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Abstract
We prove that the fundamental group of any compact Haken man-
ifold of zero Euler characteristic, which is neither Nil nor Sol, is
nonpositvely curved on the large scale.

1 Introduction

Thurston’s Hyperbolization Theorem provides metrics of constant nega-
tive curvature on closed atoroidal Haken 3-manifolds. More generally,
Thurston’s Geometrization Conjecture asserts that all closed 3-manifolds
admit a canonical minimal decomposition into geometric pieces. In this pa-
per, we are interested in closed irreducible 3-manifolds M with infinite fun-
damental group. They topologically decompose into Seifert and atoroidal
components and, if the decomposition is non-trivial, these components can
be equipped with geometric structures locally modelled on the nonpositively
curved geometries H2×R, respectively H3. In a large number of cases such
manifolds M admit metrics of nonpositive sectional curvature, for instance,
if M is not a graph manifold [L]. Many graph manifolds admit metrics of
nonpositive curvature, but not all of them do [L], [KL2], [BKo]. Another
indication for the link between Haken manifolds and nonpositive curvature
is the existence of automatic structures on the fundamental groups of all
Haken manifolds which are not Nil- or Sol-manifolds [Eetal]. In partic-
ular, they admit a bicombing satisfying a fellow traveller property which
is a weak version of the convexity of distance function for nonpositively
curved spaces. The aim of this paper is to establish a stronger connection
between Haken manifolds and nonpositive curvature; we show that funda-
mental groups of non-geometric Haken manifolds are nonpositively curved
on the large scale in the following sense:
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Theorem 1.1. Let M be a Haken manifold of zero Euler characteris-
tic (which is neither Nil nor Sol), equipped with a Riemannian metric.
Then there exists a compact nonpositely curved 3-manifold N with totally-
geodesic flat boundary and a bilipschitz homeomorphism between the uni-
versal covers of M and N which preserves the canonical decomposition. In
particular, the fundamental groups π1(M) and π1(N) are quasi-isometric.

The theorem has several direct implications for the large-scale geometry
of 3-manifold groups π1(M):

1. The fundamental groups of geometric components are undistorted
(quasi-isometrically embedded) in π1(M). Moreover there are coarse
Lipschitz retractions from π1(M) to the fundamental groups of its
geometric components.

2. If M is not Nil or Sol then all rank-two abelian subgroups are undis-
torted and quasi-minimize area.

3. The isoperimetric inequality for π1(M) is exponential if M is Sol,
cubic if M is Nil, linear if M is closed hyperbolic and quadratic
otherwise. This was previously known [Eetal].

We use Theorem 1.1 in [KL3] to prove that quasi-isometries preserve the
canonical decomposition of Haken manifold groups. This yields new quasi-
isometry invariants for fundamental groups of Haken manifolds. Another
result in this direction is a special case of a theorem of Schwartz: he shows
that the fundamental groups of cusped hyperbolic 3-manifolds are quasi-
isometric if and only if they are commensurable [S]. Other than that the
quasi-isometry classification of Haken 3-manifold groups remains open. For
instance, the following question has not yet been answered:

Question 1.2. Are the fundamental groups of all (closed) graph manifolds
quasi-isometric?

Commensurable groups are quasi-isometric by trivial reasons. Admit-
ting a nonpositively curved metric is a commensurability invariant for
Haken 3-manifolds [KL2]. Thus our theorem provides quasi-isometries be-
tween noncommensurable groups.

Haken manifolds which have hyperbolic components admit nonposi-
tively curved metrics [L]. Therefore we will only investigate graph mani-
folds. Graph-manifolds are compact Haken manifolds with boundary of zero
Euler characteristic which are obtained by gluing Seifert manifolds along
boundary surfaces. We exclude from the class of graph-manifolds Sol- and
Seifert manifolds. Flip-manifolds are special graph-manifolds which are
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constructed as follows: Take a finite collection of products of S1 with com-
pact oriented hyperbolic surfaces with geodesic boundary. Glue them along
boundary tori by maps which interchange the basis and fiber directions. It
is easy to construct metrics of nonpositive curvature on flip manifolds. In
section 2 of this paper we prove that the fundamental group of any graph-
manifold is quasi-isometric to the fundamental group of a flip-manifold. We
also show that instead of flip-manifolds one can use manifolds fibred over
the circle. Our construction generalizes an earlier example: Epstein, Mess
and Gersten discovered independently that H2×R is quasi-isometric to the
universal cover P̃SL(2,R) of the unit tangent bundle of H2.

