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Flats in 3-manifolds(∗)

Michael Kapovich(1)

ABSTRACT. — We prove that if a closed aspherical Riemannian 3-manifold
M contains a 2-flat, then there exists a free abelian subgroup of rank two
in π1(M). Under some restrictions on the topology of M we prove the
existence of an immersed incompressible flat torus in M . This generalizes
results which were previously known for manifolds of nonpositive curva-
ture.

RÉSUMÉ. — Nous prouvons que si une variété riemannienne fermée de
dimension trois M contient un 2-plat, alors il existe un sous-groupe abélien
libre de rang 2 dans π1(M). Sous certaines restrictions sur la topologie de
M , nous prouvons l’existence d’un tore plat incompressible dans M . Ceci
généralise des résultats connus au préalable pour des variétés de courbure
non positive.

1. Introduction

In this paper we address the following conjecture which is a special case
of Thurston’s Geometrization Conjecture:

Conjecture 1.1 (Weak Hyperbolization Conjecture). — Suppose that
M is a closed aspherical 3-manifold. Then either π1(M) contains Z × Z or
π1(M) is word-hyperbolic.

Note that according to the results [M1], [Tu], [Ga1], [CJ], [Sco] and [T],
Thurston’s Geometrization Conjecture is satisfied for any closed irreducible
3-manifold M whose fundamental group contains Z × Z. Such manifold is

(∗) Reçu le 2 septembre 2003, accepté le 10 janvier 2005
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either Haken or Seifert. On the other hand, if Γ = π1(M) is word-hyperbolic
then the ideal boundary ∂∞Γ is a 2-dimensional sphere S

2 (see [BM]). In
the latter case, conjecturally, the ideal boundary of Γ is quasi-symmetric to
the standard 2-sphere (see [Ca], [CS], [BK1], [BK2]). If this is true, then Γ
is isomorphic to a uniform lattice in SO(3, 1) and hence M is homotopy-
equivalent to a closed hyperbolic manifoldN . In the latter case the manifolds
M and N are homeomorphic (see [Ga3]).

It is well-known that failure of a finitely-presented group Γ = π1(M)
to be word-hyperbolic means that Γ does not have linear isoperimetric in-
equality. Moreover, according to Gromov ([Gro2], Assertion 6.8.S), π1(M)
is word-hyperbolic iff there is no nonconstant conformal least area map
f : R

2 →M . Stronger versions of this statement are proven in the works of
Mosher & Oertel [MO], Gabai [Ga2] and Kleiner [Kl].

Thus, nonhyperbolicity of Γ implies the existence of a certain minimal
surface S in M . In this paper we will prove Conjecture 1.1 under the as-
sumption that S is a flat, Theorem 1.2.

Theorem 1.2. — Suppose that M is a closed aspherical Riemannian
3-manifold which contains a flat. Then π1(M) contains Z

2.

Interesting intermediate case between Theorem 1.2 and Conjecture 1.1
is when the universal cover of the manifold M contains a quasi-flat. Note
however that the universal cover of any Sol-manifold does not contain quasi-
flats since its asymptotic cone is 1-dimensional [Gro3].

It would be interesting to know if the manifold M in Theorem 1.2 con-
tains an immersed flat incompressible torus. In Section 13 we prove that
such torus exists under the assumption that the canonical decomposition of
M contains no Seifert components, Theorem 13.1.

Remark 1.3. — A major progress towards the Geometrization Conjec-
ture was made in the recent work of G. Perelman on the Ricci flow. Despite
of this, the author hopes that the ideas and methods of the present paper
could be useful for analyzing 3-dimensional Poincaré duality groups and
higher-dimensional aspherical manifolds.

Acknowledgements. — I am grateful to David Gabai, Bruce Kleiner,
Geoff Mess and Lee Mosher for interesting discussions. This research was
partially supported by NSF grants DMS-02-03045 and DMS-04-05180.
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2. Weak Hyperbolization Conjecture

In this section we describe several cases when the Weak Hyperbolization
Conjecture is proven. Our first example is given by 3-manifolds of nonposi-
tive curvature.

IfM is a manifold then M̃ will always denote the universal cover ofM . A
k-flat in a Riemannian manifold M is an isometric immersion
f : R

k → M so that the lift f̃ : R
k → M̃ is an isometric embedding

(i.e. d(x, y) = d(f̃(x), f̃(y))). Abusing notations we will call by k-flat the
image of a k-flat as well. 2-flats will be called flats. The image of a k-flat
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F = f̃(Rk) is totally-geodesic in M̃ , i.e. for any points x, y ∈ F the minimiz-
ing geodesic connecting x and y is in F . If f̃ : R

2 → M̃ is a quasi-isometric
embedding then the image of f̃ is called a quasi-flat. We refer the reader to
[He1] for basic definitions of 3-dimensional topology.

We recall the following results:

Theorem 2.1 (P. Eberlein [E]). — Suppose that M is a closed n-mani-
fold of nonpositive curvature. Then either M contains a flat or π1(M) is a
word-hyperbolic group.

Remark 2.2. — Hyperbolicity of the fundamental group was disguised
in [E] as the “visibility” axiom. See [Gro2], [BH] for the case of general
CAT (0)-metrics.

Theorem 2.3 (V. Schroeder [Sc]). — Suppose that M is a n-manifold
of nonpositive curvature and finite volume which contains a codimension 1
flat. Then M contains a compact (n−1)-flat. (In particular π1(M) contains
Z
n−1.)

In the case of closed 3-manifolds of nonpositive curvature this theorem
was first proven by S. Buyalo [B], see also [KK2] for a generalization of this
result to CAT (0) Poincaré duality groups. The present paper was motivated
by the proofs of Schroeder and Buyalo.

Corollary 2.4. — Suppose that M is a closed 3-manifold of nonposi-
tive curvature. Then M satisfies the Weak Hyperbolization Conjecture.

Theorem 2.5 (M. Kapovich and B. Leeb [KL]). — Suppose that N is a
closed Haken 3-manifold with nontrivial decomposition into geometric com-
ponents and G is a torsion-free finitely-generated group quasi-isometric to
π1(N). Then G is isomorphic to fundamental group of a Haken 3-manifold.

Corollary 2.6. — Suppose that N is a manifold satisfying the Weak
Hyperbolization Conjecture and N is not a Sol-manifold. If M is a closed
3-manifold with fundamental group quasi-isometric to π1(N), then M itself
satisfies the Weak Hyperbolization Conjecture.

This corollary shows that the Weak Hyperbolization Conjecture is a
problem about some large-scale geometric properties of 3-manifold groups.

The deepest result in the direction of Thurston’s Geometrization Con-
jecture is due to Thurston:
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Theorem 2.7 (W. Thurston [T], see also [Mor], [Mc], [O], [K]). — Sup-
pose that M is a Haken manifold. Then either π1(M) contains Z

2 or M is
hyperbolic.

Corollary 2.8. — Suppose thatM is finitely covered by a Haken man-
ifold (i.e. M is “almost Haken”). Then either π1(M) contains Z

2 or π1(M)
is word hyperbolic.

Note that in the last case M̃ can not contain quasi-flats. Hence the
assertion of Theorem 1.2 is satisfied for all almost Haken manifolds.

Theorem 2.9 (G. Mess [M1]). — Suppose that M is a closed aspherical
3-manifold such that π1(M) contains an infinite cyclic normal subgroup.
Then π1(M) contains Z

2.

Note that if the manifold M in Theorem 2.9 is irreducible then it must
be a Seifert manifold (D. Gabai [Ga1], A. Casson & D. Jungreis [CJ]). If M
is Haken then the assertion was first proven by Waldhausen, see [He1]. In
our paper we will rely heavily on Theorems 2.7 and 2.9.

3. Outline of the proof

Notation. — We say that f(x) = O(x) if

0 < lim inf
x→∞

f(x)/x � lim sup
x→∞

f(x)/x <∞

Similarly f(x) = o(x) if
lim
x→∞

f(x)/x = 0

The proof of Theorem 1.2 splits in three main cases:

Case I: the universal cover X = M̃ contains a “simple flat” F , i.e. a flat
which does not intersect any other flats in the orbit ΓF (but F can have a
nontrivial stabilizer).

Case II: the space X has no simple flats but contains a flat F with
“double intersections”, i.e. for any g, h ∈ Γ we have: F ∩ gF ∩ hF is not a
point.

Case III (the case of “triple intersections”): the space X contains nei-
ther simple flats nor flats with double intersections.
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We begin outline with the most interesting Case III. We first find a pair
of flats F1, F2 whose intersection is a recurrent geodesic �. Using Theorem
2.7 we conclude that unless Γ contains Z

2 or X contains a simple flat, the
path-connected component L of F1 in ΓF1 is the whole orbit ΓF1 (to achieve
this one may have to take a finite covering over M). Thus we assume the
latter to be the case. Using parallel transport along flats we construct a
“holonomy” representation ρ of Γ into SO(3). If this representation has
finite image then the family of lines parallel to � in L is invariant under
Ker(ρ) and the discussion is similar to the Case II. If ρ(Γ) has an invariant
line and is infinite then a 2-fold cover overM has nonzero 1-st Betty number
and the manifold M is homotopy-equivalent to an almost Haken manifold.
Hence, in this case Theorem 1.2 follows from Thurston’s Hyperbolization
Theorem 2.7. Thus we can assume that ρ(Γ) is dense in SO(3). In particular
this implies that the group Γ is not amenable.

Remark 3.1. — Instead of proving first that Γ is not amenable one can
use a Varopoulos’ theorem (as it is done in [KK1]) to conclude in Case III
that π1(M) has polynomial growth.

