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In this paper we develop the relative deformation theory of representations and
flat connections and apply our theory to the local deformation theory of linkages in
X where X is one of the three model spaces of constant curvature SI, JEffl and 1HF .
By the relative deformation theory of a representation po we mean the following.
Let r be a finitely generated group, G the group of k-points of an affine algebraic
group defined over k(k = R or C in what follows) which will also be denoted
G and R = {rt, r2, ... , r r} a collection of subgroups of r. Let po : Ir --&#x3E; G be
a homomorphism such that the Ad G orbit Oj of polrj in Hom(Fj, G) is closed,
1  j  r. We then define the affine variety of relative deformations of po; to be
denoted Hom(h, R; G), to be the inverse image of Ilj = t 0 j under the natural map of
k-varieties Hom(r, G) -+ Ilj=l Hom(rj, G). One can regard Hom(1,, R; G) IG
as the analogue of a relative first cohomology group and Hom(h, R; G) as the
analogue of the relative one-cocycles.
We next suppose that h is the fundamental group of a smooth connected man-

ifold M (possibly with boundary) containing disjoint domains Ul , U2, ..., Ur in
M such that the image of 7r, (Uj) under the natural map is conjugate to r j in h.
We let U = Uj=1 Uj and P be the flat principal G-bundle over M associated to po.
We then construct a controlling differential graded Lie algebra S (M, U; ad P)o
of ad P-valued differential forms on M. Roughly speaking this means we can
calculate the deformation space of po by solving the equation d ri + ! [1], q] = 0 in

* The first author was partially supported by NSF grant DMS-93-06140, the second by NSF grant
DMS-92-05154.
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B’ (M, U; ad P)o. Precisely, this means that the complete local k-algebra RBÕ asso-
ciated to the differential graded Lie algebra B (M, U; ad P) o by the procedure of
[Ml] is isomorphic to the complete local ring 0 of the germ (Hom(h, R; G), Po).
We can also express this in terms of functors on the category of Artin local k-

algebras. By [BM], Theorem 1.3, RB" o is a hull ([Sc]) for the functor Iso C (BO, A)
described in Chapter 2. Since hulls are unique, B’ (M, U; ad P)o controls the
relative deformation theory of po if and only if Ô is a hull for Iso C (BÕ, A).
The differential graded Lie algebra B* (M, U; ad P)o is the augmentation ide-
al in an augmented differential graded Lie algebra B’(M, U; ad P) which we
now describe. The Lie algebra BD(M, U; ad P) is defined to be the subalgebra of
smooth sections of ad P whose restrictions to Uj are parallel, 1  j  r. Also, for
i &#x3E; 0, Bi (M, U; ad P) is defined to be the subspace of smooth ad P-valued i-forms
that vanish on Uj, 1 z j z r. The augmentation is obtained by evaluation at a point
not in U. In Chapter 2 we define the relative deformation theory of the flat bundle
P, prove that ,t3’ (M, U; ad P) is a controlling differential graded Lie algebra for
that deformation theory and then prove that the holonomy map induces an isomor-
phism of relative deformation theories from the relative deformations of po to the
relative deformations of P. The letter B is chosen because of the connection with

’bending’, see [KM2].
Now let A be a linkage with n vertices in a two-point homogeneous Riemannian

manifold M. Let G be the isometry group of M. The n vertices of A determine
n elements of G, the Cartan involutions associated to these points, whence a
representation po : &#x3E;n --+ G, where 03A6n is the free product of n copies of Z /2. If
two vertices are joined by an edge of A, then fixing the conjugacy class in G of
the restriction of po to the infinite dihedral group generated by the two Z/2-factors
corresponding to the two vertices corresponds to fixing the distance between the
vertices (in order that this statement be true in the positively-curved case we must
use RP’ instead of sm - however, it is true infinitesimally, see Lemma 3.9). Thus
the set of edges E of A determines a collection R D 2 (i, j ) E £} of dihedral
subgroups of 03A6n. We let C(A) denote the configuration space of A (we do not
divide out by G). Then C(A) is easily seen to be an affine variety and we obtain a
(local) isomorphism from C(A) to Hom(03A6n, R ; G). We then use Schottky groups
to construct a controlling differential graded Lie algebra ,13’ (N, U; ad P)7, /2 for the0

deformations of a linkage A with n vertices and e edges. Here N is the connected
sum of n copies of S’ X sn-l and U is a tubular neighborhood of e disjoint circles
in N.

The theory developed in this paper may be applied in two directions. In [KMl]
and Chapter 5 of this paper we use our theory to compute the singularities in the
deformation space of a polygonal linkage in one of the model spaces of constant
curvature using techniques coming from the theory of deformations of flat connec-
tions. The singular points of these spaces coincide with the degenerate polygons
(i.e. the polygonal linkages that are contained in a geodesic of the model space).
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Each such singularity is isolated (modulo the action of the isometry group) and has
a neighborhood locally analytically equivalent to the product of the isometry group
divided by the isotropy subgroup of the geodesic and a quadratic cone defined by
a single non-degenerate quadratic equation whose signature is determined by the
number of ’back-tracks’ in the linkage. In order to determine this signature, in Theo-
rem 5.8 we give an explicit formula for the cup-product on Hl (S (M, U; ad p)Z/2)
as a tri-diagonal symmetric matrix.

In [KM3] and Chapter 6 of this paper we give applications going in the other
direction. In [KM3] we use linkages related to those of Example 3.2 of [Co],
carried over from JR2 to S2, to construct an example of a fundamental group of
a compact hyperbolic three manifold whose representation variety in SO(3) has
a nonquadratic singularity at an irreducible representation. In Chapter 6 of this
paper we use Theorem 3.2 of this paper to give a physical interpretation of the
nilpotent in the deformation space of the representation of a (3, 3, 3) triangle group
into GL2(C) described in [LM], 2.10.4 and [GM 1 ], 9.3.
We remark that using the ideas set forth in this paper, it should be possible to

carry over any deformation problem conceming configurations of totally-geodesic
subspaces of a model space of constant curvature to a relative deformation problem
of reflection groups. From there it should be possible to arrive at a controlling
differential graded Lie algebra of differential forms.
We conclude this introduction with a problem. When does the differential graded

Lie algebra f- = B’ (N, U, ad p)Z/2 of Chapter 4 admit the structure of a (real)0

mixed Hodge complex (see Definition 1.8 of [BZ]) such that the graded bracket
is compatible with the weight and Hodge filtrations? In this case Richard Hain,
[H], has shown that the associated ring R£. is defined by weighted homogenous
equations. Thus in this case the deformation space of the planar linkage A is a
weighted homogenous cone. The Hodge theoretic calculations of [KM1] are a
prototype for such an approach to the singularities of the deformation space of A.

1. Linkages in constant curvature spaces

Let X be as above. By a linkage A in X we mean a piecewise-geodesic mapping
p: Y - X from a finite, connected, metrized graph Y into X which is an isometry
on edges. Thus A is determined by a finite number of geodesic arcs of fixed length
in X which are allowed to overlap. We let V = tyl, y2, ..., Yn} be the vertices of Y
and let E be the set of unordered pairs { i, j} such that yi and yj are joined by an edge
of Y. We say A is admissible if all of the above geodesic arcs are minimizing and
that the points V (yi) and p(yj ) , {i, j} E E, can be joined by a unique minimizing
geodesic in X (i.e., we do not allow linked points to be antipodal in Sm). If A
is admissible then A is determined by its vertices ui = p(Yi), 1 z 1 z n, and
the combinatorial structure of Y. We will consider only admissible linkages and
usually write A = (u1, U2, ... un), assuming Y is fixed. A morphism of linkages
A = (u 1, u2, ... , un) and A’ = (u 1, u2, ... , un ) will be given by an isometry g of
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X such that gui = u 1, ... , gUn = u’ or equivalently g 0 p - p’. We let C(A)
be the set of all deformations of A and M(A) the set of isomorphism classes of
elements of C(A). We now show that C(A) has the structure of an affine variety.
We realize hyperbolic space HF as the upper sheet of the hyperboloid of two

sheets in Minkowski space Rm,t. Then sm and gn are both realized in V = Rm+t 
1

with the geometry induced by a quadratic form ( , ) which we take to be diagonal
relative to the standard basis with diagonal entries (1, 1, ... , £) where E = + 1
for SI and £ = -1 for Hm. We let a be the linear functional on V satisfying
a(ei) = 0, 1  i  m, a(em+l) = 1 and we let W be the kemel of a. We may
realize Em in Rm+l as the affine plane with equation cx(v) = 1. Then the isometry
groups of ,S’"2, HF and Em are realized as affine algebraic subgroups of GLm+1 (R).
The reader will note that a is invariant under the isometries of El.
We can give C(A) the structure of an affine subvariety of X n as follows. We let

f (u, u’) be the quadratic polynomial on V x V given by (u, u’) for the spherical
and hyperbolic cases and Il u - U, Il 2 for the Euclidean case. For each pair fi, j 1 E e
we let cij = f (ui, uj) and let c = (Cij) be the corresponding vector in Re where e
is the number of edges of Y. We define v : X n -t IRe by

Then C (A) = v - (c) and we have represented C(A) as the zero locus of a system
of polynomial equations.
We will not go into much detail here conceming the quotient M(A). We check

that it is Hausdorff in the quotient topology.

