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THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC
3-SPACE∗

MICHAEL KAPOVICH† , JOHN J. MILLSON‡ , AND THOMAS TRELOAR§

Abstract. We study the symplectic geometry of the moduli spaces Mr = Mr(H3) of closed
n-gons with fixed side-lengths in hyperbolic three-space. We prove that these moduli spaces have
almost canonical symplectic structures. They are the symplectic quotients of Bn by the dressing
action of SU(2) (here B is the subgroup of the Borel subgroup of SL2(C) defined below). We show
that the hyperbolic Gauss map sets up a real analytic isomorphism between the spaces Mr and the
weighted quotients of (S2)n by PSL2(C) studied by Deligne and Mostow. We construct an integrable
Hamiltonian system on Mr by bending polygons along nonintersecting diagonals. We describe angle
variables and the momentum polyhedron for this system. The results of this paper are the analogues
for hyperbolic space of the results of [KM2] for Mr(E3), the space of n-gons with fixed side-lengths
in E3. We prove Mr(H3) and Mr(E3) are symplectomorphic.

1. Introduction. An (open) n-gon P in hyperbolic space H3 is an ordered
(n+1)-tuple (x1, ..., xn+1) of points in H3 called the vertices. We join the vertex
xi to the vertex xi+1 by the unique geodesic segment ei, called the i-th edge. We let
Poln denote the space of n-gons in H3. An n-gon is said to be closed if xn+1 = x1.
We let CPoln denote the space of closed n-gons. Two n-gons P = [x1, ..., xn+1] and
P ′ = [x′1, ..., x

′
n+1] are said to be equivalent if there exists g ∈ PSL2(C) such that

gxi = x′i, for all 1 ≤ i ≤ n + 1. We will either represent an n-gon P by its vertices or
its edges, P = [x1, ..., xn+1] = (e1, ...en).

Let r = (r1, ..., rn) be an n-tuple of positive numbers. This paper is concerned
with the symplectic geometry of the space of closed n-gons in H3 such that the i-th
edge ei has side-length ri, 1 ≤ i ≤ n, modulo PSL2(C). We will assume in this
paper (with the exception of §3) that r is not on a wall of Dn (see §2), hence Mr is a
real-analytic manifold.

The starting point of this paper is (see §4)

Theorem 1.1. The moduli spaces Mr are the symplectic quotients obtained from
the dressing action of SU(2) on Bn.

Here B = AN is the subgroup of the Borel subgroup of SL2(C), B = {( λ z
0 λ−1

)
:

λ ∈ R+, z ∈ C}. B is given the Poisson Lie group structure corresponding to the
Manin triple (sl(2,C), su(2), b) with 〈, 〉 on sl(2,C) given by the imaginary part of the
Killing form.

Remark 1.2. As a consequence of Theorem 1.1, the spaces Mr have an almost
canonical symplectic structure (the symplectic structure depends on a choice of Iwa-
sawa decomposition of SL2(C) or a ray in H3, but given two such choices, there exist
(infinitely many) g ∈ SL2(C) inducing an isomorphism of the two Poisson structures).
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Our next theorem relates the moduli spaces Mr to the weighted quotients Qsst =
Qsst(r) of (S2)n constructed by Deligne and Mostow in [DM]. By extending the sides
of the n-gon in the positive direction until they meet S2 = ∂∞H3, we obtain a map,
the hyperbolic Gauss map γ : Poln → (S2)n. We then have (here we assume Mr is
smooth)

Theorem 1.3. The hyperbolic Gauss map induces a real analytic diffeomorphism
γ : Mr → Qsst(r).

Remark 1.4. In [KM2], the first two authors constructed an analogous ana-
lytic isomorphism γ : Mr(E3) → Qsst(r) where Mr(E3) is the moduli space of n-gons
with the side-lengths r = (r1, ..., rn) in Euclidean space E3. Although they gave a
direct proof, this latter result was a consequence of the Kirwan-Kempf-Ness theorem,
[Ki],[KN], relating Mumford quotients to symplectic quotients. Our new result (The-
orem 1.3 above) relates a Mumford quotient to a quotient of a symplectic manifold by
a Poisson action.

The key step (surjectivity) in the proof of Theorem 1.3 is of independent in-
terest. We could try to invert γ : Mr → Qsst as follows. Suppose we are given
ξ = (ξ1, ..., ξn) ∈ Qsst. We wish to construct P ∈ Mr with γ(P ) = ξ. Choose x ∈ H3.
Put the first vertex x1 = x. Let σ1 be the geodesic ray from x1 to ξ1. Let x2 be the
point on σ1 with d(x1, x2) = r1. Let σ2 be the ray from x2 to ξ2. Cut off σ2 at x3 so
that d(x2, x3) = r2. We continue in this way until we get P = [x1, ..., xn+1]. However
it may not be the case that P closes up (i.e. xn+1 = x1).

Theorem 1.5. Suppose ξ is a stable configuration (see §3.1) on (S2)n. Then
there is a unique choice of initial point x = x(r, ξ) such that P closes up.

Remark 1.6. Let ν̃ be the atomic “measure” on S2 which assigns mass ri to the
point ξi, 1 ≤ i ≤ n, keeping track of the order of the ξi’s. Then the rule that assigns
x = x(ν̃) = x(ξ, r) above is PSL2(C)-equivariant and is a multiplicative analogue of
the conformal center of mass, C(ν), of Douady and Earle [DE], see also [MZ, §4].
Here ν is the measure ν =

∑n
i=1 riδ(ξ − ξi).

Remark 1.7. We may use Theorem 1.3 to construct a length-shrinking flow
on CPoln. Namely, let 0 ≤ t ≤ 1. Replace the weights r = (r1, ..., rn) by tr =
(tr1, ..., trn). We have

Mr
γr−→ Qsst(r) ∼= Qsst(tr)

γtr←−− Mtr.

The composition γ−1
tr ◦γr is the length-shrinking flow. Note that Qsst(r) and Qsst(tr)

are canonically isomorphic as complex analytic spaces. We obtain a curve x(t) =
x(tr, ξ). We have

Theorem 1.8. limt→0 x(tr, ξ) = C(ν), the conformal center of mass of Douady
and Earle.

Remark 1.9. We see that C(ν) is “semi-classical,” it depends only on the limit
as the curvature goes to zero (or the speed of light goes to infinity), see §3.3.

Our final theorems are connected with the study of certain integrable systems
on Mr obtained by “bending an n-gon along nonintersecting diagonals” Precisely, we
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proceed as follows. We define the diagonal dij of P to be the geodesic segment joining
xi to xj . Here we assume i < j. We let `ij be the length of dij . Then `ij is a
continuous function on Mr but is not smooth at the points where `ij = 0. We have
the following description of the Hamiltonian flow of `ij (it is defined provided `ij 6= 0).

Theorem 1.10. The Hamiltonian flow Ψt
ij of `ij applied to an n-gon P ∈ Mr

is obtained as follows. The diagonal dij separates P into two halves. Leave one half
fixed and rotate the other half at constant speed 1 around dij.

For obvious reasons we call Ψt
ij “bending along dij .”

Definition 1.11. We say two diagonals dij and dab of P do not intersect if the
interiors of d∗ij and d∗ab do not intersect, where d∗ij (resp. d∗ab) is the diagonal of a
convex planar n-gon P ∗ corresponding to dij (resp. dab). We then have

Theorem 1.12. Suppose dij and dab do not intersect, then

{`ij , `ab} = 0.

Remark 1.13. We give two proofs of this theorem. The first is a direct compu-
tation of the Poisson bracket due to Hermann Flaschka. The second is an elementary
geometric one depending on the description of the flows in Theorem 1.10. It corre-
sponds to the geometric intuition that we may wiggle flaps of a folded piece of paper
independently if the fold lines do not intersect.

We obtain a maximal collection of commuting flows if we draw a maximal collec-
tion of nonintersecting diagonals {dij , (i, j) ∈ I}. Later we will take the collection of
all diagonals starting at the first vertex, I = {(1, 3), (1, 4), ..., (1, n − 1)}. Each such
collection corresponds to a triangulation of a fixed convex planar n-gon P ∗. There
are n− 3 diagonals in such a maximal collection. Since dim Mr = 2n− 6, we obtain

Theorem 1.14. For each triangulation of a convex planar n-gon P ∗ we obtain an
integrable system on Mr. Precisely, we obtain a Hamiltonian action of an (n-3)-torus
on Mr which is defined on the Zariski open subset M ′

r defined by the nonvanishing of
the lengths of the diagonals in the triangulation.

We have a simple description of the angle variables and the momentum polyhedron
attached to the above integrable system. Let Mo

r ⊂ M ′
r be the subset such that none

of the n−2 triangles in the triangulation are degenerate. Let θ̂ij be the dihedral angle
at dij . Put θij = π − θ̂ij . Then the θij are angle variables.

To obtain the momentum polyhedron we follow [HK] and note that there are
three triangle inequalities associated to each of the n−2 triangles in the triangulation.
These are linear inequalities in the `ij ’s and the rij ’s. If they are satisfied, we can
build the n−2 triangles then glue them together and get an n-gon P with the required
side-lengths ri and diagonal lengths `ij . We obtain

Theorem 1.15. The momentum polyhedron of the above torus action (the image
of Mr under the `ij’s) is the subset of (R≥0)n−3 defined by the 3(n − 2) triangle
inequalities above.

As a consequence we obtain
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Corollary 1.16. The functions `ij , (i, j) ∈ I, are functionally independent.

Our results on n-gon linkages in H3 are the analogues of those of [KM2] for n-
gon linkages in E3. We conclude the paper by comparing the symplectic manifolds
Mr(H3) and Mr(E3). Assume henceforth that r is not on a wall of Dn.

Since the Euclidean Gauss map γe : Mr(H3) → Qsst(r) is a canonical diffeomor-
phism as is the hyperbolic Gauss map γh : Mr(E3) → Qsst(r) we obtain

Theorem 1.17. The hyperbolic and Euclidean Gauss maps induce a canonical
diffeomorphism

Mr(E3) ' Mr(H3).

The last part of the paper is devoted to proving

Theorem 1.18. Mr(E3) and Mr(H3) are (noncanonically) symplectomorphic.

This theorem is proved as follows. Let Xκ be the complete simply-connected
Riemannian manifold of constant curvature κ. In [Sa], Sargent proved that there
exists α > 0 and an analytically trivial fiber bundle π : E → (−∞, α) such that
π−1(κ) = Mr(Xκ). We construct a closed relative 2-form ωκ on E|(−∞,0] such that ωκ

induces a symplectic form on each fiber of π and such that the family of cohomology
classes [ωκ] on E|(−∞,0] is parallel for the Gauss-Manin connection. Theorem 1.18
then follows from the Moser technique [Mo].

The results are closely related to but different from those of [GW] and [A].

Acknowledgments. It is a pleasure to thank Hermann Flaschka for his help
and encouragement. He explained to us the set-up for the Sklyanin bracket (see §4.1)
and provided us with the first proof of Theorem 1.12. Also, this paper was inspired
by reading [FR] when we realized that the dressing action of SU(2) on Bn was just
the natural action of SU(2) on based hyperbolic n-gons. We would also like to thank
Jiang-Hua Lu for explaining the formulas of §5.1 to us. We would also like to thank
her for pointing out that it was proved in [GW] that the cohomology class of the
symplectic forms ωε on an adjoint orbit in the Lie algebra of a compact group was
constant.

2. Criteria for the moduli spaces to be smooth and nonempty. In this
chapter we will give necessary and sufficient conditions for the moduli space Mr to
be nonempty and sufficient conditions for Mr to be a smooth manifold.

First we need some more notation. Let ∗ be the point in H3 which is fixed by
PSU(2). We let Poln(∗) denote the space of n-gons [x1, ..., xn+1] with x1 = ∗ and
CPoln(∗) = CPoln ∩ Poln(∗). We let Ñr ⊂ Poln(∗) be the subspace of those n-gons
P = [x1, ..., xn+1] such that d(xi, xi+1) = ri, 1 ≤ i ≤ n. We put Nr = Ñr/PSU(2)
and M̃r = Ñr ∩ CPoln(∗). Hence, Mr = M̃r/PSU(2).

Let π : CPoln → (R≥0)n be the map that assigns to an n-gon e its set of side-
lengths. π(e) = (r1, ..., rn) with ri = d(xi, xi+1), 1 ≤ i ≤ n.

Lemma 2.1. The image of π is the closed polyhedral cone Dn defined by the
inequalities

r1 ≥ 0, ..., rn ≥ 0
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and the triangle inequalities

ri ≤ r1 + · · ·+ r̂i + · · ·+ rn, 1 ≤ i ≤ n

(here the ˆmeans that ri is omitted).

Proof. The proof is identical to the proof of the corresponding statement for
Euclidean space, [KM1, Lemma 1].

We next give sufficient conditions for Mr to be a smooth manifold. We will use
two results and the notation from §4.3 (the reader will check that no circular reasoning
is involved here). By Theorem 4.27 we find that Mr is a symplectic quotient.

Mr
∼= (ϕ| eNr

)−1(1)/SU(2)

By Lemma 4.23, 1 is a regular value of ϕ unless there exists P ∈ M̃r such that the
infinitesimal isotropy (su2)|P = {x ∈ SU(2) : X̂(P ) = 0} is nonzero.

Definition 2.2. An n-gon P is degenerate if it is contained in a geodesic.

We now have

Lemma 2.3. Mr is singular only if there exists a partition {1, ..., n} = I qJ with
#(I) > 1,#(J) > 1 such that

∑

i∈I

ri =
∑

j∈J

rJ .

