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HYPERBOLIC GROUPS WITH LOW-DIMENSIONAL
BOUNDARY

By MICHAEL KAPOVICH * AND BRUCE KLEINER'!

ABSTRACT. — If a torsion-free hyperbolic grou® has1-dimensional boundarg..G, thend.G is
a Menger curve or a Sierpinski carpet providéddoes not split over a cyclic group. Wheén,G is
a Sierpinski carpet we show thét is a quasi-convex subgroup of3adimensional hyperbolic Poincaré
duality group. We also construct a “topologically rigid” hyperbolic gra@iipany homeomorphism @l.. G
is induced by an element 6f. O 2000 Editions scientifiques et médicales Elsevier SAS

RESUME. — SoitG un groupe hyperbolique (au sens de Gromov) sans torsion. Si la dimension topologique
du bordd-.G est égale a un, & n’est ni un produit amalgamé, ni une extension HNN sur un groupe
cyclique, on montre qué..G est homéomorphe a I'éponge de Menger ou au tapis de Sierpingki: Si
est homéomorphe au tapis de Sierpinski, on montre(gest isomorphe a un sous-groupe quasi convexe
d’un groupe de dimension trois de dualité de Poincaré. On construit un exemple d’'un groupe hyperbolique
G qui est «topologiquement rigide » : chaque homéomorphisme dudrfd est induit par un élément
g € G. 0 2000 Editions scientifiques et médicales Elsevier SAS

1. Introduction

We recall that the bounday,, X of a locally compact Gromov hyperbolic spaée is a
compact metrizable topological space. Brian Bowditch observed that any compact metrizable
spaceZ arises this way: view the unit bal® in Hilbert space as the Poincaré model of infinite-
dimensional hyperbolic space, topologically emliedh the boundary ofB, and then take the
convex hullCH(Z) to get a locally compact Gromov hyperbolic space withCH(Z) = Z.

On the other hand wheX is the Cayley graph of a Gromov hyperbolic groGp then the
topology of 0., X ~ ., G is quite restricted. It is known thdt,, G is finite-dimensional, and
either perfect, empty, or a two element set (in the last two cases the gfasiiglementary.

It was shown recently by Bowditch and Swarup [13,41] thal ifG is connected then it does
not have global cut-points, and thus is locally connected according to [11]. The boundairy of
necessarily has a “large” group of homeomorphismé: i§ nonelementary, then its action on
0soG is minimal, andG acts ond..G as a discrete uniform convergence group. It turns out
that the last property gives a dynamical characterization of boundaries of hyperbolic groups,
according to a theorem of Bowditch [14]: & is a compact metrizable space wijthi| > 3 and

G C Homeo(Z) is a discrete uniform convergence subgroup, tGeis hyperbolic and? is G-
equivariantly homeomorphic 9., G. In general the actio’ ~ 0,,G is not effective, but ifG
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648 M. KAPOVICH AND B. KLEINER

is nonelementary, its ineffective kernel is a finite normal subgup G; moreover, every finite
normal subgroup of7 is contained inV. We letG denote the quotierd®/N.
There are two questions which arise naturally:

QUESTIONA. — Which topological spaces are boundaries of hyperbolic groups?

QUESTION B. —Given a topological spaceZ, which hyperbolic groups have as the
boundary?

Regarding Question A, all spheres, some homology spheres [20], the Sierpinski carpet, and the
Menger curve [5] arise as boundaries of hyperbolic groups. Moreover, according to Gromov and
Champetier [18], “generic” finitely presentable groups are hyperbolic and have the Menger curve
as boundary. On the other hand, as was noticed by Bestvina, it is unknown if higher-dimensional
universal Menger compacta [6] appear as boundaries of hyperbolic groups (Dranishnikov has
constructed hyperbolic groups with boundary homeomorphic to2tdémensional Menger
compactum, [21]).

Considerably less is known about Question BIlf G is zero-dimensional, thety is a
virtually free group [40,26,25]. Recently, it was proven in [24,17,43] that any hyperbolic group
whose boundary is homeomorphic$b acts discretely, cocompactly, and isometrically on the
hyperbolic plane. We call such a grouptually Fuchsian The case whefl,. G ~ S? is a difficult
open problem:

CONJECTURE 1 (J. Cannon). H G is a hyperbolic group whose boundary is homeomorphic
to S?, thenG acts isometrically and properly discontinuously on hyperbaigpaceH?.

In Section 7 we construct new examples of hyperbolic groups for which we answer Question B
completely. These groups have a remarkable topological rigidity property:

DEFINITION 2.—A hyperbolic groupZ is said to be topologically rigid if every homeomor-
phismf : 0,.G — 05 G is induced by an element 6f.

Remark3. — Actually, the topologically rigid groups constructed in this paper are leeatly
topologically rigid in the following sense: i, V' C 0,,G are connected open subsets, then any
homeomorphisn/ — V' is induced by an element @f.

Our examples are the first known topologically rigidnelementariyperbolic groups (finite
groups and group& which fit into an exact sequence

1 — finite group— G — Z /2% 7Z/2 — 1

are topologically rigid for trivial reasons). The Cayley graph of a topologically rigid nonele-
mentary hyperbolic group is a quasi-isometrically rigid metric space (every quasi-isometry is
within bounded distance from an isometrgeélLemma 18). Previously known examples of
guasi-isometrically rigid metric spaces include quaternionic hyperbolic spaces and the Cayley
hyperbolic plane [35], higher rank symmetric spaces of nhoncompact type [32], Cayley graphs
of maximal non-arithmetic nonuniform lattices in isometry groups of rasmmetric spaces

of dimension> 2 [37], and universal covers of compact hyperbalicnanifolds with nonempty
totally geodesic boundaty, n > 3. Topologically rigid groups have an even stronger rigidity
property than quasi-isometrically rigid groupeéLemma 19):

2 This was observed in a discussion Bernhard Leeb, Richard Schwartz, and the authors. The rigidity statement follows
from a doubling construction and the technique of [37].
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HYPERBOLIC GROUPS WITH LOW-DIMENSIONAL BOUNDARY 649

If G" is a hyperbolic group whose boundary is homeomorphic to the boundary of a
topologically rigid hyperbolic groug, thenG’ embeds i as a finite index subgroup.

The topologically rigid groups mentioned above ha&limensional boundary; we prove
in Corollary 17 that this is the minimal dimension for the boundary of a nonelementary
topologically rigid group.

The remaining results of our paper concern hyperbolic groups with one-dimensional boundary.

THEOREM 4. — Let G be a hyperbolic group which does not split over a finite or virtually
cyclic subgroup, and suppose.G is 1-dimensional. Then one of the following holfiee
Section2 for definition3:

(1) 0 G is aMenger curve

(2) 0-G is a Sierpinski carpet

(3) 95 G is homeomorphic t&! and G maps onto a Schwartz triangle group with finite

kernel.

Itis probably impossible to classify hyperbolic groups whose boundaries are homeomorphic to
the Menger curve (since this is the “generic” case); however, it appears that a meaningful study is
possible in the case of hyperbolic groups whose boundaries are homeomorphic to the Sierpinski
carpet. Recall that the Sierpinski cargehas a canonical collection geripheral circles(see
Section 2).

THEOREM 5. — Suppose thal,.G = S. Then

(1) there are only finitely mang-orbits of peripheral circles

(2) the stabilizer of each peripheral circlé is a quasi-convex virtually Fuchsian group which
acts onC' as a uniform convergence group. We call these subgrpepgpheral subgroups
of G,

(3) if we “double” G along the collection of peripheral subgroups using amalgamated free
product and iterated HNN-extensigseeSectiorb), then the result is a hyperbolic group
G which containgx as a quasiconvex subgroup R

(4) the boundary of is homeomorphict82. Hence by11,7], G is a3-dimensional Poincaré
duality group in the torsion-free case

(5) wheng is torsion free, then(G; Hy, ..., Hy) is a 3-dimensional Poincaré duality pair
(see [22]for the definition), whereH1, ..., H; are the peripheral subgroups a¥.

A similar result holds in the case of higher-dimensional analogs of the Sierpinski carpet, except
that in Part 2 one says that peripheral sphere stabilizers are hyperbolic groups with spherical
boundary.