LEMMA 1.1 G acts properly on C(A).
Proof. The action of G on X is easily seen to be proper. Hence the diagonal

action on Xn is proper and consequently the induced action on C(A) C XI is
proper. Il

COROLLARY 1.2 The space of orbits M(A) = C(A)IG is Hausdorff in the
quotient topology.

2. Relative déformations of représentations and flat connections

In this chapter we will continue with the notation of the introduction. Our goal
will be to construct a controlling differential graded Lie algebra for Hom(T, R; G).
We will assume that the closures Uj of the domains Uj, 1  j  r have disjoint
neighborhoods N(Uj), 1  j  r, which induce collar neighborhoods of aUj =
Uj - Uj. The idea behind our definition of B° (M, U; ad P) is a simple one. We
want the perturbations of the basic connection wo to be trivial on Uj. So we
replace 41 (M, ad P) in the usual deformation theory of wo by the one-forms that
vanish on Uj. This still allows a non-constant trivial deformation of pol7ri(Uj)
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because the perturbing forms can be nonzero along an approach path from the
base-point of M to Uj. In order to get a complex we replace AO(M, ad P) by the
sections of adP that are parallel on Uj, 1  j  r. Finally in order that we don’t
have irrelevant obstructions on Uj we replace A2 (M, ad P) by the two-forms that
vanish on Uj, 1  j  r. The verification that the resulting differential graded Lie
algebra does in fact control the relative deformations of po proceeds along the lines
of [GM1]. We begin with a review of that paper.

Let A be an Artin local k-algebra with maximal ideal M. Then GA is the
algebraic group over k such that for any k-algebra B we have GA(B) = G(A0B).
We will abuse notation henceforth and indentify GA with its group of k-points
G(A). The inclusion map i : k- A and the projection map q : A --+ k induce

maps G GA -&#x3E; G whose composition is the identity map. We form the extended
principal bundle PA = P X G GA. We have induced maps P - i + PA 4 P whose
composition is the identity. We observe that i : P - PA is the homomorphism of
principal bundles associated to the homomorphism i : G -&#x3E; GA of the structure
groups. Moreover, if Go A denotes the kemel of q : GA -&#x3E; G then the extension

Gi - GA -+ G is split and q : PA ---&#x3E; P is obtained by quotienting PA by the
normal subgroup Go A of GA.
We now consider the action of the maps i and q on connections. Let 9 be

the Lie algebra of G. We observe that if Ci is a GA-connection on PA, then
i*w is a 9A-valued G-equivariant 1-form on P hence q o 1*&#x26; is a G-connection
on P. Here we have used q to denote the map from 9A tO 9 induced by q.
We again abuse notation and use q(w) to denote qoi*w. We note that a) is a

deformation of wo if and only if q(câ) = wo. We may map connections in the
opposite direction by observing that P 2013 PA is a homomorphism of principal
bundles with corresponding homomorphism of structure groups i : G -+ GA.
Thus if c.a is a G-connection on P then there is a unique induced GA-connection
i (w) on PA such that di carries the horizontal distribution of w to the horizontal
distribution of i(w). Thus 1(w) is flat if and only if w is. We have i*i(w) = iow
whence qi(w) = w. By definition i(wo) is the trivial deformation of wo. We will
often use Wo to denote i(wo).

Finally we consider the action of i and q on gauge transformations. We let
G(PA) (resp. G(P)) denote the group of bundle automorphisms of PA (resp. P).
We define i : G (P) - G (PA ) ) by base change whence

Here [p, g] denotes the class of (p, g) in PXaG A. We define q : G (PA) -+ G (P) by
q(F) = q o F o i. Again we have an induced sequence G (P) -’+ G (PA ) 1 G(P)
with q o i equal to the identity. We put GD (PA) = kerq. Then GO(PA) is a nilpo-
tent (infinite-dimensional) Lie group with Lie algebra cannonically isomorphic to
r(M,adP) 0 M. This isomorphism is realized as follows. Given F E G(PA)
we define f : PA - GA by F(p) = p f (p) whence f (pg) = g-I f (p)g. Thus f
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is a section of AdPA = PA xAa GA. If F E G°(PA) then f takes values in the
nilpotent Lie group GO(PA). Thus f may be written uniquely as f = expÀ with
À e f(M,adP)0M.WeobservethattheextensionGO(PA) -t G(PA) -+ G(P)
is split by i. Also we observe that for F E G(PA) and w a connection on PA

We let F(PA) denote the set of flat GA-connections on PA. We leave the proof of
the following lemma to the reader.

LEMMA 2.1 The previous formulas for i and q define functors between the cate-
gories of principal G-bundles with connection over M and principal GA-bundles
with connection over M.

This concludes the review of [GM1].
We now define the groupoid:FÁ (wo) of relative déformations of wo. We define

the set of objects of :FÁ(wo) to be the flat 9A-valued connections (D on PA such
that q(w) = wo. Further, we require that there exist Fj e G°(PJA ) , 1 z j z m,
such that wlp1 = Fj*woIP1. The group of morphisms of FA. (wo) is then defined to
G° (PA ) . The next lemma shows that it makes no différence if we allow Fj above
to be in G(PÂ) instead of G° (P( ) . In it we drop the superscript j on PÂ.
LEMMA 2.2 Suppose w is an object of:FÁ (wo). Suppose further there exists F E
G(PA) suchthatw = F*wo. Then there F e GO(PA) suchthatw = F*wo.

Proof. By assumption F*WO is a deformation of wo. Hence q(F*wo) = Wo so
q(F)*wo = wo and q(F) e Aut(wo). By Lemma 2.1, H = iq(F) e Aut(o)o). Thus
câ = (H-t F)*wo and F = H-t F e G°(PA) . D

We now describe a déformation theory equivalent to that of Wo using representa-
tions. We define the groupoid RÂ(po) of relative deformations of po by defining an
object of R a (po) to be an element p e Hom(r, GA) such that q(p) = po and plr j
is conjugate to polr. by an element gj E GÂ, 1  j  r. We define the morphismsof RÂ(Po) to be GA acting in the usual way. In what follows we consider the set
of objects ObjRÂ(po) as a functor of A. We will also need the groupoids RA(po)
of of [GM1], Section 4.2. The objects of RA(po) are the elements of Hom(r, GA)
such that q(p) = po and the morphisms are again the elements of GÂ acting in the
usual way. Let Oj , 1 z j z r, be the k-variety which is the orbit of polrj under G.
We define OP(A) C Oj(A) by

We have a square Si
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LEMMA 2.3 Let p E Hom(r, GA) with p = po mod,M. Suppose that there exists
9 E GA such that p = Ad(g) o Po. Then there exists 9 e GoA such that p =
Ad(g) o po.

Proof UponreducingmoduloMwefindq(g)poq(g)-t = po. Hence h = iq(g)
satisfies h-t poh = Po and q(h) = q(g). Hence p = Ad (gh-1 ) Po. But gh-1 e GÂ.
Put g = gh-1. 0

We now relate the previous groupoid to the relative representation variety.

PROPOSITION 2.4 The functor Obj RÂ(po) is pro-represented by the germ of the
variety Hom(r, R; G) at po.

Proof. By definition we have a fiber square of analytic germs

We obtain a fiber square of sets by taking A-points of these germs. The previous
square Si maps to the resulting square S2. We place 61 above S2 to obtain a cubical
diagram. The vertical (in space) arrows corresponding to the two right-hand corners
and the lower left-hand corners of the squares are clearly bijections. We wish to
prove that vertical arrow corresponding to the upper left-hand corners is a bijection.
Since the lower square ,S’2 is a fiber square it suffices to prove that ,S1 is also a fiber
square; that is, that the induced map

is a bijection. Here, we have abbreviated ITj=t nA(polrj) to P. It is clearly an
injection. Thus, we see that it suffices plrj E OjQ(A), 1  i  r, then there exists

g e Go with Ad g(po) = p. But evaluation at po, evpo : G ---&#x3E; Oj is a smooth map.
It is then immediate, [GM2], Lemma 4.7, that the induced map Gi - °J(A) is
onto. 0

We now define a functor hol : FA (wo) -&#x3E; R’ (po). We choose a point p E P C PA
such that the image of P in M does not lie in U. We define hol on objects by
defining hol(w) to be the holonomy representation of r associated to w and p (see
[GM1], Section 5.9). We define -p : G(PA) - GA by F(p) = pcp(F). Then
cp(GO(PA)) C Go. We then define hol on morphisms by hol(F) = eP(F). Thus
we obtain the required functor.

The next proposition follows from [GM1], Proposition 6.3. Note that the
morphisms of the above (relative) groupoids are the same as the corresponding
groupoids of [GM1].
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PROPOSITION 2.5 The functor hol is an equivalence of groupoids.

We now define a differential graded Lie algebra B (M, U; ad P)o which will be
a controlling differential graded Lie algebra for the relative deformations of po. We
associate to po the principal bundle P = M X1rl(M) G and the Lie algebra bundle
ad P = M x1rl(M) g. Since ad P is a flat bundle of Lie algebras, we obtain the
differential graded Lie algebra (A’ (M, ad P), d) of smooth forms with values in
ad P. We define B» (M, U; ad P) C A’ (M, ad P) as follows

We will often abbreviate S (M, U; ad P) to B.

REMARK. Let V be any flat bundle over M. Then we may define a complex
B’(M, U; V) by replacing ad P in the above definition by V. We will use this
notation throughout this paper without further comment.

