ON THE ABSENCE OF THE AHLFORS AND SULLIVAN THEOREMS FOR KLEINIAN GROUPS IN HIGHER DIMENSIONS

M. E. Kapovich and L. D. Potyagailo

UDC 512.817

Introduction

One of the fundamental results of the theory of discontinuous groups of fractional linear transformations acting on the complex plane \mathbf{C} is the following finiteness theorem of L . Ahlfors [1, 2]:

Let G be a finitely generated nonelementary discrete subgroup of $\operatorname{PSL}(2, \mathrm{C})$ acting freely on a region of discontinuity $\Omega(G)$. Then the quotient surface $\Omega(G) / G$ consists of a finite number of Riemann surfaces S_{1}, \ldots, S_{n} of finite hyperbolic area. In particular the groups $\pi_{1}\left(S_{i}\right)$ are finitely generated and the homotopy type of the surfaces S_{i} is finite ($i=1, \ldots, n$).
Subsequently D. Sullivan [3] strengthened Ahlfors' finiteness theorem by showing that any finitely generated discrete group $G \subset \operatorname{PSL}(2, \mathbf{C})$ has at most a finite number of cusps (i.e., conjugacy classes of maximal parabolic subgroups).

Ahlfors [4] and Ohtake [5] attempted to develop analytic methods of studying the problem of finiteness of multidimensional Kleinian groups. However, the results obtained do not give any information about either the topology of the quotient spaces of Kleinian groups or the number of cusps.

In the present article we shall show that even a weakened version of Ahlfors' finiteness theorem fails in dimension 3 and also construct a counterexample to the analog of Sullivan's finiteness theorem in higher dimensions.

Theorem 1. There exists a finitely generated torsion-free function group $F \subset \mathrm{Möb}\left(S^{3}\right)$ with invariant component $\Omega \subset \Omega(F)$ such that the fundamental group $\pi_{1}(\Omega / F)$ is infinitely generated, Moreover the group F itself is infinitely defined.

Theorem 2. There exists a finitely generated Kleinian group $F^{\prime} \subset \mathrm{Möb}\left(S^{3}\right)$ such that
a) F^{\prime} contains an infinite number of cusps (of rank 1),
b) if F^{n} is a conformal extension of the group F^{\prime} to S^{n}, then $\operatorname{rank}\left(H_{n-1}\left(\Omega\left(F^{n}\right) / F^{n}, \mathbb{Z}\right)\right)=\infty$. Thus the manifold $\Omega\left(F^{n}\right) / F^{n}$ has an infinite homotopy type.

1. Preliminary information

Let $\operatorname{Möb}\left(\overline{\mathbf{R}}^{n}\right) \simeq \operatorname{Isom}\left(\mathbf{H}^{n+1}\right)$ be the group of conformal automorphisms of the n-dimensional sphere $S^{n}=$ $\overline{\mathbf{R}}^{n}=\mathbf{R}^{n} \cup\{\infty\}$, where $\mathbf{H}^{n+1}=\left\{\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \in \mathbf{R}^{n+1}: x_{n+1}>0\right\}$ is hyperbolic space.

A subgroup $G \subset \operatorname{Möb}\left(S^{n}\right)$ is called Kleinian if the action of G is discontinuous at some point $x \in S^{n}$, i.e., there exists a neighborhood $U(x)$ such that $g(U(x)) \cap U(x) \neq \varnothing$ for only a finite number of elements $g \in$ G. The set of points where G acts discontinuously is called the discontinuity set $\Omega(G)$ and its complement $\Lambda(G)=S^{n} \backslash \Omega(G)$ the limit set of the group G.

A Kleinian group G is called a function group if there exists a connected component $\Omega \subset \Omega(G)$ that is invariant with respect to G. If G acts freely on Ω, then the quotient space $M(G)=\Omega / G$ is an n-dimensional manifold. We shall denote by $\mathcal{P}(G)$ the isometric fundamental region for $G[6]$ and by $I(g)$ the isometric sphere $g \in \operatorname{Möb}\left(S^{n}\right)$.

In what follows we shall assume (if not otherwise specified) that all manifolds are three-dimensional and piecewise linear. Standard reductions by the theory of Kleinian groups and three-dimensional topology can be found in [2] and [6]-[8]. If $S \subset \mathbf{R}^{3}$ is a two-sphere, we shall denote by ext (S) and int (S) the components of $\overline{\mathbf{R}}^{3} \backslash S$ such that $\infty \in \operatorname{ext}(S)$. The symbol cl () denotes the closure of a set.

Khabarovsk and L'vov. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 32, No. 2, pp. 61-73, March-April, 1991. Original article submitted March 20, 1989.

Fig. 1

Fig. 2

2. Outline of the proof of Theorem 1

Consider the configuration consisting of four mutually tangent Euclidean spheres $\Sigma_{i} \subset \mathbf{R}^{3}$ (Fig. 1). Each sphere Σ_{i} is obtained from its neighbor by a reflection τ_{j} in the plane $\left.\Pi_{j},(i=1, \ldots, 4), j=1,2\right)$.

We shall construct discontinuous groups $\Gamma_{i} \subset \operatorname{Möb}\left(\overline{\mathbf{R}}^{3}\right)$ such that the groups Γ_{i} are isomorphic to the fundamental group of a bundle over a circle with a "surface" as fiber. The group Γ_{i} leaves invariant the outside of the sphere $\Sigma_{i}, i=1, \ldots, 4$. Using Maskit's combination method we shall show that both groups $G_{1}=\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle$ and $G_{2}=\left\langle\Gamma_{3}, \Gamma_{4}\right\rangle$ are Kleinian and also isomorphic to the fundamental group of a bundle over a circle (cf. Lemma 3). Let F_{i} be normal subgroups in G_{i} corresponding to surface subgroups in $G_{i}(i=1,2)$. The proof of Theorem 1 concludes with Lemma 5 , in which we establish that the group $\left\langle F_{1}, F_{2}\right\rangle=F$ is the one sought. In particular F is a normal subgroup of the geometrically finite function group $G=\left\langle G_{1}, G_{2}\right\rangle$.

The proof of Lemma 5 is based on the following reasoning. Using the involution τ_{2} we represent the manifold $M(F)=\Omega / F$ in the form of a doubling of some manifold $M^{-}(F)$. There exists an infinite regular covering $M^{-}(F) \rightarrow M^{-}(G) \subset M(G)$ induced by the covering $M(F) \rightarrow M(G)$. The manifold $M^{-}(G)$ is not a bundle over a circle, since $\partial M^{-}(G)$ contains a surface of genus 2. It follows from this that the group $\pi_{1}\left(M^{-}(F)\right)$ cannot be finitely generated [7]. It then follows immediately that the group $\pi_{1}(M(F))$ is also infinitely generated.

3. Outline of the proof of Theorem 2

Consider the configuration of four spheres $\Sigma_{1}, \Theta_{2}, \Theta_{3}, \Sigma_{4}$ shown in Fig. 2. We construct groups $\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}, \Gamma_{3}^{\prime}$, Γ_{4}^{\prime} conjugate in $\mathrm{Möb}\left(S^{3}\right)$ to the groups Γ_{i} of the preceding section such that their limit sets are respectively the spheres $\Sigma_{1}, \Theta_{2}, \Theta_{3}$, and Σ_{4}. The groups Γ_{3}^{\prime} and Γ_{4}^{\prime} are obtained from Γ_{2}^{\prime} and Γ_{1}^{\prime} by conjugation using a symmetry τ_{2}^{\prime} with respect to the plane L_{2}.

