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Abstract. We prove that for any affine variety S defined over Q, there exists an Artin group 
G such that a Zariski open subset U of S is biregular isomorphic to a Zariski open 
subset U’ of the character variety X(G,P0(3)) = Hom(G,P0(3))//P0(3). The 
subset U contains all real points of 5’. As an application, we construct new examples 
of finitely-presented groups which are not fundamental groups of smooth complex 
algebraic varieties. 

Groupes d ‘Artin, arrangements projectifs et groupes 

fondamentaux des vu&t& complexes algiibriques limes 

RCsumC. Nous montrons que pour toute vari& &fine S d@inie sur Q, il existe un groupe 
d’Artin G tel qu’un sow-ensemble ouvert de Zariski U de S est birkgulit?rement 
isomorphe ir un sow-ensemble ouvert de Zariski de la van’& des classes de 
reprt%entations Hom(G, P0(3))//P0(3). Le sous-ensemble U contient tous les points 
re’els de S. Comme application, nous construisons de nouveaux exemples de groupes 
de p&entation jinie qui ne sont pas le groupe fondamental d’une varitW complexe 
alge’brique lisse. 

Version francaise abrkgke 

Soit A un graphe bipartite, de parts P et L. Nous disons que p dans P et /! dans L sont incidents 

si p et C sont joints par une arr&te. Une r&alisation de A (comme arrangement dans P2) est une 

application I#J de P dans P2 et de JC dans l’espace projectif dual (P”)” des droites de P2, qui respecte 

l’incidence. Prkcisant un resultat de Mnev (voir [6]), nous montrons que pour tout schCma affine S 

de type fini sur Spec(Z), il existe A tel que S soit un ouvert de Zariski d’un espace de modules de 

realisations de A. A certains graphes bipartites A, suffisants pour rkaliser tout schCma affine, nous 
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attachons un groupe d’Artin (resp. de Shephard) correspondant G: (resp. G>), tel qu’un ouvert et 

ferme de Zariski, HomT(G:, PO(3))//PO(3) de l’espace Hom(G2, P0(3))//P0(3) soit, sur Q, 

isomorphe a un sous-espace ouvert de Zariski W de l’espace de modules des realisations de A. De 

plus, W contient tous les points reels. Les representations dans Homf (G:, PO(3)) se factorisent 

par GSq. Nous en deduisons que les schemas des classes de representations de groupes d’Artin et de 

Shephard dans PO(3) peuvent avoir des singular&% arbitrairement compliquees (meme en des points 

correspondant a une representation d’image finie). 

En revanche, si un groupe est le groupe fondamental d’une variete complexe algebrique lisse, nous 

avons des restrictions s&&es sur ces singular&s d’apres le theoreme suivant, consequence d’un 

theoreme de Hain (voir [2]) : 

TH~OR&ME. - Soit M une varie’te’ complexe algebrique lisse, G un groupe reductif reel et p : 

n-1 (M) -+ G une representation d’image jinie. Alors le germe (analytique reel) (Hom(rr (M), G), p) 
et son complexifie sont des cones quasi-homogknes avec des generateurs de poids 1 et 2 et des relations 

de poids 2, 3 et 4. Supposons, de plus, que les orbites de Ad(G) darts Hom(rrr (IU), G) admettent une 

section locale qui passe par p. Alors le germe quotient (Hom(rr(M), G)//G, [p]) et son complexi’e’ 

sont des cones quasi-homogenes avec des genne’rateurs de poids 1 et 2 et des relations de poids 2, 3 et 4. 

1. Introduction 

What follows is an announcement and short account of the contents of [4]. Our work concerns Serre’s 

problem of determining which finitely-presented groups are fundamental groups of smooth complex 

algebraic varieties. The first examples of finitely-presented groups which were not fundamental groups 

of (not necessarily compact) smooth complex algebraic varieties were given by Morgan in [7]. We 

find a new class of such examples which consists of Artin and Shephard groups. Since all Artin 

and Shephard groups have quadratically presented Malcev algebras (see [4]), Morgan’s test does not 

suffice for this class of groups. This result is surprising because the basic examples of Artin groups, 

e.g. free groups, free Abelian groups, braid groups and, more generally, Artin groups corresponding 

to finite Coxeter groups, are fundamental groups of smooth complex quasi-projective varieties. 