We use recurrence of the geodesic � to construct a family of “double
simplices” Dn in X. Roughly speaking each Dn is the union of two adjacent
simplices in X which have flat faces. We prove that the inscribed radii
ιDn

of Dn tend to infinity at the same rate as edges of the corresponding
simplices. The area of ∂Dn grows as O(ι2Dn

). Since Γ is not amenable the
growth rate of V ol(Dn) is again O(ι2Dn

). This implies that the largest metric
ball inscribed in Dn has radius ιDn and the volume at most O(ι2Dn

). Hence
Γ has polynomial growth which contradicts the fact that this group is not
amenable.

Remark 3.2. — It seems (however I cannot prove this statement) that
more general set-up for the above argument is as follows. Suppose thatM is
a closed aspherical 3-manifold. Let Xω be an asymptotic cone of X, assume
that H2(Y,Z) �= 0 for some compact Y ⊂ Xω (where we consider singular
homology theory). Then the fundamental group π1(M) is amenable. Indeed,
in the Case III the sequence ∂Dn produces an embedded simplicial 2-sphere
in Xω.

Now consider the Case II. In this case we repeat the construction of flats
F1, F2 so that � = F1 ∩F2 is recurrent. Again we can assume that the orbit
L = ΓF1 is path-connected. Then L is foliated by lines which are “parallel”
to � and our goal is to show that this Γ-invariant foliation corresponds to
the universal cover of a Seifert fibration of M .
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We add to L the Γ-orbit of the flat F2 and call the closure L. The space
L with the induced path metric fibers over a metric space Y with the fibers
parallel to �. We pass to an index 2 subgroup in Γ to guarantee that Γ
preserves orientation of fibers of L. Zassenhaus theorem implies that if G is
a Lie group which fits into the exact sequence

1 → R → G→ P → 1

and ∆ is a discrete finitely-generated subgroup of G then either the projec-
tion of ∆ to P is discrete or ∆ has an infinite normal cyclic subgroup. We
generalize this fact to the case of the fibration L → Y . The group Γ does
not act discretely on Y since the geodesic � is recurrent. We conclude that
the group Γ has a nontrivial center. Thus Γ contains Z

2 according to Geoff
Mess’s Theorem 2.9.

Finally we discuss the Case I. We present two different proofs. One of
them is a straight-forward application of the Rips Machine, another is more
geometric and follows arguments of Buyalo and Schroeder.

The first proof is quite general and works for higher-dimensional man-
ifolds as well. Consider the closure L̄ of the Γ-orbit of a simple flat F . It
projects to a lamination onM which admits a transversal-invariant measure
since each leaf is amenable ([P1], [MO]). Thus the topological tree T dual
to L̄ is a metric tree and the group Γ acts on T by isometries. Therefore
application of the Rips Machine to T will produce a simplicial Γ-tree R(T )
where edge-stabilizers are discrete subgroups of Isom(R2). Hence Γ contains
Z

2. (Mosher and Oertel have very similar proof for laminations L̄/Γ of zero
Euler characteristic, our proof was motivated by their approach.)

The second (geometric) proof goes as follows. We assume first that all
simple flats in X have trivial stabilizers in Γ. We use Schroeder’s trick to
conclude that the dual tree T to the lamination L̄ is a real line which implies
that Γ is abelian. Thus, there must be a simple flat F in X with nontrivial
stabilizer. We assume that this stabilizer is a cyclic group 〈γ〉. Denote by
G the maximal subgroup of Γ whose elements commute with 〈γ〉 (a priori
it could be an infinitely generated locally cyclic group). Denote by L̄F the
closure of the G-orbit of F . We use Schroeder’s arguments to prove that
the quotient L̄F /G is compact. Still this does not imply a priori that G is
finitely generated since L̄F is highly disconnected. However we prove that
G has a finitely-generated subgroup G0 ⊃ 〈γ〉 whose Cayley graph contains
a quasi-flat (Lemma 6.6). Hence this subgroup is not Z and has infinite
center. Therefore it must contain Z

2 by the Mess’s theorem as in the Case
II.
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4. Amenability

Recall that a finitely-generated group G acting cocompactly on a Rie-
mannian manifold X is amenable if X contains an exhausting Folner se-
quence of codimension zero compact submanifolds Φn with piecewise-smooth
boundary. This means that

lim
n→∞

Area(∂Φn)/V ol(Φn) = 0

Examples of amenable and nonamenable groups:

(a) Any group which contains a free nonabelian subgroup is nonamenable.

(b) Any virtually solvable group is amenable.

(c) If G is a finitely-generated amenable subgroup of a linear group then
G is almost solvable. (This follows directly from the Tits’s alternative.)

(d) The class of amenable groups is closed under the operations of taking
subgroups, direct limits, quotients and extensions.

All known examples of finitely presented amenable groups are elemen-
tary, i.e. they are built from finite and cyclic groups via operations (d).
R. Grigorchuk [Gri] constructed examples of finitely generated amenable
groups which are not elementary.

Lemma 4.1. — Suppose that M is a closed 3-manifold with amenable
fundamental group. Then any 2-generated subgroup F of π1(M) is either
abelian or has finite index in π1(M).

Proof. — If the index of F is infinite then M̃/F is a noncompact man-
ifold. If F is freely decomposable then F is not amenable. Otherwise it is
either cyclic or the compact core of M̃/F is a Haken manifold which implies
that F contains Z ∗ Z or Z ⊕ Z. �

It is easy to see that all elementary amenable 3-manifold groups are
almost solvable.

G. Mess [M2] proved that if the fundamental group of a closed 3-manifold
M contains no free nonabelian subgroups then either π1(M) is almost solv-
able or it contains a simple finite-index subgroup.
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Note that a particular case of Conjecture 1.1 is that any closed 3-
manifold with amenable fundamental group has almost solvable fundamen-
tal group. However it is still unknown if a group quasi-isometric to Sol is
almost solvable.

5. Geometric constraints

Let X be the universal cover of the compact Riemannian 3-manifoldM ,
through the whole paper we shall denote by 〈, 〉 the Riemannian metric on
X. Propositions in this section follow directly from the compactness of M
and we omit their proofs.

Suppose that F1, F2, F
′
1, F

′
2 are flats inX so that F1∩F2 = �, F ′

1∩F ′
2 = �′

are geodesics with the dihedral angles α, α′ �= 0.

Proposition 5.1. — There are continuous functions θ(α, α′), κ(α, α′, t)
such that:

(i) If x ∈ �, x′ ∈ �′ are points within the distance at most θ(α, α′) then
there is y ∈ (F1 ∪ F2) ∩ (F ′

1 ∪ F ′
2) such that d(x, y) � κ(α, α′, d(x, x′)).

(ii) limt→0 κ(α, α′, t) = 0.

Proposition 5.2 (Cf. [Sc], Sublemma 2). — There exists ε > 0 with
the following property:

Suppose that F1, F2 are flats in X with empty intersection, x ∈ F1,
d(x, F2) < ε. Let c : [0, a] → X be the unit speed minimal geodesic from x
to F2 so that c(0) = x and Nx be the unit normal vector to F at x with the
angle

∠(Nx, c′(0)) < π/2

Then
∠(Nx, c′(0)) < π/4

and the geodesic ray emanating from x in the direction Nx intersects the
flat F2 at the arc-length distance at most δ, where δ is the injectivity radius
of M .

Proposition 5.3. — There exist λ > 0 and a continuous function u(x, y)
so that for any ξ > 0 the following is true. Pick any complete geodesic l ⊂ X,
flat F , point z ∈ F such that d(z, l) � λ and w ∈ l is the nearest point to z.
Connect w and z by the shortest geodesic segment I and let ν be the parallel
transport along I of a unit normal vector to F at the point z. Let εw be the
unit tangent vector to l emanating from w. Suppose that |∠(ν, εw)−π/2| > ξ.
Then the flat F intersects l in a point y such that d(z, y) � u(λ, ξ).
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6. Some facts about dynamical systems

6.1. Recurrent points

Suppose that X is a compact topological metric space. Let G be an
infinite topological semigroup acting on X. We recall that a point x ∈ X is
called recurrent if there exists a divergent sequence gn ∈ G such that

lim
n→∞

gn(x) = x

Lemma 6.1. — Under the conditions above for any point z ∈ X the
closure of the orbit G · z contains a recurrent point.

Proof. — Consider the orbit G · z and its accumulation set Z1 = Λ(z),
which is closed and therefore compact. If the point z is not a recurrent point
itself then G · z − Λ(z) is nonempty. Pick a point z1 ∈ Z1 and repeat the
procedure. If z1 is not recurrent then the set Z2 = Λ(z1) is a proper subset in
G·z1. By repeating this process we get a decreasing sequence of compact sets
Zj such that each Zj is contained in Λ(z). If the process does not terminate
after a finite number of steps we take the intersection Zω = ∩∞

j=1Zj . This
intersection must be nonempty since all the sets are compact. Continue the
process. As the result we get a decreasing sequence of compact subsets Zj
where the index j runs over the ordinals. On each finite step the sets under
consideration loose at least one point, the original set has the cardinality
of at most continuum. Thus the process must terminate after at most a
continuum of steps. �

Suppose thatM is a closed Riemannian manifold, F (M) is the orthonor-
mal frame bundle of M . We define the geodesic flow on F (M) as follows.
Points of F (M) are pairs: (x, f) where x ∈M and f is an orthonormal frame
in Tx(M). Choose the first vector f1 in the frame f and let γ(t) = expx(tf1)
be the geodesic emanating from x tangent to f1. Let Gt(x, f) be the par-
allel transport of (x, f) along the geodesic γ to the point γ(t). We call the
R-action on F (M)

(t, (x, f)) �→ Gt(f)

the geodesic flow on F (M). It is clear that this action is continuous.

