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In troduc t ion  

One of the fundamental results of the theory of discontinuous groups of fractional linear transformations 
acting on the complex plane C is the following finiteness theorem of L. Ahlfors [1, 2]: 

Let G be a finitely generated nonelementary discrete subgroup of PSL (2, C) acting freely on a reqion 
of discontinuity ~2(G). Then the quotient surface a ( a ) / G  consists of a finite number of Riemann surfaces 
$1 , . . . ,  S~ of finite hyperbolic area. In particular the groups rq ( Si) are finitely generated and the homotopy 
type of the surfaces Si is finite (i = 1 , . . . ,  n). 

Subsequently D. Sullivan [3] strengthened Ahlfors' finiteness theorem by showing that any finiteIy generated 
discrete group G C PSL (2, C) has at most a finite number of cusps (i.e., conjugacy classes of maximal 
parabolic subgroups). 

Ahtfors [4] and Ohtake [5] attempted to develop analytic methods of studying the problem of finiteness 
of multidimensional Kleinian groups. However, the results obtained do not give any- information about 
either the topology of the quotient spaces of Kleinian groups or the number of cusps. 

In the present article we shall show that even a weakened version of Ahlfors' finiteness theorem fails 
in dimension 3 and also construct a counterexample to the analog of Suilivan's finiteness theorem in higher 
dimensions. 

T h e o r e m  1. There exists a finitely generated torsion-free function group F C Mgb (S 3) with invariant 
component ft C ~2(F) such that the fundamental group rrl(f~/F ) is infinitely generated, Moreover the group 
F itself is infinitely defined. 

T h e o r e m  2. There exists a finitely generated Kleinian group F I C Mbb (S 3) such that 

a) F' contains an infinite number of cusps (of rank 1), 

b) if F n is a con.formal extension of the group F' to S", then rank(H,~_a( f t (F ' ) /F~ ,Z) )  = ee. Thus 
the manifold f t ( F " ) / F  ~ has an infinite homotopy type. 

1. P r e l i m i n a r y  in format ion  

Let M6b (R'~) _~ Isom (H n+l) be the group of conformal automorphisms of the n-dimensional sphere S ~ = 
R~ = R '~ U {~o}, where H ~+1 = { (x l , . . . , x ,~ ,xn+l )  E R ~+1 : x~+l > 0} is hyperbolic space. 

A subgroup G C M5b (S ~) is called Kleinian if the action of G is discontinuous at some point x C S ~, 
i.e., there exists a neighborhood U(x) such that g(U(x))NU(x)  5r 0 for only a finite number of elements g E 
G. The set of points where G acts discontinuously is called the discontinuity set ~Q(G) and its complement 
A(G) = S n \ a (G)  the limit set of the group G. 

A Kleinian group G is called a function group if there exists a connected component f~ C f~(G) that is 
invariant with respect to G. If G acts freely on f~, then the quotient space M(G)  = f t /G  is an n-dimensional 
manifold. We shall denote by Y'(G) the isometric fundamental region for G [6] and by I(g) the isometric 
sphere g E MSb (Sn). 

In what follows we shall assume (if not otherwise specified) that all manifolds are three-dimensional 
and piecewise linear. Standard reductions by the theory of Kleinian groups and three-dimensional topology 
can be found in [2] and [6]-[8]. If S C R 3 is a two-sphere, we shall denote by ext (S)  and int (S)  the 

components of ~3 \ 5' such that er E ext (5"). The symbol el ( ) denotes the closure of a set. 
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2. Out l ine  of  the  proof  o f  T h e o r e m  1 

Consider the configuration consisting of four mutually tangent Euclidean spheres Ei C R 3 (Fig. 1). Each 
sphere Ei is obtained from its neighbor by a reflection rj in the plane Hi, (i = 1, . . .  ,4), j = 1,2). 

We shall construct discontinuous groups Fi C Mhb (~3) such that the groups Fi are isomorphic to 
the fundamental group of a bundle over a circle with a "surface" as fiber. The group Fi leaves invariant 
the outside of the sphere E~i, i = 1 , . . . ,4 .  Using Maskit's combination method we shall show that both 
groups G~ = {r ,r /and = r /are Kleinian and also isomorphic to the fundamental group of a 
bundle over a circle (cf. Lemma 3). Let Fi be normal subgroups in Gi corresponding to surface subgroups 
in Gi (i = 1, 2). The proof of Theorem 1 concludes with Lemma 5, in which we establish that the group 
(F~, F2) = F is the one sought. In particular F is a normal subgroup of the geometrically finite function 
group G = (G1, G2). 

The proof of Lemma 5 is based on the following reasoning. Using the involution r2 we represent the 
manifold M(F) --- f~/F in the form of a doubling of some manifold M - ( F ) .  There exists an infinite regular 
coveting M-(F)  ~ M-(G) C M(G) induced by the covering M(F) ~ M(G). The manifold M-(G) is 
not a bundle over a circle, since OM-(G) contains a surface of genus 2. It follows from this that the group 
~h(M-(F)) cannot be finitely generated [7]. It then follows immediately that the group 7h (M(F)) is also 
infinitely generated. 

