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Abstract. We prove quasi-isometry invariance of the canonical decomposition
for fundamental groups of Haken 3-manifolds with zero Euler characteristic.
We show that groups quasi-isometric to Haken manifold groups with nontrivial
canonical decomposition are finite extensions of Haken orbifold groups. As a
by-product we describe all 2-dimensional quasi-flats in the universal covers of
non-geometric Haken manifolds.
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1 Introduction

Let I be a finitely generated group. A geodesic metric spdac®n which I”
acts properly discontinuously and cocompactly by isometries, can be regarded
as a geometric model faF. Important examples are Cayley graphs associated
to finite generating sets and universal covers of compact Riemannian manifolds
with fundamental groug”. All such model spaceX are quasi-isometric to one
another and their quasi-isometry invariants are cajiedmetric invariantof I,
cf. [Grl]. It is a basic question in this context to classify all finitely generated
groups up to quasi-isometry. Note that commensurable groups have the same
geometric invariants, whereas the converse is in general not true.

This paper deals with the geometry of 3-manifold groups. Our main result
concerns the canonical decomposition of Haken manifdde/ith boundary of
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zero Euler characteristic. Jaco, Shalen, Johannson and Thurston provédl that
can be cut along flat surfaces into finitely many geometric components which
are either Seifert or hyperbolic. This canonical decompositioMofs unique

up to isotopy and it corresponds to an algebraic decompositiorny (@) as a
graph of groups which is invariant under group automorphisms. We prove that the
canonical decomposition is more generally invariant under all quasi-isometries
and therefore it is a geometric invariant of the fundamental group. To make this
precise, put a Riemannian metric & and take the universal covét = M

as a geometric model far;(M). The canonical decomposition M lifts to a
decomposition ofX where a geometric component Xf is the universal cover

of a geometric component &fl. Let X’ = M’ be the universal cover of another
Haken manifoldM’ of the same kind, decomposed in the same way.

Main Theorem 1.1 Let¢ : X — X’ be a quasi-isometry. Thep preserves the
geometric decompositions of X and iX the following sense: For any geometric
component Y of X there exists a geometric componéwf X’ within uniformly
bounded Hausdorff-distance fropgY). The components Y and ¥ave the same

type (Seifert or hyperbolic). Moreoverpreserves the ordering of geometric com-
ponents and therefore induces an isomorphism of the trees dual to the geometric
decompositions of X and’X

We did a first step in this direction in our earlier paper [KL2] where we proved
that the quasi-isometry class of(M) detects whetheM has a Seifert compo-
nent. Theorem 1.1 implies that also the existence of a hyperbolic component is
“visible” in the geometry ofri1(M). This had first been proven by N. Brady and
Gersten using different techniques; they showed that the divergencg(Mdf)
is exponential if and only ifM has a hyperbolic component, see [Ge]. Note
that there are non-geometric Haken manifolds whose fundamental groups are
quasi-isometric but not commensurable, see [KL1, KL3].

Our main application is a geometric characterization of Haken manifold
groups:

Theorem 1.2 Suppose thatf’ is a finitely generated group whose Cayley graphs
are quasi-isometric to the universal cover X of a nhon-geometric Haken manifold
M with zero Euler characteristic. Then there is a short exact sequence

1 — finite group— I' — m(0) — 1

where O is a compact 3-dimensional orbifold which is finitely covered by a Haken
manifold of the same kind as M. In particular, if is torsion-free thenl" is
isomorphic to the fundamental group of a Haken manifold N .

Results analogous to Theorem 1.2 were previously known in several cases
whenM is geometric: The result fa¥il-manifolds is due to Gromov, see [Gr2],
and the euclidean case is due to Bridson and Gersten. Rieffel [R] proved Theorem
1.2 whenM is a Seifert manifold with hyperbolic base orbifold. The case when
M is a Sol-manifold remains open. Note that there are obvious examples of
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self quasi-isometries o%ol which are not within bounded distance from any
isometry. Regarding the hyperbolic case, Schwartz [Sch] proved for finite volume
noncompact hyperbolic manifoldd of dimension> 3 that the quasi-isometry
group of my(H) is naturally isomorphic to the commensurator maf(H); this
shows in particular that any finitely generated group quasi-isometrig(td) is

a finite extension of a group commensurable witliH ).

As a by-product of the proof of Theorem 1.1 we also give a classification of
2-dimensional quasi-flats X, cf. Theorem 4.10. We prove that each 2-quasi-flat
in X is contained in a tubular neighborhood of a finite unionsolated flatsin
X. Besides quasi-flats which are Hausdorff close to a flat there areveisied
quasi-flats which spread through a finite chain of consecutive Seifert components.
We describe canonical models for these quasi-flats in Sect. 4.3.

Our approach is based on the strong link between Haken 3-manifolds and the
geometry of nonpositive curvature. Based on Thurston’s Hyperbolization Theo-
rem, it is shown in [L] that Haken manifoldd of zero Euler characteristic gener-
ically admit metrics of nonpositive curvature with totally geodesic flat boundary.
Moreover, we prove in [KL3] that their fundamental groups are geometrizable in
the following weak sense: M is neither aSol- nor Nil -manifold, then there ex-
ists a Haken manifold of nonpositive curvative such that the universal covers
X =M andX’ = M’ are bilipschitz homeomorphic by a homeomorphism which
preserves the geometric decomposition. In particular, the geometric components
of the universal coveX are quasi-isometrically embedded aXids bicombable.
Therefore in the present paper we shall only consider nonpositively curved Haken
manifoldsM .

We already mentioned that single 2-quasi-flats are generally not Hausdorff-
close to flats. Our idea is to show that sufficiently complicated patterns of 2-flats
are quasi-isometrically rigid. As in [KL2], we use the concepasymptotic cone
of a metric space. A quasi-isometly — X’ becomes “more continuous” when
one rescales the metrics with a small factor, and in the ultralimit it induces a
bilipschitz homeomorphisnx,, — X/ of asymptotic cones. By analysing the
geometry and topology of the asymptotic cones we prove that their induced
geometric decompositions are preserved by bilipschitz homeomorphisms. This is
done by classifying bilipschitz embedded 2-flats and topologically characterizing
the flats separating geometric components. The Divergence Lemma 4.1 is the
key tool for translating the topological rigidity of the asymptotic cones into a
statement about quasi-isometric rigidity for the geometric decompositioXs of
andX’. This lemma implies that a 2-dimensional quasi-@atn X which is not
uniformly close to a convex s&@ diverges fromC at a linear rate and hence
the distinction betwee® andC becomes visible in the asymptotic coKg.

Regarding Theorem 1.2, a finitely generated group, which is quasi-isometric
to X, admits an action by uniform quasi-isometries ¥XnThe Main Theorem
implies that the canonical decompositionXfis quasi-preserved and there is an
induced action on the dual tree for the canonical decomposition. By a general
argument, the vertex and edge stabilizers act quasi-transitively on the correspon-
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ding components and flats. Using work of Schwartz and Tukia we conclude that
the vertex stabilizers are finite extensions of fundamental groups of 3-dimensional
hyperbolic and Seifert orbifolds and the edge stabilizers are their peripheral sub-
groups.