Known examples of groups with Sierpinski carpet boundary are consistent with the following:

CONJECTURE 6. —Let G be a hyperbolic group with Sierpinski carpet boundary. Tkién
acts discretely, cocompactly, and isometrically on a convex sub&&t ufith nonempty totally
geodesic boundary.

There is now some evidence for this conjecture. It would follow from a positive solution of
Cannon’s conjecture together with TheorensbdSection 5). Alternatively, in the torsion-free
case, if one could show that (hyperbolieflimensional Poincaré duality groups arenanifold
groups, then Thurston’s Haken uniformization theorem could be applied to an irredgeible
manifold with fundamental group isomorphic to the gratgproduced in Theorem 5. Under
extra conditions (such as coherence and the existence of a nontrivial splitting) it appears that one
can show that 8-dimensional Poincaré duality group ig$ananifold group.

The conjecture above leads one to ask which hyperbolic groups have planar boundary.
Concretely, one may ask if a torsion-free hyperbolic group with planar boundary has a finite
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650 M. KAPOVICH AND B. KLEINER

index subgroup subgroup isomorphic to a discrete convex cocompact subgroumoi?).
Here is a cautionary example which shows that in general it is necessary to pass to a finite
index subgroup: if one takes a surface of gehwgth two boundary components and glues one
boundary circle to the other by a degrzenap, then the fundamental grogpof the resulting
complexXK enjoys the following propertieséeSection 8):
(1) G is torsion-free and hyperbolic;
(2) G contains a finite index subgroup which is isomorphic to a discrete, convex cocompact
subgroup oflsom(H?) which does not act cocompactly &f. In particular, the boundary
of G is 1-dimensional and planar;
(3) G is not a3-manifold group.

2. Preliminaries

Properties of hyperbolic groups and spaces

For a proof of the following properties of hyperbolic groups, we refer the reader to [26,1,25,
14].

Let G be a nonelementary Gromov hyperbolic group, and supgbsets discretely and
cocompactly on a locally compact geodesic metric spAceThen the boundary ofX is
a compact metrizable spaég,X on which Isom(X) acts by homeomorphisms. For any
f € Isom(X), we denote the corresponding homeomorphisndQfX by d.. f. The action
of G on 0, X is minimal, i.e. theG-orbit of every point is dense 0., X. Let 8§oX =
O0soX X 05X — Diag be the space of distinct pairs &, X. Then the set of pairs of points
(z,y) € 92, X which are fixed by an infinite cyclic subgroup 6f is dense ind% X. We let
PX = 02X/ (2,y) ~ (y,7).

The group G acts cocompactly and properly discontinuously 8hX := {(x,y,z) €
(000 X)? | @, y, z distinctt. There is a natural topology o U 0., X which is aG-invariant
compactification ofX, and this is compatible with the topology 0, X .

Recall that a subsét of a geodesic metric spacedsquasi-convex if every geodesic segment
with endpoints inS is contained in the”'-tubular neighborhood aof. Quasi-convex subsets of
6-hyperbolic metric spaces satisfyibility property(cf. [23]):

Given R, C, 6 € (0,00) there is anR’ with the following property(we may takeR’ =
R+ 100). If X is aé-hyperbolic metric spacé; C X is C-quasi-convex, and € X satisfies
d(z,Y) > R/, then given any two unit speed geodesicsy. starting atz and ending inY,
and anyt € [0, R] we haved(y (), Im(vy2)) < 6 andd(y2(t), Im(v1)) < 6.

As a consequence of the visibility propertyYif C X is a sequence @f-quasi-convex subsets
of a 6-hyperbolic space, andd(z,Y)) — oo ask — oo, then a subsequence Bf’s converges
to a single point € 0, X .

Sierpinski carpets and Menger curves

The classical construction of a Sierpinski carpet is analogous to the construction of a Cantor
set: start with the unit square in the plane, subdivide it into nine equal subsquares, remove the
middle open square, and then repeat this procedure inductively on the remaining squares. If
we take a sequencB; C S? of disjoint closed2-disks whose union is dense 8f so that
Diam(D;) — 0 asi — oo, thenS? — J, Interior(D;) is a Sierpinski carpet; moreover, any
Sierpinski carpet embedded §% is obtained in this way [45]. Sierpinski carpets can also be

4® SERIE— TOME 33 — 2000 N° 5



HYPERBOLIC GROUPS WITH LOW-DIMENSIONAL BOUNDARY 651

characterized as follows [45]: a compattdimensional, planar, connected, locally connected
space with no local cut points is a Sierpinski carpet.
We will use a few topological properties of Sierpinski carpg&ts
(1) there is a unique embedding &fin S? up to post-composition with a homeomorphism
of §%;
(2) there is a countable collectiah of “peripheral circles” inS, which are precisely the
nonseparating topological circlesdh
(3) given any metriel on S and any numbeD > 0, there are only finitely many peripheral
circles inS of diameter> D.
The Menger curve may be constructed as follows. Start with the unit EulmeR?. Consider
the orthogonal projections;; : I> — Fj; of the unit cube onto théj coordinate square, and let
Si; C Fy; be the Sierpinski carpet as constructed above. The Menger curve is the intersection
Ni<j 7@1(81-]-). The Menger curve is universal among all compact metrizabigmensional
spaces: any such space can topologically embedded in the Menger curve. By [2,3], a compact,
metrizable, connected, locally connectédlimensional space is a Menger curve provided it has
no local cut points, and no nonempty open subset is planar.

3. Proof of Theorem 4

The fact thatz does not split over a finite group implies [40] ti@is one-ended, and.. G is
connected. Recall that by the results of [11,13,41], the boundary of a one-ended hyperbolic group
is locally connected and has no global cut points; furthermor&,if7 has local cut points then
G splits over a virtually infinite cyclic subgroup unle8s G ~ S' andG maps onto a Schwarz
triangle group with finite kernel. Therefore from now on we will assume dhatz has no local
cut points.

A 1-dimensional, compact, metrizable, connected, locally connected gpadth no local
cut points is a Menger curve provided no poinE Z has a neighborhood which embeds in
the plane geeSection 2). Hence eithél,.G is a Menger curve or somee d,.G has a planar
neighborhood/; therefore we assume the latter holds.

LEMMA 7.—-Let]' C 0,,G be a subset homeomorphic to a finite graph. Tlheis a planar
graph.

Proof. —Since the action oG on d..,G is minimal, everyG-orbit intersects the planar
neighborhood/, and so every point of,G has a planar neighborhood. BecausgeG has
no local cut points, we havé,.G \ I" # (). So we can find a hyperbolic elemepte G whose
fixed point set{n;,12} C -G is disjoint fromI" (Section 2). Hence for sufficiently large
g™ (I') is contained in a planar neighborhoodgfor 7s.

We recall [19,34] that a compact, metrizable, connected, locally connected Spadé no
global cut points is planar as long as no nonplanar graph embédsTiherefore),. G is planar.
Finally, by [45],0..G is Sierpinski carpet. O

4. Groups with Sierpinski carpet boundary

Let M be a compact hyperbolic manifold with nonempty totally geodesic boundary and let
G :=m1 (M) be its fundamental group. The universal covérof M may be identified with
a closed convex subset HF which is bounded by a countable disjoint collectiBrof totally
geodesic planes. Eaé¢he P bounds an open half-space disjoint frdth M is obtained fronf?
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652 M. KAPOVICH AND B. KLEINER

by removing each of these open half-spaces,@)gﬂ C 0 H? is obtained from), H? ~ S?
by deleting the open disks corresponding to these half-spaces. The closures of these disks are
disjoint since the distance between distinct elemenf isfbounded away from zero. Ak, M
has no interior points if2, it is a Sierpinski carpeseeSection 2). Note that the peripheral circles
of 800J\7 are in one-to-one correspondence with element® péind therefore the conjugacy
classes of7-stabilizers of peripheral circles are in one-to-one correspondencéith the set
of boundary components @ff. The stabilizer of a peripheral circle is the same as the stabilizer
of the corresponding element Bf, so these stabilizers are quasi-convegin

The next theorem shows that similar conclusions hold for any hyperbolic group whose
boundary is a Sierpinski carpet.