Our work on Serre’s problem follows from combination of Theorems 1 and 2 below: 

THEOREM 1. - For any afJine variety S over Q (not necessarily reduced or irreducible) there are 

Shephard and Artin groups G such that a Zariski open subset U of S is biregular isomorphic to a 

Zariski open subset U’ in the character variety X(G, PO(3)) = Hom(G, PO(3))//PO(3). The subset 

U contains all real points of S. 

We combine Theorem 1 with the following theorem that we deduce from Theorem 7 below and 

a theorem of Hain in [2], see 35. 

THEOREM 2. - Suppose M is a (not necessarily compact) connected smooth complex algebraic 

variety, G is a reductive algebraic group defined over R, and p : rl(M) + G is a representation 

with finite image. Then the real-analytic germ (Hom(nr (M), G), p) (and its complexijcation) is a 

quasi-homogeneous cone with generators of weights 1 and 2 and relations of weights 2,3, and 4. 

Suppose further that there is a local cross-section through p to the Ad(G)-orbits in Hom(rr(M), G). 

Then the quotient real-analytic germ (Hom(rr(M), G)//G, [p]) (and its complextjication) is a 

quasi-homogeneous cone with generators of weights 1 and 2 and relations of weights 2, 3, and 4. 

Here we use the following: 
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DEFINITION. - Let X be a real or complex analytic space, z E X, and G a Lie group acting on X. 

We say that there is a local cross-section through z to the G-orbits if there is a G-invariant open 

neighborhood U of z and a closed analytic subspace S c U such that the natural map G x S + U 
is an isomorphism of analytic spaces. 

2. Shephard and Artin groups 

Let A be a finite graph where two vertices are connected by at most one edge, there are no loops 

(i.e. no vertex is connected by an edge to itself) and each edge e is assigned an integer e(e) 2 2. We 

will assume further that A has no isolated vertices and each vertex ‘u of A is labelled by an integer 

S(w). We call A a labelled graph, let V(A) denote the set of vertices of A. Given A we construct two 

finitely-presented groups: the Shephard group Gi and the Artin group G;. The sets of generators for 

the both groups are {gV; w E V(A)}. Relations in G”, are: 

gvgwgvgw . . . = gwgvgwgu . . . , E = E(e), over all edges e = [w, w]. 
-- 
E multiples E multiples 

For example, if A has n vertices and no edges, then Gi is the free group on n generators; if 

A is the complete graph on n vertices and c(e) = 2 for all e, then Gi is the free Abelian group 

of rank n. To get the presentation for Gi, we add the relations: gtCU’ = 1, VJ E V(A). There is a 

canonical epimorphism G”, -+ G”,. 

3. Arrangements 

An abstract arrangement A is a disjoint union of two finite sets A = P LI .C with the set of 

“points” P = {WI, ‘~2, . . .} and the set of “lines” L = (fJr, &, . . .), together with the incidence 

relation L = LA C P x L; L(V, -t) is interpreted to mean “the point w lies on the line f?‘. We may 

represent the arrangement A by a bipartite graph l? = I’ A. An arrangement is called admissible if 

it satisfies the axiom: 

Every vertex in the graph I? is incident to at least two edges. 

An example of an abstract arrangement is the standard triangle (or complete quadrilateral) T (see 

Figure 1 where we draw points of A as solid points and lines as lines). An abstract based arrangement 

A is an arrangement together with an embedding T L) A of the standard triangle. 

We consider the projective plane p2 over a field k of characteristic zero and (p”)” the space of lines 

in p2. A geometric realization of the abstract arrangement A = PuL is a map 4 : PuL --+ P2 U (P")" 
which sends points to points and lines to lines (we also use the term projective arrangement for 4). 

This map must satisfy the following condition: 

Here we have lifted the line 4(e) to 47) E ( k3)” - { 0} and the point 4(w) to $7) E k3 - { 0). 
For the standard triangle T define a realization #Q- of T in p2 so that the images of the points 

woo,w,,wy,wll have the homogeneous coordinates (0 : 0 : l), (1 : 0 : 0), (0 : 1 : 0), (1 : 1 : 1) 

respectively. This realization extends uniquely to the rest of T. The conjigurution space of an abstract 

arrangement A is the space R(A) of all geometric realizations of A. The space R(A) is the set 

of k-points of a projective variety defined over Z with equations determined by the condition (1). 

