ∆i, i ∈ I are
pairwise antipodal. Using this notion of transversality we define the intersection
product on H∗(Xl) as follows.

Consider two antipodal chambers ∆1,∆2. For 0 ≤ r1, r2 ≤ n− 1,

Cr1(∆1) ∩ Cr2(∆2) = Br1(∆1) ∩ Br2(∆2),

is the “support set” of the product class

[Cr1(∆1)] · [Cr2(∆2)] ∈ Hr3(Xl),

where r∗3 = r∗1+r
∗
2 , i.e., r3 = r1+r2−(n−1). The product class itself is a multiple

a · [Cr3(∆+)] of the standard generator. To compute a ∈ R̂, we declare that the
classes c = Cr3 and c∗ = Cr∗

3
are “Poincaré dual” to each other:

c = PD(c∗),

as their dimensions add up to the dimension d of the fundamental class. Therefore,
take a chamber ∆3 antipodal to both ∆1,∆2: it exists by Lemma 6. Then a ∈ R̂
is the cardinality of the intersection:

Cr1(∆1) ∩ Cr2(∆2) ∩ Cr∗
3
(∆3). (5)

Remark 5. Here and in what follows we are abusing the terminology and declare
the cardinality of an infinite set to be ∞.This is justified, for instance, by the
fact that Theorem 7 yields buildings that have countably many vertices and our
convention amounts to ℵ0 = ∞ ∈ R̂.

As we will see below, the cardinality of the intersection is 0, 1 or ∞; these
cardinalities are naturally identified with the elements of R̂.
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One can easily check (see below) that a does not depend on the choice of cycles
representing the given homology classes. In particular, the fundamental class is
the unit in the pre-ring H∗(Xl).

We then compute a using the results of Section 9:

1. If r1 + r2 < n− 1 then a = 0 (Corollary 13(2)).
2. If r1 + r2 = n − 1 then a = 1: the Schubert cycles Cri(∆i), i = 1, 2, are

Poincaré dual to each other (Lemma 12).
3. Suppose now that r1 + r2 > n − 1. We will apply Lemma 14 to the triple

intersection (5); observe that r1+r2+r
∗
3 = 2(n−1), i.e., inequality (3) in Lemma 14

is the equality in this case. Then, by Lemma 14:
3a. If r1, r2 < n− 1 then a = ∞.
3b. If ri = n− 1 for some i = 1, 2, then r3−i + r∗3 = n− 1 and a = 1.

Thus, the triple intersection (5) is finite ⇐⇒ it consists of a single vertex in Xl

⇐⇒ two of the three classes among Cr1 , Cr2 , Cr∗3 are Poincaré dual to each other
and the remaining class is the fundamental class.

Lemma 16. Let Cri ∈ Hri(Xl), i = 1, . . . ,m be the generators (Schubert classes ) so
that

r1 + · · ·+ rm = d(m− 1) ⇐⇒
m∑

i=1

r∗i = d,

i.e., the product of these classes (in some order ) equals a[pt], where pt = C0(∆+).

Then a ∈ R̂ is the cardinality of the intersection

m⋂

i=1

Bri(∆i),

where ∆1, . . . ,∆m are pairwise antipodal chambers (which exist by Lemma 6).

Proof. First of all, without loss of generality we may assume that none of the
classes Cri is the unit [Xl] in H∗(Xl). Note that, since r1 + · · ·+ rm = d(m − 1),
in the computation of the product of Cr1 , . . . , Crm we will never encounter the
multiplication by zero. Then (after permuting the indices), the product of the
classes Cr1 , . . . , Crm will be of the form

· · · (Cr1 · Cr2) · · · .

By the definition, Cr1 · Cr2 = a12Cr, where

r∗ = r∗1 + r∗2 .

The element a12 ∈ R̂ is the cardinality of the intersection

Br1(∆1) ∩Br2(∆2) ∩ Br∗(∆),

where ∆1,∆2,∆ are pairwise antipodal. In view of the above product calculations
1–3, and the fact that r1 6= d, r2 6= d, we see that a12 = ∞ (since a12 = 0 is
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excluded), unless r = d, r1 = r∗2 and, therefore, c2 = PD(c1). In the latter case,
Br∗(∆) = Xl and, hence, a12 is the cardinality (equal to 1) of the intersection

Br1(∆1) ∩ Br2(∆2).

Since ∑
ri = d(m− 1), 0 ≤ ri ≤ d, i = 1, . . . ,m,

we conclude that r3 = · · · = rm = d. Thus, m = 2 and a = a12 = 1 in this case.
If a12 = ∞ then it follows from the definition of R̂ that a = ∞, since, in the

computation of the product of Cr1 , . . . , Crm we will never multiply by zero. On the
other hand, in this case the classes Cr1 , Cr2 are not Poincaré dual to each other
and Lemma 14 implies that the intersection

m⋂

i=1

Bri(∆i) ⊂ Xl

is also infinite. Lemma follows. �

Corollary 17. H∗(Xl, R̂) is a pre-ring.

Proof. The only thing which is unclear from the definition is that the product is
associative. To verify associativity, we have to show that

((Cr1Cr2)Cr3) · Cr4 = (Cr1(Cr2Cr3)) · Cr4 (6)

where Cri ∈ Hri(Xl) are the generators and

r1 + r2 + r3 + r4 = (4− 1)(n− 1).

However, the equality (6) immediately follows from the above lemma. �

Similarly to the definition of the Schubert precalculus on the Grassmannians
Xl, we define the Schubert precalculus on the “flag-manifold” Fl(X) associated
with X , i.e., the set of edges E(X) of the graph X underlying the building X .
The set E(X) will be identified with the set of mid-points of the edges. We have
two projections

pl : E(X) → Xl, l = 1, 2,

sending each edge to its end-points. We will think of these projections as “P1-
bundles.” Accordingly, we define Schubert cycles in Fl(X) by pull-back of Schubert
cycles in Xl via pl:

Cr,l(∆) := p−1
l

(
Cr−1(∆)

)
, r = 1, . . . , n,

while 0-dimensional cycles in Fl(X) are, of course, just the edges of X . In terms
of the metric geometry of X , the cycles Cr+1,l(∆) are described as follows. Fix a
chamber ∆. Define the Schubert cell Cr,l(∆) to be the set of chambers ∆′ ⊂ X so
that the distance between the midpoints mid(∆),mid(∆′) of ∆,∆′ equals r and
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the minimal distance r − 1 between ∆,∆′ is realized by a vertex of type l in ∆′.
Here the convention is that Cr,l(∆) = Cr,l+1(∆) for r = 0, r = n = girth(X)/2,
since for these values of r the minimal distance is realized by vertices of both
types. The corresponding Schubert cycles Cr,l(∆) are defined by adding to Cr,l(∆)
all the chambers ∆′′ contained in the geodesics connecting mid(∆),mid(∆′), for
∆′ ∈ Cr,l(∆). The notion of transversality as in the case of Xl, is given by taking
antipodal chambers. The Poincaré Duality is defined by

PD([Cr,l(∆)]) = [Cn−r,3−l(∆)], l = 1, 2.

The reader will verify that this is consistent with the property that the intersection

Cr,l(∆1) ∩ Cn−r,3−l(∆2)

is a single point. We declare that the homology classes [Cr,l(∆)] are independent
of ∆ and set up the notation

Cr,l := Cw := [Cr,l(∆)],

where w ∈W is the unique element such that w(∆) ∈ Cr,l(∆). Then the Poincaré
Duality takes the form

PD(Cw) = Cw◦w,

where w◦ ∈W is the longest element.
We declare that Cr,l, r = 0, . . . , n, l = 1, 2, form a basis ofH∗(Fl(X)), where r =

dim(Cr,l). We also require the pull-back maps pl to be pre-ring homomorphisms.
It remains to define the intersection products of the form

Cr1,1 · Cr2,2, 0 ≤ r1, r2 ≤ n.

Analogously to the product in H∗(Xl), we take two antipodal chambers ∆1,∆2

and set
Cr1,1 · Cr2,2 = a1Cr3,1 + a2Cr3,2, al ∈ R̂, l = 1, 2,

where r3 := r1 + r2 − n (i.e., (n − r1) + (n − r2) = n− r3). In order to compute
al’s we take the third chamber ∆3 antipodal to ∆1,∆2, and let al denote the
cardinality of the intersection

Cr1,1(∆1) ∩ Cr2,2(∆2) ∩ Cr3,3−l(∆3).

With these definitions,we obtain a homology pre-ring H∗(Fl(X), R̂) abbreviated

to H∗(X, R̂) or even H∗(X). The proof of the following proposition is similar to
the case of H∗(Xl) and is left to the reader:

Proposition 18. Let X be a thick building with the Weyl group I2(n), satisfying
Axiom A. Then H∗(X) is an associative and commutative pre-ring, generated by
the elements Cr,l, l = 1, 2, r = 0, . . . , n, subject to the relations:

(1) C0,1 = C0,2 (the class of a point [pt]),
Cn,1 = Cn,2 = 1 is the unit in H∗(X) (the “fundamental class” );

(2) Cr1,l · Cr2,l = 0 if r1 + r2 ≤ n, l = 1, 2;
(3) Cr1,l · Cr2,l = ∞ if n < r1 + r2, l = 1, 2;
(4) Cr1,1 · Cr2,2 = 1 if r1 + r2 = n;
(5) Cr1,1 · Cr2,2 = 0 if r1 + r2 < n;
(6) Cr1,1 · Cr2,2 = ∞Cr3,1 + ∞Cr3,2 if r1 6= n, r2 6= n, r1 + r2 > n, where

r3 = (r1 + r2)− n.
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12. The stability inequalities

Suppose that X is a rank 2 thick spherical building with the Weyl group W ∼=
I2(n), satisfying Axiom A. We continue with the notation from Section 11. Recall
that ∠ is a path metric on X so that the length of each chamber is π/n.

We start with few simple observations. Let Cr(∆) be a Schubert cell in Xl and
η ∈ Cr(∆), i.e., d(η,∆) = r. Then the point ζ in ∆ nearest to η has the type l+ r
(mod 2). In particular, ζ depends only on the cell Cr(∆) (and not on the choice
of η in the cell). Let ξ ∈ ∆ be a point within ∠-distance τ from ζ. Then

∠(η, ξ) = r
π

n
+ τ.

