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Abstract. We prove quasi-isometry invariance of the canonical decomposition
for fundamental groups of Haken 3-manifolds with zero Euler characteristic.
We show that groups quasi-isometric to Haken manifold groups with nontrivial
canonical decomposition are finite extensions of Haken orbifold groups. As a
by-product we describe all 2-dimensional quasi-flats in the universal covers of
non-geometric Haken manifolds.
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1 Introduction

Let Γ be a finitely generated group. A geodesic metric spaceX, on whichΓ
acts properly discontinuously and cocompactly by isometries, can be regarded
as a geometric model forΓ . Important examples are Cayley graphs associated
to finite generating sets and universal covers of compact Riemannian manifolds
with fundamental groupΓ . All such model spacesX are quasi-isometric to one
another and their quasi-isometry invariants are calledgeometric invariantsof Γ ,
cf. [Gr1]. It is a basic question in this context to classify all finitely generated
groups up to quasi-isometry. Note that commensurable groups have the same
geometric invariants, whereas the converse is in general not true.

This paper deals with the geometry of 3-manifold groups. Our main result
concerns the canonical decomposition of Haken manifoldsM with boundary of
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zero Euler characteristic. Jaco, Shalen, Johannson and Thurston proved thatM
can be cut along flat surfaces into finitely many geometric components which
are either Seifert or hyperbolic. This canonical decomposition ofM is unique
up to isotopy and it corresponds to an algebraic decomposition ofπ1(M ) as a
graph of groups which is invariant under group automorphisms. We prove that the
canonical decomposition is more generally invariant under all quasi-isometries
and therefore it is a geometric invariant of the fundamental group. To make this
precise, put a Riemannian metric onM and take the universal coverX = M̃
as a geometric model forπ1(M ). The canonical decomposition ofM lifts to a
decomposition ofX where a geometric component ofX is the universal cover
of a geometric component ofM . Let X ′ = M̃ ′ be the universal cover of another
Haken manifoldM ′ of the same kind, decomposed in the same way.

Main Theorem 1.1 Let φ : X → X ′ be a quasi-isometry. Thenφ preserves the
geometric decompositions of X and X′ in the following sense: For any geometric
component Y of X there exists a geometric component Y′ of X′ within uniformly
bounded Hausdorff-distance fromφ(Y). The components Y and Y′ have the same
type (Seifert or hyperbolic). Moreoverφ preserves the ordering of geometric com-
ponents and therefore induces an isomorphism of the trees dual to the geometric
decompositions of X and X′.

We did a first step in this direction in our earlier paper [KL2] where we proved
that the quasi-isometry class ofπ1(M ) detects whetherM has a Seifert compo-
nent. Theorem 1.1 implies that also the existence of a hyperbolic component is
“visible” in the geometry ofπ1(M ). This had first been proven by N. Brady and
Gersten using different techniques; they showed that the divergence ofπ1(M )
is exponential if and only ifM has a hyperbolic component, see [Ge]. Note
that there are non-geometric Haken manifolds whose fundamental groups are
quasi-isometric but not commensurable, see [KL1, KL3].

Our main application is a geometric characterization of Haken manifold
groups:

Theorem 1.2 Suppose thatΓ is a finitely generated group whose Cayley graphs
are quasi-isometric to the universal cover X of a non-geometric Haken manifold
M with zero Euler characteristic. Then there is a short exact sequence

1−→ finite group−→ Γ −→ π1(O) −→ 1

where O is a compact 3-dimensional orbifold which is finitely covered by a Haken
manifold of the same kind as M . In particular, ifΓ is torsion-free thenΓ is
isomorphic to the fundamental group of a Haken manifold N .

Results analogous to Theorem 1.2 were previously known in several cases
whenM is geometric: The result forNil -manifolds is due to Gromov, see [Gr2],
and the euclidean case is due to Bridson and Gersten. Rieffel [R] proved Theorem
1.2 whenM is a Seifert manifold with hyperbolic base orbifold. The case when
M is a Sol-manifold remains open. Note that there are obvious examples of
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self quasi-isometries ofSol which are not within bounded distance from any
isometry. Regarding the hyperbolic case, Schwartz [Sch] proved for finite volume
noncompact hyperbolic manifoldsH of dimension≥ 3 that the quasi-isometry
group of π1(H ) is naturally isomorphic to the commensurator ofπ1(H ); this
shows in particular that any finitely generated group quasi-isometric toπ1(H ) is
a finite extension of a group commensurable withπ1(H ).

As a by-product of the proof of Theorem 1.1 we also give a classification of
2-dimensional quasi-flats inX, cf. Theorem 4.10. We prove that each 2-quasi-flat
in X is contained in a tubular neighborhood of a finite union ofisolated flats in
X. Besides quasi-flats which are Hausdorff close to a flat there are alsotwisted
quasi-flats which spread through a finite chain of consecutive Seifert components.
We describe canonical models for these quasi-flats in Sect. 4.3.

Our approach is based on the strong link between Haken 3-manifolds and the
geometry of nonpositive curvature. Based on Thurston’s Hyperbolization Theo-
rem, it is shown in [L] that Haken manifoldsM of zero Euler characteristic gener-
ically admit metrics of nonpositive curvature with totally geodesic flat boundary.
Moreover, we prove in [KL3] that their fundamental groups are geometrizable in
the following weak sense: IfM is neither aSol- nor Nil -manifold, then there ex-
ists a Haken manifold of nonpositive curvatureM ′ such that the universal covers
X = M̃ andX ′ = M̃ ′ are bilipschitz homeomorphic by a homeomorphism which
preserves the geometric decomposition. In particular, the geometric components
of the universal coverX are quasi-isometrically embedded andX is bicombable.
Therefore in the present paper we shall only consider nonpositively curved Haken
manifoldsM .

We already mentioned that single 2-quasi-flats are generally not Hausdorff-
close to flats. Our idea is to show that sufficiently complicated patterns of 2-flats
are quasi-isometrically rigid. As in [KL2], we use the concept ofasymptotic cone
of a metric space. A quasi-isometryX → X ′ becomes “more continuous” when
one rescales the metrics with a small factor, and in the ultralimit it induces a
bilipschitz homeomorphismXω → X ′ω of asymptotic cones. By analysing the
geometry and topology of the asymptotic cones we prove that their induced
geometric decompositions are preserved by bilipschitz homeomorphisms. This is
done by classifying bilipschitz embedded 2-flats and topologically characterizing
the flats separating geometric components. The Divergence Lemma 4.1 is the
key tool for translating the topological rigidity of the asymptotic cones into a
statement about quasi-isometric rigidity for the geometric decompositions ofX
andX ′. This lemma implies that a 2-dimensional quasi-flatQ in X which is not
uniformly close to a convex setC diverges fromC at a linear rate and hence
the distinction betweenQ andC becomes visible in the asymptotic coneXω.

Regarding Theorem 1.2, a finitely generated group, which is quasi-isometric
to X, admits an action by uniform quasi-isometries onX. The Main Theorem
implies that the canonical decomposition ofX is quasi-preserved and there is an
induced action on the dual tree for the canonical decomposition. By a general
argument, the vertex and edge stabilizers act quasi-transitively on the correspon-
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ding components and flats. Using work of Schwartz and Tukia we conclude that
the vertex stabilizers are finite extensions of fundamental groups of 3-dimensional
hyperbolic and Seifert orbifolds and the edge stabilizers are their peripheral sub-
groups.

2 Preliminaries

2.1 Notations and conventions

We will use different notions of distance between subsetsA,B of metric spaces:
the Hausdorff distance and the distance of closest points denoted bydist(A,B).
The distance of a pointx from a setA will be sometimes denoted bydA(x). If A
is a subset of a topological spaceX thenĀ will denote the closure ofA in X. We
use the notation [xy] for the geodesic segment connecting pointsx, y in a metric
spaceX. If Z is a subset in a metric spaceX andR > 0 thenNR(Z) denotes the
R-neighborhood ofZ in X, we will refer toNR(Z) as atubular neighborhoodof
Z . We assume that all segments, rays and geodesics are parameterized by unit
speed.