THEOREM 8. —Let G be a hyperbolic group with boundary homeomorphic to the Sierpinski
carpetS. Then
(1) there are finitely manyz-orbits of peripheral circles irs;
(2) the stabilizer of each peripheral circl€ is a quasi-convex subgrou@ whose boundary
isC.

Proof. -We recall thatG' acts cocompactly on the spadgG := {(x,y,2) € (0G)? |
x, y, z distinct}. Therefore ifC), C 9,,G is a sequence of peripheral circlés;,, yx, z1) € 9°G
and {zx, yx, 2z} C Ck, then after passing to a subsequence we may find a seqygrcér,
(Toos Yoo, Zoo) € O2G s0 that(grr, grYk, .21 ) CONVErges tdz o, Yoo, 200 ). But this means that
Diam(gx(C%)) is bounded away from zero, g9(C};) belongs to a finite collection of peripheral
circles, and hencgy (C) is eventually constant. We conclude that there are only finitely many
G-orbits of peripheral circles, and the stabilizer of &y C acts cocompactly on the space of
distinct triples inC'. By [13] Stab(C') is a quasi-convex subgroup 6f, andd..Stab(C) = C.
From now on we will refer to stabilizers of peripheral circlepasipheral subgroup8y [24,17,
43] each peripheral subgroup is, modulo a finite normal subgroup, a cocompact Fuchsian group
in Isom(H?). O

5. Doubling Sierpinski carpet groups along peripheral subgroups

In this section we prove Theorem 5.

Let G be a hyperbolic group with..G ~ S, and letH,, ..., Hy be a set of representatives
of conjugacy classes of peripheral subgroups/ofVe define a graph of grougs as follows.
The underlying graph has two vertices @nddges (no loops). Each vertex is labelled by a copy
of G, theith edge is labelled by7;, and the edge homomorphisms — G are given by the
inclusions. We letz be the fundamental group ¢f. R

Next we construct a tree of spaces on which the grGugcts in a natural way. LeX, be a
finite Cayley2-complex forG, and letX; be a finite Cayley2-complex for the grougd;. The
inclusion H; — G is induced by a cellular map; : X; — X, between the2-complexes. Let
h:|JX,; — X, be the corresponding map from the disjoint union of Hiés to X, and letX
denote the mapping cylinder af

Let DX be the double oK along the collection of subcomplexés, i =1,..., k. Consider
now the universal coveDX of DX with the deck transformation gromﬁ Let Y be the 1-
skeleton ofDX. The 1-skeletons of the subcomplexé§, i = 1,...,k, lift to disjoint edge
subspace®sf Y. A vertex subspacef Y is obtained as follows: take a connected component
C of the complement of the edge spacesYintake the closur€’, and then add in all edge
spaces which interse€t. Each vertex space is a copy of thekeleton of the universal cover of
X. LetT be the graph corresponding to the decompositiori @fto vertex and edge subspaces:
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verticesv of T' correspond toertex spaces,, C Y, the edges correspond to thedge subspaces
Y. C Y. An edgee is incident to a vertex if and only if Y, is contained irl,. It is standard that
the grapHhl is actually a tree (compare [39]). LBtand F denote the collections of vertices and
edges inl” respectively. Ifv € T we let £, denote the collection of edges containing

Leto:DX — DX be the natural involution obDX. A map7:Y — Y is areflectionif it is
a lift of o and it fixes some point; each reflection fixes some edge spake amd each edge
spaceY.. is the fixed point set of precisely one reflection Let I" be the group generated by the
reflections inY". The groupl” is normalized b)G since conjugation of a reflection by an element
of G yields another reflection; likewis@ is normalized byl". Letv € T' be any vertex. Thed’
is the free product of order two subgroups of the fgim) wheree € E,,.. The vertex spac¥,
is a fundamental domain for the action Bfon Y. The groupl” preserves the tree structure of
Y, so we have an induced action Bfon T by tree automorphisms, each reflectioracting on
T as an inversion of the edge The action of/” onT" naturally induces an action df on 9., 7.
The spacé’” is a connected graph, and we give it the natural path-metric where each edge in
has unit length.

LEMMA 9. -—

(1) The spacé&” is Gromov-hyperbolic.

(2) Edge and vertex spaces are all-quasi-convex irt” for somek.

(3) There is a functiorC(R) such that for evenR, the intersection oRR-neighborhoods of
any two distinct vertex or edge spaces has diameter at @@8) unless the spaces are
incident.

Proof. —The spaceY is quasi-isometric to Cayley graph 6f. The group@ is Gromov-
hyperbolic by [9,10]. The assertions (2) and (3) follow from [33] and [42}

We have a coarse Lipschitz projectipnY — 7' which maps(Y Ueer, ) to v for
eachv € V, and maps each edge space to the midpoint of the correspondmg edgdfof
v:]0,00) — Y is a unit speed geodesic ray, thesy is a coarse Lipschitz path with the bounded
backtracking property by the quasi-convexity of vertex/edge spaces. Heneg maps into a
finite tube around a geodesic rayin 7. If p o~y is unbounded irff’, then the equivalence class
of the rayr is uniquely determined by and we label with the associated boundary point
[7] € 0T By the quasi-convexity of edge spacesyihits an edge space for an unbounded
sequence of times, then it remains in a quasi-convex tubular neighborhood of the edge space (of
uniformly bounded thickness). In this case, we know thaventually remains in a bounded
neighborhood of a unique edge space by property (3) in Lemma 9, and weylati#h this
edge. If neither of the above two cases occurs, then for eacheedfjthe tree, we know that
~ eventually lies in one of the two components of the complement of the edge Bpaard
we label the edge with an arrow pointing in the direction of the corresponding subtfEe of
There must be some (and at most one) vertex?’ such that all edges emanating franihave
arrows pointing toward; otherwise we could follow arrows and leave any bounded set. There
must be an unbounded sequence of timgsuch thaty(¢x) lies in the vertex spac®, (by
the construction of the edge labelling); by quasi-convexity’pfthis means thay eventually
lies in the R-neighborhood ofY,; in this case we labe} by v. Equivalent geodesic rays are
given the same label. We get a labelling maplLabel: 0. — (T U 0-T) which is clearly
I'-equivariant.

We now examine the topology @i, Y. This space is metrizable and we fix a metion
0~Y; in what follows we will implicitly used when discussing metric properties of.Y .

3 Amapec:[0,00) — T has thebounded backtracking propertf/for every r € (0, co) there is an’ € (0, 00) such
that if t1 < to, andd(c(t1),c(t2)) > 7/, thend(c(t), c(t1)) > r for everyt > ts.
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Recall that each vertex spakg is quasi-isometric tars ~ X; since by Lemma 9 every subspace
Y, is quasi-convex irt’, we conclude thad..Y, C 0., Y is a Sierpinski carpet. Similarly, the
peripheral circles of the Sierpinski carpgt. Y, are in one-to-one correspondence with the
boundaries of edge spacé’;sc Y,. We note that the unioQ), 0., is dense i)Y, since
this subset i-invariant and? is a nonelementary hyperbolic group.

By the visibility property of the uniformly quasi-convex edge spaces, there is at most one
boundary point 00, Y labelled by any € 0., 7. For each edge in 7', the set of points in
0 Y labelled bye is the ideal boundary of the edge space i.e. a circle. For each vertex
v € T, the set of points labelled hyis

aOOY’U - U aooY—ev

eckE,

i.e. the Sierpinski carpél.. Y, minus the union of its peripheral circles.

Our next goal is to describe the topology®f Y using the tred’. Chooses € T'. Every edge
e of T' separateq’ into two subtrees, and we 18, . C 7' be the subtree disjoint from. We
define theoutward subsetOut, ., for a pair(v, ¢) € V x E to be the collection of points of
O~ Y labelled by elements df, . U 0T, .. The visibility property ofY” implies that for a fixed
v € T and anye > 0 there are only finitely many edgescC 7" so that the diameter dut,, .
exceedsg. Outward subsets di..Y are open since a geodesic rawith d..y € Out, . will
eventually leave any tubular neighborhood of the edge spacand so nearby boundary points
correspond to rays which eventually lie in the same component of the complemgéniroi”.
It follows that if £ € 0., T, ande,, is the sequence of edges occurring in the #dythen the
sequence of outward seBit, ., iS a nested basis for the topology@§ Y at the point labelled
by &. The closure oOut, . is Out, . U 0 Y. because the complement @ut, . U O Ye is
Out,, . Wherew is the endpoint oé furthest fromv (obviouslyd.. Y, C Out, ).