In particular, this angle is completely determined by the angle τ , by the type of
η and the fact that we are dealing with the Schubert cell Cr(∆). In particular, it
follows that for each η ∈ Cr−1(∆) = Cr(∆) \ Cr(∆), we have

∠(η, ξ) < r
π

n
+ τ,

where ξ is defined as above. We now introduce the following system of inequalities

WTI (weak triangle inequalities) on m-tuples of vectors
−→
λ = (λ1, . . . , λm) =

(µ1ξ1, . . . , µmξm), with ξ0i ∈ ∆+ and µi ∈ R+.
Each GrassmannianXl (or, equivalently, the choice of a vertex ζ of the standard

spherical chamber ∆+) will contribute a subsystem WTIl of the triangle inequal-
ities. Consider all possible m-tuples (w1, . . . , wm) of elements of W , so that all
but two wi’s are equal to w◦ (the longest element of W ) and the remaining ele-
ments wi, wj are “Poincaré dual” to each other (wi = PDl(wj)), i.e., their relative
lengths ri = `l(wi), rj = `l(wj) in W/Wl satisfy

ri + rj = n− 1.

In other words, the corresponding Schubert cycles

Cri = [Cri(∆+)], Crj = [Crj (∆+)]

in Xl have complementary dimensions and thus are Poincaré dual to each other:

Cri = PD(Crj ).

See Section 11. Equivalently, we are considering m-tuples of integers 0 ≤ rk ≤
m− 1, which, after permutation of indices, have the form

(r1, . . . , rm) = (r1, r2 = n− 1− r1, n− 1, . . . , n− 1).

Note that `l(w◦) = n− 1, thus `l(wi) = ri, i = 1, . . . ,m.
Lastly, for every such tuple

−→w = (w1, . . . , wm) = (w◦, . . . , w◦, wi, . . . , PD(wi), . . . , w◦)

we impose on the vector
−→
λ the inequality

∑

j

〈λj , wj(ζ)〉 =
∑

j

µj · cos∠(ξj , wj(ζ)) ≤ 0 (7)

denoted WTIl,−→w . The collection of all these inequalities constitutes the system of
inequalities WTI.
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Theorem 19. For any rank 2 thick spherical building X satisfying Axiom A with
the Weyl group I2(n), one has:

(i) The Stability Cone Km(X) (see Definition 4) is cut out by the inequalities
WTI.

(ii) Moreover, if
−→
λ ∈ Km(X), then there exists a semistable weighted con-

figuration ψ = (µ1ξ
′
1, . . . , µmξ

′
m) on X of the type

−→
λ so that the points

ξ′i, i = 1, . . . ,m, belong to mutually antipodal chambers in X.

Proof. Our proof essentially repeats the one in [KLM1, Theorem 3.33]. We present
it here for the sake of completeness.

1 (Existence of a semistable configuration). We begin by taking a collection of
chambers ∆1, . . . ,∆m ⊂ X in “general position,” i.e., they are mutually antipodal.
(In [KLM1] one instead takes a generic configuration of Schubert cycles in the
generalized Grassmannian, representing the given homology classes.) Then for
each i = 1, . . . ,m we place the weight µi at the point ξ′i ∈ ∆i that has the
same type as ξi. We claim that the resulting weighted configuration ψ in X is
semistable. Suppose not. Then, according to the “Harder–Narasimhan Lemma”
[KLM1, Theorem 3.22], there exists l ∈ {1, 2} so that in the Grassmannian Xl

there exists a unique point η with the minimal (negative) slope with respect to ψ:

slopeψ(η) = −
∑

i

µi cos(∠(η, ξ
′
i)) < 0,

i.e., ∑

i

µi cos(∠(η, ξ
′
i)) > 0.

Consider the Schubert cells

Cri(∆i), i = 1, . . . ,m,

where ri = d(∆i, η) is the (combinatorial) distance between the chamber ∆i and
the vertex η ∈ Xl. Thus,

η ∈ J =

m⋂

i=1

Cri(∆i) ⊂ J̄ =

m⋂

i=1

Bri(∆i) ⊂ Xl.

By the observations in the beginning of this section, the function slopeψ is
constant on J . Since slopeψ attains a unique minimum on Xl, it follows that
J = {η}. Moreover, if

η′ ∈ J̄ \ J,

then
slopeψ(η

′) = −
∑

i

µi cos(∠(η
′, ξ′i)) < slopeψ(η),

which contradicts the minimality of η. Therefore, the intersection J̄ is the single
point η. Thus, the product in H∗(Xl) of the Schubert classes [Cri(∆i)], i =

978



STABILITY INEQUALITIES AND UNIVERSAL SCHUBERT CALCULUS

1, . . . ,m, is [pt] and the latter occurs exactly when (after permuting the indices)
the n-tuple (r1, . . . , rm) has the form

(r1, . . . , rm) = (r1, r2 = r∗1 , n− 1, . . . , n− 1),

see Corollary 15. Let −→w = (w1, w2, w3, . . . , wm) = (w1, w◦w1, w◦, . . . , w◦) be the
corresponding tuple of elements of the Weyl group W . Note that

∠(ξ′k , η) = ∠(ξk, wk(ζ))

since η ∈ Crk (∆k) and wk(ζ) ∈ Crk (∆+), k = 1, . . . ,m. Therefore,

0 > slopeψ(η) = −
∑

i

µi cos(∠(η, ξ
′
i)) = −

∑

i

µi cos(∠(ξk, wk(ζ))).

The inequality WTIl,−→w however requires that
∑

i

µi cos(∠(ξi, wi(ζ))) ≤ 0.

Contradiction. Therefore, ψ is a semistable configuration.
2. Suppose that ψ = (µ1ξ

′
1, . . . , µmξ

′
m) is a weighted semistable configuration

on X of the type −→
λ = (µ1ξ1, . . . , µmξm).

Consider an m-tuple −→w = (w1, w2, w3, . . . , wm) = (w1, w◦w1, w◦, . . . , w◦) of el-
ements of W as in the definition of the inequalities WTI (after permuting the

indices we can assume that the tuple has this form). We will show that
−→
λ satisfies

the inequality WTIl,−→w for l = 1, 2. Fix l and let ζ ∈ ∆+ denote the vertex of
type l. Let r1, . . . , rm be the relative lengths of w1, . . . , wm in W/Wl. Let ∆i ⊂ X
denote a chamber containing ξ′i. Note that Cri(∆i) = Xl for each i ≥ 3 since
ri = n− 1. According to Lemmas 11, 12, the intersection

m⋂

k=1

Crk (∆k) = Cr1(∆1) ∩ Cr2(∆2) ⊂ Xl

contains a vertex η ∈ Xl (possibly nonunique since ∆1,∆2, a priori, need not be
antipodal). Therefore,

d(η,∆i) ≤ ri = d(wi(ζ),∆+), i = 1, . . . ,m.

Accordingly,
∠(η, ξ′i) ≤ ∠(wi(ζ), ξi), i = 1, . . . ,m

since ξi = θ(ξ′i) ∈ ∆+. Therefore,

0 ≤ slopeψ(η) = −
∑

i

µi cos(∠(η, ξ
′
i)) ≤ −

∑

i

µi cos(∠(wi(ζ), ξi)),

and ∑

i

µi cos(∠(wi(ζ), ξi)) ≤ 0

and, thus,
−→
λ satisfies WTIl,−→w . �
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Corollary 20. Theorem 19(i) holds for all 1-dimensional thick spherical buildings
(not necessarily satisfying Axiom A ) with the Weyl group I2(n).

Proof. We consider two thick spherical buildings X,X ′, where X satisfies Axiom
A. According to Theorem 4, Km(X) = Km(X ′). The corollary follows from The-
orem 19 and the existence of buildings satisfying Axiom A. �

We now convert the system of weak triangle inequalities WTI to the form which
appears in Theorem 1. For

−→w = (w1, . . . , wm) = (w1, w◦w1, w◦, . . . , w◦),

and λi = miξi, i = 1, . . . , n, we set w := w−1
1 . Then, for i ≥ 3,

〈λi, wi(ζ)〉 = 〈w−1
i λi, ζ〉 = 〈w◦λi, ζ〉 = −〈λ∗i , ζ〉,

while

〈λ2, w2(ζ)〉 = 〈w−1
2 (λ2), ζ〉 = −〈w(λ∗2), ζ〉,

〈λ1, w1(ζ)〉 = 〈w(λ1), ζ〉.
Therefore, the inequality ∑

j

〈λj , wj(ζ)〉 ≤ 0

is equivalent to

〈w(λ1), ζ〉 − 〈w(λ∗2), ζ〉 ≤ 〈
m∑

j=3

λ∗j , ζ〉.

Since these inequalities hold for both vertices ζ of ∆+, we obtain

w(λ1 − λ∗2) ≤∆∗

m∑

j=3

λ∗j , w ∈W.

This proves Theorem 1. �

Corollary 21. Let X be a thick spherical building. Then the Stability Cone Km(X)
is a convex polyhedral cone.

Proof. It suffices to consider the case when X does not have a spherical factor, i.e.,
its Coxeter complex (S,W ) is essential: W has no global fixed points in S. The
assertion of the corollary was proven in [KLM1], [KLM2] for all thick spherical
buildings X with the crystallographic Weyl group W , i.e., W appearing as Weyl
groups of complex semisimple Lie groups. If W =W1×· · ·×Wk is a finite Coxeter
group (with Wi Coxeter groups with connected Dynkin diagrams) which is a Weyl
group of a thick spherical building X , then each Wi is either crystallographic or
is a finite dihedral group I2(n), see [Ti]. It is immediate from the definition of
semistability that

Km(X) = Km(X1)× · · · × Km(Xk),

where X1, . . . , Xk are irreducible factors of X with respect to its joint decomposi-
tion into irreducible spherical subbuildings: the Xi’s are thick irreducible spherical
buildings with essential Coxeter complexes and Weyl groups Wi, i = 1, . . . , k. It
therefore follows from the above result of [KLM1, KLM2] and Theorem 19 that
each Km(Xi), and, hence, Km(X), is a convex polyhedral cone. �
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13. The universal dihedral cohomology algebra At

In this section we construct a family of algebras At, t ∈ C
× as a universal

deformation of the cohomology ring of the flag variety for each rank 2 complex
Kac–Moody group G (including Lie groups G = SL3, Sp4, G2). It turns out that
the complexification C⊗At is isomorphic to the coinvariant algebra of the dihedral
group W =Wt acting on C2 with the parameter t, i.e., t2 + t−2 is the trace of the
generator of the maximal normal cyclic subgroup of W .

For each integer k ≥ 0 define the t-integer [k]t by

[k]t :=
tk − t−k

t− t−1
= t1−k + t3−k + · · ·+ tk−3 + tk−1.

It is well-known (and easy to see) that for k, ` ≥ 0 one has

[k]t[`]t = [|k − `|+ 1]t + [|k − `|+ 3]t + · · ·+ [|k + `| − 1]t. (8)

Now define the t-factorials [m]t! := [1]t[2]t · · · [`]t and the t-binomial coefficients
by: [

m

k

]

t

=
[m]t!

[k]t![m− k]t!
.

