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1 Introduction 

We are interested in properties of  groups which admit sufficiently nice actions by 
isometries on spaces of nonpositive curvature. Let us call a group Hadamard if it 
admits discrete actions by non-parabolic isometries on Hadamard spaces. These 
are synthetic analogues of  Hadamard manifolds, they are complete geodesic met- 
ric spaces which are nonpositively curved in the sense of  distance comparison. 
Typical examples of  Hadamard groups are subgroups of fundamental groups of  
closed Riemannian manifolds of nonpositive sectional curvature. Various alge- 
braic and geometric properties of Hadamard groups are well-known, such as: 
Solvable subgroups are virtually abelian [GW, LY] and centralizers virtually 
split [E, BH]. If G is a finitely generated Hadamard group then the stable norm 
(translation number) 11911 := l i m n ~  ~ of  a non-periodic element g c G is 
always non-zero. This excludes for instance Baumslag-Solitar subgroups. 

The class of semisimple (i.e. non-parabolic) actions on Hadamard spaces has 
better functorial properties than the subclass of cocompact actions. Note how- 
ever that there are groups which admit semisimple, but no cocompact discrete 
actions, e.g. certain infinitely generated groups or finitely generated groups with 
infinite-dimensional cohomology. Examples of  such groups can be found in di- 
rect products of free groups, thus they have semisimple actions on products of  
hyperbolic planes. 

The main goal of this note is to find new obstructions for the existence of  
semisimple actions. In Sect. 2, we derive general properties of  Hadamard groups, 
in particular: 
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Theorem 2.3 Being Hadamard is a commensurability invariant for groups. 

Of basic importance for this paper is the observation that a Haken 3-manifold 
group admits discrete semisimple actions if and only if it admits cocompact 
actions, cf. ILl]. 

Theorem 2.4 Let M be a compact Haken 3-manifold whose boundary has zero 
Euter characteristic. I f  7rl (M) is a Hadamard group, then M admits a smooth 
metric of nonpositive sectional curvature with totally geodesic flat boundary. 
Corollary 2,7 Let N be a closed manifold and M a graph-3-manifold with no 
metric of  nonpositive curvature. I f  7rl (N) contains wl (M) as a subgroup then N 
does not admit metrics of  nonpositive curvature. 

For Seifert manifolds M, Theorem 2.4 has been proven by Bridson. 
In Sect. 3, we discuss the existence of nonpositively curved metrics on Haken 

3-manifolds. 

Theorem 3.2 Graph-manifolds containing a non-orientable Seifert component 
admit metrics of  nonpositive curvature. 

This theorem was independently proven in [BK1]. According to [L1, L2] only 
graph-manifolds, i.e. Haken manifolds glued from Seifert components, can yield 
non-existence examples. 

Example (cf Theorem 3.7) There are reducible diffeomorphisms of closed hyper- 
bolic surfaces whose mapping tori do not admit metrics of  nonpositive curvature. 

Special examples of this kind are first given in ILl] and are also discussed in 
[L2]. After this work was done, the authors learnt that Buyalo and Kobelski 
constructed a numerical invariant which detects the existence of nonpositively 
curved metrics on graph-manifolds in the general case, see [BK2]. 

In Sect. 4 we give new examples of non-Hadamard groups. We discuss the 
borderline case of the mapping class group Mods of a finite area hyperbolic 
surface S which is very close to be Hadamard: It admits a properly discontinuous 
action on a convex negatively curved space, namely Teichmialler space T(S) 
equipped with the Weil-Petersson metric dW; however, T(S) is not complete and 
Dehn twists act by parabolic isometries. The metric completion of (T(S), dW) 
is a Hadamard space but the extended action of Mods is not discrete because it 
has infinite point stabilizers. Nevertheless: 

Theorem 4.2 Let S be a surface of  finite type. l f  S is orientable we assume that 
either the genus of  S is at least 3 or the genus of  S is two and S has at least 1 
puncture, l f  S is nonorientable we assume that either the genus of S is at least 4 
or the genus of  S is three and S has at least 2 punctures. Then the mapping class 
group Mods is not Hadamard. 