3. Out l ine  o f  the  proof  of  T h e o r e m  2 

Consider the configuration of four spheres El,  0~, O3, E4 shown in Fig. 2. We construct groups F'I, F~, F3 ,t 
F~ conjugate in Mhb (S 3) to the groups Fi of the preceding section such that their limit sets are respectively 
the spheres El,  02, 03, and E4. The groups F~ and F~ are obtained from F~ and F~ by conjugation using 
a symmetry r~ with respect to the plane L2. 

The group F~ contains a parabolic element f12 such that the isometric spheres I(fl2) and I(fl~ 1) are 
tangent to L2. The point of tangency x = I(f12) N L2 is a fixed point for the parabolic transformation 
u = gZ;lgZ , w e  shall show that the point x is cusped for the Kleinian group G' = ( r~ , r~ , r~ , r~/ .  
The group G ~ contains a normal free subgroup F ~ ~ u of finite rank, G'/F ~ -~ Z. The action of Gt/F ~ on 
F ~ by conjugates is induced by a homeomorphism 8 of a compact surface 9", 7r1(9") ___ F ~. The system of 
three loops a = a l  U a2 U a3, which is invariant with respect to 8, gives a reduction of 8 to irreducible 
homeomorphisms of infinite order [9]. Here [u] is the image of u under the isomorphism j - ~ :  F '  --* 7h(9"); 
[u] is not conjugate to any element of 7rl (9") corresponding to components of 09" U a (since (u) is a maximal 
parabolic subgroup of G'). It follows from this that 8.~([u]) and 8.~([u]) are nonconjugate elements of r l  (9") 
for all m ~ n E Z .  Thus the group F I contains an infinite number of conjugacy classes of maximal parabolic 
subgroups: {j (ey([u] ) ) ,  m e Z}. Property (b) of the group F '  follows from the fact that the point x is 
cusped in the group F ~. 
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4. C o n s t r u c t i o n  o f  the  g r o u p  F 

Let M be an open manifold homeomorphic to the complement of a linkage of Borromean rings. It is known 
that M is a total bundle space over a circle with a "surface" for fiber [10]. In addition M admits a complete 
hyperbolic structure of finite volume, i.e., M = H3/r, r c I som(H 3) [8]. 

Def in i t ion .  A group K with a subgroup S is called S-finitely approximable if for any element k E K \ S  
there exists a subgroup K1 C K of finite index that contains S but k ~ K1. 

4.1. L a m i n a  1. The group F is S-finitely approximable for any geometrically finite subgroup S C F. 

Proof .  Consider the regular ideal octahedron P C H a whose dihedral angles all equal ~r/2 [8]. Let Q 
be the group of reflections in the faces of P ,  and let Q1 be a finite extension of it using four automorphisms 
of order 3. Then Q1 contains F as a subgroup of finite index [8]. The assertion of the lamina follows from 
[11] and the commensurability of the groups P and Q. Lamina 1 is now proved. 

4.2. We denote by B the outside of the unit sphere E C R a with center at the origin. We shall 
regard B as a model of the hyperbolic space H a. Further let Hi be certain nonconjugate maximal parabolic 
subgroups of P and A(Hi) = {pi}, i = 1, 2. We shall assume that the points pi have coordinates (0, 1,0) 
and (0, 0, 1). Let IIi be a Euclidean plane tangent to 2i at the point p~ (eft Fig. 1) and II[- the component 
of R a \ Hi that does not intersect E (i = 1, 2). We set Hi = Hi U {oo}. 

In the next lemma we shall show that for some subgroup of finite index F C F and planes Hi the 
hypotheses of Maskit's combination theorem are fulfilled. Consider a certain neighborhood of II~, and let 
the sphere Wi be tangent to E at the point pl, so that W~ C clB, V{ = ext W~, clII~- \ {p~} C V/, i = 1,2. 

4.3. L e m m a  2. There exists a subgroup of finite indez F in the group F such that the following 
conditions hold: 

(a) the group F contains a normal subgroup F C F for which F = (_F, ti), ti C Hi N F, i = 1, 2; 

(b) the group F has a fundamental set ~ C ]3 such that ~P M Vi is a fundamental set for the action of 
the group Hi M F = [-Ii on ~ ,  (i = 1,2). 

P roof .  We denote by I(g) the isometric sphere of the element g C P. Then there exists at most a 
finite number of elements hk e Hi such that Z ( h k ) n ( n j  U(S ~ \ ~ ( H i )  ) = o,  i r j ,  i , j  = {1,2}, 0 < ~ < N. 
Using the finite approximability of the group F [12], we choose a subgroup of finite index F* C F for which 
h k ~ F * , O < k < N .  We set H * = F * M H i ,  i =  1, 2. 

(a) Let �9 be a normal subgroup of F corresponding to a fiber of M. Then F* = ~ gl F* is a normal 
subgroup of F* and F* = (F*, l). The action of the element I on F* by conjugation is induced by the 
action of some homeomorphism A of a compact surface S for which ~'1 (S) ~ F*. Let 7i CcgS be oriented 
boundary curves whose homotopy classes [7i] correspond to elements /3i C H/* M F*, i = 1, 2. Without 
loss of generality we may assume that A(OS) = 0S; therefore there exists a number n E Z \ {0} such that 
A'~(7~) = 7~, i = 1,2. We denote by M0 the manifold obtained from S x [0, 1] by identifying the points (x, 0) 
and (An(x), 1), x C S. The manifold 3//0 is a bundle over a circle and a typical fiber S* of this bundle is the 
image of the surface S x {0} under the quotient mapping. Then the intersection of S* with the component 
of OMo on which the image ")'i lies consists of only the curve 9'i, i = t, 2. Hence it easily follows that there 
exist elements ti 6 ~Ii : HI  M (F0 : (F*, l'~}) such that (F*, ti} = F0. Obviously ] r  : ro l  < ~ .  