2 Preliminaries
2.1 Notations and conventions

We will use different notions of distance between subge® of metric spaces:
the Hausdorff distance and the distance of closest points denotditii, B).
The distance of a point from a setA will be sometimes denoted a(x). If A
is a subset of a topological spakethenA will denote the closure oA in X. We
use the notationdy] for the geodesic segment connecting poixtg in a metric
spaceX. If Z is a subset in a metric spageandR > 0 thenNgr(Z) denotes the
R-neighborhood o in X, we will refer toNg(Z) as atubular neighborhoodof
Z. We assume that all segments, rays and geodesics are parameterized by unit
speed.

A mapf : (Xg,d1) — (Xz,dp) of metric spaces is aK(, €)-quasi-isometric
embeddingwith K, e > O if

K™ tdi(x,y) — € < dao(f (x). T (¥)) < Kdi(x,y) +e

for eachx,y € X;. (One should think ok as a large positive number.) Note
that quasi-isometric embeddings are not necessarily injective or continuous. A
mapf; : (X1, d1) — (Xo,dz) is aquasi-isometnjf there are two constanis;, C,

and another mafy : (X, d2) — (X1, d;) such that botH,, f, are quasi-isometric
embeddings and

di(f2f1(x), x) < Cy, da(f1f2(y),y) < Co

for everyx € X3,y € X;. Such spaceX;, X, are calledquasi-isometric

Hadamard (0CAT(0)) spaces are complete geodesic metric spaces with non-
positive curvature in the distance comparison sense, cf. [Ba, KIL]. They are not
assumed to be locally compact. In Hadamard spaces one can definadgiee
between geodesic segmenad]| [ac], see [KL2]. We shall denote b§,eX the
geometricor ideal boundaryof the Hadamard spack. For a closed convex
subsetC in a Hadamard spack, projc will denote the closest-point projection
to C. These projections are distance-nonincreasindlaf bilipschitz flat re-
spectivelyquasi-flatin X is (the image of) an isometric, bilipschitz, respectively
guasi-isometric embedding of the euclidean 2-plane ¥ito

Convention 2.1 All flats, bilipschitz flats and quasi-flats considered in the present
paper are2-dimensional
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2.2 3-manifolds and their canonical decomposition

We refer to [S] for information about the geometrization of 3-manifolds and a
description of the eight 3-dimensional homogeneous geometries. Here we only
recall a few facts which are important for this paper.

A compact smooth 3-manifol@ is calledgeometricif its interior admits a
geometric structure, i.e. a complete locally homogeneous Riemannian metric. If
P is aspherical and has nonempty boundary, then the occurring homogeneous
spaces will bed® andH? x . In the latter case, the manifol is Seifertand
itself admits a metric modelled dfi® x R with totally geodesic boundary, unless
it has almost abelian fundamental group. ManifoRisocally modelled oriH®-
geometry are callethyperbolic Note that according to our definition the solid
torusD? x St andS? x St x [0, 1] are geometric manifolds which are hyperbolic
and Seifert simultaneously.

In this paper we will only consider aspherical 3-manifolds of zero Euler
characteristic, equivalently the boundary of such manifolds is a (possibly empty)
collection of tori and Klein bottles. Instead of giving the definition of Haken ma-
nifolds, we remind that all non-geomettitaken manifold®f zero Euler charac-
teristic admit acanonical decompositioimto finitely many geometric manifolds
which are glued along boundary tori or Klein bottles, see [JS, J, Th, Ka, O]. This
decomposition is unique up to isotopy if these geometric submanifolds are cho-
sen to be maximal up to isotopy. Note that geometric components of a Haken
manifold of this kind never have almost abelian fundamental group, thus the
classes of hyperbolic and Seifert components become disjoint.

If the Haken manifoldM of zero Euler characteristic carries a Riemannian
metric g of nonpositive sectional curvature with totally-geodesic flat boundary,
then the canonical topological decompositionMfinto hyperbolic and Seifert
components can be realized geometrically by cutting along totally-geodesically
embedded flat tori and Klein bottles, cf. [L, LS]. The metricg can be chosen
(once differentiable) so that all Seifert components are in their interior locally
isometric toH? x . Call a flat in the universal covet of M anisolated flat if
it either covers one of the flat surfacésin the canonical decomposition &
or is a boundary flat oK. This terminology is motivated by the fact that a flat
is parallel to an isolated flat if and only if no other flat intersects it transversally.
The isolated flats decompos€ into convex subsets with totally-geodesic flat
boundary which we caljeometric componentsf X; they are universal covers
of the geometric components M. Each Seifert component of X splits iso-
metrically as the product of the real line and a 2-dimensional factor which is
isometric to a convex domain ifi? bounded by disjoint geodesics. The fibration
of Y by parallel geodesics covers a Seifert fibration of the corresponding Seifert
component oM by closed geodesics.
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2.3 Ultralimits and asymptotic cones

For a discussion of ultralimits of metric spaces we refer to [DW, Gr2, KL2, KIL],
here we recall some of their basic properties.

Fix a non-principal ultrafiltero on N. For any sequence of pointed metric
spacesXn, x?) the ultralimit (X, x°) is a metric space. Points in the ultralimit are
represented by sequencesg)(of points inX,. If the sequenceX,) is precompact
in the Gromov-Hausdorff topology, then the ultralimit is the Gromov-Hausdorff
limit of a w-large subsequence. Ultralimits of Hadamard spaces are Hadamard
spaces. The ultralimit of a sequence Kf, (¢,)-quasi-isometries, : (Xn, x9) —
(Yn,¥9) is a K, €)-quasi-isometryf,, : (X, x%) — (Y.,,y%) with K = w-lim K,
ande = w-lim en.

To form theasymptotic cone X of a metric spac&, one chooses sequences
of scale factors\, > 0 with w-lim \, = 0 and basepoints? € X and takes the
ultralimit (X,,,x%) = w-limp(\q - X, x0). Here, A, - X denotes the metric space
obtained by rescaling the metric ¥f with the factor),. When we speak of “the
asymptotic coneX,, of X", we mean one of these ultralimits, suppressing the
choices of)\y,x? in our notation. In general, the isometry type Xf depends
on these choices. However, in our applications various asymptotic cones will
share the same geometric properties. The asymptotic ¥gnef a Hadamard
spaceX is a Hadamard space and in general not locally compaét. dfimits a
cocompact group of isometries th&p is homogeneous.

The asymptotic cone is a useful tool for the study of quasi-isometries, because
a (K, e)-quasi-isometric embedding of metric spaces becomes continuous in the
rescaling process and inducesKabilipschitz embedding of their asymptotic
cones.

2.4 Busemann functions

Suppose tha¥ is a Hadamard space. Busemann functions measure the relative
distance from points at infinity. Pick a poiatin the geometric boundary of,

i.e. an equivalence class of parallel geodesic rays. Take a unit speed geodesic
ray p : [0,00) — X asymptotic tof. The Busemann functioB; corresponding

to p is the monotonic limit :

Be(-) := lim [d(, p(t)) — 1]

B¢ is a convex function which is well-defined up to an additive constant. For
every rayr asymptotic to we have:

Be or(t) = —t + const 1)

If r1,rp are two geodesic rays asymptoticgothenBe o ry(t) = B¢ o ra(t) holds
iff the ideal triangle with vertices(t), ra(t), £ has angles< «/2 for all t. These
two properties characterize Busemann functions.
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Level sets of Busemann functions are callemtospheresThe sublevel sets
are calledhoroballsand they are convex.
We prove two facts about Busemann functions for later reference.