We conclude by giving an example of a non-Hadamard group for which the 
previously known obstructions to being Hadamard vanish. 

Example (cf Theorem 4.5) There are closed 4-manifolds M which are fibered 
over hyperbolic surfaces with hyperbolic fiber so that 7q (M ) is not Hadamard. 
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2 Hadamard groups 

A Hadamard space, or CAT(0)-space, is a complete geodesic metric space which 
has nonpositive curvature in the sense of distance comparison, cf. [Bal, Ba2, 
K1L]; it is not required to be locally-compact. Hadamard spaces are a synthetic 
generalization of Hadamard manifolds, i.e. complete simply-connected Rieman- 
nian manifolds of nonpositive sectional curvature. 

An action p of a group F by isometrics on a Hadamard space X is called 
semisimpte if the displacement function of each isometry P(7) attains its infimum. 
This means that each isometry P(7) is either loxodromic (preserves a geodesic 
and acts on it as a translation) or elliptic (has a fixed point). The action p is called 
discrete if each metric ball B in X intersects only finitely many of its translates 
p(~)B. 

Definition 2.1 We call a group F a Hadamard group /f it admits a discrete 
semisimpte action on a Hadamard space. 

Fundamental groups of closed nonpositively curved manifolds and their sub- 
groups are examples of Hadamard groups. 

2.t CommensurabiliD, invariance 

The Hadamard property is inherited by subgroups. In this section we show that 
it also passes to finite index supgroups. Let H be a finite index normal subgroup 
in G and suppose that p is a semi-simple action of H on a Hadamard space X. 
Consider the space of functions 

V = { f : G ~ X  I f (hg)=p(h) f (g )  for all h C H }  

Analoguosly to the construction of the induced representation we let the group 
G act on V by the rule 

(9 . f ) (x)  :=f(xg). 

We equip V with the metric 

d(fl ' f2)2= E d(~l(g)'f2(g))2 

A choice of representatives for the cosets in H \ G  identifies V isometrically 
with X I~ In particular, V is also a Hadamard space. The action of H on V 
preserves the product decomposition and each factor, The action on the factor 
corresponding to the coset Hg is given by 

(h . f ) (o)  = p(gh9- ' )" f (g). 

Therefore the action of H on V is discrete and semisimple. This implies imme- 
diately that the action of G is discrete. To check that it is also semisimple we 
need the 
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L e m m a  2.2 Let Y be a Hadamard space and e~ an isometry. I f  ~ k is semisimple 
for some k ~ 0 then c~ is semisimple. 

Proof The set A of minimal displacement for the isometry c~ k is a Hadamard 
space and it is preserved by c~. If  c~ k is elliptic then c~ acts as an isometry of 
finite order on A. If  c~ k is loxodromic then A splits isometrically as a product 
A = B • ~ and c~ acts as an element of  finite order on B. In both cases the claim 
follows if we can show that isometries of finite order on a Hadamard space Z 
are elliptic, i.e. have a fixed point. This is true because for any finite subset F 
of  Z the function Y~z~F d2(z, ") is uniformly strictly convex and therefore has a 
unique minimum. [] 

This concludes the proof that the action of G on V is discrete and semisimple. 
Recall that two discrete groups are called commensurable if they contain isomor- 
phic subgroups of finite index. Our discussion shows that being Hadamard is a 
commensurability invariant: 

Theorem 2.3 Suppose that G and H are commensurable groups. I f  H is a Ha- 
damard group, then G is a Hadamard group as well. 

