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1 Introduction 

Let M be a closed hyperbolic 3-dimensional orbifold (see IT, Sc] for definitions), 
P o:n 1 (M)~ Isom (IH 3) be its holonomy representation. Denote the conjugacy class 
of P o by [po]. In this paper we discuss whether for n = 4 the point [ Po] is isolated in 
the space 

R(nl (M), n) = Hom(nl (M), Isom(~I"))/Isom + (IH"). 

If [Po] is isolated, then the corresponding representation is called locally rigid. 
A suborbifold S in M is said to be a virtual fiber in a fiber bundle over S a if 

M admits a finite-sheeted covering p:Mo ~ M  such that Mo is fibered over a circle 
and a component of the preimage p- ~ I is a fiber of this fibration. 

We start with the following 

Conjecture 1. The representation Po is not locally rigid if and only if M contains an 
incompressible 2-suborbifold which is not a virtual fiber in a fiber bundle over S 1 
[Kal,  Ka2]. 

Certainly the case of manifolds is the most interesting and most complicated. The 
main aim of this paper is to show that Conjecture I is not absolutely groundless. 
First our results deal with reflection orbifolds. In this case we will prove Conjec- 
ture 1 and find that R(Tq(M), 4) is a smooth manifold of dimension ( f -4 ) ,  where 
f is the number of "faces" of the reflection orbifold (Theorem 1). Then we shall 
consider orbifolds of finite volume and examine the "restriction" map 

aT : PR(Tq (M), 4)-'PR(n 1 (T), 4) 

where T is an incompressible Euclidean suborbifold corresponding to a "cusp end" 
of M; PR(.) mean the space of representations whose restrictions on cyclic 
parabolic subgroups of 7q(M)~Isom(IH 3) are induced by conjugations in 
Isom(IH4), Under some conditions the image of this map is 1-dimensional 



342 M. Kapovich 

(Example 1). The question about  deformations of such kind arises naturally if we 
are trying to construct fiat conformal structures on manifolds obtained by gluing of 
two hyperbolic ones along boundary tori [GLT, Kal] .  Unfortunately, in the 
general case, the map dr is zero to the first order (Theorem 3). We prove the "only 
if" part of Conjecture 1 for infinitely many non-Haken manifolds arising after 
Dehn surgery on 2-bridge knots (Theorem 2). These are the first examples of closed 
hyperbolic 3-manifolds M whose fundamental group are locally rigid in 
R(rh (M), 4). Moreover, we prove that for each hyperbolic 2-bridge knot K = 5;3 
there exists only one conjugacy class of discrete faithful representations of 
n1(5; 3 - K )  into Isom(lH 4) (Sect. 5). 

2 Preliminary geometric results 

In this section we collect several elementary facts about  geometry of Euclidean 
spheres in 5;3. 

Denote by c~ the set of all Euclidean spheres in 5; 3 of positive radius. Then r has 
a natural topology and is a smooth 4-manifold. By Mob(5;") we denote the group of 
Moebius transformations acting on 5;n. We shall suppose that the hyperbolic 
3-space IH 3 is realized as a unit ball in ]R 3 c]'R-':~= 5;3; thus I s o m ( ~  3) is the group 
of Moebius transformations of 5;3 which leave IH 3 invariant. Mob+(5;") is the 
subgroup of orientation-preserving Moebius transformations of 5;n. 

Lemma 2.1. Let (2:1, 2:2, 2:3, 2:4) e(~r Then the following trichotomy holds: 
either (i) there is a sphere 2:0ecd orthogonal to all spheres 2:1, 2:2,273, 2:4; 
or (ii) 271n2:2n273n2:4 ~p, where p is a point; 
or (iii) spheres 2:1, 2:2, 2:3, 2:,, are totally geodesic in some metric of constant positive 
curvature on 5;3. 

Corollary 2.1. Let (2:1, 2:2, 2:3, E4) ecd4. Denote by z~ the inversion in the sphere 2:j, 
let F be the group generated by zj. Then the following trichotomy holds: 
either (i) F is conjugate in Mob(5; 3) to a subgroup of Isom(lH3); 
or (ii) F is conjugate in Mob(5; 3) to a subgroup of Isom(IE3); 
or (iii) F is conjugate in Mob(5; 3) to a subgroup of Isom(5;3). 