Proof. Clearly (su2)|P = 0 unless P is degenerate. But if P is degenerate there
exists a partition {1, ..., n} = I q J as above (I corresponds to the back-tracks and J
to the forward-tracks of P ).

Remark 2.4. In the terminology of [KM1], [KM2], Mr is smooth unless r is on
a wall of Dn. Note that if |I| = 1 or |J | = 1 then r ∈ ∂Dn and Mr is reduced to a
single point.

There is a technical point concerning smoothness. We could also define Mr as the
fiber of π̄ : CPoln/PSL2(C) → Dn over r. It is not quite immediate that smoothness
of the symplectic quotient coincides with the smoothness of π̄−1(r). Fortunately, this
is the case (note r is a regular value of π̄ ⇔ r is a regular value of π).

Lemma 2.5. r is a regular value of π ⇔ 1 is a regular value of ϕ|Ñr.

Proof. The lemma follows from a consideration of the diagram

Ñr

²²

ϕr

""FFFFFFFFF

CPoln(∗) //

π
&&LLLLLLLLLL
Poln(∗) ϕ //

²²

B

(R≥0)n
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and the observation that ϕ : Poln(∗) → B (see §4.2) and the side-length map
Poln(∗) → (R≥0)n are obviously submersions. Here we have abbreviated ϕ|Ñr to
ϕr.

3. The geometric invariant theory of hyperbolic polygons.

3.1. The hyperbolic Gauss map and weighted quotients of the config-
uration spaces of points on the sphere. The goal of the next two sections is to
construct a natural homeomorphism γ : Mr → Qsst where Qsst is the r-th weighted
quotient of (S2)n by PSL2(C) constructed in [DM] in the case that Mr is smooth.
Qsst is a complex analytic space. We now review the construction of Qsst.

Let M ⊂ (S2)n be the set of n-tuples of distinct points. Then Q = M/PSL2(C)
is a (noncompact) Hausdorff manifold.

Definition 3.1. A point ~u ∈ (S2)n is called r-stable (resp. semi-stable) if

∑
uj=v

rj <
|r|
2

(resp. ≤ |r|
2

)

for all v ∈ S2. Here |r| =
∑n

j=1 rj. The set of stable and semi-stable points will be
denoted by Mst and Msst respectively. A semi-stable point ~u ∈ (S2)n is said to be a
nice semi-stable point if it is either stable or the orbit PSL2(C)~u is closed in Msst.

We denote the space of nice semi-stable points by Mnsst. We have the inclusions

Mst ⊂ Mnsst ⊂ Msst.

Let Mcusp = Msst−Mst. We obtain the points Mcusp in the following way. Partition
S = {1, ..., n} into disjoint sets S = S1 ∪ S2 with S1 = {i1, ..., ik}, S2 = {j1, ..., jn−k}
in such a way that ri1 + · · · + rik

= |r|
2 (whence rj1 + · · · + rjn−k

= |r|
2 ). Then ~u is

in Mcusp if either ui1 = · · · = uik
or uj1 = · · · = ujn−k

. The reader will verify that
~u ∈ Mcusp is a nice semi-stable point if and only if both sets of the equations above
hold. relation R via:
~u ≡ ~w (mod R) if either
(a) ~u, ~w ∈ Mst and ~w ∈ PSL2(C)~u,
or
(b) ~u, ~w ∈ Mcusp and the partitions of S corresponding to ~u, ~w coincide.

The reader will verify that ~u, ~w ∈ Mnsst −Mst then ~u ≡ ~w (mod R) if and only
if ~w ∈ PSL2(C)~u.

It is clear that R is an equivalence relation. Set

Qsst = Msst/R, Qnsst = Mnsst/R, Qst = Mst/R, Qcusp = Mcusp/R

each with the quotient topology. The elements of Qcusp are uniquely determined by
their partitions. Thus Qcusp is a finite set. It is clear that each equivalence class in
Qcusp contains a unique PSL2(C)-orbit of nice semi-stable points whence the inclusion

Mnsst ⊂ Msst

induces an isomorphism

Qnsst = Mnsst/PSL2(C) → Qsst.
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In case r1, ..., rn are rational then the quotient space Qsst can be given a structure
of a complex projective variety by the techniques of geometric invariant theory applied
to certain equivariant projective embeddings of (S2)n, see [DM, §4.6]. This concludes
our review of [DM, §4]. We now establish the connection with the moduli space Mr.

For the rest of this section (with one exception) we will use the ball model of
hyperbolic space (so ∗ = (0, 0, 0)). We will compactify H3 by enlarging the open three
ball to the closed three ball, thus we add S2 = ∂∞H3. Each point of S2 corresponds to
an equivalence class of geodesic rays in H3. Two rays α and β are equivalent if they are
asymptotic, i.e. limt→∞ α(t) = limt→∞ β(t) in the closed three ball. Intrinsically the
equivalent rays are characterized by the property that they are within finite Hausdorff
distance from each other.

In what follows all geodesic segments, geodesics and geodesic rays will be pa-
rameterized by arc-length. We now define the hyperbolic Gauss map γ (in various
incarnations). Let σ = [x, y], x, y ∈ H3, be the oriented geodesic segment from x to
y. Let σ̃(0) be the ray, σ̃ : [0,∞) → H3 with σ̃(0) = x and σ̃(`) = y (here ` = `(σ)
is the length of the geodesic segment σ). We define the (forward) Gauss map γ on
oriented segments by

γ(σ) = lim
t→∞

σ̃(t).

We may now define γ : Ñr → (S2)n by

γ(e) = (γ(e1), ..., γ(en)).

One of the main results of this paper is the following theorem – an analogue for
Poisson actions of the theorem of Kirwan, Kempf, and Ness, [Ki], [KN].

Theorem 3.2.

(i) γ(M̃r) ⊆ Mnsst.
(ii) If P is nondegenerate, then γ(P ) ∈ Mst.
(iii) γ induces a real analytic homeomorphism γ : Mr → Qsst.
(iv) Mr is smooth if and only if Mst = Msst. In this case Qsst is also smooth and

γ : Mr → Qsst is an analytic diffeomorphism.

Let η ∈ S2. We recall the definition of the geodesic flow φt
η associated to η.

(Strictly speaking, this flow is rather the projection to H3 of the restriction of the
geodesic flow on UT (H3) to the stable submanifold corresponding to η.) Given z ∈ H3

there is a unique arc-length parameterized ray σ with σ(0) = z, limt→∞ σ(t) = η. By
definition,

φt
η(z) = σ(t).

We will also need the definition of the Busemann function b(x, ξ), x ∈ H3, ξ ∈
∂∞H3. Let σ be an arc-length parameterized geodesic ray from ∗ to ξ. Then

b(x, ξ) = lim
t→∞

(d(x, σ(t))− t).

Note that for k ∈ PSU(2) = Stab(∗) we have

b(kx, kξ) = b(x, ξ).
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Also, in the upper half space for H3, we have

b((x, y, z),∞) = − log z.

We now prove

Lemma 3.3. For fixed ξ, −∇b(x, ξ) is the infinitesimal generator of the geodesic
flow φt

ξ.

Proof. From the first formula above, it suffices to check this statement in the
upper half space model (so ∗ = (0, 0, 1)) for ξ = ∞. By the second formula

−∇b(x, y, z) = z
∂

∂z
.

We will now prove (i) and (ii) in the statement of Theorem 3.2 above.

Lemma 3.4.

(i) γ(M̃r) ⊆ Mnsst.
(ii) P is nondegenerate ⇔ γ(P ) ∈ Mst.

Proof. Let P ∈ M̃r be a polygon with the vertices x1, ..., xn+1 = xn, we will use
the notation xi(t), 0 ≤ t ≤ ri, for the parameterized edge ei (so that xi(0) = xi).
We test stability of γ(P ) with respect to a point η ∈ S2. Let b(x) := b(x, η) be the
corresponding Busemann function. Then for any unit vector v ∈ Tx(H3)

(3.1) −∇b(x) · v ≤ 1

with the equality if and only if the geodesic ray exp(R+v) is asymptotic to η. Similarly,

(3.2) −∇b(x) · v ≥ −1

with the equality if and only if the geodesic ray exp(R−v) is asymptotic to η. Let
I ⊂ {1, ..., n} be the subset of indices such that γ(ei) = η. Let J be the complement
of I in {1, ..., n}. Put rI =

∑
i∈I ri, rJ =

∑
j∈J rj . Since the polygon P is closed,

using (3.1) and (3.2) we get:

0 = −b

∣∣∣∣
xn+1

x1

=
n−1∑

i=1

∫ ri

0

−x′i(t) · ∇b(xi(t))dt

≥
∑

i∈I

ri −
∑

j∈J

rj = rI − rJ

with the equality if and only if every edge ej , j ∈ J, is contained in the geodesic
through η and xj . Thus rI ≤ rJ , i.e. γ(P ) is semi-stable. If γ(P ) is not stable then
each edge ei, 1 ≤ i ≤ n, of P is contained in the geodesic through η and xi, which
implies that this geodesic is the same for all i. Hence P is degenerate in this case.

In order to prove that γ : Mr → Qnsst is injective and surjective, we will first need
to study a certain dynamical system fr,ξ ∈Diff(H3) attached to the configuration of
n points ξ = (ξ1, ..., ξn) on S2 weighted by r = (r1, ..., rn). The weights r will usually
be fixed and we will drop r in fr,ξ.
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3.2. A dynamical system on H3 and the proof that the Gauss map
is an isomorphism. Let ξ = (ξ1, ..., ξn) ∈ (S2)n. We define a diffeomorphism
fξ : H3 → H3 as follows. Assume that r = (r1, ..., rn) ∈ Dn is given. Let z ∈ H3

be given. Let σ1 be the ray emanating from z with limt→∞ σ1(t) = ξ1. Put x1 = z
and x2 = σ1(r1). Now let σ2 be the ray emanating from x2 with limt→∞ σ2(t) = ξ2.
Put x3 = σ2(r2). We continue in this way until we obtain xn+1 = σn(rn) where σn

is the geodesic ray emanating from xn with limt→∞ σn(t) = ξn. We define fξ by
fξ(z) = xn+1. Note that the polygon P = (x1, ..., xn+1) belongs to Ñr.

We now give another description of fξ:

fξ = φrn

ξn
◦ · · · ◦ φr1

ξ1

where φt
ξ is the time t geodesic flow towards ξ. We may interpret the previous formula

for fξ as a product (or multiplicative) integral [DF]. Partition the interval [0, 1] into
n equal subintervals, 0 = t0 < t1 < · · · < tn = 1. Let ν be the atomic measure on
[0, 1] given by ν(t) =

∑n−1
i=0 ri+1δ(t − ti). Let λ : [0, 1] → S2 be the map given by

λ|[ti, ti+1) = vi, 0 ≤ i ≤ n − 1. Define A : [0, 1] → C∞(H3, T (H3)) by A(t)(z) =
∇ b(z, λ(t)). Then in the notation of [DF],

fν =
1∏
0

eA(t)dν(t).

in Diff(H3).

Remark 3.5. In fact, in [DF] the only integrals considered take values in GLn(C).
We have included the above formula to stress the analogy with the conformal center of
mass. The above integral is the multiplicative analogue of the gradient of the averaged
Busemann function

∇bν(z) =
∫

S2
∇b(z, η)(λ∗dν)(η)

used to define the conformal center of mass (see §3.3).
We will first prove

Proposition 3.6. Suppose ξ consists of three or more distinct points. Then fξ

is a strict contraction. Hence, if ξ is stable, fξ is a strict contraction.

We will need the following lemma

Lemma 3.7. Let ξ ∈ S2 and φt
ξ be the geodesic flow towards ξ. Then, for each

t > 0,
(i) d(φt

ξ(z1), φt
ξ(z2)) ≤ d(z1, z2) with equality if and only if z1 and z2 belong to

the same geodesic η with end-point ξ.
(ii) If Z ∈ Tz(H3) is a tangent vector, then

||Dφt
ξ(Z)|| ≤ ||Z||

with equality if and only if Z is tangent to the geodesic η through z which is
asymptotic to ξ.
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Proof. We prove (ii) noting that (ii) implies (i). Use the upper half space model
for H3 and send ξ to ∞. Then, if Z = (a, b, c) is tangent to H3 at (x, y, z), we have

φt
∞(x, y, z) = (x, y, etz)

and

||Dφt
∞(a, b, c)||

∣∣∣∣
(x,y,etz)

=
√

e−2ta2 + e−2tb2 + c2 .

Remark 3.8. 1. In case of equality in (i), the points z1, z2, φt
ξ(z1), φt

ξ(z2) all
belong to η.

2. The above lemma also follows from the fact that Dφt
ξ(Z) is a stable Jacobi field

along η.

We can now prove the proposition. By the previous lemma, fξ = φrn

ξn
◦ · · · ◦ φr1

ξ1

does not increase distance. Suppose then that d(fξ(z1), fξ(z2)) = d(z1, z2). Then,

d(φr1
ξ1

(z1), φr1
ξ1

(z2)) = d(z1, z2).

Hence, z1, z2, φr1
ξ1

(z1), φr1
ξ1

(z2) are all on the geodesic η1 joining z1 to ξ1.
Next,

d(φr2
ξ2

(φr1
ξ1

(z1)), φr2
ξ2

(φr1
ξ1

(z2))) = d(φr1
ξ1

(z1), φr1
ξ1

(z2)).

Hence, φr1
ξ1

(z1), φr1
ξ1

(z2), φr2
ξ2

(φr1
ξ1

(z1)), φr2
ξ2

(φr1
ξ1

(z2)) are all on the same geodesic. This
geodesic is necessarily η2, the geodesic joining φr1

ξ1
(z1) to ξ2, since it contains φr1

ξ1
(z1)

and φr2
ξ2

(φr1
ξ1

(z1)). But since η2 contains φr1
ξ1

(z1) and φr1
ξ1

(z2) it also coincides with η1.
Hence, either ξ2 = ξ1 or ξ1 is the opposite end ξ̌1 of the geodesic η1. We continue in
this way and find that either ξi = ξ1 or ξi = ξ̌1, for all 1 ≤ i ≤ n.