A map f : (X1, d1) → (X2, d2) of metric spaces is a (K , ε)-quasi-isometric
embeddingwith K , ε > 0 if

K−1d1(x, y)− ε ≤ d2(f (x), f (y)) ≤ Kd1(x, y) + ε

for eachx, y ∈ X1. (One should think ofε as a large positive number.) Note
that quasi-isometric embeddings are not necessarily injective or continuous. A
map f1 : (X1, d1) → (X2, d2) is a quasi-isometryif there are two constantsC1,C2

and another mapf2 : (X2, d2) → (X1, d1) such that bothf1, f2 are quasi-isometric
embeddings and

d1(f2f1(x), x) ≤ C1, d2(f1f2(y), y) ≤ C2

for everyx ∈ X1, y ∈ X2. Such spacesX1,X2 are calledquasi-isometric.
Hadamard (orCAT(0)) spaces are complete geodesic metric spaces with non-

positive curvature in the distance comparison sense, cf. [Ba, KlL]. They are not
assumed to be locally compact. In Hadamard spaces one can define theangle
between geodesic segments [ab], [ac], see [KL2]. We shall denote by∂geoX the
geometricor ideal boundaryof the Hadamard spaceX. For a closed convex
subsetC in a Hadamard spaceX, projC will denote the closest-point projection
to C . These projections are distance-nonincreasing. Aflat, bilipschitz flat, re-
spectivelyquasi-flatin X is (the image of) an isometric, bilipschitz, respectively
quasi-isometric embedding of the euclidean 2-plane intoX.

Convention 2.1 All flats, bilipschitz flats and quasi-flats considered in the present
paper are2-dimensional.
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2.2 3-manifolds and their canonical decomposition

We refer to [S] for information about the geometrization of 3-manifolds and a
description of the eight 3-dimensional homogeneous geometries. Here we only
recall a few facts which are important for this paper.

A compact smooth 3-manifoldP is calledgeometricif its interior admits a
geometric structure, i.e. a complete locally homogeneous Riemannian metric. If
P is aspherical and has nonempty boundary, then the occurring homogeneous
spaces will beH3 andH2 × R. In the latter case, the manifoldP is Seifertand
itself admits a metric modelled onH2×R with totally geodesic boundary, unless
it has almost abelian fundamental group. ManifoldsP locally modelled onH3-
geometry are calledhyperbolic. Note that according to our definition the solid
torusD2×S1 andS1×S1× [0, 1] are geometric manifolds which are hyperbolic
and Seifert simultaneously.

In this paper we will only consider aspherical 3-manifolds of zero Euler
characteristic, equivalently the boundary of such manifolds is a (possibly empty)
collection of tori and Klein bottles. Instead of giving the definition of Haken ma-
nifolds, we remind that all non-geometricHaken manifoldsof zero Euler charac-
teristic admit acanonical decompositioninto finitely many geometric manifolds
which are glued along boundary tori or Klein bottles, see [JS, J, Th, Ka, O]. This
decomposition is unique up to isotopy if these geometric submanifolds are cho-
sen to be maximal up to isotopy. Note that geometric components of a Haken
manifold of this kind never have almost abelian fundamental group, thus the
classes of hyperbolic and Seifert components become disjoint.

If the Haken manifoldM of zero Euler characteristic carries a Riemannian
metric g of nonpositive sectional curvature with totally-geodesic flat boundary,
then the canonical topological decomposition ofM into hyperbolic and Seifert
components can be realized geometrically by cutting along totally-geodesically
embedded flat tori and Klein bottlesΣ, cf. [L, LS]. The metricg can be chosen
(once differentiable) so that all Seifert components are in their interior locally
isometric toH2×R. Call a flat in the universal coverX of M an isolated flat if
it either covers one of the flat surfacesΣ in the canonical decomposition ofM
or is a boundary flat ofX. This terminology is motivated by the fact that a flat
is parallel to an isolated flat if and only if no other flat intersects it transversally.
The isolated flats decomposeX into convex subsets with totally-geodesic flat
boundary which we callgeometric componentsof X; they are universal covers
of the geometric components ofM . Each Seifert componentY of X splits iso-
metrically as the product of the real line and a 2-dimensional factor which is
isometric to a convex domain inH2 bounded by disjoint geodesics. The fibration
of Y by parallel geodesics covers a Seifert fibration of the corresponding Seifert
component ofM by closed geodesics.
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2.3 Ultralimits and asymptotic cones

For a discussion of ultralimits of metric spaces we refer to [DW, Gr2, KL2, KlL],
here we recall some of their basic properties.

Fix a non-principal ultrafilterω on N. For any sequence of pointed metric
spaces (Xn, x0

n ) the ultralimit (Xω, x0
ω) is a metric space. Points in the ultralimit are

represented by sequences (xn) of points inXn. If the sequence (Xn) is precompact
in the Gromov-Hausdorff topology, then the ultralimit is the Gromov-Hausdorff
limit of a ω-large subsequence. Ultralimits of Hadamard spaces are Hadamard
spaces. The ultralimit of a sequence of (Kn, εn)-quasi-isometriesfn : (Xn, x0

n ) →
(Yn, y0

n) is a (K , ε)-quasi-isometryfω : (Xω, x0
ω) → (Yω, y0

ω) with K = ω- lim Kn

andε = ω- lim εn.
To form theasymptotic cone Xω of a metric spaceX, one chooses sequences

of scale factorsλn > 0 with ω- lim λn = 0 and basepointsx0
n ∈ X and takes the

ultralimit (Xω, x0
ω) := ω- limn(λn · X, x0

n ). Here,λn · X denotes the metric space
obtained by rescaling the metric ofX with the factorλn. When we speak of “the
asymptotic coneXω of X”, we mean one of these ultralimits, suppressing the
choices ofλn, x0

n in our notation. In general, the isometry type ofXω depends
on these choices. However, in our applications various asymptotic cones will
share the same geometric properties. The asymptotic coneXω of a Hadamard
spaceX is a Hadamard space and in general not locally compact. IfX admits a
cocompact group of isometries thenXω is homogeneous.

The asymptotic cone is a useful tool for the study of quasi-isometries, because
a (K , ε)-quasi-isometric embedding of metric spaces becomes continuous in the
rescaling process and induces aK -bilipschitz embedding of their asymptotic
cones.

2.4 Busemann functions

Suppose thatY is a Hadamard space. Busemann functions measure the relative
distance from points at infinity. Pick a pointξ in the geometric boundary ofY ,
i.e. an equivalence class of parallel geodesic rays. Take a unit speed geodesic
ray ρ : [0,∞) → X asymptotic toξ. The Busemann functionBξ corresponding
to ρ is the monotonic limit :

Bξ(·) := lim
t→∞[d(·, ρ(t))− t ]

Bξ is a convex function which is well-defined up to an additive constant. For
every rayr asymptotic toξ we have:

Bξ ◦ r (t) = −t + const (1)

If r1, r2 are two geodesic rays asymptotic toξ, thenBξ ◦ r1(t) = Bξ ◦ r2(t) holds
iff the ideal triangle with verticesr1(t), r2(t), ξ has angles≤ π/2 for all t . These
two properties characterize Busemann functions.
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Level sets of Busemann functions are calledhorospheres. The sublevel sets
are calledhoroballsand they are convex.

We prove two facts about Busemann functions for later reference.

Lemma 2.2 Suppose that C is a convex subset of Y such that the Busemann
function Bξ is constant on C . Then the union U of geodesic rays emanating from
points of C and asymptotic toξ is convex and splits isometrically as the direct
product

C × R+.