LEMMA 10. — Suppose€;, € 0. Y convergestd.. € d-Y . Then one of the following holds.

(1) £~ is labelled by a boundary poiritabel¢,) € 0-,T'. In this caseLabel ;) converges
to Label¢.,) in the compact spacE U 0o T'.

(2) ¢ is labelled by a vertex € T'. In this case, for any subsétC F, containing all but
finitely many elements d@,,, the sequencg, eventually lies in

Do Yy U ( U Outv,€>.

ecf

(3) £~ is labelled by an edgey. In this case, ifv, w are the endpoints oy, then for any
subsett C E, containing all but finitely many elements Bf,, and any subsef C F,,
containing all but finitely many elements8f,, the sequencg, eventually lies in

Do Yy U Yoy U ( U Outv,e) U ( U Outw,e>.

ecé& ecF

Proof. — Caseg(1): if v is any arbitrary vertex of’, ande, es, ... is the sequence of edges
comprising the geodesic ray,, C 7', thenOut,, e; COxY IS a nelghborhood basis f@k..
ThereforeLabel(&,) converges td.abel(é) by the definition of the topology Of' U 0.7

Case(2): if this weren’t the case, then a subsequencg.ofiould converge to an element of
Outy,e = Outy o U 0 Ye for somee ¢ €. This contradicts the fact that, is labelled bywv.

Case(3): similar to case 2. O
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PrROPOSITION 11. —800@ is homeomorphic t&2.

Proof. —Let G’ be the fundamental group of a compact hyperb8limanifold M with
nonempty totally geodesic boundary. Recak¢Section 4) that,G’ is a Sierpinski carpet.
Using the notation developed above (decorated with “primés”)s the fundamental group of
the double of\/, S00,,G" is homeomorphic t&2. We will construct a homeomorphism between
0scG’ andd,G.

Choose vertices € T andv’ € T”, and a bijection®, — E,.. This induces an isomorphism
between Coxeter groups — I/, which we will use to identifyl” with I"’. There is a unique
I'-equivariant isomorphisifi’ U 0,7 — T" U 051" which induces the given bijectiof, —
E,; we will use primes to denote corresponding edges and vertices. Choose an enumeration
v = vy, vg,... of vertices of T so thatd(vy,{J;.,v;) = 1. Choose a homeomorphism
f1:00Yy — 00Y,,. Using reflections from” we inductively extendf; to a homeomorphism
Sr: U O Yy, — Uz 1 0o Y’ for eachk, so that the resulting map.. :|J;=, 00 Ys, —
U2, 0 Y& is I'-equivariant. By constructionf, is compatible with label maps, i.e. the
following diagram commutes:

U 0o Yy, —= U O
Labell \LLabel
TUOT g TUOT

We claim thatf,, extends continuously to a homeomorphigmd..Y — 9. Y”. In view of
the naturality of our construction it is enough to show tlfiat extends to a continuous map
[:05Y — 05 ~ 0s G ~ S2, since the inverse map may be produced by exchanging the
roles of G andG’. Pick a sequencg, € 0.,Y which converges to somec 0. Y. We will show
that /. (£x) converges.

Case(1): ¢ is labelled by some € 9, T. — In this case there is a uniqgée 9.’ which
is labelled byn’ € 0,,T'. We know that ife; (respectivelye!) is the sequence of edges of
the rayvny (respectivelyv’n’), then the outward setSut, ., (respectivelyOut, /) form a

basis for the topology 0b..dz (respectivelyd,.Y’) at £ (respectivelyé’). Since f., maps
Outy e, N2, 900 Ye, 10 Outy o N, Doo Y’,, the sequencg.. (&x) converges t@’.
Case(2): ¢ is Iabelled by a vertew € T'. — For eachk eitheréy, € 0xY, or & € Out, ¢,
for a uniquee;, € Edge,. By Lemma 10, in the latter cadeiam(Out, ., ) — 0 ask — oc.
Construct a sequencg; € 0~ Y, S0 that(, = & when ¢, € 0Y,, and (; € 0 Y., =
Outy ¢, N oY, Otherwise. Note thdimy,_., ¢ = £ sinceDiam(Out, ., ) — 0. The sequence
foo(Cr) convergestdo (€) sincef|s. v, is continuous. Observe thaf - (Cx), foo (Ek)) IS ZETO
when¢;, € 0,.Y, and is at mosDiam(Out, ) otherwise. Since eaah, occurs only finitely

often,Diam(Out., )—0s0

viep

kli_{)élo fool&r) = klllglo Joo(Ck) = foo ().

Case(3): ¢ is labelled by an edgey € T'. — We leave this case to the reader, as it is similar to
case (2). O

COROLLARY 12. - LetG be atorsion-free hyperbolic group with Sierpinski carpet boundary
andH,, ..., Hy be representatives of conjugacy classes of stabilizers of peripheral circles of the
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Sierpinski carpet. Thefy is a torsion-free hyperbolic group, and hence it iSalimensional
Poincaré duality group by11,7]. By [22], if one splits aPD(n) group over aPD(n — 1)
subgroup, then the vertex groufisgether with the incident edge subgrojgdsfinePD(n) pairs,
therefore(G; Hy, ..., Hy) is a Poincaré duality pair. In particulan (G) = 3 >, x(H;) < 0.

COROLLARY 13. — LetG be atorsion-free hyperbolic group with Sierpinski carpet boundary.
Suppose either
(A) Cannon’s conjecture is true, or
(B) every3-dimensional Poincaré duality group with a nontrivial splitting is the fundamental
group of a closed-manifold.
ThenG is the fundamental group of a compact hyperbdimanifold with totally geodesic
boundary.

Proof. —Let Hy, ..., Hy, G, I, be as in the first part of this section. If A holds, th@his
the fundamental group of a closed hyperbglimanifold M. SinceG splits nontrivially by its
very definition, if B holds thert? = 71 (M), whereM is a closed irreducibl8-manifold. M is
Haken since its fundamental group splits, and so Thurston’s uniformization theorem implies that
M admits a hyperbolic structure. In either case we ha\aeting onH? discretely, cocompactly,
and isometrically. N

The reflection groug™ acts onG' by conjugation, with each reflection centralizing a unique
quasi-convex edge subgroup Gf By Mostow rigidity, I" acts isometrically on the universal
cover of M normalizing the actioy ~ H?. G C G is a quasi-convex subgroup, and so it acts
onH? as a convex cocompact subgroup. The limit set‘dh 0., H? is a Sierpinski carpet, and
because every peripheral subgrougbis centralized by a unique reflection inC Isom(H?),
the peripheral circles are fixed by reflectiondinThus each peripheral circle of the limit set of
G is around circle, and so the convex hull of the limit set is a convex subset bounded by disjoint
totally geodesic hyperbolic planes. It follows th@tis the fundamental group of a compact
hyperbolic manifold with totally geodesic boundaryz

6. Examples

We now use Theorems 1 and 5 to see that some classes of hyperbolic groups have Menger
curve boundary.

We first remark that a torsion-free hyperbolic group with Sierpinski carpet boundary has
negative Euler characteristic by Corollary 12. Sdifis a torsion-free hyperbolic group with
1-dimensional boundary; doesn't split over a trivial or cyclic group, andG) > 0, thend.G
is a Menger curve.

THEOREM 14. —Let GG be a torsion-free2-dimensional hyperbolic group that does not split
over trivial and cyclic subgroups and which fits into a short exact sequence

1—F—G—7Z—1,

whereF is finitely generated. Them. G is the Menger curve.

