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Abstract. In this paper we present a problem list pertaining to discrete subgroups of Lie groups and their

computational aspects, consisting mostly of the problems collected during the ICERM workshop “Computational
Aspects of Discrete Subgroups of Lie Groups” held in June of 2021.

In this paper we present a problem list, consisting mostly of the problems collected during the ICERM
workshop held in June of 2021. However, some of the problems are older, some of these go back to the 1970s.
Many of the problems are purely theoretical, while some have an obvious computational flavor.

1. Background

In this section we collect definitions and basic facts about abstract groups and discrete subgroups of Lie
groups that are used in what follows.

Group theory. We begin with a discussion of some group-theoretic notions. Most of these notions deal
with the subgroup structure of abstract groups.

An abstract group G is said to satisfy a property P virtually if there exists a finite-index subgroup of G
which satisfies P.

An abstract group G is said to be a surface group if it is isomorphic to the fundamental group of a closed
(i.e. compact with empty boundary) surface of negative Euler characteristic.

An abstract group G is said to be coherent if every finitely generated subgroup of G is also finitely-
presentable.

A subgroup H of a group G is called maximal if there is no proper subgroup between H and G. Some
maximal subgroups have finite index in G (for instance, subgroups of prime index are always maximal). Of
interest to us are maximal subgroups of infinite index; we will refer to these as strictly maximal.

A group G is said to satisfy the Howson property if the intersection of any two finitely generated subgroups
is again finitely generated.

The property is named after A. G. Howson, who proved in [31] that free groups satisfy this property. In
contrast, if Fr is the free group of rank r ≥ 2, then Fr × Z does not satisfy the Howson property (see Example
1.1 below). In particular, SL(n,Z), n ≥ 4, does not satisfy the Howson property either (since it always contains
Fr × Z). On the other hand, all discrete subgroups of PSL(2,R) satisfy the Howson property (see e.g. [27] for
surface groups). More generally, every finitely generated discrete subgroup of PSL(2,C) which is not a lattice
satisfies the Howson property; see e.g. [30].

Even more generally, if Γ1,Γ2 are geometrically finite subgroups of a discrete subgroup Γ in a rank 1 Lie
group (see below), then the intersection Γ1 ∩Γ2 is again geometrically finite, hence, finitely generated. A proof
of this result again appears in Hempel’s paper [30]: While he only works with discrete subgroups of PSL(2,C),
his proof is also valid for subgroups of other rank 1 Lie groups. In contrast, the Howson property fails for all
lattices in PSL(2,C): It was noted by Hempel in [30] that the property fails for the fundamental groups of
3-dimensional manifolds fibering over the circle. Due to the work of Agol and Wise, it is known that all finite
volume hyperbolic 3-manifolds admit finite-sheeted covering spaces which fiber over the circle.
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Distortion. Let G,H be finitely generated groups equipped with word metrics dG, dH respectively. Assume
that H is a subgroup of G. Then the distortion function δ(n) for the inclusion map H → G is defined as follows:

δ(n) = max{dH(1, h)) : h ∈ H, dG(1, h) ≤ n}.
For instance, δ(n) is linear if and only if the inclusion H → G is bi-Lipschitz, i.e. there exists a constant A such
that

dH(1, h) ≤ AdG(1, h)

for all h ∈ H. Subgroups with linear distortion are said to be undistorted. The same concept applies in the case
of an isometric group action H ×X → X of a finitely generated group H on a metric space X. The distortion
function (relative to a point x ∈ X) of this action is

δx(n) = sup{dH(1, h)) : h ∈ H, dX(x, hx) ≤ n}.

Geometric finiteness. We now turn to the discussion of discrete subgroups of Lie groups.

Many problems which are open for higher rank lattices (and their subgroups) are well-understood in the
case of discrete subgroups of rank 1 Lie groups G, or, at least, for geometrically finite subgroups of G. Hence,
we begin by reviewing some elements of the theory of discrete subgroups of rank 1 Lie groups.

Geometric finiteness. Let G be a rank 1 Lie group (with finite center and finitely many connected
components). Then the symmetric space corresponding to G is the quotient X = G/K, where K < G is a
maximal compact subgroup. One equips X with the projection of a Riemannian metric on G which is K-
right-invariant and G-left-invariant. The Riemannian manifold X is then complete, simply-connected and has
sectional curvature in some interval [−b,−a], where a > 0. A subgroup Γ < G is discrete if and only if it acts
properly discontinuously on X.