A bused realization is a realization C#I of a based abstract arrangement A such that the restriction 
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Fig. 1. - The standard triangle T 

Fig. 1. - Triangle standard T. 

of 4 to the canonically embedded triangle T is the standard realization &, The space BR(A) 

of based realizations of an arrangement A is a projective variety defined over Z. The variety 

BR(A) is naturally isomorphic to a Mumford quotient R.(A)//PGL(3) (for a certain choice of 

projective embedding of R(A)). Suppose that A is a based arrangement which has a distinguished 

set of points Y = (~1, . . . . v,} which lie on the line C,. We call A,, a marked arrangement. Let 

BRo(A,) := {QJ E BR(A) : y’/(wj) $! L, , uj E v} where L, = &(!,). In [4] we prove: 

THEOREM 3 . - For any afine scheme S of$nite type over Spec(Z), realized as a closed subscheme 

of afine space A”, there is a based arrangement marked by v = {VI, . . . . v,}, such that the map 

(4(w), . . . . 4(un)) from BRo(A) to A” induces an isomorphism 7 of BRo(A) to S. 

Remark. - The arrangement A is not uniquely determined by the affine embedding of S, it also 

depends on equations defining S and their description via compositions of elementary algebraic 

operations. 

A version of this theorem appears in Mnev’s paper [6], where he asserts only a stable homeomorphism 

between the sets of real points of BRO(A) and S, and gives an outline of the proof. As a corollary 

of Theorems 1 and 3, and [l], Corollary 2.8.6, we get: 

COROLLARY. - For every smooth connected compact manifold M, there exists an abstract 

arrangement A and an Artin group G% so that the manifold M is difleomorphic to the set of 

real points in the mod&i space R(A)//PGL(3) and t o a component (in the classical topology) in 

Hom(G$, SO(3, R))/S0(3, R). 

4. The associated representation varieties 

We will define several classes of groups corresponding to abstract arrangements. Let r = I?4 be 

the bipartite graph of a based abstract arrangement. We introduce the new edges [WOO, voo], [UIJ~, VOIJ], 

[vll, uoo] and identify the vertices: voo E+ loo, V,O E &,, vooo 2 &; let A be the resulting graph. 

Put the following labels on the edges of A: 

Assign the label 4 to the edges [‘ulo, ~~~1, [vol, voo], and all the edges which contain ‘~11 as a vertex 

(with the exception of [‘ull, ‘uoo]). We put the label 6 on the edge [Q~, ~~~1. Assign the label 2 to the 
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rest of the edges. Put the label 3 to the vertex vll and labels 2 to the rest of the vertices. Now we 
have labelled graphs and we use the procedure from Section 2 to construct the At-tin group Gi := Gk 

and the Shephard group GSA := Gi. 
Let q be the quadratic form %T + xz + a$ and PO(3) be the projectivized group of isometries 

of q. From now on, we work over Q (rather than Z). Let 2 be the projectivized null quadric of q 

and Pi = P2 - 2. We let (Pi)” be the image of Pi under the polarity defined by q. A projective 
arrangement $J will be said to be anisotropic if $(u) E Pi,@(L) E (pi)“, for all w E P,e E L. The 
anisotropic condition defines Zariski open subsets of the previous arrangement varieties, to be denoted 

R(A, I%, BR(A, I=;)> and BRa(A, Pi) respectively. 
Now, a point P in pt determines the Cartan involution cp in PO(3, k) around this point or the 

rotation BP of order 3 having P as neutral fixed point (i.e. a point where the differential of rotation 
has the determinant 1). There are two such rotations of order 3, we choose one of them. Since $J 
is based, 711/(~~) = (1 : 1 : 1) for all $, hence the choice of rotation is harmless (see [4], $12.1). 
Similarly, a line L E ($g)” uniquely determines the reflection OL which keeps L pointwise fixed. 
Finally, one can encode the incidence relation between points and lines in P2 using algebra: two 
involutions generate the subgroup Z/2 x Z/2 in PO(3, k) if and only if the neutral fixed point of one 
belongs to the fixed line of another, rotations g, 8 of orders 2 and 3 anticommute (i.e. crdat9 = 1) 
if and only if the neutral fixed point of the rotation 0 belongs to the fixed line of the involution (T, 
etc. We get the algebraization morphism: 

alg : based anisotropic arrangements --+ representations, 

alg : 41 ++ P, &t) = a+(w), 71 E VA) - (~1)~ P(.cL~~) = Q(vll), 

p E Hom(G\, PO(3)), II, E BR(A). 