Lemma 2.2 Suppose that C is a convex subset of Y such that the Busemann
function B is constant on C. Then the union U of geodesic rays emanating from
points of C and asymptotic tis convex and splits isometrically as the direct
product

C x Rs.

Proof: For a pointg € C let |5 denote the geodesic ray emanating frgnin

the direction¢. Let x,y be a pair of distinct points irC, the functionBg is
constant onXy]. It follows from the definition of the Busemann function that
the angles betwedp, |, and the geodesic segmery] are at leastr /2. However

Y is a Hadamard space, thus the ideal triangle with verticgs¢ has angles
w/2,7/2,0 and spans an isometrically embedded flat half-strip, namely the union

Ugepla-
The Lemma follows
Lemma 2.3 Let (X, x?) be a sequence of based Hadamard spaces with the ultra-

limit (X,,,x2). Let ¥, C X, be convex subsets with lim, d(x?, Yn) = co. Then
f 1= w-lim,(dy, — dy, (x9)) is a Busemann function on,X

Proof: For x, € Xn — Yq, denote bypy, : [0, dy, (X)] — X, the perpendicular
from x, to Y,. For any pointsx,, X, € X, the functiont — d(px,(t), px(t))
decreases monotonically. X, = (x,) is a point inX,, then the ultralimitpy :=
w-1lim py, : [0,00) — X, is a geodesic ray which does not depend on the choice
of the sequencex{) representing,,, and all rayspx, are asymptotic to the same
ideal pointé,, € 9g4e0X.. Applying the triangle inequality, we obtain

Ao, (0).%0) = A0, Profy, (%n)) — b, (9, (1)) > £+ (v, 067) — b, (o).
>dy, (x}) =y, (%) —t

Passing to the ultralimit yields

d(px, (1), %) > t+ (B(X.) — B(X.))
whereB := w-lim dy,. We rewrite the previous inequality:

d(x},, px, (1)) — t > B(X),) — B(X.,)
and send to infinity:

B, () — Be, (%) > B(X;) — B(x.).

Since we may exchange the roles xf and x/,, the equality holds and we
conclude that the functioB,, — B is constant orX,,. O

Remark 2.4 Similarly, one shows that the ultralimit of Busemann functions on
Xn is a Busemann function on,Xor constantt-oo).
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2.5 Quasi-isometric embeddings into piecewise Euclidean spaces

Suppose thaK is a geodesic metric space aBdC X is an open subset which
is isometric to a convex subset in the EuclidearspaceR™.

Lemma 2.5 There is a constant R R(K, ¢, m) such that the following is true:
Let gf : R™ — X be a(K, ¢)-quasi-isometric embedding with the image Q. Then
either Nrx(Q) D E or QN E C Ngr(OE).

Proof: If the conclusion of the lemma is not satisfied then the convex subset
E':=E - Nz (OE) satisfiesQ N E'#0 andE’ ¢ N&(Q). Thus there exists a
pointx € E with

d(x,Q) = F; and d(x,0E) > 2;.

If the assertion of the lemma were not true, then we can find sequences of
subsetsE, C X, (K, ¢)-quasi-isometrieglf, : R™ — X,, pointsx, € E, and
numbersR, tending to infinity, so thatd(x,, qf,(R™)) = d(X,, gf,(0)) = z" and
d(x,, 0E,) > %5". Now we rescalé&®™ with the center 0 an, with the center

X, using the scale factoR 1. The ultralimit of the K, R;'¢)-quasi-isometric
embeddinggf, : (Ry1-R™ 0) — (Ry1- Xy, %) is a K-bilipschitz embedding
b:RM — X,. The subseE,, := w-lim E, C X,, is isometric to a convex subset
of R™. Moreover its interior (with respect to an isometric embedding i&it9 is
open inX,,, because th&, were assumed to be geodesic. By construction, the
image ofy intersects the interior d&_,, but does not contain it. This is impossible,
because the restriction ofto b=1(int(E,)) is a bilipschitz map between open
subsets ofk™ and therefore a local homeomorphisi.

Corollary 2.6 (H. Firstenberg) EveryK, ¢)-quasi-isometric embedding™ —
R™is a (K, ¢’)-quasi-isometry with a constaat = ¢/(K, ¢, m).

3 Asymptotic cones of universal covers of Haken manifolds

Let .Znpc be the class of all compact non-geometric Haken manifolds which
are equipped with a nonpositively curved Riemannian metric such that the boun-
dary is totally-geodesic and flat. These manifolds have geometric rank one and
they contain totally-geodesically immersed flat 2-tori. Throughout this section,
M (resp.M’) shall denote a Riemannian manifold.i#t,,c and X (resp.X’) its
universal cover. The decomposition Xfinto geometric components (cf. section
2.2) induces a corresponding decompositioiXgfand we will prove that this de-
composition is preserved by bilipschitz homeomorphistps— X/,. A complete
description of bilipschitz embedded flats will be given in section 3.5; besides flats
there are non-trivial twisted examples of bilipschitz flats. Please keep in mind
convention 2.1: all flats and bilipschitz flats are assumed to be 2-dimensional!
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3.1 Geometric components

Let Y, C X, n € I, be geometric components with lim Ayt - d(Yy, x0) < oc.
We call their ultralimitY,, = w-lim A\;1-Y, C X, a geometric componerih
the asymptotic con&,,. Since there are only finitely many isometry types of
geometric components i, Y,, is isometric to the asymptotic cone of a geometric
componenty of X. We callY,, Seifert, respectively hyperbolic, according to the
type of Y. We collect some properties of the geometric components proven in
[KL2].

A sequence of flat&, C Y, with w-lim A1 - d(Fp, x?) < oo determines a
flat F, C Y,,. In fact, every flat inY,, arises in this way. IfY,, is hyperbolic,
then the flatd-, can be chosen ifY,. Moreover, by Lemma 2.14 and Corollary
4.6 in [KL2], each bilipschitz embedded flat ¥, is totally-geodesic:

Lemma 3.1 Any bilipschitz flat in X which is contained in a geometric compo-
nent is a flat.

Seifert components are isometric to the productRofwith a metric tree
which branches everywhere and is geodesically complete. A key property of
hyperbolic components is that any two distinct flats share at most one point, cf.
Proposition 4.3 in [KL2]. It follows that Seifert components cannot be embedded
into hyperbolic components:

Lemma 3.2 Let T be a metric tree with at least 3 ideal end points. Ther R
cannot be bilipschitz embedded into a hyperbolic compongnt Y

Later we will need the following lemma concerning the separation of Seifert
components by lines:

Lemma 3.3 Let T be a geodesically complete tree andZCR a closed subset.
Assume thatf C — T x IR is a bilipschitz embedding whose image | separates.
Then C= R and proj(l) is contained in a segment with no branch point in its
interior. In particular, if T branches everywhere then | is a fiqg} x R.