Proof. —In view of Theorem 1, itis enough to show ttiat G cannot be a circle or a Sierpinski
carpet. If0,.G ~ S!, thenG contains a finite index closed surface subgréiipBut then we
would have an exact sequences F' — G’ — Z — 1, whereF’ = F NG’ is finitely generated,
which is absurd. Now supposg, G is a Sierpinski carpet. Note that # admits a finite
Eilenberg—Maclane space, then it is easy to see @) = x(F)x(Z) = 0, s0 0G cannot
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be a Sierpinski carpet by the remark above. However there are examples sughishaot a
finitely presentable groupsée[36]). We now consider the general case. THéQH, ..., Hy)

is aPoincare duality pair Let K be a finite Eilenberg—Maclane space for the gréypet D be
a disjoint union of finite Eilenberg—Maclane spaces for the grdiips. ., Hx, and letK be the
mapping cylinder for a map — K, which induces the given mags; — G. We view D as a
subcomplex of". Consider the finite cyclic coverings

(KnaDn) - (K,D)

which are induced by the homomorphisfis— Z — Z,. Then each pai(K,,, D,,) again
satisfies relative Poincare duality in dimensirso

H*(K,,, Dp; 2/2) 2 H> (K, Z/2).
We will use the notatioi; (L) to denote the dimension (ov&y/2) of H;(L,Z/2). Thus

(1) lim by (Dy) = 0o

n—oo

andb; (K,) < bi(F) + 1 < co. Consider the exact sequence of the paiy,, D,,):
o YK, 2)2) — HY(Dy; 2/2) — B3(K,, Dy Z)2) — -+
Sinceb, (K,) is bounded by, (F') + 1, the equality (1) implies that

lim Dimz/g (HQ(Knv Dn; Z/2)) = Q.

n—oo

This contradicts the fact th&t?(K,,, D,,; Z/2) 2 Hy(K,;Z/2). O

Now let F' be a finitely generated free group and ' — F be an irreducible hyperbolic
automorphismgee[9] for the definition). Consider the extension

1 —F—G—7Z—1

induced byg. The groupG is hyperbolic by [9]. The cohomological dimension@fis 2 by the
Mayer—Vietoris sequence, thus the boundarg=a$ 1-dimensional by [11].

COROLLARY 15. -0,.G is the Menger curve.

Proof. —We will show that the groud does not split over a cyclic (possibly trivial) subgroup.
Suppose that it does. Then we have the corresponding act@mofa minimal simplicial tre§”
with cyclic edge stabilizers. Consider the restriction of this action on the subdtougt 7’ c T
be the minimalF'-invariant subtree, then’ is Z-invariant (sinceZ normalizest’), thusT’ =T'.
By Grushko’s theorem (in the case of trivial edge stabilizers) and the generalized accessibility
theorem [8] (in the case of infinite cyclic stabilizers), the quotiEAE is a finite graphl”. The
action ofZ = (z) projects to action oif, after taking a finite iteration af (if necessary) we may
assume that acts trivially onI". SinceG does not contaiff?-subgroups, the edge stabilizers for
the action ofF" onT must be trivial. Thus we get a free product decompositiof b that each
factor is invariant under some iteratez0fThis contradicts the assumption that the corresponding
automorphismy: ' — F'is irreducible. O

THEOREM 16. —LetG be a finite graph of groups. Suppose
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(1) each vertex group is a torsion-free hyperbolic group whose boundary is either a Menger
curve or a Sierpinski carpeaind at least one vertex group has Menger curve boundary
(2) each edge group is a finitely generated free group of rank at I2aahd includes as a
quasi-convex subgroup of each of the corresponding vertex groups
(3) if T'is the Bass—Serre tree fof, ande;, e; C T are two edges emanating from the same
vertexv € T, then their stabilizers intersect trivially.
Then the fundamental group of G is a hyperbolic group with Menger curve boundary.

Proof. —Conditions (2) and (3) imply tha¥ is hyperbolic by [9], and vertex groups are quasi-
convex subgroup af by [33,42].G is torsion-free since all vertex groups are torsion-ftedas
cohomological dimensio by the Mayer—Vietoris sequence, 8g, G has dimension by [11].

We claim thatG does not split over trivial or infinite cyclic groups. To see this, ebe the
Bass—Serre tree ¢f, and letS be the Bass—Serre tree of a splitting’dbver trivial and/or cyclic
groups. Consider two adjacent vertiegsv, € T', letG,,, C G be their stabilizers, and |ét. be
the stabilizer of the edge joining them. Sin@Gg, does not split over trivial or cyclic subgroups
[13], G.,, has a nonempty fixed point setéh If s; € S is fixed byG,,,, then the segment joining
s1 to so will be fixed by G.. SinceG. is free of rank at leas?, we see that; = s,. Therefore
by induction we find tha&G has a global fixed point i¥, which is a contradiction.

If the stabilizer ofv € T" has Menger curve boundary, then by the quasi-convexity,oh G,
the Menger curve embeds éh,G. This shows thad..G cannot be homeomorphic & or the
Sierpinski carpet. By Theorem 4,,G is a Menger curve. O

7. Topologically rigid groups

In this section we will construct some examples of topologically rigid groups. Before
proceeding, we first note a consequence of Theorem 4.

COROLLARY 17.— LetG be a nonelementary hyperbolic group withm (9-.G) < 1. Then
G is not topologically rigid.

We will sketch a proof of the corollary, and leave the details to the reader.

Casel: G has more than one end- ThenG splits as an amalgamated product or HNN
extension over a finite group. Lét ~ 7' be the action of7 on the Bass—Serre tree associated
to such a splitting, so there is only one edge orbiffinFollowing along the same lines as
in Section 5, we construct a tree of spacéswith vertex and edge spaces corresponding to
vertices and edges ifi. For each vertex € T, the vertex spac&’, C X is quasi-convex inX
and as in Section 5 we may label pointsiig X with elements ofl’ U 0,,7. The outward sets
(seeSection 5) are open and closeddr, X . If e; andes are incident to a vertex then they
lie in the sameG,-orbit (sinceG /T has only one edgePut, ., andOut, ., are disjoint and
homeomorphic, so we may define a homeomorphisthok by swapping them while holding
everything else fixed. This construction yields a continuum of homeomorphisiig &f, so
G — Homeo (0~ X) cannot be surjective.

Casell: G is 1-ended.— If 9,,G is homeomorphic tdS!, the Sierpinski carpet, or the
Menger curve theidz cannot be topologically rigid since each of these spaces has uncountable
homeomorphism group. Therefore, by Theorem 4, we may assumeGthsplits as an
amalgamated free product or HNN extension over a virtually cyclic group.d.et T' be
the action ofGG on the Bass—Serre tree associated with such a splittingidfan edge irl’,

e =10z, thenOut,, . — O X andOut,, . — 0o X, are open and closed i X — Joc X,
and are preserved b¥.. Take an elemenj € G, that fixes both points id..G., and define

4® SERIE— TOME 33 — 2000 N° 5



HYPERBOLIC GROUPS WITH LOW-DIMENSIONAL BOUNDARY 659

a homeomorphisny : oo X — 0o X by flout,, . = 9=glout,, . and flout,, . = id|out,, .-
This type of construction will give a continuum of homeomorphism#QfX, so againG —
Homeo(0X) cannot be surjective.

The following lemma relates topological rigidity of hyperbolic groups with quasi-isometric
rigidity.

LEMMA 18.— Suppose thaz is a honelementary Gromov-hyperbolic group, akidis a
Cayley graph of7. Then there is a functiop(t, s) so that eacli L, A)-quasi-isometry : X — X
which induces the identity mapping@{ X, is ¢(L, A)-close to the identity. If7 is topologically
rigid then every(L, A)-quasi-isometry ig)(L, A)-close to left translation by somec G.

Proof. —Supposef : X — X is an(L, A)-quasi-isometry which induces the identity mapping
on ., X. SinceG is nonelementary)., X = 0,,G contains infinitely many points. Let, 5
be complete geodesics iIX which are not asymptotic to each other in either direction.
Therefore there exists a functiotic) (which depends orX, «, ) such that the intersection
betweenc-neighborhoods ofx and 3 has diameter< r(c). Since X/G is compact, there
is a constantC' such that each point € X is within distance< C' from g(a) and from

g(B) for someg € G. Stability of quasi-geodesics in Gromov-hyperbolic spaces implies that
d(ga, f(ga)) < D, d(gB, f(gB8)) < D where D depends only onlyX, L, A and C. Thus
f(z) € Neqp(ga) N Neyp(gB), the diameter of the intersection is »(C' + D). Hence
d(z, f(x)) <7(C + D) = ¢(L, A).