Proof G contains a finite index normal subgroup which is isomorphic to a 
subgroup of H.  [] 

For finitely generated groups there is a natural geometric equivalence relation 
which is weaker than the algebraic equivalence relation of being commensurable: 
Two groups are called quasi-isometric if their Cayley graphs are bilipschitz on the 
large scale, see [KL1] for a more precise definition. Observe that the Hadamard 
property is not a quasi-isometry invariant: E.g. fundamental groups of all closed 
Seifert 3-manifolds M with hyperbolic base orbifold are quasi-isometric to each 
other (as proven independently by Epstein, Gersten and Mess, see [Ge2]), but 
7q(M) is Hadamard if and only if M is finitely covered by a product (Bridson). 
Other examples are provided by fundamental groups of graph manifolds, cf. 
[KL3]. 

2.2 3-manifold subgroups and obstructions 

In general, it is a stronger property for a group to admit cocompact discrete 
actions on Hadamard spaces than to admit semisimple ones. In this section we 
prove that for Haken 3-manifold groups both properties are equivalent. This 
will impose restrictions on possible Haken 3-manifold subgroups of Hadamard 
groups. For a definition of  Haken manifolds and their canonical (geometrical) 
decomposition see [He, Sc]. 

Theorem 2.4 ([L1]) Let M be a compact Haken 3-manifold whose boundary has 
zero Euler characteristic (0tl4 may be empty), l f  zq (M ) is a Hadamard group, then 
M admits a smooth metric ofnonpositive sectional curvature with totally geodesic 

flat boundary. 
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Proof If  a hyperbolic component occurs in the canonical decomposition of M,  
then M admits a smooth metric of nonpositive curvature, see ILl].  Thus we can 
assume that M is a graph-manifold. Moreover, we can exclude the cases that M 
is a Sol-, Nil- or Euclidean manifold and suppose that all Seifert components of 
M have a hyperbolic base orbifold. 

Let p be a discrete semisimple action of  7q(M) on the Hadamard space X. 
Let S be a splitting surface in the canonical decomposition of  M,  i.e. a toms 
or Klein bottle. Because the action of 7r1(S) on X is discrete and loxodromic, 
there exist lrl(S)-invariant 2-flats, i.e. totally-geodesically embedded Euclidean 
planes. Any two invariant flats are parallel and the restricted actions of 7rl(S) are 
isometrically conjugate. Hence a well-defined flat metric gs is induced on S. 

Consider a Seifert component Z of  M. The fundamental group fits into the 
exact sequence 

0 ----+ Z -- (f) ~ 7q(Z) ~ 7r1(O) ~ 1 

where O is the base orbifold and f is represented by the generic fiber of  the 
Seifert fibration. The isometry p(f) is loxodromic and the union of  all axes of  
p{f) forms a convex subset C of X which splits isometrically as C = Y x ~.  
The subset C as well as its product decomposition are preserved by the action 
of 7rl(Z). We have induced semisimple actions r and "~b on the factors: 

- r is an action of  7rl(Z) on Y. f acts by the identity and ff descends to a 
discrete semisimple action ~ of  7rl(O) on Y. 

- ~b is an action of 7rl(Z) on 1I~. 

We put a nonpositively curved metric on Z which extends the flat metrics 
on the boundary surfaces by replacing r with an action on a 2-dimensional 
nonpositively curved manifold as follows. Let the elements ai E 7rl (0)  represent 
the boundary components of the orbifold O. They have infinite order and we 
denote by li the minimal displacement of ai acting on Y. Choose a smooth 
metric of nonpositive curvature on O which is flat near the boundary so that the 
lengths of  the boundary components are li. This yields an action of 7r1(O) on 
the universal cover 0 which is a nonpositively curved surface. Lift this action to 
zq (Z) and form the product with the action ~b. The result is a discrete cocompact 
action without fixed points of zq(Z) on the nonpositively curved Riemannian 
3-manifold 0 x ~. It yields a smooth nonpositively curved metric on Z which 
is flat near the boundary and for each boundary component S of Z, the induced 
metric coincides with the flat metric 9s. Hence we can glue the metrics on the 
Seifert components to obtain a smooth nonpositively curved metric on M. [] 

Combining Theorems 2.3 and 2.4, we obtain: 

Corol lary 2.5 Suppose that M is a closed 3-manifold of nonpositive curvature 
and N is finitely covered b), M. Then N admits a metric of nonpositive curvature 
as well. 