(b) We have already shown that c l (S  a \ [P([ti)) C [P(Ytj), i # j ,  i , j  E {1,2}. Therefore by Klein's 
combination theorem the set [P(H~) C] 7'(/~2) is a fundamental region for a group of Schottky type / )  : 
{J~l, g2} ~---/~1 * ]~2 [6]. Thus the set R = [P(/t]) M [P(/]r2) M eI(V~ U V2) cannot have equivalent points with 
respect to the action of the group/jr. The closure of the set T = RC](W] UW2) is compact in B and therefore 
there exists at most a finite number of elements gm E F0 such that gin(T) M T 7s fa, m : 1 , . . . ,  K.  The 
g r o u p / t  is geometrically finite [6] and by Lamina 1 F0 is an H-finitely approximable group. Consequently 
there exists a subgroup of finite index P C F0, in which ~r is contained, but which contains none of the 
elements g~. Obviously for all g E F we have g(R) r-/R : O and R is a fundamental set for the action of 
the group F in the orbit F(cl (l/~ U 1/2)). It is also clear that F satisfies condition (a) in the statement of 
this lamina. 
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We choose an arbitrary fundamental set A for the action of the group F in B \ F(el (V1 U V2)). The set 
[P = R U A will be fundamental in B, and condition (b) will hold for it. Lemma 2 is now proved. 

4.4. Let "r i be reflection in the plane Hi (i = 1, 2). We introduce the following notation: F1 = F, 
I"2 = T1Pl"rlj  G1 = (I'1,[`2), Gz = T2G1T2, G = (G1, G2). In what follows we shall write H1 and H2 instead 
of  /~1 and H2. 

L e m m a  3. The group G1 is discontinuous and contains a finitely generated normal subgroup ['1 such 
that G1/F1 ~- Z, a l  = (Fl , t ) ,  t E H2. 

Proof .  Consider the fundamental set T1 = [P of the group F1, which was constructed in Lemma 2. 
The group H1 = [`1 N [`2 stabilizes the plane r l  1 in the groups F1 and 1-' 2. By assertion (b) of Lemma 2 and 
the maximality of the parabolic subgroup H1 C F1 the region cl II 1 is precisely invariant with respect to 
H1 in the group ['1- Similarly the region ~'1 (el II1) is precisely invariant with respect to H1 in the group ['2. 
Thus all the hypotheses of the first combination theorem of Maskit [13] are satisfied (the multidimensional 
variant of the combination theorem can be found, for example, in [14]). Consequently the group G1 is 
discontinuous and isomorphic to F1 *H1 [`2, and the set R1 = [P1 n rl(T1) is fundamental for the action of 
G1 o n  the invariant component [~1 C ~ ( G 1 )  containing the point oc. 

Suppose further that F1 = (/~, q-lF~-i }, where the group F is the normal subgroup of F 1 = [` constructed 
in Lemma 2. Then G1 = (F1,  t l )  and F1 is normal in G1 and finitely generated. It remains only to remark 
that tl E [`1 = (/g',t2), and so G1 = (Fl , t ) ,  t = t2 E H2. Lemma 3 is now proved. 

P r o p o s i t i o n  1 (cf. also [15]). The manifold M(G1) = fh /G1 ks homeomorphic to the interior of a 
bundle over a circle whose fiber is a compact surface with 7 r l ( a l ) =  {1}. 

P roof .  It follows from the geometrical decomposition of the group G1 -=- [`1 *H~ F2 that M(G1) 
is obtained by gluing together two manifolds M1 and M2, where M1 = M(F1) \ (II~-/Ha) and M2 = 
M([`2) \ (r2II1-/H1). We further have I I 1 / H  1 -~ 7"1II1/H1 -~ S 1 X S 1 x (0, 1). Consequently each of the 
manifolds Mi is homeomorphic to a bundle over a circle and the interior of Mi is a finite-sheeted covering 
of the original manifold M. 

The gluing homeomorphi_sm f : OM1 --+ OM2 preserves the bundle structure, since it is covered by the 
identity homeomorphism f : 1I 1 --+ ~ 1 .  It follows from the Seifert-van Kampen theorem that 7l- I(M(G1)) -~ 
r~ *H~ [`2 --~ G1. The group G~ C Mhb(S a) is a Hopf group [12], and therefore rrl(f/1) = {1}. Each of 
the manifolds M~ admits a compactification (by adjoining tori); therefore M(G1) is also eompactifiable. 
Proposition I is now proved. 

4.5. We set F = (F1, F2), where F2 = r2FI r2  and G = (G1, G2). 

4. The following assertions hold: 

group G is the result of Maskit combination of the groups G1 and G2. 

group G is discontinuous and possesses an invariant component ~ C ~(G) containing the 

(C) The finitely generated group F is normal in G. 

(D) The manifold M(G)  = n / a  is homeomorphic to the interior of a compact manifold. 