13’ (M, U; ad P) is a sub differential graded Lie algebraof,4*(M, ad P). Since B’
is a differential graded Lie algebra, there is an associated transformation groupoid
C(B’ A), [GM1], pg. 45-46. We recall its definition. The objects of C(B’, A) are
the elements ri of i31 0 M satisfying the deformation equation

The group of morphisms of C (B*, A) is the nilpotent Lie group exp BO 0 M
associated to the nilpotent Lie algebra B° 0 M. The morphisms act on the objects
by exponentiating the infinitesimal action da : B° x Obj C(B’, A) --- &#x3E; Obj C(B’, A)
given by

A formula for the action of exp(A) is given in [GM 1 ], pg. 45. We let Iso C(B’, A)
denote the quotient set of the objects by the morphisms.
We next note that there is a functor t : C (B *, A) --&#x3E; FÁ(wo). The functor t is

defined on an object 1] by

Here we have identified q with a horizontal, GA-equivariant, ga-valued 1-form
on PA. The definition of b on morphisms is as follows. An element exp( À) e
exp B° 0 .M may be identified with a cross-section of the Lie group bundle Ad PA
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associated to PA and the adjoint action of GA on itself. The section exp(À) may in
tum be identified with an Ad GA-equivariant map fa : PA -&#x3E; GA. Then fa may be
identified with the bundle automorphism Fa : PA --3 PA given by

Wedefine1](exp(,x)) = (F;l)*. We observe that

since À is parallel on Uj , 1  j  r. Clearly Fa - I mod M whence FA e GO (PA) -
We will now prove that t is an equivalence of groupoids. We note that b is not an

isomorphism of groupoids, it is not surjective on objects unlike the absolute case,
[GM1], Proposition 6.6. We first prove a lemma.

LEMMA 2.6 Let Fj E GO (PIA). Then there is an extension Fj of F3 to PA with
Fj E GO (PA), which is the identity outside PA 1 N (Uj).

Proof. We define fj E IP (Uj, Ad PjA) by Fj(p) = pfj(p). By assumption
fj = exp Aj for Àj e r(Uj, ad PjA) 0 M. We let p(x) be a smooth function with
V(x) = 1 on Uj and cp(x) - 0 on the complement of N(Uj) in M. Then define
/j(p) = eXPP(1f(p))Àj(p)) for p E PA 1 Uj and fj(p) = I otherwise. Then Fj
defined by Fj (p) = p fj (p) is the required extension. D

PROPOSITION 2.7 The natural transformation b is an equivalence of groupoids.
Proof. Surjective on isomorphism classes. Suppose w E Obj FA (wo). Put Wj =

WIPIA, 1  j  r. By assumption there exists Fj E G°(PA), 1 j  r, such that
Fj* wj = wo. Let Êj be an extension of Fj in GD (PA) which is the identity outside
PA 1 N (Uj), 1 j  r. Put F = FI o F2 o o F,. Then F*w 1 P’A := iDo, 1  j ,
whence F*w = t(ri) some n e 81 (M, U; ad P) 0 M. But ca = (F-1 )*F*w.

Faithful. Clear.

Full. Suppose t(ril) and  (1]2) are equivalent in :FÁ (WO). Hence there exists F E
Go (PA) such that F* (wo + n1) = WO + n2. We restrict this equation to Uj, 1 ,
j  r, to deduce (F*C,)o)IPIA = wolP1, 1 j  r. Hence FIPIA E Aut(Cjo) and
consequently À = log f E BO(M, U; ad po) 0 M where F(p) = pf (p). Hence
F = t(exp(-À». D

In what follows we will need to know the cohomology groups H’ (B (M, U; ad P) ).
We let ,A’ (M, U; ad P) c A’(M, adP) denote the subalgebra of forms vanish-
ing on U = Uj=l Uj. We have an exact sequence 0 - A’(M,U;adP) -+
B’(M,U;adP) -t TIj=IHO(Uj,adP) -t0.
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LEMMA 2.8 (i) H° (B° (M, U; ad P) ) = HO(A’(M, ad P) ) .
(ii) H1(li’(M,U;adP)) =ker(H1(M,adP) -&#x3E; H1(U,adP))

= im(I-Il (M, U; ad P) -&#x3E; H1 (M, ad P))
(iii) H’(B’ (M, U; ad P) ) = Hi (M, U; ad P), i &#x3E;, 2.
Proof. Equations (i) and (iii) are obvious. To prove (ii) observe that the long

exact sequence of cohomology associated to the above short exact sequence give

Then (ii) follows from the exact sequence of the pair (M, U). 0

We now construct a controlling differential graded Lie algebra for the germ of the
relative representation variety Hom(r, R; G) at po. We choose a base-point xo e M
such that xo e Uj=t N(Uj) (we assume that the point p E P lies over xo). We
obtain an augmentation E: B (M, U; ad P) - g by evaluation at xo. Clearly, - is
surjective and - 1 Ho (B* (M, U;adP) is injective. We let B (M, U; ad P)o be the
kemel of the augmentation 6. We then have the main result of this section. The
proof is analogous to that of [GM1 ], Theorem 6.8. We put L’ = B° (M, U; ad P)o.

THEOREM 2.9 B’ (M, U; ad P)o is a controlling differential graded Lie alge-
bra for the relative deformations of po; that is, the analytic germ (X, po) of
Hom(r, R; G) at po pro-represents the functor Iso C(L», A).

Proof. Following [GM1],pg. 81, we define groupoids (FrA)(wo) and (RÂ)’(Po)
as follows. The objects of (FÁ) (wo) coincide with those of (FrA)’(Wo) but the
morphisms of (:FÁ)/(WO) are defined to be those F E Aut(PA) satisfying Ep (F) =
1. The objects of (RÁ) (po) coincide with those of (RÁ)/(pO); however, the group
of morphisms of (RÁ)’ (po) is defined to be the trivial group. By Proposition 2.4
(7?’ )’(po) is pro-represented by (X, po). It follows from Section 6.4 of [GM1]
and Proposition 2.5, that hol induces on equivalence of groupoids (FrA)(wo) -
(R al’ (po) . We claim that t induces an equivalence of groupoids from G(L’, A)
to (FrA)’(wo). It is clear that b is faithful and full. To see that t is surjective on
isomorphism classes we have only to examine the proof of Proposition 2.7 and
observe that since xo « Ui=l N(Uj ) the gauge transformation F constructed there
satisfies Ep (F) = I. The claim follows. We obtain natural isomorphisms of functors
Iso C (L *, A) .-- Iso (:FÁ)/(WO)  Iso (RÁ)/(pO). 0

REMARK. Let Ô be the complete local ring of the above analytic germ. We have
observed in the introduction that B* (M, U; ad P)p controls the relative deformation
theory of po if and only if6 is ahull for IsoC(L’, A). Since HO(S’ (M, U; ad P)o) =
{O} the functor IsoC(L A) is pro-representable. This is why we can prove the
stronger statement that Ô pro-represents Iso C(L’, A).
We leave the proof of the next lemma to the reader. We define Zl (F, R ; 9) to

be the subspace of the 1-cocycles Zl r, 9) whose restrictions to each Fj are exact.
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LEMMA 2.10 (i) H°(Z3’ (M, U; ad P)°) _ {O}.
(ii) H1(8’(M, U; ad P)°) = ZI(r,R;g).
(iii) Hi (x3’ (M, U; ad P)°) = Hz (M, U; ad P), i &#x3E; 2.

Finally, we will need to extend the above result to the case in which F is the
fundamental group of the orbifold obtained by quotienting M as above by a finite
group H of diffeomorphisms of M such that each Uj is carried into itself by H.
We let A be the orbifold fundamental group of M/H so we have an extension
r -+ A -+ H. We let Aj be the orbifold fundamental group of Uj 1 H. We assume
po extends to A and denote this extension by p’. We let R’ _ {A 1 , ... , Ar} and
consider Hom(A, R’; G), the space of relative deformations of pô. The proof of the
following theorem is analogous to that of [GM 1 ], Theorem 9.3.

THEOREM 2.11 The subalgebra 8’ (M, U; ad P){f of H-invariants is a control-
ling differential graded Lie algebra for the relative deformations of pô.

Proof. We indicate the modifications required in the proof of [GM 1 ], Theorem
9.3, using the notation of that proof. Define Ùj C M x K, 1 z j z r, by
Uj = Uj x K, whence the diagonal action of H on Uj is free and 1r1 ([Jj 1 H) = Aj.
We put Uj = Ujl H and U’ = UJ==t Uj. We define (8’)’ = 8’(M XH K, U’; ad Pl)
using the domains Uj in M x H K and P’ the principal G-bundle over M x H K
associated to po A -t G. Note that 1f1 (M x H K)  A. We put z§ = [xo, 1] (the
equivalence class of (xo, 1)) and define an augmentation of (8’)’ by evaluation at
xô. By Theorem 2.9, the augmentation ideal of (B. 1’ is a controlling differential
graded Lie algebra for the relative deformations of po. The projection map 1f :
M x K - M induces a homomorphism of augmented differential graded Lie
algebras S (M, U; ad P) H into (8’)/. By [GM 1 ], Theorem 2.4, it suffices to prove
that 1f induces isomorphisms on HO and H1 and an injection on H2. Since the
functor of H-invariants is exact, it suffices in turn to prove that the natural map
from 8’ (M, U; ad P) into 8’ (M x K, U; ad P) has the same property (here U is
the union of the domains Uj, ,1  j  r). We may replace the second algebra by the
quasi-isomorphic subalgebra S (M, U; ad P) ® ,A.’ (K) and the theorem follows
from the Kunneth formula. 0

In Chapter 5 we will need to compare the complete local ring Ro associated to
the augmentation ideal 80(M, U, ad P)ô to the complete local ring R associated
to 8’ (M, U; ad P)H. We do this in the general context of augmented differential
graded Lie algebras. The following theorem generalizes Theorem 3.5 of [GM 1 ] .