Proof: For a pointq ∈ C let lq denote the geodesic ray emanating fromq in
the directionξ. Let x, y be a pair of distinct points inC , the functionBξ is
constant on [xy]. It follows from the definition of the Busemann function that
the angles betweenlx , ly and the geodesic segment [xy] are at leastπ/2. However
Y is a Hadamard space, thus the ideal triangle with verticesx, y, ξ has angles
π/2, π/2, 0 and spans an isometrically embedded flat half-strip, namely the union

∪q∈[xy] lq.

The Lemma follows.�

Lemma 2.3 Let (Xn, x0
n ) be a sequence of based Hadamard spaces with the ultra-

limit (Xω, x0
ω). Let Yn ⊂ Xn be convex subsets withω- limn d(x0

n ,Yn) = ∞. Then
f := ω- limn(dYn − dYn (x0

n )) is a Busemann function on Xω.

Proof: For xn ∈ Xn − Yn, denote byρxn : [0, dYn (xn)] → Xn the perpendicular
from xn to Yn. For any pointsxn, x′n ∈ Xn, the functiont 7→ d(ρxn (t), ρx′n (t))
decreases monotonically. Ifxω = (xn) is a point inXω then the ultralimitρxω :=
ω- lim ρxn : [0,∞) → Xω is a geodesic ray which does not depend on the choice
of the sequence (xn) representingxω, and all raysρxω are asymptotic to the same
ideal pointξω ∈ ∂geoXω. Applying the triangle inequality, we obtain

d(ρxn (t), x′n) ≥ d(x′n, projYn (xn))︸ ︷︷ ︸
≥dYn (x′n)

− dYn (ρxn (t))︸ ︷︷ ︸
=dYn (xn)−t

≥ t + (dYn (x′n)− dYn (xn)).

Passing to the ultralimit yields

d(ρxω (t), x′ω) ≥ t + (B(x′ω)− B(xω))

whereB := ω- lim dYn . We rewrite the previous inequality:

d(x′ω, ρxω (t))− t ≥ B(x′ω)− B(xω)

and sendt to infinity:

Bξω (x′ω)− Bξω (xω) ≥ B(x′ω)− B(xω).

Since we may exchange the roles ofxω and x′ω, the equality holds and we
conclude that the functionBξω − B is constant onXω. �

Remark 2.4 Similarly, one shows that the ultralimit of Busemann functions on
Xn is a Busemann function on Xω (or constant±∞).
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2.5 Quasi-isometric embeddings into piecewise Euclidean spaces

Suppose thatX is a geodesic metric space andE ⊆ X is an open subset which
is isometric to a convex subset in the Euclideanm-spaceRm.

Lemma 2.5 There is a constant R= R(K , ε,m) such that the following is true:
Let qf : Rm → X be a(K , ε)-quasi-isometric embedding with the image Q. Then
either NR(Q) ⊇ E or Q ∩ E ⊆ NR(∂E).

Proof: If the conclusion of the lemma is not satisfied then the convex subset
E′ := E − N2R

3
(∂E) satisfiesQ ∩ E′ /= ∅ and E′ 6⊆ NR

3
(Q). Thus there exists a

point x ∈ E with

d(x,Q) =
R
3

and d(x, ∂E) ≥ 2R
3
.

If the assertion of the lemma were not true, then we can find sequences of
subsetsEn ⊆ Xn, (K , ε)-quasi-isometriesqfn : Rm → Xn, points xn ∈ En and
numbersRn tending to infinity, so that:d(xn, qfn(Rm)) = d(xn, qfn(0)) = Rn

3 and
d(xn, ∂En) ≥ 2Rn

3 . Now we rescaleRm with the center 0 andXn with the center
xn using the scale factorR−1

n . The ultralimit of the (K ,R−1
n ε)-quasi-isometric

embeddingsqfn : (R−1
n · Rm, 0) → (R−1

n · Xn, xn) is a K -bilipschitz embedding
[ : Rm → Xω. The subsetEω := ω- lim En ⊂ Xω is isometric to a convex subset
of Rm. Moreover its interior (with respect to an isometric embedding intoR

m) is
open inXω, because theXn were assumed to be geodesic. By construction, the
image of[ intersects the interior ofEω, but does not contain it. This is impossible,
because the restriction of[ to [−1(int(Eω)) is a bilipschitz map between open
subsets ofRm and therefore a local homeomorphism.�

Corollary 2.6 (H. Fürstenberg) Every(K , ε)-quasi-isometric embeddingRm →
R

m is a (K , ε′)-quasi-isometry with a constantε′ = ε′(K , ε,m).

3 Asymptotic cones of universal covers of Haken manifolds

Let Hnpc be the class of all compact non-geometric Haken manifolds which
are equipped with a nonpositively curved Riemannian metric such that the boun-
dary is totally-geodesic and flat. These manifolds have geometric rank one and
they contain totally-geodesically immersed flat 2-tori. Throughout this section,
M (resp.M ′) shall denote a Riemannian manifold inHnpc andX (resp.X ′) its
universal cover. The decomposition ofX into geometric components (cf. section
2.2) induces a corresponding decomposition ofXω and we will prove that this de-
composition is preserved by bilipschitz homeomorphismsXω → X ′ω. A complete
description of bilipschitz embedded flats will be given in section 3.5; besides flats
there are non-trivial twisted examples of bilipschitz flats. Please keep in mind
convention 2.1: all flats and bilipschitz flats are assumed to be 2-dimensional!
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3.1 Geometric components

Let Yn ⊂ X, n ∈ N, be geometric components withω- lim λ−1
n · d(Yn, x0

n ) <∞.
We call their ultralimit Yω = ω- lim λ−1

n · Yn ⊂ Xω a geometric componentin
the asymptotic coneXω. Since there are only finitely many isometry types of
geometric components inX, Yω is isometric to the asymptotic cone of a geometric
componentY of X. We callYω Seifert, respectively hyperbolic, according to the
type of Y . We collect some properties of the geometric components proven in
[KL2].

A sequence of flatsFn ⊂ Yn with ω- lim λ−1
n · d(Fn, x0

n ) < ∞ determines a
flat Fω ⊂ Yω. In fact, every flat inYω arises in this way. IfYω is hyperbolic,
then the flatsFn can be chosen in∂Yn. Moreover, by Lemma 2.14 and Corollary
4.6 in [KL2], each bilipschitz embedded flat inYω is totally-geodesic:

Lemma 3.1 Any bilipschitz flat in Xω which is contained in a geometric compo-
nent is a flat.

Seifert components are isometric to the product ofR with a metric tree
which branches everywhere and is geodesically complete. A key property of
hyperbolic components is that any two distinct flats share at most one point, cf.
Proposition 4.3 in [KL2]. It follows that Seifert components cannot be embedded
into hyperbolic components:

Lemma 3.2 Let T be a metric tree with at least 3 ideal end points. Then T× R
cannot be bilipschitz embedded into a hyperbolic component Yω.

Later we will need the following lemma concerning the separation of Seifert
components by lines:

Lemma 3.3 Let T be a geodesically complete tree and C⊆ R a closed subset.
Assume that f: C → T ×R is a bilipschitz embedding whose image l separates.
Then C = R and projT (l ) is contained in a segment with no branch point in its
interior. In particular, if T branches everywhere then l is a fiber{t} × R.

