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POLYGONS IN BUILDINGS AND THEIR REFINED SIDE
LENGTHS

Michael Kapovich, Bernhard Leeb and John J. Millson

Abstract. As in a symmetric space of noncompact type, one can associate to
an oriented geodesic segment in a Euclidean building a vector valued length in the
Euclidean Weyl chamber ∆euc. In addition to the metric length it contains infor-
mation on the direction of the segment. In this paper we study restrictions on the
∆euc-valued side lengths of polygons in Euclidean buildings. The main result is that
for thick Euclidean buildings X the set Pn(X) of possible ∆euc-valued side lengths
of oriented n-gons depends only on the associated spherical Coxeter complex. We
show moreover that it coincides with the space of ∆euc-valued weights of semistable
weighted configurations on the Tits boundary ∂TitsX .

The side lengths of polygons in symmetric spaces of noncompact type are studied
in the related paper [KLM1]. Applications of the geometric results in both papers
to algebraic group theory are given in [KLM2].

1 Introduction

For a noncompact symmetric space of rank one, such as a hyperbolic plane, the only
isometry invariant of a geodesic segment is its metric length. In a symmetric space
of noncompact type and arbitrary rank the equivalence classes of oriented segments
modulo the identity component of the isometry group are parameterized by the
Euclidean Weyl chamber ∆euc. We call the vector σ(γ) ∈ ∆euc corresponding to an
oriented segment γ its ∆-length. The same notion of ∆-length can be defined in a
Euclidean building, see section 3.1. Note that the directional part of the ∆-length
of a segment depends on its orientation. This is because the antipodal involution
of the spherical Coxeter complex induces an, in general non-trivial, involutive self-
isometry of the spherical Weyl chamber ∆sph. (∆euc is the complete Euclidean cone
over ∆sph.)

For a Euclidean building or a symmetric space of noncompact type X we denote
by Pn(X) ⊂ ∆n

euc the set of ∆-side lengths which occur for oriented n-gons in X.
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Main Theorem 1.1. For a thick Euclidean building X the set Pn(X) of possible
∆-side lengths of oriented n-gons depends only on the spherical Weyl chamber ∆sph

associated to X.

In other words, for any two thick Euclidean buildings an isomorphism of spherical
Coxeter complexes, respectively, an isometry of spherical Weyl chambers induces an
isometry of ∆-side length spaces. In particular, automorphisms of Coxeter complexes
induce self-isometries.

Our proof of the main theorem uses a relation between polygons in Euclidean
buildings and weighted configurations on their spherical Tits buildings at infinity
via a Gauss map type construction, see section 4.2. A weighted configuration on a
spherical building B is a map ψ : (Z/nZ, ν) → B from a finite measure space. By
composing ψ with the natural projection B → ∆sph onto the associated spherical
Weyl chamber one obtains a map (Z/nZ, ν) → ∆sph. We call the corresponding
point in ∆n

euc the ∆-weights of the configuration ψ.
In order to characterize the weighted configurations on ∂T itsX which arise as

Gauss maps of polygons in X, we introduce in section 4.1 a notion of (semi)stability
for weighted configurations on abstract spherical buildings, see also [KLM1, §3.6].
It is motivated by Mumford stability in geometric invariant theory as explained in
[KLM1, §4]. If ψ is a weighted configuration on ∂T itsX then one can associate to it
a natural convex function on X, the weighted Busemann function bψ (well-defined
up to an additive constant), and (semi)stability of ψ amounts to certain asymptotic
properties of bψ.
Theorem 1.2. Let X be a Euclidean building. Then for h ∈ ∆n

euc there exists an
oriented n-gon in X with ∆-side lengths h if and only if there exists a semistable
weighted configuration on ∂T itsX with ∆-weights h.

Balser [Ba] proves the sharper result that the weighted configurations on ∂T itsX
which arise as Gauss maps of polygons in X are precisely the semistable ones.

The proof of Theorem 1.2 relies upon the following result of independent interest,
which is a generalization of Cartan’s fixed-point theorem in the context of weak
contractions of Hadamard spaces (see Lemma 4.6):
Theorem 1.3. Let Y be a Hadamard space and Φ : Y → Y a 1-Lipschitz self map.
If the forward orbits (Φny)n≥0 are bounded then Φ has a fixed point in Y .

Note that every spherical building is the Tits boundary of a Euclidean building,
for instance, of the complete Euclidean cone over itself. As a step in our proof of
the above results we obtain
Theorem 1.4. For a thick spherical building B the set of possible ∆-weights
which occur for semistable weighted configurations only depends on the associated
spherical Weyl chamber ∆sph.

In our (logically independent) paper [KLM1] we investigate the ∆-side lengths of
polygons in symmetric spaces of noncompact type. We show there that Theorem 1.2
holds also in that case. Theorem 1.4 then implies that Theorem 1.1 holds for sym-
metric spaces of noncompact type, too.



GAFA POLYGONS IN BUILDINGS AND THEIR REFINED SIDE LENGTHS  1083

As a consequence of the results above and in [KLM1] it makes sense to denote by
Pn(∆sph) ⊂ ∆n

euc the space of ∆-side lengths of oriented n-gons in thick Euclidean
buildings or noncompact symmetric spaces with spherical Weyl chamber isometric
to ∆sph. It coincides with the space of ∆-weights of semistable configurations on
thick spherical buildings with this Weyl chamber.

In most cases the spaces Pn(∆sph) are known to be finite-sided convex polyhedral
cones, namely for spherical Coxeter complexes which occur for a symmetric space
of noncompact type. As shown in [OS] and [KLM1] with rather different methods,
Pn(∆sph) can then be described as the solution set to a finite system of homogeneous
linear inequalities. The system can be given explicitly in terms of the Schubert
calculus on Grassmann manifolds associated to the symmetric spaces. The case of
spherical Coxeter complexes, which occur for thick spherical buildings but not for
symmetric spaces of noncompact type, is not covered and convexity is unknown.

So far we discussed ∆-side lengths. In the case of Euclidean buildings there is a
finer invariant for oriented geodesic segments taking values in (E × E)/Waff where
(E,Waff) denotes the Euclidean Coxeter complex attached to X. We call it the
refined length. Unlike the ∆-length it also keeps track of the location of the endpoints
of the segment. In cases when the affine Weyl group acts transitively, for example, for
the affine Weyl group of symmetric spaces or ultralimits of thick Euclidean buildings
with cocompact affine Weyl group, cf. [KlL], ∆-length and refined length contain
the same information.