Proof: Suppose thatrojr (1) contains two points, b which form a tripod together
with a third pointc. If F C T x R is a flat which doesn’t contaia andb, then

F N1 is a proper subset df and consequently doesn’'t separ&tegAlexander
duality). For any pointx,y € T x IR there are flat$,, Fy containingc so that

x € Fx andy € Fy. Thereforex andy can be connected ifF{ UFy) — 1, a
contradiction. Henceprojr (1) is contained in a segment with no branch point in
its interior. If C # R, thenf (C) cannot separate any flat ihx R and we again
obtain a contradiction]

3.2 Separation by flats

Suppose thaF is an isolated flat adjacent to a geometric componént X.
We refer to the pairK,Y) as acooriented flat For each cooriented isolated



402 M. Kapovich, B. Leeb

flat (F,Y), we introduce a partitior’r of F into disjoint subsets: i¥ is a Seifert
component, ther’r consists of the parallel lines corresponding to Seifert fibers;
if Y is hyperbolic, then%¢ just consists of the points iF. A cooriented flat
(F,Y) defines a signed distance functisg: on X: we setsd- (x) := £dist(x, F)
with the positive sign ifx belongs to the same connected componerX of F
asY and the negative sign otherwise.

There are corresponding notions in the asymptotic cone. NamelJeYy)
be a sequence of cooriented flats with signed distance funcsidns It gives
rise to a cooriented flat,, Y,) := w-lim(Fy, Y,) and a signed distance function
stk = w-limsd-, on X,. We call the sef{sd-, > O} the positiveside ofF,,.

Note that the positive side is not connected at ¥|I!:= (Y,) is the geometric
componentadjacentto F,, on the positive side. If the negative side Bf, is
non-empty (equivalently, if, is not parallel to a boundary flat of for w-all
n), then there is a geometric componé&ntof X, adjacent td-, on the negative
side as well. In this situation we say that the negative side ofs the F-side
of Y,,. Similarly, the positive side oF, is theF-sideof Z,.

The flatF,, inherits a partition’4¢, into points or parallel lines. If the geo-
metric component on the positive side is Seifert, theh_ consists of lines
parallel to theR-fiber, otherwise it consists of points. i, has adjacent Seifert
components on both sides, then the two families of lines which correspond to
both coorientations o, are transversal.

We say that a flat or a geometric compongptof X, essentially separates
two setsS;, S C X, if the sets§ — F,, lie on distinct sides of,, ( we allow
S C F,). AsetS C X, is said to beessentially spliby F,, if there are points
of S — F,, on both sides of,. There is a dual tree to the decomposition of
X into geometric components and this tree-like order persists in the asymptotic
cone: For any three geometric components, Yz, Ys,, of X, either one of them
essentially separates the other two or there is a unique geometric compgnent
which essentially separates any two of the compongptsObserve also that the
set of isolated flats which essentially separate two given isolated=lagsdF/,
is totally ordered. We call isolated flaks,,, ..., Fn, in X, consecutivef F;,
andF;.1,., belong to one component afgl, essentially separates the fl&s 1 .,
for all i (where it makes sense). Note that three consecutive isolated flats share
at most one point. The same is true for four consecutive geometric components.

Lemma 3.4 Assume that the subsetAX,, is not essentially split by any isolated
flat. Then A is contained in a single geometric component,of X

Proof: Let us first consider the case thatonsists of two pointg,, andy,,. There

are isolated flat&,,, O x, andFy, D Y.,. We are done iFy,, andF,, coincide.
Otherwise the set” of geometric components which essentially sepaFate
andFy,, is non-empty and totally ordered. By assumption, any componett in
contains exactly one of the poinks, andy,,, because otherwise we are again
done. At most finitely many components # can contain interior points of the
segmentX.y.], since 4 consecutive components share at most one point. Hence
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there exist adjacent componeMs, Y/ € Z each of which contains exactly one
of the pointsx,, y,,. Then the isolated flaY,, N Y/ essentially separates, and
Y., a contradiction. Thus our claim holdsAf consists of two points.

Consider now the general case. lzeb be any two points ofA. As shown
above, they lie in some geometric compon&at If A is not already contained
in Yo, there is an isolated fldt; C Yy which separate¥, — F; from a point
¢ € A SinceF; does not splitA, all of A — F; lies on the same side &f;. In
particulara, b belong to the geometric component# Y, adjacent td=;. If Ais
not contained ir¥y, we can continue this argument inductively and construct four
consecutive geometric compones Y1, Yz, Yz which contain the points, b.
However, the intersection of four consecutive geometric components contains at
most one pointd

3.3 Projections to flats

Basic to our understanding of the topology X is the study of projections to
isolated flats. Inside geometric components, we have:

Lemma 3.5 Let F, be an isolated flat in the geometric componeptand let
o C Y, be a geodesic segment disjoint frorg.Ahen prog (o) is contained in
asetle %, .

Proof: The assertion for hyperbolic components is included in Lemma 4.4 of
[KL2]. The Seifert case follows from the following corresponding statement for
trees:

Sublemma 3.6 Let ¢ be a geodesic in a metric tree ano] a geodesic segment
disjoint from c. Then the nearest-point-projection to ¢ mppg to a point.

Proof: Let p € ¢ be the point closest taup] andq € [uv] be the point closest to
c. Recall that if fs] and [st] are geodesic segments in a tree wits] D[st] = {s}
then [rs]U[st] = [rt]. This implies that any segment from a point ério a point
on ¢ contains pg] and the claim follows
We extend the previous lemma to projections of the entire asymptotic cone
X,

Proposition 3.7 Let F,, be a cooriented isolated flat in,Xand suppose that A is
a connected component of, X F., on the positive side of & Then prog_(A) C |
for some le 4¢_ and henceAnF, C 1.

Proof: Let x,, z, € X, —F,, be points on the positive side Bf, so that k,z,]N
F. = 0. LetY,, be the geometric component X, adjacent td-,, on the positive
side.

Case 1: If [x,z,] NY, = 0 then there exists a unique isolated & C
Y,, such thatF/ essentially separateg,fz,] from Y,,. Henceproje_[x,z.,] C
proje_F/ which is contained in a séte “¢_ by the previous lemma.
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Case 2: If [x,z,] NY, = [x,Z/] then the previous lemma implies that
proje [x,z] C | € Z¢, and by the same reasoning as in the Case 1 one has
proje [x,x] C | andproje_[z,2,] C 1.

Hence each geodesic segment on the positive side,adind disjoint from
F. projects into a set € Z¢,,. We conclude that the sefsd-, > 0} Nprojg 0]
are open for all € #¢_ and our claim follows

3.4 Rigidity of bilipschitz homeomorphisms

We first look at the position of a bilipschitz embedded fat= f(2?) in X,
relative to a cooriented isolated flgf,. Suppose thaB — F,, consists of several
connected components and B¢t be a component on the positive sideFyf. By
Proposition 3.79By is contained in somé € “¢_ and therefore is homeomor-
phic to a closed subset of the real line. Sii) separate8, Alexander duality
yields thatl = 0By is a line and the geometric component adjacerft joon the
positive side is Seifert. Note that the palBy(9Byp) is homeomorphic to the pair
(R+ x R, 0 x R).