Thus, Lemma 6.1 implies the following

Corollary 6.2. — For any point z = (x, f) ∈ F (M) the accumulation
set of the orbit Gt(z) (t ∈ R+) contains a recurrent point of the geodesic
flow.
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Suppose that (x, f) is a recurrent point in M , consider the geodesic
γ ∈M

γ = {expx(tf1), t ∈ R}

The geodesic γ as well as its lifts to the universal cover M̃ will be also
called recurrent. Note that if M ′ →M is a finite covering, then the lift of a
recurrent geodesic from M to M ′ is again recurrent.

6.2. Groups acting on R

Theorem 6.3 (O. Hölder-J. Plante, [P2]). — Suppose that Γ is a group
of homeomorphisms of R acting freely. Then Γ is abelian.

Proof. — We recall idea of the proof. Pick a point x ∈ R. Then the orbit
Γ · x is a set with an Archimedean linear order. Since the action of Γ is free
this linear order does not depend on choice of the point x. Therefore we
get an invariant Archimedean linear order on the group Γ. Then a theorem
of Holder implies that Γ has a monomorphism into R, hence Γ is abelian.
�

Corollary 6.4. — Suppose that L is a (topological) foliation of a com-
pact 3-manifold M so that its lift to the universal cover of M consists of
topological planes. Assume that M �= S1 × S1 × S1. Then at least one leaf
of L is not simply-connected.

Proof. — Consider the action of Γ = π1(M) on the universal cover M̃ .
This action preserves the foliation L̃ of M̃ by planes. The real line R is
dual to the foliation L̃, thus Γ acts on R by homeomorphisms. If L has only
simply-connected leaves then Γ is abelian. Hence G ∼= Z

3 and since M̃ is
irreducible this implies that M = S1 × S1 × S1. �

6.3. Quasi-isometries and proper pairs

Let (Xj , dj) (j = 1, 2) be a pair of metric spaces. We recall that a map
f : (X1, d1) → (X2, d2) is a quasi-isometric embedding if there are two
constants K > 0 and C such that

K−1d1(x, y) − C � d2(f(x), f(y)) � Kd1(x, y) + C

for each x, y ∈ X1. If (X1, d1) is the Euclidean plane R
2 then f above (and

its image) is called a quasi-flat in X2.

– 469 –



Michael Kapovich

A map f1 : (X1, d1) → (X2, d2) is a quasi-isometry if there are two
constants C1, C2 and another map f2 : (X2, d2) → (X1, d1) such that both
f1, f2 are quasi-isometric embeddings and

d1(f2f1(x), x) � C1, d2(f1f2(y), y) � C2

for every x ∈ X1, y ∈ X2. Such spaces X1, X2 are called quasi-isometric.
For example, two metric spaces which admit cocompact discrete actions by
isometries of the same group are quasi-isometric.

The Cayley graph of a finitely generated group Γ with a fixed finite set
of generators carries a canonical metric which is called the word metric. The
quasi-isometry class of the word metric does not depend on the generating
set.

Suppose that X is the universal cover of a closed Riemannian manifold
M , Γ is the group of covering transformations. Suppose that E ⊂ X, G is a
subgroup in Γ so that G(E) = E. We say that gnE accumulates to a point
x ∈ X if for some sequence xn ∈ E, limn→∞ gn(xn) = x.

We call a pair (E,G) proper if the sequence of sets {gE : g ∈ G} is
locally finite in X. This means that for any infinite sequence {gn} ⊂ Γ such
that gnE accumulates to a point x ∈ X it follows that there exists γ ∈ Γ
and a subsequence {gnk

} ⊂ {gn} so that x ∈ γcl(E) and gnk
∈ γG. Note

that if G has finite index in Γ, the (E,G) is a proper pair.

Proposition 6.5. — For any proper pair (E,G) the quotient cl(E)/G
is compact.

Proof. — Suppose that xn ∈ E is a sequence of points. Since M is com-
pact there exists a sequence gn ∈ Γ so that gnxn → x ∈ X. By definition of
a proper pair gnk

splits as γ ◦ γnk
where γnk

∈ G. Therefore

lim
k→∞

γnk
xnk

= γ−1x

This implies compactness of cl(E)/G. �

We suppose that E is a closed subset in X invariant under a subgroup
G < Γ so that the pair (E,G) is proper. Assume that E is the union of flats
(which are not necessarily disjoint).

Lemma 6.6. — There exists a finitely-generated subgroup G0 < G such
that a Cayley graph of G0 contains a quasi-flat. In the case when E is path-
connected we can take G = G0.
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Proof. — The problem is that E is not a geodesic metric space with the
metric induced from X, otherwise the assertion would follow from [Gh],
Proposition 10.9. Thus we have to thicken up the space E to a geodesic
metric space. Choose sufficiently small number σ > 0 which is less than the
half of the injectivity radius of M . The compact E/G is covered by a finite
number of open σ-balls Bj with centers at points on E/G, denote the union
of these balls by Vσ(E)/G. It is a manifold which has only a finite number
of connected components. Pick one of these components V0. A connected
component U0 of the lift of V0 to X has the stabilizer G0 < G so that
U0/G0 = V0. The intersection L0 = U0 ∩ E/G is closed in E/G and thus
compact. Note that in the case of connected E we get G = G0. Introduce in
U0 the path-metric dP via the Riemannian metric onX. This metric projects
to a path metric on V0 so that the diameter of V0 is bounded. Consider the
completion Ū0 of U0 with respect to this metric. The group G0 still operates
on Ū0 by isometries and this action is properly discontinuous. Let B̃j ⊂ U0

be a lift of one of the σ-balls which cover E/G. Then the closure clB̃j of B̃j
is isometric to closure of the ball Bj in M . On the other hand each point of
Ū0 belongs to one of the closed balls clB̃j which is compact. Then finiteness
of the number of balls Bj implies that Ū0/G0 is compact with respect to the
topology defined by the path-metric dP . By construction (U0, dP ) is a quasi-
geodesic metric space, thus the same is true for its completion. Hence we
can apply [Gh], Proposition 10.9, to conclude that G0 is finitely generated.
The compactness of Ū0/G0 implies that Ū0 is quasi-isometric to a Cayley
graph of G0. Note however that U0 must contain one of the flats in E. This
flat remains a flat in (U0, dP ), since dP � d where d is the original metric
on X. It implies that the Cayley graph of G0 contains a quasi-flat. �

Corollary 6.7. — The group G under the conditions above is not word-
hyperbolic and is not locally cyclic.

Proof. — Cayley graphs of word-hyperbolic groups do not contain quasi-
flats. If G is locally cyclic then G0 is cyclic and hence word-hyperbolic. This
contradicts the existence of a quasi-flat in a Cayley graph of G0. �

7. Inscribed radius

Suppose that X is a metric space, z ∈ X,S ⊂ X be a point and a subset.
We define the distance d(z, S) from z to S as

inf
x∈S

d(z, x)
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Define the inscribed radius ιS of S as

ιS = sup{r : Br(x) ⊂ S, for some point x ∈ S}

where Br(x) is the metric ball of radius r with the center at x. We shall
denote by Sr(x) the metric sphere of radius r with the center at x.

Suppose now that X = M̃ is a simply-connected complete Riemannian
3-manifold, O ∈ M̃ , Π is a flat which contains O. This flat separates M̃
into “left” and “right” sides (otherwise H1(X,Z) �= 0). Denote by Π+ the
right side. Consider a sequence of metric balls Br(O), r → ∞. Boundary of
the ball Br(O) is the metric sphere Sr(O). Define S+

r to be (Π+ ∩Sr(O))∪
(Π ∩ Br(O)). (The set S+

r looks like a metric hemisphere with a flat disc
attached to the equator.)

Lemma 7.1. — In the “right half” B+
r (O) = Π+ ∩ Br(O) of each ball

Br(O) we can choose a point xr such that

d(xr , S+
r ) = O(r)

Thus ιB+
r (O) = O(r).

Proof. — For each r consider the “metric hemisphere” Π+ ∩ Sr/2(O) =
Σr. Clearly for every x ∈ Σr we have

r � d(x, Sr(O)) � r/2

Now suppose that

φ(r) = max
x∈Σr

d(x,Π ∩Br(O)) = o(r)

The hemisphere Σr is a singular chain in C2(B+
r (O),Z) with the boundary

equal to the circle �r with center at O and radius r/2. This circle is a non-
trivial element of the homology group H1(Π−O,Z). Triangulate this chain
so that size of each simplex is at most 1. We construct a continuous map
f = fr : Σr → Π ∩Br(O) as follows. For each vertex x of the triangulation
we let f(x) be the nearest-point projection of x to Π ∩ Br(O). Extend the
map f to a piecewise-linear map of the cycle Σr. It is clear that [f(�r)] = [�r]
in H1(Π−O,Z). Moreover, for each x ∈ Σr we have: d(x, f(x)) � 2φ(r)+1.
For sufficiently large r we have: 2φ(r) + 1 � r/4. Therefore O does not
belong to the image of f . However the chain f(Σr) bounds the nontrivial
cycle f(�r) in Π −O. Contradiction. �

Remark 7.2. — Our proof actually shows that xr can be chosen so that

d(xr , S+
r ) � r/8 − 1/2
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8. Riemannian simplices

Suppose that N is a compact domain in a Riemannian 3-manifold X so
that N has piecewise-smooth boundary which is combinatorially equivalent
to the boundary of a Euclidean 3-simplex. We assume that N is contractible
and the boundary of N is a collection of absolutely totally-geodesic flat faces
Fj , j = 1, . . . , 4. Under these conditions N will be called a Riemannian
simplex. We do not assume that N is homeomorphic to a 3-ball (it would
follow from the Poincaré Conjecture).