An important step in our proof of the Main Theorem is a result concerning refined
side lengths, namely the observation that polygons can be transferred between thick
Euclidean buildings with isomorphic Euclidean Coxeter complexes while keeping
their refined side lengths fixed; compare with Theorem 3.2.
Theorem 1.5. For a thick Euclidean building X the set Pref

n (X) ⊂ ((E×E)/Waff)n

of possible refined side lengths for n-gons in X depends only on the associated
Euclidean Coxeter complex (E,Waff).

More generally, polygons can be transferred to Euclidean buildings with larger
affine Weyl groups while transforming their refined side lengths accordingly (Adden-
dum 3.3), for instance, from a Euclidean building with one vertex to any other thick
Euclidean building with isomorphic spherical Coxeter complex. Along the way we
prove analogous results for polygons in spherical buildings.

The further study of the refined side length spaces Pref
n ((E,Waff)) is relevant for

certain applications to algebraic group theory and will be taken up in [KLM2]. More
specifically, Pref

n ((E,Waff)) relates to the following algebraic problem.
Let K be a complete nonarchimedean valued field with the valuation ring O. Let

G be a split reductive group over Q.
Problem: Invariant factors of a product. Set G := G(K) and K := G(O).
Give necessary and sufficient conditions on

α, β, γ ∈ K\G/K

in order that there exist elements A,B,C ∈ G whose projections to K\G/K are
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α, β and γ, respectively, so that
ABC = 1 .

There is a similar algebraic problem for the groups G = G(F), where F = R

or C. The results of the present papers are used in [KLM2] to relate and to describe
the solution sets of these algebraic problems. We refer the reader to [KLM2] for
details.
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2 Preliminaries

In this section we will briefly review some basic facts about singular spaces with up-
per curvature bound, in particular with nonpositive curvature, and about Euclidean
and spherical buildings. We will omit most of the proofs. For more details on singu-
lar spaces we refer to [B, Ch. 1-2], [BuBI, Ch. 4+9], [KlL, Ch. 2] and [L, Ch. 2], and
for the theory of buildings from a geometric viewpoint, i.e. within the framework of
spaces with curvature bounded above, to [KlL, Ch. 3-4].

2.1 Singular spaces with curvature bounded above.

Upper curvature bounds. Let k ∈ R. We denote by M2
k the model space

of constant curvature k, i.e. the complete simply-connected Riemannian 2-manifold
with constant sectional curvature k.

Let Y be a complete metric space, not necessarily locally compact, with the
property that any two points with distance < diam(M2

k ) are connected by a mini-
mizing geodesic segment. (If k ≤ 0 this means that Y is a geodesic metric space.) A
minimizing geodesic segment connecting x and y will be denoted by xy. Note that
this is an abuse of notation since there may be more than one minimizing geodesic
segment connecting x and y.

One can define curvature bounds for such metric spaces by comparison with the
model spaces of constant curvature. For instance, one can compare the thickness of
geodesic triangles. In this context, triangles are one-dimensional objects. A triangle
∆ = ∆(x, y, z) in Y with vertices x, y and z is the union of three minimizing geodesic
segments xy, yz and zx. A comparison triangle ∆̃ = ∆(x̃, ỹ, z̃) for ∆ in M2

k is a
triangle with the same side lengths. Every point p on ∆ corresponds to a point p̃ on
∆̃ dividing the corresponding side in the same ratio, and one says that ∆ is thinner
than ∆̃ if for any points p, q on ∆ the chord comparison inequality d(p, q) ≤ d(p̃, q̃)
holds. The space Y has curvature ≤ k (globally) and is called a CAT(k)-space if all
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geodesic triangles with diameter < 2 diam(M2
k ) are thinner than their comparison

triangles in M2
k . It follows directly from the definition that every locally geodesic

path of length ≤ diam(M2
k ) in a CAT(k) space is a geodesic segment. Moreover,

any two points with distance < diam(M2
k ) are connected by a unique minimizing

geodesic segment.
A complete simply-connected Riemannian manifold with sectional curvatures

≤ k ≤ 0 has curvature ≤ k in the distance comparison sense.

Angles and spaces of directions. The presence of a curvature bound allows
us to define angles between unit speed geodesic segments σ1, σ2 : [0, ε) → Y with
the same initial point ρ1(0) = ρ2(0) = y, see e.g. [B, §I.3].

Suppose that Y is a CAT(k) space. Let α̃(t) be the angle of a comparison triangle
for ∆(y, σ1(t), σ2(t)) in M2

k at the vertex corresponding to y. Then the comparison
angle α̃(t) is (weakly) monotonically decreasing as t ↘ 0. It therefore converges and
we define the angle ∠y(σ1, σ2) as the limit. In this way one obtains a pseudo-metric
on the space of unit speed geodesic segments emanating from a point y ∈ Y . The
metric space (ΣyY,∠y) obtained by identifying segments with angle zero and passing
to the metric completion is called the space of directions at p. In the smooth case,
ΣyY is the unit tangent sphere. It turns out that in general ΣyY is a CAT(1)-space,
see e.g. [BrH, Ch. II,Th. 3.19] or [KlL, §2.1.3].

If ∆(x, y, z) is a geodesic triangle and ∆̃(x̃, ỹ, z̃) is a comparison triangle, the
angle comparison ∠x(y, z) ≤ ∠x̃(ỹ, z̃) holds as a consequence of the definition of
angles, see [B, Ch. I, Prop. 3.13].

2.2 Hadamard spaces. We will be mainly interested in CAT(0)-spaces. These
are also called Hadamard spaces since they generalize Hadamard manifolds which
are defined to be complete simply-connected Riemannian manifolds of nonpositive
curvature. Symmetric spaces of noncompact type are Hadamard manifolds and
Euclidean buildings are singular (i.e. non-Riemannian) Hadamard spaces, see e.g.
[E], [KlL], [D]. All Hadamard spaces considered in this paper are assumed to be
metrically complete.

A basic consequence of the CAT(0)-property is the convexity of the distance
function, i.e. for any two constant speed geodesic segments σ1, σ2 : [a, b] → X in
a Hadamard space X the distance t �→ d(σ1(t), σ2(t)) between fellow travellers is a
convex function, see e.g. [B, Ch. I, Prop. 5.4]. It follows that any two points can
be connected by a unique geodesic segment. In particular, Hadamard spaces are
contractible.

Boundary at infinity. A geodesic ray is an isometric embedding ρ : [0,∞)→X.
By abusing notation, we will frequently identify geodesic rays with their images. We
say that two rays are asymptotic if they have bounded Hausdorff distance from each
other or, equivalently, if the convex function t �→ d(ρ1(t), ρ2(t)) is bounded and hence
nonincreasing. Asymptoticity is an equivalence relation, and the set of equivalence
classes of geodesic rays is called the ideal boundary or boundary at infinity ∂∞X of X.
An element ξ ∈ ∂∞X is an ideal point or a point at infinity. A ray representing
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ξ is said to be asymptotic to ξ. We will use the notation xξ to denote the unique
geodesic ray from x ∈ X asymptotic to ξ ∈ ∂∞X; see e.g. [B, Ch. II, Lem. 2.1].