Note that, like the usual binomials, t-binomials
[
m
k

]
t
extend naturally to k ∈ N

and m ∈ R+, although we will use them only for k ∈ N,m ∈ Z. The t-binomial
coefficients satisfy the symmetry

[
n

k

]

t

=

[
n

n− k

]

t

and the Pascal recursion:
[
m

k

]

t

= tk
[
m− 1

k

]

t

+ tk−m
[
m− 1

k − 1

]

t

.

Proposition 22. Each t-binomial coefficient
[
n
k

]
t
belongs to Z[t+ t−1].

Proof. We need the following result.

Lemma 23. For all k, ` ≥ 0 we have
[
`+ k

k

]

t

=
∑

0≤m≤k`
cm · [m+ 1]t (9)

where each cm ∈ Z≥0.

Proof. Let V1 = C2 be the natural SL2(C)-module. Denote V` = S`V1 so that
dimV` = `+1. Clearly, each V` is a simple module. For each k ≥ 0 let V`,k = SkV`;

then dim V`,k =
(
`+k
k

)
. Recall that for each finite-dimensional SL2(C)-module V

the character ch(V ) is a function of t ∈ C× defined by

ch(V ) = Tr

((
t 0
0 t−1

)∣∣∣∣
V

)
.
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It is easy to see that ch(V`) = [`+ 1]t and ch(V`,k) =
[
`+k
k

]
t
. Using the decompo-

sition of V`,k into simple SL2-modules

V`,k =
∑

0≤m≤k`
cm · Vm

where each cm ∈ Z≥0 and applying ch(·) to it, we obtain (9). Lemma follows. �

Observe, furthermore, that the obvious recursion [m+1]t = [2]t[m]t− [m− 1]t,
which is a particular case of (8), proves (by induction) that each t-number [m+1]t
belongs to Z[t+ t−1] = Z[[2]t].

Combining this observation with (9), we finish the proof of the proposition. �

Let A′ be the algebra over C(t) generated by σ1, σ2 subject to the relations

σ1σ2 = σ2σ1, (σ1 − tσ2)(σ1 − t−1σ2) = 0 .

It is convenient to rewrite the second relation as:

[2]tσ1σ2 = σ2
1 + σ2

2 . (10)

Lemma 24. The following relations hold in A′:

[k + `]tσ
k
1σ

`
2 = [k]tσ

k+`
1 + [`]tσ

k+`
2 (11)

for all k, ` ≥ 0. In particular, the monomials σki , i ∈ {1, 2}, k ≥ 0 form a C(t)-
linear basis of A′.

Proof. We proceed by induction in min(k, `). Indeed, if k = 0 or ` = 0, we have
nothing to prove. Otherwise, using (10) and the inductive hypothesis, we obtain:

[k + `]tσ
k
1σ

`
2 = [k + `]t(σ1σ2)σ

k−1
1 σ`−1

2 =
[k + `]t
[2]t

(σ2
1 + σ2

2)σ
k−1
1 σ`−1

2

=
[k + `]t
[2]t

(σk+1
1 σ`−1

2 + σk−1
1 σ`+1

2 )

=
1

[2]t
([k + 1]tσ

k+`
1 + [`− 1]tσ

k+`
2 + [k − 1]tσ

k+`
1 + [`+ 1]tσ

k+`
2 )

=
1

[2]t
([k + 1]t + [k − 1]t)σ

k+`
1 +

1

[2]t
([`− 1]t + [`+ 1]t)σ

k+`
2

= [k]tσ
k+`
1 + [`]tσ

k+`
2

by (8).
Furthermore, the relations (11) guarantee that the monomials σki , i ∈ {1, 2}, k ≥

0 span A′. To verify their linear independence, let us compute the Hilbert series
h(A′, z) of A′. Clearly, the Hilbert series of the polynomial algebra C(t)[σ1, σ2] is
1/(1− z)2 and the Hilbert series of any principal ideal I in C(t)[σ1, σ2] generated
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by a quadratic polynomial is z2/(1− z)2. Therefore, the Hilbert series of the
quotient algebra C(t)[σ1, σ2]/I is

1

(1− z)2
− z2

(1− z)2
=

1 + z

1− z
= 1 +

∑

k≥1

2zk.

Applying this to our algebra A′ = C(t)[σ1, σ2]/〈(σ1− tσ2)(σ1− t−1σ2)〉 we see that
each graded component of A′ is 2-dimensional, which verifies the linear indepen-
dence of the monomials. The lemma is proved. �

Denote by σ
[k]
i :=

1

[k]t!
σki , i = 1, 2, k ≥ 0 the divided powers of σi, i = 1, 2.

Denote by A the subalgebra of A′ generated over Z[t+ t−1] by all σ
[k]
i , i ∈ {1, 2},

k ≥ 0.

Proposition 25. The following relations hold in A:

σ
[k]
1 σ

[`]
1 =

[
k + `

k

]

t

σ
[k+`]
1 , σ

[k]
2 σ

[`]
2 =

[
k + `

k

]

t

σ
[k+`]
2 , (12)

for all k, ` ≥ 0;

σ
[k]
1 σ

[`]
2 =

[
k + `− 1

k − 1

]

t

σ
[k+`]
1 +

[
k + `− 1

`− 1

]

t

σ
[k+`]
2 (13)

for all k, ` ≥ 0.

In particular, the monomials σ
[k]
i , i = 1, 2, k ≥ 0, form a Z[t+ t−1]-linear basis

in A, and the relations (12) and (13) are defining for A.

Proof. We have

σ
[k]
i σ

[`]
i =

1

[k]t![`]t!
σk+`i =

[k + `]t
[k]t![`]t!

σ
[k]
i σ

[`]
i

for i ∈ {1, 2}, k ≥ 0, which verifies (12). Furthermore, (11) implies that

σ
[k]
1 σ

[`]
2 =

1

[k]t![`]t!
σk1σ

`
2 =

1

[k]t![`]t![k + `]t
([k]tσ

k+`
1 + [`]tσ

k+`
2 )

=
[k + `− 1]t!

[k−]t![`]t!
σ
[k+`]
1 +

[k + `− 1]t!

[k]t![`− 1]t!
σ
[k+`]
2 ,

which verifies (13).
Since all structure constants of A are t-binomial coefficients, Proposition 22

guarantees that A is defined over Z[t+ t−1].

Since, as a Z[t + t−1]-module, A is spanned by all products of various σ
[k]
i

and each such monomial is a Z[t+ t−1]-linear combination of divided powers σ
[`]
i ,

i ∈ {1, 2}, ` ≥ 0 by (12) and (13), we see that the divided powers span A as a

Z[t + t−1]-module. It is also clear that the divided powers σ
[`]
i , i ∈ {1, 2}, ` ≥ 0

are Z[t+ t−1]-linearly independent because that was the case in A′ by Lemma 24.
Therefore, relations (12) and (13) are defining. The proposition is proved. �
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Now we will use the standard algebraic trick of specializing a formal parameter t
into a nonzero complex number t0. Clearly, this is impossible to do for A′ because it
is defined over C(t), but it is a perfectly reasonable to do so for the algebra A which
is defined over Z[t+t−1]. Indeed, for each t0 ∈ C× we define Ãt0 = R0⊗RA, where
R = Z[t + t−1], R0 = Z[t0 + t−1

0 ] ⊂ C, where R0 is regarded as an R-module via
the evaluation homomorphism R → R0 which takes t to t0. By the construction,

Ãt0 is a free Z[t0 + t−1
0 ]-module, e.g., it has a basis σ

[k]
i , i ∈ {1, 2}, k ≥ 0.

With a slight abuse of notation, from now on we will denote by t a nonzero
complex number so that Ãt, t ∈ C× is the family of unital Z[t+ t−1]-algebras with

the presentation (12) and (13) (and σ
[0]
1 = σ

[0]
2 = 1).

For each t ∈ C× \ {−1, 1} define nt ∈ Z t {∞} to be the order of t2 in the
multiplicative group C×. If t = ±1, we set n±1 := ∞. Thus, nt = ∞ unless t2 is
a primitive nth root of unity and n > 1, in which case, nt = n.

Note that if nt = n < ∞, then [n]t = 0 and [n − k]t = −tn[k]t for 0 ≤ k ≤ n.
In turn, this implies

[
m
k

]
t
= 0 for all m ≥ nt, 1 ≤ k ≤ m− 1 and

[
n− 1

k

]

t

= −tn
[
n− 1

k − 1

]

t

hence [
n− 1

k

]

t

= (−tn)k = 1,

which are most of the structure constants in (12) and (13). In particular, the
following relations hold in Ãt

σ
[k]
1 σ

[n−k]
1 = σ

[k]
2 σ

[n−k]
2 = 0, σ

[k]
1 σ

[n−k]
2 = σ

[n]
12 ,

for all 1 ≤ k < n = nt, where

σ
[n]
12 := (−tn)k−1σ

[n]
1 + (−tn)kσ[n]

2 .

Now define the algebra At, t ∈ C× over Z[t+ t−1] ⊂ C as follows:
If nt = ∞, then At := Ãt.
If nt = n < ∞ ( i.e., t2 6= 1 is the nth primitive root of unity), then At is a

subalgebra of Ãt generated by all σ
[k]
1 , σ

[k]
2 , k = 0, 1, . . . , n− 1 and by σ

[n]
12 .

It is easy to see that in both cases the algebra At is Z-graded via deg σ
[k]
i = k.

Moreover, in the second case, degσ
[n]
12 = n is the top degree in At, as [n]t = 0.

For t ∈ C× let Wt := 〈s1, s2 : s21 = s22 = 1, (s1s2)
nt = 1〉 be the dihedral group.

Here it is understood that for t = ±1 we have the relation s1s2 = 1 and for t
which is not a root of unity, we have the tautological relator (s1s2)

0 = 1. Define
the Wt-action on the weight lattice

Λt = Z[t+ t−1] · σ1 + Z[t+ t−1] · σ2

by:
si(σj) = σj − δij(2σj − (t+ t−1)σ3−i) (14)
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for all i, j ∈ {1, 2}.
Recall that if W is a group acting on a vector space V , then the coinvariant

algebra S(V )W is the quotient S(V )/〈S(V )W+ 〉, where S(V )W+ stands for all W -
invariants in the algebra of the constant-term-free polynomials

S(V )+ =
∑

k>0

Sk(V ).

(The computations of S(V )W below, in the case of Wt with t a root of unity,
present a very special case of the computation of coinvariant algebras for arbitrary
finite groups; see, e.g., [H].)