Proof: Suppose thatprojT (l ) contains two pointsa, b which form a tripod together
with a third pointc. If F ⊂ T ×R is a flat which doesn’t containa andb, then
F ∩ l is a proper subset ofl and consequently doesn’t separateF (Alexander
duality). For any pointsx, y ∈ T × R there are flatsFx ,Fy containingc so that
x ∈ Fx and y ∈ Fy. Thereforex and y can be connected in (Fx ∪ Fy) − l , a
contradiction. Hence,projT (l ) is contained in a segment with no branch point in
its interior. If C /= R, thenf (C) cannot separate any flat inT ×R and we again
obtain a contradiction.�

3.2 Separation by flats

Suppose thatF is an isolated flat adjacent to a geometric componentY ⊂ X.
We refer to the pair (F ,Y) as acooriented flat. For each cooriented isolated
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flat (F ,Y), we introduce a partitionLF of F into disjoint subsets: ifY is a Seifert
component, thenLF consists of the parallel lines corresponding to Seifert fibers;
if Y is hyperbolic, thenLF just consists of the points inF . A cooriented flat
(F ,Y) defines a signed distance functionsdF on X: we setsdF (x) := ±dist(x,F )
with the positive sign ifx belongs to the same connected component ofX − F
asY and the negative sign otherwise.

There are corresponding notions in the asymptotic cone. Namely, let (Fn,Yn)
be a sequence of cooriented flats with signed distance functionssdFn . It gives
rise to a cooriented flat (Fω,Yω) := ω- lim(Fn,Yn) and a signed distance function
sdFω := ω- lim sdFn on Xω. We call the set{sdFω > 0} the positiveside of Fω.
Note that the positive side is not connected at all!Yω := (Yn) is the geometric
componentadjacent to Fω on the positive side. If the negative side ofFω is
non-empty (equivalently, ifFn is not parallel to a boundary flat ofX for ω-all
n), then there is a geometric componentZω of Xω adjacent toFω on the negative
side as well. In this situation we say that the negative side ofFω is theFω-side
of Yω. Similarly, the positive side ofFω is theFω-sideof Zω.

The flatFω inherits a partitionLFω into points or parallel lines. If the geo-
metric component on the positive side is Seifert, thenLFω consists of lines
parallel to theR-fiber, otherwise it consists of points. IfFω has adjacent Seifert
components on both sides, then the two families of lines which correspond to
both coorientations ofFω are transversal.

We say that a flat or a geometric componentFω of Xω essentially separates
two setsS1,S2 ⊂ Xω if the setsSi − Fω lie on distinct sides ofFω ( we allow
Si ⊂ Fω). A set S ⊂ Xω is said to beessentially splitby Fω if there are points
of S − Fω on both sides ofFω. There is a dual tree to the decomposition of
X into geometric components and this tree-like order persists in the asymptotic
cone: For any three geometric componentsY1ω,Y2ω,Y3ω of Xω either one of them
essentially separates the other two or there is a unique geometric componentYω
which essentially separates any two of the componentsYiω. Observe also that the
set of isolated flats which essentially separate two given isolated flatsFω andF ′ω
is totally ordered. We call isolated flatsF1ω, . . . ,Fnω in Xω consecutiveif Fiω

andFi +1,ω belong to one component andFiω essentially separates the flatsFi±1,ω

for all i (where it makes sense). Note that three consecutive isolated flats share
at most one point. The same is true for four consecutive geometric components.

Lemma 3.4 Assume that the subset A⊂ Xω is not essentially split by any isolated
flat. Then A is contained in a single geometric component of Xω.

Proof: Let us first consider the case thatA consists of two pointsxω andyω. There
are isolated flatsFxω ⊃ xω andFyω ⊃ yω. We are done ifFxω andFyω coincide.
Otherwise the setC of geometric components which essentially separateFxω

andFyω is non-empty and totally ordered. By assumption, any component inC
contains exactly one of the pointsxω and yω, because otherwise we are again
done. At most finitely many components inC can contain interior points of the
segment [xωyω], since 4 consecutive components share at most one point. Hence
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there exist adjacent componentsYω,Y ′ω ∈ C each of which contains exactly one
of the pointsxω, yω. Then the isolated flatYω ∩ Y ′ω essentially separatesxω and
yω, a contradiction. Thus our claim holds ifA consists of two points.

Consider now the general case. Leta, b be any two points ofA. As shown
above, they lie in some geometric componentY0. If A is not already contained
in Y0, there is an isolated flatF1 ⊂ Y0 which separatesY0 − F1 from a point
c ∈ A. SinceF1 does not splitA, all of A− F1 lies on the same side ofF1. In
particulara, b belong to the geometric componentY1 /= Y0 adjacent toF1. If A is
not contained inY1, we can continue this argument inductively and construct four
consecutive geometric componentsY0,Y1,Y2,Y3 which contain the pointsa, b.
However, the intersection of four consecutive geometric components contains at
most one point.�

3.3 Projections to flats

Basic to our understanding of the topology ofXω is the study of projections to
isolated flats. Inside geometric components, we have:

Lemma 3.5 Let Fω be an isolated flat in the geometric component Yω and let
σ ⊂ Yω be a geodesic segment disjoint from Fω. Then projFω (σ) is contained in
a set l∈ LFω .

Proof: The assertion for hyperbolic components is included in Lemma 4.4 of
[KL2]. The Seifert case follows from the following corresponding statement for
trees:

Sublemma 3.6 Let c be a geodesic in a metric tree and[uv] a geodesic segment
disjoint from c. Then the nearest-point-projection to c maps[uv] to a point.

Proof: Let p ∈ c be the point closest to [uv] andq ∈ [uv] be the point closest to
c. Recall that if [rs] and [st] are geodesic segments in a tree with [rs]∩[st] = {s}
then [rs]∪ [st] = [rt ]. This implies that any segment from a point onσ to a point
on c contains [pq] and the claim follows.�

We extend the previous lemma to projections of the entire asymptotic cone
Xω.

Proposition 3.7 Let Fω be a cooriented isolated flat in Xω and suppose that A is
a connected component of Xω−Fω on the positive side of Fω. Then projFω (A) ⊆ l
for some l∈ LFω and hencēA∩ Fω ⊆ l .

Proof: Let xω, zω ∈ Xω−Fω be points on the positive side ofFω so that [xωzω]∩
Fω = ∅. Let Yω be the geometric component ofXω adjacent toFω on the positive
side.

Case 1: If [ xωzω] ∩ Yω = ∅ then there exists a unique isolated flatF ′ω ⊂
Yω such thatF ′ω essentially separates [xωzω] from Yω. HenceprojFω [xωzω] ⊆
projFωF ′ω which is contained in a setl ∈ LFω by the previous lemma.
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Case 2: If [ xωzω] ∩ Yω = [x′ωz′ω] then the previous lemma implies that
projFω [x′ωz′ω] ⊆ l ∈ LFω and by the same reasoning as in the Case 1 one has
projFω [xωx′ω] ⊆ l andprojFω [zωz′ω] ⊆ l .

Hence each geodesic segment on the positive side ofFω and disjoint from
Fω projects into a setl ∈ LFω . We conclude that the sets{sdFω > 0}∩proj−1

Fω (l )
are open for alll ∈ LFω and our claim follows.�

3.4 Rigidity of bilipschitz homeomorphisms

We first look at the position of a bilipschitz embedded flatB = f (R2) in Xω

relative to a cooriented isolated flatFω. Suppose thatB−Fω consists of several
connected components and letB0 be a component on the positive side ofFω. By
Proposition 3.7,∂B0 is contained in somel ∈ LFω and therefore is homeomor-
phic to a closed subset of the real line. Since∂B0 separatesB, Alexander duality
yields thatl = ∂B0 is a line and the geometric component adjacent toFω on the
positive side is Seifert. Note that the pair (B0, ∂B0) is homeomorphic to the pair
(R+ × R, 0× R).

Lemma 3.8 Any flat Fω in Xω is contained in a single geometric component.
Moreover, Fω arises as the ultralimit of a sequence of flats in X .