Theorem 2.4 yields a new obstruction for a group to be Hadamard: 
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Corollary 2.6 Suppose that 1" is a Hadamard group which contains a subgroup 
isomorphic to the fundamental group 7rl (M ) o f  a closed Haken 3-manifold. Then 
M admits a smooth metric of nonpositive sectional curvature. 

In particular, we obtain an obstruction for nonpositively curved metrics on 
closed manifolds: 

Corollary 2.7 Let N be a closed smooth manifold and M a graph 3-manifold with 
no metrics of nonpositive curvature. I f  there is an embedding rrl(M) --+ zrl(N) of 
fundamental groups, then N admits no Riemannian metric of nonpositive sectional 
curvature. 

In the Sect. 3.2 we will provide examples of closed graph-manifolds with no 
metrics of nonpositive curvature. 

3 Nonpositively curved metrics on Haken 3-manifolds 

3.1 Existence 

We consider compact Haken manifolds with boundary of zero Euler character- 
istic. For Riemannian metrics of nonpositive curvature, we shall always assume 
that the boundary is totally-geodesic. We recall the following existence result: 

Theorem 3.1 ([L1],[L2]) Let M be a Haken 3-manifold with boundary of zero 
Euler characteristic which satisfies either of the following conditions: 

1. M contains a hyperbolic component. 
2. OM is non-empty. 

Then M admits a smooth metric of  nonpositive curvature. 
Addendum. In the second case, let {7i } be a collection of homotopically non- 
trivial loops in the boundary, one on each component, so that none of  them rep- 
resents the fibre of the adjacent Seifert component. Then, given positive numbers 
li, there exists a smooth nonpositively curved metric on M so that the loops 7i 
are geodesics of length l i. 

The class of Haken manifolds which are not covered by Theorem 3.1 consists 
of closed Seifert and graph-manifolds. These manifolds do not always admit 
metrics of nonpositive curvature, compare the examples in Sect. 3.2. However, 
we have the following existence theorem for this class of 3-manifolds: 

Theorem 3.2 I f  a closed graph-manifold contains a nonorientable Seifert com- 
ponent then it admits a metric of nonpositive curvature. 

We recall that a graph manifold is compact 3-manifold obtained from gluing 
Seifert manifolds along incompressible boundary surfaces. We exclude from the 
class of graph manifolds all Sol- and Seifert manifolds. 
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Lemma 3.3 Suppose E is a nonorientable Euclidean Seifert manifold with a sin- 
gle boundary component. Then an), flat metric on OE can be extended to a flat 
metric on E. 

Proof  Either OE is a Klein bottle or OE is a torus and E is homotopy equivalent 
to a torus. In both cases one checks the claim easily. [] 

Lemma 3.4 Suppose that Z is a connected Seifert manifold whose base orbifold 
0 is orientable hyperbolic (without boundary reflectors), l f Z  is nonorientable, 
we prescribe a flat metric on OZ, so that fibres are represented by geodesics o f  
the same length. I f  Z is orientable, we prescribe such a metric on all but one 
boundary component. Then this metric can be extended to a nonpositively curved 
metric on Z. 

Proof Consider the case when the base O is a pair of pants and Z is nonori- 
entable. Exactly two boundary components of Z are Klein bottles. The funda- 
mental group has the presentation 

7q(Z) = ( a , b , c , t  l ata -1 = t -J ,b tb  -I  = t - l , c t c  -1 = t ,abc = 1). 

The prescribed flat metric h on OZ assigns lengths to the boundary curves of the 
pair of pants which can be realized by a unique hyperbolic metric. Nonpositively 
curved metrics on Z correspond to representations ~ : 7q(Z) ~ lsom(N), h 
determines the translations ~(c) and Zb(t) and does not restrict the reflections 
~(a) and ~p(b). We can choose the reflections ~p(a) and ~(b) so that their product 
equals ~(c-1), The argument in the cases that O is an annulus with one cone 
point and/or Z is orientable are similar. By gluing such building blocks we finish 
the proof of the lemma in the general case. [] 

Lemma 3.5 Let N be a nonorientable Seifert manifold. Then an)' flat metric on 
ON so that Seifert fibers have equal length can be extended to a nonpositively 
curved metric on N.  