Our next goal is to prove that fξ has a fixed-point in H3. Let H be the convex
hull of {ξ1, ..., ξn}. Let βi be the negative of the Busemann function associated to ξi

so βi increases along geodesic rays directed toward ξi. Fix a vector r = (r1, ..., rn)
and r-stable configuration ξ = (ξ1, ..., ξn) ∈ S2. For 1 ≥ h > 0, we shall consider
fhr,ξ : H3 → H3 where hr = (hr1, ..., hrn). Note that fhr,ξ(H) ⊂ H.

Lemma 3.9. There exist open horoballs, Oi, 1 ≤ i ≤ n, centered at ξi, which
depend only on r and ξ, such that for each 1 ≤ i ≤ n, if x ∈ Oi ∩H, then

βi(fhr,ξ(x)) < βi(x)

(so fhr,ξ(x) is “further away from” ξi than x).

Proof. The angle between any two geodesics asymptotic to ξi is zero, thus by
continuity, for each ε > 0, there exists a horoball Oi(ε) centered at ξi so that for each
x ∈ Oi(ε) ∩H and for each point ξj which is different from ξi, the angle between the
geodesic ray from x to ξj and ∇b(x, ξi) is ≤ ε. Let I = {` ∈ {1, ..., n} : ξ` = ξi}, J :=
{1, ..., n} − I. Recall the stability condition means:

rI :=
∑

`∈I

r` < rJ :=
∑

j∈J

rj
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thus we can choose π/2 > ε > 0 so that

rI − cos(ε)rJ < 0.

We define L by Oi(ε) = {βi > L} for this choice of ε, then we define Oi by Oi :=
{βi > L + |r|}. Pick x ∈ H ∩Oi, this point is the initial vertex of the linkage P with
vertices

x1 = x, x2 = φhr1
ξ1

(x1), ..., xn+1 = φhrn

ξn
(xn) = fhr,ξ(x).

Note that since the length of P equals h|r|, (and h ≤ 1), the whole polygon P is
contained in H ∩ Oi(ε). We let xj(t), t ∈ [0, hrj ] be the geodesic segment connecting
xj to xj+1 (parameterized by the arc-length). Then,

βi(xn+1)− βi(x1) =
n∑

k=1

βi(x)
∣∣∣∣
xk+1

xk

=
n∑

k=1

∫ hrk

0

∇βi(xk(t)) · x′k(t)dt

=
∑

`∈I

∫ hr`

0

∇βi(x`(t)) · x′`(t)dt +
∑

j∈J

∫ hrj

0

∇βi(xj(t)) · x′j(t)dt.

Recall that ||∇βi(xk(t))|| = 1, ||x′k(t)|| = 1, if ` ∈ I then

∇βi(x`(t)) · x′`(t) = 1,

if j ∈ J then

∇βi(xj(t)) · x′j(t) ≤ − cos(ε)

since xj(t) ∈ Oi(ε) for each 0 ≤ t ≤ hrj . Thus,

βi(xn+1)− βi(x1) ≤ h
∑

`∈I

r` − h cos(ε)
∑

j∈J

rj = h(rI − cos(ε)rJ) < 0.

We let O′i := {βi > L + 2|r|}, then

Proposition 3.10. fhr,ξ has a fixed point in K := H −⋃n
i=1O′i.

Proof. We claim that if x ∈ H −⋃n
i=1Oi then for all m ≥ 0, f

(m)
ξ (x) /∈ ⋃n

i=1O′i.
We first treat the case m = 1. Since d(x, fξ(x)) ≤ |r| we see that x ∈ H −⋃n

i=1Oi

implies fξ(x) /∈ ⋃n
i=1O′i. But if there exist an m − 1 such that y = f

(m−1)
ξ (x) ∈⋃n

i=1(Oi − O′i), then f
(m)
ξ (x) = fξ(y) /∈ ⋃n

i=1O′i by Lemma 3.9 and the claim is
proved.

We find that the sequence {f (m)
ξ (x)} is relatively compact and contained in K.

Let A ⊂ K be the accumulation set for this sequence. This is a compact subset such
that fξ(A) ⊂ A. If fξ does not have a fixed point in A then the continuous function
θ(x) := d(x, fξ(x)), x ∈ A is bounded away from zero. Let x0 ∈ A be a point where θ
attains its minimum. However (since fξ is a strict contraction)

θ(fξ(x0)) = d(fξ(x0), f2
ξ (x0)) < d(x0, f(x0)) = θ(x0),
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contradiction.
We can now prove Theorem 3.2. We first prove that γ : Mr → Qsst is injective.

This easily reduces to proving that if P, Q ∈ M̃r with γ(P ) = γ(Q), then P = Q. Let
x1 be the first vertex of P , x′1 be the first vertex of Q, and ξ = γ(P ) = γ(Q). Since
P closes up, we have fξ(x1) = x1. Since Q closes up, we have fξ(x′1) = x′1. But, fξ is
a strict contraction, hence x1 = x′1. It follows immediately that P = Q.

We now prove that γ is surjective. Let ξ ∈ Mst. There exists x ∈ H3 with
fξ(x) = x. Let P be the n-gon with γ(P ) = ξ and first vertex x. Then P closes
up and we have proved that γ is onto the stable points. If ξ is nice semi-stable but
not stable, then ξ = γ(P ) for a suitable degenerate n-gon. Hence, γ is surjective and
Theorem 3.2 is proved.

Remark 3.11. We have left the proof that the inverse map to γ : Mr → Qst

is smooth (resp. analytic) in the case Mr is smooth to the reader. This amounts to
checking that the fixed-point of fξ depends smoothly (resp. analytically) on ξ.

3.3. Connection with the conformal center of mass of Douady and
Earle. In this section, we prove Theorem 1.8 of the Introduction. We begin by
reviewing the definition of the conformal center of mass C(ν) ∈ H3, where ν is a
stable measure on S2 = ∂∞H3. Here we are using

Definition 3.12. A measure ν on S2 is stable if

ν({x}) <
|ν|
2

, x ∈ S2.

Here, |ν| is the total mass of ν.

We define the averaged Busemann function, bν : H3 → R, by

bν(x) =
∫

S2
b(x, ξ)dν(ξ).

We recall the following proposition ([DE], [MZ, Lemma 4.11]):

Proposition 3.13. Suppose ν is stable. The bν is strictly convex and has a
unique critical point (necessarily a minimum).

Definition 3.14. The conformal center of mass C(ν) is defined to be the above
critical point. Thus,

∇bν |C(ν) = 0.

The main point is the following,

Lemma 3.15. The assignment ν → C(ν) is PSL2(C)-equivariant,

C(g∗ν) = gC(ν).

Here g∗ν is the push-forward of ν by g ∈ PSL(2,C).

We now return to the set-up of the previous sections. We are given r = (r1, ..., rn)
and a stable configuration ξ = (ξ1, ..., ξn) ∈ (S2)n. We have the dynamical system ftr,ξ
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of the previous chapter, with fixed-point x = x(tr, ξ). We put ν =
∑n

i=1 riδ(ξ − ξi),
where δ is the Dirac probability measure supported on the origin in R3. We now have,

Lemma 3.16.

d

dt
ftr,ξ

∣∣
t=0

= −∇bν .

Proof. We abbreviate −∇b(x, ξi), the infinitesimal generator of the geodesic flow
associated to ξi, to Xi. Thus we want to prove

d

dt
ftr,ξ

∣∣
t=0

=
n∑

i=1

riXi.

But if ϕt and ψt are flows with infinitesimal generators X and Y respectively, then

d

dt

∣∣∣∣
t=0

ϕ ◦ ψ(x) =
∂2

∂t1∂t2

∣∣∣∣
t1=t2=0

ϕt1 ◦ ψt2(x)

=
∂

∂t2

∣∣∣∣
t2=0

ϕo ◦ ψt2(x) +
∂

∂t1

∣∣∣∣
t1=0

ϕt1 ◦ ψo(x)

=
∂

∂t2

∣∣∣∣
t2=0

ψt2(x) +
∂

∂t1

∣∣∣∣
t1=0

ϕt1(x)

= Y (x) + X(x).

Recall that

ftr,ξ(x) = φtrn

ξn
◦ φ

trn−1
ξn−1

◦ · · · ◦ φtr1
ξ1

(x).

Hence,

d

dt

∣∣∣∣
t=0

ftr,ξ(x) =
n∑

i=1

Xi(x).

We are ready to prove Theorem 1.8 of the Introduction. We abbreviate −∇bν by
X.

Theorem 3.17. Let x(tr, ξ) be the unique fixed point of ftr,ξ, 0 < t ≤ 1. Then

lim
t→0

x(tr, ξ) = C(ν).

Proof. We note that f0r,ξ = id. Hence, applying Lemma 3.16, the Taylor approx-
imation of ftr,ξ(x) around t = 0 is

ftr,ξ(x) = x + tX(x) + t2R(x, t)
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(where R(x, t) is smooth). Let ϕ(x, t) = X(x)+ tR(x, t). By definition, the conformal
center of mass C(ν) is the unique solution of

ϕ(x, 0) = X(x) = 0.

Since bν is strictly convex, if ν is stable, [MZ, Corollary 4.6], C(ν) is a nondegenerate
zero of X and we may apply the implicit function theorem to solve

ϕ(x, t) = 0

for x as a function of t near (C(ν), 0). Thus, there exists δ > 0 and smooth curve,
x̂(t), defined for |t| < δ, satisfying

(i) ϕ(x̂(t), t) = 0
(ii) x̂(0) = C(ν).

But clearly, (i) implies ftr,ξ(x̂(t)) = x̂(t), 0 < t < δ. Since the fixed-point of ftr,ξ, 0 <
t ≤ 1, is unique, we conclude x̂(t) = x(tr, ξ), 0 < t < δ. Hence,

lim
t→0

x(tr, ξ) = lim
t→0

x̂(t) = C(ν).

4. The Symplectic geometry of Mr(H3).

4.1. The Poisson-Lie group structure on Bn. In this section we let G be
any (linear) complex simple group, B = AN be the subgroup of the Borel subgroup
such that N is its unipotent radical and A is the connected component of the identity
in a maximal split torus over R, and K be a maximal compact subgroup. We will
construct a Poisson Lie group structure on G which will restrict to a Poisson Lie group
structure on B. For the basic notions of Poisson Lie group, Poisson action, etc. we
refer the reader to [Lu1], [GW], [LW], and [CP].

Let Rg and Lg be the action of g on G by the right and left multiplication
respectively. Let g denote the Lie algebra of G, k be the Lie algebra of K and b be the
Lie algebra of B. Then g = b ⊕ k and G = BK. Let ρk (resp. ρb) be the projection
on k (resp. on b). We define R := ρk − ρb and let 1

2 〈, 〉 be the imaginary part of
the Killing form on g. In the direct sum splitting g = k ⊕ b we see that k and b are
totally-isotropic subspaces dually paired by 〈, 〉.

Let ϕ ∈ C∞(G). Define Dϕ : G → g and D′ϕ : G → g by

〈D′ϕ(g), ν〉 =
d

dt
|t=0ϕ(getν)

〈Dϕ(g), ν〉 =
d

dt
|t=0ϕ(etνg)

for ν ∈ g.
We extend 〈, 〉 to a biinvariant element of C∞(G,S2T ∗(G)) again denoted 〈, 〉.

Now define ∇ϕ ∈ C∞(G,T ∗(G)) by

〈∇ϕ(g), x〉 = dϕg(x), x ∈ Tg(G)

We have

Dϕ(g) = dR−1
g ∇ϕ(g)
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D′ϕ(g) = dL−1
g ∇ϕ(g) = Adg−1Dϕ(g)

The Sklyanin bracket {ϕ,ψ} is defined for ϕ,ψ ∈ C∞(G) by

{ϕ,ψ}(g) =
1
2
(〈RD′ϕ(g), D′ψ(g)〉 − 〈RDϕ(g), Dψ(g)〉)

where R = ρk − ρb.

Lemma 4.1. The bracket {ϕ,ψ} is a Poisson bracket on C∞(G).

Proof. See Theorem 1 of [STS].

Let w ∈ C∞(G, Λ2T (G)) be the bivector field corresponding to {·, ·}. We now
show that {·, ·} induces a Poisson bracket on C∞(B).

Lemma 4.2. w(b) is tangent to B , i.e. w(b) ∈ Λ2Tb(B) ⊂ Λ2T (G) for all b ∈ B.

Proof. It suffices to prove that if ϕ vanishes identically on B then {ϕ,ψ} vanishes
identically on B for each ψ. However if ϕ vanishes identically on B then ∇ϕ(b) ∈ TbB
for all b ∈ B. Hence Dϕ(b) ∈ b, D′ϕ ∈ b for each b ∈ B. This implies that
RDϕ = −Dϕ, RD′ϕ = −D′ϕ and

2{ϕ,ψ}(b) = −〈D′ϕ(b), D′ψ(b)〉+ 〈Dϕ(b), Dψ(b)〉
But D′ϕ(b) = Adb−1Dϕ(b), D′ψ(b) = Adb−1Dψ(b) and 〈, 〉 is Ad-invariant.

For the next corollary note that T ∗b (B) is a quotient of T ∗b (G).

Corollary 4.3. Let π be the skew-symmetric 2-tensor on T ∗(G) corresponding
to w. Pick b ∈ B and α, β ∈ T ∗b (G). Then π|b depends only on the images of α and
β in T ∗b (B).