THEOREM 2.12 Suppose (L’, d, E ) is a g -augmented differential graded Lie alge-
bra. Suppose that the augmentation E : LO ---7 g is surjective and the restriction
of E to H° (L) c LO is injective. Let L° = kerc be the augmentation ideal and S’
be the complete local ring associated to the smooth germ (Ç /E(H° (L) ) , 0). Then
RL« is isomorphic to the completed tensor product R LôS.
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We apply the theorem to the case L’ = B’ (M, U; ad P) H to obtain the following
corollary.

COROLLARY 2.13 Let Z be the subalgebra of Ad po invariants in Q. Let S be the
complete local ring of the smooth germ (Q 1 Z, 0). Then

The theorem will be a consequence of the next two lemmas. The next lemma is
Lemma 1.7 of [BM]. It is an immediate consequence of the obstruction theory of
[GM1], Section 2.6.

LEMMA 2.14 Suppose 0: L - L is a homomorphism of differential graded Lie
algebras such that Hl (0) is surjective and H2 (cf;) is injective. Then the induced
natural transformation 0: Iso C (L , . ) -&#x3E; Iso C (L, .) is smooth.

We owe the next lemma to Mike Schlessinger. We will adopt the following
notation of [Sc]. Suppose R is a complete local k-algebra. Then hR will denote the
functor on the category of Artin local k-algebras given by hR(A) = Hom(R, A)
where Hom denotes k-algebra homomorphisms. Also if F is a functor on the
category of Artin local k-algebras, we extend F to the category of complete local
k-algebras by F(R) = proj lim F (RI Mn) where .M is the maximal of R. We note
that the extension of hR is represented by R.

LEMMA 2.15 Suppose F and G are functors on the category of Artin local k-
algebras and rl: F --&#x3E; G is smooth. Suppose R is a hull for F and S is a hull for
G. Then 1] induces a natural transformation r,: h R - hs and r, is smooth.

Proof. We have a diagram

We apply the above diagram to R.
Let I E hR(R) be the identity map and let g E G(R) be given by g = q (R) o

a(R)(I). We claim that 3(R) is onto. Indeed since hs ----&#x3E; G is
smooth projlimhs(R/M’) -&#x3E; projlimG(R/Mn) is onto. But hs(R) --&#x3E;
proj lim hs(RI Mn) is an isomorphism. The claim follows.
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Choose f E hs(R) satisfying ,(3(R) f = g. Then f : S -&#x3E; R is a k-algebra
homomorphism and induces a natural transformation f * : hR -&#x3E; hs. We obtain a
diagram

of functors on the category of Artin local k-algebras. We claim this diagram is
commutative.

To see this let A be an Artin local k-algebra. We obtain a square by applying the
above diagram to A. Let 0 E hR(A). We want to show that the results of following
cp around the two pairs of consecutive edges of the square coincide. To see this we
form a second square by applying the above diagram to R. We use 0 to map this
second square to the first square. We place the second square over the first square
in space and obtain a cubical diagram where the vertical arrows are induced by 0.
Since a, 0, ri and f * are natural transformations all the vertical squares commute.
But 0 is the image of I from the vertex hR(R) and by construction the results of
following I around the two pairs of consecutive edges of the top square coincide. It
is then immediate that the results of following 0 around the two pairs of consecutive
edges of the bottom square coincide.
We put n = f *. It remains to prove that n is smooth. Suppose we are given an

extension I - A - A of Artin local k-algebras with IM = 0. Hence M is the
maximal ideal of A. We wish to prove that the induced map

is onto. To this end we consider the diagram
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It is immediate that a and b are surjective. Let (x, z) E hR(A) X hs (À) hs(A).
Let (x, w) be the image of (x, z) in hR(A) xG(Ã)]B(A). Let x E hR(A) satisfy
a(x) = (x, w). Let c(x) = (x, z) E hR(A) xhs(Ã) hs(A). Now the image of z in
hs (A), coincides with the image of x hence is equal to the image of z. Hence z and
z both lie over the same point of hs(A). By [Sc], Remarks, pg. 213, there exists
an element i of the tangent space ths 0 1 whose action carries z to z. Since the
induced map on tangent spaces thR - ths is onto there exists t E thR 0 1 whose
image is i E ths 0 1, then

Theorem 2.12 now follows. Indeed by Lemma 2.14, the induced natural trans-
formation Iso G(Lo, ) -3 Iso C (L, .) is smooth. Hence by Lemma 2.15, the induced
natural transformation hRLo -+ hRL is smooth. Hence by [Sc], Proposition 2.5(i),
R Lo is a power series ring over RL. A calculation of tangent spaces completes the
proof.

Let V be a flat bundle over M acted on by H. We will abbreviate B’(M, U; V ) H
to C (M, V ) henceforth. We conclude this chapter with two duality results we will
need later.

LEMMA 2.16 Assume M is compact orientable of dimension n and let E be the
character of H obtained by the action of H on the orientation of M. Let V be the
flat bundle over M corresponding to the 1f1 (M) -module V. Then Hn(C’(M, V))
is dually paired with HO(A, V * 0 E).

Proof. The lemma follows immediately from the fact that the integral of the
wedge product gives a perfect pairing

But the relative fundamental class of M transforms by - under H. D

We will also need duality for the first cohomology in the case that M is the
complement of n points, pl , p2, ... , pn in a compact surface M and Ui is the

complement of Pi in a coordinate disk Di C M with center pi, 1 , i ,, n. We
assume V is a flat bundle over M such that VIUi does not admit a parallel section.
We assume further that there is a nonsingular parallel bilinear form b on the bundle
Y. We combine the bilinear form b on V with the wedge product of forms and
integration to obtain a real-valued pairing B on Hl(B’(M, U; V)).

LEMMA 2.17 The pairing B is non-singular.
Proof. Poincaré duality.
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3. Déformations of linkages in constant curvature spaces and relative
déformations of refiection groups

In this chapter we describe the deformation theory of a linkage A = (u 1, u2, ... , un )
in X = Sm, lEm or H’m in terms of the relative deformation theory of a represen-
tation of (Dn, the free product of n copies of Z/2, into G, the isometry group of
X.

A point u in X determines an element of order 2 in G, the Cartan involution at
u. For the cases X = sm and X = ff’ the involution su is the restriction to X of

the element su E GLm+1 (R) given by

In the Euclidean case we replace the previous formula by

The reader will observe that since a (u) = 1 we have su (u) = u.Alsosu(w) = -w,
allwEW.
We note that in the Euclidean case we have V = U + W and in the other two

cases V = U + U-L where U is the line through u. Also we note that for the
Euclidean and hyperbolic cases the fixed-point set of su is jul whereas for the
spherical case it consists of f ±ul. Finally, we note that gsug-l = Sgu, 9 E G. We
now describe how to associate a representation p : 03A6n, -&#x3E; G to A. 

. .

We let Tl , T2,..., Tn be the generators of the Z /2 factors of 03A6n and D2ij =
(Ti, Tj) be the (infinite dihedral) subgroup of 4D,, generated by { Ti, Tj }. An n-tuple
of points ui , u2 , ... , un determines an n-tuple su1 , SU2’ ..., sun in G which we
identify with the homomorphism p : lfn --&#x3E; G satisfying p( Ti) = sui) 1 , i  n.

We define W : X n - Hom( 03A6n, G) by 03C8 (u 1, u2, ... , un ) = p where p is as above.
It is immediate from the above formulas for su that the map is a regular map of
real algebraic varieties. Moreover, it is easy to see that the differential of T at the
point (u 1, u2, ... , un ) is invertible. Thus the map W induces an analytic equivalence
from a neighborhood of u to a neighborhood of p. Finally, the condition f (ui, uj) =
f (v2, vj) is easily seen to be equivalent to the condition that the dihedral groups
(sui 1 suj) and (SVi’ svj) are conjugate in G. Thus if we let R = ID"] : (i, j) e SI
the following theorem is clear.

THEOREM 3.1 Let Ao be an admissible linkage in X and put po = w(Ao). Then
the map induces a analytic equivalence of the germ of c (Ao ) at Ao and the germ
ofHom(lfn , R; G) at po where both germs are given their reduced structures.

REMARK. The above argument generalizes immediately to an admissible linkage
A in any two-point homogenous space.
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However, the deformation spaces of linkages are frequently not reduced and
this failure to be reduced leads to interesting geometric consequences, e.g. nth
order deformations that cannot be lifted to (n + 1 )-st order deformations, see [Co]
for examples. For this reason we will prove the following more precise version of
Theorem 3.1. The proof will be a consequence of the next five lemmas.

THEOREM 3.2 The map W above is the map of reduced germs underlying an
isomorphism

of analytic germs.

COROLLARY 3.3 In case X = IE’"z or IHf the induced map BII: C(Ao) -
Hom( lF , R; G) is an isomorphism of analytic varieties.