Lemma 3.8 Any flat F, in X, is contained in a single geometric component.
Moreover, F, arises as the ultralimit of a sequence of flats in X.

Proof: If F,, is not contained in a geometric component then it is essentially split
by some isolated flafE/, (Lemma 3.4). The geometric components on the both
sides ofF/ must be Seifert. MoreoveF,, N F/, contains two transversal lines
and thereforeg=,, = F/,. Since any flat in a geometric component arises as the
ultralimit of a sequence of flats, the claim follows.

Next we give a topological characterization of isolated flats which are not
adjacent to Seifert components Xf,.

Lemma 3.9 Let B be a bilipschitz flat in X The following two properties are
equivalent:

1. The intersection of B with any other bilipschitz flat &ntains at most one
point.
2. B is an isolated flat which is not adjacent to any Seifert component.

Proof: If B is a bilipschitz flat which satisfies the first property th@rcannot

be essentially split by any isolated flat. By Lemmata 3.4 and B.1s a flat
contained in a geometric component. The component must be hyperboBc, so

is an isolated flat and moreover the geometric components on the both sides of
B must be hyperbolic. (Note that it may happen tBalhas only one side!)

Vice versa, assume now thatis an isolated flat satisfying the second prop-
erty and letB” be a bilipschitz flat intersecting. Then for any connected com-
ponentBy of B’ — F, BN F is a point inF. SinceB cannot be disconnected by
one point,B’ — F consists of one component aBdN F is a point.C]
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Lemma 3.10 Let T be a geodesically complete tree which branches at every
point. Then for any bilipschitz embedding T xR — X, the image is contained
in a Seifert component and the map f preserves the Seifert fibration.

Proof: Suppose that an isolated flgt, essentially splitd (T x ). Let 2% be
connected components 6{T x R) — F,, which lie on different sides of,,,.
Then their boundaries are transversal straight linem F,,. On the other hand,
the inverse imagets—1(l.) separatel x R and hence they are parallel lines by
Lemma 3.3. This is impossible, becausés bilipschitz.

Hencef (T x IR) is not essentially split by any isolated flat and therefore lies
in a Seifert component by Lemmata 3.4 and 3.2. The second assertion follows
from Lemma 3.1

We apply the above observations to show that homeomorphisms of asymptotic
cones are rigid in the sense that they preserve the decomposition into geometric
components.

Proposition 3.11 Let X, X’ € FZpc and let¢ : X, — X/ be a bilipschitz
homeomorphism. Then:

(i) ¢ maps flats to flats.

(i) Each isolated flat which is not adjacent to a Seifert component is mapped
via ¢ to an isolated flat of the same kind.

(ii) The image of each Seifert component of X a Seifert component of' X

Proof: Assertion (ii) follows from Lemma 3.9 and assertion (iii) from Lemma
3.10. According to Lemma 3.8, any flat i, lies in a geometric component.
Thus for isolated flats between hyperbolic components Assertion (i) follows again
from Lemma 3.9 and for flats contained in Seifert components from Lemma 3.10.
d

3.5 Structure of bilipschitz-embedded flats

Letf : R? — X, be aC-bilipschitz embedding. We will now take a closer look
at the position of the bilipschitz flaB := f (R?) relative to an isolated flafF
which separateB, i.e. B — F is disconnected. We observed in the beginning of
Section 3.4 that, for each componeay of B — F, proje(Bp) is a straight line
contained inB N F. It follows that

proje|r : F — BNF

is a retraction and® N F is contractible.

Assume thaB; and B, are two components d — F on thesameside of
F. Thenl; := B N F are parallel lines bounding a flat st C F. Any points
p: € |1 andp; € |, can be connected insid@NF by a rectifiable curve of length
at mostC? - d(p, p2). Indeed, connect the points = f ~1(p1), x> = f ~1(p,) by
the geodesic segmenk k] C 2, its length is at mosCd(p;, p2). Then the
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projection off ([x1xx]) to F has length at most? - d(p., p2) and lies inside of
BNF.
SinceB N F is contractible we conclude th& c BN F and

B =B USUB:;.

Consider now the case thB{ andB, are components d@ — F on distinctsides
of F. Thenl; := By N F are transversal straight lines i and, by the above,

B=B,UB,U(BNF).

The setD = f~}(F — (11 Uly)) = f ~tproj —X(F — (I, Ul,)) is open ink?, and
thereforef |p : D — F — (I; Ul) is a local homeomorphism. On the other hand,
f(R?) is closed becaust is proper, and (D) must be a union of connected
components ofF — (I; Ul,). The linesly, I, divide F into four “quadrants” and
we conclude thaB N F is a union of two opposite closed quadrants.

Now we are ready to discuss the structure of a bilipschitzZElathich is not
contained in a single geometric component. We describe an inductive process of
geometric decomposition d. According to Lemma 3.4B is essentially split
by a flatFq. Let B* be the component @& — Fy on the positive side dfg. If B*
is contained in the Seifert compone®tadjacent td-g on the positive side then
it is a vertical half-plane, as follows for instance from Lemma 3.1. In this case,
we stop the decomposition on the right sideFgf Otherwise, another isolated
flat F; ¢ S, essentially split$. Between the pairs of quadrarits'(FoN B) and
f ~}(FL N B) there is a stripA; whose imagd (A;) is a flat strip inS;. (This strip
could degenerate to a single line.) We continue this process of decomposition on
the both sides ofy and obtain a sequence of consecutive Seifert components
..,51,%,5, . ... The union of these Seifert components is a convex subset of
the asymptotic cone. The transition Qf between adjacent Seifert components
contributes a definite amount of stretch to the bilipschitz embedidiramd this
leads to:

Lemma 3.12 The number of possible Seifert componeftec8urring in the de-
composition is finite and bounded uniformly in terms of the bilipschitz constant
of f and the geometry of M.

Proof: Observe that fibre$ : R — § andl; : R — § in different Seifert
components, which are parameterized by unit speed, have uniform divergence.
Namely there is a positive constant which depends on the angles between
fibers of adjacent Seifert componentshih so that

im OO

We denote the bilipschitz constantfoby C and restrict our attention to a finite
numberN of Seifert component§. The points (¥t)-f ~1ol; (t) are contained in a
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disk of radiusC +o(t) in the Euclidean plane and they are/C +o(t))-separated.
HenceN is bounded in terms of, C and the assertion follow§l

We summarize the above discussion.

Description of bilipschitz 2-flats B in X EitherB is contained in a geometric
component and is a genuine flat. If this is not the case, wdchllisted B is then
contained in a finite collection of consecutive Seifert compongts ., S with
k > 1. The consecutive isolated flas := S_1 N S are the isolated flats which
essentially spliB. We describe the intersections as we move through the chain
of Seifert pieces:ENS) — F1 and B N &) — Fi are vertical half-planesly and
Hg. Letl" andl;” be the lines irF; which consists of points closest E.; and
Fi_1. Furthermore, let;” andl; be the boundaries of the half-plaridg andHy.
Then the intersectioB N F; is the union of two opposite quadrants bounded by
Iii. Finally, the intersectioB NS, 0 < i < k, consists of the vertical stril
bounded by, I;;; and four quadrants. The convex hal(B) of the bilipschitz
flat B is given by:

ch(B) = HoUF1 UVi UF,U... UF U Hg

Lemma 3.13 No bilipschitz flat in X is contained in a horoball.