The following proposition explains the origin of the algebra At:

Proposition 26. For each t ∈ C
× the algebra C ⊗ At is naturally isomorphic to

the coinvariant algebra of Wt acting on the vector space V = C⊗Λt. In particular,
Wt naturally acts on At via:

si(σ
[k]
j ) = σ

[k]
j − δij(2σ

[k]
j − (tk + t−k)σ[k]

3−i) (15)

for all i, j ∈ {1, 2}, 0 ≤ k < nt and (whenever 1 < nt = n <∞ )

si(σ
[n]
12 ) = −σ[n]

12

for i = 1, 2.

Proof. Denote z1 = σ1 − tσ2, z2 = t−1σ2 − σ1 and let

e2 = −z1z2 = (σ1 − tσ2)(σ1 − t−1σ2) = σ2
1 + σ2

2 − (t+ t−1)σ1σ2

(see (10)). It is easy to see that under the action (14), one has

s1(z1) = z2, s1(z2) = z1, s2(z1) = t2z2, s2(z2) = t−2z2. (16)

Hence, e2 is invariant under the Wt-action.
Now assume that [k]t! 6= 0 for all k, i.e., nt = ∞. Then the algebra C ⊗ At is

just the quotient of C[σ1, σ2] by the quadratic ideal generated by e2.
On the other hand, it is easy to see, using (16), that the Wt-invariant algebra

C[σ1, σ2]
Wt is generated by e2. Therefore, the coinvariant algebra C[σ1, σ2]Wt

is
also the quotient C[σ1, σ2]/〈e2〉. This proves the proposition in the case when
nt = ∞.

Assume that now nt = n <∞ or, equivalently, [k]t! 6= 0 for k < n and [k]t! = 0
for k ≥ n. Therefore, Proposition 25 guarantees that C ⊗ At is a commutative
algebra generated by σ1, σ2 subject to the relations

e2 = 0, σn1 = σn2 = 0. (17)

(In fact, σn12 = σ1σ
n−1
2 by (13) because [n− 1]t = −tn.)

Again, it is easy to see, using (16), that the Wt-invariant algebra C[σ1, σ2]
Wt is

generated by e2 and en = zn1 + zn2 . Therefore, the coinvariant algebra C[σ1, σ2]Wt
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is the quotient C[σ1, σ2]/〈e2, en〉. To finish the proof it suffices to show that the
ideals 〈σn1 , σn2 〉 and 〈en〉 are equal in C[σ1, σ2]/〈e2〉. Indeed, taking into account
that z1z2 = 0 in C[σ1, σ2]/〈e2〉 and that

σ2 =
z1 + z2
t−1 − t

, σ1 =
t−1z1 + tz2
t−1 − t

,

we obtain:

σn1 =
(z1 + z2)

n

(t−1 − t)n
=

zn1 + zn2
(t−1 − t)n

,

σn2 =
(t−1z1 + tz2)

n

(t−1 − t)n
=
t−nzn1 + tnzn2
(t−1 − t)n

= tn
zn1 + zn2
(t−1 − t)n

because t2n = 1. This proves the equality of ideals, hence the equality of quotients
C⊗At = C[σ1, σ2]Wt

.
In particular, this verifies that Wt naturally acts on C ⊗ At. To obtain (15),

note that Wt preserves the component C · σk1 + C · σk2 ⊂ C ⊗ At which is the kth
symmetric power of C ·σ1+C ·σ2 (if n < nt), and therefore,Wt acts on the former
space in the same way as in the latter space, i.e., by (14) where t is replaced
with tk. The proposition is proved. �

It is convenient to label the above basis of At by the elements of the dihedral
group Wt:

σw =

{
σ
[k]
i if `(w) = k < nt and `(wsi) < `(w),

σ
[nt]
12 if `(w) = nt <∞

(18)

for w ∈Wt, where ` :W → Z≥0 is the length function.
The following result is an equivalent reformulation of Proposition 25.

Proposition 27. For each t ∈ C× the elements σw, w ∈ Wt form a Z[t + t−1]-
linear basis of At and the following relations are defining:

• If `(u) + `(v) > nt, then σuσv = 0.
• If u = · · · sjsi︸ ︷︷ ︸

k

, v = · · · sjsi︸ ︷︷ ︸
`

and k + ` ≤ nt and {i, j} = {1, 2}, then

σuσv =

[
k + `

k

]

t

σw

where w = · · · sjsi︸ ︷︷ ︸
k+`

(e.g., the right-hand side is 0 if k + ` = nt and k, ` > 0 ).

• If u = · · · s2s1︸ ︷︷ ︸
k

, v = · · · s1s2︸ ︷︷ ︸
`

and k + ` < nt, then

σuσv =

[
k + `− 1

k − 1

]

t

σw1
+

[
k + `− 1

`− 1

]

t

σw2

where
w1 = · · · s2s1︸ ︷︷ ︸

k+`

, w2 = · · · s1s2︸ ︷︷ ︸
k+`

.
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• If u = · · · s2s1︸ ︷︷ ︸
k

, v = · · · s1s2︸ ︷︷ ︸
`

and k + ` = nt, k ≤ `, then

σuσv =

[
nt − 1

k − 1

]

t

σw◦
= σw◦

where w◦ = · · · s2s1︸ ︷︷ ︸
nt

is the longest element of the (finite ) group Wt.

Note that when θ = t+ t−1 ∈ R, all structure constants of At are real numbers.
We can refine this as follows.

Corollary 28. The structure constants of At are nonnegative if and only if either
t = eπ

√
−1/n or t > 0.

Proof. Indeed, the structure constants are t-binomials, which are nonnegative for
t = eπ

√
−1/n or t > 0, since [m]t ≥ 0 for 1 ≤ m ≤ n. On the other hand, if, say,

n = nt <∞ but t is not of the form eπ
√
−1/n, then there exists 1 ≤ m ≤ n so that

[m]t < 0. �

Remark 6. The above corollary is just one of many hints pointing to the existence
of (possibly noncommutative, in view of nonintegrality of the structure constants)
complex-algebraic varieties serving as flag-manifolds for noncrystallographic finite
dihedral groups.

Let G be a complex Kac–Moody group with the Cartan matrix

(
2 −a12

−a21 2

)
,

where a12 and a21 are arbitrary positive integers (if a12a21 ≤ 3, then G is a finite-
dimensional simple Lie group of rank 2). Let t ∈ C× be such that t+t−1 =

√
a12a21.

In particular, the Weyl group of G is naturally isomorphic to Wt. Let B ⊂ G be
a Borel subgroup. It is well-known (see, e.g., [KK]) that the cohomology algebra
H∗(G/B) has a basis of Schubert classes [Xw], w ∈Wt.

The following is the main result of the section.

Theorem 29. Let G and B be as above and c1, c2 ∈ C× be any numbers such that
c1/c2 =

√
a12/a21 and Z[c1, c2] ⊃ Z[t+ t−1]. Then the association

[Xw] 7→ c
dk/2e
i c

bk/2c
3−i · σw (19)

for all w ∈ Wt, where i ∈ {1, 2} is such that `(wsi) < `(w) = k, defines a Wt-
equivariant isomorphism

H∗(G/B,Z[c1, c2]) →̃ Z[c1, c2]⊗At. (20)

Proof. It suffices to prove that (19) defines a Wt equivariant isomorphism

H∗(G/B,C) →̃ C⊗At. (21)
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Recall that the action of the Weyl group W of G on the root space QC =
C · α1 + C · α2 is given by:

si(αj) =

{
−αi if i = j,

αi + aij · αj if i 6= j,

for i, j ∈ {1, 2}.
It follows from [KK, Prop. 3.10] that the algebra H∗(G/B,Z) satisfies the fol-

lowing Chevalley formula:

[Xw][Xsi ] =
∑

w1,w2,j

ω∨
i (w

−1
2 (αj)) · [Xw1sjw2

], (22)

where the summation is over all w1, w2 ∈ W , and j ∈ {1, 2} such that w = w1w2,
`(w) = `(w1) + `(w2), and `(w1sjw2) = `(w) + 1. Here ω∨

i , i ∈ {1, 2}, denotes the
dual basis in Q∗ of the basis α1, α2.

In particular, if `(wsi) < `(w), then the only nonzero summand in the right-
hand side of (22) corresponds to w1 = 1 and w2 = w, and j such that `(sjw) =
`(w) + 1. Furthermore, if `(wsi) > `(w), then the right-hand side has two sum-
mands, first of which comes with w2 = 1, w1 = w, and the second with w1 = 1,
w2 = w. Therefore,

[X
· · · sjsi︸ ︷︷ ︸

k

][Xsi ] = ω∨
i (sisj · · · si′︸ ︷︷ ︸

k

(α3−i′))[X· · · sjsi︸ ︷︷ ︸
k+1

], (23)

[X
· · · sisj︸ ︷︷ ︸

k

][Xsi ] = [X
· · · sjsi︸ ︷︷ ︸

k+1

] + ω∨
i (sisj · · · si′︸ ︷︷ ︸

k

(α3−i′ ))[X· · · sisj︸ ︷︷ ︸
k+1

] (24)

for all k < nt and i, j such that {i, j} = {1, 2}, where i′ stands for the appropriate
index i or j (depending on k mod 2). In particular, if k = 1, we obtain:

[Xs1 ]
2 = ω∨

1 (s1(α2))[Xs2s1 ],

[Xs2 ]
2 = ω∨

2 (s2(α1))[Xs2s1 ],

[Xs1 ][Xs2 ] = [Xs1s2 ] + [Xs2s1 ]

which implies the following quadratic relation in H∗(G/B,Z):

a21[Xs1 ]
2 + a12[Xs2 ]

2 = a12a21[Xs1 ][Xs2 ]. (25)

To utilize the identities (23) and (24), we need the following obvious result.

Lemma 30. Let w = · · · sisj︸ ︷︷ ︸
k

∈Wt, where {i, j} = {1, 2}. Then

w(αi) = [k + 1− εk]tαi +

√
aji
aij

· [k + εk]tαj ,
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where t+ t−1 =
√
a12a21 and εk =

{
1 if k is odd,

0 if k is even.

By combining this lemma with (23), we obtain:

[X
· · · sjsi︸ ︷︷ ︸

k

][Xsi ] =

(√
aij
aji

)εk
[k + 1]t · [X· · · sjsi︸ ︷︷ ︸

k+1

], (26)

[X
· · · sisj︸ ︷︷ ︸

k

][Xsi ] = [X
· · · sjsi︸ ︷︷ ︸

k+1

] +

(√
aij
aji

)εk
[k + 1]t · [X· · · sisj︸ ︷︷ ︸

k+1

]. (27)

Furthermore, (26) implies that

[Xsi ]
k =

(√
aij
aji

)bk/2c
[k]t! · [X· · · sjsi︸ ︷︷ ︸

k

]. (28)

In turn, this implies that H∗(G/B,C) is generated by [Xs1 ], [Xs2 ], satisfying (25)
and the relations

[Xs1 ]
nt = [Xs2 ]

nt = 0 (29)

if nt <∞. Pick r1, r2 ∈ C× such that r1/r2 =
√
a21/a12 and define

ϕ : σ1 7→ r1[Xs1 ], ϕ : σ2 7→ r2[Xs2 ].