Proof ofLemma2.1.  We present the proof that was suggested to the author by 
N. Kuiper instead of the original one. Consider the sphere S a as a round sphere in 
the affine space $,4 = iRlP4; respectively Mob (S 3) = PG L (5, IR). Every sphere 2: e r 
is the intersection of S 3 with some affine hyperplane P = A 4, 2: = 2:(P). Denote by 
P*elRP 4 the polar of 2: with respect to $3 (i.e. such point that tangent cone from 
P* to S 3 touches S 3 at 2:). Denote by P the closure of P in IRIP 4. 

Then it is easy to see that 27(P) is orthogonal to S(Q) i f fP*eO (it is sufficient to 
consider first the case of, P * r  4 and then apply Mob(S3)=PGL(5,1R)).  Now 
consider the polars P* corresponding to 2:j (j = 1 . . . . .  4). Let i5 be the extended 
hypersubspace in IRIP 4 which passes through these points. Then we have 3 
possibilities: 

(i) The intersection P n S  3 is a sphere of positive radius. This is the desired 
sphere 27. 

(ii) The intersection P n S  3 is a point ~ e S  3. Then Pj 9 ~ ,  so we have the case 
(ii) of lemma. 
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(iii) The intersection above is empty. Then P*~int(S 3) and the point P* lies in 
the intersection P l c 3 P 2 n P 3 n P  4. Applying a projective transformation from 
Mob(S 3) we can map the point P* in the center of S 3. So, Z~ are "great spheres" in 
S 3 which are totally geodesic in elliptic geometry. Lemma is proved. [] 

Remark 1. Independently a generalization of Lemma 2.2 to higher dimensions was 
proven in [Lu]. 

Corollary 2.2. Let l and k be two unlinked Euclidean circles in S 3, l~k  = ~ .  Then 
there exists a Euclidean sphere So c S a which is orthogonal to l and k. 

Proof. We can realize I and k as intersections l = S1 c~Z2 and k = SaC~S4, so that the 
case (i) of Lemma 2.1 holds for the collection 

(Z1, Z2, z~3, S4) �9 

Then the sphere So from Lemma 2.1 is orthogonal to 1 and k. [] 

Remark2. If the sphere So (case (i) of Lemma 2.1) is unique (i.e. when Sj are not 
orthogonal to a common circle), then it smoothly depends on 

(Z1, Z2, Z3, Z,~)6U 4 . 

Notation. If Z1, 2;2 are spheres in IE 3 then by 

0--_~ (~(Z1, ~'2) 5 U 

we shall denote the (external) angle between them. If Z x n Z z = ~  then we put 
•(Zt, Zz)=0. 

If X = S n then Sp(X) will denote the round sphere in sn which contains X and 
has minimal dimension. Uniqueness of this sphere is evident. 

3 Compact reflection orbifolds 

Consider a compact convex finite-sided polyhedron �9 in U-I 3, such that every vertex 
of �9 belongs to precisely 3 edges. Denote the numbers of vertices, edges and faces of 
4~ by v , e , f  respectively. Then we have: 3v=2e, 2 = v - e + f .  So e = 3 f - 6 .  Let 
Fo c Isom(H-I 3) be the isometry group generated by the reflections in the faces of (/). 
Suppose that F~ is discrete and ~ is a fundamental polyhedron for it. Then we shall 
identify the polyhedron ~ with the factor-orbifold IH3/F#. This orbifold is suffi- 
ciently large (i.e. contains an incompressible suborbifold) iff �9 is not a tetrahedron 
[T]. Each (2-dimensional) face/-/i c ~ is contained in the unique round sphere 
~~ 

According to the Poincare theorem about fundamental polyhedra for discrete 
groups, the group F~ has the presentation 

(~1,. � 9  zl :(Uzi) "'J= 1) 

where n ,  = 1, Z ~ n ij = rc/a(Z o, Z o) (see [ M a]); the elements zj are reflections in the 
faces/ / j  of ~. 