We will continue to use π for the skew-symmetric 2-tensor on T ∗(B) induced by
π above.

Remark 4.4. An argument identical to that above proves that w(k) is tangent to
K. Hence {·, ·} induces a Poisson structure on K. With the above structures K and
B are sub Poisson Lie subgroups of the Poisson Lie group G.

We will need a formula for the Poisson tensor π on B. We will use 〈, 〉 to identify
T ∗(G) and T (G). Under this identification T ∗b (B) is identified to Tb(G)/Tb(B). We
will identify this quotient with dRbk. We let π̌|b denote the resulting skew-symmetric
2-tensor on dRbk. Finally we define π̌r ∈ C∞(B, (Λ2k)∗) by

π̌|rb(x, y) = π̌|b(dRbx, dRby), x, y ∈ k

We now recover formulae (2.25) of [FR] (or [LR, Definition 4.2]) for π̌r.

Lemma 4.5. π̌|rb(x, y) = 〈ρk(Adb−1x), ρb(Adb−1y)〉.

Proof. Choose ϕ,ψ ∈ C∞(G) with ∇ϕ(b) = dRbx and ∇ψ(b) = dRby. Then

π̌|rb(x, y) = π̌|b(dRbx, dRby) = π̌|b(∇ϕ(b),∇ψ(b))
= π|b(dϕ(b), dψ(b)) = {ϕ,ψ}(b)
=

1
2
〈RdL−1

b ∇ϕ(b), dL−1
b ∇ψ(b)〉 − 1

2
〈RdR−1

b ∇ϕ(b), dR−1
b ∇ψ(b)〉

=
1
2
〈RAdb−1x,Adb−1y〉 − 1

2
〈Rx, y〉.
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But x, y ∈ k implies 〈Rx, y〉 = 0. Hence,

π̌|rb(x, y) =
1
2
〈ρk(Adb−1x), Adb−1y〉 − 1

2
〈ρb(Adb−1x), Adb−1y〉

=
1
2
〈ρk(Adb−1x), ρbAdb−1y〉 − 1

2
〈ρb(Adb−1x), ρkAdb−1y〉

= 〈ρk(Adb−1x), ρb(Adb−1y)〉.
The last equality holds by skew-symmetry, see [LR, Lemma 4.3].

We will abuse notation and drop the ˇ and r in the notation for π̌r henceforth.

Remark 4.6. The Poisson tensor on K, πK , induced from the Skylanin bracket
on G is the negative of the usual Poisson tensor on K (see [FR], [Lu1]). Throughout
this paper we let πK(k) = dLk X ∧ Y − dRk X ∧ Y , where X = 1

2

(
0 1
−1 0

)
and Y =

1
2 ( 0 i

i 0 ).

We now give Gn the product Poisson structure, hence Bn inherits the product
structure. We introduce more notation to deal with the product. We let gi ⊂ gn =
g⊕...⊕g be the image of g under the embedding into i-th summand. For ϕ ∈ C∞(Gn)
we define

Diϕ : Gn → gi, D′
iϕ : Gn → gi

as follows. Let g = (g1, ..., gn) ∈ Gn and ν ∈ gi, then

〈Diϕ, ν〉 =
d

dt
|t=0ϕ(g1, ..., e

tνgi, ..., gn)

〈D′
iϕ, ν〉 =

d

dt
|t=0ϕ(g1, ..., gie

tν , ..., gn)

Here we extend 〈, 〉 to gn by

〈δ, γ〉 =
n∑

i=1

〈δi, γi〉

for δ = (δ1, ..., δn), γ = (γ1, ..., γn). We define di,∇i in an analogous fashion. Finally
define the Poisson bracket on C∞(Gn) by

{ϕ,ψ}(g) =
1
2

n∑

i=1

[〈RD′
iϕ(g), D′

iψ(g)〉 − 〈RDiϕ(g), Diψ(g)〉].

As expected we obtain an induced Poisson bracket on C∞(Bn) using the above formula
with g ∈ G replaced by b ∈ B.

Now let π be the Poisson tensor on Gn corresponding to the above Poisson bracket.
Let π# ∈ Hom(T ∗(Gn), T (Gn)) be defined by β(π#(α)) = π(α, β). Let ϕ ∈ C∞(Gn).
We have

Definition 4.7. The Hamiltonian vector field associated to ϕ is the vector field
Xϕ ∈ C∞(Gn, T (Gn)) given by

Xϕ = π#dϕ
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We will need a formula for Xϕ.

Lemma 4.8. Let g = (g1, ..., gn). Then Xϕ(g) = (X1(g), ..., Xn(g)) where

Xi(g) =
1
2
[dRgiRDiϕ(g)− dLgiRD′

iϕ(g)].

Proof. We will use the formula

{ϕ,ψ} = −dψ(Xϕ) = −〈Xϕ,∇ψ〉

Here∇ is the gradient with respect to 〈, 〉 on gn, see above, hence∇ψ=(∇1ψ, ...,∇nψ).
We have

{ϕ,ψ}(g) =
1
2

n∑

i=1

[〈RD′
iϕ(g), D′

iψ(g)〉 − 〈RDiϕ(g), Diψ(g)〉]

=
1
2

n∑

i=1

[〈RD′
iϕ(g), dL−1

gi
∇iψ(g)〉 − 〈RDiϕ(g), dR−1

gi
∇iψ(g)〉]

=
1
2

n∑

i=1

[〈dLgiRD′
iϕ(g),∇iψ(g)〉 − 〈dRgiRDiϕ(g),∇iψ(g)〉]

=
1
2
〈(X1(g), ..., Xn(g)), (∇1ψ(g), ...,∇nψ(g))〉

=
1
2
〈Xϕ(g),∇ψ(g)〉

Remark 4.9. Since w(b) is tangent to Bn the field Xϕ(b) will also be tangent to
Bn.

4.2. The dressing action of K on Bn and the action on n-gons in G/K.
The basic reference for this section is [FR]. In that paper the authors take n = 2 and
write G = KB. We will leave to the reader the task of comparing our formulae with
theirs.

In what follows we let G = SL2(C), K = SU(2), and B be the subgroup of G
consisting of upper-triangular matrices with positive diagonal entries. We let ρB , ρK

be the projections relative to the decomposition G = BK. For the next theorem (in
the case n = 2) see [FR, Formula 2.15].

Theorem 4.10. There is a Poisson action of K on the Poisson manifold Bn

given by

k · (b1, ..., bn) = (b′1, ..., b
′
n)

with b′i = ρB(ρK(kb1 · · · bi−1)bi), 1 ≤ i ≤ n.
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Definition 4.11. The above action is called the dressing action of K on Bn.

Definition 4.12. For n = 1, we denote by Br = Kb the dressing orbit of b,
where b ∈ B and d(b ∗, ∗) = r. We will also need the formula for the infinitesimal

dressing action of k on Bn. This action is given for x ∈ k by

x · (b1, · · · , bn) = (ξ1, ..., ξn) ∈ Tb(Bn)

with ξi = dLbi
ρbAdb−1

i
ρkAd(b1···bi−1)−1x. Note that ξi ∈ Tbi

(B).

Remark 4.13. In order to pass from the K-action to the k-action observe that
ρK(bg) = ρK(g) and ρB(bg) = bρB(g). Accordingly we may rewrite the K-action as
k · (b1, ..., bn) = (b′1, ..., b

′
n) with

b′i = biρB(b−1
i ρK((b1 · · · bi−1)−1kb1 · · · bi−1)bi), 1 ≤ i ≤ n.

Recall, ∗ ∈ H3 is the element fixed by the action of K, K · ∗ = ∗. Since B acts
simply-transitively on G/K we have

Lemma 4.14. (i) The map Φ : Bn → Poln(∗) given by

Φ(b1, ..., bn) = (∗, b1∗, ..., b1 · · · bn∗)

is a diffeomorphism.
(ii) The map Φ induces a diffeomorphism from {b ∈ Bn : b1 · · · bn = 1} onto

CPoln(∗).
We now have

Lemma 4.15. Φ is a K-equivariant diffeomorphism where K acts on Bn by the
dressing action and on Poln(∗) by the natural (diagonal) action.

Proof. Let k · (b1, ..., bn) = (b′′1 , ..., b′′n) be the pull-back to Bn of the action of K
on Poln(∗). Then

b′′1∗ = kb1∗

b′′1b′′2∗ = kb1b2∗
...

b′′1 · · · b′′n∗ = kb1 · · · bn∗

We obtain

b′′1 · · · b′′i = ρB(kb1 · · · bi)

b′′i = ρB((b′′1 · · · b′′i−1)
−1k(b1 · · · bi)) = ρB((ρB(b′′1 · · · b′′i−1))

−1kb1 · · · bi−1bi)
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= ρB((ρB(kb1 · · · bi−1))−1kb1 · · · bi−1bi) = ρB(ρK(kb1 · · · bi−1)bi)

There is another formula for the dressing action of K on Bn that will be useful.

Lemma 4.16. With the above notation

b′i = ρB(ρK(· · · (ρK︸ ︷︷ ︸
i−1 times

(kb1)b2) · · · bi−1)bi)

Proof. Induction on i.

We obtain a corresponding formula for the infinitesimal dressing action of k on Bn.

Lemma 4.17. x · (b1, ..., bn) = (ξ1, ..., ξn) where

ξi = dLbi
ρbAdb−1

i
ρkAdb−1

i−1
· · · ρkAdb−1

1
x.

We now draw an important consequence.

Lemma 4.18. The map Φ induces a diffeomorphism between Bn
r = Br1×· · ·×Brn

and the configuration space of open based n-gon linkages Ñr, where if b ∈ Bn
r , then

r = (r1, .., rn) and d(b1 · · · bi∗, b1 · · · bi−1∗) = ri, for all 1 ≤ i ≤ n.

Proof. Let b ∈ Bn
r be given. Then Φ(b) = (∗, b1∗, ..., b1 · · · bn∗). The K-orbit of

Φ(b) is

[∗, kb1∗, ..., k(b1 · · · bn)∗]

The i-th edge ei of Φ(b) is the geodesic segment joining kb1 · · · bi−1∗ to kb1 · · · bi∗.
Clearly this is congruent (by kb1 · · · bi−1) to the segment connecting ∗ to bi∗.

Corollary 4.19. The symplectic leaves of Bn map to the configuration spaces
Ñr under Φ.

Proof. The Bn
r are the symplectic leaves of Bn.

4.3. The moduli space Mr as a symplectic quotient. We have seen that
Φ induces a diffeomorphism from {(b1, ..., bn) ∈ Bn

r : b1 · · · bn = 1}/K to the moduli
space Mr of closed n-gon linkages in H3 modulo isometry. In this section we will prove
that the map ϕ : Bn → B given by ϕ(b1, · · · , bn) = b1 · · · bn is a momentum map for
the (dressing) K action on Bn. Hence, Mr is a symplectic quotient, in particular it
is a symplectic manifold if 1 is a regular value by Lemma 4.24 below.

The definition of a momentum map for a Poisson action of a Poisson Lie group
was given in [Lu1].

Definition 4.20. Suppose that K is a Poisson Lie group, (M, π) is a Poisson
manifold, and K ×M → M is a Poisson action. Let x ∈ k, αx be the extension of
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x ∈ k = (k∗)∗ to a right-invariant 1-form on K∗, and x̂ be the induced vector field on
M . Then a map ϕ : M → K∗ is a momentum map if it satisfies the equation

−π#ϕ∗αx = x̂

Remark 4.21. For the definition of K∗, the dual Poisson Lie group, see
[Lu1]. In our case K∗ = B.

The next lemma is proved in [Lu1] and [Lu3]. We include a proof here for complete-
ness.

Lemma 4.22. Suppose that M is a symplectic manifold, K is a Poisson Lie
group and K × M → M is a Poisson action with an equivariant momentum map
ϕ : M → K∗. Assume 1 is a regular value of ϕ. Then ϕ−1(1)/K is a symplectic
orbifold with the symplectic structure given by taking restriction and quotient of the
symplectic structure on M . If we assume further that the isotropy subgroups of all
x ∈ ϕ−1(1) are trivial then ϕ−1(1)/K is a manifold.

Proof. Let ω be the symplectic form on M and m ∈ ϕ−1(1) ⊂ M . Let Vm be
a complement to Tmϕ−1(1) in TmM . Let k ·m ⊂ TmM be the tangent space to the
orbit K ·m. Hence km = {x̂(m) : x ∈ k}. We first prove the identity

ωmx̂(m) = −ϕ∗αx|m
Here we use ωm to denote the induced map TmM → T ∗mM as well as the symplectic
form evaluated at m. Indeed we have the identity

−π#ϕ∗αx = x̂

Applying ω we get

ωx̂ = −ϕ∗αx

We claim that if m ∈ ϕ−1(1) the k ·m is orthogonal (under ωm) to Tm(ϕ−1(1)), in
particular it is totally-isotropic. Let x̂(m) ∈ k ·m and u ∈ Tm(ϕ−1(1)). Then

ωm(x̂(m), u) = −ϕ∗αx|m(u) = −αx|m(dϕmu)

But dϕmu = 0 and the claim is proved. Hence, the restriction of ωm to Tm(ϕ−1(1))
descends to Tm(ϕ−1(1))/k ·m = TK·m(ϕ−1(1)/K). We now prove that the induced
form is nondegenerate.