In section 3 we apply Theorem 1.1 to study another quasi-isometry in-
variant, namely divergence. We prove that the fundamental groups of all
graph-manifolds have quadratic divergence. This extends earlier results of
Gersten [G1,2] who shows that certain Hadamard spaces have quadratic
divergence. We extend these results to all graph-manifolds. In particu-
lar, we show that for periodic geodesics in flip-manifolds the divergence is
quadratic unless the geodesic is contained in a single Seifert component. In
the latter case, the divergence is linear.

2 Construction of Quasi-isometries Between Graph
Manifold Groups

To motivate our discussion below, we recall the construction of bilipschitz
homeomorphisms between the universal cover of the unit tangent bundle
UT (H2) of the hyperbolic plane and H2 ×R, for details see [R]. We pick a
base point p0 ∈ H2 and identify the unit tangent circle UTp0(H2) with S1.
If v ∈ UTx(H2) is a unit vector, we denote by φ(v) ∈ UTp0(H2) the vector
obtained by parallel transporting v along the geodesic segment [xp0]. The
map UT (H2) → H2 × S1 given by v 7→ (x, φ(v)) is bilipschitz because the
area of geodesic triangles in H2 is linearily bounded in terms of the shortest
side length. This bilipschitz homeomorphism lifts to the universal covers.
In section 2.2 below we will give a relative version of this construction.

2.1 Finite covers of graph manifolds. We recall that graph mani-
folds are obtained by gluing finitely many Seifert manifolds with hyperbolic
base orbifolds. We exclude Sol and Seifert manifolds and require that the
gluing maps between the Seifert components do not identify (unoriented)
Seifert fibers up to homotopy. We shall refer to the tori and Klein bottles
separating adjacent Seifert components as splitting surfaces. The univer-
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sal cover M̃ of a graph-manifold M splits as the union of universal covers
of Seifert components. We call them Seifert components of the universal
cover. We call surfaces separating Seifert components of M̃ splitting flats.

In this section, we construct for any graph manifold a finite cover whose
Seifert components and gluing maps are as simple as possible. The type of
constructions we use are well-known, see [H], [MMi].

Lemma 2.1. Any graph-manifold M0 has an orientable finite cover M2
where all Seifert components are trivial circle bundles over (orientable)
surfaces of genus ≥ 2. Furthermore, we can arrange that the intersection
numbers of the fibres of adjacent Seifert components are ±1.

Proof. Step 1. By passing to the orientable cover we may assume that M0
is orientable.

Step 2. Next we make the splitting surfaces orientable. Let K1, . . . ,Km

⊂ M0 be the splitting Klein bottles. Each Ki has a neighborhood N(Ki)
homeomorphic to a twisted interval bundle over Ki. The boundary ∂N(Ki)
is a 2-torus. Let φ : π1(M0) → (Z/2Z)m be the homomorphism given by
the Z/2Z-intersection number with the Ki and let M1 be the covering of
M0 corresponding to the kernel of φ. The Klein bottles Ki lift to 2-sided
tori in M1 because M0 is orientable.

Step 3. Now we remove singular fibers. The components Zj of the
canonical decomposition of M1 are Seifert manifolds with base-orbifolds Oj .
The orbifolds Oj have incompressible boundary, they are in fact hyperbolic.
Fix some integer p ≥ 7 and denote by Ôj the orbifold obtained by attaching
a disc with one singular cone point of order p to each boundary component
of Oj . The orbifolds Ôj are hyperbolic and therefore have finite nonsingular
orientable covers Q̂j of genus ≥ 2. We remove from Q̂j the inverse images
of the inserted singular discs. The resulting surface Qj covers Oj so that
the restriction of the covering to each boundary component has degree p.
We have exact sequences

1 −→ Z −→ π1(Zj)
ψj−→ π1(Oj) −→ 1

and
1 −→ Z −→ ψ−1

j π1(Qj)
ψj−→ π1(Qj) −→ 1 .