If G is topologically rigid andf: X — X is an(L, A) quasi-isometry, theb, f : 0-c X —
DX is induced by somg € G; hence by the argument abodég, f) = d(id,g "' o f) <
o(L,A). O

Recall that for a hyperbolic grou@, G denotes the quotient @i by the maximal normal
finite subgroup.

LEMMA 19.-If ' is a hyperbolic group whose boundary is homeomorphic to the boundary
of a topologically rigid hyperbolic groug, thenG’ embeds irG as a finite index subgroup.

Proof. -We leave the case of elementary hyperbolic groups to the reader and assume that
G (and hence?’) is nonelementary. Recall that for a hyperbolic gratipd3G denotes the
collection of points in0,, G)? where all three coordinates are distinct. ke, G’ — 0..G be
a homeomorphism. The kernels of the projecti6iis— Homeo(0-G’), G — Homeo(0s G)
are the maximal normal finite subgroup® C G’, N C G. SinceG is topologically rigid, the
conjugation byh determines an embedding G’ — G, whereG := G/N, G’ := G'/N’. The
groupsG’, G act properly discontinuously cocompactly 604G, 9°G. HenceL(G’) also acts
properly discontinuously cocompactly 8iG. It follows that[G': .(G")] < O

COROLLARY 20.- If G" is a hyperbolic group quasi-isometric to a topologically rigid
hyperbolic group, thenG’ embeds inG as a finite index subgroup.

Proof. —A quasi-isometry between Gromov-hyperbolic metric spaces induces a homeomor-
phism between their boundaries

Our construction of topologically rigid groups is based on the idea (realized precisely in
Proposition 24) that a homeomorphism $ must be a Mdbius transformation provided it
preserves a sufficiently rich family of round circles. We begin with an analogous statement for
homeomorphisms ¢§'.
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Line configurations in H?>

Let £ be a locally finite collection of geodesics lifi* so that the complementary regions of
UpLe L are bounded, and we assume that there is a cocompact lattickom (H?) stabilizing
L. Letd?_H? be the space of unordered distinct pair®igH?, and letd.,, £ be the collection of
pairs of endpoint®., L for L € £, 0oL := {0 L | L € L} C 0> H2. Note thatifL,, Lo € £
and 0. L1 N Oso L2 # 0, then Ly = Lo. Let Stab(0s.£) C Homeo(d-H?) be the group of
homeomorphisms a¥..H? which preservé., £ C 92 H2.

LEMMA 21.-—

(1) If L1, Lo € £ have nonempty intersection agde Stab(0cL) fiXeS 0o L1 U Ooo Lo
pointwise, thery = id.

(2) {07 | v € I'} C Homeo(d,H?) is a finite index subgroup &ftab (9. L).

Proof. —Our arguments essentially follow ([16], Proof of Theorem 2.7). We will identify the
space of geodesics Ifi* with 53011-]12.

(1) Supposd., Ly € L andg € Stab(0xc L) fixes oo L1 U O Lo pointwise. Ifoy, o9 are the
connected components 8f, H? — 0., L1, theng(o;) = 0; since|ds Ly No;| =1 andd, Lo is
fixed byg. Observe that’; .= {0.LNo; | L€ Land|LNLi| =1} C o; is a discrete subset of
o; with the order type (with respect to the orderingarn~ R) of the integers, and(X;) = %;.
But g fixes the poinD., L2 N o; € X; and is orientation preserving, §0s;, = idx,. Thereforey
fixes O L for everyL € £ with L N L # (). The incidence graph af is connected, so we may
apply this argument inductively to see thgfixes 0., L for everyL € L. The selJ; . O L is
dense i, H?2, sog = id. This proves the first assertion of the lemma.

(2) We now show that every sequengec Stab(0d-, L) has a subsequence which is constant
modulo I", which proves thafStab(0x.£): I'] < oo. Pick L1, Ly € £ such thatL; intersects
L, in a pointp. For eachk let gi.L; € £ be the unique line wittdo. (gr«Li) = gi(0oo Li).
Then (gr«L1) N (g« L2) = pr for somep, € H?, and we may choose a sequengec I’
such thatsup d(vx(px),p) = R < co. Then the linegy; o gx).L; lie in the finite set{L ¢
L] LNB(p,R) # 0}, so after passing to a subsequence we may assuméythatgy)|s.. .,
independent of for i = 1, 2. By the previous paragraph the sequefice g;. € Homeo(0,,H?)
is constant. O

Plane configurations inH?

Below we prove an analog of Lemma 21 for a collectigrof totally geodesic hyperplanes in
H3.

Let H be a locally finite collection of totally geodesic planesHH, with stabilizerG :=
{g € Isom(H?) | g(H) € H foreveryH € H}. Let 0. H := {0 H | H € H}. We assume that
‘H satisfies the conditions:

(1) G is a cocompact lattice ifsom (H?);

(2) the complementary regions of;,, H are bounded,

(3) if H € H, then the reflection it does not preserve the collectieh
Such examples will be constructed later in this section.

The local finiteness of{ implies that there are finitely mang-orbits in H, and that the
stabilizer of each{ € H acts cocompactly o .

DEFINITION 22.—-We will say that three circle8,, Hy, 0s Ho, 05 Hs, Where H; € H, are
in standard position if the three planés; intersect transversely in a single point H?>.

Note that if the circle®)., H1, 0o H2, O H3 are in standard position and,, Cs, C5 is
another unordered triple of circles which bound element® gthenC;, C5, Cs are in standard
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position if and only if there is a homeomorphisind., H1 U Oso Ho U 0o Hz — C1 U Cy U C3
which carries elements 6{ to elements of+.

Let Stand denote the collection of unordered triples of circles in standard position. Thus the
previous remark implies th&tand is invariant under the homeomorphisfts— S? which carry
elements of to elements of{. We will say that two elements Sftand areincidentif they have
exactly two circles in common.

LEMMA 23. -

(1) Theincidence graph ¢ftand is connected.

(2) If v C 05, H? is homeomorphic t&*, then eithery = 9., H for someH € H, or there is
an H € H so thatd., H intersects both components@f H> — ~.

Proof. ~The union{J,.,, H determines a polygonal subcomplexH¥ with connected -
skeleton. Therefore the assertion 1 follows.

To prove the assertion 2, IBtandU’ denote the connected component8QfH® — ~v. We may
find H, H' € Hsothatd,.H Cc U, 0,.H' C U’. Since the incidence graph féf is connected we
can find a chain of planel, = H, Hy,..., H, = H' in H so that consecutive planes intersect
each other. We see that eithet= 0., H; for someH; in this sequence or for sorié; the circle
Oso Hj intersects botl/ andU’. O

PROPOSITION 24. — Let Stab(d.H) be the group of homeomorphisms @f H* which
preserved . H, Stab(0x.H) := {g € Homeo(dsH?) | g(0oo H) € Ox’H for all H € H}. Then
Stab(0scH) = {009 | g € G}.

Proof. —Suppose{0.c H1, Osc H2, 0xcHs} € Stand, f € Stab(0H), and f(0H;) =
OscH; for 1 <i < 3. Then forl <7 < 3 we may consider the collectiofy; of geodesics irH;
of the formH; N H for H € H — H;. Part 1 of Lemma 21 then implies thAly,_ m, =ids__ o, -

Now suppose 0o H1, Oco Ha, Ooo Hs}, {0 H1, Oco Ha, 0o H,} € Stand are incident,f €
Stab(0H), and f|o m, =ido_m, for 1 <i< 3. Then f(0Hy) = 0o H4 Since Hy is the
unique element of{ whose boundary contains theelement seO, Hy N (Ooo H1 U 0o H3).
Therefore by the previous paragraph we have

f|3ooH4 = idH4'

Since the incidence graph Sfand is connected we see by induction thdy__ i = ids__ for
all H € H, and this forceg =idy__ps.