To this end we claim that k ·m and Vm are dually paired by ωm. We draw two
conclusions from the hypothesis that 1 is a regular value for ϕ. First by [FR, Lemma
4.2] the map k → k ·m given by x 7→ x̂(m) is an isomorphism. Second, dϕm : Vm → k∗

is an isomorphism. Let {x1, ..., xN} be a basis for k, whence {x̂1(m), ..., x̂N (m)} is a
basis for k ·m. We want to find a basis {v1, ..., vN} for Vm so that ωm(x̂i(m), vj) = δij .
Choose a basis {v1, ..., vN} for Vm such that {dϕmv1, ..., dϕmvN} ⊂ k∗ is dual to
{x1, ..., xN}. Then

ωm(x̂i(m), vj) = −ϕ∗αxi |m(vj) = −αxi |m(dϕvj) = −dϕvj(xi) = −δij
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As a consequence of the previous claim, the restriction of ωm to k ·m⊕ Vm is nonde-
generate. We then have the orthogonal complement (k ·m ⊕ Vm)⊥ is a complement
to k ·m⊕ Vm and ωm|(k ·m⊕ Vm)⊥ is nondegenerate. But then (k ·m⊕ Vm)⊥ maps
isomorphically to TK·m(ϕ−1(1)/K).

We will also need

Lemma 4.23. ϕ(m) is a regular value for ϕ if and only if km = {x ∈ k : x̂(m) =
0} = 0.

Proof. Let x ∈ k. Then x ∈ (Im dϕ|m)⊥ ⇔ ϕ∗αx = 0 ⇔ 0 = −πϕ∗αx = x̂(m).

We now begin the proof that ϕ is a momentum map for the dressing action of K
on Bn. We will need some notation. Let x ∈ k = b∗. Recall that αx is the extension
of x to a right-invariant 1-form on B. Thus if ζ ∈ Tb(B) we have

αx|b(ζ) = 〈dRbx, ζ〉.

Lemma 4.24. −π#αx|b = dLbρbAdb−1x.

Proof. Let y ∈ k. It suffices to prove that

π|b(αx(b), αy(b)) = −αy|b(dLbρbAdb−1x)

Now

π|b(αx(b), αy(b)) = π|b(dRbx, dRby) = πr|b(x, y) = 〈ρk(Adb−1x), ρb(Adb−1y)〉
according to Lemma 4.5. Also

−αy|b(dLbρbAdb−1x) = −〈dRby, dLbρbAdb−1x〉

= −〈Adb−1y, ρbAdb−1x〉 = −〈ρkAdb−1y, ρbAdb−1x〉 = 〈ρkAdb−1x, ρbAdb−1y〉

Lemma 4.25. ϕ∗αx|b = (αx1 |b1 , · · · , αxn
|bn

), where x1 = x and xi =
ρk(Ad(b1···bi−1)−1x), 2 ≤ i ≤ n.

Proof. We will use the following formula (the product rule). Let b = (b1, ..., bn)
and ζ = (ζ1, ..., ζn) ∈ Tb(Bn). Then

dϕb(ζ) = (dRb2···bnζ1 + dLb1dRb3···bnζ2 + · · ·+ dLb1···bn−1ζn)

Hence

(ϕ∗αx)|b(ζ) = αx|b1···bn
(dRb2···bn

ζ1 + dLb1dRb3···bn
ζ2 + · · ·+ dLb1···bn−1ζn)

= 〈dRb1···bn
x, dRb2···bn

ζ1〉+ 〈dRb1···bn
x, dLb1dRb3···bn

ζ2〉+ · · ·
+〈dRb1···bn

x, dLb1···bn−1ζn〉
= 〈dRb1x, ζ1〉+ 〈dRb2Adb−1

1
x, ζ2〉+ · · ·+ 〈dRbn

Ad(b1···bn−1)−1x, ζn〉

=
n∑

i=1

αxi
(ζi)
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Proposition 4.26. ϕ is an equivariant momentum map for the dressing action
of K on Bn.

Proof. To show that ϕ is a momentum map we have to check that

−π#ϕ∗αx|b = x · (b1, ..., bn)

But −π#ϕ∗αx = (−π#αx1 , · · · ,−π#αxn
) and the result follows from the previous

two lemmas. To show that ϕ is equivariant we have to check that ϕ(k · (b1, ..., bn)) =
k · b1...bn. This is obvious from the point of view of polygons.

As a consequence of the above proposition we obtain

Theorem 4.27. The map Φ carries the symplectic quotient (ϕ|Bn
r
)−1(1)/K dif-

feomorphically to the moduli space of n-gon linkages Mr.

Remark 4.28. We obtain a symplectic structure on Mr by transport of structure.

4.4. The bending Hamiltonians. In this section we will compute the Hamil-
tonian vector fields Xfj

of the functions

fj(b) = tr((b1 · · · bj)(b1 · · · bj)∗), 1 ≤ j ≤ n.

Throughout the rest of the paper, we will assume G = SL2(C). Then G = BK, where
B = {( a z

0 a−1 ) ∈ SL2(C)|a ∈ R+, z ∈ C} and K = SU(2).
We will use the following notation. If A ∈ Mm(C) then A0 = A − 1

m tr(A)I will
be its projection to the traceless matrices.

Theorem 4.29. Define Fj : Bn → k for b = (b1, b2, ..., bn) by

Fj(b) =
√−1[(b1 · · · bj)(b1 · · · bj)∗]0

Then Xfj
(b) = (Fj(b) · (b1, ..., bj), 0, ..., 0) where · is the infinitesimal dressing action

of k on Bj, see §4.2.

Proof. It will be convenient to work on Gn and then restrict to Bn. By the
formula for Xϕ of Lemma 4.8 it suffices to compute Difj and D′

ifj . We recall that

D′
iϕ(g) = Adg−1

i
Diϕ(g)

hence it suffices to compute Difj(g). We first reduce to computing D1fj by

Lemma 4.30. Difj(g) = Ad(g1···gi−1)−1D1fj(g).

Proof. By definition

〈Difj(g), ν〉 =
d

dt
|t=0fj(g1, ..., e

tνgi, ..., gn)

But it is elementary that

fj(g1, ..., e
tνgi, ..., gn) = fj((Adg1···gi−1e

tν)g1, ..., gn)
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Differentiating at t = 0 we obtain

〈Difj(g), ν〉 = 〈D1fj(g), Adg1···gi−1ν〉 = 〈Ad(g1···gi−1)−1D1fj(g), ν〉

We next have

Lemma 4.31. D1fj(g) = Fj(g).

Proof. By definition

〈D1fj(g), ν〉 =
d

dt
|t=0tr[(etνg1 · · · gj)(etνg1 · · · gj)∗]

= tr[(νg1 · · · gj)(g1 · · · gj)∗ + (g1 · · · gj)(νg1 · · · gj)∗]
= tr[(νg1 · · · gj)(g1 · · · gj)∗] + tr[(νg1 · · · gj)(g1 · · · gj)∗]∗

= tr[(νg1 · · · gj)(g1 · · · gj)∗] + tr[(νg1 · · · gj)(g1 · · · gj)∗]
= 2Retr[(νg1 · · · gj)(g1 · · · gj)∗]

= 2Im
√−1tr[ν(g1 · · · gj)(g1 · · · gj)∗]

Since ν ∈ sl2(C) we may replace

(g1 · · · gj)(g1 · · · gj)∗

by its traceless projection

[(g1 · · · gj)(g1 · · · gj)∗]0 .

Since tr is complex bilinear we obtain

〈D1fj(g), ν〉 = 2Imtr(ν
√−1[(g1 · · · gj)(g1 · · · gj)∗]0)

= 〈√−1[(g1 · · · gj)(g1 · · · gj)∗]0, ν〉.

Now we restrict to Bn and substitute into our formula for Xfj (b) in Lemma 4.8.
We obtain

Lemma 4.32. (Xfj
)i = (D1fj(b) · (b1, ..., bn))i= the i-th component of the infini-

tesimal dressing action of D1fj(b) ∈ k.

Proof. By Lemma 4.8 we have

(Xfj )i =
1
2
[dRbiRDifj(b)− dLbiRD′

ifj(b)]

=
1
2
[dRbiRAd(b1···bi−1)−1D1fj(b)− dLbiRAdb−1

i
Ad(b1···bi−1)−1D1fj(b)]

We write

Ad(b1···bi−1)−1D1fj(b) = X1 + η1
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with X1 ∈ k and η ∈ b. Hence

X1 = ρk(Ad(b1···bi−1)−1D1fj(b))

η1 = ρb(Ad(b1···bi−1)−1D1fj(b))

Then

RAd(b1···bi−1)−1D1fj(b) = X1 − η1

We write

Adb−1
i

X1 = X2 + η2, X2 ∈ k, η2 ∈ b

Then X2 = ρk(Adb−1
i

X1), η2 = ρb(Adb−1
i

X1) and

Adb−1
i

(X1 + η1) = X2 + η2 + Adb−1
i

η1

Hence

RAdb−1
i

Ad(b1···bi−1)−1D1fj(b) = X2 − η2 −Adb−1
i

η1

= X2 + η2 − 2η2 −Adb−1
i

η1

= Adb−1
i

X1 − 2η2 −Adb−1
i

η1

Hence

(Xfj )i =
1
2
[dRbiX1 − dRbiη1 − dLbiAdb−1

i
X1 + 2dLbiη2 + dLbiAdb−1

i
η1]

But dLbiAdb−1
i

= dRbi and we obtain

(Xfj
)i = dLbi

η2

Since η2 = ρb(Adb−1
i

ρk(Ad(b1···bi−1)−1D1fj(b))) the lemma follows.

With this Theorem 4.29 is proved.

4.5. Commuting Hamiltonians. In this section we will show the functions

fj(b) = tr((b1 · · · bj)(b1 · · · bj)∗), 1 ≤ j ≤ n

Poisson commute. The proof is due to Hermann Flaschka.

Proposition 4.33. {fj , fk} = 0 for all j, k.

Proof. Again we will work on Gn and then restrict to Bn. Without loss of
generality we let j ≤ k.
Recall from Lemma 4.30

Difj(g) = Ad(g1···gi−1)−1D1fj(g).

It is easily seen that

Difj(g) = D′
i−1fj(g), for 1 ≤ i ≤ j.
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We now have,

{fj , fk}(g) =
1
2

n∑

i=1

[〈RD′
ifj(g), D′

ifk(g)〉 − 〈RDifj(g), Difk(g)〉]

=
1
2

j∑

i=1

[〈RD′
ifj(g), D′

ifk(g)〉 − 〈RDifj(g), Difk(g)〉]

=
1
2
[〈RD′

jfj(g), D′
ifk(g)〉 − 〈RD1fj(g), D1fk(g)〉]

=
1
2
[〈RAd(g1···gj)−1D1fj(g), Ad(g1···gj)−1D1fk(g)〉 − 〈RD1fj(g), D1fk(g)〉]

=
1
2
〈RAd(g1···gj)−1D1fj(g), Ad(g1···gj)−1D1fk(g)〉

since D1fi(g) ∈ k for all i. The proposition follows if we can show

〈RAd(g1···gj)−1D1fj(g), Ad(g1···gj)−1D1fk(g)〉 = 0.

It follows from the proof of Theorem 4.29 that

Ad(g1···gj)−1D1fj(g) =
√−1Ad(g1···gj)−1 [(g1 · · · gj)(g1 · · · gj)∗]0

=
√−1[(g1 · · · gj)∗(g1 · · · gj)]0 ∈ k.

Hence,

{fj , fk}(g) = 〈RAd(g1···gj)−1D1fj(g), Ad(g1···gj)−1D1fk(g)〉
= 〈Ad(g1···gj)−1D1fj(g), Ad(g1···gj)−1D1fk(g)〉
= 〈D1fj(g), D1fk(g)〉
= 0

since 〈, 〉 is Ad-invariant. This proves the proposition on Gn. The result then holds
when we restrict to Bn.

4.6. The Hamiltonian flow. In this section we compute the Hamiltonian flow,
ϕt

k, associated to fk.
Recall from Theorem 4.29 the Hamiltonian field for fk is given by Xfj (b) =

(Fj(b) · (b1, ..., bj), 0, ..., 0) where · is the infinitesimal dressing action of K on Bn. We
now need to solve the system of ordinary differential equations

(∗)
{

dbi

dt = (Fj(b) · (b1, ..., bj))i, 1 ≤ i ≤ j
dbi

dt = 0, j + 1 ≤ i ≤ n

Lemma 4.34. D1fj(b) = Fj(b) is invariant along solution curves of (*).

Proof. It suffices to show ϕj(b) = b1 · · · bj is constant along solution curves.
Let b(t) = (b1(t), ..., bn(t)) be a solution of Xfj . Then
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d

dt
ϕj(b(t)) =

db1

dt
(t)b2(t) · · · bj(t) + b1(t)

db2

dt
(t) · · · bj(t) + · · ·+ b1(t)b2(t) · · · dbj

dt
(t)

=
1
2
[(RD1fj(b(t)))b1(t)− b1(t)RD′

1fj(b(t))]b2(t) · · · bj(t)

+b1(t)
1
2
[(RD2fj(b(t)))b2(t)− b2(t)RD′

2fj(b(t))]b3(t) · · · bj(t) + · · ·+

+b1(t)b2(t) · · · bj−1(t)
1
2
[(RDjfj(b(t)))bj(t)− bj(t)RD′

jfj(b(t))]

=
1
2
[R(D1fj(b(t)))b1(t) · · · bj(t)− b1(t) · · · bj(t)R(D′

jfj(b(t)))]

=
1
2
[(D1fj(b(t)))b1(t) · · · bj(t)− b1(t) · · · bj(t)(D′

jfj(b(t)))]

=
1
2
[(D1fj(b(t)))b1(t) · · · bj(t)− b1(t) · · · bj(t)(Ad(b1···bj)−1D1fj(b(t)))]

=
1
2
[(D1fj(b(t)))b1(t) · · · bj(t)− (D1fj(b(t)))b1(t) · · · bj(t)] = 0

Thus ϕ(b) is constant along solution curves of Xfj , proving the lemma.