Proof .  (A) Let Ha = r lH2r l  and H = (H2,Ha}. By Lemma 3 the group G1 acts discontinuously 
on  ~1 ~ 0<3 and has a fundamental set R1 = ~J)l ~ TI~J)I. It follows from Lemma 2 that R1 n cl II~- is a 
fundamental set for the action of the group H on cl II~-. Moreover in the neighborhood V = V2 (-1 va 172 of 
the set H2 \ A(H) we have R1 A V = ~(H2) FI T(Ha) gl V (Lemma 2) and the open surface 112 \ A(H) is 
precisely invariant with respect to H in the group G1. Consequently there exists a neighborhood N of the 
surface H2 \ A(H) C ft(G1) such that N C ft(G1) and N is precisely invariant with respect to H in G1. To 
verify assertion (A) it now remains to prove the following result. 

P r o p o s i t i o n  2. The sphere H2 is precisely invariant under the action of the group H C G1. 

P r o o L  Assume that there exists an element g E G1 \ H such that g(II2) A II2 = {x} C A(H). The 
group H of Schottky type is geometrically finite [6, 16], and so the following alternative holds [17]: either 
1) x is an approximation point for the group H, or 2) x is a fixed point of a parabolic element 7 E H. 
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In the first case there exists a sequence h ,  E H such that lim hn(x) = xo E 1-[2 and x0 7 ~ y0 = Iim h,(z) 

for any point z E clII~- \ {z}, and y0-C I-I2. It follows from this that the sequence of spheres h,g(II2) 
converges to ~2 C S 3. Consequently hng(:N) N N 7s fg for large values of n. The latter is impossible by the 
precise invariance of N with respect to H in the group G1. 

In the second ease there exist elements h and h' such that hgh'({p2, p3 }) = {p2,p3 }, Where p3 = ~-l(p~). 
From the maximality and noneonjugacy of the parabolic subgroups/-/2, Ha C G1 it follows that g C H and 
this is impossible. Proposition 2 is now proved. 

(B) Assertion (B) follows immediately from (A) and Maskit's combination theorem. 

(C) We shall verify that the inclusion g~F2g~ 1 C F = {F~,F2) holds for any gl E G~. The element 
g~ has the form f t t  n, where ft  E F1, t E H2 C G2 M G1, G2 = (F2~t} (cf. Lemma 3). Thus glF2g~ ~ = 

n --n --1 - - I  f i t  F2t f l  = f lF2f l  C F. Analogously g2Flg~ 1 C F for any g2 C G2. It follows from this that i v is 
normal in G and assertion (C) is thus verified. 

(D) As we have already seen, both manifolds M(G ) and M(G2) admit a natural compact\floa- 
t\on by the adjunct\on of cusped tori. Consequently the manifolds 2~J-(G~) = M(G ) \ (H;-/zr) and 
M-(G2) = M(Ge) \ (w2(H~-))/H also admit a compact\float\on. Therefore the manifold M(G) obtained 
by gluing together M - ( G , )  and M-(G2)  along the compact boundary surface 5'2 = (II2 \ A(H)) /H is also 
compaetifiable. Lemma 4 is now proved. 

By assertions (B) and (C) of Lemma 4 the groups G and F have a common invariant component 
fl ~ oo. We set M(F)  = D/F. 

4.6, L e m m a  5. The group ~-I(M(F)) is not finitely generated. 

Proof .  Step 1. We begin by verifying that the orbits of GI(II2) and FI(I-I~-) coincide. Indeed 
G1 : <-F1, t>, "~ ~ H 2 ,  t ( I ~ 2 )  = r i  2 .  Hence a~ II~- = X~lI-I;. W e  s h a l l  further show that a = (F, t). For any 
element g E G the decomposition g = g l g 2 " " g n  (gi C G1 U G2) holds and from the equality gi = f i t  mi 

(f~ E F~ U F2, t E g \ F)  we obtain g = f t  m, f E F, rn E Z. In analogy with Lemma 3 the subgroup F is 
normal in G. 

R e m a r k .  We are not asserting here that G/F ~ Z. This will follow from the reasoning below. 

Step 2. By the construction we have r2Gv2 = G. Therefore using the covering p : 12 --, f t /G = M(G) 
the involution ~-2 projects to an involution r 3/f(G) --* ~I(G). Obviously the surface $2 = p(II-2 \ A(H)) 
is the fixed set for this involution. Similarly the involution r2 projects to an involution +2 : f t /F  --~ I2/F = 
M(F). Thus we have the commutative diagram 

a .... q,  M ( r )  M ( a )  

a ' ,  M(r) r, M(a) 

where p = roq and r is a regular covering with the group of covering transformations G/ft. The surface 
= r - e ( s )  = q(~-2 \ A(H)) is connected (Step 1) and coincides with the fixed set of the involution +2. 

Step 3. Since the group G is the result of the Maskit combination of the groups G1 and G2, the region 
ftl \ GI(II~-) is contained in f~ and P(f~l \ GI(II~-)) is the closure of one of the components of M(G) \ $2. 
We denote this closure by M-(G) and use M - ( F )  to denote the preimage r - I ( M - ( G ) ) .  On the other 
hand, M - ( F )  and M - ( G )  are homeomorphie to M(F1) \ (YI; /H MF) and M(G1) \ (II~-/H) respectively. 
Thus the covering r :  M - ( F )  --* M - ( G )  is the restriction of the infinite cyclic covering .~l//(Fx) --* M(G1). 