There are two most tractable classes of discrete subgroups Γ < G: Convex-cocompact and, more generally,
geometrically finite.

Definition 1.1. A discrete subgroup Γ < G is said to be convex-cocompact if there exists a nonempty
closed convex Γ-invariant subset C ⊂ X such that C/Γ is compact.

Every convex-cocompact subgroup is finitely-presentable and, moreover, is Gromov-hyperbolic. Examples
of convex-cocompact subgroups are given, for instance, by uniform lattices in Γ. We refer the reader to the
surveys [32, 34] for other interesting examples.

Here is a useful criterion of convex cocompactness: A subgroup Γ < G is convex-cocompact if and only if
the following two properties hold (see [12]):

(a) Γ is finitely generated. We let dΓ denote the word metric on Γ with respect to some finite generating
set.

(b) For one (equivalently, every) x ∈ X, the orbit map

ox : Γ→ Γx ⊂ X, ox(γ) = γx

is a quasi-isometric embedding (Γ, dΓ) → X, where X is equipped with its Riemannian distance function dX .
In the case at hand, the map ox is a quasi-isometric embedding if and only if there exists a constant L such
that for each γ ∈ Γ

L−1dΓ(γ, 1Γ)− L ≤ dX(x, γx) = dX(x, ox(γ)).

One also says that such subgroups Γ < G are undistorted (the action of Γ on X is undistorted).

Definition 1.2. A subgroup Γ < G is said to be geometrically finite if the following two conditions hold:
(a) There exists a nonempty closed convex subset C ⊂ X such that C/Γ has finite and positive volume.
(b) Orders of finite-order elements in Γ are bounded from above.

Note that, in view of Selberg’s lemma, the second condition is automatically satisfied if Γ is finitely generated.
Examples of geometrically finite subgroups of G are given by lattices in G, in which case C = X. While
geometrically finite subgroups of G are, in general, not undistorted, the distortion of the word metric of Γ with
respect to the metric dX is at worst exponential: There exists a constant A such that

logA(dΓ(γ, 1Γ))−A ≤ dX(x, γx) = dX(x, ox(γ))

for all γ ∈ Γ.

Discrete subgroups of higher rank Lie groups.

A subgroup in a lattice Γ in an algebraic group G is called thin if it is Zariski dense but has infinite index
in Γ.

An element of SL(n,R) that is diagonalizable over R is said to be regular if it has distinct eigenvalues; it is
called singular otherwise. A rank 2 free abelian subgroup of SL(n,R) is said to be supersingular if it is generated
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by two singular elements, whose product is also singular. More generally, an element of a Lie group with finitely
many connected components is called regular if its image under the adjoint representation is regular. In the
theory of P -Anosov subgroups Γ < G (which we will briefly discuss in a moment) one also meets a relative
notion of regularity, relative to the parabolic group P < G. In particular, all infinite order elements of P -Anosov
subgroups Γ < G are P -regular.

Currently, there is no clarity on what higher-rank analogues of convex-cocompactness and geometric finite-
ness should be, i.e. generalizations of these rank 1 notions to discrete subgroups Γ of semisimple Lie groups G
(with finitely many components and finite center), such that the real rank of G is ≥ 2. One of the generalizations
of the class of convex-cocompact subgroups is given by P -Anosov subgroups, where P is a parabolic subgroup of
G. We refer the reader to the paper [35, section 11] in this volume for some discussion of these and references.
There is even less clarity regarding geometric finiteness; initial steps in this direction are taken in [36], where
various relativizations of Anosov subgroups are proposed and relations between them are established. How-
ever, none of these classes contains any lattices in higher rank Lie groups. Another approach to generalizing
convex-cocompactness in higher rank appears in [18].

The next example shows that the Howson property fails in higher rank, even for intersections of Anosov
subgroups of lattices.

Example 1.1. There exists a discrete subgroup Γ < SL(3,R) isomorphic to F2 × Z which contains two
Anosov subgroups whose intersection is not finitely generated.