Proof: It follows from the description of bilipschitz flats iX,, that if a convex

set contains a bilipschitz flat then it also contains a flat. Therefore, if a horoball
contains a bilipschitz flat, the corresponding Busemann function is bounded from
above and hence is constant on a 2-flat. Lemma 2.2 implieXthatust contain a
3-dimensional Euclidean half-spade We know that any 2-flat iiX,, is contained

in a geometric component. Since parallel 2-flats must be contained in the same
geometric component! itself lies in a geometric component, which is absurd.

d

4 Quasi-isometries of universal covers of Haken manifolds

In this section,X, X’ will denote the universal covers of nonpositively curved
Riemannian 3-manifoldM, M’ € ..

4.1 Linear divergence of quasi-disks

We want to understand the position of quasi-flats relative to convex subsets in

X. The following local statement will be our basic tool.quasi-diskis defined
as (the image of) aK, ¢)-quasi-isometric embedding

qd : Br(0) C B? — X

of a Euclidean 2-disk for positive constariRsK ande.
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Divergence Lemma 4.1There are positive functions = p(e,K), @ = a(e,K)
and rp = ro(e, K) with the following property: If CC X is a convex subset, R 0
and qd : Bgr(0) — X is a (K, ¢)-quasi-disk such thatgqgd(0)) > p then for
every r € [ro, R] the quasi-disk g¢B, (0)) is not contained in theur + dc (qd(0))-
neighborhood of C. (Thus, ¢Bg(0)) is linearly divergent from C.)

Proof: It is enough to prove the following assertion: There exist positive numbers
D, R such that for any quasi-disfd : Bg(0) — X, whose centegd(0) lies at
distance at lea€d away from a convex s&& C X, there is a poing € qd(Bg(0))
with dc(q) > 1 +dc(qd(0)).

Assume that the assertion is not true. Then we have a sequence of convex
setsC,,, sequences of positive numbeR,) and On) tending to infinity and a
sequence of quasi-diskgh, : By, — X satisfying:

dc, (qdh(0)) > Dy, and  dc, |qd (B, 0) < 1 +dc,(qch(0))

We pick \;2 := min(R,, D,) and form the ultralimitX,, of the sequence of based
metric spacesX, - X, qd,(0)). The sequence of quasi-disks yields a bilipschitz
flat B in X,,. According to Lemma 2.3, the ultralimit of the functions - (dc, —
dc,(qdh(0))) is the Busemann functioB, associated to an ideal boundary point
¢ of X,,. By constructionB; is nonpositive orB. This contradicts Lemma 3.13.
(I

As a consequence we see: If the boundary of a quasi-disk lies close (relative
to its radius) to a convex s&, then most of the interior of the quasi-disk lies
uniformly close toC. More precisely:

Corollary 4.2 There is a positive constardt = §(K, ¢) such that everyfK, ¢)-
quasi-disk qd: Bg(0) — X satisfies:

qd(Br(0)) C {dc < ¢-R} = qd(B:(0)) C {dc < p}

Proof: Choosed := min(zfo, 2)- If R < 2rg, thenqd(Br(0)) is contained in the
p-neighborhood ofC. Assume thaR > 2rg and there is a poirp € Brze(O) with
dc(gd(p)) > p. Since§ > ro, the previous lemma implies that the quasi-disk
qd(Ber(p)) C qd(Br(0)) is not contained in thé‘zR > 6R-neighborhood ofC, a
contradiction.

4.2 Rigidity of quasi-isometries

Let gf : B2 — X be a K, €)-quasi-isometric embedding.

Definition 4.3 We call a quasi-flat Q:= f(R?) c X asymptotically flatif for
some sequence of scale factogs — 0 and some base poinhge Q, Q. =
w-1lim(An - Q, Qo) is a flat in the asymptotic cone X
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Proposition 4.4 Let p(K,¢) be as in Lemma 4.1. If th&, ¢)-quasi-flat Q is
asymptotically flatthen it is contained in the(K, ¢)-neighborhood of a flat F.

Proof: By Lemma 3.8, each fla,, in X, is represented by a sequenég ) of
flats inX. If Q. = F.,, we havegf(B,-1(0)) C N, ,-1(Fn) for w-all n. Corollary
4.2 implies thatqf(BAn_l/z(O)) C N,(Fn) for w-all n. Consequently the flats,
subconverge to a fld& which containsQ in its p-neighborhood O

Corollary 4.5 The following properties are equivalent @i , €)-quasi-flats Q in
X:

1. Q is asymptotically flat.
2. Q is contained in the(K , €)-neighborhood of a flat.
3. Q is contained in a tubular neighborhood of a geometric component.

Proof: We already proved the implication =2. 2 = 3 holds, because flats
are contained in geometric components. Assume@hsatisfies property 3. Then
the asymptotic con®),, is a bilipschitz flat which is contained in a geometric
component ofX,,. Lemma 3.1 implies tha®,, is a flat.OI

Note that if the quasi-flaQ is contained in thep-neighborhood of the flat
F, thenQ andF have finite Hausdorff-distance bounded in terms of the quasi-
isometry constants, cf. Corollary 2.6.

We now can control the effect of quasi-isometriesX — X’ on flatsF C X.
Although quasi-flats irX’ are in general not Hausdorff-close to a flat, we have:

Theorem 4.6 Suppose that) : X — X’ is a quasi-isometry. Then the image
underg of any flat F in X lies within uniformly bounded Hausdorff distance from
aflat F in X',

Proof: We proved in Lemma 3.11 that the induced bilipschitz homeomorphism
oo X, — X/, maps flats to flats. Hene&(F) is an asymptotically-flat quasi-flat
in X’. Thus Corollary 4.5 implies that(F) is Hausdorff-close to a flaf]
Let ¢«(F) denote a flaF’ c X’ which is Hausdorff-close teé(F). Note that
F’ is essentially unique, any other flat with the same property is parallel.to

Lemma 4.7 Let F, F», F3 be pairwise nonparallel isolated flats in X which do
not separate each other. Then the flats + ¢x(F1),F; = ¢u(F2), F§ = ¢u(F2)
also do not separate each other.

Proof: For anyr > 0 we can connecF, and F3 outside ther-neighborhood
Nr(F1) by a curvey. If r is chosen sufficiently large, then the imagy) lies on
one side ofpx(F1). Thereforep.(F2) and ¢«(F3) lie on the same side afx(F1).

O

Corollary 4.8 Let F be a boundary flat in X. Thepk(F) is a boundary flat in
X’ as well.