Step 4. As we have already seen in Lemma 4, the manifold M - ( G )  can be compact\fled to a manifold 
N- (G) .  The boundary component 5'2 C OclM-(a)  is a compact surface of genus 2 (since t t  ~_ (Z | Z) * 
(Z �9 Z) acts as a group of Schottky type on the sphere H2). Consequently the manifold N - ( G )  cannot be 
a total bundle space over the circle. Moreover neither of the manifolds M - ( G )  and N - ( G )  contains any 
fake cells, since they can be covered by a region in R 3. 

Step 5. The group 7h(M-(F))  is not finitely generated, 
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Proof .  By Step 3 we have an exact sequence 

1 ~ 7rl(M-(F))--~ ~rl(N-(G))--~ Z --+ 1. 

Assume that the group 7r l (M-(F) )  is finitely generated. The manifold M - ( G )  contains no projective 
planes in view of the p2-irreducibility of the manifold M(G1). Further 7 r l (M-(F) )  is not an abelian group, 
and so it follows from [7, Theorem 11.1] that N - ( G )  is homeomorphic to a bundle over S 1. The last result 
contradicts Step 4. 

Step 6. It remains for us to verify that Trl(M(F)) is also not a finitely generated group. Let w : .g/--* 
M(F)  be the universal covering with group of covering transformations ~r = f f l (M~F) ) .  We remark that 
the manifold M - ( F )  is homeomorphic M(F)/~2. Consider the lifting ~2 : M ~ M of the involution $2. 
We have ~27c~2 = ~r and the group S = (Trl(M(F)), T2} acts discontinuously on 2l). We denote the normal 
subgroup of S generated by the elements of finite order by TORS. 

By Armstrong's theorem [18] the group r r l (M- (F ) )  is isomorphic to S/TORS and so ~ is infinitely 
generated. One can easily see that the group ~rl(M(F)), being a subgroup of index 2 in the infinitely 
generated group ~, also cannot be finitely generated. Lemma 5 is now proved. 

By construction the group F = (F1, F2} C M6b(S a) is finitely generated and its quotient manifold 
M(F)  = f~/F has an infinitely generated fundamental group. We shall show finally that the group F is 
infinitely defined. 

The group I = H N F is the stabilizer in F of the sphere II2. It follows immediately from the fact that 
G is the result of the Maskit combination of the groups G1 and G2 that F is also obtained from F1 and 
F2 by a Maskit combination. Therefore F _~ F1 "I F2 is the free product with the combined subgroup I. 
We remark that the subgroup I is normal in H (by the normality of F in G) and has infinite index, since 
G / F  _- Z and t n ~ F for n C Z \ {0}. It follows easily from this that the group I is infinitely generated. 
The fact that the group F is infinitely defined now follows immediately from the results of [19]. 

Theorem 1 is now proved. 

5. P r o o f  of  T h e o r e m  2 

Consider the group F~ = Pl constructed in Lemma 2; P2 = 7-1P17"1, and in tile group F1 there is a parabolic 
element/~ E/~ C F1 (el. the proof of Lemma 2, part (a)). We denote by L2 the plane parallel to 1-[2 and 
tangent to the isometric spheres of the elements/32 and/j~-l, L2 C 1-I•- (cf. Fig. 2). We set L2 = L2 U {ec} 
and let L 2 be the component of R 3 \ L2 contained in II~-. Let 02 be a sphere tangent to E1 at the point 
Pl so that int@2 D intE2; x = L2NI (~2) ,  y = L2 N/(/~21), z = O2 nL2 .  Then there exists aun ique  
transformation T E Mgb ($3), that commutes with each element of the group H1 and maps the point P3 to 

the point z. 

R e m a r k .  Passing to a subgroup of finite index (/~, t~) C FI if necessary, we may assume that for any 
h e H2 \ {f12, ~21} the intersection I(h) n L2 is empty. 

5.1. It is easy to see that TloT-I(L~)  C II~- and the sphere rloT-l(L2) is tangent to E1 at the 
point Pl. It therefore follows from Lemma 2 that L~- is precisely invariant with respect to the subgroup 
H~ = TH3T -1 in the group F~ = TF2T -1. Also by Lemma 2 the hypotheses of Maskit's first combination 

theorem hold for the groups F~ and F~. 
We denote by G~ the group (F~, F~). It follows from Maskit's combination theorem that the group G~ 

is Kleinian and has an invariant component f~ D oc. 

f t l /G  1 is a bundle over the L e m m a  6. The region ft' 1 is simply connected. The quotient manifold i , 
circle formed by gluing together two hyperbolic manifolds that are bundles over S 1 and homeomorphic to 
( e  \ r i ( n r ) ) / r l .  The group FI = (F, Tr lFTIT  -1) is normal in G'~ and corresponds to the fundamental 
group of a fiber of the manifold M(G'I). There exists a fundamental set D1 for the action of G1 on ft~l such 
that 

1) (D 1 N e l L - ) O  {y} is a fundamental region for the action of the group H; in e lL ; ;  
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Fig. 3 

2) for some plane L~ parallel to L2 and lying between L2 and II2 the inter~ection L~2 N D~ 0 T~(H~-) 
coincides with L~ D ~P((fl2)) N r~(11~-). 