To find such a subgroup, consider the standard embedding SO(2, 1) < SL(3,R) and note that it commutes
with a subgroup C (isomorphic to R) consisting of singular matrices. Let Γ1 < SO(2, 1) be a Schottky subgroup
isomorphic to the rank 2 free group F2 and generated by elements a, b. Let c be a non-trivial element of C. The
subgroup Γ generated by a, b and c is discrete, and isomorphic to F2 × Z. Define Γ2 < Γ to be the subgroup
generated by a and the product bc. Then the intersection Γ1 ∩ Γ2 is the normal closure of 〈a〉 in F2 (see [51]),
hence, it is not finitely generated (see also an explanation in [30]).

At the same time, Γ1 is an Anosov subgroup of the rank 1 Lie group SO(2, 1), hence, it is an Anosov
subgroup in SL(3,R) (see e.g. [28]). With a bit more work, it follows that Γ2 is also Anosov. For instance,
if c is sufficiently close to 1 ∈ SL(3,R), then the Anosov property of Γ2 follows from the stability of Anosov
subgroups; see again [28] or [37].

2. SL(2,Z)-related problems

Take the congruence subgroup Γ(2) < SL(2,Z) and let Λ denote the commutator subgroup of Γ(2). Then
Λ is free of infinite rank.

Problem 2.1 (A. Kontorovich). Which integers are traces of elements of Λ? Is it true that the local
obstruction is the only obstruction?

Here, z ∈ Z is locally a trace of an element of Λ provided that for each natural number n, z (mod n)
is the trace of an element of Λ (also taken mod n). Note that B. Ogrodnik precisely identified all the local
obstructions in this problem [53], and studied extensive numerics and other related considerations for this
problem. We do not currently know that a positive proportion of numbers arise as traces! For progress on
related “local-global”-type problems, see [7, 8, 41]. There has also been recent progress on traces in very
thin (having critical exponent anything above 1/2) subgroups of SL(2,Z), assuming said subgroups contain
parabolic elements (which the above Λ does not): see [42].

3. SL(3,Z)-related problems

This is a series of general questions about structure of subgroups of SL(3,Z).

3.1. Intrinsic properties of thin subgroups of SL(3,Z).

Problem 3.1. What are finitely generated thin subgroups of SL(3,Z) as abstract groups?

Note that all currently known thin subgroups of SL(3,Z) are either virtually free or virtually surface groups.
Examples of free subgroups are given by Tits’ ping-pong argument; see [65]. Examples of thin surface subgroups
of SL(3,Z) are constructed in [44].

Problem 3.2 (M. Kapovich). Give an example of a finitely generated thin subgroup of SL(3,Z) which is
neither virtually free nor is virtually a surface group. For instance, does the free product of two surface groups
embed? Does the free product Z2 ? Z embed?
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Note that SL(4,Z) contains subgroups isomorphic to Z2 ? Z and free products of surface groups.

The existence of subgroups of SL(3,Z) isomorphic to Z2 ?Z was claimed by G. Soifer in [63], but the proof
is known to be wrong. In the subsequent paper [64], G. Soifer constructs subgroups in SL(3,Q) isomorphic to
Z2 ?Z. However, the construction depends on the existence of singular diagonalizable elements in SL(3,Q)\{1}
and such elements do not exist in SL(3,Z). In fact, Soifer’s construction requires the existence of supersingular
diagonalizable subgroups in SL(3,Q) (see section 1).

In view of Soifer’s construction, it makes sense to ask a slightly more general question:

Problem 3.3 (M. Kapovich). Does there exist a discrete subgroup Γ < SL(3,R) isomorphic to Z2 ? Z and
containing only regular diagonalizable elements?

Similarly:

Problem 3.4 (K. Tsouvalas). Does there exist a discrete subgroup Γ < SL(3,R) isomorphic to Γ0 ? Z,
where Γ0 is a surface group?

Note that it is impossible to find an Anosov subgroup Γ < SL(3,R) isomorphic to Γ0 ?Z with this property,
since every Anosov subgroup of SL(3,R) is either virtually free or a virtually surface group, [16].

Problem 3.5. Is SL(3,Z) coherent?