Now consider a sequence of Riemannian simplices Nr such that:

as r → ∞ the lengths of all edges of Nr grow as O(r).

By triangle inequalities, for each r there exists a Euclidean 3-simplex ∆r

in R
3 so that faces of ∆r are isometric to the corresponding faces of Nr ,

we choose a homeomorphism hr = h : ∂Nr → ∂∆r which is an isometry on
each face. We can assume that one of the vertices of ∆r is the origin 0 ∈ R

3.
Denote the rest of the vertices by A1r , A2r , A3r . Let Bjr = h−1(Ajr),
B0r = h−1(0).

We call the sequence of simplices ∆rn
nondegenerate if for any sequence

0 < ρn < rn and any subsequence in rn, the Gromov-Hausdorff limit of the
rescaled tetrahedra Qrn

= 1
ρn

∆rn
is not contained in a Euclidean plane. It

is easy to see that this property depends only on the vertex angles of ∆r .
Namely, for any vertex Aj with the planar angles xr , yr , zr at this vertex
we have:

lim
r→∞

xr + yr + zr �= 2π , lim
r→∞

xr + yr − zr �= 0

for any subsequence.

Suppose that Yr is a sequence of points on the edges [B0r, B1r] so that
d(Yr, B0r) = O(ρ(r)) where 0 < ρ(r) < r is a function of r. Let F1r =
[B0r , B2r , B3r] be the face opposite to B1r.

Lemma 8.1. — Under the conditions above d(Yr , F1r) = O(ρ(r)) as
r → ∞.

Proof. — Suppose that the assertion is wrong, Er is a nearest point to Yr
on the face F1 and d(Yr, Er) = o(ρ). Then |d(B0r, Er)− d(B0r, Yr)| = o(ρ),
d(B0r, Er) = O(ρ). It implies that we can choose points C2r ∈ [B0r, B2r],
C3r ∈ [B0r, B3r] so that Er is contained inside of the triangle [B0r, C2r, C3r]
and d(B0r, C2r) = O(ρ), d(B0r, C2r) = O(ρ). Similarly we get |d(Yr, Cjr) −
d(Cr, Er)| = o(ρ).
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E

B2

B1

B0

B3

C3

C2

Figure 1

The sequence of rescaled simplices ρ−1∆r subconverges either to a non-
degenerate simplex (if ρ = O(r)) or to an infinite tetrahedral cone with
the vertex at zero. The points ρ−1hCjr , ρ

−1hYr , ρ
−1hEr are convergent to

points Ĉj , Ŷ , Ê on the boundary of this cone (or simplex), j = 2, 3; so that

d(Ŷ , Ĉj) = d(Ê, Ĉj), d(Ŷ , 0) = d(Ê, 0)

This implies that the point Ŷ actually belongs to the same plane P as the
points 0, Ĉ2, Ĉ3. On the other hand Ŷ �= 0 and belongs to an edge of

lim
r→∞

ρ−1∆r

which is not on P since the sequence of simplices is not degenerate. Con-
tradiction. �
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Now we choose two sequences of Riemannian simplices Nr′ , Nr′′ ⊂ X so
that each sequence is nondegenerate and edges of Nr′ , Nr′′ are O(r′), O(r′′)
respectively. We denote the vertices by Bjr′ and Bjr′′ . Assume that these
simplices are embedded in X so that:

• The vertex B0r′ is identified with B0r′′ and subsegments of the edges
[B0r′ , B2r′ ], [B0r′′ , B2r′′ ] and [B0r′ , B3r′ ], [B0r′′ , B3r′′ ] are glued to-
gether.

• The faces F3r′ , F3r′′ belong to the same flat in X.

• The interiors of simplices are disjoint.

B1r’

B3r’

B2r’

B3r"

B1r"

B2r"

B0r’=B0r"

Y

Yr’

Figure 2

The union Nr′ ∪Nr′′ = D is called a double simplex.

Theorem 8.2. — If r′′ = O(r′) then the inscribed radius of D is O(r′).

Proof. — Pick a point Yr′ ∈ [B0r′ , B2r′ ] so that d(Yr′ , B0r′) = O(r′),
d(Yr′ , B2r′) = O(r′). Then d(Yr′ , F0r′′) � O(r′), d(Yr′ , F0r′) = O(r′),
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d(Yr′ , F2r′) = O(r′), d(Yr′ , F2r′′) � O(r′). It implies that a half-ball B+

of radius O(r′) with center at Yr′ is contained in D. Therefore according to
Lemma 7.1 the inscribed radius of B+ ⊂ D is at least O(r′). �

Remark 8.3. — The assertion of Theorem fails if instead of a double
simplex we consider an ordinary simplex. As a degenerate example of this
possibility consider a regular Euclidean 3-simplex Σ, let P be the center of
Σ. Now let N be the cone with the vertex P over the 1-dimensional skeleton
Σ1 of Σ. This is a degenerate simplex whose faces are cones over triangles
in Σ1. We give each face of N a path-metric isometric to the metric on a
regular Euclidean triangle. Then the inscribed radius of N is zero. Such
examples appear as ultralimits of sequences of nondegenerate Riemannian
3-simplices.

9. Patterns of intersection

The proof of Theorem 1.2 splits in several cases according to the com-
plexity of the pattern of intersections of flats in the manifold X. We will
assume that the manifoldM is orientable. The group Γ = π1(M) is torsion-
free since M is aspherical [He1].

Case I: “Simple flats”. There exists a flat F in X such that for each
g ∈ Γ the intersection F ∩ gF is either empty or gF = F , such flat is called
simple.

Case II: “Double intersections”. We assume that X contains no
simple flats but there is a flat F so that for any elements g, h ∈ Γ the
intersection F ∩gF ∩hF is different from a single point (i.e. the intersection
is either empty or a complete geodesic or a flat). Such flat F is called a flat
with double intersections.

Case III: “Triple intersections”. We assume that the cases I, II do
not occur (the space X contains neither simple flats nor flats with double
intersections). Thus for any flat F ⊂ X there are elements g, h ∈ Γ so that
F ∩ gF ∩ hF is a single point in X.

We consider these cases in different sections.

Remark 9.1. — If g1, g2 are complete distance-minimizing geodesics which
intersect at two distinct points x, y, then g1 = g2. This implies that in the
Case II (and III) intersection of two (resp. three) flats must be connected.

The discussion of the Cases II and III is considerably simplified by the
following
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Theorem 9.2. — Suppose that X contains no simple flats, Γ = π1(M)
does not contain a subgroup isomorphic to Z × Z. Let F be a flat in X.
Define LF to be the path-connected component of F in the orbit ΓF and let
ΓF denote the stabilizer of LF in Γ. Then the subgroup ΓF has finite index
in Γ.

Proof. — It’s clear that LF is precisely-invariant under ΓF in L, i.e. if
gLF ∩ LF �= ∅ then g ∈ ΓF . Let L̄F denote the closure of LF in X.

Lemma 9.3. — The pair (LF ,ΓF ) is proper.

Proof. — Suppose that gn is a sequence so that gnF accumulates to a
point x ∈ X. Taking if necessary a subsequence we can assume that there is
a flat F ′ ⊂ X which contains x so that gnF accumulates to F ′. According
to our assumptions X has no simple flats. Therefore there exists α ∈ Γ so
that αF ′ intersects F ′ transversally. It follows that there is a number n0 so
that for all n,m � n0, αgnF ∩ gmF �= ∅. Let γ = gn0 . Hence αgnγ−1 ∈ ΓγF
and x ∈ L̄γF . Then gn ∈ γΓF . �

Remark 9.4. — Note that the same arguments as above prove that either
X contains a simple flat (which is impossible) or L̄ is path-connected.

Thus Lemma 6.6 implies that the stabilizer ΓF of LF is a finitely-
generated group whose Cayley graph contains a quasi-flat. Hence the group
ΓF is not word-hyperbolic. If ΓF has infinite index in the group Γ then the
Scott compact coreMF of X/ΓF is an aspherical 3-manifold with nonempty
boundary. Therefore Thurston’s Hyperbolization Theorem can be applied
to MF and we conclude that since π1(MF ) ∼= ΓF contains no Z × Z, the
group ΓF is isomorphic to a convex-cocompact subgroup of PSL(2,C). This
contradicts the fact that ΓF is not word-hyperbolic. �

10. Case III: triple intersections

10.1. Parallel transport along flats

Choose any flat F1 ⊂ X. We denote by L the path-connected component
of Γ(F1) which contains the flat F1. Let Γ1 denote the stabilizer of L in Γ.
Pick a PL path γ ⊂ L which connects points y and x. We shall denote by
Πγ the parallel transport Ty → Tx along γ.
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Lemma 10.1. — Let λ be a closed PL loop contained in the union of
flats L. Then the parallel transport along λ is trivial.

x

x0
x4

x2

x1 x3

l2

l3

l1

Figure 3

Proof. — We proceed by induction on the combinatorial length of λ, i.e.
the number n of its edges. If n = 2 then the assertion is obvious. Sup-
pose that the statement is proven for all k < n. We consider 4 consecutive
segments [x0, x1], ..., [x3, x4] in λ as on Figures 3, 4.