Proof  We need only consider the case that the base orbifold O of N is hy- 
perbolic. Pick a maximal family of disjoint simple one-sided loops in O and 
consider the inverse images S of these loops and the boundary reflectors under 
the natural projection N ~ O. The surfaces s are one-sided tori and Klein 
bottles. We see that N arises from gluing Euclidean Seifert manifolds with one 
boundary component and a Seifert manifold N ~ with orientable hyperbolic base. 
At least one of these pieces must be nonorientable. The claim follows from the 
previous two lemmas. [] 

Proof  o f  Theorem 3.2: The theorem is implied by the previous lemma and the 
Addendum to Theorem 3.1. [] 
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3.2 Non-existence 

It is well-known that an aspherical Seifert manifold admits a metric of nonpositive 
curvature if and only if it is finitely covered by a product of surface and circle 
[El. We now give a few examples of closed graph-manifolds which do not admit 
metrics of nonpositive curvature. Note that in graph manifold groups all solvable 
subgroups are virtually abelian and all centralizers split. 

We start with the simplest example of closed graph-manifolds. Take a pair of 
compact orientable surfaces Sj with single incompressible boundary component 
3'j. We consider the products Zj = Sj • $1 as fiber bundles with base Sj and fiber 
~1. There is a canonical pair of "base-fiber" subgroups (bj) and ~ )  in 7q (0Zj). 
j') is represented by the fiber of the Seifert fibration. 

Theorem 3.6 Let h : OZl ~ OZ2 be a homeomorphism. Then the manifold M 
obtained by gluing Zj along h admits a metric of nonpositive curvature if and 
only if the induced isomorphism h. preserves the pair of "base-fiber" subgroups: 

{(h.bl), (h.fl)} = {{b2), ~2)} 

(h may switch base and fiber). 

Proof. Each nonpositively curved metric on M induces a flat metric on the 
separating torus T = OZj. In our situation only special metrics can be induced, 
namely such metrics which are rectangular with respect to the canonical bases 
{bj,j~ }. To see this, consider as in the proof of Theorem 2.4 the set Cj of 
minimal displacement of the deck transformation ~ on the universal cover/17/. 
As above, there is a ~rl(Zj)-invariant isometric splitting Cj = Yj x N. Since bj 
is homologically trivial in Z), the action of bj on the N-factor must be trivial. 
The claim follows, because a rectangular basis for a lattice in Euclidean plane is 
unique (up to change of signs). [] 

To construct another example, suppose that S is a closed oriented hyperbolic 
surface. The orientation on S allows to distinguish "right" and "left" Dehn twists 
along simple closed geodesics. Choose a decomposition of S by disjoint simple 
closed geodesics L = {'71,- �9 �9 "7q } with the weights ni E 2~- {0}. In what follows 
we shall denote by D.~ the right Dehn twist along % 

Theorem 3.7 Suppose that f is a homeomorphism of S which is a composition of 
iterates of Dehn twists D~ along 3'j, nj C Z - {0}, 1 < j <_ q. If all the numbers 
nj have the same sign (i.e. all the Dehn twists are either left or right) then the 
mapping torus M = S • [0, 1] does not admit a metric of nonpositive curvature. 

Proof The mapping toil Tj ofj],yj decompose M into Seifert pieces. The fibration 
of M gives us two bases {fj,bj} and ~ , b ; }  of H1(~,Z) .  Here the elements 
3') , f /  correspond to the Seifert fbers of the Seifert components adjacent to Tj. 
The elements bj, bj are defined by the fibration of M over S 1 and the orientation 
of S. These bases are related by: 
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bj = - b  i and f / = ~  + nj- bj. 