P roo f .  All the assertions except the last are proved as in Lemma 2 and Proposition 1. To prove 
property 2) of the set D1 it suffices to use the remark preceding Lemma 6. As the set D1 we choose 
(:P \ II~-) U (Tr~(:P) \ r~(II[)). For the definition of the set ~ see the proof of Lemma 2. Lemma 6 is now 
proved. 

5.2. We introduce the following notation: J = H], X: = L ;  n ( ; 2  \ J ({x ,y , z}) ,  7~ is a symmetry in 
t t ~ '~ l  t the plane L2, X1 = ~'2(X2), G~ = ' " '  ' T2 ~l'r2, F~ D2 T2D1 =- T2ri T2, = . 

Direct verification shows that the sets X~ and X2 are interactive (in the sense of Maskit [20, Ch. VIII) 
for the pair of groups (G~, G~), i.e., J (Xi )  = Xi and any element G~ \ J maps X~ into X~. In addition 
Di AXi  FIL2 is a fundamental set for the action of the group o r in Xi r3/~2, i = 1, 2. It follows from this ghat 
g(D~ D .X~) C X~ for any element g ~ G~ and conversely, for any 9' ~ G~ the inclusion g(D2 ~ X~) C X~ 
holds. 

L e m m a  7. 1. The groups G~ and G~ satisfy the hypotheses of the weak combination theorem of Ma~kit 
[20, Ch. VII, Theorem A.15]). 

2. The group G ' =  (Gi, G~) is isomorphic to G~ *j G' 2. 

3. The set D = (D1 N X1) U (D2 f? X2) contain~ no point~ that are equivalent with respect to G', and 
int D is contained in ~(Gt). 

Proof .  The first assertion follows from the reasoning preceding the 1emma. The second and third 
follow from Maskit's weak combination theorem. Lemma 7 is now proved. 

We denote by f~ the component of ft(G ~) containing e~. It is easy to see that ft ~ is invariant with 
respect to G'. Let fl~ = r~/~2r~. Obviously the element u = (~)-1o/32 is parabolic, is conjugate to a shift 
in l~ 3, and leaves the point x fixed. 

5.3. L e m m a  8. Let G ~ be a conformal extension of the group G g to R n, n > 3. Then x i~ a cusped 
parabolic point in the group G n. (For the definition of a cusped point cf., for example [21].) 

P roo f .  We begin by constructing a cusped neighborhood for the point x E Ra. We denote by II the 
plane passing through the points 0, Pl, and P2. Let l be the line containing the point x and perpendicular 
to the plane YI2 (Fig. 3). Let A be any closed disk lying in the plane H and tangent to l at the point x such 
that the diameter of A is less than the radius of I(~2) and A N L~ = o (cf. Len~na 6). 

As a cusped neighborhood 0 of the point x we choose the set obtained from A by rotation about the 
axis I. It is obvious that u(O) = (9. We shall show that (9 is precisely invariant in G' with respect to (u}. 
By Lemmas 6 and 7 the intersection (9_ = (O \ { x } ) n cl ext ( I(Z; )) n cl ext ( I ( Z2 )) lies in the region D and 
contains no points that are equivalent with respect to G ~. Let w be the shift in R a along the line L2 N 1I 
that takes the point x to the point y. Then the set w(O_) \ ( I ( ~  1)  U / ( ( f l ; ) - l )  = (9_ is also contained in 
D. It follows from this that (9_ U/~-1(O_) has no points that are equivalent (with respect to G') and is a 
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fundamental set for the action of <u) in 0. Thus 0 is a cusped neighborhood of the parabolic point x in 
the group G'. 

Consider the fractional linear transformation ~, that makes the element u conjugate to the shift U : 
x ~ x + el ,  where ea is the vector with coordinates (1, 0,0). Then Q = R 3 \ 7(0)  is a solid Euclidean 
cylinder with axis Aa = R .  ei and a certain radius r. In the group G. = ~/G'7 - i  the region 0 ,  = R 3 \ Q 
is precisely invariant with respect to (U}. Let G." be a conformal extension of the group G, in I~ ~ and Qn 
the solid Euclidean cylinder in R ~ of radius 3r with axis A1. We shall show that the region R '~ \ Qn is 
precisely invariant with respect to (U) in the group G. ~. 

We remark that for an arbitrary element g E G, the center of the isometric sphere I(g) lies inside Q 
(otherwise the limit point g-~(oo) would lie in the precisely invariant region {9.). We shall verify that the 
radius of [(g) is less than 2r. Indeed elementary computations show that for radius of the sphere I(g) larger 
than 2r the area of I(g) N Q is less than half the area of I(g). However the radii of I(g) and I(g-~)  are 
equal and g :  I(g) ~ i ( g - i )  is a E u c l i d e a n  isometry. Therefore g(I (g)N {9,)Cl 0 ,  r Z, contradicting the 
precise invariance of the region (9.. Thus each sphere I(g) lies inside a cylinder Q'~, from which it follows 
that the region R n \ Qn is precisely invariant. Lemma 8 is now proved. 

R e m a r k .  Unfortunately we were unable to use either Lemma 4.15 of [221 or its proof in our reasoning, 
since there are errors in the proof [22, p. 94]. 