The ideal boundary ∂∞X carries a natural topology, called cone topology, which
will however not play a big role in this paper. A basis for the cone topology is given
by subsets of the following form: For a ray ρ0 : [0,∞) → X and numbers l, ε > 0
consider all ideal points in ∂∞X which are represented by rays ρ : [0,∞) → X such
that d(ρ(t), ρ0(t)) < ε for 0 ≤ t < l.

More important for us will be a natural metric on ∂∞X, the Tits metric. Given
two ideal points ξ1, ξ2 ∈ ∂∞X we pick geodesic rays ρ1, ρ2 : [0,∞) → X representing
them and a point x ∈ X. In analogy with the definition of angles above, let α̃(t) be
the angle of a comparison triangle for ∆(ρ1(t), x, ρ2(t)) at the vertex corresponding
to x. The limit limt→∞ α̃(t) always exists. It depends only on ξ1 and ξ2, and not on
the representing rays ρ1, ρ2 and the base point x, see e.g. [B, Ch. II, Th. 4.4]. The
Tits (angular) distance ∠T its(ξ1, ξ2) is defined as this limit, i.e.

2 sin
∠T its(ξ1, ξ2)

2
= lim

t→∞
d(ρ1(t), ρ2(t))

t
.

The definition implies the useful inequality

∠x(ξ, η) ≤ ∠T its(ξ, η) (1)

for all x ∈ X. The metric space ∂T itsX = (∂∞X,∠T its) is called the Tits boundary.
Note that the Tits distance ∠T its, as defined here, does in general not coincide with
the length metric associated to it – some authors call the latter one Tits metric
– but it does so if X is a symmetric space or a Euclidean building. As for the
spaces of directions, it turns out that the Tits boundary is a CAT(1)-space, see e.g.
[B, Ch. II, Cor. 4.9]. Note that the Tits metric does in general not induce the cone
topology. The Tits metric is lower semicontinuous with respect to the cone topology
and induces a topology which is (in general strictly) finer than the cone topology.

Busemann functions. Busemann functions measure the relative distance from
points at infinity. They are constructed as follows. For an ideal point ξ ∈ ∂∞X and
a ray ρ : [0,∞) → X asymptotic to it we define the Busemann function bξ as the
pointwise monotone limit

bξ(x) := lim
t→∞

(
d(x, ρ(t)) − t

)

of normalized distance functions. One checks that, up to an additive constant, bξ

does not depend on the chosen ray ρ. As a limit of distance functions bξ is convex
and 1-Lipschitz continuous, see e.g. [BrH, Ch. II, Prop. 8.22]. The level and sublevel
sets of Busemann functions are called horospheres, respectively, horoballs.

Convex functions have directional derivatives. For Busemann functions they are
given by the formula

d

dt+
(bξ ◦ σ)(t) = − cos ∠σ(t)

(
σ′(t), ξ

)
(2)
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where σ : I → X is a unit speed geodesic segment and the angle on the right-hand
side is taken between the positive direction σ′(t) ∈ Σσ(t)X of the segment σ at σ(t)
and the ray emanating from σ(t) asymptotic to ξ. (The equality (2) easily follows
from the first variation formula for the distance functions in Hadamard spaces, [BrH,
p. 185].)

Note that, by the definition, along a ray ρ asymptotic to ξ the Busemann function
bξ is affine linear, i.e. bξ(ρ(t)) = −t+const. As convex Lipschitz functions, Busemann
functions are asymptotically linear along any ray ρ and we define the asymptotic slope
of bξ at an ideal point η ∈ ∂∞X by

slopeξ(η) = lim
t→∞

bξ(ρ(t))
t

for a ray ρ asymptotic to η. Since ∠ρ(t)(ξ, η) ↗ ∠T its(ξ, η) as t → ∞, the formula
(2) implies that

slopeξ(η) = − cos ∠T its(ξ, η) . (3)

Cones. Given a metric space with diameter ≤ π one constructs the com-
plete Euclidean cone Cone(B) over B by mimicking the construction which pro-
duces Euclidean 3-space from the 2-dimensional unit sphere. The underlying set is
B × [0,∞)/ ∼ where ∼ collapses B × {0} to a point called the tip. For v1, v2 ∈ B
and t1, t2 ≥ 0 we consider rays ρi : [0,∞) → R2 in Euclidean plane with the same
initial point o and angle ∠o(ρ1, ρ2) = dB(v1, v2). We then define the distance of
points in Cone(B) represented by (v1, t1) and (v2, t2) as dR2((ρ1(t1), ρ2(t2)).

The space Cone(B) is CAT(0) if and only if B is CAT(1). In this case there is
a natural isometry B ∼= ∂T itsCone(B). See [BrH, Ch. II, Th. 3.14].
Remark 2.1. The 0-dimensional sphere S0 is declared to have diameter π, so that
R is the Euclidean cone over S0.

2.3 Coxeter complexes. Our treatment of Coxeter complexes and buildings in
this and the next section follows [KlL, Ch. 3-4].

Spherical Coxeter complexes. A spherical Coxeter complex is a pair
(S,Wsph) where S is a unit sphere and Wsph is a finite subgroup of Isom(S) gen-
erated by reflections. Here, by a reflection one means an involutive isometry with
fixed-point set a great sphere of codimension one. Wsph is called the Weyl group and
the fixed-point sets of the reflections in Wsph are called walls. The pattern of walls
gives S a natural structure of a (polysimplicial) cell complex Σ. This cell complex is
also frequently referred to as a Coxeter complex. The top-dimensional cells of Σ, the
chambers, are fundamental domains for the action Wsph � S. They are spherical
simplices if Wsph does not have a global fixed point in S. If convenient, we identify
the spherical model Weyl chamber ∆sph = S/Wsph with one of the chambers in S.

An embedding (S,Wsph) ↪→ (S′,W ′
sph) of spherical Coxeter complexes of equal

dimensions consists of a reflection-preserving monomorphism ι : Wsph ↪→ W ′
sph and

an ι-equivariant isometry α : S → S′. The isometry α therefore maps walls to walls.
We call the embedding of Coxeter complexes an isomorphism if ι is an isomorphism.
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Euclidean Coxeter complexes. A Euclidean Coxeter complex is a pair
(E,Waff), where E is a Euclidean space and Waff ⊂ Isom(E) is a subgroup gener-
ated by reflections. Again reflection means a reflection at an affine hyperplane. We
require moreover that the induced reflection group on the sphere at infinity ∂T itsE
is finite.