The subgroup ψ−1
j π1(Qj) of π1(Zj) has finite index and the corresponding

Seifert manifold covering Zj is homeomorphic to S1×Qj . Therefore we can
find a p-fold covering S1 ×Qj → S1 ×Qj and thus obtain a finite covering
Z̄j over Zj which satisfies the properties:
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1. Z̄j is the product of the circle with the orientable hyperbolic surface
Qj of genus ≥ 2.

2. On each boundary torus of Z̄j the covering Z̄j → Zj restricts to the
characteristic p× p-fold cover of a boundary torus of Zj .

This implies that we can glue copies of Z̄j to obtain a finite covering M1 of
the original graph manifold, see [H], [MMi].

Step 4. Consider a Seifert component Z = S × S1 of M1. For each
boundary torus Tk of Z, we denote by nk the intersection number in Tk of
the fiber f of Z and the fiber fk of the other Seifert component adjacent
to Tk. We attach a disk with cone point of order |nk| to each boundary
circle S ∩ Tk of S. The resulting orbifold is hyperbolic, because the genus
of S is at least 2, and admits a finite covering by a surface. We extend
the corresponding finite covering S′ → S to a covering Z ′ := S′ × S1 →
S×S1 = Z by taking the product with id : S1 → S1. The restriction of this
covering to each boundary torus T ′k → Tk is determined by the subgroup
of π1(Tk) generated by f and fk. We repeat this for all Seifert components
of M1 and then we glue copies of the covers Z ′ to obtain a finite cover
M2 of M1. By construction, the intersection numbers of fibres of adjacent
Seifert components of M2 are ±1. �

2.2 Quasi-isometric change of gluing maps. In this section we
prove our main Theorem 1.1. Let M be a graph manifold. By the dis-
cussion in section 2.1, we can assume that M is oriented and all Seifert
components Zj are trivial circle bundles over orientable hyperbolic surfaces:
Zj = Sj × S1. We may further assume that for each splitting torus the in-
tersection numbers between fibers of adjacent Seifert components are ±1.

Any choice of Riemannian metrics on the Seifert components, which
are not required to be compatible on the splitting tori, yields a path metric
on M . All these path metrics are bilipschitz equivalent. For our purposes,
the following choice is convenient: We put negatively curved metrics on the
base surfaces Sj so that all boundary components are totally geodesic of
unit length. Then we equip Zj with the product metric so that the fibers
have length one. This induces affine structures on the boundary tori of the
Seifert components and we may assume that the gluing maps are affine.

Let Z,Z ′ be adjacent Seifert components (which may coincide) and let
T ⊂ ∂Z, T ′ ⊂ ∂Z ′ be tori which are identified by an affine gluing map
A : T → T ′. The first homology groups H1(T,Z) and H1(T ′,Z) contain
distinguished elements fT and fT ′ corresponding to the Seifert fibres of Z
and Z ′. We consider a change of the gluing map A : T → T ′ of the following
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type: Define BT ⊂ SL(H1(T,Z)) to be the stabiliser of fT , and define BT ′
analogously. Given linear transformations sT ∈ BT , sT ′ ∈ BT ′ we replace
A by the new gluing map sT ′ ◦A ◦ sT . We do not modify the other gluing
maps.

Proposition 2.2. Let N be the manifold obtained by performing the
modified gluing map sT ′ ◦A◦sT . Then there exists a bilipschitz homeomor-
phism between the universal covers M̃ and Ñ which preserves their canon-
ical decompositions. In particular, π1(M) and π1(N) are quasi-isometric .

Proof. We lift the canonical splitting of M to the universal cover and
denote by Λ the tree dual to this decomposition of M̃ . Every vertex v
of Λ corresponds to a Seifert component Z̃v which universally covers a
Seifert component of M , and every edge e adjacent to v corresponds to a
boundary flat T̃ve ⊂ ∂Z̃v covering a splitting torus of M . For each oriented
edge e = [vv′] there is an affine gluing map Ãvv′ : T̃ve → T̃v′e. The group of
decktransformations stabilizing an edge e acts as an integer lattice on the
splitting flat T̃ve ∼= T̃v′e.