By [GM1], Theorem 3.1, an isomorphism of germs is equivalent to compatible
isomorphisms of the associated sets of points over Artin local R-algebras. We recall
that an Artin local R-algebra A is a Noetherian R-algebra such that the maximal
ideal M of A is nilpotent. Then to prove the above theorem it is necessary and
sufficient to extend W to a family of isomorphisms PA (one for each A) which are
compatible with homomorphisms of the A’s.
We now construct BII A. We define V (A) = V ©R A and W (A) = W 0R A. In

the spherical (resp. hyperbolic) cases we define X(A) to be the set of u E V(A)
such that (u, u) = 1, (resp. (u, u) = - 1). In the Euclidean case we define X (A) =
fu E V(A) : a(u) = 1}. Here we extend a to V 0 A as a Q?) 1 and (, ) to V 0 A
by the formula

We recall G (A) is the subset of the m + 1 by m + 1 matrices over A satisfying the
defining equations for G and define C(AO)Ao (A) by C (Ao) (,4) = 1 (û 1, - .. , un) e
X(A)n : (Ui, Uj) = Cij, all (i, j) E E and ûi =- ui mod M, 1  i ,

n}.
The following lemma is clear.

LEMMA 3.4 The functor (of A) C(Ao)Ao(A) is pro-represented by the germ
(C(Ao), Ao).

In order to construct the map 03C8A on A-points we will need to classify pairs of
elements of order 2 in G(A), which are deformations of symmetries Su in G, up to
conjugacy in G(A).
We begin with the following elementary result conceming the equation x2 = a

in an Artin local k-algebra - in fact this is a special case of Hensel’s Lemma for
complete local rings, [Bo], III, Section 4.5.



303

LEMMA 3.5 Suppose a is a unit. Then the above equation has a solution if and
only if a is a square modulo M. If a is a square modulo M there are exactly two
solutions which are negatives of each other.

Proof. It is evident that if x2 = a has a solution, then a is a square mod M.
Suppose then that a is a square modulo M. Let y e k satisfy a - y2mod M.
We claim there exists a unique solution x to x2 = a such that z m y mod M. By
Artinian induction, [GM1], Section 2.5, we may assume there is an ideal I C M
such that Z . = 0 and such that there is a unique solution x to x2 = a in A = AlI
with the property x - y mod M. We choose x’ E A such that x’ - Y mod 1. We

may write a = z+m and x’ = y + mwhere z, y e k- {O} and m, m’E M. Then
there exists io e I such that ( y + m’) 2 = z + m + io. Hence x = y + m’ - 1 - lio
solves x2 = a. If x is any other solution, then by induction x = x + i and we obtain
2xi = 0. Since x is a unit, i = 0 and the lemma follows. 0

We can now begin our study of elements of order 2 of G(A). Note that A is
local ring in which 2 is a unit. We observe that G (A) acts transitively on X(A).
For X = MI this is obvious. For X = Sn or X = 1ff1’ see [Sch], Ch. 1, Lemma
6.5. For u E X (A) we define su by the above formulas. Then if U denotes the
line through u, we have V = U + U1, [Sch], Ch. 1, Lemma 6.1 in the spherical
and hyperbolic cases. In the Euclidean case we have V = U + W by Nakayama’s
Lemma, [AM], pg. 21, clearly U n w = {0}. From the defining formula for su,
we see that su coincides with I on U and -I on U1 (or W). We claim that the
fixed-point set of sulX(A) consists of I+ul if X = Sm or tul if X = 1Hf"" or
X = Em . Indeed any fixed-point lies in U and consequently is of the form xu with
x e A. Since xu E X(A) we have x2 = 1 in case X = ,S’’n and 1Hf"" and x = 1
in case X = Em. Hence x = ±1 by Lemma 3.5. In case X = 1Hf"" we have z m 1
modM whence x = 1 in case X = 1Hf"" or Em, and the claim follows.
Now let X(A)Ao denote the set of n-tuples (Û 1, Û2, un) E X (A) n such

that ùj m ui, mod M, 1 z i  n, and Hom«Dn, G(A))po denote the subset
of representations satisfying p - po modm. We then define BliA: X (A) Ao -+
Hom(q,n, G(A) ) po by

LEMMA 3.6 wA is invertible.
Proof. We first show that wA is onto. It suffices to prove that if s E G(A) has

order 2 and satisfies s m su mod.M for some u E X then there exists ù E X (A)
with ù m umodM such that s = sù. To prove this let V+ and V- be the +1
and -1 eigenspaces in V (A) of s. Then V+ and V- are orthogonal for (,) in
the spherical and hyperbolic cases. In the Euclidean case we have a(v) = 0, all
v E V- (since a(v) = a(sv) = -a(v)). In all three cases V+ n V- = f 01 and
V(A) = V+ + V- by Nakayama’s Lemma. Also, by Nakayama’s Lemma, V+
is a free A-module of rank 1 generated by any û e V+ such that û - umod.M.
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Choose such a ù. Then in the spherical and hyperbolic cases a = (û, û) satisfies
a - 1 mod M and in the Euclidean case a = a (û) 1 mod,M. In the latter case
we replace u by a-lû to get û E X (A). In the other two cases we apply Lemma
3.5 to find x E A such that x 2 = a. We then replace ù by x - 1 û to get U E X (A).
In the spherical and hyperbolic cases it is clear that s = Su. In the Euclidean case
s = Su since su(v) = -v for v e V- because a(v) = 0.
We next prove that 03C8A is injective. Indeed suppose p is in the image of 03C8A with

p( Ti) = SUi’ 1  i  n. The vector ûi is uniquely determined in the Euclidean case
and determined up to multiplication by ± 1 in the spherical and hyperbolic cases.
But since ûi = ui mod M, the vector Ui is uniquely determined in all cases. Il

We now take account of the conditions f (ui, uj) = cij, {i, j} E E. We first
need the Witt extension theorem for isometries.

LEMMA 3.7 Suppose V is a real vector space equipped with a non-singular
bilinear form (, ). Suppose U (A) c V (A) is a submodule such that the restriction of
(, ) to V (A) is nonsingular. Suppose h : U(A) -t V (A) is an isometric embedding.
Then h extends to an isometry h : V (A) -&#x3E; V (A).

Proof. Let W (A) be the image of h. Then V = U(A) EB U(A)1 = W(A) 0153
W(A)1. By the Witt Cancellation Theorem [Sch], Ch. 1, Lemma 6.6, there is an
isometry k : U(A)1 -&#x3E; W(A)1. Hence h 0153 k is an isometry of V that extends
h. o

COROLLARY 3.8 Let V, ( , ) be as above. Suppose U 11 U2, ..., Uk and

VI, V2, ... , vk are elements of V(A) such that (ui, uj) = (vi, vj), 1 z 1 , j z k
and the k by k matrix (( Ui, Uj )) = ( (vj , vj ) ) with entries in A is invertible. Then
there exists an element g E G(A) such that gui = vi, 1  k  k.

Proof. Use the above lemma to extend the isometry sending ui to vi, 1  i  k
to all of V (A). 0

LEMMA 3.9 Suppose UI, U2 and VI, V2 are in X(A)2 and assume further that
ui =- vi mod M, i = 1, 2. Assume that the inner products (Ut,U2) and (Vt,V2)
are not congruent to :i: 1 mod M in the spherical and hyperbolic cases. Then
f (UI, U2) = f (VI, V2) if and only if the dihedral groups (SU1,SU2) and (SVl,SV2)
are conjugate in Go A*

Proof. We first treat the spherical and hyperbolic cases. Assume first (Ut, u2) _
(vl, v2). If (ul, u2) _ (V t , V2) =1= :El mod M then the 2 by 2 matrices (( Ui, U j ) )
and «vi, Vj)) are equal and invertible. Hence there exists 9 E G(A) with gul =
vj , gu2 = V2 by Corollary 3.8, and (SUpSU2) and (SVpSV2) are conjûgâte. Let
U = spanlui, U21. Then V(A) = U + U-L. In what follows we use a bar over
an object to denote its reduction modulo M. We have g- 1 U = I. Let h = 9 1 U
and h be any element of the special orthogonal group of U-L, (, ) which reduces
to h modulo M. Then goh-1 (ul) = vl, goh-1 (u2) = v2 and goh-1 conjugates
(SU, 1 SU2) to (SUI’ SU2). But goh-1 E GÂ.
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Conversely if (su, , SU2) are conjugate by g E GÂ then gul = ±vl and gu2 -
±V2. Reducing modulo M (and using g - I mod M) we see both signs are positive
whence f (ul, U2) = f (vl, V2).
We now treat the Euclidean case. We first assume f (u 1, u2 ) = f(VI, V2). By

applying congruent translations we may assume UI = VI = em+l. Then the
vectors u2 - em+1 and v2 - em+1 in W (A) have the same inner product. Hence by
Corollary 3.8 there exists an element g of SO(W (A)) which carries U2 - em+l to
v2 - em+ 1. Then the image of g in G(A) carries u2 to v2 and consequently (su l su2 )
and (SV1’ SV2) are conjugate. By modifying g on the orthogonal complement to
u2 - em+ as above we may assume g E Go. Conversely, since su determines u,
if (SUI’ SU2) is conjugate to (svl , sv2 ) by g then gu1 - vl , gu2 = v2. 0

Thus 03C8Â carries C(AO)Ao (A) onto Obj Ri ( po) and Theorem 3.2 is an immediate
consequence of Lemma 3.4 and Proposition 2.4.