In view of the relation (25), we obtain

ϕ(σ1)
2 + ϕ(σ2)

2 =
√
a12a21 ϕ(σ1σ2).

Since t + t−1 =
√
a12a21, we conclude that ϕ preserves the defining quadratic

equation (10) ofAt. The equation (29) implies that ϕ preserves the last two relators
in (17) provided that n = nt < ∞. Thus, ϕ extends a surjective homomorphism
of algebras ϕ : C⊗At → H∗(G/B,C).

Clearly, this homomorphism is an isomorphism because it preserves the natural
Z-grading and because the respective graded components of both algebras are of
the same dimension. Furthermore, let us show that for each w ∈Wt one has:

ϕ(σw) = r
d`(w)/2e
i r

b`(w)/2c
j [Xw]

`(w) (30)

where i ∈ {1, 2} is such that `(wsi) < `(w) and {i, j} = {1, 2}. Indeed, if `(w) <
nt, then

ϕ(σw) = r
`(w)
i

1

[k]t!
[Xsi ]

`(w) = r
`(w)
i

(
rj
ri

)b`(w)/2c
[Xw]

`(w)

= r
d`(w)/2e
i r

b`(w)/2c
j [Xw]

`(w).
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If `(w) = nt < ∞ (i.e., w is the longest element of W ), then [nt]t = 0 and, using
(13) with k = 1 and (27) respectively, we obtain:

σws1σ1 = σw, [Xws1 ][Xs1 ] = [Xw].

Thus applying ϕ to the first of these relations, we obtain (taking into account that
r1 = r2 when nt is odd and using the already proved case of (30) with w′ = ws1,
i = 2):

ϕ(σw) = ϕ(σws1σ1) = ϕ(σws1 )ϕ(σ1)

= r
d(nt−1)/2e
2 r

b(nt−1)/2c
1 [Xws1 ]r1[Xs1 ] = (r1r2)

nt/2[Xw].

Finally, taking ri = 1/ci, i = 1, 2, we see that the isomorphism ϕ−1 is given by
(19) and its restriction to H∗(G/B,Z[c1, c2]) becomes (20). The W -equivariancy
of both ϕ and ϕ−1 follows. �

Remark 7. A computation of the rings H∗(G/B,Z) for rank 2 complex Kac–
Moody groups G appeared in [Kit, Sect. 10]. We are grateful to Shrawan Kumar
for this reference.

Remark 8. We can take

ci =

√
ai,3−i

gcd(a12, a21)
, i = 1, 2,

in Theorem 29. Then Z[c1, c2] ⊃ Z[t+t−1] because t+t−1 = c1c2 ·gcd(a12, a21). In
particular, if the Cartan matrix is symmetric, i.e., a12 = a21, then the isomorphism
(20) is over Z because c1 = c2 = 1 and Z[c1, c2] = Z[t+ t−1] = Z.

In view of Theorem 29, we will refer to the algebra At as the universal dihedral
cohomology and to the basis {σw} as the universal Schubert classes. Under under
various specializations of t it computes either cohomology rings of complex flag
manifolds associated with complex Kac–Moody groups, or cohomology rings of
“yet to be defined” flag-manifolds for noncrystallographic finite dihedral groups or
nondiscrete infinite dihedral groups.

We call a complex number t admissible if either

(1) (finite case) t = e±π
√
−1/n for some n ∈ Z>0, or

(2) (hyperbolic case) t is a positive real number.

Then for every admissible t, [k]t > 0 for all 0 ≤ k < nt. For an admissible t let

W
(i)
t = {w ∈ Wt | `(ws3−i) = `(w) + 1}, i = 1, 2.

Notation 31. Denote by B
(i)
t , i = 1, 2, the subalgebras of At generated by X(i) =

{σw | w ∈W
(i)
t }.

The subalgebras B
(i)
t play the role of the cohomology rings of the “Grassman-

nians” Yi, i = 1, 2 of spherical buildings Y modeled on (S1,Wt), where t is a

root of unity. It follows from Proposition 25 that X (i) is a basis of B
(i)
t , e.g.,
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dimB
(i)
t = |W (i)

t | = nt − 1, and that, moreover, the ring B
(i)
t is naturally isomor-

phic to the cohomology ring

H∗(CPn), n = nt.

Similarly, we will think of the algebra At, t = e±π
√
−1/n, as the cohomology ring

of the “flag manifold” Fl(Y ).

14. Belkale–Kumar type filtration of At

In this section, we construct a filtration on At (and its subalgebras B
(i)
t , i = 1, 2)

in the sense of Proposition 32, using a Belkale–Kumar type function ϕ :Wt → R.
In the case when t is the nth primitive root of unity, the associated graded algebra
At,0 = grAt will play the role of the Belkale–Kumar cohomology of spherical
buildings Y with finite Weyl group I2(n), which is “Poincaré dual” to the homology
pre-ring H∗(Fl(Y )) defined by the Schubert precalculus on Y .

Definition 6. Let k be a field and A be an associative k-algebra with a basis
{bx | x ∈ X} so that

bxby =
∑

z∈X
czx,ybz (31)

for all x, y ∈ X , where czx,y ∈ k are structure constants. Furthermore, given an
ordered abelian semi-group Γ (e.g., Γ = R), we say that a function ϕ : X → Γ is
concave if

ϕ(x) + ϕ(y) ≥ ϕ(z)

for all x, y, z ∈ X such that czx,y 6= 0.

Proposition 32. In the notation (31), for each concave function X → Γ we have:

(a) A is filtered by Γ via A≤γ :=
∑

x∈X :ϕ(x)≤γ
k · bx.

(b) The multiplication in the associated graded algebra A0 = grA is given by:

bx ◦ by =
∑

z∈X :ϕ(z)=ϕ(x)+ϕ(y)

czxybz. (32)

for all x, y ∈ X, where czxy ∈ k are the structure constants of A.

Proof. Part (a). Assume that ϕ(x) ≤ γ1, ϕ(y) ≤ γ2, i.e., bx ∈ A≤γ1 , by ∈ A≤γ2 .
Then each z such that czxy 6= 0 satisfies ϕ(z) ≤ ϕ(x) + ϕ(y) ≤ γ1 + γ2, i.e.,
bz ∈ Aγ1+γ2 . Therefore, bxby ∈ Aγ1+γ2 . This proves (a). Part (b) immediately
follows. �

Remark 9. The algebra A0 is the Belkale–Kumar degeneration of A. It was in-
troduced by Belkale and Kumar in [BKu] in the special case of cohomology rings
of flag-manifolds G/B, where G is a complex semisimple Lie group and B is its
Borel subgroup. In order to relate our definition to that of [BKu], note that,
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given a concave function ϕ, Belkale and Kumar define the deformation Aτ of
A = H∗(G/B,C) by

bx �τ by :=
∑

z∈X
τϕ(x)+ϕ(y)−ϕ(z)czxybz.

Setting τ = 1 one recovers the original algebra A, while sending τ to zero one
obtains the degeneration A0 = gr(A) of A.

Our goal is to generalize the function ϕ defined in [BKu] to the case of algebras
At (for admissible values of t), so that our function ϕ will specialize to the Belkale–
Kumar function in the case n = 3, 4, 6. Note that concavity of ϕ was proven in
[BKu] as a consequence of the complex-algebraic nature of the variety G/B. In our
case, such variety does not exist and we prove concavity by a direct calculation.

For t ∈ C× define the action of the dihedral groupWt on the 2-dimensional root
lattice

Q = Qt = Z[t+ t−1] · α1 + Z[t+ t−1] · α2

by:

si(αj) =

{
−αi if i = j,

αi + [2]t · αj if i 6= j

for i, j ∈ {1, 2}.
The above action extends to the weight lattice

Λ = Λt = Z[t+ t−1] · ω1 + Z[t+ t−1] · ω2

by:
si(ωj) = ωj − δij ι(αi)

for all i, j ∈ {1, 2}, which is consistent with (14). Here ι : Q → Λ is a Z[t + t−1]-
linear map given by:

ι(α1) = 2ω1 − (t+ t−1)ω2, ι(α2) = 2ω2 − (t+ t−1)ω1.

For each i ∈ {1, 2} define the map [ · ]i :Wt → Q recursively by [1]i = 0 and

[sjw]i = δijαi + sj([w]i).

Note that the map [ · ]i satisfies:

ι([w]i) = ωi − w(ωi).

Define the functions Φi :Wt → Z[t+ t−1], i = 1, 2, by

Φi(w) = |[w]i| (33)

where |g1α1 + g2α2| = g1 + g2.
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Proposition 33. For any w ∈Wt, i = 1, 2, we have:

Φi(w) =

{[
`(w)+1

2

]
q

if `(wsi) < `(w),[
`(w)
2

]
q

if `(wsi) > `(w),
(34)

where q = t1/2 and ` : W → Z is the word-length function on W with respect to
the generating set s1, s2. In particular, the function Φ := Φ1 + Φ2 is given by the
formula:

Φ(w) = ([`(w)]q)
2. (35)

Proof. We need the following obvious result:

Lemma 34. For each k ∈ Z denote

αk :=

{
α1 if k is odd,

α2 if k is even.

Let w = · · · sjsi︸ ︷︷ ︸
k

∈Wt, where {i, j} = {1, 2}. Then

w(αj) = [k]tαi+k + [k + 1]tαj+k , [w]i = αi + [2]tαi+1 + · · ·+ [k]tαi+k−1.

Proof. The assertion directly follows from Lemma 30 with a12 = a21 = t + t−1.
�

Furthermore, using the second identity of Lemma 34 we obtain for any w ∈Wt

with `(wsi) < `(w):

|[w]i| = [1]t + [2]t + · · ·+ [`(w)]t .

Using the fact that [m]t = [2m]q/[2]q for q = t1/2 and any m, we obtain

|[w]i| = [1]t + [2]t + · · ·+ [`(w)]t =
1

[2]q
([2]q + [4]q + · · ·+ [2`(w)]q)

=
1

[2]q
[`(w)]q [`(w) + 1]q ,

which proves (34), since Φi(w) = Φi(ws3−i) = |[w]i|.
We now prove (35). Indeed, for any w ∈ Wt let i be such that `(wsi) < `(w).

Applying part (34), we obtain:

Φ(w) = |[w]i|+ |[w]3−i| =
[
`(w) + 1

2

]

q

+

[
`(w)

2

]

q

= ([`(w)]q)
2 .