Remark 4.35. It also follows from the previous proof that fj(b) is constant along
solution curves of (*).

Let b = ( a z
0 a−1 ) with a ∈ R+ and z ∈ C, then it follows from a simple calculation

that

det(F1(b)) =
1
4
(a4 + a−4 + |z|4 − 2 + 2a2|z|2 + 2a−2|z|2).

Since a > 0 we see that a4 +a−4 ≥ 2 with equality if a = 1. Therefore, det(F1(b)) ≥ 0
with equality iff b = 1. From the above argument it follows that det(Fj(b)) ≥ 0 with
equality iff b1 · · · bj = 1.

It is also an easy calculation to show

det(Fj(b)) = 1
4fj(b)2 − 1, ∀b ∈ Bn

Lemma 4.36. The curve exp(tFj(b))is periodic with period 2π/
√

1
4fj(b)2 − 1

Proof. To simplify notation, let X = Fj(b) ∈ k. Then

X−1 = − 1
det(X)

X

giving us

X2 = −(det(X))X−1X = −det(X)I
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So,

exp tX =
∞∑

n=0

tnXn

n!

=
∞∑

n=1

(−1)n(tdet(X))n

(2n)!
I +

∞∑
n=1

(−1)n(tdet(X))n

(2n + 1)!
X√

det(X)

= cos
(
t
√

det(X)
)

I +
sin

(
t
√

det(X)
)

√
det(X)

X

= cos
(

t
√

1
4fj(b)2 − 1

)
I +

sin
(
t
√

1
4fj(b)2 − 1

)
√

1
4fj(b)2 − 1

Fj(b)

Therefore the curve is periodic with period 2π/
√

1
4fj(b)2 − 1.

We can now find a solution to the system (*)

Proposition 4.37. Suppose P ∈ Mr has vertices given by b1, ..., bn. Then
P (t) = ϕt

k(P ) has vertices given by b1(t), ...bn(t) where

bi(t) = (exp(tFj(b)) · (b1, ..., bj))i, 1 ≤ i ≤ k

bi(t) = bi, k + 1 ≤ i ≤ n.

Here · is the dressing action of K on Bj.

Proof. This follows from Fj(b) being constant on solution curves of (*). We can
see immediately that the bi’s are solutions curves of our system of ordinary differential
equations.

Corollary 4.38. The flow ϕt
k(P ) is periodic with period 2π/

√
1
4fj(b)2 − 1.

Remark 4.39. If the k-th diagonal is degenerate (b1 · · · bk = 1) then P is a fixed
point of ϕt

k. In this case the flow has infinite period.

Let `k(b) = 2 cosh−1( 1
2fk(b)), then

d`k =
1√

1
4fk(b)2 − 1

dfk

and consequently

X`k
= Xfk

/
√

1
4f2

k − 1

where X`k
is the Hamiltonian vector field associated to `k. Since fj is a constant of

motion, X`k
is constant along solutions of (*) as well. Let Ψt

k be the flow of X`k
. We

have the following
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Proposition 4.40. Suppose P ∈ M ′
r has vertices b1, ..., bn. Then P (t) = Ψt

k(P )
has vertices b1(t), ..., bn(t) given by

bi(t) = exp
(
(tFj(b))/

√
1
4fk(b)2 − 1

)
· (b1, ..., bj))i, 1 ≤ i ≤ k

bi(t) = bi, k + 1 ≤ i ≤ n

where · is the dressing action of K on Bn.

Thus Ψt
k is periodic with period 2π and rotates a part of P around the k-th

diagonal with constant angular velocity 1 and leaves the other part fixed.

4.7. Angle variables, the momentum polyhedron and a new proof of
involutivity. We continue to assume that our n-gons are triangulated by the di-
agonals {d1i, 3 ≤ i ≤ n − 1}. We assume P ∈ Mo

r so none of the n − 2 triangles,
41,42, ...,4n−2, created by the above diagonals are degenerate. We construct a poly-
hedral surface S bounded by P by filling in the triangles 41,42, ...,4n−2. Hence,
41 has edges e1, e2, and d13, 42 has edges d13, e3, and d14, ..., and 4n−2 has edges
d1,n−1, en−1, and en.

We define θ̂i to be the oriented dihedral angle measured from 4i to 4i+1, 1 ≤
i ≤ n− 3. We define the i-th angle variable θi by

θi = π − θ̂i, 1 ≤ i ≤ n− 3.

Theorem 4.41. {θ1, ..., θn−3} are angle variables, that is we have
(i) {`i, θj} = δij

(ii) {θi, θj} = 0.

Proof. The proof is identical to that of [KM2, §4].

We next describe the momentum polyhedron Br for the action of the above (n-
3)-torus by bendings. Hence,

Br = {`(Mr) ⊂ (R≥0)n−3 : ` = (`1, ..., `n−3)}.

Let (`1, ..., `n−3) ∈ (R≥0)n−3 be given. We first consider the problem of con-
structing the triangles, 41,42, ...,4n−2 above. We note that there are three triangle
inequalities Ei(`, r), 1 ≤ i ≤ n − 2, among the ri’s and `j ’s that give necessary and
sufficient conditions for the existence of 4i. Once we have obtained the triangles
41,42, ...,4n−2, we can glue them along the diagonals d1i, 3 ≤ i ≤ n − 1, and
obtain a polyhedron surface S and a n-gon P . We obtain

Theorem 4.42. The momentum polyhedron Br ⊂ (R≥0)n−3 is defined by the
3(n− 2) triangle inequalities

|r1 − r2| ≤ `1 ≤ r1 + r2

|`1 − r3| ≤ `2 ≤ `1 + r3

...
|`n−4 − rn−2| ≤`n−3≤ `n−4 + rn−2

|rn−1 − rn| ≤`n−3≤ rn−1 + rn
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Here r = (r1, ..., rn) is fixed, the `i’s, 1 ≤ i ≤ n− 3, are the variables.

As a consequence we have

Theorem 4.43. The functions `1, `2, ..., `n−3 on Mr are functionally indepen-
dent.

The theorem follows from Corollary 4.45. We will apply the next lemma with
M = `−1(Bo

r ), the inverse image of the interior of the momentum polyhedron under
` = (`1, `2, ..., `n−3). Then M ' Bo

r × (S1)n−3.

Lemma 4.44. Suppose M = Mo
r is a connected real-analytic manifold and

F = (f1, ..., fk) : Mn → Rk, n ≥ k, is a real-analytic map such that F (M) contains a
k-ball. Then the 1-forms df1, ..., dfk are linearly independent over C∞(M).

Proof. Since the 1-forms df1, df2, ..., dfk are real-analytic, the set of points x ∈ M
such that df1|x, ..., dfk|x are not independent over R is an analytic subset W of M .
Let M0 = M − W . Hence either Mo is empty or it is open and dense. But by
Sard’s Theorem, F (W ) has measure zero. Since F (M) does not have measure zero,
M 6= W and Mo is nonempty, hence open and dense. Therefore, if there exists
ϕ1, ..., ϕk ∈ C∞(M) such that

∑k
i=1 ϕidfi = 0 then ϕi|Mo ≡ 0, 1 ≤ i ≤ k, and by

density ϕi ≡ 0, 1 ≤ i ≤ k.

Corollary 4.45. The restrictions of d`1, d`2, ..., d`n−3 to M ⊂ Mr are indepen-
dent over C∞(M).

Remark 4.46. Since ` is onto, if there exists Φ ∈ C∞(Br) such that
Φ(`1(x), ..., `k(x)) ≡ 0, then Φ ≡ 0.

We conclude this chapter by giving a second proof that the bending flows on
disjoint diagonals commute. Since Mo

r is dense in Mr, it suffices to prove

Lemma 4.47. Ψs
i (Ψ

t
j(P )) = Ψt

j(Ψ
s
i (P )), for P ∈ Mo

r .

Proof. We assume i > j. We observe that the diagonals d1i and d1j divide the
surface S into three polyhedral “flaps”, I, II, III (the boundary of I contains e1,
the boundary of II contains ei, and the boundary of III contains ej). Let Rs

i and Rt
j

be the one parameter groups of rotations around d1i and d1j , respectively. We first
record what Ψs

i ◦Ψt
j does to the flaps.

Ψs
i ◦Ψt

j(I) = Rs
i R

t
j(I)

Ψs
i ◦Ψt

j(II) = Rs
i (II)

Ψs
i ◦Ψt

j(III) = III

Now we compute what Ψt
j ◦Ψs

i does to the flaps. The point is, after the bending
on d1i, the diagonal d1j moves Rs

i d1j . Hence, the next bending rotates I around
Rs

i d1j . Hence, the next bending curve is Rs
i ◦Rt

j ◦R−s
i . We obtain

Ψt
j ◦Ψs

i (I) = (Rs
i R

t
jR

−s
i )Rs

i (I)

Ψt
j ◦Ψs

i (II) = Rs
i (II)

Ψt
j ◦Ψs

i (III) = III.
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5. Symplectomorphism of Mr(E3) and Mr(H3). Recall r is not on a wall
of Dn. Then by Theorem 3.2 of this paper, the hyperbolic Gauss map γ = γh :
Mr(H3) → Qsst(r) is a diffeomorphism. Moreover by Theorem 2.3 of [KM2], the
Euclidean Gauss map γe : Mr(E3) → Qsst(r) is also a diffeomorphism. We obtain

Theorem 5.1. Suppose r is not on a wall of Dr, then the composition γ−1
h ◦ γe :

Mr(E3) → Mr(H3) is a diffeomorphism.

Remark 5.2. The result that Mr(E3) and Mr(H3) are (noncanonically) diffeo-
morphic was obtained by [Sa].

It does not appear to be true that γ−1
h ◦ γe is a symplectomorphism.

5.1. A Formula of Lu. In the next several sections we will prove that Mr(H3)
is symplectomorphic to Mr(E3).

We first define a family of nondegenerate Poisson structures πε, ε ∈ [0, 1], on the
2-sphere, S2 ' K/T . Letting ωε be the corresponding family of symplectic forms we
show the cohomology classes [ωε] of ωε in H2(S2) are constant.

Fix λ ∈ R+ and Λ = X ∧ Y ∈ ∧2k, where X = 1
2

(
0 1
−1 0

)
and Y = 1

2 ( 0 i
i 0 ). The

following family of Poisson structures πε on K/T ' S2 for ε ∈ (0, 1] are due to J.-H.
Lu [Lu2].

πε = ε[π∞ − τ(ε)π0]

where π∞ = p∗πK = p∗(dLkΛ − dRkΛ), τ(ε) = 1
1−e4ελ , and π0 = 2 dLk Λ. Here

p : K → K/T is the projection map. Then

πε(k) = ε(dLkΛ− dRkΛ)− 2ε

1− e4ελ
dLkΛ.

Lemma 5.3.

lim
ε→0

πε =
1
4λ

π0

Proof. The proof of the lemma is a simple application of L’Hôpital’s rule.

Lemma 5.4. πε is nondegenerate for ε ∈ [0, 1].

We will prove Lemma 5.4 in Proposition 5.23, where we show (K/T, πε) is sym-
plectomorphic to a symplectic leaf of the Poisson Lie group (Bε, π̂Bε

)
We leave it to the reader to verify the Poisson structures on S2 can be written

π∞ =
1
2
(1 + α2 + β2)

∂

∂α
∧ ∂

∂β
.

and

π0 =
1
2
(1 + α2 + β2)2

∂

∂α
∧ ∂

∂β

where (α, β) are coordinates obtained by stereographic projection with respect to
the north pole (see [LW]). π∞ is the Bruhat-Poisson structure on K/T . We now
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let ωε be the symplectic form obtained by inverting πε (this is possible since πε is
nondegenerate).

ωε =
−dα ∧ dβ

ε( 1
2 (1 + α2 + β2)− 1

2τ(ε)(1 + α2 + β2)2)
, ε ∈ (0, 1]

Let ω0 be the limiting symplectic structure

ω0 = −8λ
dα ∧ dβ

(1 + α2 + β2)2

Lemma 5.5. ∫

R2
ω0 = −8πλ

Proof. ∫

R2
ω0 =

∫

R2
−8λ

dα ∧ dβ

(1 + α2 + β2)2

= −8λ

∫ θ=2π

θ=0

∫ r=∞

r=0

r dr ∧ dθ

(1 + r2)2

= −16πλ

∫ u=∞

u=1

(1/2)du

u2

= −8πλ

Lemma 5.6. ∫

R2
ωε = −8πλ, ε ∈ (0, 1]

Proof. Note that τ(ε) < 0. Then
∫

R2
ωε = −2

ε

∫

R2

dα ∧ dβ

(1 + α2 + β2)− τ(ε)(1 + α2 + β2)2

= −2
ε

∫ θ=2π

θ=0

∫ r=∞

r=0

r dr ∧ dθ

(1 + r2)− τ(ε)(1 + r2)2

= −4π

ε

∫ u=∞

u=1

(1/2)du

u− τ(ε)u2)

= −2π

ε
log

∣∣∣∣
τ(ε)− 1

τ(ε)

∣∣∣∣

= −2π

ε
log(e4ελ)

= −8πλ

We have proved the following

Lemma 5.7. The cohomology classes [ωε] of ωε in H2(S2) are constant.