REMARK. Since A = (Ul, u2, ... , un ) is admissible (ui, uj) 7 ±1 in the spheri-
cal and hyperbolic cases.

4. Déformations of linkages and local systems over
Schottky quotients of B 3.

Let A be a linkage with n vertices. Let Y be the graph underlying A. Since the
complete graph on n-vertices embeds totally-geodesically into sn, we have an
induced totally-geodesic embedding of Y into Sn . We do not assume it is an
isometry. We identify Y with its image in Sn and choose disjoint spheres around
the vertices of Y. Let Tl, T2,..., Tn be the reflections in these spheres. We may
extend Tj , T2, ... , Tn to reflections in the totally-geodesic hyperplanes in Hn+1 1

bounded by the spheres.
03A6The group generated by Tl , T2, ... , Tn is a discrete subgroup of SO(n + 1, 1)

which we may identify with lbn. The group 03A6n acts properly discontinuously on
IHf+1 1 U SZ where Q is the complement of the limit set of W n in sn . The hyperbolic
quotient W = IHf+I U Ç2/q&#x3E;n is an orbifold which may be visualized as follows.
Each of the reflector hyperplanes H2 bounds a half n + 1-ball which intersects Sn
in an n-ball Bi bounded by the corresponding reflector sphere Ei. Remove each
of the open half-balls from Hn+ 1. We obtain an orbifold with boundary which is
isomorphic to the closed (n + 1)-ball with n reflector n-balls in the boundary sn.
The orbifold boundary OW of W (which will be our primary concem here) is the
orbifold quotient of sn by the group 03A6n . It has underlying topological space the
complement of n n-balls (bounded by El’ ... , En) in Sn . Thus as a topological
space it is a manifold with boundary components E 1, ... , En. Each of the spheres
Ei corresponds to a vertex of the graph Y. If the vertices corresponding to £j
and Ej are joined by an edge of Y, then the edge is realized by a circular arc {3ij
orthogonal to £j and Ej.
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In case the graph Y is a planar graph with n vertices, we can obtain a ’more
efficient’ realization of A as follows. By Andreev’s Theorem [Th], Ch. 13, Corollary
13.6.2, we may find a planar (hence spherical) circle packing with nerve equal to
Y. By shrinking the circles a little we may realize Y as above with Sn replaced by
,S’2 - so El, E2, ... , En are reflector circles.
We will need the following algebraic results conceming the group 03A6n. Let

E : 4)n {±1} be the homomorphism that takes value -1 on each generator
Ti, 1 , i  n. Let hn denote the kemel of E. Thus hn is the subgroup of len
consisting of the words of even length in Tt, T2,... Tn. The following lemma will
be very useful to us.

LEMMA 4.1 The group Pn is isomorphic to the fundamental group of the comple-
, ment of n points in ,S’2.

Proof. The group rn is generated by f -fi, -y2,. -yn 1 where Tt = ’rl’r2, ’Y2 =
T2T3, ..., yn = TnT1 . It is immediate that the only relation among the above gener-
ators is the obvious one -y1 -y2 ... -yn = 1. o

We observe that the extension r n -+ lfn - Z/2 is split but not canonically
split. We choose the splitting obtained by sending the generator T of Z /2 to Tl . We
then obtain a semi-direct product decomposition

where Tacts as follows

We now retum to the orbifold aw. We recall that Q denotes the domain of

discontinuity for 03A6n operating on sn. We let N denote the quotient SZ/hn . To
visualize N note that a fundamental domain for hn in Ç2 is obtained as the union of
a fundamental domain for 03A6n and its image under T. Thus a fundamental domain
for rn is given by the exteriors of the 2n spheres ¿ 1 , T ¿ 1 , ... , En, T En. The
spheres ¿i and T ¿i are identified with the result that N is the connected sum of
n copies of SI x ,S’n-1. The union of each are Oij, f i, j 1 e E with its image T (Jij
is a round circle Wij. The various wij’s are disjoint.
We can now construct a controlling differential graded Lie algebra of bundle-

valued forms on N. Indeed let p : r n -+ G be the representation associated to A by
Chapter 3. Since -rn Tri (N) we obtain a flat bundle ad P on N. Choose disjoint
z /2-invariant neighborhoods Uij,{i,j} E S, of the Wij’S in N. Then 1f1(Uij) is
generated by wij and we may apply the theory of Chapter 2 and Chapter 3 with
U = U Uij to obtain the following theorem.

THEOREM 4.2 Let A be a linkage whose underlying graph Y has n vertices and e
edges. Let po be the representation oflfn associated to A. Then there is a controlling
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differential graded Lie algebra of the form B’(N, U; ad p)7,12 for the deformations
of A, where N is the connected sum of n copies of SI x sn-t 1 and U is a collection
of tubular neighborhoods in N of a collection of e disjoint circles determined by
A.

We now specialize to the case of polygon linkages. Thus we now assume that
the graph Y is a combinatorial n-gon. In this case we may realize the above
circle packing as a ’necklace’ of circles with centers on a circle C orthogonal to
the n circles in the packing. Let pi , p2, ... , pn be the points of tangency of the
circles in the circle packing. Thenpi, p2, ... , Pn lie on C. Let IHI2 be the hyperbolic
plane bounded by C. The hyperbolic planes bounded by the circles in the packing
intersect IHI2 in an ideal n-gon Ç2 with vertices at pl, p2, ... , pn . We then realize -Dn in
PSL2(R) by reflections in the sides of Q. Choose a side e of Q. Let T be the reflection
in e and put R = 0 U -rÇ2. Then R is a fundamental domain for rn. Moreover
M = hn B IHI2 is a complete hyperbolic manifold of finite volume diffeomorphic
to the n-times punctured sphere. The involution T is realized by an orientation
reversing isometry of M with fixed-point set diffeomorphic to an n-times punctured
circle. The orbifold quotient of B2 = IHI2 U S1 is an n-gon with reflector edges and
vertices pl, p2, ... , pn which are the ’cusps’ of M. Let E be the compactification
of M obtained by adding pl , p2, ... , Pn and Ut, U 2, ... , Un be disjoint coordinate
disk neighborhoods of Pl, P2, ... pn. Let Ui = Ui - fpil, U = U£=j 1 Ui, and Ti
be a loop in Ui which generates 7r1 (Ui). We choose a base-point p near pl in such
a way that we may identify hn with 7ri (M, p) and lfn with the semi-direct product
Z/2 oc Tri 1 ( M, p) where the generator of Z/2 acts by T. Then for 1  i  j  n the
dihedral group D 2 is identified with the group (Ti, -yi-yi+l yj-,) because

Now assume we have an admissible linkage Il in X with underlying graph the
n-gon Y. In this case that we have E = 1 (i, i + 1) : 1  i , n} where the indices
are taken modulo n. Thus the linkage conditions correspond to the dihedral groups
D2’2+ 1,1  i  n, where D2’2+ 1 = (7, Ti). From the considerations of Chapter 2
we obtain the representation p : 03A6n --&#x3E; G associated to Il. From Chapter 3, taking
R = U we then obtain a controlling augmented differential graded Lie algebra
B’(M, U; ad p)Z/2 for the deformations of fj which consists of ad P-valued forms
on M. We will abbreviate S (M, U; ad p)Z/2 to C’ (M, ad P) henceforth.

Let V be a03A6n -module. We define the parabolic cohomology groups Hl (Irn,V)
and HJar(I&#x3E;n, V ) by

We note that if V is trivial as a En-module, then HJar(r n, V) = 0 and so
HJar( q.n, V) = HJar(r n, V)Z/2 = 0. We obtain the following lemma.
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LEMMA 4.3

5. Polygonal linkages in constant curvature spaces

In this chapter we apply our theory to determine the local analytic structure of the
space C(H) where TI is an n-gon linkage in one of the model spaces of constant
curvature.

Assume II is degenerate. Then II is contained in a geodesic y of X. We orient
y so that its orientation agrees with that of the first edge of II. We let ai = ri if the
ith edge is oriented compatibly with y and ai = -ri otherwise. We define b, the
number of back-tracks of 1-I, to be the number of negative ai’s and f, the number
of forward-tracks of M, to be the number of positive ai’s. In the spherical case, we
will assume that n is contained in a geodesic segment (i.e., it does not go ’all the
way around’ -y). The general spherical case when II is allowed to go ’all the way
around’ is treated (for m = 2) in [KM1] (again the singularity is quadratic but the
following formula for the signature must be modified).

THEOREM 5.1 (i) dimC(II) _ (m - 1)n.
(ii) If rI’ E C(H) is nondegenerate, then C(rI) is smooth at TI/.
(iii) If II’ E C(rI) is degenerate, let b and f be as above. Then H’ has a
neighborhood in C(rI) analytically equivalent to a neighborhood of 0 in the
quadratic cone defined by a quadratic form of nullity 2m - 1 and signature
«m - 1) (f - 1), (m - 1) (b - 1».

The remainder of Section 5 will constitute a proof of the theorem. By the dis-
cussion at the end of Chapter 4 we may construct a controlling differential graded
Lie algebra C (M, ad P)o for the deformations of II consisting of bundle-valued
differential forms on M, the n-times punctured two sphere. If then follows imme-
diately from Lemma 2.16 that H2(G’ (M, ad P)o) is zero unless II is degenerate
and in this case H2 (C (M, ad P) ) = R. From the general theory of controlling
differential graded Lie algebras, see the proof of Lemma 5.2, it follows that II is a
smooth point of C(II) unless II is degenerate. Also we have

where the dimension on the right is calculated for a representation p not corre-
sponding to a degenerate polygon. It is easy to see that this dimension is n(m - 1),
and (i) and (ii) of Theorem 5.1 follow. It remains to prove (iii).