The group Γ_{1}^{\prime} contains a parabolic element β_{2} such that the isometric spheres $I\left(\beta_{2}\right)$ and $I\left(\beta_{2}^{-1}\right)$ are tangent to L_{2}. The point of tangency $x=I\left(\beta_{2}\right) \cap L_{2}$ is a fixed point for the parabolic transformation $u=\tau_{2}^{\prime} \beta_{2}^{-1} \tau_{2}^{\prime} \beta_{2}$. We shall show that the point x is cusped for the Kleinian group $G^{\prime}=\left\langle\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}, \Gamma_{3}^{\prime}, \Gamma_{4}^{\prime}\right\rangle$. The group G^{\prime} contains a normal free subgroup $F^{\prime} \ni u$ of finite rank, $G^{\prime} / F^{\prime} \simeq \mathbf{Z}$. The action of G^{\prime} / F^{\prime} on F^{ℓ} by conjugates is induced by a homeomorphism θ of a compact surface $\mathcal{F}, \pi_{1}(\mathcal{F}) \simeq F^{\prime}$. The system of three loops $\alpha=\alpha_{1} \cup \alpha_{2} \cup \alpha_{3}$, which is invariant with respect to θ, gives a reduction of θ to irreducible homeomorphisms of infinite order [9]. Here [ν] is the image of u under the isomorphism $j^{-1}: F^{\prime} \rightarrow \pi_{1}\left(\mathcal{F}^{\prime}\right)$; [ν] is not conjugate to any element of $\pi_{1}(\mathcal{F})$ corresponding to components of $\partial \mathcal{F} \cup \alpha$ (since $\langle u\rangle$ is a maximal parabolic subgroup of $\left.G^{\prime}\right)$. It follows from this that $\theta_{*}^{m}([\nu])$ and $\theta_{*}^{n}([\nu])$ are nonconjugate elements of $\pi_{1}(\mathcal{F})$ for all $m \neq n \in \mathbf{Z}$. Thus the group F^{\prime} contains an infinite number of conjugacy classes of maximal parabolic subgroups: $\left\{j\left(\theta_{*}^{m}([\nu])\right), m \in \mathbf{Z}\right\}$. Property (b) of the group F^{\prime} follows from the fact that the point x is cusped in the group F^{n}.

4. Construction of the group F

Let M be an open manifold homeomorphic to the complement of a linkage of Borromean rings. It is known that M is a total bundle space over a circle with a "surface" for fiber [10]. In addition M admits a complete hyperbolic structure of finite volume, i.e., $M=\mathbf{H}^{3} / \Gamma, \Gamma \subset \operatorname{Isom}\left(\mathbf{H}^{3}\right)[8]$.

Definition. A group K with a subgroup S is called S-finitely approximable if for any element $k \in K \backslash S$ there exists a subgroup $K_{1} \subset K$ of finite index that contains S but $k \notin K_{1}$.
4.1. Lemma 1. The group Γ is S-finitely approximable for any geometrically finite subgroup $S \subset \Gamma$.

Proof. Consider the regular ideal octahedron $P \subset \mathbf{H}^{3}$ whose dihedral angles all equal $\pi / 2$ [8]. Let Q be the group of reflections in the faces of P, and let Q_{1} be a finite extension of it using four automorphisms of order 3. Then Q_{1} contains Γ as a subgroup of finite index [8]. The assertion of the lemma follows from [11] and the commensurability of the groups Γ and Q. Lemma 1 is now proved.
4.2. We denote by B the outside of the unit sphere $\Sigma \subset \mathbf{R}^{3}$ with center at the origin. We shall regard B as a model of the hyperbolic space H^{3}. Further let H_{i} be certain nonconjugate maximal parabolic subgroups of Γ and $\Lambda\left(H_{i}\right)=\left\{p_{i}\right\}, i=1,2$. We shall assume that the points p_{i} have coordinates $(0,1,0)$ and $(0,0,1)$. Let Π_{i} be a Euclidean plane tangent to Σ_{i} at the point p_{i} (cf. Fig. 1) and Π_{i}^{-}the component of $\mathbf{R}^{3} \backslash \Pi_{i}$ that does not intersect $\Sigma(i=1,2)$. We set $\bar{\Pi}_{i}=\Pi_{i} \cup\{\infty\}$.

In the next lemma we shall show that for some subgroup of finite index $\Gamma \subset \Gamma$ and planes Π_{i} the hypotheses of Maskit's combination theorem are fulfilled. Consider a certain neighborhood of Π_{i}, and let the sphere W_{i} be tangent to Σ at the point p_{i}, so that $W_{i} \subset \mathrm{cl} B, V_{i}=\operatorname{ext} W_{i}, \mathrm{cl}_{i}^{-} \backslash\left\{p_{i}\right\} \subset V_{i}, i=1,2$.
4.3. Lemma 2. There exists a subgroup of finite index $\tilde{\Gamma}$ in the group Γ such that the following conditions hold:
(a) the group $\tilde{\Gamma}$ contains a normal subgroup $\tilde{F} \subset \tilde{\Gamma}$ for which $\tilde{\Gamma}=\left\langle\tilde{F}, t_{i}\right\rangle, t_{i} \in H_{i} \cap \tilde{\Gamma}, i=1,2$;
(b) the group $\tilde{\Gamma}$ has a fundamental set $\mathcal{P} \subset B$ such that $\mathcal{P} \cap V_{i}$ is a fundamental set for the action of the group $H_{i} \cap \tilde{\Gamma}=\tilde{H}_{i}$ on $V_{i},(i=1,2)$.

Proof. We denote by $I(g)$ the isometric sphere of the element $g \in \Gamma$. Then there exists at most a finite number of elements $h_{k} \in H_{i}$ such that $I\left(h_{k}\right) \cap\left(\Pi_{j} \cup\left(S^{3} \backslash \mathcal{P}\left(H_{j}\right)\right)=\varnothing, i \neq j, i, j=\{1,2\}, 0 \leq k \leq N\right.$. Using the finite approximability of the group Γ [12], we choose a subgroup of finite index $\Gamma^{*} \subset \Gamma$ for which $h_{k} \notin \Gamma^{*}, 0 \leq k \leq N$. We set $H_{i}^{*}=\Gamma^{*} \cap H_{i}, i=1,2$.
(a) Let Φ be a normal subgroup of Γ corresponding to a fiber of M. Then $F^{*}=\Phi \cap \Gamma^{*}$ is a normal subgroup of Γ^{*} and $\Gamma^{*}=\left\langle F^{*}, l\right\rangle$. The action of the element l on F^{*} by conjugation is induced by the action of some homeomorphism λ of a compact surface S for which $\pi_{1}(S) \simeq F^{*}$. Let $\gamma_{i} \subset \partial S$ be oriented boundary curves whose homotopy classes $\left[\gamma_{i}\right]$ correspond to elements $\beta_{i} \in H_{i}^{*} \cap F^{*}, i=1,2$. Without loss of generality we may assume that $\lambda(\partial S)=\partial S$; therefore there exists a number $n \in \mathbb{Z} \backslash\{0\}$ such that $\lambda^{n}\left(\gamma_{i}\right)=\gamma_{i}, i=1,2$. We denote by M_{0} the manifold obtained from $S \times[0,1]$ by identifying the points $(x, 0)$ and $\left(\lambda^{n}(x), 1\right), x \in S$. The manifold M_{0} is a bundle over a circle and a typical fiber S^{*} of this bundle is the image of the surface $S \times\{0\}$ under the quotient mapping. Then the intersection of S^{*} with the component of ∂M_{0} on which the image γ_{i} lies consists of only the curve $\gamma_{i}, i=1,2$. Hence it easily follows that there exist elements $t_{i} \in \tilde{H}_{i}=H_{i}^{*} \cap\left(\Gamma_{0}=\left\langle F^{*}, l^{n}\right\rangle\right)$ such that $\left\langle F^{*}, t_{i}\right\rangle=\Gamma_{0}$. Obviously $\left|\Gamma: \Gamma_{0}\right|<\infty$.
(b) We have already shown that $\operatorname{cl}\left(S^{3} \backslash \mathcal{P}\left(\tilde{H}_{i}\right)\right) \subset \mathcal{P}\left(\tilde{H}_{j}\right), i \neq j, i, j \in\{1,2\}$. Therefore by Klein's combination theorem the set $\mathcal{P}\left(\tilde{H}_{1}\right) \cap \mathcal{P}\left(\tilde{H}_{2}\right)$ is a fundamental region for a group of Schottky type $\tilde{H}=$ $\left\langle\tilde{H}_{1}, \tilde{H}_{2}\right\rangle \simeq \tilde{H}_{1} * \tilde{H}_{2}[6]$. Thus the set $R=\mathcal{P}\left(\tilde{H}_{1}\right) \cap \mathcal{P}\left(\tilde{H}_{2}\right) \cap \mathrm{cl}\left(V_{1} \cup V_{2}\right)$ cannot have equivalent points with respect to the action of the group \tilde{H}. The closure of the set $T=R \cap\left(W_{1} \cup W_{2}\right)$ is compact in B and therefore there exists at most a finite number of elements $g_{m} \in \Gamma_{0}$ such that $g_{m}(T) \cap T \neq \varnothing, m=1, \ldots, K$. The group \tilde{H} is geometrically finite [6] and by Lemma $1 \Gamma_{0}$ is an \tilde{H}-finitely approximable group. Consequently there exists a subgroup of finite index $\tilde{\Gamma} \subset \Gamma_{0}$, in which \tilde{H} is contained, but which contains none of the elements g_{m}. Obviously for all $g \in \tilde{\Gamma}$ we have $g(R) \cap R=\varnothing$ and R is a fundamental set for the action of the group $\tilde{\Gamma}$ in the orbit $\tilde{\Gamma}\left(\operatorname{cl}\left(V_{1} \cup V_{2}\right)\right)$. It is also clear that $\tilde{\Gamma}$ satisfies condition (a) in the statement of this lemma.