Suppose that all the numbers nj have the same sign, say positive. Assume 
that M carries a metric of nonpositive curvature. Then the fiat metrics on the 
boundary toil of a Seifert component Z satisfy the condition 

O0,b > = 0. 
Tj C_aZ 

Summing this equation over all Seifert components yields 

;,j) + b j ) )  = o. 
J 

On the other hand, the positivity of the nj implies 

bj) + = - n j l l b j l l  = < o,  

J J 

a contradiction. [] 

We have a combinatorial criterion for the existence of  a nonpositively curved 
metric on a closed graph-manifold M when the dual graph to the canonical 
decomposition of M is a tree. Loosely speaking, the more Seifert components 
M has, the more likely it admits a metric of  nonpositive curvature. The criterion 
extends the special case of a linear dual graph which is discussed in [L1, L2]. 

4 Examples of non-Hadamard groups 

4.1 Mapping class groups 

If S is a closed connected hyperbolic surface and P C S is a finite set of points 
then the genus of the surface S = Z T - P  is either the genus of S (if it is 
orientable) or the number of projective planes in the prime decomposition of ~' 
(if S is not orientable). The surface S = ~' - P is called a surface of  finite type. 
We denote by U T ( S )  the unit tangent bundle and by Mods  the mapping class 
group. 

The following argument is essentially due to Birman [Bi]. For a unit tangent 
vector v C UT(~U), D i f f ( S ,  v) will be the group of  diffeomorphisms of S which 
fix the vector v. The evaluation map 

: D i f f ( S )  ~ U T ( S ) ,  ~(f) = f ( v )  

is a locally trivial fibration with fiber D / i f (S ,  v), see [Bi]. We have the long 
exact homotopy sequence of a fibration 

. . .  --~ 7h ( Di f f  ( Z )  ) --~ 7h ( UT ( ~ )  ) ---* 7ro( Di f f  ( ~ , v ) ) --~ 7ro(D/ff(~')) --~ 
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--~ rco(UT(S))= 1 

where we use the natural group structures on the mapping class group no(D/if(S)) 
and the relative mapping class group 7r0(D/ff(X', v)). Since ~' is hyperbolic, com- 
ponents of D i f f ( S )  are contractible, see [EE], and we get the short exact sequence 

1 --+ r q ( U T ( S ) )  --~ 7ro(Diff(S , v)) ~ Zro(Diff(S)) ---+ 1 

Suppose now that 3' is a simple homotopically nontrivial loop on S which 
splits S in two components S + and S -  so that: 

- all the punctures of S are contained in S - ,  
- the genus of S + is at least 2 (in the orientable case) or at least 3 (in the 

nonorientable case), 
- 7q(S-) is not abelian. 

Under these assumptions the surface F obtained by attaching a disc D to the 
boundary of S + is hyperbolic. Pick a unit tangent vector v E UT(D). Then 
the group 7ro(Diff(F,v)) is naturally isomorphic to lro(Diff(S+,OS+)) where 
Diff(S +, OS +) consists of diffeomorphisms which fix OS + pointwise. Therefore 
rco(Diff(F, v)) embeds in the mapping class group Mods = 7roDiff(S) (we extend 
each diffeomorphism in Diff(S +, OS +) into S -  by the identity). Thus we proved 
the following fact which is due to Mess [Me] in the case of closed orientable 
surfaces (our proof is essentially the same): 

P r o p o s i t i o n  4.1 Let S be a surface o f  finite type. I f  S is orientable we assume 
that either the genus o f  S is at least 3 or the genus o f  S is two and S has at least 
2 punctures. I f S  is nonorientable we assume that either the genus o f  S is at least 
4 or the genus o f  S is three and S has at least 2 punctures. 

Then the mapping class group Mods contains as a subgroup 7rI(UT(F)) where 
F is a closed hyperbolic surface. 

Theorem 4.2 Under the conditions above or i f  S is an orientable surface o f  genus 
2 with one puncture, the group Mods is not a Hadamard group. In particular, there 
are no effective cocompact discrete actions o f  Mods on Hadamard spaces. 