One obtains the associated spherical Coxeter complex (S,Wsph). Here the unit
sphere S = ∂T itsE is the ideal boundary of E and Wsph := rot(Waff), where

rot : Isom(E) → Isom(∂T itsE)

is the natural homomorphism mapping an affine transformation to its linear part.
Let ∆sph be the spherical model Weyl chamber of (S,Wsph). We define the Euclidean
model Weyl chamber ∆euc of (E,Waff) as the complete Euclidean cone over ∆sph,
that is, ∆euc = Cone(∆sph). It is canonically identified with the quotient of the
vector space of translations on E by the natural action of Wsph by conjugation and
one has a well-defined addition and scalar multiplication by positive real numbers
on ∆euc.

A wall in the Coxeter complex (E,Waff) is an affine hyperplane fixed by a re-
flection in Waff. Singular subspaces of (E,Waff) are defined as intersections of walls,
and vertices are zero-dimensional singular subspaces.

We denote the kernel of rot : Waff → Wsph by L = Ltrans and we refer to it as
the translation subgroup. The exact sequence 0 → L → Waff → Wsph → 1 splits, i.e.
the affine Weyl group decomposes as the semidirect product Waff

∼= Wsph � L. The
two extreme cases are

1. L is the full group of translations on E, as it happens for the Euclidean Coxeter
complex attached to a symmetric space of noncompact type.

2. L = {0} and Waff = Wsph is finite as in the case of Euclidean buildings with
one vertex.

A Euclidean Coxeter complex (E,Waff) is called discrete if Waff is a discrete subgroup
of Isom(E). If moreover Waff acts cocompactly on E, the pattern of walls induces
a natural structure of polysimplicial cell complex on E. The top-dimensional cells,
the alcoves, are fundamental domains for the action Waff � E and the reflections at
the faces of one cell generate the group Waff. The alcoves are canonically isometric
to the model Weyl alcove E/Waff. The Weyl alcove is different from the Euclidean
Weyl chamber.

An embedding (E,Waff) ↪→ (E′,W ′
aff) of Euclidean Coxeter complexes of equal

dimensions consists of a reflection-preserving monomorphism ι : Waff ↪→ W ′
aff and

an ι-equivariant homothety α : E → E′. The homothety α maps walls to walls. We
call the embedding of Coxeter complexes an isomorphism if ι is an isomorphism. A
dilation of a Coxeter complex (E,Waff) is a self-embedding such that the homothety
α : E → E is a dilation.
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2.4 Buildings. We refer the reader to [Bro], [R], [KlL] for the detailed discussion
of spherical and Euclidean buildings. Here we present only a brief overview.

Spherical buildings. A spherical building modelled on a spherical Coxeter
complex (S,Wsph) is a CAT(1)-space B together with a maximal atlas of charts,
i.e. isometric embeddings S ↪→ B. The image of a chart is an apartment in B. We
require that any two points are contained in a common apartment and that the
coordinate changes between charts are induced by isometries in Wsph.
Example. Suppose that B is a 0-dimensional spherical building modelled on the
Coxeter complex (S0, Z2). Then the metric space underlying B is a discrete metric
space where any two distinct points have distance π. Indeed, the 0-dimensional
sphere S0 has diameter π. Pick two distinct points ξ, η ∈ B. Then there exists a
chart ϕ : S0 → B whose image contains {ξ, η}. Since ϕ is an isometric embedding,
the distance between ξ and η equals π.

We will often denote the metric on a spherical building by ∠T its because in this
paper spherical buildings usually arise as Tits boundaries.

The cell structure and the notions of wall, chamber etc. carry over from the
Coxeter complex to the building. The building B is called thick if every codimension-
one face is adjacent to at least three chambers. A non-thick building can always be
equipped with a natural structure of a thick building by reducing the Weyl group.
Namely, pick an apartment S ⊂ B and consider the collection L of those walls in S
which are adjacent to at least three half-apartments in B. Consider the subgroup
W ′ ⊂ W generated by reflections in the walls which belong to L. One can verify that
the walls of the Coxeter complex (S,W ′) belong to L. Let Y be the metric space
underlying B. Now, define the new building B′, whose underlying metric space is
Y and whose atlas consist of the old charts ϕ : (S,W ′) → B. One can show that B′

is a thick building modelled on (S,W ′). See [S] and [KlL, §3.7] for details.
If Wsph � S does not have a global fixed point, the chambers of B are spher-

ical simplices and the building carries a natural structure as a piecewise spherical
simplicial complex. We will then refer to the cells as simplices.

There is a canonical 1-Lipschitz continuous accordion map acc : B → ∆sph

folding the building onto the model Weyl chamber so that every chamber projects
isometrically. Namely, given a point ξ ∈ B, pick a chart ϕ : S → B whose image
contains ξ. Then acc(ξ) is the projection of ϕ−1(ξ) to the model chamber ∆sph

which we identify with S/Wsph. The point acc(ξ) is called the type of the point
ξ ∈ B, and a point in B is called regular if its type is an interior point of ∆sph.

Euclidean buildings. A Euclidean building modelled on a Euclidean Coxeter
complex (E,Waff) is a CAT(0)-space X together with a maximal atlas of charts
E ↪→ X subject to the following conditions: The charts are isometric embeddings,
their images are called apartments; any pair of points and, more generally, any ray
and any complete geodesic, is contained in an apartment; the coordinate changes
between charts are restrictions of isometries in Waff. In addition, one imposes a
certain angle rigidity condition on the spaces of directions ΣxX,x ∈ X. See [KlL,
p. 150] for details.
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A Euclidean building is called thick if every wall is an intersection of apartments.
It is called discrete if it is modelled on a discrete Euclidean Coxeter complex. (The
angle rigidity condition is automatic in this case.) It then carries a natural structure
of a polyhedral cell complex.

If X is a thick Euclidean building modelled on the Coxeter complex (E,Waff) then
its Tits boundary ∂T itsX is a thick spherical building modelled on (∂T itsE,Wsph).
The spaces of directions ΣxX are spherical buildings modelled on (∂T itsE,Wsph), see
[KlL, §4.4]. However, the building ΣxX is thick (with respect to this model spherical
Coxeter complex) if and only if x is special, i.e. corresponds in a chart to a point
in E with maximal possible stabilizer ∼= Wsph. Note that all directions ξ ∈ ΣxX
are represented by geodesic segments initiating in x, i.e. in the construction of the
space of directions in the case of Euclidean buildings (as for Hadamard manifolds)
one does not have to pass to the metric completion, cf. section 2.1.