We choose an arbitrary fundamental set A for the action of the group $\tilde{\Gamma}$ in $B \backslash \tilde{\Gamma}\left(\operatorname{cl}\left(V_{1} \cup V_{2}\right)\right)$. The set $\mathcal{P}=R \cup A$ will be fundamental in B, and condition (b) will hold for it. Lemma 2 is now proved.
4.4. Let τ_{i} be reflection in the plane $\Pi_{i}(i=1,2)$. We introduce the following notation: $\Gamma_{1}=\tilde{\Gamma}$, $\Gamma_{2}=\tau_{1} \Gamma_{1} \tau_{1}, G_{1}=\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle, G_{2}=\tau_{2} G_{1} \tau_{2}, G=\left\langle G_{1}, G_{2}\right\rangle$. In what follows we shall write H_{1} and H_{2} instead of \tilde{H}_{1} and \tilde{H}_{2}.

Lemma 3. The group G_{1} is discontinuous and contains a finitely generated normal subgroup F_{1} such that $G_{1} / F_{1} \simeq \mathbf{Z}, G_{1}=\left\langle F_{1}, t\right\rangle, t \in H_{2}$.

Proof. Consider the fundamental set $\mathcal{P}_{1}=\mathcal{P}$ of the group Γ_{1}, which was constructed in Lemma 2. The group $H_{1}=\Gamma_{1} \cap \Gamma_{2}$ stabilizes the plane $\bar{\Pi}_{1}$ in the groups Γ_{1} and Γ_{2}. By assertion (b) of Lemma 2 and the maximality of the parabolic subgroup $H_{1} \subset \Gamma_{1}$ the region $\mathrm{cl} \Pi_{1}^{-}$is precisely invariant with respect to H_{1} in the group Γ_{1}. Similarly the region $\tau_{1}\left(\mathrm{cl} \Pi_{1}^{-}\right)$is precisely invariant with respect to H_{1} in the group Γ_{2}. Thus all the hypotheses of the first combination theorem of Maskit [13] are satisfied (the multidimensional variant of the combination theorem can be found, for example, in [14]). Consequently the group G_{1} is discontinuous and isomorphic to $\Gamma_{1} *_{H_{1}} \Gamma_{2}$, and the set $R_{1}=\mathcal{P}_{1} \cap \tau_{1}\left(\mathcal{P}_{1}\right)$ is fundamental for the action of G_{1} on the invariant component $\Omega_{1} \subset \Omega\left(G_{1}\right)$ containing the point ∞.

Suppose further that $F_{1}=\left\langle\tilde{F}, \tau_{1} \tilde{F} \tau_{1}\right\rangle$, where the group \tilde{F} is the normal subgroup of $\Gamma_{1}=\Gamma$ constructed in Lemma 2. Then $G_{1}=\left\langle F_{1}, t_{1}\right\rangle$ and F_{1} is normal in G_{1} and finitely generated. It remains only to remark that $t_{1} \in \Gamma_{1}=\left\langle\tilde{F}, t_{2}\right\rangle$, and so $G_{1}=\left\langle F_{1}, t\right\rangle, t=t_{2} \in H_{2}$. Lemma 3 is now proved.

Proposition 1 (cf. also [15]). The manifold $M\left(G_{1}\right)=\Omega_{1} / G_{1}$ is homeomorphic to the interior of a bundle over a circle whose fiber is a compact surface with $\pi_{1}\left(\Omega_{1}\right)=\{1\}$.

Proof. It follows from the geometrical decomposition of the group $G_{1}=\Gamma_{1} *_{H_{1}} \Gamma_{2}$ that $M\left(G_{1}\right)$ is obtained by gluing together two manifolds M_{1} and M_{2}, where $M_{1}=M\left(\Gamma_{1}\right) \backslash\left(\Pi_{1}^{-} / H_{1}\right)$ and $M_{2}=$ $M\left(\Gamma_{2}\right) \backslash\left(\tau_{2} \Pi_{1}^{-} / H_{1}\right)$. We further have $\Pi_{1}^{-} / H_{1} \cong \tau_{1} \Pi_{1}^{-} / H_{1} \cong S^{1} \times S^{1} \times(0,1)$. Consequently each of the manifolds M_{i} is homeomorphic to a bundle over a circle and the interior of M_{i} is a finite-sheeted covering of the original manifold M.

The gluing homeomorphism $f: \partial M_{1} \rightarrow \partial M_{2}$ preserves the bundle structure, since it is covered by the identity homeomorphism $\tilde{f}: \bar{\Pi}_{1} \rightarrow \bar{\Pi}_{1}$. It follows from the Seifert-van Kampen theorem that $\pi_{1}\left(M\left(G_{1}\right)\right) \simeq$ $\Gamma_{1} *_{H_{1}} \Gamma_{2} \simeq G_{1}$. The group $G_{1} \subset \operatorname{Möb}\left(S^{3}\right)$ is a Hopf group [12], and therefore $\pi_{1}\left(\Omega_{1}\right)=\{1\}$. Each of the manifolds M_{i} admits a compactification (by adjoining tori); therefore $M\left(G_{1}\right)$ is also compactifiable. Proposition 1 is now proved.
4.5. We set $F=\left\langle F_{1}, F_{2}\right\rangle$, where $F_{2}=\tau_{2} F_{1} \tau_{2}$ and $G=\left\langle G_{1}, G_{2}\right\rangle$.

Lemma 4. The following assertions hold:
(A) The group G is the result of Maskit combination of the groups G_{1} and G_{2}.
(B) The group G is discontinuous and possesses an invariant component $\Omega \subset \Omega(G)$ containing the point ∞.
(C) The finitely generated group F is normal in G.
(D) The manifold $M(G)=\Omega / G$ is homeomorphic to thc interior of a compact manifold.

Proof. (A) Let $H_{3}=\tau_{1} H_{2} \tau_{1}$ and $H=\left\langle H_{2}, H_{3}\right\rangle$. By Lemma 3 the group G_{1} acts discontinuously on $\Omega_{1} \ni \infty$ and has a fundamental set $R_{1}=\mathcal{P}_{1} \cap \tau_{1} \mathcal{P}_{1}$. It follows from Lemma 2 that $R_{1} \cap \mathrm{cl} \Pi_{2}^{-}$is a fundamental set for the action of the group H on $\mathrm{cl} \Pi_{2}^{-}$. Moreover in the neighborhood $V=V_{2} \cap \tau_{1} V_{2}$ of the set $\bar{\Pi}_{2} \backslash \Lambda(H)$ we have $R_{1} \cap V=\mathcal{P}\left(H_{2}\right) \cap \mathcal{P}\left(H_{3}\right) \cap V$ (Lemma 2) and the open surface $\bar{\Pi}_{2} \backslash \Lambda(H)$ is precisely invariant with respect to H in the group G_{1}. Consequently there exists a neighborhood \mathcal{N} of the surface $\bar{\Pi}_{2} \backslash \Lambda(H) \subset \Omega\left(G_{1}\right)$ such that $\mathcal{N} \subset \Omega\left(G_{1}\right)$ and \mathcal{N} is precisely invariant with respect to H in G_{1}. To verify assertion (A) it now remains to prove the following result.

Proposition 2. The sphere $\bar{\Pi}_{2}$ is precisely invariant under the action of the group $H \subset G_{1}$.
Proof. Assume that there exists an element $g \in G_{1} \backslash H$ such that $g\left(\Pi_{2}\right) \cap \Pi_{2}=\{x\} \subset \Lambda(H)$. The group H of Schottky type is geometrically finite [6, 16], and so the following alternative holds [17]: either 1) x is an approximation point for the group H, or 2) x is a fixed point of a parabolic element $\gamma \in H$.