This open problem goes back to Serre (1974), [62]. It is known that virtually free groups and virtually
surface groups are coherent. More generally, fundamental groups of 3-dimensional manifolds are coherent.
In particular, discrete subgroups of PSL(2,C) are coherent. More examples of coherent groups come from
combinatorial group theory; see the survey [70] by Wise. On the other hand, the groups SL(n,Z), n ≥ 4, are
known to be noncoherent since they contain a copy of SL(2,Z)× SL(2,Z), hence, of F2 × F2, and the latter is
known to be noncoherent; see e.g. [50]. (Here F2 is the rank 2 free group.)

3.2. Extrinsic properties of thin subgroups of SL(3,Z). In their pioneering paper [47], Margulis
and Soifer proved that every finitely generated matrix group is either virtually polycyclic or contains a strictly
maximal subgroup. However, very little is known about the algebraic structure of such subgroups.

Problem 3.6. Is there a virtually free strictly maximal subgroup in SL(n,Z), n ≥ 3?

Note that the proof of existence of strictly maximal subgroups in the work of Margulis and Soifer starts
with construction of a profinitely dense free subgroup. But the next step of the construction is to extend such
a subgroup to a maximal subgroup and it is totally unclear what happens to the algebraic structure of the
subgroup in the process.

The next problem is due to G. Prasad and J. Tits:

Problem 3.7. Is every strictly maximal subgroup of SL(3,Z) virtually free?

According to Margulis and Soifer [48], Prasad and Tits asked this question for SL(n,Z), n ≥ 3. It was
proven by Margulis and Soifer [48] that the answer is negative for n ≥ 4. The remaining open case is for n = 3.

The following open problem also goes back to the work of Margulis and Soifer [47], where they proved the
existence of strictly maximal subgroups in finitely generated non-polycyclic matrix groups:

Problem 3.8. Are there finitely generated strictly maximal subgroups of SL(3,Z)? The same question for
SL(n,Z), n ≥ 4. (The expected answer is negative.)

Problem 3.9 (J.-P. Serre). Is there a profinitely dense non-virtually free subgroup in SL(3,Z)?

Note that the key ingredient in proof of existence of strictly maximal subgroups in SL(n,Z), n ≥ 4, given
in [48], is the existence of profinitely dense subgroups containing Z2.

Problem 3.10. Is it true that Anosov subgroups of SL(3,Z) are never maximal?

Remark 3.11. The only known results about nonexistence of strictly maximal finitely generated subgroups
are in rank 1:

1. It is an easy consequence of the ping-pong argument that if M is a maximal geometrically finite subgroup
of a lattice in a rank 1 Lie group Γ, then M has finite index in Γ.

2. A much harder theorem is that every maximal finitely generated subgroup in a lattice Γ < O(3, 1)
necessarily has finite index in Γ; see [26]. (This is an application of deep structural results about finitely
generated discrete subgroups of O(3, 1).)

Remark 3.12. It is known that every Anosov surface subgroup Γ of SL(3,R) is virtually a maximal Anosov
subgroup, i.e. if Λ < SL(3,R) is any Anosov subgroup containing Γ, then |Γ : Λ| < ∞. At the same time, free
Anosov subgroups of a semisimple Lie group G are never virtually maximal as Anosov subgroups, cf. [20].
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Problem 3.13. Does SL(3,Z) have the Howson property?

Remark 3.14. 1. The answer to the previous question is negative for SL(n,Z), n ≥ 4, and positive for
SL(2,Z); see Section 1.

2. The Howson property is unclear even for intersections of Anosov subgroups of SL(3,Z); cf. the discussion
in Section 1.

Problem 3.15. Is there a lattice Γ < SL(3,R) containing a singular diagonal element?

Note that such a lattice will also necessarily contain a product subgroup F2 × Z. Then this lattice will not
have the Howson property with respect to Anosov subgroups; see Example 1.1.

Problem 3.16. Give an example of a finitely generated thin subgroup of SL(3,Z) which is not (relatively)
Anosov.

Note that all currently known constructions of finitely-generated thin subgroups of SL(3,Z) are relatively
Anosov. It is known that all finitely generated discrete subgroups of SL(2,R) are geometrically finite, hence,
relatively Anosov.