Moreover, suppose that we have another configuration 

(Z~ . . . . .  Zs) 
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of spheres in $3, such that 

~ z ~   (si, 

for each i, k. Then the subgroup of SO(4, 1) generated by the reflections in the 
spheres Si is isomorphic to F#. Thus the problem of deforming the representation 
Po of F# is equivalent to the problem of deforming the configuration of spheres 
preserving the angles between the neighboring spheres. 

Theorem 1. Near the class [ I ]  of the embedding id:F~-*Isom(IH 4) the space 
R(F~, 4) is smooth and has dimension f - 4 .  

3.1 Proof. Define r = ( S  1 . . . . .  SI)ecffY. If faces Hi , / /k  of t~ have a common edge ej 
then put ~j =~(Zi, 2Z~). So, we have the map 

. . . . .   f-,IR e 

0 Denote ~tj =ctj(ro). Let c~2 denote the space of spheres orthogonal to the sphere 
a ~ I  3. Then the groups Mob+ (5; 3) and Mob+ (S 2) act on ~ s  and ~ s  respectively. 
Drop the map ~a to the maps ~3 :~S/Mob+(S3)--, lR e and 

~2 : cs ($2) ~ lRe -  

Hence [ro] =(32)-l(0(~ ~ . . . . .  ,o)). Moreover, the map 32 is an immersion at 
the point [ro], since HI(F , ,  so(3, I ) ) = 0 [ W ] .  

However, dim[,ol cgI2/Mob+ (S 3) = 3 f -  6 = dim ]R e, so the map ~2 is also a sub- 
mersion near [ro]. Hence the map ~3 is a submersion near [ro] too. Thus the 
variety ( ~ 3 ) - l ( ~ ~ 1 7 6  ,0t~ is a manifold of dimension 4 f - e -  
1 0 = f - 4  near [ro]. []  

Corollary 3.1. The group F~ is rigid in SO(4, 1) iff the orbifold q~ is not suf~ciently 
large. 

3.2. Now describe the basis of H 1 (F~, so(4, 1)). Realize the hyperbolic 3-space IH a 
as the upper half-space IR 3+ = { (x l, x 2, x a): x 3 > 0}. Pick an arbitrary sphere S o as 
above, center of S~'is a point (Xl, x2, 0). Then define the family S'~ of spheres with 
the same radius as s o  and center at (x~,x2, t),(tr Let r,(i)= 
( E l , . . . , S [  . . . . .  S$)scg $. For every sphere S ~ adjacent to S ~ the function 
et(,Y ~ S~) has maximum at the point t=0 .  So, 

d/dt(~(S o, ' S 3 ) l , = o = 0 .  

Therefore, the vector d/dt (rt(i))tt = o is tangent to Hom (F#, SO (4, 1)) ~ cgL By direct 
calculations it is possible to show that {d/dt(rt(i))[t=o:i=l . . . . .  f - 4 }  forms 
a basis of H~(F#, so(4, 1)). 

Remark 3. The same construction 3.2 works for hyperbolic reflection ~ ~ifolds of 
arbitrary dimension. Thus, if F c SO(n, 1) is any discrete reflection group then 
dim Hi(F,  so(n+ 1, 1 ) ) = m a x { f - n -  1, 0) where f is the number of faces of the 
fundamental polyhedron of F. 