Lemma 4.7 implies our Main Theorem 1.1.
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4.3 Structure of quasi-flats

In this section we will completely describe the quasi-flatXinAsymptotically
flat quasi-flats were treated in Corollary 4.5. Let us start by construetxag-
ples of quasi-flats which aréwisted i.e. not asymptotically flat: Take a chain
S, - - -, S of successive Seifert componentsX¥n They are separated by a chain
of consecutive isolated flais, . . ., Fx whereF =S _1NS. For0< i <k, there
is a vertical flat strip; € § which connects and is orthogonal to the successive
flats Fi, Fj+1: V; is a union of Seifert fibers iry and can be described as the
union of all shortest geodesic segments whose endpoints ke, irespectively
Fi+1. Finally we take two vertical flat half-planddy C S, Hx C S which are
orthogonal to and whose boundary line is containefinrespectivelyF¢. Note
that

A=HoUFLUViUFU...UFUH

has finite Hausdorff distance d from its convex hull, andA, equipped with

the path metric, is (1)-quasi-isometrically embedded K, where the positive
constantsd, L depend on the geometry &f. Each flatF; contains a pair of
distinguished transversal lines arising as intersection with adjacent strips or half-
planes. They dividd~; into 4 quadrants. Remove from each ffat one pair

of opposite open quadrants. What remains frAns a quasi-flat whose quasi-
isometry constants are uniformly bounded in termskoéind the geometry of

M.

Let Q = gf (R?) be a twisted K, ¢)-quasi-flat. Based on our analysis of
the structure of bilipschitz flats iX,, cf. Section 3.5, we will show tha is
uniformly close to one of the model quasi-flats just constructed.

Definition 4.9 We say that a flat Fessentially splitshe (K, €)-quasi-flat Q if Q
contains points at distance p = p(K, €) on the both sides of F. Otherwise we
say that Q liesessentially on one sidef F. A set Aessentially contain® if Q

is contained in the-neighborhood of A.

SinceQ is twisted, Corollary 4.5 implies that there are isolated flats which
essentially splitQ. We denote byQ, C X, the bilipschitz flat represented by
the constant sequenc®). (Here we consider ultralimits with a constant se-
guence of base points.) Due to the Divergence Lemma 4.1, & fedsentially
splits Q in X, if and only if the flatF,, := (F) essentially splitQQ,, = (Q) in
X,. According to our discussion in Section 3.5, there are finitely many consec-
utive isolated flats which essentially split,. Consequently, the collection of
all isolated flats essentially splitting is finite and forms a chaifq, ..., Fx of
consecutive isolated flats M. There is a chain of consecutive Seifert compo-
nentsS, ..., S such thatF; = §_1 N S. Their unionZ is a convex set which
essentially contain® and thereforeQ,, C Z, = (Z). Q,, is the union of pairs
of opposite quadrants in the flaE,, and half-planedg, € S, Hko € Sw-
(Any two successive isolated flag,, have a line in common and the vertical
strips inbetween therefore degenerate.) We represent the half-planddy,, by
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sequences of half-plangsy, C &, respectivelyHy, C S, which are orthogo-
nal to and whose boundary line is containedri) respectivelyF¢. We denote
by C, C X the convex hull ofHg, U U:(:l Fi U Hkn. SinceQ,, is contained in
C. = (Cp), we conclude using Corollary 4.2 that for glle Q andR > 0 there
is aw-large set of values such that:

Q N Br(q) € Ny(Cn)

Observe thalQ contains points inS, Sc which are arbitrarily far away from
the boundary flat&1, Fy. It follows that the sequenceslif,), (Hkn) subconverge
to half-planesHy, Hx. We denote by, € S, 0 < i < k, the vertical strips
orthogonal toF;, F+1. The set

A=HoUFLUViUFU...UF¢UH

is uniformly Hausdorff-close to its convex hull, and we conclude from the previ-
ous discussion thap is contained in a uniformly bounded tubular neighborhood
of A. After replacingQ by a quasiflat at uniformly bounded Hausdorff distance,
we may assume th& is contained inA. MoreoverQ is a K’, ¢')-quasiflat inA
equipped with the path metric, witk’, ¢ depending oK , e andM, because the
path metric orA and the metric induced frorK are (1 L)-quasi-isometric with

a constant. = L(M). The intersection lines with adjacent strips or half-planes
divide each flat; into four quadrants. By Lemma 2.5, each of these quadrants
is either contained in thie-neighborhood of) or the intersection of the quadrant
with Q is r-close to its boundary, with a constant= r(K’, ¢, M). It follows
from the description of bilipschitz flats iX,, that for each~; exactly two quad-
rants are contained in theneighborhood ofQ. Similarly, the half-planed,
andHy are contained in the-neighborhood of). This concludes the proof of:

Theorem 4.10 (Classification of quasi-flats)There is a constante d(K, e, M)
so that each{K, ¢)-quasi-flat lies at Hausdorff distance at most d from a flat or a
twisted model quasi-flats as described in the beginning of this section.

Corollary 4.11 (1) Any(K, €)-quasi-flat Q in X lies within uniform distance from

a finite union of flats. (2) The number of necessary flats is uniformly bounded
in terms of K. (3) The limit set of Q in the ideal boundaly.X is a simple
loop which is continuous with respect to the Tits metric. (4) There is a constant
Ko = Ko(M) > 1 such that if K< Kq then Q is asymptotically flat.

Proof: The first and third claim follow directly from our previous discussion.
The asymptotic con€),, is isometric to a complete Euclidean cone over a

circle of lengthl > 2(x + ka) wherek is the number of isolated flats essentially

separating) and« > 0 is the minimal possible angle of intersection between the

fibers of adjacent Seifert components. There Is-ilipschitz homeomorphism

b : k> — Q, and we assume without loss of generality thahaps the origin

to the tip of the con&,,. Let v be the image of the unit circley has length
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at most 2K and circumvents the disk of radit6~! centered at the tip of.,.
Therefore 2K > 2*) and

(K?2 = )
N .

k <

This implies the second and fourth claifm.

5 Groups quasi-isometric to fundamental groups of Haken manifolds
5.1 Quasi-actions of groups on metric spaces

Suppose that” is a group ang is a map froml" to the set of all K, ¢)-quasi-
isometries of a metric space.

Definition 5.1 We callp a quasi-actioror under-representatioof /" on X if for
some constant L and alk, v, € I" the quasi-isometries(y1y2) and p(y1) o p(7y2)

are L-close. The quasi-action is callggdiasi-transitivef for some constant M all
orbits p(I") - x are M-close to X. Th&ernel(or under-represented subgrquyf
the actionp is the subgroup of” which consists of elements whose action on X
is Hausdorff-close to the identity. A quasi-action is calpgdperly discontinuous

if for each bounded subset € X there are only finitely many elemengse I

so thatp(;)(C) N C # 0.

To simplify notations, we will denote(y) - X by ~x.

A typical example of properly discontinuous quasi-transitive quasi-actions
appears as follows: Assume that the finitely generated gfoigpquasi-isometric
to a metric spac«, i.e. there is a quasi-isometry from a Cayley graph of”
to X. Then q transfers the isometric action df on the Cayley graph to a
quasi-action onX. If I", equipped with a word metric, can be injectively and
guasi-isometrically embedded in¥, then there is an honest action bfon X
by quasi-isometries with uniform constants. This is the cas¢ i§ a geodesic
metric space (and’ infinite).

We need the next lemma for decomposing quasi-actions on trees of spaces.
Let. 4 be a collection of subsets C X such that:

— Every bounded subs& c X intersects only finitely many sets in#.