Reasoning as in Lemma 21 we conclude {8aib (0. H) : G] < oo.

Let G’ C G be a finite index normal subgroup &tab(0.,H). Each f € Stab(d.H)
normalizes the actioi’ ~ 0, H?, so by Mostow rigidity eacly is a Mébius transformation.
Therefore, for every € Stab(d.,H) we havef = 0..g for someg € G. O

Constructing topologically rigid groups
Let G’ C G be afinite index torsion-free subgroup@fso that for eact € H the stabilizer
of H in G’ preserves the orientation di. Let { H1,..., Hx} be a set of representatives of the
G’-orbits in'H, and letG,; := Stabg (H;). For anyl < i < k, the set of geodesics
{HNH;,|HeH—-H;, HNH; #0} C H;

is finite modulo the action of7;. Hence for each < i < k, there is a finite collectiorZ; of
conjugacy classes of maximal cyclic subgroup&:efwith the property that:
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(a) foranyg € G’ — G;, the intersectiogG,;g~ ' N G; is an element of;;

(b) foranyg € G’ andi # j, the intersectiogG,;g~! N G, is an element of;.

We now construct a doubfe of G’ along the collection of subgroups; := Stab(H;),
1 <i < k as follows: construct a graph of grougswith two verticesv, v» and k edges
ei1,...,ex, whereG,, is isomorphic toG’ andG., is isomorphic toG;. ldentify G,,, with G’.
We choose the embeddings: G, — G, so that the image coincides with the copy@fc G’
in Gy, (j =1, 2), butso that the;;’s satisfy the following condition:

(Twisting) ¢4 (Z:) N  (25) = 0.

To construct embeddings; : G, — G, satisfying the twisting condition we first choose
random embeddingg;; : G., — G, whose images are the copies@f, then lets;; := ;.
Define 1;; as the composition ofp;; with a sufficiently high power of a pseudo-anosov
automorphism of the surface grodf (i =1,..., k).

Let G :=m1(G), letT be the Bass—Serre tree associated Witland letV and E' denote the
collections of vertices and edges]hrespectively@ acts (discretely, cocompactly) on a tree of
spacesX constructed as in Section 5, with vertex spa&gsv € V and edge spaces,, e € E.

LEMMA 25.-G is a hyperbolic group. All vertex and edge grougs, = € V U T are quasi-
convex subgroups @f.

Proof. —By [10,42,33] it suffices to show that there is an upper bound on the length of essential
annuli see[10], Section 1) in the graph of grougs Or, equivalently, we need to show that there
is an upper bound on the length of any segmefit imhich is fixed by a nontrivial elemente G.
We claim that ifeq, ez, es are three consecutive edges in the tfeghenG., N G¢, N Ge, is
trivial; for the twisting condition implies that the intersectio@s, N G., andG., N G., are
cyclic subgroups of~., with trivial intersection. O

LEMMA 26.—

(1) Forevery vertex € V, 05, X, C 05X is a2-sphere.

(2) Forevery edge € F, 0, X, C 05X is acircle.

(3) If vy # vy € V thend Xy, N s X, ~ St implies thatv; andw, are the endpoints of an
edgee € F, and 00 Xy, N Ooo Xyy = Ono Xe.

4) Uyey 9 Xy is dense indo, X.

(5) Picke € F, and letTy, T> C T be the two subtrees that one gets by removing the interior
of the edge:. Thend.. X — 0, X, has two connected components, namely the closures of
(Uper, 0o Xv) = 0o Xe iN 0o X — 00 X fOri=1, 2.

The proof of the lemma is similar to arguments from Section 5, so we omit it.

LEMMA 27.-If v C 0, X is homeomorphic t&' and v separates),. X, theny = 0., X,
for somee € F.

Proof. —We first claim thaty C 0., X, for somewv € V. Otherwise, by Alexander duality
050X, — 7y is connected for every € V, and (0 Xy, U 0 X4, ) — 7y iS connected for any pair
of adjacent vertices,, v, € V. By induction this implies than,Evaoon — 7y is connected.
By Part 4 of Lemma 26 we conclude thiat, X — ~ is connected, a contradiction.

Hence we may assume thatC 0., X, for somev € V. Supposey # J., X, for anye € £
adjacent ta. Then any point € 0., X — v lies in the same component 8f, X — ~ as one of

4 If we doubleG” without “twisting” the edge inclusions, then the resulting gr@uis not hyperbolic. But it acts on a
CAT(0) spaceX so thatHomeo (9 X ) containsG as a finite index subgroup.
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the two components al., X, — 7. By Lemma 23 we can find an edgeadjacent tav so that
00 X intersects both of the componeiifs, U, of 9., X, — . So we may connedt; to U,
within 0., X, — v, wherew is the other endpoint of. This contradicts the assumption that
separated . X. O

Thus, any homeomorphisi: 9., X — 0., X preserves the collection of circldd.. X.,
ee E}.

Let C denote the collection of unordered triples of circdés= 0. X.,,e; € E, which arein
standard positioni.e. there exists a triplél,, Ho, H3 € H which are in standard position and a
homeomorphisnf : 0., Hy U 0so Ho U 0, H3 — C1 U Cy U C3 which carries each circl@, H;
to one of the circle€’; ;). We define the incidence relation for element£dhe same way as
before, letI’(C) denote the associated incidence graph. Thesntains the subsetS, where
S, consists of triples of circles in standard position which are contain€tljX,. Then the
incidence grapli’(S,) is isomorphic to the incidence graph&fthus it is connectedséePart 1
of Lemma 23). For each vertexc V' the union of triples of circle§C, Co, C3} € S, is dense
iN Ose X,y

LEMMA 28.—The subgraphg’(S, ) are the connected componentsiofC).

Proof. —Itis enoughto show thatarfy";, Cs, C3} € C is contained i), X, for somev € T,
since there is at most ordkg, X, containing any given pair of circles.

Pick{C1, Cy, Cs} € C, with C; = 0 X, for e; € E. Note thatd(e;,e;) <1forl <i, j <3,
for otherwise, we would havé; N C; = (). Also, observe that if two of the circles lie in some
050X, then the third one must too (becayse, X, N dcX,| < 2 unlessdo X C 000 Xy).
Clearly, this forces the edgesto share a vertex. O

Define the incidence graph with the vertex §8t. X, v € T'}, where the vertices, w are
connected by an edge if and onlydf, X, N 05X, ~ S!. Lemma 18 implies that this graph is
isomorphic to the tre@".

PROPOSITION 29. — Any homeomorphisnf : .. X — 0., X preserves the collection of
spheres 0. X, v € V}. In particular, f induces an isomorphism of the trée

Proof. —The homeomorphisnf induces an automorphisify. of the graphI'(C), thus it
preserves its connected components. Therefore for eacly there isw = fx(v) such that
fuI'(S,) = I'(Sy). However,

U c

ceS,

is dense i X,. Thus f preserves the collection of sphefgs, X, v € V'}. The paragraph
preceding proposition implies thtinduces an automorphism of the tf€e O

THEOREM 30. — The homeomorphism group 6f, X containsG as a subgroup of finite
index. Thereforélomeo(9, X ) is a topologically rigid hyperbolic group.

Proof. —For everyv € V, we identifyd.. X, with 0., H? via a homeomorphism which carries
the collection{0.. X, | e € E, v C e} t0 0H; this homeomorphism is unique up to a Mobius
transformation by Proposition 24.

Supposef € Homeo (0 X) and fls_ x, = id|s. x, for somev € V. Then f fixes 0., X,
pointwise for everye € E containingv. Hence ifv’ € V' is adjacent tow, then f (0o X,) =
O X, By Proposition 24f|s_ x,, is a Mobius transformation. Eithef|s, x , = id|o, x,,
or fla..x,, is areflection. But Condition 3 ofi{ rules out the latter possibility. Therefore by
induction we conclude that fixesd., X, for everyw € V, and sof = id.
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2

Fig. 1. The hyperbolic polyhedros.