Proof  Assume first that S satisfies the assumptions of Proposition 4.1. Then the 
closed manifold UT(F)  is modelled on the SL(2, I~)-geometry. Thus UT(F)  does 
not admit a metric of nonpositive curvature. Corollary 2.6 implies that Mods is 
not a Hadamard group. 

This argument cannot be applied if S is an orientable surface of genus 2 with 
one puncture. Here is another way to construct 3-manifold subgroups inside the 
mapping class group of a once punctured orientable hyperbolic surface S : There 
are natural isomorphisms Mods ~ Aut(Trl(~)) and Mod~ ~ Out(Trl(2?)), and 
therefore the short exact sequence 

1 --0 rq (Z )  ~ Mods --* M o d s  ~ 1. 
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Let D,~ be a Dehn twist along a simple closed loop in E. Denote by [D,~] the 
corresponding element in Mode. The inverse image in Mods of the cyclic group 
generated by [D,y] is isomorphic to the fundamental group of the mapping torus 
M of D, r. M is a closed graph manifold which does not admit a metric of 
nonpositive curvature by Theorem 3.6 or 3.7. Hence, Mods is not a Hadamard 
group. [] 

Remark 4.3 Any solvable subgroup of Mods is almost abelian [BLM]. 

We do not know whether the mapping class groups of surfaces which are not 
covered by Theorem 4.1 are Hadamard (for example the braid group Mods2_e). 
It is clear that we must exclude almost free groups Modr~_(~) and Mods2_e for 
#(P) < 4. Gersten [Gel] proved that Out(Fr) is not a Hadamard group for free 
groups of rank r > 4. 

4.2 4-manifolds fibered over surfaces 

In this section we consider closed 4-manifolds M which are total spaces of 
surface bundles over surfaces. We require the base B and the fiber F to be hy- 
perbolic. M yields a representation r : 7q (B) ~ Modr. Not much is known about 
the existence of metrics of nonpositive (negative) curvature on such manifolds. 
First of all, there are trivial examples which are finitely covered by products of 
hyperbolic surfaces. They have geometric rank 2 and admit locally symmetric 
metrics. Next, there are Kodaira-type examples of geometric rank 1 which are 
ramified covers of products branched along totally-geodesic surfaces, see [Ko]. 
These manifolds carry singular metrics of nonpositive curvature but it is unknown 
whether they admit smooth metrics of nonpositive curvature. This problem has 
already been posed as Exercise 1 on page 2 in [BGS]. In all known examples, the 
representation r either has a non-trivial kernel or the image contains reducible 
elements of the mapping class group. 

Problem 4.4 Find a bundle M = B x r F so that the representation r is injective 
and the image consists of pseudo-Anosov elements only. Give examples where 
the fundamental groups are word-hyperbolic. Give examples where M admits a 
metric of (constant) negative curvature. 

We apply the obstruction criterion 2.7 to construct surface bundles without 
metrics of nonpositive curvature. 

Theorem 4.5 There are closed 4-manifolds M which are fibered over hyperbolic 
surfaces with hyperbolic fiber so that 7rl(M ) is not a Hadamard group. In partic- 
ular M doesn't car D, a metric of  nonpositive curvature. 

Proof We consider a homomorphism r obtained by composing an epimorphism 
gb : rq(B) --~ Z = (z) and an action of z on F by a Dehn twist D. Then 7rl(M) 
contains the fundamental group of the mapping torus N of D. According to 
Theorem 3.6 or 3.7, the manifold N admits no metric of nonpositive curvature. 
Hence by Corollary 2.6 the group 7rl(M) is not a Hadamard group. 13 
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Remark 4.6 Any solvable subgroup of 7rl (M) is abelian. All centralizers in zrI(M ) 
split as products. 

Acknowledgements. We are grateful to Sergey Buyalo for communicating to us the papers [BK1, 
BK2I. 
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