Let Fj denote a flat in X which contains the segment [xj , xj+1], let
lj = Fj−1 ∩Fj be a line through xj . We first assume that the lines l2, l3 are
not parallel and intersect in a point x ∈ F1 ∩F2 ∩F3 (Figure 3). Substitute
the PL path [x1, x2] ∪ [x2, x3] ∪ [x3, x4] in λ by [x1, x] ∪ [x, x4] to construct
a new PL loop λ′. The move µ : λ→ λ′ decreases the combinatorial length
of the loop λ.

Now we suppose that all three lines l2, l3, l4 are parallel (otherwise we
can apply the move µ). By the “triple intersection” assumption there exists
a flat F ⊂ L which is transversal to l2 at the point z. Therefore it intersects
l1, l3 at points x, y (see Figure 4). Hence we can substitute the PL path
[x0, x1] ∪ ... ∪ [x3, x4] by the path [x0, x] ∪ [x, y] ∪ [y, x4]. Denote the new
PL curve by λ′. The move ν : λ → λ′ again decreases the combinatorial
length of the path λ by 1. The parallel transport along λ′ is trivial by the
induction hypothesis.
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x

x0
x4

x2

x1 x3

l2

l3

l1

F

z

y

Figure 4

Let us consider now only the case of the move ν, the other case is similar.
All what we have to prove is that the parallel transport along the loop
[x4, y]∪ [y, x]∪ [x, x0]∪ [x0, x1]∪ ...∪ [x3, x4] is trivial. Using triviality of the
parallel transport in the planes F1, F4 we reduce the problem to the curve
[x3, y] ∪ [y, x] ∪ [x, x1] ∪ [x1, x2] ∪ [x2, x3]. Then we transform this loop to
[x2, z]∪ [z, y]∪ [y, x]∪ [x, z]∪ [z, x2] keeping the same parallel transport. The
parallel transport along the last loop is obviously trivial. �

Corollary 10.2. — If γ, γ′ are two PL paths in L with the same initial
point x and the final point y, then Πγ = Πγ′ .

Suppose that F ′, F ′′ are flats in L, x ∈ F ′ and y ∈ F ′′. There are planes
P ′ ⊂ Tx(X), P ′′ ⊂ Ty(X) such that expx P ′ = F ′, expx P ′′ = F ′′. We call
the flats F ′, F ′′ “parallel” if for some (any) PL path γ ⊂ L connecting
x ∈ F ′ and y ∈ F ′′ we have:

ΠγP ′ = P ′′

Lemma 10.3. — If F ′, F ′′ are two nonparallel flats in L then they have
nonempty intersection.
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Proof. — Given two flats F, F ′ ∈ L we define the “chain distance” (F :
F ′) between them to be the minimal number n such that there exists a
chain of flats in L:

F1 = F, F2, . . . , Fn = F ′

so that Fi ∩ Fi+1 �= ∅. We will prove Lemma by induction on the chain
distance n = (F ′′ : F ′). For 2 = (F ′′ : F ′) the assertion is obvious. Suppose
that 3 = (F ′′ : F ′). Consider the chain

F1 = F ′, F2, F3 = F ′′

If the line F2 ∩ F3 = l2 is not parallel to l1 = F2 ∩ F1 then F ′′ ∩ l1 �= ∅ and
we are done. Suppose that l1 is parallel to l2. By the assumption that we
are in the Case III there exists another flat F ′

2 ⊂ L such that F ′
2∩F ′ = l′1 is

a line in F ′ which is not parallel to l1. It follows that F ′
2 ∩F2 is a line which

is not parallel to l1. Thus it must intersect l2 and (F1, F
′
2, F3) is another

chain of flats. Again, if l′2 = F ′
2 ∩ F3 is not parallel to l′1 then we are done.

Otherwise F3 contains two nonparallel lines l2, l′2 which are parallel to the
flat F1 via parallel transport in L. It implies that F ′′ is parallel to F ′ which
contradicts our assumptions.

Now suppose that the assertion of Lemma is proven for all k < n and
n = (F ′ : F ′′) > 3. Consider a chain

F1 = F ′, F2, . . . , Fn = F ′′

If F2 is not parallel to Fn then by induction they must intersect which
implies that n = 3 in which case the assertion is already proven. So we
assume that F ′′ is parallel to F2. Again as in the case n = 3 there exists
a flat F ′

2 so that F ′
2 ∩ F1 is a line l′1 which is not parallel to l1 = F2 ∩ F1.

The intersection F3 ∩ F ′
2 is nonempty since otherwise F3 ∩ F1 �= ∅ and

(F ′ : F ′′) < n. Thus
F1, F

′
2, . . . , Fn = F ′′

is again a chain of flats. Now F ′′ can not be parallel to F ′
2 which implies

that F ′′ ∩ F ′ �= ∅. This means that n � 3. �

10.2. Holonomy representation

Pick a base-point x ∈ � ⊂ F1. We define a representation ρ : Γ1 →
SO(TxX) ∼= SO(3) as follows. Let g ∈ Γ1, y = g(x). Choose a PL path
γ ⊂ L which connects y and x. Denote by Πγ the parallel transport
Ty → Tx along γ. The derivative of g is a map Dgx : Tx → Ty. Thus
we let ρ(g) = Πγ ◦ Dgx : Tx → Tx, ρ(g) ∈ SO(3). Corollary 10.2 implies
that the map ρ is well-defined. We call ρ a holonomy representation of the
group Γ.
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Lemma 10.4. — The map ρ is a homomorphism.

Proof. — Take two elements g, h ∈ Γ1, choose a PL curve α ⊂ L con-
necting gx to x, PL curve β ⊂ L connecting hx to x and a PL curve γ ⊂ L
connecting hg(x) to gx. We need to check that

Πα ◦ Πγ ◦Dgx(h) ◦Dx(g) = Πβ ◦Dx(h) ◦ Πα ◦Dx(g)

However according to Corollary 10.2

Π−1
β ◦ Πα ◦ Πγ = Πhα

Since h is an isometry it commutes with the parallel translation which im-
plies

Πhα ◦Dgx(h) = Dx(h) ◦ Πα

�

10.3. Construction of a recurrent pair

Let Fj , j = 1, 2, 3, 4 be flats in X so that each three of them intersect
transversally in a point and these four points of triple intersection are dis-
tinct. Since π2(X) = 0, the points of triple intersection span a 3-simplex ∆
in X whose faces are contained in the flats Fj . In this case we shall say that
the flats Fj-s generate the simplex ∆.

Suppose that F 0
1 , F

0
2 ∈ Γ(F ) are flats in X = M̃ which intersect along

a geodesic �0. Corollary 6.2 implies that there exists a sequence of elements
gn ∈ Γ = π1(M) such that � = limn→∞ gn(�0) is a recurrent geodesic.
This geodesic is the intersection of the flats Fj = limn→∞ gnF 0

j . (Here
the convergence is understood in the Chabauty topology.) The pair of flats
(F1, F2) is a recurrent pair.

Since we consider the Case III, there exists an element g ∈ Γ such that
gFi intersects � transversally (i = 1, 2).

For the flat F1 we construct the connected components L1 and the linear
representation ρ of the stabilizer Γ1 as in Sections 10.1, 10.2.

There are three cases to consider now:

(a) ρ(Γ1) is a finite subgroup of SO(3).

(b) ρ is an infinite reducible representation.

(c) ρ(Γ1) dense in SO(3).
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Lemma 10.5. — In the case (c) it follows that the group Γ is not amenable.

Proof. — The homomorphic image of any amenable group is again ame-
nable. Thus if Γ is amenable then so is ρ(Γ1). However it follows from the
classification of amenable linear groups that the amenable group ρ(Γ1) ⊂
SO(3) must be almost abelian. Hence in this case ρ is a finite or reducible
representation which contradicts the property (c). �

By Theorem 9.2 we can assume that the group Γ1 has finite index in Γ.
Since it is enough to prove Theorem 1.2 for a finite-index subgroup we let
Γ := Γ1 so that the orbit ΓF1 is path-connected.

10.4. Cases (a) and (b) of amenable holonomy

First we consider the Case (a). Denote by Γ′
1 the kernel of ρ, which is a

subgroup of finite index in Γ1. In this case Γ′
1 preserves the foliation of L

by lines parallel to � and the discussion reduces to the Case II.

Consider the Case (b): the representation ρ is infinite and reducible. It
implies that a subgroup Γ′ of index 2 in Γ admits an infinite representation
in U(1) and hence H1(Γ′,R) �= 0. Thus the 2-fold covering X/Γ′ of the
manifold M is homotopy-equivalent to a Haken manifold and we can apply
Theorem 2.7 to conclude that Γ ⊃ Z

2. This finishes the proof in the Case
(b).

10.5. Generation of simplices: Case (c)

In what follows we shall consider the Case (c): the group ρ(Γ) is dense
in SO(3). Note that according to a theorem of Bass [Ba] the group ρ(Γ)
either splits as an amalgamated free product, or HNN extension or (after
conjugation in SO(3)) entries of the matrices in ρ(Γ) belong to a ring of
algebraic integers. First two cases imply that the manifoldM is Haken which
would finish the proof. Examples of representations such that entries of ρ(Γ)
belong to a ring of algebraic integers can be constructed using arithmetic
subgroups of PSL(2,C). In this case we do not see any algebraic arguments
which can simplify our proof. Hence we will use geometry.

Proposition 10.6. — The orbits Γ(F1),Γ(F2) contain three flats F3, F4,
F5 so that the flats F1, ..., F5 generate two distinct simplices T ′, T ′′ which
form a double simplex in the sense of Section 8. These simplices have the
properties:
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• Their intersection is a triangle which is contained in the flat F1;

• Both flats F1, F2 participate in generation of the simplices T ′, T ′′ (see
Figure 5).