THEOREM 4. - The mapping alg : BR(A, Pg) + X(G”, ,PO(3)) is an isomorphism onto a Zariski 

open and closed subvariety to be denoted Xf(G”, , PO(3)). 

The mapping alg has the following important property: let S be an affine scheme of finite type over 
Z and 0 E S be an integer point. Choose an embedding (defined over Z) S of S into affine space 
such that 0 goes to the origin. We can define S via equations that do not contain multiplicative and 
additive constants (so for instance the equation 2.7: + 1 = 1 will be rewritten as z + II: = 0). For S, 
choose a suitable arrangement A as in Theorem 3, and let $0 E BRa(A) correspond to the origin 
under the isomorphism r : BRa(A) -+ 5’. 

LEMMA. - The image of GSA under alg($a) is finite. 

It remains to examine the morphism p : Xf’( G>, PO(3)) + X(G>, PO(3)) given by pull-back 
of homomorphisms to PO(3). 

THEOREM 5. - Suppose that A is an admissible based arrangement. Then the morphism p is an 

isomorphism onto a union of Zariski connected components (I). 

COROLLARY 6. - The character variety X(Gz, PO(3)) inherits all the singularities of the character 

variety X(GL, PO(3)) corresponding to points of BR(A, Pt). 

5. Hain’s theorem 

THEOREM 7. - Suppose A4 is a connected smooth complex algebraic variety, G is a reductive 

algebraic group dejned over W, and p : xi(M) -+ G is a representation with jinite image. Then the 

twisted de Rham algebra A’(M, ad p) and its complexification A’(A4, ad p) @ a3 have the structure 

of a mixed Hodge complex. The graded bracket is compatible with Hodge and weight jiltrations. The 
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jirst cohomology has the weights (at most) 1 and 2 and the second cohomology has the weights (at 

most) 2, 3, and 4. 

We recall (see [5]) that there is a complete local ring RL. associated to any differential graded 

Lie algebra L’. Suppose that there exists a local cross-section through p to the Ad(G)-orbits in 

Hom(7rl(l\/r), G). Then by [3], Theorem 2.3, the complete local ring associated to the quotient 

germ (Hom(rl(AJ), G)//G, [p]) is isomorphic to RL., where L’ is the twisted de Rham algebra 

A’(M, ad p). For p = alg(&), the required local cross-section is shown to exist in [4], $12.1. Finally, 

to prove Theorem 2, we use: 

THEOREM 8 (Hain’s Theorem). - Suppose L’ and L’ 8 a3 have the structure of a mixed Hodge 

complex compatible with the graded bracket and H’(L’) = 0. Then there is a morphism of graded 

(by weight) vector spaces 

6 : H2(LE)* --f Gr”‘C [[H1(LE)*]] 

with the image of 6 contained in the square of the maximal ideal, so that RL; is the quotient of 

a3 [[H1(LE)*]] by the graded ideal generated by the image of 6. 

Here GrU denotes the graded vector space associated to the filtered (by weight) vector space 

a3 [[Hl(L;)*]]. W e a so 1 g’ lve an alternative proof of Theorem 2 using results of Morgan, in [7], on 

minimal models of smooth complex algebraic varieties. 

Acknowledgements. The first author is grateful to A. Vershik for a lecture on Mnev’s result in 1989. The 
authors are grateful to E. Bierstone, R. Hain, H. King, J. Kollar, P. Millman, C. Simpson, and D. Toledo 
for helpful conversations. The first author was supported by NSF grant DMS-96-26633, the second author by 
NSF grant DMS-9504193. 

(‘) The Zariski open subsets U, U’ in the abstract and Theorem 1 are 7(B&(A, Pi)) and [I o alg(BRo.(A, Pz)) 
respectively. 
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