Assume now that TI is degenerate and f and b are as above. In the spherical
case we can deduce Theorem 5.1 immediately by the methods of [KM1]. Indeed
the flat bundle ad P admits a parallel metric. We use this metric to define the com-
plex A(2) (M, ad P) of square-integrable forms. The inclusion B (M, U; ad P) ) -+
A(2) (M, ad P) ) is a quasi-isomorphism as in Theorem 4.1 of [KM 1 ]. We deduce



309

that C’ (M, ad P) is formal as in Theorem 4.3 of [KM1]. Then by [GM1], Theorem
3.5, it follows that the deformation space of II in C(II) is locally analytically
equivalent to the product of the germ at 0 of Q-1 (0) C Hl (C’ (M, ad P)o), with
Q( 1]) equal to the cup-product [q, ri], and the (smooth) germ of G/H at the identity
coset where H is the isotropy of II. We then calculate the signature of Q by the
Hodge-Riemann bilinear relations as in Section 7 of [KM1].

Unfortunately, in the hyperbolic and Euclidean cases the analogue of the above
proof runs into analytic difficulties. Rather than deal with these problems here we
give an ad hoc proof of these two cases.

By Theorem 2.11, the augmentation ideal G’ (M, ad P)o is a controlling differen-
tial graded Lie algebra for the relative deformations of po. Thus it suffices to prove
that complete local ring associated to C (M, ad P) o is the quotient of a formal power
series ring in (m - 1) (n - 2) + 2m - 1 variables by a quadratic polynomial with the
above signature and nullity. We note that dim Ç /E (H° (C° (M, ad P)o))) = 2m - 1.
Hence by Corollary 2.13 it suffices to prove that the complete local ring asso-
ciated to C’(M, adP)) is defined by a non-singular quadratic form of signature
( (m - 1 ) ( f - 1), (m - 1 ) (b - 1). The following criterion for the complete local
k-algebra RL associated to a differential graded Lie algebra L to be defined by a
single quadratic relation was pointed out to us by Eric Klassen.

LEMMA 5.2 Suppose L is a differential graded Lie algebra with dim Hl (L)  00

and dim H2 (L*) = 1. Suppose the cup-product Q : H1 (L ) --+ H2 (L’ ) =’ k is a
non-degenerate quadratic form. These RL = k[[H1 (L*)]] / (Q).

Proof. By [GM2], Theorem 3.9, there is a formal map (the Kuranishi map)
F : Hl (L-) - H2(L’ ) such that RL is isomorphic to the complete local ring
k[[H’(L’)]]I(F).

Moreover the map F satisfies

Thus by assumption the Hessian D 2F (0) is nondegenerate. By the formal Morse
Lemma, F is formally equivalent to D2F(0) = Q. 1:1

Thus the proof of Theorem 5.1 has been reduced to showing Q is nondegenerate
and computing its signature.

LEMMA 5.3 The quadratic form Q on Hl (C’(M, ad P)) is the orthogonal direct
sum of m - 1 copies of the form Q for the case m = 2.

Proof. We first consider the spherical and hyperbolic cases. Let U be the span
of II (so dim U = 2). Then the decomposition V = U + U-L is invariant under 03A6n
and lfn acts by the signum representation e on U1. Using the isomorphism G =
A2U1- ffi U tOB U1- and H1 par (Ln A2UI) = Ht (r A 2U) =  Ht (r U1-) = 0W ’01 par n, 

- 

par n, par n, ,

we obtain
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Here the superscript c denotes the subspace transforming by e under I&#x3E;n. The
form Q on Hl (C’ (M, ad P)) corresponds up to a scalar multiple with the bilinear
form obtained by tensoring the exterior product of 1-forms with a symplectic form
on U and the form ( , ) on U 1 .

In the Euclidean case we proceed as follows. We assume, is ’the x-axis’, more
precisely, -y is the line through er,.L+1 1 tangent to el, see Section 1. We break up
9 = e(m) into a direct sum of m - 1 isomorphic lfn-modules each isomorphic
to e(2). Let Ei denote infinitesimal translation in the direction of the ith standard
basis vector ei and Vij denote infinitesimal rotation in the plane spanned by ei and
ej. We note the bracket relations

We let Qj be the Lie subalgebra of Ç spanned by {Ei, Ej, Vij} and Çj denote
the corresponding local system. Also we let Wj be the sub lfn-module spanned
by {Ej, Vi j ) and Wj be the corresponding local system. We claim that the natural
maps fBj=2HI(C.(M, Wj)) -+ Ht(C’(M,adP)) and 0153r;2HI(C’(M, Wj)) -+
fBj=2Ht(C’(M,9j)) are isomorphisms. Put W = fBr;2 Wj and W’ =
span(Ei, I§j, 2 $ 1, j $ m). Then e(m) = W + W’ and 03A6n acts trivial-

ly on W’ whence HJar(Pn, W’) = 0. This proves the first claim. But apply-
ing the first claim in the special case m = 2 we find that the natural map
HJar(Pn, Wj) -+ HJar(Pn,Qj),E  1 m, is an isomorphism and the second
claim follows. Finally, we claim the cup-product Q on H1 (G’ (M, ad P) ) carries
over to the orthogonal direct sum of the corresponding forms Q on Hl (C’ (M, Qj )).
In order to prove the claim we observe that scalar form Q is obtained by evalu-
ating the cup-product on H1 (G’ (M, ad P) on the relative fundamental class with
,coefficients [M]©01 . Here {Oi,Wij : 1 $ i  j x m} is the basis for e(m)*
dual to {Ei, Blij : 1 z i  j  m}. We may define a corresponding form Q j
on H1 (C (M, Éj ) ) and under the above isomorphism Q and fBj=2 Qj correspond.
The lemma follows. 0

COROLLARY 5.4 The cup-product Q is a non-degenerate quadratic form on
H1(C’(M,adP)).

Proof. By the lemma we may assume m = 2. In the spherical and hyperbolic
cases the cup-product Q on Ht(B’(M, U; ad P) ) is non-degenerate by Lemma
2.17. Thus it suffices to prove that T1 is an isometry of Q, for then the restriction
of Q to the fixed space of T1 will be non-degenerate. Now Ti reverses the sign of
the fundamental class of M but it also reverses the sign of the symplectic form on
U. Thus Ti is an isometry of Q. The Euclidean case follows from Lemma 5.9. 0
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LEMMA 5.5 dim H1 (G’ (M, ad P) ) _ (m- 1 ) (n - 2) .
Proof. By Lemma 5.4 it suffices to consider the case m = 2. In the hyperbolic

and spherical cases we have Hl (G’ (M, ad P)) = Hpla,(Fn, U) . Since p(y2) has
no fixed vectors, i = 1, 2,..., n we have Hl ((,i), U) = f 01 and Hpa, (In, U) =
Hl (r n, U). Since Fn is a free group on n - 1 generators we have dim Hl (rn, U) =
2n - 4. Now by combining the cup-product on H1 with the symmetric form ( , )
on U and then evaluating on the relative fundamental class of M we obtain a
symplectic form A on H1 (Irn, U). We have

since ri changes the sign of the relative fundamental class. Hence the + 1 and -1
eigenspaces of p( Ti) are dually-paired Lagrangians and the lemma is proved in the
spherical and hyperbolic cases.

In the Euclidean case we have an exact sequence of Lie algebras t -&#x3E; e(2) -&#x3E;

e(2) It where t is the Lie subalgebra of translations. The group 03A6n acts on t by the
character s and trivially on e(2) It. Since 03A6n is a free product of Z /2’s a cocycle c E
zt (pn, e(2)) corresponds to an n-tuple (ci) with ci e Z1 ((Ti), e(2)). The cocycle
condition c(TZ ) = 0 is equivalent to p(Tj ) c(Tj ) = - c(Tj ) whence c(T2) e t, 1  i 

n. Hence dim Zl (I&#x3E;n, e(2)) = 2n. Let c E Z1 1 (’*n, e(2)). Now the reader will verify
that the restriction ci (Ti, T2+1 ) is exact if and only if c( Ti+ t ) - c( Ti) is perpendicular
to the edge joining ui to ui+1. In this case this means that c( Ti+ 1) - c( Ti) lies
in the y-axis. Since 1-I is degenerate we obtain n - 1 independent conditions
whence dim Z 1 ,,(gbn, e(2)) = n + 1 (here the parabolic cocycles above are the
cocycles whose associated classes are parabolic). Since HO( Pn, e(2)) = {0} we
have dim B t (pn, e(2)) = 3 whence dim Har( Pn, e(2)) = n - 2. D

REMARK. The argument in the Euclidean case may be extended to the other cases
to realize an infinitesimal deformation of p (relative to R) as an assignment of an
element 8i ETui (X ) to each vertex ui of TI such that 8i+1 - a2 is orthogonal to the
edge ei joining uj and ui+1. Such an assignment is a first-order deformation of the
linkage H, see [Col]. This is of course a special case of Theorem 3.2.