Remark 5.8. The previous lemma is a special case of Lemma 5.1 of [GW].
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5.2. Symplectomorphism of (Σλ(ε), πBε
) and (K/T, πλ,ε). In this section we

obtain the Poisson structure πε from a deformed Manin triple (gε, k, bε).
For ε > 0, we define the isomorphism fε : gε → g by fε = ρk + ερb, so that

fε(X + ξ) = X + εξ for X ∈ k and ξ ∈ b. We will define a Lie bracket on gε by the
pullback of the Lie bracket on g, [u, v]ε = f1/ε[fεu, fεv]. We also define 〈, 〉ε as the
pullback of 〈, 〉. Here [, ] and 〈, 〉 are the usual structures on g. We define Bε : g → g∗

as the map induced by 〈, 〉ε. To simplify notation, the subscripts will be dropped
when ε = 1.

The following lemma gives us a formula for the Lie bracket on gε.

Lemma 5.9. [X+α, Y +β]ε = [X, Y ]+ερk[X, β]+ερk[α, Y ]+ρb[X, β]+ρb[α, Y ]+
ε[α, β], where X, Y ∈ k and α, β ∈ b.

Proof.

[X + α, Y + β]ε = f1/ε[fε(X + α), fε(Y + β)]
= f1/ε[X + εα, Y + εβ]

= f1/ε{[X, Y ] + ε[X, β] + ε[α, Y ] + ε2[α, β]}
= f1/ε{[X, Y ]+ερk[X, β]+ερb[X, β]+ερk[α, Y ]+ερb[α, Y ]+ε2[α, β]}
= [X, Y ] + ερk[X, β] + ερk[α, Y ] + ρb[X, β] + ρb[α, Y ] + ε[α, β]

We leave it to the reader to check

Lemma 5.10. 〈, 〉ε = ε〈, 〉
Let Gε be the simply-connected Lie group with Lie algebra gε. Let Fε : Gε → G

be the isomorphism induced by fε. We have a commutative diagram of isomorphisms.

gε
fε−−−−→ g

expε

y
yexp

Gε
Fε−−−−→ G

Let x ∈ gε. We use the identity map to identify g and gε as vector spaces. In
what follows, we will make frequent use of

Lemma 5.11. Âd(expε x) = Ad(exp εx) as elements in GL(b) for all x ∈ bε = b.
Here Âd denotes the adjoint action of Gε on gε.

Proof. By [Wa, pg. 114],

Âd(expε x) = e
cadx

= eεadx

= ead(εx)

= Ad(exp εx)
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Given our deformed Manin triple on Gε, (gε, k, bε), we will construct a Poisson
structure π̂Bε

on Bε, the simply-connected Lie group with Lie algebra, bε. We will
denote all quantities associated to the deformed Manin triple with a hat ̂ .

We define the Poisson Lie structure on Bε by the Lu-Weinstein Poisson tensor
[LW]

π̂Bε
(b)(d̂R

∗
b−1αX , d̂R

∗
b−1αY ) = 〈ρk(Âdb−1B−1

ε (αX)), ρb(Âdb−1B−1
ε (αY ))〉ε

where αX , αY ∈ b∗ε , αX = 〈X, ·〉1 and αY = 〈Y, ·〉1.
Remark 5.12. Since limε→0〈, 〉ε = 0, it appears as if the limiting Poisson struc-

ture limε→0 π̂Bε will vanish. However, we will see in Proposition 5.14 that the limiting
Poisson structure is associated to the Manin triple (g0, k, b0) and 〈, 〉0 = d

dε

∣∣
ε=0
〈, 〉ε.

We denote by πBε the Poisson structure on Bε using the scaled bilinear form
1
ε 〈, 〉ε = 〈, 〉. Then

πBε
(b)(d̂R

∗
b−1αX , d̂R

∗
b−1αY ) = 〈ρk(Âdb−1B−1

1 (αX)), ρb(Âdb−1B−1
1 (αY ))〉

where αX , αY ∈ b∗ε . For the following we will let Xε = B−1
ε (αX) ∈ k, again dropping

the subscript when ε = 1, so that Xε = 1
ε X.

Lemma 5.13. π̂Bε = 1
ε πBε

Proof.

π̂Bε
(b)(d̂R

∗
b−1αX , d̂R

∗
b−1αY ) = 〈ρk(Âdb−1Xε), ρb(Âdb−1Yε)〉ε

= 〈ρk(Âdb−1
1
ε
X), ρb(Âdb−1

1
ε
Y )〉ε

=
1
ε
〈ρk(Âdb−1X), ρb(Âdb−1Y )〉

Proposition 5.14. limε→0 π̂Bε(b)(d̂R
∗
b−1αX , d̂R

∗
b−1αY ) = −〈log b, [X, Y ]〉.

Proof.

lim
ε→0

π̂Bε(b)(d̂R
∗
b−1αX , d̂R

∗
b−1αY ) = lim

ε→0

1
ε
〈ρk(Âdb−1X), ρb(Âdb−1Y )〉

= lim
ε→0

1
ε
2Im tr(ρk(Ade−ε log bX)ρb(Ade−ε log bY ))

= lim
ε→0

2Im tr(ρk(Ade−ε log bX)ρb(− log b Y + Y log b))

= −2Im tr(Xρb[log b, Y ])
= −2Im tr(X[log b, Y ])
= −2Im tr(log b[X, Y ])
= −〈log b, [X, Y ]〉

Remark 5.15. Before stating the next corollary, note that the limit Lie algebra b0

is abelian whence the limit Lie group B0 is abelian. Hence, exp0 : b0 = To(B0) → B0 is



156 M. KAPOVICH, J. J. MILLSON, AND T. TRELOAR

the canonical identification of the vector space B0 with its tangent space at the origin.
Hence, exp0 is an isomorphism of Lie groups and exp∗0 carries invariant 1-forms on
B0 to invariant 1-forms on b0.

Corollary 5.16. limε→0 π̂Bε
is the negative of the Lie Poisson structure on

k∗ ' b0 transferred to B0 using the exponential map on the vector space B0.

Proof. The proof is left to the reader.

Remark 5.17. (K, επK) is the dual Poisson Lie group of (Bε, π̂Bε
).

We will denote the dressing action of K on Bε by D̂`
ε and the infinitesimal dressing

action of k on Bε by d̂`
ε. By definition d̂`

ε(b)(X) = π̂Bε
(·, αX). We then have the

following.

Lemma 5.18. d̂`
ε(b)(X) = 1

ε d`(b)(X)

Proof. Follows immediately from Lemma 5.13 and the definition of dressing ac-
tion.

Remark 5.19. limε→0 d̂`
ε(b)(X) = ad∗(X)(log b)

For the remainder of the section, fix λ ∈ R+ and a = expε λH ∈ Bε, where
H = diag(1,−1) ∈ aε. Let ϕε : K → Σε

λ ⊂ Bε be the map defined by ϕε(k) =
D̂`

ε(k)(a) = ρBε(k ∗a), where Σε
λ is the symplectic leaf through the point a ∈ Bε. The

map ϕε induces a diffeomorphism from K/T onto Σε
λ which we will also denote by

ϕε. Recall the family of Poisson tensors on K/T given in §5.1

πλ,ε = ε(π∞ − τ(ελ)π0).

Lemma 5.20. The map ϕε : K/T → Bε is K-equivariant, where (K, επK) acts
on (K/T, πλ,ε) by left multiplication and Bε by the dressing action.

Proof. ϕε(g · k) = D̂`
ε(gk)(a) = D̂`

ε(g)(D̂`
ε(k)(a)) = g · ϕε(k).

Remark 5.21. The action of (K, επK) on (K/T, πλ,ε) by left multiplication is a
Poisson action.

Since K/T is a symplectic manifold, there is a momentum map for the action of
K on K/T , see [Lu1, Theorem 3.16]. We will see as a consequence of Proposition 5.23

Lemma 5.22. The momentum map for the action of (K, επK) on (K/T, πλ,ε) is
ϕε.

Proposition 5.23. The map ϕε induces a symplectomorphism from (K/T, πλ,ε)
to (Σε

λ, π̂Bε
).

Proof. Since the K-actions on K/T and Σε
λ are Poisson and the map ϕε : K/T →

Σε
λ is a K-equivariant diffeomorphism, if (dϕε)e(πλ,ε(e)) = π̂Bε

(a) then it follows that
(dϕε)k(πλ,ε(k)) = π̂Bε(ϕ(k)) for all k ∈ K/T .
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We will need the following lemmas to prove the proposition. We let E = ( 0 1
0 0 ) ∈ b

and Λ = E∧iE ∈ b∧b. If we set π̂Λ(b) = 1
ε (d̂Lb Λ−d̂Rb Λ), we then have the following.

Lemma 5.24. π̂Bε
|a = 1

2 π̂Λ|a for a = expε λH.

Proof. Let X =
(

si u
−ū −si

)
, Y =

(
ti v
−v̄ −ti

) ∈ k

π̂Bε(a)(d̂R
∗
a−1αX , d̂R

∗
a−1αY ) =

1
ε
〈ρk(Âda−1X), ρb(Âda−1Y )〉

=
1
ε
〈X, Âdaρb(Âda−1Y )〉

We can see,

Âdaρb(Âda−1Y ) = Âdaρb

(
Âda−1

(
ti v
−v̄ −ti

))

= Âdaρb

(
ti e−2ελv

−e2ελv̄ −ti

)

= Âda

(
0 (e−2ελ−e2ελ)v
0 0

)

= (1− e4ελ) ( 0 v
0 0 )

so that
1
ε
〈X, Âdaρb(Âda−1Y )〉 =

2
ε
Imtr

[(
si u
−ū −si

) (
0 (1−e4ελ)v
0 0

)]

= −2
ε
(1− e4ελ)Im(ūv)

=
2
ε
(e4ελ − 1)Im(ūv).

If we evaluate the right-hand side of the above formula we see

1
2
π̂Λ(a)(d̂R

∗
a−1αX , d̂R

∗
a−1αY ) =

1
2ε

[αX ∧ αY (ÂdaE, ÂdaiE)− αX ∧ αY (E, iE)

=
2
ε
[e4ελIm(ūv)− Im(ūv)]

=
2
ε
(e4ελ − 1)Im(ūv)

= π̂Bε(a)(d̂R
∗
a−1αX , d̂R

∗
a−1αY )

We then have the following.

Corollary 5.25. π̂Bε
(a) = 1

2ε (1− e−4ελ)d̂La (E ∧ iE)

Proof.

π̂Bε(a) =
1
2ε

[d̂La(E ∧ iE)− d̂Ra(E ∧ iE)]

=
1
2ε

d̂La[E ∧ iE − Âda−1 (E ∧ iE)]

=
1
2ε

d̂La[E ∧ iE − e−4ελ( E ∧ iE)]

=
1
2ε

(1− e−4ελ)d̂La (E ∧ iE).
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The diffeomorphism ϕε : K/T → Σε
λ gives us (dϕε)e : k/t → TaΣε

λ ⊂ TaBε defined
by (dϕε)e(ξ) = 1

ε d̂Laρb(Âda−1ξ). Now let X = 1
2

(
0 1
−1 0

)
and Y = 1

2 ( 0 i
i 0 ) as in §5.1,

then

(dϕε)e(X) =
1
2ε

(e−2ελ − e2ελ)d̂La E and (dϕε)e(Y ) =
1
2ε

(e−2ελ − e2ελ)d̂La iE.

It then follows that

Lemma 5.26. (dϕε)e(πλ,ε(e)) = π̂Bε
(a)

Proof.

(dϕε)e(πλ,ε(e)) = (dϕε)e(ε(π∞(e)− τ(ελ)π0(e)))
= ε(dϕε)e(π∞(e))− ετ(ελ)(dϕε)e(π0(e))
= 0− 2ετ(ελ)(dϕε)e(X ∧ Y )

= − 1
2ε

τ(ελ)(e−2ελ − e2ελ)2d̂La(E ∧ iE)

= − 1
2ε

(e−4ελ − 1)d̂La(E ∧ iE)

= π̂Bε
(a).

This completes the proof of Proposition 5.23.

We can next look at the product (K/T )n. We give (K/T )n the product Poisson
structure πλ,ε = πλ1,ε + · · ·+ πλn,ε. Define the map

Φ̃ε : (K/T )n → Σε
λ1
× · · · × Σε

λn

given by

Φ̃ε(k1, ..., kn) = (ϕε
1(k1), ..., ϕε

n(kn)) = (D̂`
ε(k1)(aλ1), ..., D̂

`
ε(kn)(aλn

))

where ϕε
i(ki) = D̂`

ε(ki)(aλi
) and aλi

= expε(λiH) ∈ Bε. We note the map Φ̃ε :
(K/T )n → Σε

λ1
× · · · × Σε

λn
is a symplectomorphism.

We leave the proof of the following lemma to the reader.

Lemma 5.27. The action of K on (K/T )n given by

k ◦ (k1, ..., kn) = (kk1, ρK(kϕε
1(k1))k2, ..., ρK(kϕε

1(k1) · · ·ϕε
n−1(kn−1))kn)

is the pull back under Φ̃ε of the ε-dressing action on Σε
λ1
× · · · × Σε

λn
⊂ Bn

ε .

The momentum map for the action of (K, επK) on ((K/T )n, πλ,ε) is

Ψ̃ε : (K/T )n → Bε

where

Ψ̃ε(k1, .., kn) = ϕε
1(k1) ∗ · · · ∗ ϕε

n−1(kn−1).
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5.3. The ε-dressing orbits are small spheres in hyperbolic 3-space. Let
b be the Killing form on g divided by 8. We have normalized b so that the induced
Riemannian metric (, ) on G/K has constant curvature -1. We let bε = f∗ε b, hence bε

is the Killing form on gε. Then (, )ε = F ∗ε (, ) is the induced Riemannian metric on
Gε/K and Gε/K has constant curvature -1 (since Fε is an isometry). We will call (, )ε

the hyperbolic metric on Gε/K.
The map ζ : Bε → Gε/K given by ζ(b) = b∗K is a diffeomorphism that intertwines

the ε-dressing orbits of K on Bε with the natural K action on Gε/K given by left
multiplication (using the multiplication in Gε). We abbreviate the identity coset K
in Gε/K to x0 and use the same letter for the corresponding point in G/K. We have

Lemma 5.28. The image of the ε-dressing orbit Σε
λ under ζ is the sphere around

x0 of radius ελ.