Coro l la ry .  The group (u) is a maximal parabolic subgroup of G'. 

We shall use the notation {9~ below to denote the cusped neighborhood 7 - 1 ( R  n \ Qn). 

5.4. As already noted in Lemma 6, the quotient manifolds M(G~ ) and M(G'2) are bundles over a circle 
whose fibers E1 and 9"2 correspond to normal subgroups F~ C G~ arid F~ C G~. Let T~ be the peripheral 
tort in M(G}) corresponding ~o the parabolic subgroup J = a l  n a l  and T, a component of M(G~) \ Tg 
homeomorphic to ( -oo ,  oc) x T 2. Consider the manifold N obtained from M(G ) \ T~ by compactification 
and gluing using a homeomorphism h : T1 --~ 2"2 that induces the identity mapping J ~ J. 

We set $3 = r iT~2T-~r~,  I = {~3) = F '  f3 J, i = 1,2. Without loss of generality we may assume 
that h(Ei N T1) = E2 N T2, so that the manifold N is also homeomorphic to a bundle over a circle whose 
typical fiber 9- is formed by gluing together the compactifications of the surfaces 9-i and 9"2 along 9=/A Ti. 
It follows from the Seifert-van Kampen theorem and Lemmas 6 and 7 that there exists an isomorphism 
j : 7ri(N) ---* G', j : 7rl(9-i) --+ F ' ,  i = 1,2. Thus the group F' = (F~,F~} is isomorphic to F; *I F~ 
and normM in G', and the action of the cyclic quotient group G ' / F '  is induced by some homeomorphism 
0 : 9" ~ 9-. The manifold N is formed by gluing together four copies AJ/i of the compactification of the 
manifold M(F~) = Ha /P l .  We denote the boundary tort of the A]/~ along which the gluing is done by 9"1, 
9~2, and 73; they correspond to parabolic subgroups of rank 2 in G'. Here 9" A 9:i consists of a single loop 
~i (Lemma 2). We shall denote the element of rrl(N) corresponding to it by [c~,]. 

We remark that  for all i there exists u parabolic subgroup of rank 2 in G' containing j([c~]) while 
for the element u there is no such subgroup (el. the corollary to Lemma 8). Therefore j([c~i]) and u are 
not conjugate in the group G' and afortiori  they are not conjugate in F '  9 u =/32(/3~) -1. For the same 
reasons for any loop 5 C 09- the elements j([~]) and u are not conjugate in G'. We note also that 0(c~) = ~ ,  
i = 1,2,3. 

5.5. The manifold N can be obtained from 9- x [0, 1] by identifying the points (x, 0) and (O(x), 1) 
for x E 9-. We denote by w : S i -4 9- the loop corresponding to the element u under the isomorphism 

j :  rl(:r) --+ F ' .  

5.6. L e m m a  9. For any m, k E Z, m 7 ~ k, the loops Ok(co) and O'n(co) are not freely homotopic on 

the surface 9-. 
Proof .  Denote by ~, the loop 0k(a~). Then Ore(w) = O~(a~), n = m - k r O. Assume that the loops 

u and 0'~(u) are freely homotopic on 9- and that # : S 1 x [-1,  0] -+ 9- is the corresponding homotopy. 
The manifold 2V = 9" x [0, 1]/8" is an n-sheeted regular covering of N. Consider the continuous mapping 
@ : [-1, 1] x S 1 --, 9" x [0, 1] such that therestr ict ion of @ to [-1,0] x S 1 coincides with p and the restriction 
of ~ to [0, 1] is given by the formula (?(t, z)  = (t, O'%u(x)). It is obvious that  ~ projects to a continuous 
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mapping rl : S 1 x S ~ ~ 9" x [0,1]/0" = .N. Passing to a covering of N with defining subgroup ~h(9"), we 
see that the no,triviality of the loop w implies that the mapping r/, " ~rl (S 1 x S 1) ~ N is injective. Thus 
r/(T 2) is an incompressible singuIar torus in the manifold N. 

We now lift the tori 7i to tori ~i C 29, i = 1, 2, 3. Each component of 29 \ ( ~  U 0"2 tJ "Y3), is an 
n-sheeted covering of one of the hy_perbolic manifolds N \ (71 O 'Y2 lJ 7a), and is therefore itself hyperbolic 
and atoroidal. Consequently (r = ~1 U ~r2 u ~a defines a "canonical system of tori" of the manifold N (cf. 
[23]). Thus the components of a regular neighborhood 2~ of the submanifold 029 D ~r are a complete set 
of characteristic submanifolds of 29 [23]. By the results of [23] the continuous mapping r] : T 2 --, N is 
homotopic to some mapping r] : T 2 --* Y. It follows from this that the loop ~ = r/]{0}xs~ is homotopic to a 

loop 0 of Y. Considering the elements [~] and [0] E ~-~ (29) corresponding to P and 0, we verify that they 
are conjugate in the group rc1(29). However [~] = [u] e r,t(~ • {0})is the fundamental group of the fiber 
of the bundle 29 and is normal in ~rl(N) C r (N) .  

Consequently also lies in 7h(~') C ~h(N) C 7r(N). Thus the loop u C Y" C ~r is freely homotopic to 
a loop of a regular neighborhood of 09-U al  U a2 U eta, which is impossible by See. 6.4. This contradiction 
proves Lemma 9. 