The proposition is proved. �

The following theorem is the main result of the section.
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Theorem 35. The functions

ϕi : X
(i) → R, ϕi(σw) = −Φi(w),

i = 1, 2, and
ϕ : X → R, ϕ(σw) = −Φ(w)

(see Proposition 33 ) are both concave in the sense of Definition 6; in particular,

they define filtrations on B
(i)
t and At, respectively, in the sense of Proposition 32.

Moreover, the equalities

ϕ(σu) + ϕ(σv) = ϕ(σw), ϕi(σu) + ϕi(σv) = ϕi(bw)

are achieved if and only if either:

1. For the function ϕ, u = 1 or v = 1, or `(u) + `(v) = `(w) = n, provided that
n <∞.

2. For the function ϕi, u = 1 or v = 1, or `(u) + `(v) = `(w) = n− 1, provided
that n <∞.

Proof. Recall that a function f : I → R defined on an interval I ⊂ R is called
superadditive (resp. subadditive) if

f(x+ y) ≥ f(x) + f(y), resp. f(x+ y) ≤ f(x) + f(y) (36)

for all x, y, x + y ∈ I . If f is convex, continuous, and f(0) = 0 then f is super-
additive on I = R+; see [HP, Theorem 7.2.5]. Moreover, it follows from the proof
of [HP, Theorem 7.2.5] that if f is strictly convex then (36) is a strict inequality
unless xy = 0.

Let t ∈ C be an admissible number, n := nt; let q := t1/2 so that q ∈ R+ if

t > 0 and q = e
√
−1Q, Q = π/2n if t is a root of unity. Define the functions

F (x) =

[
x+ 1

2

]

q

, 0 ≤ x ≤ n− 1,

G(x) := ([x]q)
2, 0 ≤ x ≤ n,

where x are nonnegative real numbers.

Proposition 36. The functions F and G are superadditive. Moreover, inequality
(36) is equality if and only if xy(n − 1 − x − y) = 0 (for the function F ) and
xy(n− x− y) = 0 (for the function G ).

Proof. We have

F (x) =
[x]q [x+ 1]q

[2]q
=

f(x)

(q − q−1)2(q + q−1)
, f(x) = (qx − q−x)(qx+1 − q−x−1),

G(x) =
g(x)

(q − q−1)2
, g(x) = (qx − q−x)2.
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In particular, F (0) = G(0) = 0.
We first consider the hyperbolic case (i.e., q > 0). Then the denominators of

both F and G are positive and numerators are equal to

f(x) = q2x+1 + q−2x−1 − q − q−1, g(x) = q2x + q−2x − 2.

It is elementary that both functions are strictly convex on [0,∞) because f ′′(x) > 0
and g′′(x) > 0. Hence, F and G are superadditive with equality in (36) if and only
if xy = 0.

We therefore assume now that q is a root of unity. One can check that in this
case F and G are neither convex nor concave on their domains, so we have to use
a direct calculation in order to show superadditivity. The denominators of the
functions F and G are both negative since they equal to −8 sin2(Q) cos(Q) and
−4 sin2(Q), respectively.

Consider the functions f(x) and g(x). It is easy to see that

f(z)− f(x)− f(y) = (qx − q−x)(qy − q−y)(qx+y+1 + q−x−y−1),

g(z)− g(x)− g(y) = (qx − q−x)(qy − q−y)(qz + q−z).

Therefore, if x, y, z ∈ [0, n− 1] with z = x+ y then:

f(z)− f(x)− f(y) ≤ 0

with equality if and only if xy(n− 1− z) = 0 and

g(z)− g(x)− g(y) ≤ 0

with equality if and only if xy(n− z) = 0 because

(qx − q−x)(qy − q−y) = −4 sin(Qx) sin(Qy) ≤ 0, qu + q−u = 2 cos(Qu) ≥ 0

for any x, y, u ∈ [0, n].

Thus both functions f and g are subadditive. Since the denominators in F and
G are constant and negative, these functions are superadditive with equality in
(36) if and only if xy = 0 or x+ y = n− 1 (for F ) and x+ y = n (for G). �

We can now finish the proof of Theorem 35. We have

Φi(w) := |[w]i| = F (`(w)), w ∈W (i), 0 ≤ `(w) ≤ n− 1

and
Φ(w) = |[w]1|+ |[w]2| = G(`(w)), w ∈W, 0 ≤ `(w) ≤ n.

Observe that, since At is graded by the length function of Wt,

cwuv 6= 0 ⇒ `(w) = `(u) + `(v),

where cwuv are the structure constants:

σu · σv =
∑

w

cwuvσw.

Therefore, superadditivity of the functions F and G is equivalent to concavity
of the functions ϕ = −Φ and ϕi = −Φi. The equality cases in Theorem 35
immediately follow as well. �
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Corollary 37. The rings At and B
(i)
t , i = 1, 2, admit Belkale–Kumar degenera-

tions gr(At) and gr(B
(i)
t ) given by the functions ϕ and ϕi, respectively.

Remark 10. We do not know a natural topological interpretation for the rings

gr(At) and gr(B
(i)
t ).

15. Interpolating between homology pre-ring and the ring gr(At)

Let k be a field. In this section we construct an interpolation between the

homology pre-rings H∗(X, k̂), H∗(Xl, k̂) and the k-algebras gr(At), gr(B
(l)
t ), t =

eπ
√
−1/n, which are the Belkale–Kumar degenerations of At, B

(l)
t introduced in

Section 14. Thereby, we link the geometrically defined homology pre-rings and the
algebraically defined cohomology rings of X,Xl, l = 1, 2.

Below we again abuse the terminology and use the notation ∞ for the infinity
in the one-point compactification of R and for the element of k̂. Accordingly, we
equip k with the discrete topology and set

lim
τ→∞

f(τ)a = ∞,

whenever a ∈ k× and limτ→∞ f(τ) = ∞.

1. Interpolation for At. Using the Belkale–Kumar function ϕ = −Φ as in the
previous section, we define the (trivial) family of algebras At,τ as in Remark 9,
with multiplication given (for τ > 0) by

σu �τ σv :=
∑

w:`(w)=`(u)+`(v)

τϕ(u)+ϕ(v)−ϕ(w)cwuvσw,

where cwuv are the structure constants in At. Then, as τ → 0, the algebra At,τ
degenerates to gr(At). Now, let τ → ∞. Recall that ϕ(u)+ϕ(v)−ϕ(w) > 0 unless
it equals to zero (Proposition 36); the latter corresponds to the degenerate cases,
i.e., products of Poincaré dual classes σu, σv or classes where σu = 1 or σv = 1.
Therefore, the limit pre-ring At,∞ has structure constants ĉwuv equal to 0, 1,∞.

Here ĉwuv = 0 occurs unless `(w) = `(u) + `(v), and u, v, w ∈ W (i), i = 1, 2; in
the latter case ĉwuv = ∞ except for the degenerate cases, in which the structure
constants are equal to 1. Hence, in view of Proposition 18, we obtain a degree-
preserving isomorphism of pre-rings At,∞ ∼= H∗(X, k̂) given by

σw 7→ Cw◦w, w ∈W.

2. Interpolation for B
(l)
t , l = 1, 2. The argument here is identical to the case of

At, except the isomorphism is given by

σw 7→ Cn−1−r ∈ H∗(Xl, k̂), r = `l(w). (37)

We conclude that the relation between H∗
BK(X,k) := gr(At) and H∗(X, k̂) is

that of “mirror partners”: they are different degenerations of a common ring At.
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16. Strong triangle inequalities

In this section we introduce a redundant system of inequalities equivalent to
WTI. This equivalence will be used in the following section.

Let W = I2(n) with the affine Weyl chamber ∆ ⊂ R2, k a field and k̂ the
corresponding pre-ring. Define the subset

ΣA,m ⊂Wm

consisting of m-tuples (u1, . . . , um) of elements of W so that
∏

i

Cui
= a · C1, a ∈ k̂×, (38)

in the pre-ring H∗(X, k̂), where X is a thick spherical building with the Weyl
group W satisfying Axiom A. We then define cones K(ΣA,m) ⊂ ∆m by imposing
the inequalities ∑

i

u−1
i (λi) ≤∆∗ 0

for the m-tuples (u1, . . . , um) ∈ ΣA,m. We will refer to the defining inequalities of
K(ΣA,m) as Strong Triangle Inequalities, or STI.

Recall that Km = Km(X) ⊂ ∆m is the Stability Cone of X , cut out by the
inequalities WTI; see Section 12. Then, clearly,

K(ΣA,m) ⊂ Km
since the system STI contains the WTI. The following is the main result of this
section:

Theorem 38.
K(ΣA,m) = Km.

Proof. Observe that ui 6= 1 for i = 1, . . . ,m, for otherwise the product in the
left-hand side of (38) is zero. We first establish some inequalities concerning the
relative lengths of elements of W :

Proposition 39. Let wi ∈ W \ {1}, i = 1, . . . ,m, be such that

m∏

i=1

Cwi
= C1

in the pre-ring H∗(X, k̂). Then for k = 1, 2, we have:

m∑

i=1

`k(wi) ≥ (m− 1)(n− 1).

In other words, for ri := `k(wi),

m∏

i=1

Cri 6= 0

in the pre-ring H∗(Xk, k̂).
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Proof. Let ui, u ∈W (j) be such that

s∏

i=1

Cui
= aCu, a 6= 0,

in the pre-ring H∗(X, k̂). Then

s∑

i=1

(n− `(ui)) = n− `(u).

Since `(ui) = `k(ui) + δjk , `(u) = `k(u) + δjk , it follows that

s∑

i=1

`k(ui) = `k(u) + (s− 1)(n− δjk). (39)

We next observe that if wi ∈W (j), then

m∏

i=1

Cwi

is never a nonzero multiple of C1. Hence, after permuting the indices, for the
elements wi as in the proposition, we obtain:

w1, . . . , wm′ ∈ W (1), wm′+1, . . . , wm ∈W (2)

and for m = m′ +m′′, we have 1 ≤ m′,m′′ ≤ m− 1. Therefore,

m′∏

i=1

Cwi
= a′Cw′ ,

m∏

i=m′+1

Cwi
= a′′Cw′′ , (40)

where a′, a′′ 6= 0 in k̂, and w′ ∈W (1), w′′ ∈ W (2). Moreover,

Cw′Cw′′ = C1

in H∗(X, k̂). Therefore, by applying equations (39) to the product decompositions
(40), we obtain

m∑

k=1

`k(wi) = `k(w
′) + `k(w

′′) +mn− 2n+ 1−M

where M = m′δ1k +m′′δ2k ≤ m− 1. Since `(w′) + `(w′′) = n, it follows that

`k(w
′) + `k(w

′′) = n− δ1k − δ2k = n− 1.