The next problem is motivated by the Howson property: It is possible that it is easier to prove this property
by restricting to the class of Anosov subgroups:

Problem 3.17 (M. Kapovich). Suppose that Γ1,Γ2 are Anosov subgroups of SL(3,Z). Is Γ1 ∩ Γ2 finitely
generated?

4. Problems on higher rank lattices

4.1. Profinite density.

Problem 4.1 (G. Soifer). Does there exist a thin profinitely dense subgroup of SL(n,Z), n ≥ 3, generated
by two elements?

Note that Aka, Gelander and Soifer [1] proved that there exists a uniform constant k such that for every
n, SL(n,Z) contains a k-generated thin profinitely dense subgroup.

4.2. Commutator map problems.

Problem 4.2 (A. Shalev). Is it true that for n ≥ 3 the commutator map of SL(n,Z) is surjective?

Note that SL(n,Z) is a perfect group (equal to its own commutator subgroup), which implies that every
element is a product of commutators. Not every perfect group has surjective commutator map. One measure
of failure of surjectivity of the commutator map in a group Γ is given by the commutator length and stable
commutator length:

Given γ ∈ [Γ,Γ], let `(γ) denote the least number k such that γ is the product of k commutators in Γ.
The number `(γ) is called the commutator length of γ. This quantity has an asymptotic counterpart, the stable
commutator length:

`∞(γ) = lim
n→∞

`(γn)

n
.

There are perfect groups which have elements of positive stable commutator length: For instance, each hyper-
bolic van Dyck group with the presentation

〈a, b, c | ap = bq = cr = abc = 1〉, p−1 + q−1 + r−1 < 1

is perfect whenever the numbers p, q, r are pairwise coprime. However, such a group (as any nonelementary
hyperbolic group) contains elements of positive stable commutator length since it admits unbounded quasimor-
phisms, [4, 22]. At the same time, if Γ is a lattice in a simple Lie group of rank ≥ 2, then `∞(Γ) = {0}; see
[15].

Remark 4.3. For a group Γ, a map f : Γ→ R is said to be a quasimorphism if there is a constant C such
that for all α, β ∈ Γ,

|f(αβ)− f(α)− f(β)| ≤ C.
In other words, quasimorphisms are approximate additive characters of a group. Trivial examples of quasi-
morphisms are given by bounded maps f : Γ → R. Quasimorphisms form a real vector space. The quotient,
denoted QM(Γ), of this space by the subspace of bounded quasimorphisms detects “richness” of the space of
quasimorphisms of Γ. There are many groups which do not admit nontrivial additive characters, but do admit
unbounded quasimorphisms. For instance, for every nonelementary hyperbolic group Γ, the space QM(Γ) is
infinite-dimensional, [22].
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Note also that if Γ = SL(2,OK), where OK is the ring of integers of a quadratic field with infinitely many
units, then Γ contains elements which are commutators locally but not globally [24]. Here, an element γ is locally
a commutator if its image in every congruence-quotient of Γ is a commutator. An element of Γ is a commutator
globally if it equals the commutator [α, β] for some α, β ∈ Γ. Clearly, every global commutator is also a local
commutator.

4.3. Characterization of higher rank lattices.

Problem 4.4 (M. Kapovich). What algebraic properties distinguish higher rank (irreducible uniform) lat-
tices among abstract groups?

One such characterization was given by Lubotzky and Venkataramana [46], in terms of profinite completions.
There are some indirect signs that other algebraic characterizations of lattices are also possible:

(1) Higher rank lattices are quasi-isometrically rigid (Kleiner and Leeb [40], Eskin [23]).
(2) Higher rank lattices are rigid in the sense of the 1st order logic (Avni, Lubotzky, Mieri [2]).
(3) Appearance of Serre relators in profinite completions (Prasad, Rapinchuk [58]).

In the case of groups Γ of integer points of split semisimple algebraic groups over Z, a defining feature is
the Serre relators. However, Serre relators are for unipotent elements, which do not exist in uniform lattices.
Uniform higher rank lattices satisfy approximate Serre relators.

Problem 4.5. Do these determine whether a discrete linear group is a higher rank lattice?