Proof: If Fω is not contained in a geometric component then it is essentially split
by some isolated flatF ′ω (Lemma 3.4). The geometric components on the both
sides ofF ′ω must be Seifert. Moreover,Fω ∩ F ′ω contains two transversal lines
and thereforeFω = F ′ω. Since any flat in a geometric component arises as the
ultralimit of a sequence of flats, the claim follows.�

Next we give a topological characterization of isolated flats which are not
adjacent to Seifert components ofXω.

Lemma 3.9 Let B be a bilipschitz flat in Xω. The following two properties are
equivalent:

1. The intersection of B with any other bilipschitz flat B′ contains at most one
point.

2. B is an isolated flat which is not adjacent to any Seifert component.

Proof: If B is a bilipschitz flat which satisfies the first property thenB cannot
be essentially split by any isolated flat. By Lemmata 3.4 and 3.1,B is a flat
contained in a geometric component. The component must be hyperbolic, soB
is an isolated flat and moreover the geometric components on the both sides of
B must be hyperbolic. (Note that it may happen thatB has only one side!)

Vice versa, assume now thatF is an isolated flat satisfying the second prop-
erty and letB′ be a bilipschitz flat intersectingF . Then for any connected com-
ponentB0 of B′−F , B̄0∩F is a point inF . SinceB cannot be disconnected by
one point,B′ − F consists of one component andB ∩ F is a point.�
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Lemma 3.10 Let T be a geodesically complete tree which branches at every
point. Then for any bilipschitz embedding f: T×R→ Xω, the image is contained
in a Seifert component and the map f preserves the Seifert fibration.

Proof: Suppose that an isolated flatFω essentially splitsf (T × R). Let Ω± be
connected components off (T × R) − Fω which lie on different sides ofFω.
Then their boundaries are transversal straight linesl± in Fω. On the other hand,
the inverse imagesf −1(l±) separateT × R and hence they are parallel lines by
Lemma 3.3. This is impossible, becausef is bilipschitz.

Hencef (T ×R) is not essentially split by any isolated flat and therefore lies
in a Seifert component by Lemmata 3.4 and 3.2. The second assertion follows
from Lemma 3.1.�

We apply the above observations to show that homeomorphisms of asymptotic
cones are rigid in the sense that they preserve the decomposition into geometric
components.

Proposition 3.11 Let X,X ′ ∈ Hnpc and let φ : Xω → X ′ω be a bilipschitz
homeomorphism. Then:

(i) φ maps flats to flats.
(ii) Each isolated flat which is not adjacent to a Seifert component is mapped

via φ to an isolated flat of the same kind.
(iii) The image of each Seifert component of Xω is a Seifert component of X′ω.

Proof: Assertion (ii) follows from Lemma 3.9 and assertion (iii) from Lemma
3.10. According to Lemma 3.8, any flat inXω lies in a geometric component.
Thus for isolated flats between hyperbolic components Assertion (i) follows again
from Lemma 3.9 and for flats contained in Seifert components from Lemma 3.10.
�

3.5 Structure of bilipschitz-embedded flats

Let f : R2 ↪→ Xω be aC-bilipschitz embedding. We will now take a closer look
at the position of the bilipschitz flatB := f (R2) relative to an isolated flatF
which separatesB, i.e. B − F is disconnected. We observed in the beginning of
Section 3.4 that, for each componentB0 of B − F , projF (B0) is a straight line
contained inB ∩ F . It follows that

projF |F : F → B ∩ F

is a retraction andB ∩ F is contractible.
Assume thatB1 and B2 are two components ofB − F on thesameside of

F . Then li := B̄i ∩ F are parallel lines bounding a flat stripS ⊂ F . Any points
p1 ∈ l1 andp2 ∈ l2 can be connected insideB∩F by a rectifiable curve of length
at mostC2 · d(p1, p2). Indeed, connect the pointsx1 = f −1(p1), x2 = f −1(p2) by
the geodesic segment [x1x2] ⊂ R

2, its length is at mostCd(p1, p2). Then the
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projection of f ([x1x2]) to F has length at mostC2 · d(p1, p2) and lies inside of
B ∩ F .

SinceB ∩ F is contractible we conclude thatS ⊂ B ∩ F and

B = B1 ∪ S ∪ B2.

Consider now the case thatB1 andB2 are components ofB−F on distinct sides
of F . Then l i := B̄i ∩ F are transversal straight lines inF and, by the above,

B = B1 ∪ B2 ∪ (B ∩ F ).

The setD := f −1(F − (l1 ∪ l2)) = f −1proj−1(F − (l1 ∪ l2)) is open inR2, and
thereforef |D : D ↪→ F − (l1∪ l2) is a local homeomorphism. On the other hand,
f (R2) is closed becausef is proper, andf (D) must be a union of connected
components ofF − (l1 ∪ l2). The linesl1, l2 divide F into four “quadrants” and
we conclude thatB ∩ F is a union of two opposite closed quadrants.

Now we are ready to discuss the structure of a bilipschitz flatB which is not
contained in a single geometric component. We describe an inductive process of
geometric decomposition ofB. According to Lemma 3.4,B is essentially split
by a flatF0. Let B+ be the component ofB−F0 on the positive side ofF0. If B+

is contained in the Seifert componentS1 adjacent toF0 on the positive side then
it is a vertical half-plane, as follows for instance from Lemma 3.1. In this case,
we stop the decomposition on the right side ofF0. Otherwise, another isolated
flat F1 ⊂ S1 essentially splitsB. Between the pairs of quadrantsf −1(F0∩B) and
f −1(F1∩B) there is a stripA1 whose imagef (A1) is a flat strip inS1. (This strip
could degenerate to a single line.) We continue this process of decomposition on
the both sides ofF0 and obtain a sequence of consecutive Seifert components
. . . ,S−1,S0,S1, . . .. The union of these Seifert components is a convex subset of
the asymptotic cone. The transition ofQ between adjacent Seifert components
contributes a definite amount of stretch to the bilipschitz embeddingf , and this
leads to:

Lemma 3.12 The number of possible Seifert components Sj occurring in the de-
composition is finite and bounded uniformly in terms of the bilipschitz constant
of f and the geometry of M .

Proof: Observe that fibresli : R → Si and lj : R → Sj in different Seifert
components, which are parameterized by unit speed, have uniform divergence.
Namely there is a positive constantα, which depends on the angles between
fibers of adjacent Seifert components inM , so that

lim
t→∞

d(li (t), l j (t))
t

≥ α

We denote the bilipschitz constant off by C and restrict our attention to a finite
numberN of Seifert componentsSj . The points (1/t)·f −1◦lj (t) are contained in a
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disk of radiusC +o(t) in the Euclidean plane and they are (α/C +o(t))-separated.
HenceN is bounded in terms ofα,C and the assertion follows.�

We summarize the above discussion.
Description of bilipschitz 2-flats B in Xω: EitherB is contained in a geometric

component and is a genuine flat. If this is not the case, we callB twisted. B is then
contained in a finite collection of consecutive Seifert componentsS0, . . . ,Sk with
k ≥ 1. The consecutive isolated flatsFi := Si−1 ∩ Si are the isolated flats which
essentially splitB. We describe the intersections as we move through the chain
of Seifert pieces: (B ∩S0)−F1 and (B ∩Sk)−Fk are vertical half-planesH0 and
Hk . Let l +

i and l−i be the lines inFi which consists of points closest toFi +1 and
Fi−1. Furthermore, letl−1 andl +

k be the boundaries of the half-planesH0 andHk .
Then the intersectionB ∩ Fi is the union of two opposite quadrants bounded by
l±i . Finally, the intersectionB ∩ Si , 0 < i < k, consists of the vertical stripVi

bounded byl +
i , l

−
i +1 and four quadrants. The convex hullch(B) of the bilipschitz

flat B is given by:

ch(B) = H0 ∪ F1 ∪ V1 ∪ F2 ∪ . . . ∪ Fk ∪ Hk

Lemma 3.13 No bilipschitz flat in Xω is contained in a horoball.