The Seifert foliation of each boundary torus of a Seifert component of
M induces a vertical foliation of the correponding splitting flat in M̃ by
straight lines. The matrices sT , sT ′ yield a collection of affine transforma-
tions s̃ve of the splitting flats T̃ve which preserve vertical lines and are well-
defined up to integer translations. Pick a Seifert component Z̃v ∼= S̃v × R
of M̃ and let ˜̀

ve ⊂ S̃v be the boundary geodesic corresponding to T̃ve. The
product decomposition T̃ve ∼= ˜̀

ve×R yields natural coordinates and we can
write the affine map s̃ve as

s̃ve(x, t) =
(
x, θve(x) + t

)
where θve : ˜̀

ve → R is an affine function. The collection of differential
1-forms dθve defines closed 1-forms αv on the boundaries of S̃v which are
periodic with respect to decktransformations. Lemma 2.4 below allows to
construct bilipschitz maps Hv : Z̃v → Z̃v whose restrictions to boundary
flats T̃ve equal s̃ve up to translations: According to Lemma 2.4, there exists
a smooth Lipschitz function hv : S̃v → R such that dhv|∂S̃v = αv. Hence
the restriction of hv to each boundary component ˜̀

ve has the same slope
as the corresponding function θve. We define a bilipschitz homeomorphism
Hv of Z̃v by the formula

Hv(x, t) =
(
x, hv(x) + t

)
.

The homeomorphisms Hv have uniform bilipschitz constant C. The re-
striction of Hv to each boundary flat T̃ve differs from s̃ve by a vertical
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translation. After enlarging C we may assume that this vertical transla-
tion is integral. The mappings Hv can then be combined to a bilipschitz
map between M̃ and Ñ . �

The following theorem implies our main Theorem 1.1 stated in the in-
troduction.
Theorem 2.3. Let M be a graph manifold equipped with a Riemannian
metric. Then there exists a nonpositively curved flip-manifold N and a
bilipschitz homeomorphism between the universal covers M̃ and Ñ which
preserves their canonical decompositions. As a consequence, the fundamen-
tal group of any graph-manifold M is quasi-isometric to the fundamental
group of a flip-manifold.

Furthermore, the fundamental group of any graph-manifold M is quasi-
isometric to the fundamental group of a manifold fibered over the circle.

Proof. Pick two boundary tori T and T ′ of Seifert components of M which
are glued via the identification map A : T → T ′. Fixed product decomposi-
tions of the Seifert components give us bases {f, b} of H1(T,Z) and {f ′, b′}
of H1(T ′,Z). The elements f and f ′ correspond to the Seifert fibres. Due
to Lemma 2.1 we can assume that the intersection number between Af and
f ′ is ±1. Hence there exist elements sT ∈ BT and sT ′ ∈ BT ′ so that

s−1
T (A−1f ′) = ±b and sT ′(Af) = ±b′ .

Then the modified gluing map Ä = sT ′ ◦A ◦ sT satisfies the flip condition
Äf = ±b′ and Ä−1f ′ = ±b .

Let N be the flip manifold obtained from M by changing all gluings in this
fashion. Proposition 2.2 implies the existence of a bilipschitz homeomor-
phism between the universal covers M̃ and Ñ which preserves the canonical
decomposition. Since we choose the metrics on the Seifert components as
explained in the beginning of this section, the gluing maps between the
Seifert components of N are isometries and the induced path metric is
nonpositively curved. However the metric we obtain will be singular along
splitting tori. We smooth out the singularity using the same procedure as
in [L] to get a Riemannian metric of nonpositive curvature on N . This
proves the first assertion of the theorem.

To prove the second assertion, observe that the “affine lines” BT · b =
A−1(±f)′ + Z · f and A−1(BT ′ · b′) = ±f + Z · A−1f ′ in H1(T,Z) in-
tersect at the point ±f + A−1(±f ′). Therefore there are transformations
sT ∈ BT and sT ′ ∈ BT ′ so that sT (b) = A−1s−1

T ′ b
′. The modified gluing map

Ä = sT ′ ◦A ◦ sT then satisfies Äb = b′. The new gluings are compatible
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with the foliations of the Seifert components by surfaces (given by the
product structure). Therefore the manifold obtained from the modified
gluings fibers over the circle. �

2.3 Lipschitz functions on universal covers of negatively curved
manifolds. Let S be a smooth compact manifold with strictly negative
sectional curvature and totally-geodesic boundary (in our application it will
be a hyperbolic surface). Denote by S̃ the universal cover of S. Let α be a
closed smooth 1-form on ∂S. We denote the pull-back of α to ∂S̃ by α as
well.
Lemma 2.4. There exists a smooth Lipschitz function h on S̃ satisfying
dh|∂S̃ = α.