5.7. P r o o f  of  a s se r t ion  (a) of  T h e o r e m  2. We choose some element representing a generator of 
the group G'/F' ,  for example t2 C H2. By Lemma 9 for any k -~ m E Z the elements tk2ut~ k and t~ut~ m 
are not conjugate in the group F'.  However t~{u}t~ m is a maximal parabolic subgroup of G' (and hence 
also of F ~) for m G Z. Thus the group F ~, being a free group of finite rank, contains an infinite number of 
conjugacy classes of the maximal parabolic subgroups (urn} = (t~ut-~m). This proves assertion (a). 

5.8. P r o o f  of  a s se r t ion  (b) of  T h e o r e m  2. The point x is a cusped parabolic point of the group 
G n C MSb (S '~) for n _> 3. A cusped neighborhood of this point (gg was constructed in the proof of Lemma 
8. Since the elements Um and u = u~ are conjugate in G', the point t~(x) is also cusped and 0~  = t~(O~) 
is a cusped neighborhood of it (for the group F'*). We denote by E(n, m) the projection of (9~ in the 
manifold M ( F " )  = ~2(F")/F ~. The manifold E(n, m) is homeomorphic to S "-~ • S 1 X [0, (X)), and the 
closed orientable submanifold OE(n, m) in M ( F  ~) is the boundary of a "parabolic end." If m 5r k, the 
parabolic ends corresponding to OE(n, m) and cgE(n, k) are distinct and the manifold M ( F  ~) possesses 
an infinite number of ends. It is easy to see that the system of cycles {[OE(n,m)l, m G Z} is linearly 
independent in H,~_~ ( M ( F  "), Z). Thus rank H,_I  ( M ( F  ~), Z) = oc, and Theorem 2 is proved completely. 

6. C o n c l u d i n g  r e m a r k s  

6.1. In the theory of discrete subgroups of Lie groups the following theorem of Selberg is well-known [24]. 

T h e o r e m  C. For any finitely generated subgroup P in the Lie group G the number of G-conjugacy 
classes of elements o f f  of finite order is finite. 

The following result also holds. 

T h e o r e m  3. There exists a sequence of representations Pn : F '  --~ MSb (S a) that converges to p~ = id 
and is such that for all n, rn E Z the order of the element pn(Ura) is finite. 

In a subsequent publication we shall show that the elements pn(Um) and p,(ui) are not conjugate in 
the group pn(F r) for any n G N, m, i  E Z, m r i. 

Proof .  We denote by Et (s) the sheaf of spheres tangent to one another at the point p~, where 
El(0) ----- E1 and E1(1) is the sphere whose radius is equal to the distance from the center of E1 to the plane 
L2. Let p2(s) be the point of El(S) closest to the plane L2. 

We choose a parabolic_ _transf~176 Cs that commutes with the group H1 and maps the point p2 to 
the point P2(S); ~s(H) = I!. Consider the parabolic element /~e(s) = ~'s/32~ -1. It is easy to see that the 
isometric spheres I(fl2(s)) and I(/3;l(s)) meet L2 at equal angles 9(s), ~(0) = 0, ~(1) = ~r/2, c2(s ) being 
a continuous function. Let s(n) be a sequence of numbers, 0 _< s(n) < 1, such that 9~(s(n)) = rr/2n. Let 
p , :  F1 ~ Mgb(S a) be the homomorphism defined by the conjugation Pn(7) = ff,(n)Tq-(l,); the restriction 
of p,  to F~ is the identity. By the equality G~ = F~ , /~ F~ and the fact that ~,(,) commutes with the group 
H~, the mapping p,~ : G~ --+ Mgb (S a) is a homomorphism. We define a mapping p, : G~ -+ Mgb (S 3) by 
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I l ! I the formula 7"2pn(w2g'c2)T ~ = Pn(g), g C G~2 �9 It is obvious that the extension of p,~ to the group G' is a 
homomorphism and that lim pn = id. 

n ----+ ~ 

At the same time pn(u) is an elliptic element of order n E Z. Since u = u0 and Um E G ~ are 
conjugate in G', it follows that p,~(um) is an element of finite order for all n, m C Z. Thus the sequence of 
homomorphisms pn is the one sought. Theorem 3 is now proved. 

6.2. Numerous variant proofs of the Ahlfors finiteness theorem based on topological and other ideas 
appeared in the mid-80's [25-27]. 

The idea that a normal subgroup in a geometrically finite group could be a counterexample to Ahlfors' 
Theorem in dimension 3 occurred to the second author of this paper while working on [15] (taking account 
of the Jaco-Hempel theorem [7, Theorem 11.1]). The first example was constructed by the authors in a 
joint paper [28]. As B. I. Apanasov has pointed out to us, a configuration of spheres similar to [28] covering 
a "trefoil" knot was used in his Theorem 7.21 of [22]. The group constructed in Theorem 7.21 of [22] was a 
free, geometrically finite group having a wild knot as limit set (el. also [20, VIII.F]). In the present article 
the example of [28] has been significantly simplified and the original configuration of 52 spheres has been 
replaced by the four spheres Ei, i = 1 , . . . ,  4 (Theorem 1). Theorems 2 and 3 are due to the second author. 

The authors are grateful to S. L. Krushkal' and N. A. Gusevskii for support and attention in this work. 
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