Proof: It follows from the description of bilipschitz flats inXω that if a convex
set contains a bilipschitz flat then it also contains a flat. Therefore, if a horoball
contains a bilipschitz flat, the corresponding Busemann function is bounded from
above and hence is constant on a 2-flat. Lemma 2.2 implies thatXω must contain a
3-dimensional Euclidean half-spaceH . We know that any 2-flat inXω is contained
in a geometric component. Since parallel 2-flats must be contained in the same
geometric component,H itself lies in a geometric component, which is absurd.
�

4 Quasi-isometries of universal covers of Haken manifolds

In this section,X,X ′ will denote the universal covers of nonpositively curved
Riemannian 3-manifoldsM ,M ′ ∈ Hnpc.

4.1 Linear divergence of quasi-disks

We want to understand the position of quasi-flats relative to convex subsets in
X. The following local statement will be our basic tool. Aquasi-diskis defined
as (the image of) a (K , ε)-quasi-isometric embedding

qd : BR(0)⊂ R
2 → X

of a Euclidean 2-disk for positive constantsR,K andε.



408 M. Kapovich, B. Leeb

Divergence Lemma 4.1There are positive functionsρ = ρ(ε,K ), α = α(ε,K )
and r0 = r0(ε,K ) with the following property: If C⊂ X is a convex subset, R> 0
and qd : BR(0) → X is a (K , ε)-quasi-disk such that dC (qd(0)) ≥ ρ then for
every r∈ [r0,R] the quasi-disk qd(Br (0)) is not contained in theαr + dC (qd(0))-
neighborhood of C . (Thus, qd(BR(0)) is linearly divergent from C .)

Proof: It is enough to prove the following assertion: There exist positive numbers
D ,R such that for any quasi-diskqd : BR(0) → X, whose centerqd(0) lies at
distance at leastD away from a convex setC ⊂ X, there is a pointq ∈ qd(BR(0))
with dC (q) ≥ 1 + dC (qd(0)).

Assume that the assertion is not true. Then we have a sequence of convex
setsCn, sequences of positive numbers (Rn) and (Dn) tending to infinity and a
sequence of quasi-disksqdn : BRn → X satisfying:

dCn (qdn(0))≥ Dn and dCn |qdn(BRn (0)) ≤ 1 + dCn (qdn(0))

We pickλ−2
n := min(Rn,Dn) and form the ultralimitXω of the sequence of based

metric spaces (λn · X, qdn(0)). The sequence of quasi-disks yields a bilipschitz
flat B in Xω. According to Lemma 2.3, the ultralimit of the functionsλn · (dCn −
dCn (qdn(0))) is the Busemann functionBξ associated to an ideal boundary point
ξ of Xω. By construction,Bξ is nonpositive onB. This contradicts Lemma 3.13.
�

As a consequence we see: If the boundary of a quasi-disk lies close (relative
to its radius) to a convex setC , then most of the interior of the quasi-disk lies
uniformly close toC . More precisely:

Corollary 4.2 There is a positive constantδ = δ(K , ε) such that every(K , ε)-
quasi-disk qd: BR(0)→ X satisfies:

qd(BR(0))⊂ {dC ≤ δ · R} =⇒ qd(BR
2
(0))⊂ {dC ≤ ρ}

Proof: Chooseδ := min( ρ
2r0
, α2 ). If R < 2r0, thenqd(BR(0)) is contained in the

ρ-neighborhood ofC . Assume thatR≥ 2r0 and there is a pointp ∈ BR
2
(0) with

dC (qd(p)) > ρ. Since R
2 ≥ r0, the previous lemma implies that the quasi-disk

qd(BR
2
(p)) ⊂ qd(BR(0)) is not contained in theαR

2 ≥ δR-neighborhood ofC , a
contradiction.�

4.2 Rigidity of quasi-isometries

Let qf : R2 → X be a (K , ε)-quasi-isometric embedding.

Definition 4.3 We call a quasi-flat Q:= f (R2) ⊂ X asymptotically flat, if for
some sequence of scale factorsλn → 0 and some base point q0 ∈ Q, Qω =
ω- lim(λn ·Q, q0) is a flat in the asymptotic cone Xω.
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Proposition 4.4 Let ρ(K , ε) be as in Lemma 4.1. If the(K , ε)-quasi-flat Q is
asymptotically flat, then it is contained in theρ(K , ε)-neighborhood of a flat F .

Proof: By Lemma 3.8, each flatFω in Xω is represented by a sequence (Fn) of
flats in X. If Qω = Fω, we haveqf (Bλ−1

n
(0))⊂ Nδ·λ−1

n
(Fn) for ω-all n. Corollary

4.2 implies thatqf (Bλ−1
n /2(0)) ⊂ Nρ(Fn) for ω-all n. Consequently the flatsFn

subconverge to a flatF which containsQ in its ρ-neighborhood .�

Corollary 4.5 The following properties are equivalent for(K , ε)-quasi-flats Q in
X :

1. Q is asymptotically flat.
2. Q is contained in theρ(K , ε)-neighborhood of a flat.
3. Q is contained in a tubular neighborhood of a geometric component.

Proof: We already proved the implication 1 =⇒ 2. 2 =⇒ 3 holds, because flats
are contained in geometric components. Assume thatQ satisfies property 3. Then
the asymptotic coneQω is a bilipschitz flat which is contained in a geometric
component ofXω. Lemma 3.1 implies thatQω is a flat.�

Note that if the quasi-flatQ is contained in theρ-neighborhood of the flat
F , thenQ andF have finite Hausdorff-distance bounded in terms of the quasi-
isometry constants, cf. Corollary 2.6.

We now can control the effect of quasi-isometriesφ : X → X ′ on flatsF ⊂ X.
Although quasi-flats inX ′ are in general not Hausdorff-close to a flat, we have:

Theorem 4.6 Suppose thatφ : X → X ′ is a quasi-isometry. Then the image
underφ of any flat F in X lies within uniformly bounded Hausdorff distance from
a flat F′ in X ′.

Proof: We proved in Lemma 3.11 that the induced bilipschitz homeomorphism
φω : Xω → X ′ω maps flats to flats. Henceφ(F ) is an asymptotically-flat quasi-flat
in X ′. Thus Corollary 4.5 implies thatφ(F ) is Hausdorff-close to a flat.�

Let φ#(F ) denote a flatF ′ ⊂ X ′ which is Hausdorff-close toφ(F ). Note that
F ′ is essentially unique, any other flat with the same property is parallel toF ′.

Lemma 4.7 Let F1,F2,F3 be pairwise nonparallel isolated flats in X which do
not separate each other. Then the flats F′

1 = φ#(F1),F ′2 = φ#(F2),F ′3 = φ#(F2)
also do not separate each other.

Proof: For any r > 0 we can connectF2 and F3 outside ther -neighborhood
Nr (F1) by a curveγ. If r is chosen sufficiently large, then the imageφ(γ) lies on
one side ofφ#(F1). Thereforeφ#(F2) andφ#(F3) lie on the same side ofφ#(F1).
�

Corollary 4.8 Let F be a boundary flat in X . Thenφ#(F ) is a boundary flat in
X ′ as well.