In the first case there exists a sequence $h_{n} \in H$ such that $\lim h_{n}(x)=x_{0} \in \Pi_{2}$ and $x_{0} \neq y_{0}=\lim _{n \rightarrow \infty} h_{n}(z)$ for any point $z \in \operatorname{cl} \Pi_{2}^{-} \backslash\{x\}$, and $y_{0} \in \Pi_{2}$. It follows from this that the sequence of spheres $h_{n} g\left(\bar{\Pi}_{2}\right)$ converges to $\overline{\mathrm{I}}_{2} \subset S^{3}$. Consequently $h_{n} g(\mathcal{N}) \cap \mathcal{N} \neq \varnothing$ for large values of n. The latter is impossible by the precise invariance of \mathcal{N} with respect to H in the group G_{1}.

In the second case there exist elements h and h^{\prime} such that $h g h^{\prime}\left(\left\{p_{2}, p_{3}\right\}\right)=\left\{p_{2}, p_{3}\right\}$, where $p_{3}=\tau_{1}\left(p_{2}\right)$. From the maximality and nonconjugacy of the parabolic subgroups $H_{2}, H_{3} \subset G_{1}$ it follows that $g \in H$ and this is impossible. Proposition 2 is now proved.
(B) Assertion (B) follows immediately from (A) and Maskit's combination theorem.
(C) We shall verify that the inclusion $g_{1} F_{2} g_{1}^{-1} \subset F=\left\langle F_{1}, F_{2}\right\rangle$ holds for any $g_{1} \in G_{1}$. The element g_{1} has the form $f_{1} t^{n}$, where $f_{1} \in F_{1}, t \in H_{2} \subset G_{2} \cap G_{1}, G_{2}=\left\langle F_{2}, t\right\rangle$ (cf. Lemma 3). Thus $g_{1} F_{2} g_{1}^{-1}=$ $f_{1} t^{n} F_{2} t^{-n} f_{1}^{-1}=f_{1} F_{2} f_{1}^{-1} \subset F$. Analogously $g_{2} F_{1} g_{2}^{-1} \subset F$ for any $g_{2} \in G_{2}$. It follows from this that F is normal in G and assertion (C) is thus verified.
(D) As we have already seen, both manifolds $M\left(G_{1}\right)$ and $M\left(G_{2}\right)$ admit a natural compactification by the adjunction of cusped tori. Consequently the manifolds $M^{-}\left(G_{1}\right)=M\left(G_{1}\right) \backslash\left(\Pi_{2}^{-} / H\right)$ and $M^{-}\left(G_{2}\right)=M\left(G_{2}\right) \backslash\left(\tau_{2}\left(\Pi_{2}^{-}\right)\right) / H$ also admit a compactification. Therefore the manifold $M(G)$ obtained by gluing together $M^{-}\left(G_{1}\right)$ and $M^{-}\left(G_{2}\right)$ along the compact boundary surface $S_{2}=\left(\bar{\Pi}_{2} \backslash \Lambda(H)\right) / H$ is also compactifiable. Lemma 4 is now proved.

By assertions (B) and (C) of Lemma 4 the groups G and F have a common invariant component $\Omega \ni \infty$. We set $M(F)=\Omega / F$.
4.6. Lemma 5. The group $\pi_{1}(M(F))$ is not finitely generated.

Proof. Step 1. We begin by verifying that the orbits of $G_{1}\left(\Pi_{2}^{-}\right)$and $F_{1}\left(\Pi_{2}^{-}\right)$coincide. Indeed $G_{1}=\left\langle F_{1}, t\right\rangle, t \in H_{2}, t\left(\Pi_{2}^{-}\right)=\Pi_{2}^{-}$. Hence $G_{1} \Pi_{2}^{-}=F_{1} \Pi_{2}^{-}$. We shall further show that $G=\langle F, t\rangle$. For any element $g \in G$ the decomposition $g=g_{1} g_{2} \cdots g_{n}\left(g_{i} \in G_{1} \cup G_{2}\right)$ holds and from the equality $g_{i}=f_{i} t^{m_{i}}$ $\left(f_{i} \in F_{1} \cup F_{2}, t \in H \backslash F\right)$ we obtain $g=f t^{m}, f \in F, m \in \mathbf{Z}$. In analogy with Lemma 3 the subgroup F is normal in G.

Remark. We are not asserting here that $G / F \simeq Z$. This will follow from the reasoning below.
Step 2. By the construction we have $\tau_{2} G \tau_{2}=G$. Therefore using the covering $p: \Omega \rightarrow \Omega / G=M(G)$ the involution τ_{2} projects to an involution $\bar{\tau}_{2}: M(G) \rightarrow M(G)$. Obviously the surface $S_{2}=p\left(\bar{\Pi}_{2} \backslash \Lambda(H)\right)$ is the fixed set for this involution. Similarly the involution τ_{2} projects to an involution $\hat{\tau}_{2}: \Omega / F \rightarrow \Omega / F=$ $M(F)$. Thus we have the commutative diagram

where $p=r \circ q$ and r is a regular covering with the group of covering transformations G / F. The surface $\hat{S}=r^{-1}(S)=q\left(\bar{\Pi}_{2} \backslash \Lambda(H)\right)$ is connected (Step 1) and coincides with the fixed set of the involution $\hat{\tau}_{2}$.

Step 3. Since the group G is the result of the Maskit combination of the groups G_{1} and G_{2}, the region $\Omega_{1} \backslash G_{1}\left(\Pi_{2}^{-}\right)$is contained in Ω and $p\left(\Omega_{1} \backslash G_{1}\left(\Pi_{2}^{-}\right)\right)$is the closure of one of the components of $M(G) \backslash S_{2}$. We denote this closure by $M^{-}(G)$ and use $M^{-}(F)$ to denote the preimage $r^{-1}\left(M^{-}(G)\right)$. On the other hand, $M^{-}(F)$ and $M^{-}(G)$ are homeomorphic to $M\left(F_{1}\right) \backslash\left(\Pi_{2}^{-} / H \cap F\right)$ and $M\left(G_{1}\right) \backslash\left(\Pi_{2}^{-} / H\right)$ respectively. Thus the covering $r: M^{-}(F) \rightarrow M^{-}(G)$ is the restriction of the infinite cyclic covering $M\left(F_{1}\right) \rightarrow M\left(G_{1}\right)$.

Step 4. As we have already seen in Lemma 4, the manifold $M^{-}(G)$ can be compactified to a manifold $N^{-}(G)$. The boundary component $S_{2} \subset \partial \mathrm{cl} M^{-}(G)$ is a compact surface of genus 2 (since $H \simeq(\mathbf{Z} \oplus \mathbf{Z}) *$ $(\mathbf{Z} \oplus \mathbf{Z})$ acts as a group of Schottky type on the sphere $\left.\bar{\Pi}_{2}\right)$. Consequently the manifold $N^{-}(G)$ cannot be a total bundle space over the circle. Moreover neither of the manifolds $M^{-}(G)$ and $N^{-}(G)$ contains any fake cells, since they can be covered by a region in \mathbf{R}^{3}.

Step 5. The group $\pi_{1}\left(M^{-}(F)\right)$ is not finitely generated.

Proof. By Step 3 we have an exact sequence

$$
1 \rightarrow \pi_{1}\left(M^{-}(F)\right) \rightarrow \pi_{1}\left(N^{-}(G)\right) \rightarrow \mathbf{Z} \rightarrow 1
$$

Assume that the group $\pi_{1}\left(M^{-}(F)\right)$ is finitely generated. The manifold $M^{-}(G)$ contains no projective planes in view of the \mathbf{P}^{2}-irreducibility of the manifold $M\left(G_{1}\right)$. Further $\pi_{1}\left(M^{-}(F)\right)$ is not an abelian group, and so it follows from [7, Theorem 11.1] that $N^{-}(G)$ is homeomorphic to a bundle over S^{1}. The last result contradicts Step 4.

Step 6. It remains for us to verify that $\pi_{1}(M(F))$ is also not a finitely generated group. Let $\omega: \tilde{M} \rightarrow$ $M(F)$ be the universal covering with group of covering transformations $\pi=\pi_{1}(M(F))$. We remark that the manifold $M^{-}(F)$ is homeomorphic $M(F) / \hat{\tau}_{2}$. Consider the lifting $\tilde{\tau}_{2}: \tilde{M} \rightarrow \tilde{M}$ of the involution $\hat{\tau}_{2}$. We have $\tilde{\tau}_{2} \pi \tilde{\tau}_{2}=\pi$ and the group $\mathcal{G}=\left\langle\pi_{1}(M(F)), \tilde{\tau}_{2}\right\rangle$ acts discontinuously on \tilde{M}. We denote the normal subgroup of \mathcal{G} generated by the elements of finite order by TORS.