Proof. — Choose any flat F3 which is transversal to � and denote by x
the point of intersection �∩F3. For the convenience we introduce in TxX a
metric 〈〈, 〉〉 where the lines of intersection F1 ∩ F2 = Span(e3), F2 ∩ F3 =
Span(e1), F3∩F1 = Span(e2) are orthogonal. Since the group ρ(Γ1) is dense
in SO(3) there are elements g4, g5 in Γ1 so that normal vectors n4 , n5 (with
respect to 〈〈, 〉〉) of the planes ρg4(F1), ρg5(F1) have the properties:

(1) 〈〈nj , e3〉〉 > 0, j = 4, 5;

(2) the points P4 =(〈〈n4, e1〉〉, 〈〈n4, e2〉〉), P5 =(〈〈n5, e1〉〉, 〈〈n5, e2〉〉)∈ R
2,

do not lie on coordinate lines and belong to two different but adjacent open
coordinate quadrants in R

2.

Since the geodesic � is recurrent, there exists a sequence gn ∈ Γ such
that

lim
n→∞

ρ(gn) = 1

lim
n→∞

gn(�) = �

Thus for large n the flats gng4(F1), gng5(F1) will intersect the line � in points
z, y which are not separated by the point x and the properties (1), (2) are
still satisfied by the normal vectors to these flats.

It follows that F1, F2, F3, gng4(F1) = F4, gng5(F1) = F5 form a configu-
ration satisfying the assertions of Proposition 10.6. �

The arguments below are based on the following fact of Euclidean geom-
etry. Suppose that T is a tetrahedron in R

3 where we know dihedral angles
at two vertices. Then we can find all dihedral angles at two other vertices
as continuous functions of the known angles. Indeed, suppose T has vertices
A,B,C,D and we know all the angles at A,B. Then we know dihedral an-
gles at two edges emanating from C. The planar angle ACB between these
two edges is π − ∠CBA − ∠BAC. Then we find the last dihedral angle at
C from two known dihedral angles and ACB by the cosine formula of the
spherical trigonometry. The same argument works for the vertex D.
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Since the geodesic � = F1 ∩ F2 is recurrent, there exist a sequence of
elements gn ∈ Γ so that gn(�) is convergent to � in the Chabauty topology.
Let 1 = g0. Now we fix the flats F1, F2, F3 and apply the sequence of cov-
ering transformations {gn} to the flats F4, F5. Let Fj,n = gn(Fj), j = 4, 5.
Since ρ(gn) → 1 the flats Fj,n intersect the line � in F1, F2 by the angles
α1,j,n, α2,j,n which approximate the angles α1,j,0, α2,j,0. Therefore the flats
F1, F2, F3, Fj,n generate simplices Tj,n in X. These simplices have flat faces
and the angles at vertices of these simplices, which are continuous functions
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of the angles α1,j,n, α2,j,n , approximate the angles of the initial simplex
Tj,0. The dihedral angles at the vertex F1 ∩ F2 ∩ F3 of Tj,n are fixed. Thus
similarity classes of Euclidean models of the simplices Tj,n do not degenerate
as n→ ∞.

Denote T4,n by T ′
n and T5,n by T ′′

n . We let O,A′
n, B

′
n, C

′
n be the vertices

of T ′
n and O,A′′

n , B
′′
n , C

′′
n be the vertices of T ′′

n . It is clear that the simplices
T ′
n, T

′′
n form a double simplex Dn . Denote by r′n the distance d(B′

n, O) and
by r′′n the distance d(O,B′′

n). Clearly r′′n → ∞ and r′n → ∞. In Lemma 10.7
we will show that this convergence to infinity has the same rate.

Lemma 10.7. — r′n = O(r′′n)

Proof. — By taking n sufficiently large we can guarantee that d(gn(B′), �)
� λ and d(gn(B′′), �) � λ where λ is given by Proposition 5.3. Connect
gn(B′) to � by the shortest segment In = [gn(B′), wn]. Take the unit nor-
mal vector νB′′ to F5 at the point B′′ and the unit tangent vector εB′′ to �
at B′′. Then |∠(εB′′ , νB′′)− π/2| � ξ1 > 0. Similarly if νB′ is a unit normal
vector to F4 at B′ then |∠(εB′ , νB′) − π/2| � ξ2 > 0. Let ξ = min(ξ1, ξ2).

Since gn are isometries we get: 〈νB′ , εB′〉 = 〈Dg(νB′), Dg(εB′)〉. On the
other hand, the geodesics gn� are convergent to � thus there exists a number
n0 such that for all n > n0 we have:

∠(εwn
,ΠIDg(εB′)) � ξ/2

where εwn
is the unit tangent vector to � at the point wn obtained from εB′

by parallel transport along �. Thus

|∠(εwn ,ΠIDg(νB′)) − π/2| � ξ/2

It follows from Lemma 5.3 that the point of intersection xn := � ∩ gnF4

is at the distance at most u(λ, ξ/2) from gn(B′) for all n � n0. Similarly
we can find n1 so that for each n � n1 the point of intersection � ∩ gnF5

is at the distance at most u(λ, ξ/2) from gn(B′′) for all n � n1. However
d(gn(B′), gn(B′′)) = d(B′, B′′). Thus

d(gnF5 ∩ �, gnF4 ∩ �) � 2u(λ, ξ/2) + d(B′′, B′)

for all n � max(n0, n1). �

Lemma 10.8. — The group Γ has polynomial growth. (Actually the growth
is at most quadratic.)
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Proof. — According to Lemma 10.7, r′′n = O(r′n), so we let rn := r′n.
Thus by Theorem 8.2 we get a sequence of double simplices Dn = T ′

n ∪ T ′′
n

such that their inscribed radius ιn is O(rn). The area of each ∂Dn is at
most Area(∂T ′′

n )+Area(∂T ′
n) = O(r2n) since these simplices have Euclidean

boundary. However the group Γ = π1(M) is not amenable which implies that

V ol(Dn) = O(r2n)

Let Bιn be a sequence of metric balls of the radius ιn inscribed in Dn. Then

V ol(Bιn) � V ol(Dn) = O(r2n) = O(ι2n)

�

Remark 10.9. — Formally speaking the group Γ has polynomial growth
if for any sequence of balls Bn of radius n in X the volume of Bn grows
slower than a polynomial function. However, a version of Gromov’s theorem
on groups of polynomial growth [VW] implies that it is enough to check the
growth condition for a sequence of radii which tend to infinity.

All the groups of polynomial growth are almost nilpotent [Gro1], [VW].
Thus Lemma 10.8 contradicts Corollary 10.5. It proves that the Case (c)
actually can not occur which finishes the proof of Theorem 1.2 in the Case
III. �
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11. Case II: double intersections

Suppose that F is a flat in the space X which has only double intersec-
tions. We define L = LF to be the connected component of F in Γ(F ) and
let ΓF denote the stabilizer of LF in Γ. Let L̄F = L̄ be the closure of L.
Again, each point of L̄ is contained in a flat and intersection of any three
flats from L̄ is always different from a single point. The same arguments
as in the Case III imply that F = F1 can be chosen so that it contains a
recurrent geodesic � such that � = F1∩F2, where F2 is another flat in X. By
Theorem 9.2 we may assume that ΓF is a finite-index subgroup in Γ, so we
let Γ := ΓF . Let L0 = Γ(F1∪F2). It’s clear that this is a path-connected set
and its closure L̄0 = L is also path-connected since X contains no simple
flats (see Theorem 9.2 and Remark 9.4).

Foliate each flat in L by geodesics parallel to �. This foliation is preserved
under the action of Γ. By taking an index 2 subgroup in Γ we can guarantee
that Γ preserves orientation on the fibers of the foliation. Denote by Y the
quotient of L along this foliation and let f : L → Y be the projection. We
define a path-metric dY (y1, y2) as

inf{dL(x1, x2) : x1 ∈ f−1(y1), x2 ∈ f−1(y2)}

where dL is the path metric on L. Each element g ∈ Γ projects to an
isometry f∗(g) of the space Y via f . Note that Isom(L) contains a normal
subgroupH which consists of uniform vertical translations along fibers, thus
f∗(H) = {1}.

Let y0 = f(�). We will identify the geodesic � with the real line R. Define
ϕ : L → � to be the nearest-point projection with respect to the path-metric
dL. We define a function v : Γ × L → R by

v(g, x) = ϕ(gx) − ϕ(x)

Clearly this function depends only on the pair (g, f(x)). The function v
roughly speaking measures the “vertical displacement” of the isometry g.

Note that the space (Y, dY ) is NOT locally compact. Nevertheless we
have the following

Lemma 11.1. — Suppose that qn ∈ Γ is a sequence and y1 ∈ Y is a
point such that f−1(y1) is the intersection �1 of two flats in L. Assume
that dY (f∗qn(y1), y0) � const. Then (f∗qn(y1)) contains a convergent sub-
sequence.

Proof. — The assumption that the distance dY (f∗qn(y1), y0) is bounded
implies that the sequence qn�1 subconverges in the Chabauty topology in X
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to a geodesic �∞. Let �1 = F ′∩F ′′ and �∞ = F ′
∞∩F ′′

∞. Fix a point x ∈ �∞.
Denote by xn ∈ qn(�1) the nearest point to x. Let α be the angle between
F ′, F ′′. Then for large n, d(x, qn(�1)) � θ(α, α) (see Proposition 5.1).