— Any two distinct sets in 2 have infinite Hausdorff distance.

— There is a constaril such that for ally € I" and A € . 2 the setyA is
H -Hausdorff close to another set.iré.

In this situation, we can speak of tlséabilizerin I" of a setA € . #: it consists
of all elementsy € I" such thatyA andA have finite Hausdorff distance. Clearly
the stabilizer is a subgroup df.

Lemma 5.2 If the quasi-actiory is quasi-transitive then the stabilizer of any set
A € . ¢ acts quasi-transitively on A, i.e. orbits of points in A are uniformly close
to A.
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Proof: Let B ¢ X be a ball so thaX = " - B. By assumption, only finitely
many setsyiA, ..., A € .4 intersectB. Let C = max{d(y; o yfl(B)7B) :
1<i,j <I1}. Forx,y € Athere arey,yy € I' so thaty(x), w(y) € B. WA
and A are Hausdorff close to some subsef# and ~; A respectively. Then
Try = ’yy*lv,- 7(1%( is in the stabilizer ofA and carriesx uniformly close toy:
d(3y(x).y) < C +diam(B) O

5.2 Quasi-actions on geometric components

We first consider the case of hyperbolic componentsYLbe the universal cover
of a hyperbolic component d/1 and suppose that we have a quasi-transitive
action of a groupG on Y by (K, ¢)-quasi-isometries. Richard Schwartz [Sch]
proves:

— The groupG fits into a short exact sequence
1—FinG)—G—G—1 2)

with Fin(G) finite andG a nonuniform lattice ifsom(H®). HenceFin(G) is
the unique maximal finite normal subgroup @fand G is the fundamental
group of a compact hyperbolic 3-orbifold with flat boundary.

— If F is a boundary flat ofyY then the quasi-action of the stabilizer Bf
in G is within bounded distance from an isometric action of a Euclidean
lattice onF =~ 2. The stabilizers of boundary flats i@ correspond to
peripheral subgroups of the orbifold fundamental grdkip.(G) is also the
unigue maximal finite normal subgroup of the stabilizef~of

Remark 5.3 It is unknown whether a group G satisfying (2) admits a torsion-free
subgroup of finite index.

Now we turn to the case of Seifert components. Bet ¥ x R be the
universal cover of a Seifert component Mf with hyperbolic base orbifold and
consider a properly discontinuous quasi-transitive quasi-action action of a group
G on S by (K, €)-quasi-isometriesY’ is a convex domain of the hyperbolic plane
whose boundary is a hon-empty union of disjoint geodesics. For our purposes, we
are interested in the case when the collection of boundary flassigfinvariant
under this action, i.e. boundary flats are carried to within uniformly bounded
distance of boundary flats. Using reflections in face$ afe extend this quasi-
action to a properly discontinuous quasi-transitive quasi-action of a bigger group
H onH? x R by (K’, ¢)-quasi-isometries; the new constaits, ¢/ depend on
K, e and the geometry of. The convex domai$ C H? x I is quasi-preserved
by G.

Proposition 5.4 Any (K, ¢)-quasi-isometry of a Seifert component S X x R
quasi-preserves the Seifert fibration, i.e. there is a numbrer (K, €) such that for
any s€ X the imagep({s} x IR) is r-Hausdorff close to another fibi(s)} x k.
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Proof: Any fiber {s} x R is the intersection of two orthogonal flais F’ in S
and according to Corollary 4.5 the imagesFofF’ are Hausdorff-close to flats
ou(F), ¢x(F’) in Y. For anyR > 0, the intersection of tubular neighborhoods
Nr(¢#(F)) N Nr(¢#(F")) is a unionC’ x IR of Seifert fibers. The diameter &’

is bounded above in terms &f, ¢ andR, becausd= andF’ are orthogonal. The
assertion followsO

This Proposition was first proven by E. Rieffel in [R] who used quite different
arguments.

As a consequence the quasi-actiontbfon H? x R descends to a quasi-
transitive quasi-action on the hyperbolic plane by quasi-isometries with bounded
constants. LeK be the kernel of this quasi-action akrtl=H /K. The induced
action of H on the ideal circleageo]HI2 by homeomorphisms is effective and
a convergence group action in the sense of Gehring and Martin. Moreover, it
satisfies the “simple axis condition” of Tukia and is topologically conjugate to
an action of a Moebius group by Theorem 6B in [Tu]. This Moebius group
acts cocompactly ofi> and also properly discontinuously, because it preserves
a locally finite pattern of geodesics. This implies that the gre@up G/K is
the fundamental group of a compact 2-dimensional hyperbolic orb{fohtith
boundary. We therefore have an exact sequence

1—K-—G—m(0) —1

Peripheral subgroups af;(O) correspond to stabilizers of boundary geodesics
of X.

Now we want to determine the structure of the kerkdebf the quasi-action
on hyperbolic planeK stabilizes each fiber (up to uniformly bounded distance)
and acts quasi-transitively and properly discontinuously on each fiber.

Lemma 5.5 K has a unique maximal finite normal subgroup &) and the
quotient group K/Fin(G) is isomorphic taZ or the infinite dihedral group Q.

Proof: There is an elemerit € K which is far from the identity and preserves
the orientation of the fibres on the large scélés quasi-isometrically conjugate
to a translation and generates an infinite cyclic subgrouf offhe subgroup
(k) = Z has finite index irK because& acts properly discontinuously on fibers.
This implies assertion of the lemmal.

Since m1(0) does not have nontrivial finite normal subgroupn(G) is
algebraically characterized as the uniqgue maximal finite normal subgroGp of
The quotient groufs := G/Fin(G) fits into an exact sequence

1—>ZorDoo—>(§—>7r1(O)—>l

and is isomorphic to the fundamental group of a Seifert orbifold. The peripheral
subgroups of the Seifert orbifold correspond to the stabilizers of boundary flats
of S. Fin(G) is also the uniqgue maximal finite normal subgroup of the stabilizers

of boundary flats irnG.
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5.3 The general case

Suppose thatf’ is a finitely generated group which is quasi-isometric to the uni-
versal covetX of a Haken manifoldV with nontrivial canonical decomposition.

We can assume without loss of generality thatis nonpositively curved. Let

T be the simplicial tree dual to the geometric decompositiotX ofMe have a
guasi-transitive properly discontinuous quasi-actiod"afn X. By Theorem 1.1

this action induces an action éf by automorphisms on the trde The quotient

T/I' is afinite graph and therefore decomposes as a finite graph of groups. The
vertex and edge stabilizers were described in section 5.2. The unique maximal
finite normal subgroups of all vertex and edge stabilizers coincide and therefore
coincide with the kerneFin(I") of the action ofI” on T. The vertex stabiliz-

ers for the action off” := I'/Fin(I") are fundamental groups of 3-dimensional
hyperbolic and Seifert orbifolds with flat boundary. We recall that the edge stabi-
lizers are peripheral subgroups of these orbifolds. We glue these orbifolds along
boundary components according to the grapt". The fundamental group of

the resulting orbifoldO is isomorphic tol". The orbifold O is finitely covered

by a Haken manifold, cf. [MM]. This proves Theorem 1.2.
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