It remains to compute the cup product Q on H1 (G’ (M, ad P)). By Lemma
5.3 it suffices to compute Q for planar degenerate linkages (i.e., for the case
m = 2). We use Poincaré duality and compute instead the intersection product B
on Hl (M, ad P)£. Hence the superscript - denotes the subspace of Hl (M, ad P)
transforming by the signum representation - under lfn . We refer the reader to [JM],
§4, for details on intersection products with local coefficients. We now describe
a basis for Hl (M, ad P)’. We choose a base-point of M and use it to identify
elements of 9 with parallel sections of ad P. Also, we must choose approach paths
in what follows - such details we leave to the reader. Let ai, 1  i  n - 1, be
a small loop in M going around pi once in the counter-clockwise direction. We
let ci be the simplicial chain consisting of -ai, cei+l and an arc bi,i+t joining ai
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and ai+ 1. Let xi = ai n bi,i+l 1 and Yi = ai+ 1 n bi,i+ 1. We now wish to attach
coefficients to ci to create a 1-cycle with coefficients in ad P which transforms as
a homology class by - under 03A6n We will find a parallel section ai of ad P along
a2 - {Xi}, a parallel section ai+l along aj+ i - (yj ) and a parallel section Mi along
bi,i+ 1 such that the jump of ai at x2 is equal to Mi (xi) and the jump of ai+l 1 at yi
is the negative of Mi (yi), see [DM], page 14. We will need the following explicit
version of these equations. Choose a path from the base-point to bi,i+ t. Then the
parallel sections ai, a i+ t , Mi correspond to elements wi, Wi+ t, Vi in g. Let -yi and
-yi+l 1 be the elements of 1rl (M) represented by cx2 and 0152i+ 1, then the previous
equations become

REMARK. In terms of group homology the cycle ci (below) corresponds to the
1-cycle ’Yit 1 ® w2 + ’Yi+t 0 Wi+l.

To ensure that the resulting homology class transforms correctly under  03A6n we
require

We note that all 7j act the same way on homology. We will then obtain a cycle with
coefficients êi and a basis B = {c1, ê2, ... én-2) for Hl (M, ad P)é. We describe
the coefficients v2, w2 in the three cases. In the spherical and hyperbolic cases we
have

where the last equality holds because m = 2. Here V denotes the standard repre-
sentation on V = R3, see Chapter 1. Thus we can describe our local coefficients
by vectors in V. The symmetric space X is embedded in V, see Chapter 1. We
assume henceforth that TI C XI where Xi is the intersection of U = span{ et1 e3}
and XI is oriented in the direction of e 1.
We let UI, u2, ... , un E V be the vertices of II and let V1, V2, .... vn be the

positively-directed unit tangent vectors to XI 1 at Ul, u2, ... , un, considered as
elements in V. We then equip bii+l with the local coefficient vi+1 (the tangent
vector to the last point on the edge fUi, ui+1 ). It remains to solve the equations

for wi and wi+1. We leave the verification of the following lemma to the reader.
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LEMMA 5.6 (a) In the spherical case we have

(b) In the hyperbolic case we have

We next describe the cycles c2, 1  i  n - 2, in the Euclidean case. We
assume that Il is contained in the x-axis. We attach to each of the arcs bi,i+l the
infinitesmal translation E2 in the direction of the y-axis. Once again we have to
solve the equations

Let Vi2 = el A e2 be infinitesmal rotation in the xy-plane.

LEMMA 5.7 In the Euclidean case we have

We leave the computation of êi - ëj to the reader remarking only that ci and cj do
not intersect unless j = i - 1, i or i + 1. We obtain the following theorem.

THEOREM 5.8 Let II be a degenerate n-gon with signed side-lengths al, a2, ..., an.
Then the matrix of B relative to the basis B is the following tridiagonal matrix
(3 = ((3ij).

(i) The euclidean case

(ii) The spherical case

(iii) The hyperbolic case
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We now determine the signature of the form B. We first compute it in the
Euclidean case where the calculation is easy then give a deformation argument to
determine the other two cases.

LEMMA 5.9 In the Euclidean case, the intersection form B is nonsingular of
signature (b - 1, f - 1).

Proof. We consider the quadratic form B on r-1 which is diagonal relative
to the standard basis of e-1 with diagonal entries ( 1 /a 1,1 /a2, ... , ,1 /an_ 1 ) .
The form B is obtained by restricting B to the hyperplane H C e-1 given
by H = {(XI,X2,... ,Xn-l) EV: En- 1 Xi = 01. Indeed note that the matrix
representation of É ] H relative to the basis {ei - ei+1 : 1  i  n - 2} for H is
the matrix 0.

Let L C H1 be the line orthogonal to H. Then B|H is singular if and only if
L C H. But clearly L = Ra with a = (a,, a2, an- 1) . Since En- a2 = -an
is non-zero by hypothesis, L is not contained in H and B is non-singular. It remains
to compute the signature of B. We note that

Let (p, q) be the signature of B. Since the decomposition V = L + H is
orthogonal for Ê we see that the signature of B is (p - 1, q) if BIL is positive
definite (an (0) and (p, q - 1) if BIL is negative definite (an)O). In case we have
an (0 the segment en of II is a back-track whence P = f , q = b - 1. Thus in
this case the signature of B is (f - 1, b - 1). In case we have an)O the segment
en is a forward-track whence p = f - 1, q = b and the signature of B is again
(f -l,b-1). 0

We now consider the one parameter family of matrices k{3(kat, ... , kan ) where
(3( a1, ... , an) is the matrix {3 from Theorem 5.9 (either (i) or (ii)). These matrices
are the intersection matrices (multiplied by k) for the local system corresponding
to the shrunken n-gon with side-lengths ka1, ka2, . - -, kan. Hence these matrices
are non-singular for all k by Poincaré duality. The reader will verify that the limit
as k goes to zero of k{3(kat, ... , kan) is the corresponding matrix in the Euclidean
case. In the previous lemma we have seen that the signature of the limit matrix is
(b - 1, f - 1) and Theorem 5.1 follows.

6. An example of Lubotzky and Magid

In this section we give a geometric interpretation of the following result of [LM],
2.10.4 - sharpened in [GM1], Section 9.3. Let T be the (3,3,3) triangle group.
Thus F has a presentation r = (a, b, c a2, bz, c2, (ab)3, (bc)3, (ca)3). The group
r is a Bieberbach group - there is a short exact sequence Z2 ---&#x3E; F - S3. Let
po : S3 -+ GL2(C) be the unique two-dimensional irreducible representation of
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S3 and p be the induced representation of T. Lubotzky and Magid proved that the
analytic germ of Hom(r,GL2(C)) at p was isomorphic to the germ at (I, 0) of
the non-reduced scheme PGL2(C) x spec(C[t]/(tn)) for some n &#x3E;, 2. In [GM1],
Section 9.3, it was proved that n = 2.
We first show that we can replace GL2 (C) by PGL2(C) in the above paragraph.

Let 7r : GL2 (C) - PGL2(cC) be the projection. Then we have an induced map
7r,, : Hom(r, GL2(C)) - Hom(r, PGL2(C)) given by 1f * (p) = 7r o p. In the lemma
that follows we let M = T2 = C/z2 and H = S3.

LEMMA 6.1 The morphism 1f * induces an isomorphism of germs 1r * : (Hom(r,
GL2(C)),p) --&#x3E; (Hom(r,PGL2(C)),1f 0 p).

Proof. The exact sequence of Lie algebras C - g12 (C) -+ pglz (cC) is split and
induces an exact sequence of differential graded Lie algebras

By Theorem 2.11 above, the second and third differential graded Lie algebras
control the deformations of p and ir o p respectively. But H°(A°(M)f) =
Hl (M, IR)H = H2 (M, R )H = {0}. Consequently the third arrow above induces
an isomorphism on Ho, H1 and H2 and the lemma follows by Theorem 2.4
of [GM1]. D

We will henceforth work only with PGL2(C). We will change our notation and
replace 7r o p by p. Then we note that p(r) is a finite subgroup of PGL2 (R), hence we
may conjugate p by an element of PGL2 (R) and assume that p take values in PO(2).
We first consider the deformations of p in Hom(r, SO(3)) c Hom(r, PGL2(cC)).

Since ab, bc, and ca all have order 3, their conjugacy classes are fixed under
deformation and the inclusion Hom (r, SO(3)) -t Hom (03A63, SO(3)) induces a
canonical isomorphism of germs (here R = {(ab), (bc), (ca)})

(Hom(r, SO(3)), p) = (Hom(03A63 , R; SO(3)).

Thus, by the results of Chapter 3, the deformation space of p is isomorphic to that
of the spherical triangle obtained from the fixed-points of a, b and c on S2. Since
p(r) C PO(2) this triangle is contained in the equator of S2 and it consists of the
equator decomposed into three equal arcs. By [KM1], the germ of the real variety
Hom(T, SO(3)) at p is isomorphic to the germ at (I, 0) of SO(3) x Spec R[t] / (t2).
Since PGL2(C) is the complexification of its maximal compact subgroup SO(3),
the deformation space of p in PGL2 (C) is the complexification of the above space.
We obtain the result of Lubotzky-Magid, Goldman-Millson.

The non-trivial nilpotent deformation corresponds to the first-order deformation
of the above degenerate triangular linkage obtained by assigning the zero vector
to the first and second vertices ul, u2 and the normal vector to the equator (in the
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tangent space to ,S’2 at u3 ) to the third vertex u3 . See the remark following Lemma
5.5 for a description of a first-order deformation of a linkage.
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