Lemma 4.7 implies our Main Theorem 1.1.
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4.3 Structure of quasi-flats

In this section we will completely describe the quasi-flats inX. Asymptotically
flat quasi-flats were treated in Corollary 4.5. Let us start by constructingexam-
ples of quasi-flats which aretwisted, i.e. not asymptotically flat: Take a chain
S0, . . . ,Sk of successive Seifert components inX. They are separated by a chain
of consecutive isolated flatsF1, . . . ,Fk whereFi = Si−1∩Si . For 0< i < k, there
is a vertical flat stripVi ⊂ Si which connects and is orthogonal to the successive
flats Fi ,Fi +1: Vi is a union of Seifert fibers inSi and can be described as the
union of all shortest geodesic segments whose endpoints lie inFi , respectively
Fi +1. Finally we take two vertical flat half-planesH0 ⊂ S0, Hk ⊂ Sk which are
orthogonal to and whose boundary line is contained inF1, respectivelyFk . Note
that

A := H0 ∪ F1 ∪ V1 ∪ F2 ∪ . . . ∪ Fk ∪ Hk

has finite Hausdorff distance< d from its convex hull, andA, equipped with
the path metric, is (1, L)-quasi-isometrically embedded inX, where the positive
constantsd, L depend on the geometry ofM . Each flatFi contains a pair of
distinguished transversal lines arising as intersection with adjacent strips or half-
planes. They divideFi into 4 quadrants. Remove from each flatFi one pair
of opposite open quadrants. What remains fromA is a quasi-flat whose quasi-
isometry constants are uniformly bounded in terms ofk and the geometry of
M .

Let Q = qf (R2) be a twisted (K , ε)-quasi-flat. Based on our analysis of
the structure of bilipschitz flats inXω, cf. Section 3.5, we will show thatQ is
uniformly close to one of the model quasi-flats just constructed.

Definition 4.9 We say that a flat Fessentially splitsthe (K , ε)-quasi-flat Q if Q
contains points at distance≥ ρ = ρ(K , ε) on the both sides of F . Otherwise we
say that Q liesessentially on one sideof F . A set Aessentially containsQ if Q
is contained in theρ-neighborhood of A.

SinceQ is twisted, Corollary 4.5 implies that there are isolated flats which
essentially splitQ. We denote byQω ⊂ Xω the bilipschitz flat represented by
the constant sequence (Q). (Here we consider ultralimits with a constant se-
quence of base points.) Due to the Divergence Lemma 4.1, a flatF essentially
splits Q in X, if and only if the flatFω := (F ) essentially splitsQω = (Q) in
Xω. According to our discussion in Section 3.5, there are finitely many consec-
utive isolated flats which essentially splitQω. Consequently, the collection of
all isolated flats essentially splittingQ is finite and forms a chainF1, . . . ,Fk of
consecutive isolated flats inX. There is a chain of consecutive Seifert compo-
nentsS0, . . . ,Sk such thatFi = Si−1 ∩ Si . Their unionZ is a convex set which
essentially containsQ and thereforeQω ⊂ Zω = (Z). Qω is the union of pairs
of opposite quadrants in the flatsFiω and half-planesH0ω ⊂ S0ω, Hkω ⊂ Skω.
(Any two successive isolated flatsFiω have a line in common and the vertical
strips inbetween therefore degenerate.) We represent the half-planesH0ω,Hkω by
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sequences of half-planesH0n ⊂ S0, respectivelyHkn ⊂ Sk , which are orthogo-
nal to and whose boundary line is contained inF1, respectivelyFk . We denote
by Cn ⊂ X the convex hull ofH0n ∪

⋃k
i =1 Fi ∪ Hkn. SinceQω is contained in

Cω = (Cn), we conclude using Corollary 4.2 that for allq ∈ Q andR > 0 there
is aω-large set of valuesn such that:

Q ∩ BR(q) ⊂ Nρ(Cn)

Observe thatQ contains points inS0,Sk which are arbitrarily far away from
the boundary flatsF1,Fk . It follows that the sequences (H0n), (Hkn) subconverge
to half-planesH0,Hk . We denote byVi ⊂ Si , 0 < i < k, the vertical strips
orthogonal toFi ,Fi +1. The set

A := H0 ∪ F1 ∪ V1 ∪ F2 ∪ . . . ∪ Fk ∪ Hk

is uniformly Hausdorff-close to its convex hull, and we conclude from the previ-
ous discussion thatQ is contained in a uniformly bounded tubular neighborhood
of A. After replacingQ by a quasiflat at uniformly bounded Hausdorff distance,
we may assume thatQ is contained inA. MoreoverQ is a (K ′, ε′)-quasiflat inA
equipped with the path metric, withK ′, ε′ depending onK , ε andM , because the
path metric onA and the metric induced fromX are (1, L)-quasi-isometric with
a constantL = L(M ). The intersection lines with adjacent strips or half-planes
divide each flatFi into four quadrants. By Lemma 2.5, each of these quadrants
is either contained in ther -neighborhood ofQ or the intersection of the quadrant
with Q is r -close to its boundary, with a constantr = r (K ′, ε′,M ). It follows
from the description of bilipschitz flats inXω that for eachFi exactly two quad-
rants are contained in ther -neighborhood ofQ. Similarly, the half-planesH0

andHk are contained in ther -neighborhood ofQ. This concludes the proof of:

Theorem 4.10 (Classification of quasi-flats)There is a constant d= d(K , ε,M )
so that each(K , ε)-quasi-flat lies at Hausdorff distance at most d from a flat or a
twisted model quasi-flats as described in the beginning of this section.

Corollary 4.11 (1) Any(K , ε)-quasi-flat Q in X lies within uniform distance from
a finite union of flats. (2) The number of necessary flats is uniformly bounded
in terms of K . (3) The limit set of Q in the ideal boundary∂geoX is a simple
loop which is continuous with respect to the Tits metric. (4) There is a constant
K0 = K0(M ) > 1 such that if K≤ K0 then Q is asymptotically flat.

Proof: The first and third claim follow directly from our previous discussion.
The asymptotic coneQω is isometric to a complete Euclidean cone over a

circle of lengthl ≥ 2(π + kα) wherek is the number of isolated flats essentially
separatingQ andα > 0 is the minimal possible angle of intersection between the
fibers of adjacent Seifert components. There is aK -bilipschitz homeomorphism
[ : R2 → Qω and we assume without loss of generality that[ maps the origin
to the tip of the coneQω. Let γ be the image of the unit circle.γ has length
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at most 2πK and circumvents the disk of radiusK−1 centered at the tip ofQω.
Therefore 2πK ≥ 2(π+kα)

K and

k ≤ (K 2 − 1)π
α

.

This implies the second and fourth claim.�

5 Groups quasi-isometric to fundamental groups of Haken manifolds

5.1 Quasi-actions of groups on metric spaces

Suppose thatΓ is a group andρ is a map fromΓ to the set of all (K , ε)-quasi-
isometries of a metric spaceX.

Definition 5.1 We callρ a quasi-actionor under-representationof Γ on X if for
some constant L and allγ1, γ2 ∈ Γ the quasi-isometriesρ(γ1γ2) andρ(γ1)◦ρ(γ2)
are L-close. The quasi-action is calledquasi-transitiveif for some constant M all
orbits ρ(Γ ) · x are M -close to X . Thekernel(or under-represented subgroup) of
the actionρ is the subgroup ofΓ which consists of elements whose action on X
is Hausdorff-close to the identity. A quasi-action is calledproperly discontinuous
if for each bounded subset C⊂ X there are only finitely many elementsγj ∈ Γ
so thatρ(γj )(C) ∩ C /= ∅.

To simplify notations, we will denoteρ(γ) · x by γx.
A typical example of properly discontinuous quasi-transitive quasi-actions

appears as follows: Assume that the finitely generated groupΓ is quasi-isometric
to a metric spaceX, i.e. there is a quasi-isometryq from a Cayley graph ofΓ
to X. Then q transfers the isometric action ofΓ on the Cayley graph to a
quasi-action onX. If Γ , equipped with a word metric, can be injectively and
quasi-isometrically embedded intoX, then there is an honest action ofΓ on X
by quasi-isometries with uniform constants. This is the case ifX is a geodesic
metric space (andΓ infinite).