4 Rigidity of 2-bridge knots 

In this section we will need the following 
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Lemma 4.1. Suppose that G is a finitely generated group, E a G.modulus, R is an 
element of G so that R .~=~ for each leE, Denote by dp:G~G/((R)}=G' the 
natural projection epimwrphisra, where ( (R )  ) is the normal closure of R in G. Let 
[x]eH~(G, E) be a class such that the restriction e~'x to ( R ) is zero in Z I ( ( R ), E). 
Then 

(i) E is G'-moduIus: g'. ~=g. ~Jbr any g~ -~ (g '~  
(ii) there is a class [x"]=~.(x)eH~(G ~, E) ~ch that x~(g~)=x(g) for each 

Proof Define x: as x'(g')---x(#). Since the action of R ori E is trivial, then the 
definitions ofg ' ,  r and x' do not depend on the choice of geq~-I(g,), D 

Let K ~ S  a be a 2-bridge knot (see [R]), Let (p, q) he a pair of coprime integers. 
Remove from ga an open regular neighborhood ~/ff(K) of the knot K and denote 
the resulting manifold with boundary by M~ = M(K; 0o). We shall consider only 
hyperbolic 2-bridge knots K, i.e, such that int(M(K; co) admits a complete hyper- 
bolic structure~ Denote by ,~ a simple homotopically nontrivial loop on ~M(K; go) 
such that 2 bounds a disc in ~he'(K); let I~c3M(K; co) be a simple homotopically 
nontrMal toop which is homologicatly trivial in M(K; co). Denote by M~j,,q~ the 
manifold obtained from Mm by attaching a solid torus 7' along the boundary so 
that the loop 2P# q bounds a disc in ~. Suppose that (p, q) are not coprime, and k is 
their greatest common divisor. Denote by T(k) the orbifold whose underlying set is 
DZxN 1 and the singular set {0} xN t has order k. 

Then M~p.o is the orbifotd obtained from M~ by attaching ~'(k) so that the toop 
)fk#q/~ bounds a disc in ~(k) with one singular point. 

This procedure is called the generalized Defm surgery on the knot K; (p, q) are 
parameters of the surgery. 

Remark 4. This definition is slightly different from the standard one, 
Then for all but finite coprime parameters (p, q) of Dehn surgery on K the 

resulting manifolds are hyperbolic and are not sufficientb' large [HT]. For a group 
F and representation p:F~SO(n, 1) we denote by Ad, op the corresponding 
adjoint representation on the Lie algebra so(n, 1), 

Theorem 2. For infinitely many eoprime (p, q) the groups ~i M~p,o are locally rigid in 
SO(4, t) and moreover H I (~1M~p.q~, Ad~)=0. 

Proof of Theorem2. Consider the uniformization M=ga\K=IH3/F.  Then 
F =  <x, ylxw =wy), where w=w(x, y), x, y are parabolic elements of 
F c  PSL(2, @), Denote by A the maximal parabolic subgroup of F which contains 
(x); A = (x)  @ (z) where the elements x, z are represented by the loops 2 and 
# respectively. 

First consider the case of a "singular" Dehr~ surgery (r, 0) on the krlot K such 
that in the fundamental group of the hyperboIic orbifold M(~,o~ the image of x has 
the order r. Let Pr :F~F,~. ~h(M(,,o~) be the holonomy representation; 1H~/F,- -. 

Denote by 

I;-- {p,: F~PSL(2, r r  

the collection of eonjugacy classes of such representations (where r varies). 
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Lemma 4.2. For ever), (r, O)-surgery we have 

H 1 (F,, Ad,) = 0 .  

Proof. The group F, is generated by two elliptic elements x~=pr(x), y,=p,(y), 
which are conjugate in F,. Consider the group 

F* = ( x l x ' =  t>* (y ty '=  1> 

and the natural projection w,:F*-o C. Then we have H2(F *, Ad4o ~o,)=O since 
F* is almost free. Let [~]~Ht(G,  Ad4], then 

[4"] = ~o* [ r  *, An4) 

is an integrable infinitesimal deformation. Let 0,: F*-,SO(4, 1) be a curve tangent 
to El*]. 

Proposition. For every t the group Or(F*) is conjugate in $0(4, 1) to a subgroup of 
SO(3, 1). 

Proof The group O,(F*) is generated by two elliptic transformations with the 
fixed-point sets t ,  k~ which are unlinked Euclidean circles in S'a. Then the proposi- 
tion follows from Corollary 2.2. [] 

Thus we can find a coboundary 

6,TeBI(F *, Ad4 ~ ~, )= Bt(Fr, Ad4) 

such that 6~-  ~ eZ  1 (F,, Ad3). However, 

HI(F~, Ad3)=0 

by Weil's rigidity theorem [W]. So [ r  This proves Lemma4.2. [] 

Corollary 4.1. (i) The restriction map 

res: H l (F, Ad4 ~ p , )~  H 1 ((x>, Ad4 ~ pr ) 
is injective. 