If B is a spherical building then X = Cone(B) carries a natural induced Eu-
clidean building structure. Namely: Since B is a CAT(1) space, the cone Cone(B)
is CAT(0). Apartments in Cone(B) are the cones of apartments in B. If (S,Wsph)
is the Coxeter complex of B, then (E,Wsph) is the Coxeter complex for X, where
we identify Wsph with the subgroup of Isom(E) stabilizing the origin in E (the
point corresponding to the tip of the cone X). The building axioms for X follow
immediately from the building axioms for B. (Since the Coxeter complex (E,Wsph)
is discrete, the angle rigidity axiom is immediate.) Note that the tip to the cone
Cone(B) is the unique vertex of X and B is isomorphic to ∂T itsX as a spherical
building.

3 Transfer of Polygons Between Buildings

3.1 Polygons and side lengths. By an n-gon z1 . . . zn in a metric space Z we
mean a map Z/nZ → Z carrying i to the vertex zi.

If Z is a CAT(0)-space, such as a Euclidean building or a symmetric space of
noncompact type, then any two points in Z are connected by a unique geodesic
segment and the polygon can be promoted to a 1-dimensional object. For any
pair of successive vertices xi−1 and xi one has a well-defined side xi−1xi. If Z is
a CAT(1)-space, for instance a spherical building, one has well-defined sides for
successive vertices of distance < π. The cyclic ordering of the vertices determines a
natural orientation of the sides.

Let (E,Waff) be a Euclidean Coxeter complex. To a pair of points (p, q) in E one
can associate a vector in the Euclidean Weyl chamber ∆euc = Cone(∆sph) as follows.
The translations on the affine space E form a vector space on which the spherical
Weyl group Wsph acts by conjugation. The quotient can be canonically identified
with ∆euc. Thus we can attach to (p, q) the image in ∆euc of the translation carrying
p to q. We call this vector σ(p, q) the ∆-length of the oriented geodesic segment pq.
It is invariant under isometries in Waff by construction. Note that the directional
part of the ∆-length depends on the orientation of the segment. The reason is that
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the antipodal involution of the spherical Coxeter complex (∂T itsE,Wsph) induces an
in general non-trivial involutive self-isometry of the spherical Weyl chamber ∆sph.

The complete invariant of a pair (p, q) modulo the action of Waff is its image
σref(p, q) under the natural projection to (E ×E)/Waff. We call it the refined length
of the oriented segment pq. The ∆-length is obtained by composing σref with the
natural forgetful map (E × E)/Waff → ∆euc. The ∆-length contains the complete
information about the metric length and the direction of the segment modulo the
spherical Weyl group, while the refined length keeps track in addition of the location
of the endpoints. If the affine Weyl group contains the full translation group, as in the
case of the Euclidean Coxeter complex attached to a symmetric space of noncompact
type, then (E × E)/Waff

∼= ∆euc and ∆-length and refined length contain the same
information.

As in the Euclidean case, one can attach to a pair of points (p, q) in a spherical
Coxeter complex (S,W ) the refined length σref(p, q) ∈ (S×S)/W , and it is invariant
under the W -action.

These notions of length carry over to geometries modelled on Coxeter complexes.
One chooses an apartment containing a given pair of points and measures length
inside the apartment. The length is well-defined because the coordinate changes
between apartment charts are restrictions of isometries in the Weyl group.

Hence one has the notion of ∆-length in Euclidean buildings and symmetric
spaces of noncompact type, and one has the notion of refined length in Euclidean and
spherical buildings. Note that in a symmetric space of noncompact type, although
well-defined, the notion of refined length does not give more information than the
∆-length because the affine Weyl group acts transitively.

Let X be a Euclidean building or a symmetric space of noncompact type and
let (E,Waff) be its associated Euclidean Coxeter complex. To a polygon x1 . . . xn in
X we associate its ∆-side lengths (σ(x0, x1), . . . , σ(xn−1, xn)) ∈ ∆n

euc and its refined
side lengths (σref(x0, x1), . . . , σref(xn−1, xn)) ∈ ((E × E)/Waff)n. Analogously one
can attach refined side lengths with values in ((S × S)/W )n to n-gons in spherical
buildings modelled on the Coxeter complex (S,W ).

Definition 3.1. We define Pn(X) ⊂ ∆n
euc, respectively Pref

n (X) ⊂ ((E×E)/Waff)n

as the space of possible ∆-side lengths, respectively refined side lengths, which occur
for n-gons in X.

3.2 The transfer argument. This section is devoted to the proof of Theo-
rem 1.5 stated in the introduction. In fact we need to prove the same result for
spherical buildings since we will proceed by induction on the dimension and ap-
ply the induction assumption to the spaces of directions. Recall that the spaces of
directions of Euclidean or spherical buildings are spherical buildings, cf. section 2.4.
Transfer Theorem 3.2. (i) If X and X ′ are thick Euclidean buildings modelled

on the same Euclidean Coxeter complex (E,Waff) then Pref
n (X) = Pref

n (X ′).
(ii) The analogous assertion holds for thick spherical buildings modelled on the

same spherical Coxeter complex.
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In other words, isomorphisms of associated Coxeter complexes (cf. section 2.3)
induce bijections of refined side length spaces.
Proof. (ii) We first discuss the spherical case. Let B and B′ be thick spherical
buildings modelled on the same spherical Coxeter complex (S,W ). Given a polygon
P in B, we will transfer it to a polygon P ′ in B′ while preserving the refined side
lengths. It suffices to show the following assertion: (∗) Let ξ, η, ζ ∈ B and ξ′, ζ ′ ∈ B′

so that the oriented segments ξζ and ξ′ζ ′ have equal refined lengths. Then there
exists η′ ∈ B′ so that the triangles ∆(ξ, η, ζ) and ∆(ξ′, η′, ζ ′) have the same refined
side lengths.

We proceed by induction on the dimension of the buildings. The assertion (∗)
is trivial in dimension 0. We therefore assume that dim(B) = dim(B) = d > 0 and
that (∗) has been proven in dimensions < d.

There is a finite subdivision of the side ξη by points ξ0 = ξ, ξ1, . . . , ξk−1, ξk = η
such that each geodesic triangle ∆(ζ, ξi, ξi+1) is contained in an apartment. Namely,
choose the subdivision so that each subsegment ξiξi+1 is contained in a chamber ∆i

and note that each chamber ∆i is contained in an apartment through ζ. (The anal-
ogous assertion for triangles in Euclidean buildings was proven in [KlL, Cor. 4.6.8].)