Proof. Let dε be the Riemannian distance function on Gε/K and d the Rie-
mannian distance function on G/K. We have

dε(x0, expε
x0

λH) = d(x0, Fε expε
x0

λH)
= d(x0, expx0

fε(λH))
= d(x0, expx0

ελH)
= ελ

5.4. The family of symplectic quotients. In this section we will continue to
use the notation of §5.2. Let p : E = (K/T )n × I → I be a projection. Here we
define I = [0, 1]. We let T vert(E) ⊂ T (E) be the tangent space to the fibers of p.
Hence

∧2
T vert(E) is a subbundle of

∧2
T (E). We define a Poisson bivector π on E

by π(u, ε) = πλ,ε|u. π is a section of
∧2

T vert(E).
Let S ⊂ Bn × I be defined by S = {(b, ε)|b ∈ Σε

λ}. We let (K, επK) act on
(K/T )n × I by k · (u, ε) = (k ◦ u, ε), where ◦ is the action given in Lemma 5.27,
and act on S by k · (b, ε) = (D̂`

ε(k)(b), ε). We then define the map Φ : E → S

by Φ(u, ε) = (Φ̃ε(u), ε) which is a K-equivariant diffeomorphism. We also define
Ψ : E → B by Ψ(u, ε) = Ψ̃ε(u).

Remark 5.29. Ψ|p−1(ε) is the momentum map for the Poisson action of (K, επK)
on (K/T )n × {ε}.

We need some notation. Suppose n ≥ m, F : Rn+1 → Rm is a smooth map,
and 0 ∈ Rm is a regular value of F . Let M = F−1(0). Write Rn+1 = Rn × R with
x ∈ Rn, t ∈ R. Let p : Rn+1 → R be the projection onto the t-line. The next lemma
is taken from [Sa].

Lemma 5.30. Let (x, t) ∈ M . Suppose ∂F
∂x

∣∣
(x,t)

has maximal rank m. Then
dp|(x,t) : T(x,t)(M) → Tt(R) is onto.

Proof. It suffices to construct a tangent vector v ∈ T(x,t)(Rn+1) satisfying
(i) v ∈ ker dF |(x,t)

(ii) v =
∑n

i=1 ci
∂

∂xi
+ ∂

∂t
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Put c = (c1, ..., cn) and write the Jacobian matrix dF |(x,t) as (A, b) where A is
the m by n matrix given by A = ∂F

∂x |(x,t) and b is the column vector of length m given
by b = ∂F

∂t |(x,t). We are done if we can solve

Ac + b = 0.

But since A : Rn → Rm is onto we can solve this equation.

Remark 5.31. We need to generalize to the case in which Rn+1 is replaced by the
closed half-space H̄ = {(x, t) : x ∈ Rn, t ≥ 0} and the t-line by the closed half-line.
Given (x, 0) ∈ ∂M we wish to find v =

∑n
i=1 ci

∂
∂xi

+ ∂
∂t with dF |(x,o)(v) = 0 (so v is

in the tangent half-space to M at (x, 0) ∈ ∂M). The argument is analogous to that of
the lemma and is left to the reader.

Corollary 5.32. Suppose M is compact and for all (x, t) and further that
∂F
∂x |(x,t) has maximal rank for all (x, t) ∈ M . Then p : M → R is a trivial fiber
bundle.

Proof. p is proper since M is compact. This is the Ehresmann fibration theorem
[BJ, 8.12].

Remark 5.33. We leave to the reader the task of extending the corollary to the
case where the t-line is replaced by the closed t half-line.

We now return to our map Ψ : (K/T )n × I → B. We have

Ψ(u, ε) = ϕε
1(u1) ∗ · · · ∗ ϕε

n(u1).

Let ε > 0. We apply Lemma 2.5 to deduce that 1 ∈ B is a regular value for u → Ψ(u, ε)
(recall we have assumed r is not on a wall of Dn). Now let ε = 0. It is immediate
(see [KM2]) that 0 ∈ R3 is a regular value of u → Ψ(u, ε) (again because r is not on
a wall of Dn). We obtain

Lemma 5.34. p : Ψ−1(1) → I is a trivial fiber bundle.

Now let M = Ψ−1(1)/K. We note that p factors through the free action of K on
Ψ−1(1) and we obtain a fiber bundle p̄ : M → I. This gives the required family of
symplectic quotients.

Proposition 5.35. p̄ : M→ I is a trivial fiber bundle.

Remark 5.36. p̄−1(0) = Mr(E3) and p̄−1(1) = Mr(H3) and we may identify M
with the product Mr(E3)× I.

We now give a description of the symplectic form along the fibers of p̄. Recall that
if π : E → B is a smooth fiber bundle then the relative forms on E are the elements
of the quotient of A•(E) by the ideal generated by elements of positive degree in
π∗A•(B). Note the restriction of a relative form to a fiber of π is well-defined and
the relative forms are a differential graded-commutative algebra with product and
differential induced by those of A•(E).

Lu’s one parameter family of forms ωε of §5.1 induces a relative 2-form ωε on
K/T × I which is relatively closed. By taking sums we obtained a relative 2-form ω̃ε

on (K/T )n × I and by restriction and projection a relative 2-form ω̄ε on M. Clearly
ω̄ε is relatively closed and induces the symplectic form along the fibers of p̄ : M→ I.

We let [ω̄ε] be the class in H2(p−1(ε)) determined by ω̄ε.
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5.5. [ω̄ε] is constant and Moser’s Theorem. To complete our proof we need
to review the i-th cohomology bundle associated to a smooth fiber bundle π : E → B.
The total space Hi

E of the i-th cohomology bundle is given by Hi
E = {(b, z) : b ∈

B, z ∈ Hi(p−1(b))}. We note that a trivialization of E|U induces an isomorphism
between Hi

E|U and Hi
U×F . But Hi

U×F = {(x, z) : x ∈ U, z ∈ Hi(F )}, whence
Hi

U×F = U ×Hi(F ). It is then clear that Hi
E is a vector bundle over B with typical

fiber Hi(F ). We next observe that the action of the transition functions of E on
Hi(F ) induce the transition functions of Hi

E . Hence if we trivialize E relative to a
covering U = {Ui : i ∈ I} such that all pairwise intersections are contractible then
the corresponding transition functions of Hi

E are constant. Hence Hi
E admits a flat

connection called the Gauss-Manin connection. We observe that a cross-section of Hi
E

is parallel for the Gauss-Manin connection if when expressed locally as an element of
Hi

U×F as above it corresponds to a constant map from U to Hi(F ).

Remark 5.37. If τ is a relative i-form on E which is relatively closed then it
gives rise to a cross-section [τ ] of Hi

E such that [τ ](b) is the de Rham cohomology
class of τ(b)|π−1(b).

We now consider the relative 2-form ω̄ε on M. The form ω̄ε is obtained from the
corresponding form ω̃ε on (K/T )n × I by first pulling ω̃ε back to Ψ−1(1) then using
the invariance of ω̃ε under K to descend ω̃ε to ω̄ε. We observe that [ω̃ε] (reps. [ω̄ε]) is
a smooth section of H2

(K/T )n×I (resp. H2
M)).

We obtain a diagram of second cohomology bundles with connection

H2
(K/T )n×I

i∗−−−−→ H2
Ψ−1(1)

π∗←−−−− H2
M

where i : Ψ−1(1) → (K/T )n × I is the inclusion and π : Ψ−1(1) →M is the quotient
map. We have

π∗[ω̄ε] = i∗[ω̃ε].

Proposition 5.38. [ω̄ε] is parallel for the Gauss-Manin connection on H2
M.

Proof. By Lemma 5.7, [ω̃ε] is parallel for the Gauss-Manin connection on
(K/T )n×I. Hence i∗[ω̃ε] is parallel for the Gauss-Manin connection on H2

Ψ−1(1). But
an elementary spectral sequence argument for the bundle K → Ψ−1(1) →M shows
that π∗ : H2

M → H2
Ψ−1(1) is a bundle monomorphism. Hence if π∗[ω̄ε] is parallel, so

is [ω̄ε].

Corollary 5.39. The cohomology class of ω̄ε is constant relative to any trivial-
ization of p : M→ I.

We now complete the proof of symplectomorphism by applying a version of
Moser’s Theorem [Mo] with M = Mr(E3). For the benefit of the reader we will
state and prove the version of Moser’s Theorem we need here.

Theorem 5.40. Suppose ωε is a smooth one-parameter family of symplectic
forms on a compact smooth manifold M . Suppose the cohomology class [ωε] of ωε in
H2(M) is constant. Then there is a smooth curve φε in Diff(M) with φ0 = idM such
that

ωε = φ∗εω0.
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Proof. Choose a smooth one-parameter family of 1-forms τε such that

dωε

dε
= −dτε.

(We may choose τε smoothly by first choosing a Riemannian metric then taking τε to
be the coexact primitive of dωε

dε - here we use the compactness of M).
Let ζε be the one parameter family of vector fields such that

iζε
ωε = τε.

Now we integrate the time dependent vector field ζε to a family Ψε of diffeomorphisms
(again we use that M is compact). We have

d

dε
Ψ∗εωε = Ψ∗εLζεωε + Ψ∗ε

dωε

dε
= Ψ∗ε [dιζεωε − dτε]
= Ψ∗ε [dτε − dτε]
= 0.

Hence Ψ∗εωε is constant so Ψ∗εωε = ω0 and ωε = (Ψ−1
ε )∗ω0.

5.6. The geometric meaning of the family M of symplectic quotients -
shrinking the curvature. We recall that Xκ denotes the complete simply-connected
Riemannian manifold of constant curvature κ. Let r = (r1, r2, ..., rn) ∈ (R+)n with
r not on a wall of Dn. Let Mr(Xκ) be the moduli space of n-gon linkages with
side-lengths r in the space Xκ. The following theorem is the main result of [Sa].

Theorem 5.41. There exists α > 0 and an analytically trivial fiber bundle
π : E → (−∞, α) such that π−1(κ) = Mr(Xκ).

Let M be the family of symplectic quotients just constructed (except we will take
(−∞, 0] as base instead of [1, 0]). We then have

Theorem 5.42. We have an isomorphism of fiber bundles

E|(−∞,0] 'M.

We will need

Lemma 5.43. Let λ > 0. Then we have a canonical isomorphism

Mr(Xκ) ' Mλr(Xκ/λ).

Proof. Multiply the Riemannian metric on Xκ by λ. Then the Riemannian
distance function is multiplied by λ and the sectional curvature is multiplied by 1

λ .

Remark 5.44. There is a good way to visualize the above isomorphism by using
the embedding of Xκ, κ < 0, in Minkowski space (as the upper sheet of the hyperboloid



THE SYMPLECTIC GEOMETRY OF POLYGONS IN HYPERBOLIC 3-SPACE 163

x2 + y2 + z2 − t2 = −1
κ2 ) or Xκ, κ > 0 in R4 ( as the sphere x2 + y2 + z2 + t2 = 1

κ2 ).
The dilation map v 7→ λv of the ambient vector space maps Xκ to Xκ/λ and multiplies
the side-lengths by λ.

Now we can prove the theorem. Let p̄ : M→ (−∞, 0] be the family constructed
is §5.4. By Lemma 5.28 we see that p̄−1(ε) ' Mεr(X−1). Thus we are shrinking
the side-lengths of the n-gons as ε → 0. But we have just constructed a canonical
isomorphism

Mεr(X−1) ' Mr(X−ε).

So we may regard the deformation of §5.4 as keeping the side-lengths fixed and shrink-
ing the curvature to zero.

To give a formal proof we will construct an explicit diffeomorphism

M //

##GGGGGGGGG E|(−∞,0]

²²
(−∞, 0]

To this end, observe that the map B × (−∞, 0] → G/K × (−∞, 0] given by
(b, κ) 7→ (b ∗K, κ) induces a K-equivariant diffeomorphism

Bn × (−∞, 0] F //

p
))RRRRRRRRRRRRRR

(G/K)n × (−∞, 0]

π

²²
(−∞, 0]

given by F ((b1, ..., bn), κ) = ((K, b1 ∗K, ..., b1 ∗ · · · ∗ bn−1 ∗K), κ).
We give π−1(κ) the Riemannian metric |κ|(, )κ. Let Ẽ ′ ⊂ (G/K)n × (−∞, 0] be

defined by

Ẽ ′ = {(y1, ..., yn, κ) : y1 = x0, dκ(yi, yi+1) = ri, 1 ≤ i ≤ n}

Here dκ is the distance function on π−1(κ) associated to the Riemannian metric
|κ|(, )κ. Let Σr × (−∞, 0] be the dressing orbit through (er1H , ..., ernH) for the K-
dressing action of K on p−1(κ). We let M̃ ⊂ Σr × (−∞, 0] be the subset M̃ =
{(b1, ..., bn, κ) : b1 ∗ b2 ∗ · · · ∗ bn = 1}. Then F carries M̃ diffeomorphically onto Ẽ ′
and induces the required diffeomorphism M→ E|(−∞,0].

Remark 5.45. The relative 2-form ω̄ε is a symplectic form along the fibers of p̄.
Thus we have made the restriction of the family of [Sa] to (−∞, 0] into a family of
symplectic manifolds. Can ωε be extended to (−∞, α)for some α > 0?
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