(ii) The space H I(F, Ad4 ~ p,) has dimension 2. 

Proof Consider (i). Let [~k]eKer(res). Then ~b(xm)=fl-Ad4opr(xm)fl, where 
fleso(4,1). Define a cocycles tr,r in ZI(F, Ad4op,) as cr(g)=fl-Ad4op,(g)fl, 
4(0) = r The cocycle ~k is cohomologous to r and the restriction of ~ to 
(x> is identically zero. 

Now we can apply Lemma 4.1 to the projection p~ : F ~ F ,  Then ~ induces the 
cocycle p,,(~)= ~ 'eZ t (F,, Ad4)= B 1 (F,, Ad4) (according to Lemma 4.2). Hence for 
some aeso(4, 1) we have ~'(9')=~-Ad4(g')(~). However, ~'(9")= 
r  Ad,~ o p~(g)(a). Therefore, 

~zB~(F, Ad4 o p,) 
and (i) is proved. 

Consider Oi). We have the following diagram 
reso 1 res~ 

Ht(F, A d a o p r ) ~ H  (A, Ad3op,) ~ HI((x>, Ad3~ 
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The Abelian group p,A is generated by one hyperbolic and one elliptic element; 
thus its action on IR a, 1 has no nonzero fixed vectors and 

0=2dimHO(A, IRa.i~=HI~A IR3.1~ 
O r  I ', ~ O r  I "  

Therefore, in the exact sequence 

0 = H~ IRo3;1)-~H~ Ad3 ~ p,) 

-+H~ Ad4~ 3 1 IRo'r ) = 0  

the homomorphism ~, : H~ Ad3 o p,)~HO(A, Ad4 o p,) is an isomorphism. On the 
other hand: 

8: HI((x>,  Ad3 o pr)~ ]R2-+H1 ((x),  Ad4 ~ p~)~iR 4 

~ H '  (<x>, IR~: ~) ~ IRE ~ 0 .  

Hence ~9 is a monomorphism with 2-dimensional image. 
Recall that for H-modulus F the space F H is the set of elements of F fixed under 

the action of H. Now, consider the exact sequence: 

OoiR 2 = H~((z>, so(3, 1) p'(x)) 

~IR4 = H 1 (A, Ad3 ~ p~)~H 1 ((x>, Ad3 o p~)<z>--*0. 

However, y acts trivially on Hl((x>,  Ad3 ~ p,) because A is Abelian and 

H ~ ((x>, Ad3 o p,) = H 1 ((x>, co(2)) 

where co(2) is the Lie algebra of the centralizer of p~(x) and p,(z) in SO(3, 1). This 
follows that the restriction map res3 is surjective. 

Therefore, Im(res2) = Im(res2 o ~k) = Im(8 o res3) = Im(8) ~ IR2. Notice also that 
Ker(resl)=Ker(res2 o res l )=0 (according to (i)) and Ker(~/)=0 (for instance be- 
cause ff o reso is injective). Thus res2 o resl injects H 1 (F, Ad4 o p,) into the image of 
,9 which is 2-dimensional. Thus, 

dim H 1 (F, Ad4 ~ p,) < 2 .  

On the other hand, 

and thus 

H i (F, Ad4 o p,) ~ r/(H i (F, Ad3 o p,)) 

dim H 1 (F, Ad4 o p,) > 2 .  

This implies the second assertion of the corollary. [] 

We continue proof of Theorem 2. The space R(F, 3) has the natural complex 
structure since we can identify SO(3, 1)+ with PSL(2, tE). Denote by E the projec- 
tion to R(F, 3) of the set of representations pv,q:F~Fp,~ c SO(3, 1) which are the 
holonomy representations of hyperbolic manifolds Mtv, q). 