We need to find points ξ′1, . . . , ξ
′
k in B′ such that the triangles ∆(ζ ′, ξ′i, ξ

′
i+1)

have the same refined side lengths as ∆(ζ, ξi, ξi+1) for all i and such that
∠ξ′i(ξ

′
i−1, ξ

′
i+1) = π. This will be done by a second induction on i. We can choose ξ′1

in an apartment containing ζ ′ξ′. Suppose that ξ′i has been found, i ≥ 1. In order
to find the direction

−−−→
ξ′iξ

′
i+1 at ξ′i, we apply the induction hypothesis (of the first

induction on the dimension) to the links Σξi
B and Σξ′iB

′, which are thick spherical
buildings of dimension d − 1 modelled on the same spherical Coxeter complex, and
transfer the triangle ∆(

−−−→
ξiξi−1,

−→
ξiζ,

−−−→
ξiξi+1) in Σξi

B to a triangle ∆(
−−−→
ξ′iξ

′
i−1,

−→
ξ′iζ

′,
−−−→
ξ′iξ

′
i+1)

in Σξ′iB
′ with the same refined side lengths. We then choose an apartment in B′

which contains ζ ′ξ′i and is tangent to the direction
−−−→
ξ′iξ

′
i+1. Inside this apartment

there is a unique choice for ξ′i+1 with the desired properties. After transferring all
triangles ∆(ζ, ξi, ξi+1), the concatenation of the segments ξ′iξ

′
i+1 forms a (locally)

geodesic path γ of the metric length equal to that of ξη, i.e. ≤ π. Since B′ is a
CAT(1) space, γ is the geodesic segment ξ′η′. By the construction, γ has the same
refined length as ξη. This concludes the proof in the spherical case.

(i) The same argument works in the Euclidean case, applying the result for
spherical buildings of one dimension less. �

As a consequence, we can define refined side length spaces Pref
n ((E,Waff)) respec-

tively Pref
n ((S,W )) associated to Euclidean and spherical Coxeter complexes. They

describe the possible refined side lengths of polygons in thick buildings modelled on
these Coxeter complexes. To be consistent with earlier notation we may also write
Pref

n (∆sph) instead of Pref
n ((S,W )).

Our proof of the Transfer Theorem 3.2 allows us more generally to transfer
polygons from buildings with smaller Weyl groups to buildings with larger Weyl
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groups. Suppose that
(E,Waff) ↪→ (E′,W ′

aff) (4)

is an embedding of Euclidean Coxeter complexes, i.e. a homothety E → E′ equiv-
ariant with respect to a monomorphism Waff ↪→ W ′

aff, cf. section 2.3. Our above
argument yields
Addendum 3.3 (to 3.2). (i) The map

(
(E × E)/Waff

)n → (
(E′ × E′)/W ′

aff

)n

induced by the embedding of Euclidean Coxeter complexes (4) maps Pref
n ((E,Waff))

into Pref
n ((E′,W ′

aff)).
(ii) The analogous assertion for embeddings of spherical Coxeter complexes.

A variation of the transfer construction, namely the folding of polygons into
apartments, is discussed in [KLM2].

4 Polygons and Weighted Configurations at Infinity

The Transfer Theorem 3.2 says that the possible refined side lengths for polygons
in a thick Euclidean building depend only on the associated affine Coxeter com-
plex. We now address our Main Theorem 1.1 and show that the unrefined ∆-side
lengths depend only on the spherical Coxeter complex. That is, we relate the ∆-side
lengths of polygons in Euclidean buildings with the same spherical Weyl group but
whose affine Weyl groups may have different translation subgroups. Addendum 3.3
allows us to transfer polygons from buildings with smaller affine Weyl groups to
buildings with larger ones. But to go in the other direction we have to pass through
configurations at infinity.

We first introduce in section 4.1 a notion of stability for weighted configurations
on spherical buildings which is motivated by (and consistent with, cf. [KLM1, Ch. 4])
Mumford stability in geometric invariant theory. In section 4.2 we explain how an
oriented polygon in a Euclidean building X gives rise to a collection of Gauss maps
which can be regarded as weighted configurations on the spherical Tits building
∂T itsX at infinity, and prove the basic Lemma 4.3 that the arising configurations
are semistable. The converse question when a semistable configuration ψ on the
Tits boundary ∂T itsX is the Gauss map of a polygon in X amounts to a fixed-point
problem for a certain weak contraction Φψ : X → X. In section 4.3 we prove
the existence of a fixed point in the special case when X is a Euclidean building
with one vertex, i.e. when it is isometric to the complete Euclidean cone over its
Tits boundary. In section 4.4 we combine our results and prove the main theorems
stated in the introduction.

4.1 Weighted configurations on spherical buildings and stability. Let
B be a spherical building. We denote the metric on B by ∠T its because spherical
buildings appear in this paper usually as Tits boundaries.
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A collection of points ξ1, . . . , ξn ∈ B and of weights m1, . . . .,mn ≥ 0 determines
a weighted configuration

ψ : (Z/nZ, ν) → B

on B. Here ν is the measure on Z/nZ defined by ν(i) = mi, and the map ψ sends i
to ξi. By composing ψ with the natural accordion projection acc : B → ∆sph onto
the associated spherical Weyl chamber ∆sph, compare section 2.4, one obtains a map
(Z/nZ, ν) → ∆sph. We call the corresponding point h(ψ) = (h1, . . . , hn) in ∆n

euc the
∆-weights of the configuration ψ, i.e. hi = mi · acc(ξi). Recall that ∆euc is defined
as the complete Euclidean cone over ∆sph.

The configuration ψ yields, by pushing forward ν, the measure µ =
∑

miδξi

on B. We defined its slope function on B by

slopeµ = −
∑

i∈Z/nZ

mi cos ∠T its(ξi, · ) . (5)

Definition 4.1 (Stability). The measure µ on B is called semistable if slopeµ ≥ 0
and stable if slopeµ > 0 everywhere on B. The weighted configuration ψ is called
(semi)stable if the associated measure has this property.

In [KLM1] we also define nice semistable measures, see [KLM1, Def. 3.12]. This
refinement of the notion of semistability amounts to saying that the associated mea-
sures µ are semistable and {slopeµ = 0}, if non-empty, is a sub-building. In the case
when B is the Tits boundary of a symmetric space X, it turns out that {slopeµ = 0}
is the Tits boundary of a totally-geodesic subspace of X. See [KLM1] for the detailed
discussion.
Example 4.2. Let B be a spherical building of dimension 0. Then a measure µ
on B is stable iff all atoms have mass < 1

2 |µ|, is semistable iff all atoms have mass
≤ 1

2 |µ|, and is nice semistable iff it is either stable or consists of two atoms of the
same mass.