Pick v € T, and consider the possibilities fgfls__ x,, where f € Homeo(0-X). There
are clearly only finitely many such possibilities up to post-composition with elements of
therefore, by the preceding paragrapiinas finite index ifHomeo(0-X). O

An example of a plane configuration

We now construct a specific example of a plane configuratiaatisfying the three required
conditions. We start with the 3-dimensional hyperbolic polyhedfodescribed in Fig. 1: the
edges of the polyhedron are labelled witlnd3, they indicate that the corresponding dihedral
angles of the polyhedron are/2 andr /3 respectively. Such a polyhedron exists by Andreev’s
theorem [4]. Note that? has an ordeB isometryd which is a rotation around the geodesic
segment'E and reflection symmetries in each of three quadrilaterals, two of which are depicted
in Fig. 2.

The polyhedron? contains three squares which “bisedt; one of them3; = PQR.S which
is indicated in Fig. 1, the other tw@y, 33 are obtained fron#; by applying the rotatioi.

LEmMA 31.-The bisectorgi;, (32, B3 are realized by totally-geodeszdimensional poly-
gons in® which are orthogonal to the boundary @f. More precisely, for each < j < 3 there
is a totally geodesic planél; C H? which intersects the same four edgesfofis 3; and H;
intersects the faces @f orthogonally.

Proof. —It is enough to prove the assertion f8r, the other two polygons are obtained via
the rotationd. The proof is similar to [30]: we first split open the cutbecombinatorially along
the bisector3; into two subcubegb, and ¢_. Each polyhedron?,, ¢_ has a faceF',, F_
which corresponds to the bisect8y. We assign the label to each edge ofp is contained
in F.+. Andreev’s theorem again implies thét. and ¢_ can be realized by polyhedra ii?
(we retain the nameg.. for these polyhedra). Our goal is to show that the homeomorphism
F, — F_ (which is given by identification with the bisectgk) is isotopic (rel. vertices) to
an isometry of the hyperbolic polygons. The polyheddoadmits a reflection symmetry which
fixes the totally-geodesic rectangle/C'A; this symmetry also acts on the polyhedba, ¢_
and quadrilateral8’. so that the fixed point sets are the geodesic segments corresponfiRg to
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Fig. 3. “Bisectors” of the hyperbolic polyhedrah.

However itis clear that there exists a unique (up to vertex preserving isotopy) hyperbolic structure
on quadrilateraPQRS so that the edges are geodesic, anglestdge /3, /2, 7/3 and the
quadrilateral has an orderisometry fixingP R. Thus we have a natural isometiy — F_ and

we can glued, to ¢_ using this isometry. The result is a hyperbolic polyhediomhich is
combinatorially isomorphic t@ this isomorphism preserves the angles. Thus by the uniqueness
part of Andreev’s theorem (alternatively one can use Mostow rigidity theorem) the polyhedra
¢, U are isometric. On the other hand, the polyhedbazontains totally geodesizdimensional
polygonF’, = F_ which is orthogonal to the boundary @f. O

We retain the notatior8; (j = 1, 2, 3) for the totally-geodesi@-dimensional hyperbolic
polygons orthogonal t@¢ which realize the bisectors;. These polygons split> into 8
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Fig. 4. Symmetry of the bisectat; .

subpolyhedraP;, : = 1,...,8, which are combinatorial cubes. Note that the dihedral angles
betweens;, j =1, 2, 3, are all equal and are different frony2 (otherwise the combinatorial
cube P; which contains the vertex; would have all right angles which is impossible in
hyperbolic space).

Now we construct the collection of planés as follows: letR C Isom(H?) be the discrete
group generated by reflections in the facesPothe polyhedron? is a fundamental domain for
R. The 2-dimensional hyperbolic polygons; = H; N ¢ are orthogonal t@ ¢, the planeH;
is invariant under the subgroup; of R generated by reflections in the facesdfwhich are
incident tof3;. TheR-orbit of these hyperplanesis. Note that:

(0) If H is a member of{ and the intersectiofl N @ # (), thenH N @ is equal to one of the

bisectorsg;.

We next check thak{ satisfies the required properties:

(1) the fundamental domaié for R is compact, hence the grodpis a cocompact lattice;

(2) the complementary regions ¢ in H? are finite unions of the polyhedf, i =1,...,8,

thus they are bounded;

(3) letp; be the reflection in the plang;. Since the planesl;, 1 < j < 3, are not mutually

orthogonal it follows that this reflection maps, i # j, to a plane which does not belong
to H (seeProperty (0) above); it follows that does not preserve the configuratifin

8. Groups with planar boundary

In this section we discuss the example mentioned at the end of the introduction.

LEMMA 32.-Let S be a surface of genusswith two boundary components; andCs. Let
K be the complex obtained by gluidg to C5 by a degre€ covering mapC; — Cs, and set
G:=m(K). Then
(1) G is torsion-free and hyperbolic
(2) G contains a finite index subgroup which is isomorphic to a discrete, convex cocompact
subgroup ofsom(H?) which does not act cocompactly &ii. In particular, the boundary
of G is 1-dimensional and planar
(3) G is not a3-manifold group.

Proof. —(1) The groupG is torsion-free since it is an HNN-extension of a torsion-free group.
The hyperbolicity ofG follows from the Bestvina—Feighn combination theorem [9,10].
(2) Our arguments are similar to [27]. We first construct a finite covesing — S such that:
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(a) each component @fF’ which coversC; does so with degreé and each component of
OF which coverg’; does so with degrez:

(b) there are twice as many circlesiin!(Cy) as there are ip~*(Cs).
To get the cover, consider the cone-type orbifoldbtained by attaching a disk; to .S along
C1, and a diskD» with a cone point of orde2 aroundC>. ThenO is an orbifold of hyperbolic
type and hence admits a finite orbifold covering O — O, whereO is a manifold éee[38]).
Now removep, *(Interior(D;) U Interior(Ds)) from the surfaceO, and call the resulting
surfaceF. Thenp := po|r: F' — S is the covering with the required properties. bedenote the
number of boundary components Bfwhich coverC,. Now define a compleX by identifying
each component gf ! (C5) with precisely two components pf *(C} ), so that the composition
F — S — K factors through a covering map — K. We claim thatr (L) is a 3-manifold
group. Indeed, considdr as a graph of spaces where the vertex-spaces amdm copies of
the circleS?, the edge-spaces ade: copies ofS! and the attaching maps are homeomorphisms.
Replace the vertex space homeomorphidtby Y, = F x I, I = |0, 1]; replace each vertex
spaceX, homeomorphic t&' by the solid torug’, = S! x D?. The edge subspaces Bfx I
are the components &fF x I; the edge subspacés incident toS' x D? =Y, are the annuli
S! x a; (i =1, 2, 3), wherea; are disjoint arcs obD?. The maps from edge-spaces to vertex-
spaces are obvious inclusions. Then it is clear that the total space of the resulting graph of spaces
{Y,, Y.} is a3-dimensional compact manifold with boundary, which we ¢allThe fundamental
group of N is isomorphic tor; (L) since L is a deformation retract oN. The manifold N
is clearly Haken, thus we apply Thurston’s hyperbolization theorenV tand conclude that
m (L) = 7 (N) is isomorphic to a discrete, convex cocompact subgrGugf Isom(H?). If
H?3/G were compact, theg(V) = 0 which is obviously false sincg(N) is a nonzero multiple
of x(K) =-2

(3) Assume thati is a3-manifold group,G = 71 (M), M is a compac8-manifold. We can
assume thaf\/ is irreducible and, since; (M) = G is the fundamental group of a graph of
surface groups, it follows that/ is Haken. Orient the loopS; and lety; be the corresponding
elements of7. Then fori = 1, 2, the groupG' splits over the subgroufy;), G = m1(S)*(,,).
Hence; corresponds to an embedded essential annulus or a Moebiusdbamd/, i = 1, 2.
On the other handy? is conjugate to5™! in G. This is impossiblegee]28,29]). In [31] we show
that the group cannot act discretely simplicially on@arse3-dimensional Poincare duality
spacethis gives another proof th&t cannot act cocompactly on any contractitddimensional
manifold with boundary. O
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