Remark 4. Here and below p and q are coprime integers. 
Denote by Ro(F, 3) the connected component of R(F, 3) containing Po. 

Lemma 4.3. The set E is Zariski dense (over IR) in Ro(F, 3). 

Proof Step 1. The element po(x) is a parabolic element in PSL(2, IE). Take a 
simply connected neighborhood V of po(X) in PSL(2, ~E). For each #ePSL(2, IE) 
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choose a lift ~ ofg  to SL(2, 113) and define 2(g) to be the ratio of eigenvalues offf (this 
is well defined up to inversion). 

We can choose V to be so small that the image of 2 does not intersect the set of 
nonpositive real numbers. Then extend the function 2 to the orbit of V under the 
conjugation by PSL(2, C) as: 

2(hoh- ~)= ~(g) . 
Finally we put 

u: [p] ~-~log(2(p(x))/2) 

where we choose that branch of logarithm so that tog(l)= 0. Then, u[po] = 0. The 
function u([p])  is well defined up to the multiple _+1 and there is a way to choose 
this multiple so that function u is a holomorphic embedding of W into C (see 
[NZ]). Put E* =u(E) and 

U = { I z l / z , z ~ E * }  . 

The set Uis dense on the unit circle (see [NZ])  and the points of E* accumulate to 
zero. Therefore, the set E* cannot lie on any real-analytic subset of u(W). 

Step 2. Suppose that E is not Zariski-dense and E = f - 1  (0) for some nontrivial 
polynomial f Then E*c~ W is contained in the real-analytic set ( f  o u)- 1 (0) which is 
impossible. [] 

Corollary 4.2. I f  Eo is any finite subset of E, then E\  Eo is Zariski dense in Ro(F, 3) 
over IR. 

Lemma 4A. For infinitely many elements peE 

dim H ~ (F, Ad4 ~ p) = 2 .  

Proof. Denote by (L, cp) the so(4, 1)-bundle over M~ with the fiat connection c,  
associated with the representation Ad, op (see [JM]). The group cohomology 
Hi(F,  Ad4 o p) can be calculated via simplicial cochains of Mo~ with coefficients in 
the parallel sections of(L, c,) (see [JM]). Thus the spaces of/-chains Ci(X.p) of the 
corresponding complex ~ p  is finite-dimensional. We shall identify C ' =  C'(~r for 
different p so that the coboundary operators 6~ are linear operators between 
finite-dimensional spaces 

b~:Ci~C ~+1 

which depend algebraically on the parameter p. 
Suppose now that there exists a finite set E0 c E  such that 

dim H 1 (iv, Ad4 o p) > 3 
for every peE\Eo. 

Denote the dimension of C i by N~. The space Im(b ~ has constant dimension A o 
since H~ Ad4 o p) = 0 for each [p] ~E. If dp = dim Ker(6~) ~ 3 + A o for p~E\Eo 
then 

Im(b ~)=Nx -dp< N 1 -  3 -  Ao . 

Denote by {/~s, s = 1, 2 . . . .  } the complete set of minors of order (N 1 - 2 - A 0) in the 
matrix b~. Then 

~(P)= Z ~q(p)=O 
s > l  

for every p~E\Eo. 
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Obviously, #(p) is an algebraic function; however #(p~)4:0 for every p~eZ since 
dim Hi(F, Ad4 o Pr)= 2. So, E\Eo is contained in a proper real-algebraic subset of 
R(F, 3) which contradicts to assertion of Corollary 4.2. [] 

Now we can finish the proof of Theorem 2. We have an infinite subset F c E such 
that dimH~(F, Ad4op)=2 for every peF. However dimHl(F, Ad3op)=2, so 
dimHl(Ftv,q), Ad4op(p,q)=O for p<p.q)eF. Theorem 2 is proved. [] 

5 Deformations of nonuniform lattices 

5.1. Let F clsom(IH 3) is an arbitrary nonuniform lattice (i.e. vol(lH3/F)< ~ but 
IH3/F is not compact). 

Definition. Let PZ i (F, so(4, 1)) be the subspace of cocycles ~eZ 1 (F, so(4, 1)) such 
that the restriction of ~ to each cyclic parabolic subgroup ( 7 ) c  F is a coboundary in 
Zl((~),  so(4, 1)). Then put 

PHi(F, so(4, 1))=PZl(r ,  so(4, 1))/BI(F, so(4, 1)). 