Proof. We first extend α to a smooth 1-form β on S̃ which is π1(S)-
invariant. The forms β and dβ are bounded. For x, y ∈ S̃, we denote by
γyx the geodesic from y to x, and by γx the geodesic connecting a fixed
base point p ∈ S̃ to x. Set

g(x) :=
∫
γx

β .

Consider a 1-connected smooth ruled surface ∆xy bounded by the geodesic
triangle ∆(p, x, y) in S̃. For instance, connect the vertex p by geodesic
segments to the points on the segment γyx. The sectional curvature of the
induced Riemannian metric on ∆xy is bounded from above by the sectional
curvature of S. Since S has a negative upper curvature bound, we have the
following estimates for the area of the ruled surface:

area(∆xy) ≤ constant1
and

area(∆xy) ≤ constant2 · d(x, y) . (1)
Since

g(x)− g(y)−
∫
γyx

β =
∫
∂∆xy

β =
∫

∆xy

dβ ,

we have ∣∣∣g(x)− g(y)−
∫
γyx

β
∣∣∣ ≤ area(∆xy) · ‖dβ‖ ≤ constant3 . (2)

Furthermore, ∣∣∣ ∫
γyx

β
∣∣∣ ≤ constant4 · d(x, y)

and ∣∣∣ ∫
∆xy

dβ
∣∣∣ ≤ constant5 · d(x, y)
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because of (1). Therefore∣∣g(x)− g(y)
∣∣ ≤ constant6 · d(x, y)

so g is Lipschitz. The closed form dg − α on ∂S̃ is exact. Hence we can
write

dg − α = df .

The smooth function f : ∂S̃ → R is Lipschitz because g is Lipschitz and α
is a bounded 1-form. We choose f so that it has a zero on each component
of ∂S̃; estimate (2) then implies that f is bounded. Fix ε > 0 sufficiently
small so that the nearest-point-projection π∂S̃ to ∂S̃ is well-defined and
distance-nonincreasing on the tubular neighborhood Nε(∂S̃). Take a bump
function σ : [0,∞)→ R so that σ(0) = 1 and σ(t) = 0 for t ≥ ε. We extend
f to S̃ by

f̂(x) := σ
(
d(x, ∂S̃)

)
· f
(
π∂S̃(x)

)
.

Since the function f is Lipschitz and bounded, the extension f̂ is also
Lipschitz and bounded. The function h := g − f̂ on S̃ has the desired
properties. �

3 Divergence of Geodesics

In this section we apply our results to discuss another quasi-isometry in-
variant of geodesic metric spaces, namely divergence. This notion was
introduced in [G1] and we recall the definition for the convenience of the
reader. Let X be a complete geodesic metric space with one end. Pick a
point x ∈ X and a positive real number r. Consider the path metric on the
complement X−Br(x) of a metric ball centered at x. We define f(r) as the
diameter of the intersection of the metric sphere Sr(x) with the unbounded
component of X − Br(x). The property that f(r) grows exponentially or
polynomially of degree d does not depend on x and is a quasi-isometry
invariant for X. Analoguously, one can define the divergence of a complete
minimizing geodesic ` : R → X. Consider the complement of the R-ball
B(R) centered at `(0) equipped with the path metric. For each R > 0,
we measure the distance div(R) between the points `(±R) in X \BR(`(0))
equipped with the path metric. The growth rate of the function div is
called the divergence of `. The divergence of geodesics provides an estimate
from below for the divergence of the entire space.

The next two results give lower estimates for the divergence of geodesics
in CAT(0)-spaces. We start with an estimate for flip-manifolds.
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Proposition 3.1. Let M be a flip manifold with a natural metric of
nonpositive curvature and let ` : R→ M̃ be a geodesic. Then the divergence
of ` is linear if ` is contained in the union of finitely many Seifert components
and superlinear otherwise.

Proof. The divergence of geodesics contained in one Seifert component is
clearly linear. Therefore the same is true for geodesics contained in a finite
union of Seifert components of M̃ .