Hence, we obtain

m∑

k=1

`k(wi) = (m− 1)n−M ≥ (m− 1)(n− 1). �

998



STABILITY INEQUALITIES AND UNIVERSAL SCHUBERT CALCULUS

We are now ready to prove the theorem. We have to show that every
−→
λ =

(λ1, . . . , λm) ∈ Km satisfies the inequality

m∑

i=1

w−1
i (λi) ≤∆∗ 0

for every (w1, . . . , wm) ∈ ΣA,m. The latter is equivalent to two inequalities

m∑

i=1

〈λi, wi(ζk)〉 =
m∑

i=1

〈w−1
i (λi), ζk〉 ≤ 0, k = 1, 2,

where ζk, k = 1, 2 are the vertices of the fundamental domain ∆sph ⊂ S1 of W .
Suppose that this inequality fails for some k and an m-tuple (u1, . . . , um) ∈

ΣA,m. Since
−→
λ ∈ Km, according to Theorem 19, there exists a semistable weighted

configuration ψ = (µiξi) in X of the type
−→
λ , so that the points ξi belong to

mutually antipodal spherical chambers ∆1, . . . ,∆m in X . Since

m∏

i=1

Cwi
= C1,

for ri := `k(wi), by combining Corollary 15 and Proposition 39, we see that the
intersection

m⋂

i=1

Cri(∆i)

contains a vertex η of type ζk. Thus, as in the proof of Theorem 19,

slopeψ(η) = −
∑

j

〈λj , wj(ζk)〉 < 0.

This contradicts the semistability of ψ. �

17. Triangle inequalities for associative commutative algebras

We now put the concept of stability inequalities into a more general context
by associating a system of monoids Km(A) (generalizing the Stability Cones) to
certain commutative and associative rings (which generalize the rings At). One
advantage of this formalism is to eliminate dependence on the existence of the
longest element w◦ ∈ W and to get more natural sets of inequalities. We also es-
tablish linear isomorphisms of conesKm(At) (defined “cohomologically”) applying
the above formalism to the algebras At and the Stability Cones Km+1(Y ) (defined
“homologically”). We conclude this section by showing that the system WTI is
irredundant.

Let Λ be a free abelian group (or a free module over an integral domain).

Definition 7. We say that a family of sub-monoids Km ⊂ Λm+1, m ≥ 1 is coher-
ent if:
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(1) The natural Sm-action on the first m-factors of Λm+1 preserves Km.
(2) For any (λ1, . . . , λm;µ) ∈ Λm+1 and 0 < ` < m the following are equivalent:

• (λ1, . . . , λm;µ) ∈ Km.
• There exists µ′ ∈ Λ such that (λ1, . . . , λm;µ′) ∈ Km and

(µ′, λm+1, . . . , λ`;µ) ∈ K`+1−m.

This definition is a natural generalization of the Stability Cone Km+1(Y ) (which
describes m+1-tuples of ∆-valued side-lengths of polygons in Euclidean buildings
Y (see Section 5). The first property generalizes the fact that the existence of
a polygon with the ∆-side-lengths (λ1, . . . , λm+1) is equivalent to the existence
of a polygon with the ∆-side-lengths (λσ(1), . . . , λσ(m), λm+1), where σ ∈ Sm is a
permutation. The second property generalizes the fact that gluing polygons in Y

along a common side produces a new polygon.
Below we will interpret a coherent family of sub-monoids as above, as a com-

mutative and associative (multivalued) operad.
For any subsets S ⊂ Λm+1 = Λm × Λ, S′ ⊂ Λ`+1 = Λ × Λ` define the set

S′ ◦ S′ ⊂ Λm+k = Λm × Λ` to be the set of all (λ, λ′) ∈ Λm × Λ` such that there
exists µ ∈ Λ such that (λ, µ) ∈ S and (µ, λ′) ∈ S′. In other words, if we regard
S, S′ as correspondences Λm → Λ and Λ → Λ`, then S ◦ S′ is their composition.
The following is immediate:

Lemma 40. The second coherence condition is equivalent to:

Km ◦K` = Km+`−1

for all m, ` ≥ 1.

The following result is obvious.

Lemma 41. If Km, m ≥ 0 is a coherent family, then each Km, m ≥ 3, is the
set of all (λ1, . . . , λm;µ) ∈ Λm+1 such that there exists a sequence µ1, . . . , µm = µ
of elements in Λ such that: (λ1, λ2;µ1) ∈ K2 and (µk, λk+2;µk+1) ∈ K2 for k =
1, . . . ,m− 1.

We explain the naturality of the coherence condition below. To any submonoid
Km ⊂ Λm+1, m ≥ 1 we associate an m-ary operation on subsets of Λ as follows.
For any subsets S1, S2, . . . , Sm ⊂ Λ define S1 •S2 • · . . .•Sm ⊂ Λ+ to be the image
of the intersection S1 × · · · × Sm × Λ ∩Km under the projection to the (m+ 1)st
factor. In particular, if each Si = {λi} is a single element set, then

λ1 • · · · • λm = {µ ∈ Λ+ | (λ1, . . . , λm;µ) ∈ Km}.

In general,

S1 • · · · • Sm =
⋃

(λ1,...,λm)∈S1×···×Sm

λ1 • · · · • λm.

Lemma 42. If a family of submonoids Km ⊂ Λm+1, m ≥ 1 is coherent, then the
above operations are:
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(a) commutative, i.e., Sσ(1) • · · · • Sσ(m) = S1 • · · · • Sm for any permutation σ
of {1, . . . ,m};

(b) associative, i.e., S1 • · · ·•Sk • (Sk+1 • · · ·•S`)•S`+1 • · · ·•Sm = S1 • · · ·•Sm
for all 1 ≤ k ≤ ` ≤ m (i.e., informally speaking, these operations comprise
a symmetric associative operad; see e.g., [MSS] ).

Proof. Part (a) is an obvious consequence of the first coherence condition.
We will now prove (b). Because of the already established commutativity, it

suffices to verify the assertion for k = 0. Also it suffices to proceed in the case
when each Si = {λi} is a one-element set. That is, it suffices to prove that

(λ1 • · · · • λ`) • λ`+1 • · · · • λm = λ1 • · · · • λm.

The left-hand side is the set of all µ ∈ Λ such that (µ′, λ`+1, . . . , λm;µ) ∈ Km+1−`
for some µ′ ∈ Λ satisfying (λ1, . . . , λ`;µ) ∈ K`. By the second coherence condition,
this is the set of all µ ∈ Λ such that (λ1, . . . , λm;µ) ∈ Km. But this set is exactly
the right-hand side of the above equation. This proves (b).

The lemma is proved. �

We now construct families of monoids associated with some associative com-
mutative algebras. Let � be a partial order on Λ compatible with the addition.
This is equivalent to choosing a submonoid M ( the “positive root cone”) such
that −M ∩ M = {0}, so that λ � µ if and only if µ − λ ∈ M (therefore,
M = {λ ∈ Λ : 0 � λ}).

Let A be a commutative associative k-algebra as in Section 14 with the basis
labeled by a set X ⊂ End(Λ) (i.e., the basis acts linearly on Λ). We define the
structure coefficients cyx1,...,xm

∈ k via

bx1
· · · bxm

=
∑

y∈X
cyx1,...,xm

by

for all x1, . . . , xn ∈ X .
Given this data, we define:

• The dominant cone Λ+ to be the set of all λ ∈ Λ such that x(λ) � λ for all
x ∈ X .

• For each m ≥ 0 a subset Km(A) ⊂ Λm+1
+ = Λm+ × Λ+ to be the set of all

(λ1, . . . , λm;µ) ∈ Λm+1
+ such that

y(µ) � x1(λ1) + · · ·+ xm(λm) (41)

for all x1, . . . , xm, y ∈ X such that cyx1,...,xm
6= 0 (with the convention that

K0(A) = Λ+).

The following is immediate:

Lemma 43. The set Km(A) is a submonoid of Λm+1 invariant under the Sm-
action on the first m factors.
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Lemma 44. In the notation of Lemma 40 we have:

Km(A) ◦Kl(A) ⊆ Km+l−1(A) (42)

for all m, l ≥ 1.

Proof. Indeed, let (λ1, . . . , λm+l−1;µ) ∈ Km(A)◦Kl(A). This means that there ex-
ists µ1 ∈ Λ+ such that (λ1, . . . , λm;µ1) ∈ Km(A) and (µ1, λm+1, . . . , λm+l−1;µ) ∈
Kl(A). Or, equivalently,

y1(µ1) � x1(λ1) + · · ·+ xm(λm),

y(µ) � y′1(µ1) + xm+1(λm+1) + · · ·+ xm+l−1(λm+l−1)
(43)

for all x1, . . . , xm+l−1, y1, y ∈ X such that cy1x1,...,xm
6= 0 and cyy′

1
,xm+1,...,xm+l−1

6= 0.

Now fix arbitrary x1, . . . , xm+l−1, y ∈ X such that cyx1,...,xm+l−1
6= 0. Because of

the associativity of multiplication in A this implies the existence of y1 such that
cy1x1,...,m 6= 0 and cyy1,xm+1,...,xm+l−1

6= 0. Therefore, we can take y′1 = y1 in (43) and
add the inequalities (43). Hence, after canceling the term y1(µ1), we obtain

y(µ) � x1(λ1) + · · ·+ xm+l−1(λm+l−1).

The latter inequality holds for all x1, . . . , xm+l−1, y ∈ X such that cyx1,...,xm+l−1
6=

0, hence (λ1, . . . , λm+l−1;µ) ∈ Km+l−1(A). The lemma is proved. �

Thus, in view of Lemmas 40, 43, and 44 the coherence ofKm(A), m ≥ 1 depends
entirely on whether or not the inclusion (42) is an equality.

Problem 45. Classify all commutative and associative algebras A with basis la-
beled by X ⊂ End(Λ) such that

Km(A) ◦Kl(A) ⊇ Km+l−1(A). (44)

We now specialize to the case associated with finite dihedral Weyl groups. Let
W = Wt, where t = eπ

√
−1/n, acting on the 2-dimensional real vector space V .

We assume that R⊗ Λ = V ∗; let M = ∆∗ ⊂ V ∗ be the dual cone to the positive
(affine) Weyl chamber ∆ ⊂ V of W (with respect to the simple roots α1, α2), i.e.,
∆∗ = {µ | 〈λ, µ〉 ≥ 0, ∀λ ∈ ∆}). We take the based ring A := At, with the basis

{σw|w ∈ Wt}; accordingly, we take the based rings B(i) := B
(i)
t , i = 1, 2. Thus, for

ζ ∈ V , λ ∈ R⊗ Λ, we have

〈σw(λ), ζ〉 = 〈w−1(λ), ζ〉 = 〈λ,w(ζ)〉.