The space PHi(F, so(4, 1)) is called the space of parabolic cohomology classes and 
PZl(F, so(4, 1)) is the space of parabolic cocycles. 

Theorem 3. For every maximal parabolic subgroup A c F we have 

resa : pHi(F, so(4, 1))~pHi(A, so(4, 1)) 

is identically zero. 

Proof. The space so(4, 1) admits the Adr-invariant decomposition so(4, 1)= 
so(3, 1)O V, where V---_IR 3'1 is the Lorentz vector space [JM]. This splitting 
induces the natural decomposition 

PHi(F, so(4, 1))=pHI(F, so(3, 1)) �9 pHi(F, V). 

However, PHi(F, so(3, 1))=0 by Weil-Garland-Raghunathan Rigidity theorem 
[GR, R]. Therefore, projections of every [~]ePHi(F,  so(4, 1)) to 

PHl(F, so(3, 1)) and PHl(A, so(3, 1)) 

are zero. However, PHi(A, V)=0 since 

pHi(A, so(4, 1))~PHI(A, so(3, 1)). 

So, resA([~])=0. [] 

5.2 Example. Let F ~ SO(3, 1) be the fundamental group of the complement to any 
hyperbolic 2-bridge knot (as in the Sect. 4). 

Theorem 4. pHi(F, so(4, 1)) =0. 

Proof. Suppose that ~ePZl(F, so(4, 1)) be a nonzero cocycle. Denote by F* the 
free group generated by x, y. Then, applying the arguments of Lemma 4.2, we 
construct a smooth family of representations 0t of F* into SO(4, 1) such that: 

(i) Oo =id; 
(ii) Or(x) and Or(y) are all conjugate to x and y for all t; 
(iii) the curve Ot is tangent to the lift ~, of ~ to F*. 
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Each transformation Or(x) and Or(y) is conjugate in SO(4, 1) to a Euclidean 
translation. This implies that every 3-dimensional hyperbolic subspace of IH 4 
which contains 1-dimensional horocycle of Or(x) is invariant under 0F(x); the same 
is true for Or(y). We can assume that Or(x) is a Euclidean translation along a line : in 
the upper-halfspace model of 1I-14. Let P be a Euclidean 3-dimensional subspace in 
IR 4 which contains : ,  horocycle of Or(y) and orthogonal to the absolute of IH 4. It 
follows that OF(F) has an invariant 3-dimensional hyperbolic hyperplane Pc~IH 4. 
The same arguments as in Lemma 4.2 imply that ~ B I ( F ,  so(4, 1)). [] 

Remark 5. The arguments of the proof show that if [p]ePR(F, 4), then the class 
[p] contains a representation Pl with image in SO(3, 1). However Riley in [Ri] 
described completely all representations of F in PSL(2, IE). Any representation 
which preserves the conjugacy classes of x and z is conjugate to id. Therefore 
PR(F, 4) consists of a single point. This implies that if [p] eR(F, 4) is the conjugacy 
class of a discrete faithful representation p then [ p ] = [ i d ] .  Indeed, such 
representation p must preserve the conjugacy class of x because p((x) �9 (z)) is 
conjugate to a lattice in 11t 2. 

6 Three examples 

Notation. For any orbifold (9 we shall denote by 1(91 its underlying set. For a face 
P of a polyhedra ~ we shall denote by Ste the set off all those faces of �9 which have 
nonempty intersection with P; St*=Ste-{P}.  We shall suppose that IH 3 is 
realized as a unit ball in IR 3. 

Bending deformations. The following is not the most general description of the 
"bending", but it is enough for our aims. Suppose that G c SO(n + 1, 1) is any group 
which splits as the amalgamated free product G = G1 , j  G2 so that: 
(1) G1 and G2 have finite centralizers in SO(n+ 1, 1); 
(2) the centralizer Zj of the group J in SO(n + 1, 1) is 1-dimensional. 