By Armstrong's theorem [18] the group $\pi_{1}\left(M^{-}(F)\right)$ is isomorphic to $\mathcal{G} /$ TORS and so \mathcal{G} is infinitely generated. One can easily see that the group $\pi_{1}(M(F))$, being a subgroup of index 2 in the infinitely generated group \mathcal{G}, also cannot be finitely generated. Lemma 5 is now proved.

By construction the group $F=\left\langle F_{1}, F_{2}\right\rangle \subset \operatorname{Möb}\left(S^{3}\right)$ is finitely generated and its quotient manifold $M(F)=\Omega / F$ has an infinitely generated fundamental group. We shall show finally that the group F is infinitely defined.

The group $I=H \cap F$ is the stabilizer in F of the sphere $\bar{\Pi}_{2}$. It follows immediately from the fact that G is the result of the Maskit combination of the groups G_{1} and G_{2} that F is also obtained from F_{1} and F_{2} by a Maskit combination. Therefore $F \simeq F_{1} *_{I} F_{2}$ is the free product with the combined subgroup I. We remark that the subgroup I is normal in H (by the normality of F in G) and has infinite index, since $G / F \simeq \mathbf{Z}$ and $t^{n} \notin F$ for $n \in \mathbf{Z} \backslash\{0\}$. It follows easily from this that the group I is infinitely generated. The fact that the group F is infinitely defined now follows immediately from the results of [19].

Theorem 1 is now proved.

5. Proof of Theorem 2

Consider the group $\Gamma_{1}^{\prime}=\Gamma_{1}$ constructed in Lemma $2 ; \Gamma_{2}=\tau_{1} \Gamma_{1} \tau_{1}$, and in the group Γ_{1} there is a parabolic element $\beta \in \stackrel{\tilde{F}}{\tilde{F}} \subset \Gamma_{1}$ (cf. the proof of Lemma 2, part (a)). We denote by L_{2} the plane parallel to Π_{2} and tangent to the isometric spheres of the elements β_{2} and $\beta_{2}^{-1}, L_{2} \subset \Pi_{2}^{-}$(cf. Fig. 2). We set $\bar{L}_{2}=L_{2} \cup\{\infty\}$ and let L_{2}^{-}be the component of $\mathbf{R}^{3} \backslash L_{2}$ contained in Π_{2}^{-}. Let Θ_{2} be a sphere tangent to Σ_{1} at the point p_{1} so that int $\Theta_{2} \supset \operatorname{int} \Sigma_{2} ; x=L_{2} \cap I\left(\beta_{2}\right), y=L_{2} \cap I\left(\beta_{2}^{-1}\right), z=\Theta_{2} \cap L_{2}$. Then there exists a unique transformation $T \in \operatorname{Möb}\left(S^{3}\right)$, that commutes with each element of the group H_{1} and maps the point p_{3} to the point z.

Remark. Passing to a subgroup of finite index $\left\langle\tilde{F}, t_{2}^{n}\right\rangle \subset \Gamma_{1}$ if necessary, we may assume that for any $h \in H_{2} \backslash\left\{\beta_{2}, \beta_{2}^{-1}\right\}$ the intersection $I(h) \cap L_{2}$ is empty.
5.1. It is easy to see that $\tau_{1} \circ T^{-1}\left(L_{2}^{-}\right) \subset \Pi_{2}^{-}$and the sphere $\tau_{1} \circ T^{-1}\left(\bar{L}_{2}\right)$ is tangent to Σ_{1} at the point p_{1}. It therefore follows from Lemma 2 that L_{2}^{-}is precisely invariant with respect to the subgroup $H_{3}^{\prime}=T H_{3} T^{-1}$ in the group $\Gamma_{2}^{\prime}=T \Gamma_{2} T^{-1}$. Also by Lemma 2 the hypotheses of Maskit's first combination theorem hold for the groups Γ_{1}^{\prime} and Γ_{2}^{\prime}.

We denote by G_{1}^{\prime} the group $\left\langle\Gamma_{1}^{\prime}, \Gamma_{2}^{\prime}\right\rangle$. It follows from Maskit's combination theorem that the group G_{1}^{\prime} is Kleinian and has an invariant component $\Omega_{1}^{\prime} \ni \infty$.

Lemma 6. The region Ω_{1}^{\prime} is simply connected. The quotient manifold $\Omega_{1}^{\prime} / G_{1}^{\prime}$ is a bundle over the circle formed by gluing together two hyperbolic manifolds that are bundles over S^{1} and homeomorphic to $\left(B \backslash \Gamma_{1}^{\prime}\left(\Pi_{1}^{-}\right)\right) / \Gamma_{1}^{\prime}$. The group $F_{1}^{\prime}=\left\langle\tilde{F}, T \tau_{1} \tilde{F} \tau_{1} T^{-1}\right\rangle$ is normal in G_{1}^{\prime} and corresponds to the fundamental group of a fiber of the manifold $M\left(G_{1}^{\prime}\right)$. There exists a fundamental set D_{1} for the action of G_{1} on Ω_{1}^{\prime} such that

1) $\left(D_{1} \cap \operatorname{cl} L^{-}\right) \cup\{y\}$ is a fundamental region for the action of the group H_{3}^{\prime} in $\mathrm{cl} L_{2}^{--}$;

Fig. 3
2) for some plane L_{2}^{\prime} parallel to L_{2} and lying between L_{2} and Π_{2} the intersection $L_{2}^{\prime} \cap D_{1} \cap \tau_{1}\left(\Pi_{1}^{-}\right)$ coincides with $L_{2}^{\prime} \cap \mathcal{P}\left(\left\langle\beta_{2}\right\rangle\right) \cap \tau_{1}\left(\Pi_{1}^{-}\right)$.

Proof. All the assertions except the last are proved as in Lemma 2 and Proposition 1. To prove property 2) of the set D_{1} it suffices to use the remark preceding Lemma 6. As the set D_{1} we choose $\left(\mathcal{P} \backslash \Pi_{1}^{-}\right) \cup\left(T \tau_{1}(\mathcal{P}) \backslash \tau_{1}\left(\Pi_{1}^{-}\right)\right)$. For the definition of the set \mathcal{P} see the proof of Lemma 2. Lemma 6 is now proved.
5.2. We introduce the following notation: $J=H_{3}^{\prime}, X_{2}=L_{2}^{-} \cap\left(\bar{L}_{2} \backslash J(\{x, y, z\}), \tau_{2}^{\prime}\right.$ is a symmetry in the plane $L_{2}, X_{1}=\tau_{2}^{\prime}\left(X_{2}\right), G_{2}^{\prime}=\tau_{2}^{\prime} G_{1}^{\prime} \tau_{2}^{\prime}, F_{2}^{\prime}=\tau_{2}^{\prime} F_{1}^{\prime} \tau_{2}^{\prime}, D_{2}=\tau_{2} D_{1}$.

Direct verification shows that the sets X_{1} and X_{2} are interactive (in the sense of Maskit [20, Ch. VII]) for the pair of groups $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$, i.e., $J\left(X_{i}\right)=X_{i}$ and any element $G_{1}^{\prime} \backslash J$ maps X_{1} into X_{2}. In addition $D_{i} \cap X_{i} \cap \bar{L}_{2}$ is a fundamental set for the action of the group J in $X_{i} \cap \bar{L}_{2}, i=1,2$. It follows from this that $g\left(D_{1} \cap X_{2}\right) \subset X_{2}$ for any element $g \in G_{1}^{\prime}$ and conversely, for any $g \in G_{2}^{\prime}$ the inclusion $g\left(D_{2} \cap X_{1}\right) \subset X_{1}$ holds.

Lemma 7. 1. The groups G_{1}^{\prime} and G_{2}^{\prime} satisfy the hypotheses of the weak combination theorem of Maskit [20, Ch. VII, Theorem A.15]).
2. The group $G^{\prime}=\left\langle G_{1}^{\prime}, G_{2}^{\prime}\right\rangle$ is isomorphic to $G_{1}^{\prime} * J G_{2}^{\prime}$.
3. The set $D=\left(D_{1} \cap X_{1}\right) \cup\left(D_{2} \cap X_{2}\right)$ contains no points that are equivalent with respect to G^{\prime}, and int D is contained in $\Omega\left(G^{\prime}\right)$.

Proof. The first assertion follows from the reasoning preceding the lemma. The second and third follow from Maskit's weak combination theorem. Lemma 7 is now proved.