Let A0, B
(i)
0 be the associated graded algebras of A,B(i) with respect to the

filtrations defined by the concave function ϕ, ϕi given by (33) as in Theorem 35.
Define

Km(B) = Km(B(1)) ∩Km(B(2)), Km(B0) = Km(B
(1)
0 ) ∩Km(B

(2)
0 ).

Clearly,

Km(A) ⊂ Km(B) ⊂ Km(B0), Km(A) ⊂ Km(A0) ⊂ Km(B0).

The following is the main result of the section. This is an analogue of the
main result of [BKu] in the context of arbitrary finite dihedral groups. Recall that
λ∗ = −w◦λ; see (2).
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Theorem 46. Assume that t = eπ
√
−1/n. Then for each m ≥ 2 we have:

Km(B0) = Km(B) = Km(A0) = Km(A).

Moreover, the above cones are isomorphic to the Stability Cone Km+1(Y ) for any
thick spherical building Y with the Weyl group W via the linear map

Θ : (λ1, . . . , λm;µ) 7→ (µ1 = λ∗1, . . . , µm = µ∗
m, µm+1 = µ).

Proof. Our goal is to relate the defining inequalities for the cone Km(A) to Strong
Triangle Inequalities; it will then follow that

Km(B0) = Km(A).

Set PD(w) = w◦w in W . Observe that for u1, . . . , um, v ∈W and λ1, . . . , λm, µ ∈
V ∗,

m∑

i=1

σui
(λi) ≥∆∗ σv(µ) ⇐⇒

m∑

i=1

u−1
i (λi) ≥∆∗ −v−1w◦µ

∗ = −PD(v)−1µ∗ ⇐⇒

m∑

i=1

u−1
i (λi) + PD(v)−1µ∗ ≥∆∗ 0 ⇐⇒

m+1∑

i=1

u−1
i (λi) ≥∆∗ 0

where um+1 := PD(v) and λm+1 := µ∗. Setting wi := PD(ui), µi := λ∗i , we see
that

m+1∑

i=1

u−1
i (λi) ≥∆∗ 0 ⇐⇒

m+1∑

i=1

w−1
i (µi) ≤∆∗ 0.

Moreover,

cvu1,...,um
6= 0 in A ⇐⇒

cw◦

u1,...,um+1
6= 0 in A ⇐⇒

m+1∏

i=1

Cwi
= aC1, a 6= 0 in H∗(Y, k̂). (45)

Recall that the system of inequalities

m+1∑

i=1

w−1
i (µi) ≤∆∗ 0, ∀(w1, . . . , wm+1), so that (45) holds
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is the system of Strong Triangle Inequalities. Therefore, the maps ui 7→ PD(ui),
i = 1, . . . ,m+ 1, and

(λ1, . . . , λm;µ) 7→ (µ1 = λ∗1, . . . , µm = µ∗
m, µm+1 = µ)

determine a natural bijection between the set of defining inequalities for the cone
Km(A) and the set of Strong Triangle Inequalities. Similarly, we obtain a bi-
jection between the defining inequalities of Km(B0) and the set of Weak Triangle
Inequalities. However, Strong Triangle Inequalities and Weak Triangle Inequalities
determine the same cone, the Stability Cone Km+1; see Theorem 38. Therefore,
the map

Θ : (λ1, . . . , λm;µ) 7→ (µ1 = λ∗1, . . . , µm = µ∗
m, µm+1 = µ)

determines the linear isomorphisms of the cones

Km(A) → Km+1, Km(B0) → Km+1.

In particular, Km(A) = Km(B) = Km(B0). The theorem follows. �

Corollary 47. Km(A) is invariant under ∗ : λ → λ∗, λ ∈ ∆.

Proof. Let Y be a thick spherical building as above. Then ∗ extends to an isometry
∗ : Y → Y . Since isometries preserve the (semi)stability condition, it follows that
Km+1 = Km+1(Y ) is invariant under ∗. Since Θ is ∗-equivariant, it follows that
Km(A) is invariant under ∗ as well. �

Corollary 48. For the algebra A as above we have

Km(A) ◦Kl(A) = Km+l−1(A).

Proof. LetY denote a thick Euclidean building modeled on (R2,W ). In view of the
above theorem, we can interpret Kk(A) as the set of m+ 1-tuples (λ1, . . . , λm;µ)
which are ∆-valued side-lengths of “disoriented” geodesic k+1-gons P = y0 . . . yk
in Y, so that

d∆(yi−1, yi) = λi, 1 ≤ i ≤ k, d∆(y0, yk) = µ.

(Note that the last side of P has the orientation opposite to the rest.) For k =
m+l−1, subdivide such a polygon by the diagonal y0yl in two disoriented polygons

P ′ := y0y1 . . . yl, P ′′ = y0yl . . . yk.

Then the ∆-side lengths of these polygons are given by the tuples

(λ1, . . . , λl;µ
′) ∈ Kl(A), (µ′, λl+1, . . . , λk;µ

′′) ∈ Km(A),

where
µ′ = d∆(y0, yl), µ′′ = µ.

Hence, Km+l−1(A) ⊂ Km(A) ◦Kl(A). �
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Theorem 49. The system of inequalities (1) is irredundant.

Proof. The system of inequalities (1) is nothing but the linear system

〈w(λi − λ∗j ), ζl〉 ≤
〈 ∑

k 6=i,k 6=j
λ∗k, ζl

〉
, l = 1, 2, w ∈ W. (46)

Fix regular vectors λl ∈ ∆, l = 1, . . . ,m, l 6= i, l 6= j (i.e., vectors from the
interior of the Weyl chamber ∆); then pick a vector λj ∈ ∆ so that the distance
from λj to the boundary of ∆ is at least |λ∗K |, where

λ∗K :=
∑

k 6=i,j
λ∗k.

Note that the vector λ∗K is again regular. Set

P = Pλ1,...,λi−1,λi+1,...λm
= λ∗j +Hull(W · λ∗K) ⊂ ∆.

Here Hull denotes the convex hull in R2. Then, for fixed λl, l 6= i as above, the
solution set to the Weak Triangle Inequalities (1) is exactly the polygon P . Since
λ∗K is regular, P is a 2m-gon. Moreover, for each side of P exactly one of the
defining inequalities (46) is an equality. �

Belkale–Kumar inequalities

In the context of complex algebraic reductive groups G, Belkale and Kumar [BKu]
gave a certain description of the Stability Cone Km+1 using the rings H∗

BK(G/P ),
where P runs through the set of standard maximal parabolic subgroups ofG, corre-
sponding to the fundamental weights. In the context of rank 2 spherical buildings
X , using our language, the system of Belkale–Kumar inequalities, imposed on
vectors

(λ1, . . . , λm;µ) ∈ ∆m+1,

reads as follows: For every (x1, . . . , xm; y) ∈ (W (k))m+1, k = 1, 2, so that cyx1,...,xm
6=

0 in gr(B(k)), we impose the inequality:

m∑

i=1

〈ζl, xi(λi)〉 ≥ 〈ζl, y(µ)〉.

We now observe that under the map H∗(Xk, k̂) → H∗
BK(Xl,k) := gr(B(k)),

determined by the inverse to the map (37), the “infinities” in H∗(Xk, k̂) correspond
to zeroes in H∗

BK(X,k). Accordingly, the structure constants equal to 1 match
structure constants equal to 1. Since the system WTI is irredundant, we conclude
that the system of Belkale–Kumar inequalities for W = I2(n) is also irredundant.
Hence, Theorem 49 is an analogue (for W = I2(n)) of a much deeper theorem by
N. Ressayre [Re], who proved the irredundancy of Belkale–Kumar inequalities for
arbitrary reductive groups.

1005



ARKADY BERENSTEIN AND MICHAEL KAPOVICH

References

[B] W. Ballmann, Lectures on Spaces of Nonpositive Curvature, DMV Seminar, Vol.
25, Birkhauser Verlag, Basel, 1995.

[BK] A. Berenstein, M. Kapovich, Affine buildings for dihedral groups, Geometria Ded-
icata, to appear.

[BKu] P. Belkale, S. Kumar, Eigenvalue problem and a new product in cohomology of

flag varieties, Invent. Math. 166 (2006), no. 1, 185–228.

[BS] A. Berenstein, R. Sjamaar, Projections of coadjoint orbits, moment polytopes, and

the Hilbert–Mumford criterion, J. Amer. Math. Soc. 13 (2000), 433–466.

[BH] M. Bridson, A. Haefliger, Metric Spaces of Nonpositive Curvature, Grundlehren
der Mathematischen Wissenschaften, Vol. 319, Springer-Verlag, Berlin, 1999.

[C] C. Ramos-Cuevas, Generalized triangle inequalities in thick Euclidean buildings

of rank 2, preprint, arXiv:1009.1316v1, 2010.

[FS] M. Funk, K. Strambach, Free constructions, in: Handbook of Incidence Geometry,
North-Holland, Amsterdam, 1995, pp. 739–780.

[HP] E. Hille, R. Phillips, Functional Analysis and Semi-Groups, 3d printing of the
revised edition of 1957, American Mathematical Society Colloquium Publica-
tions, Vol. XXXI, American Mathematical Society, Providence, RI, 1974. Russian
transl.: �. Hille, R. Fillips, Funkcional~ny� analiz i polugruppy, IL,

M., 1962.

[H] H. Hiller, Geometry of Coxeter groups, Research Notes in Mathematics, Vol. 54,
Pitman, Boston, 1982.

[KLM1] M. Kapovich, B. Leeb, J. Millson, Convex functions on symmetric spaces, side

lengths of polygons and the stability inequalities for weighted configurations at

infinity, J. Diff. Geom. 81 (2009), 297–354.

[KLM2] M. Kapovich, B. Leeb, J. Millson, Polygons in buildings and their refined side

lengths, Geom. Funct. Anal. 19 (2009), no. 4, 1081–1100.

[KLM3] M. Kapovich, B. Leeb, J. Millson, The Generalized Triangle Inequalities in Sym-

metric Spaces and Buildings with Applications to Algebra, Memoirs of AMS, Vol.
192, 2008.

[Kit] N. Kitchloo, On the topology of Kac–Moody groups, preprint, arXiv:0810.0851,
2008.

[KL] B. Kleiner, B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Eu-

clidean buildings, Publ. Math. Inst. Hautes Études Sci. 86 (1997), 115–197.

[K] A. Klyachko, Stable bundles, representation theory and Hermitian operators, Se-
lecta Math. 4 (1998), 419–445.

[KK] B. Kostant, S. Kumar, The nil Hecke ring and the cohomology of G/P for a Kac–

Moody group G, Adv. Math. 62 (1986), 187–237.

[KT] L. Kramer, K. Tent, Algebraic polygons, J. Algebra 182 (1996), no. 2, 435–447.
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