This implies that one of the flats qn(F ′), qn(F ′′) intersects F ′
∞ ∪ F ′′

∞ at
the distance at most κ(α, α, d(x, xn)) from the both xn, x (by Proposition
5.1). See Figure 7.

x

xn

qn(F’)

qn(F")

F’∞

∞F"

Figure 7

This implies that dL(xn, x) → 0 as n→ ∞. �

In particular Lemma 11.1 can be applied to the sequence qn = gn and
the geodesic �1 = �. Thus (fgn(�)) is convergent in Y to f(�) since � = �∞.
However a priori it is possible that the sequence f∗(gn) is not convergent
to identity uniformly on compacts in Y . To deal with this problem choose
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any finite subset K ⊂ Y . Then d(y0, gnK) remains bounded as n → ∞.
Therefore there exists a function m = m(n) > n so that the elements
hn = g−1

m gn have the property: the sequence f∗(hn) is convergent to the
identity on K.

We choose the finite set K as follows. Denote by γ1, ..., γr the set of
generators of the group Γ. Let y1 be a point of f(F1) which is different from
f(�) = y0 and f−1(y1) is the intersection of two flats in L. We take

K = {γ1(y0), γ1(y1), . . . , γr(y0), γr(y1)}

Suppose that n is sufficiently large and for any y ∈ K we have
d(y, f∗hn(y)) � ζ. Direct calculation show that d(yj , f∗[γi, hn](yj)) � 2ζ
for each i = 1, . . . , r; j = 0, 1 and n ∈ Z, where [a, b] = a−1b−1ab.

Theorem 11.2. — Suppose that hn is a sequence as above, γ = γj is
one of the generators of Γ. Then there is a finite collection of elements
wi ∈ Γ such that for sufficiently large n, [hn, γ] ∈ {w1, . . . , wl} and all the
elements wi have trivial projection to Y .

Proof. — Choose elements tn and s ∈ H with the vertical displacement
the same as v(hn, f(�)) and v(γ, f(�)) respectively. Let ĥn = t−1

n hn, γ̂ =
s−1γ. Clearly [γ̂, ĥn] = [γ, hn]. For each compact J ⊂ Y we have

|v(γ̂, y)|, |v(ĥn, y)| � c(J) <∞

where y ∈ J and the constant c(J) depends only on J and not on n. There-
fore

|v([ĥn, γ̂], y)| � c(J ′)

where y ∈ J and J ′ ⊃ J � y0 is a compact which contains

(γ(J)) ∪ ∪nhn(γ(J)) ∪ ∪nγ−1hnγ(J)∪

∪nh−1
n (J ∪ γ(J) ∪ ∪nhn(γ(J)) ∪ ∪nγ−1hnγ(J))

On the other hand, the sequence f∗([γ, hn]) is convergent to the identity
on {y0, y1}. By discreteness of Γ we conclude that for large n all the elements
f∗[hn, γ] act trivially on f(F1) and the commutators [hn, γ] belong to some
fixed finite set {w1, . . . , wl} ⊂ Γ. Since the group Γ preserves the orientation
on X the elements f∗[hn, γ] act trivially on Y . Therefore {w1, . . . , wl} ⊂
H ∩ Γ. �

Corollary 11.3. — The group Γ has infinite center.
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Proof. — Let γ1, . . . , γr be the set of generators of Γ as before. There are
two possible cases. First we suppose that for some γi = γ in Theorem 11.2
the element w = [hn, γ] ∈ H is nontrivial. Then w belongs to the center
of Γ. Otherwise we assume that all the elements [hn, γi] = 1 for sufficiently
large n. Hence 〈hn〉 is in the center of Γ. �

Finally we apply Geoff Mess’s theorem [M1] to conclude that Γ contains
Z

2. This finishes our proof in the Case II.

12. Case I: simple flats

We start with a construction, which (in general case) is due to Morgan
and Shalen [MS2]. Suppose that L ⊂ X is a closed Γ-invariant subset which
is the union of disjoint 2-flats. The set L is called a lamination on X, flats
in L are leaves of this lamination. We shall assume that none of the leaves
F of L has stabilizer in Γ which acts cocompactly on F . It’s clear then that
L has uncountably many leaves. We eliminate from L all leaves which are
boundary flats for more 2 components of X − L.

Construct a dual tree T to L as follows. If D ⊂ X − L is a component
with the closure D̄, collapse D̄ to a single point q(D̄) ∈ T . If F is a 2-flat
in L which is not a boundary flat for any component D ⊂ X − L, then
collapse to a single point q(F ) ∈ T . As the set T is the quotient of X
described above. Let F ⊂ L be a leaf. Pick a point x ∈ Fz. Then there
is a sufficiently small number ε0 > 0 (which depends only on geometry
of M) such that: if [x′, x′′] ⊂ X is a geodesic segment orthogonal to Fz
at x, d(x, x′) = d(x, x′′) = ε0, then each leaf F ⊂ L and each connected
component D ⊂ X − L intersects [x, y] by a convex subset. Let z ∈ T be a
point such that q−1(z) is a single leaf of L. Define Nz as an above segment
[x′, x′′] for some choice of x ∈ F , let z̃ = x in this case. Suppose that z ∈ T
is such that q−1(z) is the closure of a component D ⊂ X − L. For each
boundary flat Fx of D we pick a point x ∈ Fx and an orthogonal segment
[x′, x] disjoint from D which has the length ε. Let Nz be the union of such
segments over all boundary flats of D and z̃ be the collection of all their
end-points x.

Then we define open neighborhoods of z ∈ T to be subsets E ⊂ T such
that q−1(E) ∩Nz is an open neighborhood of the set z̃ in Nz. It is easy to
see that the topological space T is Hausdorff and the group Γ acts on T by
homeomorphisms. If none of the complementary regions D of L has more
than 2 boundary flats, then T is a 1-dimensional manifold which is clearly
a real line. In general the space T is a topological tree, i.e. any two points
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are connected by a embedded topological arc and this arc is unique. It L
has a transversal invariant measure, then T is a metric tree and Γ acts on
T by isometries.

12.1. Proof via the Rips Theory

Theorem 12.1. — Suppose that N is a closed aspherical manifold of
dimension n. Then π1(N) is neither a nontrivial amalgamated free product
nor HNN extension with the amalgamation over Z

k for any k < n− 1.

Proof. — We consider only the case of amalgamated free products, the
case of HNN extensions is similar. Suppose that π1(N) = A ∗C B where
C ∼= Z

k. Since this decomposition is nontrivial we conclude that both
groups A,B have infinite index in π1(N). This implies that Hn(A,Z/2) ∼=
Hn(X/A,Z/2) = 0, Hn(B,Z/2) ∼= Hn(X/B,Z/2) = 0 where X is the uni-
versal cover of N . Since Hn(C,Z/2) = Hn−1(C,Z/2) = 0 we apply the
Mayer-Vietoris sequence to the amalgamated free product π1(N) = A ∗C B
and conclude that 0 = Hn(π1(N),Z/2) = Hn(N,Z/2). This contradict the
assumption that the dimension of N is equal to n. �

The following proof of Theorem 1.2 in the case of simple flats was mo-
tivated by discussion with Lee Mosher, who explained to me how to prove
Conjecture 1.1 under assumption that the universal cover X contains a
simple least area surface conformal to R

2.

The closure L̄ of the Γ-orbit of a simple flat F is foliated by flats. It
projects to a lamination Λ on M which admits a transversal-invariant mea-
sure since each leaf of Λ is amenable [P1]. Thus the topological tree T dual
to L̄ is an metric tree and the group Γ acts on T by isometries. There-
fore application of the Rips Theory [R], [BF] (or of a theorem of Morgan
and Shalen [MS1]) to T will produce a nontrivial simplicial Γ-tree R(T )
where edge-stabilizers are discrete subgroups of Isom(R2). This means that
the group Γ admits a nontrivial splitting as amalgamated free product of
HNN extension where amalgamated subgroups are discrete subgroups of
Isom(R2). The group Γ is torsion-free and the manifold M is aspherical.
Thus none of the amalgamated subgroups can be {1} or Z (Theorem 12.1).
This implies that Γ must contain Z × Z. �

12.2. Geometric proof

Our arguments here are very similar to the Schroeder’s proof in [Sc].
Suppose that F is a simple flat in X. We will assume that Γ contains no Z

2.
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Theorem 12.2. — The space X contains a simple flat with nontrivial
stabilizer.

Proof. — Consider the closure L̄ of the Γ-orbit of the simple flat F . It is
foliated by flats. Thus we get a Γ-invariant lamination of X by flats. Denote
by T the dual tree to this lamination. Our goal is to prove that either T is
homeomorphic to R or there is a leaf of L̄ with nontrivial stabilizer in Γ.
If L̄ = X then L̄ is actually a foliation and T ∼= R. Suppose now that the
complement X−L̄ is nonempty. Choose a componentW of this complement
and let F1 be a boundary flat of this component. This flat is still simple.
Assume that F1 has trivial stabilizer in Γ, let F := F1 and define

Q := {x ∈W : d(x, F ) < d(x, F ′) for all other boundary flats F ′ of W}

Then γQ∩Q = ∅ for each γ ∈ Γ− {1}. Pick a base-point q ∈ F . For x ∈ F
we define

φ(x) = inf{d(x, F ′) : F ′ �= F is a boundary flat of W}

Lemma 12.3. — The function φ(x) tends to zero as d(x, q) → ∞.