The terminology slope becomes clear when one considers spherical buildings as
Tits boundaries. If X is a Euclidean building (or a symmetric space of noncompact
type) then we can associate with a measure µ =

∑
miδξi

on ∂T itsX its weighted
Busemann function

bµ :=
∑

i∈Z/nZ

mibξi
, (6)

on X, cf. the definition of Busemann functions in section 2.2 and the discussion of
their asymptotics. The function bµ is well defined up to an additive constant and con-
vex. For any ideal point η ∈ ∂T itsX and any unit speed geodesic ray ρ : [0,∞) → X
asymptotic to η, the formula (3) implies that

slopeµ(η) = lim
t→∞

bµ(ρ(t))
t

, (7)

i.e. slopeµ(η) computes the asymptotic slope of bµ in the direction η.
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4.2 From polygons to configurations: Gauss maps. Let X be a Euclidean
building or a symmetric space of noncompact type. We now relate polygons in X
and weighted configurations on the spherical Tits building ∂T itsX at infinity.

Consider a polygon P = x1x2 . . . xn in X, i.e. a map Z/nZ → X. The distances
mi = d(xi−1, xi) determine a measure ν on Z/nZ by putting ν(i) = mi. The polygon
P gives rise to a collection Gauss(P ) of Gauss maps

ψ : Z/nZ −→ ∂T itsX (8)

by assigning to i an ideal point ξi ∈ ∂T itsX so that the ray xi−1ξi passes through xi.
This construction, in the case of hyperbolic plane, already appears in the letter of
Gauss to W. Bolyai [G]. Taking into account the measure ν, we view the maps
ψ : (Z/nZ, ν) → ∂T itsX as weighted configurations on ∂T itsX. Their ∆-weights
equal the ∆-side lengths of the polygon P .

Note that if X is a Riemannian symmetric space and the mi are non-zero, there
is a unique Gauss map for P because geodesic segments are uniquely extendible to
complete geodesics. On the other hand, if X is a Euclidean building then, due to
the branching of geodesics, there are in general several Gauss maps. However, the
corresponding weighted configurations have the same ∆-weights.

The following observation is basic for us and explains why the notion of semi-
stability is useful in studying polygons.
Lemma 4.3 (Semistability of Gauss maps). The pushed forward measures µ = ψ∗ν
are semistable.

Proof. Let η ∈ ∂T itsX and let γi : [0,mi] → X be a unit speed parametrization of the
geodesic segment xi−1xi. Then the Busemann function bη is one-sided differentiable
along γi with derivative

d

dt+
(bη ◦ γi)(t) = − cos ∠γi(t)(ξi, η) ≤ − cos ∠T its(ξi, η) ,

cf. the formula (2) in section 2.2 for the directional derivatives of Busemann func-
tions. Integrating along γi we obtain

bη(xi) − bη(xi−1) ≤ −mi · cos ∠T its(ξi, η) (9)

and summation over all sides yields

0 ≤ −
∑

i∈Z/nZ

mi · cos ∠T its(ξi, η) = slopeµ(η)

confirming the semistability. �

Remark 4.4. If X is a Riemannian symmetric space one can prove the sharper
result that the weighted configurations on ∂T itsX arising as Gauss maps of closed
polygons in X are nice semistable, see [KLM1, Lem. 5.5].
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4.3 From configurations to polygons: fixed points for weak contractions.
Let X be a Euclidean building or a symmetric space of noncompact type. We are
now interested in finding polygons with prescribed Gauss map. Such polygons will
correspond to the fixed points of a certain weakly contracting self map of X.

For ξ ∈ ∂T itsX and t ≥ 0, we define the map φξ,t : X → X by sending x to the
point at distance t from x on the geodesic ray xξ. Since X is nonpositively curved,
the function δ : t �→ d(φξ,t(x), φξ,t(y)) is convex. It is also bounded because the rays
xξ and yξ are asymptotic, and hence it is monotonically non-increasing in t. This
means that the maps φξ,t are weakly contracting, i.e. they have Lipschitz constant 1.
For a weighted configuration ψ : (Z/nZ, ν) → ∂T itsX we define the weak contraction

Φ = Φψ : X −→ X (10)

as the composition φξn,mn ◦ · · · ◦ φξ1,m1 . The fixed points of Φ are the n-th vertices
of closed polygons P = x1 . . . xn with ψ ∈ Gauss(P ).

Regarding the existence of fixed points for Φ, we will only need the special case
of buildings with one vertex, that is, of complete Euclidean cones over spherical
buildings.
Proposition 4.5. Suppose that X is a Euclidean building with one vertex and
that ψ is a semistable weighted configuration on ∂T itsX. Then the weak contraction
Φψ : X → X has a fixed point.

The following auxiliary result may be of independent interest. It extends Car-
tan’s fixed-point theorem for isometric actions on nonpositively curved spaces with
bounded orbits. Note that we do not need to assume local compactness.
Lemma 4.6. Let Y be a Hadamard space and Φ : Y → Y a 1-Lipschitz self map.
If the forward orbits (Φny)n≥0 are bounded then Φ has a fixed point in Y .

Proof. Consider an orbit yn = Φny0 of a point y0 ∈ Y and define the distance from
its “tail” by

r(y) := lim sup
n→∞

d(yn, y) .

Note that r inherits from the distance function the convexity and the 1-Lipschitz
continuity. The assumption that Φ is 1-Lipschitz implies

r(Φy) = lim sup
n→∞

d(yn,Φy) = lim sup
n→∞

d(Φyn−1,Φy) ≤ lim sup
n→∞

d(yn−1, y) = r(y) ,

that is,
r ◦ Φ ≤ r . (11)

It suffices to show that r has a unique minimum since this would then be a fixed
point of Φ. We denote

ρ := inf
Y

r .

For ε > 0, let y, y′ be points with r(y) = r(y′) < ρ + ε. Then there exists n0 such
that for n ≥ n0 we have

d(yn, y), d(yn, y′) < ρ + ε .
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On the other hand, let m be the midpoint of yy′. Since r(m) ≥ ρ we have

d(yn,m) > ρ − ε

for infinitely many n. For these n we apply triangle comparison to the triangle
∆(y, y′, yn) with Euclidean plane as model space, cf. section 2.1. For the comparison
triangle ∆(ỹ, ỹ′, ỹn) in Euclidean plane we have the parallelogram identity,

d(ỹ, ỹ′)2 + 4 d(ỹn, m̃)2 = 2
(
d(ỹn, ỹ)2 + d(ỹn, ỹ′)2

)
.