We denote by Ω^{\prime} the component of $\Omega\left(G^{\prime}\right)$ containing ∞. It is easy to see that Ω^{\prime} is invariant with respect to G^{\prime}. Let $\beta_{2}^{\prime}=\tau_{2}^{\prime} \beta_{2} \tau_{2}^{\prime}$. Obviously the element $u=\left(\beta_{2}^{\prime}\right)^{-1} \circ \beta_{2}$ is parabolic, is conjugate to a shift in $\overline{\mathbf{R}}^{3}$, and leaves the point x fixed.
5.3. Lemma 8. Let G^{n} be a conformal extension of the group G^{\prime} to $\mathbb{R}^{n}, n \geq 3$. Then x is a cusped parabolic point in the group G^{n}. (For the definition of a cusped point cf., for example [21].)

Proof. We begin by constructing a cusped neighborhood for the point $x \in \overline{\mathbf{R}}^{3}$. We denote by Π the plane passing through the points $0, p_{1}$, and p_{2}. Let l be the line containing the point x and perpendicular to the plane Π_{2} (Fig. 3). Let Δ be any closed disk lying in the plane Π and tangent to l at the point x such that the diameter of Δ is less than the radius of $I\left(\beta_{2}\right)$ and $\Delta \cap L_{2}^{\prime}=\varnothing$ (cf. Lemma 6).

As a cusped neighborhood \mathcal{O} of the point x we choose the set obtained from Δ by rotation about the axis l. It is obvious that $u(\mathcal{O})=\mathcal{O}$. We shall show that \mathcal{O} is precisely invariant in G^{\prime} with respect to $\langle u\rangle$. By Lemmas 6 and 7 the intersection $\mathcal{O}_{-}=(\mathcal{O} \backslash\{x\}) \cap \operatorname{clext}\left(I\left(\beta_{2}^{\prime}\right)\right) \cap \operatorname{clext}\left(I\left(\beta_{2}\right)\right)$ lies in the region D and contains no points that are equivalent with respect to G^{\prime}. Let w be the shift in \mathbf{R}^{3} along the line $L_{2} \cap \Pi$ that takes the point x to the point y. Then the set $w\left(\mathcal{O}_{-}\right) \backslash\left(I\left(\beta_{2}^{-1}\right) \cup I\left(\left(\beta_{2}^{\prime}\right)^{-1}\right)=\mathcal{O}_{-}\right.$is also contained in D. It follows from this that $\mathcal{O}_{-} \cup \beta_{2}^{-1}\left(\mathcal{O}_{-}\right)$has no points that are equivalent (with respect to G^{\prime}) and is a
fundamental set for the action of $\langle u\rangle$ in \mathcal{O}. Thus \mathcal{O} is a cusped neighborhood of the parabolic point x in the group G^{\prime}.

Consider the fractional linear transformation γ that makes the element u conjugate to the shift U : $\mathbf{x} \mapsto \mathbf{x}+\mathbf{e}_{1}$, where \mathbf{e}_{1} is the vector with coordinates $(1,0,0)$. Then $Q=\mathbf{R}^{3} \backslash \gamma(\mathcal{O})$ is a solid Euclidean cylinder with axis $\lambda_{1}=\mathbf{R} \cdot \mathbf{e}_{1}$ and a certain radius r. In the group $G_{*}=\gamma G^{\prime} \gamma^{-1}$ the region $\mathcal{O}_{*}=\mathbf{R}^{3} \backslash Q$ is precisely invariant with respect to $\langle U\rangle$. Let G_{*}^{n} be a conformal extension of the group G_{*} in $\overline{\mathbf{R}}^{n}$ and Q^{n} the solid Euclidean cylinder in \mathbf{R}^{n} of radius $3 r$ with axis λ_{1}. We shall show that the region $\mathbf{R}^{n} \backslash Q^{n}$ is precisely invariant with respect to $\langle U\rangle$ in the group G_{*}^{n}.

We remark that for an arbitrary element $g \in G_{*}$ the center of the isometric sphere $I(g)$ lies inside Q (otherwise the limit point $g^{-1}(\infty)$ would lie in the precisely invariant region \mathcal{O}_{*}). We shall verify that the radius of $I(g)$ is less than $2 r$. Indeed elementary computations show that for radius of the sphere $I(g)$ larger than $2 r$ the area of $I(g) \cap Q$ is less than half the area of $I(g)$. However the radii of $I(g)$ and $I\left(g^{-1}\right)$ are equal and $g: I(g) \rightarrow I\left(g^{-1}\right)$ is a Euclidean isometry. Therefore $g\left(I(g) \cap \mathcal{O}_{*}\right) \cap \mathcal{O}_{*} \neq \varnothing$, contradicting the precise invariance of the region \mathcal{O}_{*}. Thus each sphere $I(g)$ lies inside a cylinder Q^{n}, from which it follows that the region $\mathbf{R}^{n} \backslash Q^{n}$ is precisely invariant. Lemma 8 is now proved.

Remark. Unfortunately we were unable to use either Lemma 4.15 of [22] or its proof in our reasoning, since there are errors in the proof [22, p. 94].

Corollary. The group $\langle u\rangle$ is a maximal parabolic subgroup of G^{\prime}.
We shall use the notation \mathcal{O}_{0}^{n} below to denote the cusped neighborhood $\gamma^{-1}\left(\mathbf{R}^{n} \backslash Q^{n}\right)$.
5.4. As already noted in Lemma 6, the quotient manifolds $M\left(G_{1}^{\prime}\right)$ and $M\left(G_{2}^{\prime}\right)$ are bundles over a circle whose fibers \mathcal{F}_{1} and \mathcal{F}_{2} correspond to normal subgroups $F_{1}^{\prime} \subset G_{1}^{\prime}$ and $F_{2}^{\prime} \subset G_{2}^{\prime}$. Let T_{i} be the peripheral tori in $M\left(G_{i}^{\prime}\right)$ corresponding to the parabolic subgroup $J=G_{1}^{\prime} \cap G_{2}^{\prime}$ and \tilde{T}_{i} a component of $M\left(G_{i}^{\prime}\right) \backslash T_{i}$ homeomorphic to $(-\infty, \infty) \times T^{2}$. Consider the manifold N obtained from $M\left(G_{i}^{\prime}\right) \backslash \tilde{T}_{i}$ by compactification and gluing using a homeomorphism $h: T_{1} \rightarrow T_{2}$ that induces the identity mapping $J \rightarrow J$.

We set $\beta_{3}=\tau_{1} T \beta_{2} T^{-1} \tau_{1}, I=\left\{\beta_{3}\right\}=F_{i}^{\prime} \cap J, i=1,2$. Without loss of generality we may assume that $h\left(\mathcal{F}_{1} \cap T_{1}\right)=\mathcal{F}_{2} \cap T_{2}$, so that the manifold N is also homeomorphic to a bundle over a circle whose typical fiber \mathcal{F} is formed by gluing together the compactifications of the surfaces \mathcal{F}_{1} and \mathcal{F}_{2} along $\mathcal{F}_{i} \cap T_{i}$. It follows from the Seifert-van Kampen theorem and Lemmas 6 and 7 that there exists an isomorphism $j: \pi_{1}(N) \rightarrow G^{\prime}, j: \pi_{1}\left(\mathcal{F}_{i}\right) \rightarrow F_{i}^{\prime}, i=1,2$. Thus the group $F^{\prime}=\left\langle F_{1}^{\prime}, F_{2}^{\prime}\right\rangle$ is isomorphic to $F_{1}^{\prime} *_{I} F_{2}^{\prime}$ and normal in G^{\prime}, and the action of the cyclic quotient group G^{\prime} / F^{\prime} is induced by some homeomorphism $\theta: \mathcal{F} \rightarrow \mathcal{F}$. The manifold N is formed by gluing together four copies \bar{M}_{i} of the compactification of the manifold $M\left(\Gamma_{i}\right)=\mathbf{H}^{3} / \Gamma_{1}$. We denote the boundary tori of the \bar{M}_{i} along which the gluing is done by \mathcal{T}_{1}, \mathcal{J}_{2}, and \mathcal{T}_{3}; they correspond to parabolic subgroups of rank 2 in G^{\prime}. Here $\mathcal{F} \cap \mathcal{T}_{i}$ consists of a single loop α_{i} (Lemma 2). We shall denote the element of $\pi_{1}(N)$ corresponding to it by $\left[\alpha_{i}\right]$.