Proof. — Suppose that there exists a sequence xn ∈ F so that d(xn, q) →
∞ and φ(xn) � σ for some positive σ. We assume that d(xn+1, q) >
d(xn, q) + 1. Then for θ < σ/2 the intersection B+

n = Bδ(xn) ∩ W has
volume at least θ3/2 and the Γ-orbits of these balls are disjoint since all B+

n

are contained in Q. This implies that the manifold M has infinite volume
which is impossible. �

Thus there exists R > 0 so that for all x ∈ F −BR(q) we have φ(x) < ε
where ε is given by Proposition 5.2. The set F − BR(q) is connected. The
normal geodesic l = lx emanating from x intersects the nearest flat F ′ at
the distance at most δ = the injectivity radius of M . Hence the geodesic
segment of l between x and F ′ is disjoint from any other flat in ∂W . Indeed,
if it intersects one of these flats F ′′ before meeting F ′ at the time t0 then to
intersect F ′ at the time t1 > t0, the geodesic must first intersect F ′′ again
at some time t2 ∈ (t0, t1). This contradicts the assumption that F ′′ is a flat
(since l is distance minimizing for all t < t1).

As in [Sc] we conclude that the nearest flat F ′ = Fx ⊂ ∂W does not
vary as we vary x in F − BR(q). In particular d(x, F ′) < ε for all x ∈
F −BR(q). Denote by E the part of X contained between F, F ′. Since F, F ′

are Hausdorff-close, there is no other flats in E. Therefore W = E has only
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two boundary components: F, F ′ and the same is valid for all components
W of X − L̄. This implies that the tree T dual to the lamination L̄ is a real
line.

Hence we get an action of Γ on R by homeomorphisms. It follows that
either Γ is abelian or one of leaves of L̄ has nontrivial stabilizer (Theorem
6.3). This concludes the proof of Theorem 12.2. �

Remark 12.4. — Alternatively in the last argument one can appeal to
Theorem of Imanishi [I].

Now suppose that F is a simple flat in X with the nontrivial stabilizer
Γo. This must be an abelian group acting discretely and isometrically on R

2.
Since Γ contains no Z

2 it implies that Γo is an infinite cyclic group acting
by translations in F . Denote by � ⊂ F an invariant line for Γo = 〈γ〉. Let
G denote the centralizer of Γo in Γ. Since for each g ∈ G the elements g, γ
commute, the flat gF is also γ-invariant. The displacement number of γ in
gF is the same as in F . Consider the orbit LF of F under G and denote by
L̄F its closure in X.

Lemma 12.5. — The pair (L̄F , G) is proper.

Proof. — Suppose that the pair is not proper and x ∈ X is an accumu-
lation point for gnF, gn ∈ Γ. Since F is simple gnF accumulates also to a
flat F ′ which contains x. Denote by xn ∈ F a sequence such that gnxn → x.
The displacement of γ in F equals C, thus d(γxn, xn) = C < ∞. Hence
the displacements of gnγg−1

n are also bounded by C at gnxn. This implies
that elements gnγg−1

n have displacement at x bounded by C+1 for large n.
Since Γ is a discrete group we (taking a subsequence if necessary) can as-
sume that gnγg−1

n = gmγg−1
m for all n,m. This means that all the elements

hnm = g−1
n gm commute with γ. Thus all hnm belong to the subgroup G and

(L̄, G) is a proper pair. �

Corollary 6.7 implies that G contains a finitely generated infinite non-
cyclic subgroup G0 with nontrivial center 〈γ〉. Thus according to Mess’s
theorem [M1], G0 contains Z

2. This finishes the proof of Theorem 1.2. �

13. Closing up Euclidean planes

In this Section we will prove that under some topological restrictions the
existence of a flat in a 3-manifold M implies the existence of an immersed
incompressible flat torus in M .

– 493 –



Michael Kapovich

Suppose that M is a closed aspherical orientable Riemannian manifold
which contains a flat. Then by Theorem 1.2 there exists a subgroup iso-
morphic to Z

2 in M . A priori the manifold M is not irreducible, however
it can be represented as a connected sum N#Σ where Σ is a homotopy
sphere [He1] and N is either Haken or Seifert manifold. In any case N
has a canonical (Jaco-Shalen-Johannson) decomposition into hyperbolic and
Seifert components. We assume that N has no Seifert components at all,
thus it is obtained by gluing hyperbolic manifolds along boundary tori and
Klein bottles. These boundary surfaces separate N ; since N is orientable
they must be tori.

Theorem 13.1. — Under the conditions aboveM contains an immersed
incompressible flat torus.

Proof. — Any flat F in M̃ is a quasi-flat in Ñ . In the paper [KL] we
classify quasi-flats in universal covers of Haken manifolds. Provided thatM
has no Seifert components, [KL] implies that there exists an incompressible
torus T embedded in M and a number r <∞ so that F is contained in an
r-neighborhood of the universal cover T̃ ⊂ X = M̃ .

Remark 13.2. — If M is a hyperbolic 3-manifold with nonempty bound-
ary of zero Euler characteristic, then the existence of such torus T was first
proven by R. Schwarzt in [Sch].

Denote by A the fundamental group of T operating on T̃ = S. This
group is a maximal abelian subgroup of Γ.

The Hausdorff distance dH(gF, S) is bounded from above independently
on g ∈ A. We let L̄ denote closure of the orbit A(F ). The quotient L̄/A is
compact in M .

Lemma 13.3. — There exists a subgroup Γ′ of finite index in Γ which
contains A so that L̄ is precisely invariant under A in Γ′.

Proof. — Recall that Γ is residually finite [He2]. There is at most a finite
number of elements g1, . . . , gk ∈ Γ − A such that gjL̄ ∩ L̄ �= ∅ and A is a
maximal abelian subgroup of Γ. Thus by applying [L] we conclude that Γ
contains a finite-index subgroup Γ′ which contains A and does not intersect
{g1, . . . , gk}. �

We let Γ := Γ′ and retain the notation M for X/Γ′. Now we will apply
our analysis of flats in 3-manifolds to the flat F .
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First we suppose that F is a simple flat. Let F ′ be one of the flats in
L̄ which is the most distant from S in the Hausdorff metric. There are at
most two such flats since all the flats in L̄ are disjoint. Hence F ′ is invariant
under an index 2 subgroup in A which implies Theorem 13.1.

Suppose now that any flat in L̄ has “triple intersections”. By compact-
ness of L̄/A we can assume that F = F1 intersects a flat F2 ⊂ L̄ along a
recurrent geodesic. The group Γ1 (as in Section 10) is contained in A by
Lemma 13.3. Then we have three possible cases (a), (b), (c) according to
the holonomy representation ρ : Γ1 → SO(3). In the Cases (b), (c) we get:
Γ = Γ1 which is impossible. Hence either we have the Case III-a or the Case
II (flats with double intersections). Note that Γ1 is either infinite cyclic or is
isomorphic to Z × Z. However the quotient cl(Γ1(F1 ∪ F2))/Γ1 is compact.
Thus Γ1 is not cyclic and it must have a finite index in A. In the both
cases III-a and II we have a finite-index subgroup A′ ⊂ A which preserves a
parallel family of Euclidean geodesics on the orbit L′ = A′(F1). From now
on we consider the only the subgroup A′ and the orbit L′ so that the Cases
III-a and II become indistinguishable.

Each flat Fj in L̄′ separates X into two components, we let F+
j denote

the “right side” and F−
j denote the “left side” of Fj . We let S+ denote the

union of the right sides and S− the union of left sides. Their complements
C+, C− are disjoint open convex subsets of X whose boundaries B± are
foliated by parallel lines �x. Both B± are Hausdorff close to the surface S
and invariant under A′, so the quotients B±/A′ are tori. Each flat in L′

separates C+ from C−. Now let a, b be generators of the group A and I
be a shortest geodesic segment in X connecting B+ and B−. Hence each
F ⊂ L̄′ intersects I and this intersection consists of a single point. We
identify I with an interval [−h, h] ⊂ R (here h � 0) so that ±h correspond
to points on B±. The surface B+ is identified with the plane R

2 which is
foliated by vertical lines �x, x ∈ R. If one of the lines �x is invariant under an
element g ∈ A′ − {1} then g leaves invariant any flat in L̄′ which contains
�x (otherwise B+ is not g-invariant). We pick a generator a of A′ which
does not keep (any) line �x invariant. Therefore a acts on B

± ∼= R
2 as a

translation (x, y) �→ (x + α, y + β), we shall assume that α > 0. Identify 0
on the x-axis with the projection of the point I ∩ B+. Now we pick a flat
F ⊂ L̄′ which intersects B+ along a line (or a strip) whose projection to
the x-axis is positive. For each n > 0 we let {hn} = an(F ) ∩ I. Denote by
π the projection of B+ to the x-axis along the lines �x.
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I

B- B+

n > m am(F)

an(F)

Figure 8

Lemma 13.4. — The sequence hn ∈ [−h, h] is monotone.

Proof. — For n � 0 we let [z−n , z
+
n ] denote the projection of the inter-

section an(F ) ∩B+ to the x-axis; these intervals belong to the positive ray
R

+. If n > m � 0 then z+n > z
+
m > 0. Thus π−1(z+n ) ⊂ am(F )+ (see Figure

8). Note that [hm, h] also lies in am(F )+. On the other hand, z+m separates
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0 from z+n . Suppose now that hn < hm. Then flat an(F ) intersects am(F )
in a non-connected set which is impossible. �

Therefore there exists a limit I � h∞ = limn→∞ hn. The sequence a(hn)
converges to a point a(h∞). Let F∞ be the union of flats of accumulation
for the sequence an(F ).

Each flat in F∞ must pass through the points h∞, a(h∞). Recall however
that any pair of flats in X intersect by a connected set, thus F∞ consist of
a single flat which must be invariant under the element a. Suppose that F∞
is not b-invariant. Then we repeat the same argument as above by applying
the sequence bn to F∞. The limiting flat Φ must be invariant under the both
generators a, b. Hence Φ/A′ is a torus. This finishes the proof of Theorem
13.1. �
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