An alternative approach to a characterization of lattices is via the Prasad–Raghunathan rank:

Definition 4.1 (Prasad–Raghunathan rank). Let Γ be a group. Let Ai denote the subset of Γ that consists
of those elements whose centralizer contains a free abelian group of rank at most i as a subgroup of finite index.
Thus, A0 ⊂ A1 ⊂ . . . . The Prasad–Raghunathan rank, PRrank(Γ), of Γ is the minimal number i such that
Γ = γ1Ai ∪ · · · ∪ γmAi for some γ1, . . . , γm ∈ Γ.

For instance, if Γ is a lattice in a semisimple Lie group of rank n, then PRrank(Γ) = n. If M is a compact
Riemannian manifold of nonpositive curvature with Γ = π1(M), then PRrank(Γ) equals the geometric rank of
M , i.e. the largest n such that every geodesic in M is contained in an immersed n-dimensional flat. We refer
to [56] and [3] for details.

Problem 4.6. Are there discrete linear groups Γ which are not virtually nontrivial direct products and are
not lattices, satisfying PRrank(Γ) ≥ 2?

Problem 4.7 (G. Prasad). Does there exist a discrete Zariski dense subgroup Γ < G (with G a simple real
algebraic group) such that Γ is not a lattice but PRrank(Γ) = rankR(G)?

Another group-theoretic property closely related to lattices is the bounded generation property:

Definition 4.2 (BGP, Bounded Generation Property). A group Γ is said to have BGP if there exist
elements γ1, . . . , γk such that every γ ∈ Γ can be written as a product

γ = γn1
1 γn2

2 · · · γ
nk

k

for some n1, . . . , nk ∈ Z. (Note that a power of each γi appears only once.)

Many classes of higher rank nonuniform lattices satisfy the BGP; see the references in [17]. Nonlinear
groups that satisfy the BGP were constructed by A. Muranov [52]. On the other hand, it was recently proven
in [17] that uniform lattices in semisimple Lie groups never satisfy the BGP. More generally, they prove that a
subgroup of SL(n,C) boundedly generated by semisimple elements has to be virtually solvable.

Problem 4.8 (M. Kapovich). Suppose that Γ is an abstract (infinite) R-linear group satisfying the BGP.
Is it isomorphic to a lattice in a Lie group?

4.4. Why are higher rank lattices super-rigid? One way to say that an abstract group Γ is super-rigid
is to require that for every field F and n ∈ N, there are only finitely many conjugacy classes of representations
Γ→ GL(n, F ). Of course, some groups do not admit any nontrivial linear representations, so it makes sense to
restrict the discussion to finitely generated linear groups Γ.

Loosely speaking, such a group is (super) rigid if it satisfies some peculiar relators. There are many proofs
of rigidity and super-rigidity of (higher rank irreducible) lattices, but none of these proofs (in the setting of
uniform lattices) use relators satisfied by lattices, likely because such relators are simply unknown (see previous
section). In contrast, there are known proofs of super-rigidity of some classes of higher rank non-uniform lattices
(see [60] and references therein) which use explicit relators.
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Problem 4.9 (M. Kapovich). What are group-theoretic reasons that make higher rank uniform lattices
(super)-rigid? Are the approximate Serre relators responsible for this? Or high Prasad-Raghunathan rank?

One known result in this direction is that the BGP implies super-rigidity [55]. Another group-theoretic
property implying super-rigidity is given by Lubotzky in [45].

5. Algorithmic problems

Problem 5.1 (M. Kapovich). For which classes of algebraic semisimple Lie groups G is the discreteness
problem decidable for Zariski dense finitely generated subgroups?

Here, decidability of discreteness is understood in the sense of BSS formalism of computations over the real
numbers, as it is discussed for instance in [25] and [33]. The input for a possible BSS algorithm consists of a
finite tuple of elements of G which generate a Zariski dense subgroup. The algorithm is supposed to determine
if these elements generate a discrete subgroup. The Zariski density assumption is imposed to eliminate “trivial”
counter-examples, which show that discreteness is undecidable already in the case of cyclic subgroups of S1.
It is known that discreteness is decidable for finitely generated subgroups of G = PSL(2,R) (see for instance,
Gilman’s paper [25] and references therein) and is undecidable for subgroups of PSL(2,C) (see [33]). The
simplest case where the answer is unclear is, as usual, G = SL(3,R).

Problem 5.2 (A. Detinko). Is freeness decidable for finitely generated subgroups of arithmetic groups?