We remark that for all i there exists a parabolic subgroup of rank 2 in G^{\prime} containing $j\left(\left[\alpha_{i}\right]\right)$ while for the element u there is no such subgroup (cf. the corollary to Lemma 8). Therefore $j\left(\left[\alpha_{i}\right]\right)$ and u are not conjugate in the group G^{\prime} and a fortiori they are not conjugate in $F^{\prime} \ni u=\beta_{2}\left(\beta_{2}^{\prime}\right)^{-1}$. For the same reasons for any loop $\delta \subset \partial \mathcal{F}$ the elements $j([\delta])$ and u are not conjugate in G^{\prime}. We note also that $\theta\left(\alpha_{i}\right)=\alpha_{i}$, $i=1,2,3$.
5.5. The manifold N can be obtained from $\mathcal{F} \times[0,1]$ by identifying the points $(x, 0)$ and $(\theta(x), 1)$ for $x \in \mathcal{F}$. We denote by $\omega: S^{1} \rightarrow \mathcal{F}$ the loop corresponding to the element u under the isomorphism $j: \pi_{1}(\mathcal{F}) \rightarrow F^{\prime}$.
5.6. Lemma 9. For any $m, k \in \mathbb{Z}, m \neq k$, the loops $\theta^{k}(\omega)$ and $\theta^{m}(\omega)$ are not freely homotopic on the surface \mathcal{F}.

Proof. Denote by ν the $\operatorname{loop} \theta^{k}(\omega)$. Then $\theta^{m}(\omega)=\theta^{n}(\omega), n=m-k \neq 0$. Assume that the loops ν and $\theta^{n}(\nu)$ are freely homotopic on \mathcal{F} and that $\mu: S^{1} \times[-1,0] \rightarrow \mathcal{F}$ is the corresponding homotopy. The manifold $\tilde{N}=\mathcal{F} \times[0,1] / \theta^{n}$ is an n-sheeted regular covering of N. Consider the continuous mapping $\tilde{\eta}:[-1,1] \times S^{1} \rightarrow \mathcal{F} \times[0,1]$ such that the restriction of $\tilde{\eta}$ to $[-1,0] \times S^{1}$ coincides with μ and the restriction of $\tilde{\eta}$ to $[0,1]$ is given by the formula $\tilde{\eta}(t, x)=\left(t, \theta^{n} \circ \nu(x)\right)$. It is obvious that $\tilde{\eta}$ projects to a continuous
mapping $\eta: S^{1} \times S^{1} \rightarrow \mathcal{F} \times[0,1] / \theta^{n}=\tilde{N}$. Passing to a covering of \tilde{N} with defining subgroup $\pi_{1}(\mathcal{F})$, we see that the nontriviality of the loop ω implies that the mapping $\eta_{*}: \pi_{1}\left(S^{1} \times S^{1}\right) \rightarrow \tilde{N}$ is injective. Thus $\eta\left(T^{2}\right)$ is an incompressible singular torus in the manifold \tilde{N}.

We now lift the tori \mathcal{T}_{i} to tori $\tilde{\mathscr{T}}_{i} \subset \tilde{N}, i=1,2,3$. Each component of $\tilde{N} \backslash\left(\tilde{\mathcal{T}}_{1} \cup \tilde{\mathfrak{T}}_{2} \cup \tilde{\mathcal{T}}_{3}\right)$, is an n-sheeted covering of one of the hyperbolic manifolds $N \backslash\left(\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \mathcal{T}_{3}\right)$, and is therefore itself hyperbolic and atoroidal. Consequently $\tilde{\mathcal{T}}=\tilde{\mathcal{T}}_{1} \cup \tilde{\mathcal{T}}_{2} \cup \tilde{\mathfrak{T}}_{3}$ defines a "canonical system of tori" of the manifold \tilde{N} (cf. [23]). Thus the components of a regular neighborhood \mathfrak{X} of the submanifold $\partial \tilde{N} \cup \tilde{\mathcal{T}}$ are a complete set of characteristic submanifolds of $\tilde{N}[23]$. By the results of [23] the continuous mapping $\eta: T^{2} \rightarrow \tilde{N}$ is homotopic to some mapping $\eta: T^{2} \rightarrow \mathfrak{X}$. It follows from this that the loop $\bar{\nu}=\left.\eta\right|_{\{0\} \times S^{1}}$ is homotopic to a loop ϑ of \mathfrak{X}. Considering the elements $[\bar{\nu}]$ and $[\vartheta] \in \pi_{1}(\tilde{N})$ corresponding to $\bar{\nu}$ and ϑ, we verify that they are conjugate in the group $\pi_{1}(\tilde{N})$. However $[\bar{\nu}]=[\nu] \in \pi_{1}(\mathcal{T} \times\{0\})$ is the fundamental group of the fiber of the bundle \tilde{N} and is normal in $\pi_{1}(\tilde{N}) \subset \pi(N)$.

Consequently $[\vartheta]$ also lies in $\pi_{1}(\mathcal{F}) \subset \pi_{1}(\tilde{N}) \subset \pi(N)$. Thus the loop $\nu \subset \mathcal{F} \subset \tilde{N}$ is freely homotopic to a loop of a regular neighborhood of $\partial \mathcal{F} \cup \alpha_{1} \cup \alpha_{2} \cup \alpha_{3}$, which is impossible by Sec. 6.4. This contradiction proves Lemma 9.
5.7. Proof of assertion (a) of Theorem 2. We choose some element representing a generator of the group G^{\prime} / F^{\prime}, for example $t_{2} \in H_{2}$. By Lemma 9 for any $k \neq m \in \mathbb{Z}$ the elements $t_{2}^{k} u t_{2}^{-k}$ and $t_{2}^{m} u t_{2}^{-m}$ are not conjugate in the group F^{\prime}. However $t_{2}^{m}\langle u\rangle t_{2}^{-m}$ is a maximal parabolic subgroup of G^{\prime} (and hence also of F^{\prime}) for $m \in \mathbf{Z}$. Thus the group F^{\prime}, being a free group of finite rank, contains an infinite number of conjugacy classes of the maximal parabolic subgroups $\left\langle u_{m}\right\rangle=\left\langle t_{2}^{m} u t_{2}^{-m}\right\rangle$. This proves assertion (a).
5.8. Proof of assertion (b) of Theorem 2. The point x is a cusped parabolic point of the group $G^{n} \subset \operatorname{Möb}\left(S^{n}\right)$ for $n \geq 3$. A cusped neighborhood of this point \mathcal{O}_{0}^{n} was constructed in the proof of Lemma 8. Since the elements u_{m} and $u=u_{1}$ are conjugate in G^{\prime}, the point $t_{2}^{m}(x)$ is also cusped and $\mathcal{O}_{m}^{n}=t_{2}^{m}\left(\mathcal{O}_{0}^{n}\right)$ is a cusped neighborhood of it (for the group F^{n}). We denote by $E(n, m)$ the projection of \mathcal{O}_{m}^{n} in the manifold $M\left(F^{n}\right)=\Omega\left(F^{n}\right) / F^{n}$. The manifold $E(n, m)$ is homeomorphic to $S^{n-2} \times S^{1} \times[0, \infty)$, and the closed orientable submanifold $\partial E(n, m)$ in $M\left(F^{n}\right)$ is the boundary of a "parabolic end." If $m \neq k$, the parabolic ends corresponding to $\partial E(n, m)$ and $\partial E(n, k)$ are distinct and the manifold $M\left(F^{n}\right)$ possesses an infinite number of ends. It is easy to see that the system of cycles $\{[\partial E(n, m)], m \in \mathbb{Z}\}$ is linearly independent in $H_{n-1}\left(M\left(F^{n}\right), \mathbf{Z}\right)$. Thus rank $H_{n-1}\left(M\left(F^{n}\right), \mathbf{Z}\right)=\infty$, and Theorem 2 is proved completely.

6. Concluding remarks

6.1. In the theory of discrete subgroups of Lie groups the following theorem of Selberg is well-known [24].

Theorem C. For any finitely generated subgroup Γ in the Lie group G the number of G-conjugacy classes of elements of Γ of finite order is finite.

The following result also holds.
Theorem 3. There exists a sequence of representations $\rho_{n}: F^{\prime} \rightarrow \operatorname{Möb}\left(S^{3}\right)$ that converges to $\rho_{\infty}=\mathrm{id}$ and is such that for all $n, m \in \mathbb{Z}$ the order of the element $\rho_{n}\left(u_{m}\right)$ is finite.