We need the next lemma for decomposing quasi-actions on trees of spaces.
Let A be a collection of subsetsA⊂ X such that:

– Every bounded subsetB ⊂ X intersects only finitely many sets inA.
– Any two distinct sets inA have infinite Hausdorff distance.
– There is a constantH such that for allγ ∈ Γ and A ∈ A the setγA is

H -Hausdorff close to another set inA.

In this situation, we can speak of thestabilizer in Γ of a setA ∈ A: it consists
of all elementsγ ∈ Γ such thatγA andA have finite Hausdorff distance. Clearly
the stabilizer is a subgroup ofΓ .

Lemma 5.2 If the quasi-actionρ is quasi-transitive then the stabilizer of any set
A ∈ A acts quasi-transitively on A, i.e. orbits of points in A are uniformly close
to A.
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Proof: Let B ⊂ X be a ball so thatX = Γ · B. By assumption, only finitely
many setsγ1A, . . . , γl A ∈ A intersectB. Let C = max{d(γj ◦ γ−1

i (B),B) :
1 ≤ i , j ≤ l }. For x, y ∈ A there areγx , γy ∈ Γ so thatγx(x), γy(y) ∈ B. γxA
and γyA are Hausdorff close to some subsetsγi A and γj A respectively. Then
γxy := γ−1

y γj γ
−1
i γx is in the stabilizer ofA and carriesx uniformly close toy:

d(γxy(x), y) ≤ C + diam(B) �

5.2 Quasi-actions on geometric components

We first consider the case of hyperbolic components. LetY be the universal cover
of a hyperbolic component ofM and suppose that we have a quasi-transitive
action of a groupG on Y by (K , ε)-quasi-isometries. Richard Schwartz [Sch]
proves:

– The groupG fits into a short exact sequence

1−→ Fin(G) −→ G −→ Ḡ −→ 1 (2)

with Fin(G) finite andḠ a nonuniform lattice inIsom(H3). HenceFin(G) is
the unique maximal finite normal subgroup ofG and Ḡ is the fundamental
group of a compact hyperbolic 3-orbifold with flat boundary.

– If F is a boundary flat ofY then the quasi-action of the stabilizer ofF
in G is within bounded distance from an isometric action of a Euclidean
lattice on F ∼= R

2. The stabilizers of boundary flats inG correspond to
peripheral subgroups of the orbifold fundamental group.Fin(G) is also the
unique maximal finite normal subgroup of the stabilizer ofF .

Remark 5.3 It is unknown whether a group G satisfying (2) admits a torsion-free
subgroup of finite index.

Now we turn to the case of Seifert components. LetS = Σ × R be the
universal cover of a Seifert component ofM with hyperbolic base orbifold and
consider a properly discontinuous quasi-transitive quasi-action action of a group
G on S by (K , ε)-quasi-isometries.Σ is a convex domain of the hyperbolic plane
whose boundary is a non-empty union of disjoint geodesics. For our purposes, we
are interested in the case when the collection of boundary flats ofS is invariant
under this action, i.e. boundary flats are carried to within uniformly bounded
distance of boundary flats. Using reflections in faces ofS we extend this quasi-
action to a properly discontinuous quasi-transitive quasi-action of a bigger group
H on H2 × R by (K ′, ε′)-quasi-isometries; the new constantsK ′, ε′ depend on
K , ε and the geometry ofΣ. The convex domainS ⊂ H

2×R is quasi-preserved
by G.

Proposition 5.4 Any (K , ε)-quasi-isometryφ of a Seifert component S= Σ × R
quasi-preserves the Seifert fibration, i.e. there is a number r= r (K , ε) such that for
any s∈ Σ the imageφ({s}×R) is r-Hausdorff close to another fiber{φ̄(s)}×R.
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Proof: Any fiber {s} × R is the intersection of two orthogonal flatsF ,F ′ in S
and according to Corollary 4.5 the images ofF ,F ′ are Hausdorff-close to flats
φ#(F ), φ#(F ′) in Y . For anyR > 0, the intersection of tubular neighborhoods
NR(φ#(F )) ∩NR(φ#(F ′)) is a unionC ′ ×R of Seifert fibers. The diameter ofC ′

is bounded above in terms ofK , ε andR, becauseF andF ′ are orthogonal. The
assertion follows.�

This Proposition was first proven by E. Rieffel in [R] who used quite different
arguments.

As a consequence the quasi-action ofH on H2 × R descends to a quasi-
transitive quasi-action on the hyperbolic plane by quasi-isometries with bounded
constants. LetK be the kernel of this quasi-action and̄H = H /K . The induced
action of H̄ on the ideal circle∂geoH

2 by homeomorphisms is effective and
a convergence group action in the sense of Gehring and Martin. Moreover, it
satisfies the “simple axis condition” of Tukia and is topologically conjugate to
an action of a Moebius group by Theorem 6B in [Tu]. This Moebius group
acts cocompactly onH2 and also properly discontinuously, because it preserves
a locally finite pattern of geodesics. This implies that the groupḠ = G/K is
the fundamental group of a compact 2-dimensional hyperbolic orbifoldO with
boundary. We therefore have an exact sequence

1−→ K −→ G −→ π1(O) −→ 1

Peripheral subgroups ofπ1(O) correspond to stabilizers of boundary geodesics
of Σ.

Now we want to determine the structure of the kernelK of the quasi-action
on hyperbolic plane.K stabilizes each fiber (up to uniformly bounded distance)
and acts quasi-transitively and properly discontinuously on each fiber.

Lemma 5.5 K has a unique maximal finite normal subgroup Fin(G) and the
quotient group K/Fin(G) is isomorphic toZ or the infinite dihedral group D∞.

Proof: There is an elementk ∈ K which is far from the identity and preserves
the orientation of the fibres on the large scale.k is quasi-isometrically conjugate
to a translation and generates an infinite cyclic subgroup ofK . The subgroup
〈k〉 ∼= Z has finite index inK becauseK acts properly discontinuously on fibers.
This implies assertion of the lemma.�

Since π1(O) does not have nontrivial finite normal subgroups,Fin(G) is
algebraically characterized as the unique maximal finite normal subgroup ofG.
The quotient group̄G := G/Fin(G) fits into an exact sequence

1−→ Z or D∞ −→ Ḡ −→ π1(O) −→ 1

and is isomorphic to the fundamental group of a Seifert orbifold. The peripheral
subgroups of the Seifert orbifold correspond to the stabilizers of boundary flats
of S. Fin(G) is also the unique maximal finite normal subgroup of the stabilizers
of boundary flats inG.
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5.3 The general case

Suppose thatΓ is a finitely generated group which is quasi-isometric to the uni-
versal coverX of a Haken manifoldM with nontrivial canonical decomposition.
We can assume without loss of generality thatM is nonpositively curved. Let
T be the simplicial tree dual to the geometric decomposition ofX. We have a
quasi-transitive properly discontinuous quasi-action ofΓ on X. By Theorem 1.1
this action induces an action ofΓ by automorphisms on the treeT. The quotient
T/Γ is a finite graph andΓ therefore decomposes as a finite graph of groups. The
vertex and edge stabilizers were described in section 5.2. The unique maximal
finite normal subgroups of all vertex and edge stabilizers coincide and therefore
coincide with the kernelFin(Γ ) of the action ofΓ on T. The vertex stabiliz-
ers for the action ofΓ̄ := Γ/Fin(Γ ) are fundamental groups of 3-dimensional
hyperbolic and Seifert orbifolds with flat boundary. We recall that the edge stabi-
lizers are peripheral subgroups of these orbifolds. We glue these orbifolds along
boundary components according to the graphT/Γ . The fundamental group of
the resulting orbifoldO is isomorphic toΓ̄ . The orbifoldO is finitely covered
by a Haken manifold, cf. [MM]. This proves Theorem 1.2.
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