By the chord comparison we have d(yn,m) ≤ d(ỹn, m̃) and obtain the inequality

d(y, y′)2 + 4 d(yn,m)︸ ︷︷ ︸
>ρ−ε

2 ≤ 2
(
d(yn, y)︸ ︷︷ ︸

<ρ+ε

2 + d(yn, y′)︸ ︷︷ ︸
<ρ+ε

2)

and
d(y, y′)2 < 16ρε + 8ε2.

It follows that any sequence (zk) in Y with r(zk) ↘ ρ must be a Cauchy sequence.
Then completeness of Y implies that r has a minimum, and the minimum must be
unique. �

Proof of Proposition 4.5. The building X is isometric to the complete Euclidean
cone Cone(∂T itsX) over its Tits boundary. We denote the unique vertex of X by o.

Due to the conicality of X the contraction Φ has a fairly simple geometry. Let σ
be a simplex in ∂T itsX and let V be the corresponding face of X, i.e. the Euclidean
sector with tip o and ideal boundary σ. Let ξ ∈ ∂T itsX and t ≥ 0. By the building
axioms, for every face W ⊇ V of X there exists a (maximal) flat F ⊂ X with W ⊂ F
and ξ ∈ ∂T itsF . The map φξ,t restricts on F to a translation and we have

bη(φξ,tx) − bη(x) = −t · cos ∠T its(ξ, η) (12)

for η ∈ ∂T itsF and x ∈ F . Since we may vary W , the equation (12) holds for all
η ∈ σ and x ∈ star(V ). We define

štar(V ) :=
{
x ∈ star(V ) : B|µ|(x) ⊂ star(V )

}

where |µ| denotes the total mass of µ and B|µ|(x) denotes the metric ball of radius
|µ| centered at x, i.e. štar(V ) consists of those points in star(V ) which have at
least distance |µ| from its boundary. Since Φ has displacement ≤ |µ|, we have
Φ(štar(V )) ⊂ star(V ) and

bη(Φx) − bη(x) = slopeµ(η) (13)

for η ∈ σ and x ∈ štar(V ).
We may use the Busemann functions to measure the distance from the vertex o.

With the normalization bη(o) = 0 we have d(o, · ) = maxη∈∂TitsX(−bη). For technical
reasons we discretize as follows. We fix a finite subset F ⊂ ∆sph in the spherical
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model Weyl chamber which has the property: If η ∈ ∆sph and ζ ∈ F such that
∠T its(η, ζ) ≤ 2∠T its(η, ζ ′) for all ζ ′ ∈ F then η has distance > ε from all faces
of ∆sph which do not contain ζ in their closure. Let A ⊂ ∂T itsX be the discrete
subset consisting of all points with types in F , that is the inverse image of F under
the canonical projection acc : ∂T itsX → ∆sph. By the construction A satisfies the
following: If η ∈ ∂T itsX and ζ ∈ A such that ∠T its(η, ζ) ≤ 2∠T its(η, ζ ′) for all ζ ′ ∈ A
then η has distance > ε from all faces of ∂T itsX which do not contain ζ in their
closure, i.e. Bε(η) ⊂ star(σζ) where σζ denotes the simplex of ∂T itsX containing ζ
as an interior point.

As an approximation to d(o, · ) we use the function

f := max
ζ∈A

(−bζ)

This function has bounded sublevel sets, and according to Lemma 4.6 we are done
once we can show that Φ preserves some non-empty sublevel set.

Let r > 0 and x ∈ X with d(o, x) > r. For any ζ ∈ A, we wish to show that
−bζ(Φx) ≤ f(x). Suppose first that ∠o(x, ζ) ≤ 2∠o(x, ζ ′) for all ζ ′ ∈ A. Then, if r
has been chosen sufficiently large, we have x ∈ štar(Vζ) where Vζ denotes the face of
X with ideal boundary σζ . Applying (13) and using that µ is semistable we obtain

−bζ(Φx) ≤ −bζ(x) ≤ f(x)

in this case. On the other hand, if ∠o(x, ζ) > 2∠o(x, ζ ′) with ζ ′ ∈ A and

∠o(x, ζ ′) = min
ζ′′∈A

∠o(x, ζ ′′) ,

then
f(x) = −bζ′(x) > −bζ(x) + |µ| ,

again if r has been chosen large enough. So

−bζ(Φx) ≤ −bζ(x) + |µ| ≤ f(x)

in this case as well. We conclude that f(Φx) ≤ f(x) if d(o, x) is sufficiently large.
Since Φ is 1-Lipschitz it follows that it preserves {f ≤ R} for large enough R > 0. �

Remark 4.7. One can show that, if X is a Euclidean building and ψ semistable
or if X is a symmetric space of noncompact type and ψ nice semistable, then Φψ

has a fixed point. The case of Euclidean buildings which are not necessarily locally
compact is due to Andreas Balser [Ba]. The case of symmetric spaces is proven in
[KLM1].

4.4 Proofs of the main results.

Proof of Theorem 1.2. That the existence of polygons implies the existence of
configurations follows from the semistability of Gauss maps, cf. Lemma 4.3.

The converse has been proven in Proposition 4.5 for Euclidean buildings with
one vertex. We deduce it for an arbitrary Euclidean building X by using the
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Addendum 3.3 to the Transfer Theorem 3.2. Namely, suppose that h is the ∆-
weight of a semistable configuration on ∂T itsX. Then by Proposition 4.5 there exist
closed polygons with ∆-side lengths h in the Euclidean building Cone(∂T itsX). Now
the Euclidean Coxeter complex of Cone(∂T itsX) embeds into the Euclidean Coxeter
complex of X; namely if (E,Waff) denotes the Euclidean Coxeter complex attached
to X then the Euclidean Coxeter complex attached to Cone(∂T itsX) is isomorphic
to (E,Wsph). Addendum 3.3 therefore implies the existence of polygons with ∆-side
lengths h in X. �

Notice that our argument does not produce a polygon having the given configu-
ration as a Gauss map, compare remark 4.7.
Proof of Theorem 1.4. Consider two thick spherical buildings B and B′ modelled
on the same spherical Coxeter complex. The thick Euclidean buildings Cone(B) and
Cone(B′) are then modelled on the same Euclidean Coxeter complex. The Transfer
Theorem 3.2 implies that in both spaces the same refined side lengths occur for
closed polygons; this immediately implies the same assertion for the ∆-side lengths.
It follows from Theorem 1.2 that the same ∆-weights occur for semistable weighted
configurations on B and B′. �

Proof of Main Theorem 1.1. Consider two thick Euclidean buildings X and X ′,
and suppose that their spherical Tits buildings ∂T itsX and ∂T itsX

′ at infinity are
modelled on the same spherical Coxeter complex. The spherical buildings are thick
as well, and the claim therefore follows from Theorems 1.2 and 1.4. �
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