In a subsequent publication we shall show that the elements $\rho_{n}\left(u_{m}\right)$ and $\rho_{n}\left(u_{i}\right)$ are not conjugate in the group $\rho_{n}\left(F^{\prime}\right)$ for any $n \in \mathbf{N}, m, i \in \mathbf{Z}, m \neq i$.

Proof. We denote by $\Sigma_{1}(s)$ the sheaf of spheres tangent to one another at the point p_{1}, where $\Sigma_{1}(0)=\Sigma_{1}$ and $\Sigma_{1}(1)$ is the sphere whose radius is equal to the distance from the center of Σ_{1} to the plane L_{2}. Let $p_{2}(s)$ be the point of $\Sigma_{1}(s)$ closest to the plane L_{2}.

We choose a parabolic transformation ζ_{s} that commutes with the group H_{1} and maps the point p_{2} to the point $p_{2}(s) ; \zeta_{s}(\bar{\Pi})=\bar{\Pi}$. Consider the parabolic element $\beta_{2}(s)=\zeta_{s} \beta_{2} \zeta_{s}^{-1}$. It is easy to see that the isometric spheres $I\left(\beta_{2}(s)\right)$ and $I\left(\beta_{2}^{-1}(s)\right)$ meet L_{2} at equal angles $\varphi(s), \varphi(0)=0, \varphi(1)=\pi / 2, \varphi(s)$ being a continuous function. Let $s(n)$ be a sequence of numbers, $0 \leq s(n) \leq 1$, such that $\varphi(s(n))=\pi / 2 n$. Let $\rho_{n}: \Gamma_{1} \rightarrow \operatorname{Möb}\left(S^{3}\right)$ be the homomorphism defined by the conjugation $\rho_{n}(\gamma)=\zeta_{s(n)} \gamma \zeta_{s(n)}^{-1}$; the restriction of ρ_{n} to Γ_{2}^{\prime} is the identity. By the equality $G_{1}^{\prime}=\Gamma_{1}^{\prime} *_{H_{2}} \Gamma_{2}^{\prime}$ and the fact that $\zeta_{s(n)}$ commutes with the group H_{1}, the mapping $\rho_{n}: G_{1}^{\prime} \rightarrow \operatorname{Möb}\left(S^{3}\right)$ is a homomorphism. We define a mapping $\rho_{n}: G_{2}^{\prime} \rightarrow \operatorname{Möb}\left(S^{3}\right)$ by
the formula $\tau_{2}^{\prime} \rho_{n}\left(\tau_{2}^{\prime} g \tau_{2}^{\prime}\right) \tau_{2}^{\prime}=\rho_{n}(g), g \in G_{2}^{\prime}$. It is obvious that the extension of ρ_{n} to the group G^{\prime} is a homomorphism and that $\lim _{n \rightarrow \infty} \rho_{n}=$ id.

At the same time $\rho_{n}(u)$ is an elliptic element of order $n \in \mathbf{Z}$. Since $u=u_{0}$ and $u_{m} \in G^{\prime}$ are conjugate in G^{\prime}, it follows that $\rho_{n}\left(u_{m}\right)$ is an element of finite order for all $n, m \in \mathbf{Z}$. Thus the sequence of homomorphisms ρ_{n} is the one sought. Theorem 3 is now proved.
6.2. Numerous variant proofs of the Ahlfors finiteness theorem based on topological and other ideas appeared in the mid-80's [25-27].

The idea that a normal subgroup in a geometrically finite group could be a counterexample to Ahlfors' Theorem in dimension 3 occurred to the second author of this paper while working on [15] (taking account of the Jaco-Hempel theorem [7, Theorem 11.1]). The first example was constructed by the authors in a joint paper [28]. As B. I. Apanasov has pointed out to us, a configuration of spheres similar to [28] covering a "trefoil" knot was used in his Theorem 7.21 of [22]. The group constructed in Theorem 7.21 of [22] was a free, geometrically finite group having a wild knot as limit set (cf. also [20, VIII.F]). In the present article the example of [28] has been significantly simplified and the original configuration of 52 spheres has been replaced by the four spheres $\Sigma_{i}, i=1, \ldots, 4$ (Theorem 1). Theorems 2 and 3 are due to the second author.

The authors are grateful to S. L. Krushkal' and N. A. Gusevskii for support and attention in this work.

Literature Cited

1. L. V. Ahlfors, "Finitely generated Kleinian groups," Amer. J. Math., 86, 413-429 (1964); 87, p. 759 (1965).
2. I. Kra, Automorphic Forms and Kleinian Groups, W. A. Benjamin, Reading, Mass. (1972).
3. D. Sullivan, "A finiteness theorem for cusps," Acta Math., 147, 289-294 (1981).
4. L. Ahlfors, Möbius Transformations in a Multidimensional Space [Russian translation], Mir, Moscow (1988).
5. H. Ohtake, "On Ahlfors' weak finiteness theorem," J. Math. Kyoto Univ., 24, 725-740 (1984).
6. S. L. Krushkal', B. N. Apanasov, and N. A. Gusevskii, Kleinian Groups and Uniformization in Examples and Problems, American Mathematical Society, Providence (1986).
7. J. Hempel, 3-Manifolds, Princeton University Press (1976).
8. W. Thurston, Geometry and Topology of 3-Manifolds, Princeton University Lecture Notes (1978).
9. W. Abikoff, The Real-analytic Theory of Teichmüller spaces, Springer, New York (1980).
10. D. Rolfsen, Knots and Links, Publish or Perish, Berkeley, Calif. (1976).
11. P. Scott, "Subgroups of surface groups are almost geometric," J. London Math. Soc., 17, 555-565 (1978); 32, 217-220 (1985).
12. A. I. Mal'tsev, "On faithful representations of infinite groups by matrices," Mat. Sb., 8, No. 50, 405-422 (1940).
13. B. Maskit, "On the Klein combination theorem. III," in: Advances in the Theory of Riemann Surfaces, Princeton University Press (1971), pp. 297-310.
14. D. Ivascu, "On the Klein-Maskit combination theorem," in: Romanian-Finnish Seminar on Complex Analysis (Lecture Notes Math., No. 743), Springer, New York, (1976), pp. 115-124.
15. L. D. Potyagailo, "Kleinian groups in a space isomorphic to the fundamental groups of Haken manifolds," Dokl. Akad. Nauk SSSR, 303, No. 1, 43-46 (1988).
16. A. Marden, "The geometry of finitely generated Kleinian groups," Ann. Math., 99, 383-462 (1974).
17. A. F. Beardon and B. Maskit, "Limit points of Kleinian groups and finite-sided fundamental polyhedra," Acta Math., 132, 1-12 (1974).
18. M. A. Armstrong, "The fundamental group of the orbit space of a discontinuous group," Proc. Camb. Phil. Soc., 64, 299-301 (1968).
19. B. Newmann, "Some remarks on infinite groups," J. London Math. Soc., 12, 120-127 (1937).
20. B. Maskit, Kleinian groups, Springer, New York (1988).
21. E. B. Vinberg and O. V. Shvartsman, "Discrete groups of motions of spaces of constant curvature," Itogi Nauki i Tekhniki, Ser. Sovrem. Probl. Matem. Fundam. Napravl., No. 29, 147-260, VINITI, Moscow (1988).
22. B. N. Apanasov, Discrete Groups of Transformations and Structure of Manifolds [in Russian], Nauka, Novosibirsk (1983).
23. W. Jaco and P. Shalen, "Seifert fibered spaces in 3-manifolds," Mem. Amer. Math. Soc., No. 220 (1979).
24. A. Selberg. "On discontinuous groups in higher-dimensional symmetric spaces," in: Contrib. to Funct. Theory, Tata Inst., Bombay (1960), pp. 147-156.
25. W. Abikoff, "The Euler characteristic and inequalities for Kleinian groups," Proc. Amer. Math. Soc., 97, 593-601 (1986).
26. L. Bers, "On Sullivan's proof of the finiteness theorem and the eventual periodicity theorem," Amer. J. Math., 109, 833-852 (1987).
27. R. S. Kulkarni and P. B. Shalen, "On Ahlfors' finiteness theorem," Preprint, Max Planck Inst., No. 84-67 (1984).
28. M. E. Kapovich and L. D. Potyagailo, "On the absence of Ahlfors' finiteness theorem for Kleinian groups in dimension 3," Proceedings of the Conference of Young Scholars, Tula, Jan. 1988.