Suppose that ` successively intersects infinitely many splitting flats Fn,
n ∈ Z, which divide ` into subsegments. Consider a shortest curve αR which
connects the points `(±R) outside the ball BR(`(0)). We choose successive
points xn on αR so that xn ∈ Fn. Clearly, the length of the portion of αR
between the flats Fn−1 and Fn+1 is at least d(xn−1, xn) + d(xn, xn+1). For
sufficiently large R, this portion of αR lies at distance at least R/2 from
the shortest geodesic segment σ connecting Fn−1 and Fn+1.

Lemma 3.2. d(xn−1, xn) + d(xn, xn+1) ≥ 1
2
√

2
·R− constant.

Proof. We call Y± the Seifert component between Fn and Fn±1. Let p =
σ∩Fn and denote by l± the Seifert fiber of Y± containing p. Since d(xn, σ) ≥
R/2 we may assume without loss of generality that d(xn, l+) ≥ 1

2
√

2
R.

Since the nearest point projection of Fn to Fn+1 is a strip of uniformly
bounded width ≤ w we obtain the inequality d(xn, xn+1) ≥ d(xn, Fn+1) ≥
d(xn, l+)− w − d(Fn, Fn+1) ≥ 1

2
√

2
·R− constant. �

The lemma implies that the length of the portion of αR between Fn−1
and Fn+1 is at least R/4 for sufficiently big R. This finishes the proof. �

We now give a better lower estimate for the divergence of periodic rank-
one geodesics in arbitrary locally-compact CAT(0)-spaces. Recall that a
periodic geodesic has rank one if and only if it does not bound a flat half-
plane.

Proposition 3.3. Let X be a locally-compact CAT(0)-space and ` be
a complete geodesic which is invariant under a cyclic group of hyperbolic
isometries. If ` has subquadratic divergence, then it bounds a flat half-plane
and hence has linear divergence.

Proof. We use the same notation αR as in the proof of the previous
proposition. Subquadratic divergence means that the length of αR equals
εR · R2 with limR→∞ εR = 0. Fix h > 0. Denote by π : X → ` the
nearest-point-projection. For sufficiently large R, we can find a subseg-
ment [a1a2] ⊂ `(−R/2, R/2) of length h so that the portion of αR which
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projects on [a1a2] via π has length at most εRhR. Pick points bi ∈ αR
with π(bi) = ai. Let ρi : [0, Li] → X be the unit speed geodesic joining
ai = ρi(0) to bi. We have Li ≥ R/2. The function ψ(t) := d(ρ1(t), ρ2(t)) is
convex, monotonically increasing on [0, R/2] and satisfies

ψ(0) = h , ψ(R/2) ≤ εRRh .

Therefore
h ≤ ψ(h) ≤ (1 + 2εRh) · h .

The quadrilateral with vertices ai and ρi(h) has three sides of length h, one
side of length ≤ (1 + 2εRh) · h and angles ≥ π/2 at ai. We have a family
of such quadrilaterals QR parametrized by R. Using the translations along
`, we transport the quadrilaterals QR to a fixed compact subset of X. The
Hausdorff limit as R tends to infinity of a convergent subsequence of the
translated quadrilaterals is isometric to a square of side-length h in R2.
Hence for each h, we obtain a flat square of side-length h in X adjacent
to `. The local compactness of X implies the existence of a flat half-plane
bounded by `. �

We resume the discussion of graph manifolds M of nonpositive curva-
ture. Notice that a geodesic in the universal cover M̃ bounds a flat half-
plane if and only if it is contained in a single Seifert component. Thus any
periodic geodesic in M̃ which intersects a splitting flat has rank one and
hence at least quadratic divergence. An upper bound for the divergence is
easier to obtain: The divergence of any geodesic in M̃ and the divergence of
M̃ itself is at most quadratic, see also [G2] where it is proved that the diver-
gence is at most quadratic for fundamental groups of all graph-manifolds
fibred over the circle. Therefore according to Theorem 2.3 the divergence
in fundamental groups of all graph-manifolds is at most quadratic.

Corollary 3.4. The fundamental group of any graph-manifold has quadratic
divergence.

This extends the following earlier results in [G1,2]:

• The divergence of fundamental groups of graph-manifolds fibered over
the circle is at most quadratic.
• Let Σ be the once punctured torus and M be the mapping torus

of a Dehn twist on Σ. Then the divergence of π1(M) is precisely
quadratic.
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