There is a practical algorithm testing whether a finitely generated linear group over an arbitrary (infinite)
field contains a free non-abelian subgroup ([19, Section 6.2]).

Note that freeness is undecidable for subsemigroups in linear groups; see [39]. Freeness is decidable for
subgroups of SL(2,Z) and, more generally, for discrete subgroups of SL(2,R). It is also decidable for some
special classes of subgroups of arithmetic groups:

(a) Anosov subgroups.
(b) Subgroups which admit finitely-sided Dirichlet domains in associated symmetric spaces.
Freeness is likely to be, at least effectively, undecidable. The reason is the existence of badly distorted

finitely generated free subgroups of SL(n,Z) for large n: these are free subgroups whose distortion function is
comparable to the k-th Ackermann function (for any k); see [21, 13] for the description of embeddings of such
free groups in free-by-cyclic groups, and [29, 69] for embeddings into SL(n,Z).

Problem 5.3 (A. Detinko). Is arithmeticity decidable? More precisely, is there an algorithm that decides if
a finitely generated Zariski dense subgroup Λ (given by its set of generators) of an irreducible arithmetic group
Γ (say, SL(n,Z), n ≥ 3) has finite index in Γ (cf. [19, Section 5.3])?

Note that this problem is semidecidable: There is an algorithm which will terminate if Λ < Γ has finite
index. The problem is known to be decidable for subgroups of SL(2,Z) and undecidable for subgroups of
SL(2,Z)× SL(2,Z).

Problem 5.4 (M. Kapovich). Is the membership problem for finitely generated subgroups of SL(3,Z) de-
cidable?

Note that the membership problem for a finitely generated subgroup H of a finitely generated group G is
decidable if and only if the distortion function of H in G is recursive. All known finitely generated subgroups
of SL(3,Z) have at most exponential distortion, hence, have decidable membership problem.

In contrast, the membership problem is undecidable for finitely generated subgroups of SL(4,Z). The
reason is that this group contains SL(2,Z) × SL(2,Z), which, in turn, contains a direct product of two free
groups of large ranks. The latter contains finitely generated normal subgroups with undecidable membership
problem (Mihailova subgroups, [50]). However, in this case, the ambient lattice is reducible.

Problem 5.5. Are there irreducible arithmetic groups Γ such that for Zariski dense subgroups Λ < Γ the
membership problem is undecidable?

Very likely, such arithmetic subgroups Γ can be found in SO(p, q) for suitable p, q. The existence of Λ
is an application of the Rips construction of small cancellation groups with non-recursively distorted normal
subgroups [61], combined with the Cubulation Theorem of Dani Wise [68] and the embedability of cubulated
groups in RACGs (Right-Angled Coxeter groups) [69], which, in turn, admit Zariski dense representations in
Γ := O(p, q) ∩GL(p+ q,Z) [5].

Recall that the membership problem is decidable for quasi-isometrically embedded subgroups, such as
Anosov subgroups and finite-index subgroups in lattices.

Problem 5.6. Suppose that Γ is an irreducible lattice in a higher rank semisimple Lie group. Is it decidable
that γ ∈ Γ is a commutator?
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Note that this question is a special case of decidability of equations in Γ. In the last 20 or so years there was
a great deal of progress in understanding equations in (relatively) hyperbolic groups (which includes lattices in
rank 1 Lie groups). In contrast, decidability of equations in higher rank lattices is very poorly understood.

Here is a similar number-theoretic problem:

Problem 5.7. Is every integer n ∈ Z a sum of three cubes, where n is not 4 nor 5 modulo 9? Is it even
decidable if the given integer is a sum of three cubes?

References

[1] M. Aka, T. Gelander, and G. Soifer, Homogeneous number of free generators, J. Group Theory 17 (2014), 525–539.

[2] N. Avni, A. Lubotzky, and C. Meiri, First order rigidity of non-uniform higher rank arithmetic groups, Invent. Math. 217
(2019), 219–240.

[3] W. Ballmann and P. Eberlein, Fundamental groups of manifolds of nonpositive curvature, J. Differential Geom. 25 (1987),
1–22.

[4] C. Bavard, Longueur stable des commutateurs, Enseign. Math. (2) 37 (1991), no. 1-2, 109–150.
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