Take a nondegenerate curve Ot in Zj which contains 1. Then put Gt to be the 
group generated by G1 and OtG20i -1. It is easy to see that Gt=pt(G), where 
{ p, : t e [0, 1] } is a continuous curve of homomorphisms of G in SO(n + 1, 1). This 
curve defines a nontrivial deformation of the identity representation of G in 
SO(n + 1, 1). Such deformation is called the bending in J. 

Remark 6. Bending deformations of representations of fundamental groups of 
hyperbolic manifolds (and orbifolds) of dimension n were constructed by several 
authors: by Thurston [T]  for n=2;  in the case of certain reflection groups in 
IH 3 -  by Apanasov and Tetenov [AT]; then in infinitesimal f o r m -  by Lafontane 
I-L]; and later by Kuorouniotis I-K]. In the most general form (for graphs of 
groups) this conception is explained by Johnson and Millson [JM] (see also [G]). 
There are examples of Apanasov [A] of"pea-pod" groups which admit "stamping" 
deformations; this construction was generalized by Tan [Ta]. For further general- 
izations see also [KM].  

6.1 Example 1. Suppose that we are given a finite-sided convex polyhedron 
t2c  IH 3 with the following properties: 
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(a) for some compact face P of f2 all but one faces of St~ are orthogonal to 
a common geodesic plane/7 c IH3; 
(b) among the faces in St~ there is a face Q2 which enters a cusp made by the faces 
Q1,Q2,Q3,Q4 where Q3, Q4~St*. 

Then Q2 is orthogonal to Q3, Q4. Suppose that f2 is the fundamental polyhedron 
for the discrete group Fe generated by reflection in its faces. 

Denote by A the group generated by reflections in QI, Q2, Q3, Q4. 
Consider a nontrivial continuous family Sp(Q)~2 of Euclidean spheres (ee[0, 1]) 

such that: 
(i) Sp(Q)~ = Sp(Q)z; 

(ii) Sp(Q)~2 is orthogonal to Sp(Q4), Sp(Q3) and tangent to Sp(Q~); 
(iii) the closed ball in IR 3 bounded by (Sp(Q)~) contains Sp(Qz); (eel0,1]). 
Then e(Sp(P), Sp(Q)~)>e(Sp(P), Sp(Qz)). For all sufficiently small values of 

there is an elliptic rotation ~o~eMob(S 3) around the circle 0o011 such that: 

e(Sp(P) ~, Sp(Q)~)= e(Sp(P), Sp(Q2)), where qg"Sp(P)= Sp(P) ~ . 

Define the new configuration of spheres Sp(~2) ~, that consists of the same spheres as 
Sp(f2), except of Sp(P) and Sp(Q2) which are deformed to Sp(P) ~ and Sp(Q)~2 
respectively. Then Sp(O) ~ has the same combinatorial type as Sp(f2) and the same 
angles between spheres. The group generated by the reflections in the spheres of 
Sp(O) ~ defines the deformation p~ : F ~ G ,  with the following properties: 
(a) for sufficiently small values of e the representation p~ is discrete and faithful; 
(b) projection 0A of p, to Hom(A, SO(4, 1))/SO(4, 1) is a nontrivial path; 
(c) [p~]~PR(Fo, 3)(see Introduction). 

One can generalize this example, however in general case it is rather difficult to 
determine: whether or not we obtain nontrivial deformations of cusps. 

6.2 Example 2. Consider the convex polyhedron 4 in IH 3 which is drawn on Fig. 1. 
As usual, if an edge e of 4 is labelled by the integer n then the dihedral angle of 4 at 
e is n/n. Let G be the group generated by reflections in the faces of 4. First, find all 
totally geodesic suborbifolds in 4. There are only 3 incompressible suborbifolds ~i 
in 4: t3[~il=ctj, i - 1 ,2 ,3  (see Fig. 1). 

(i) Suppose ~1 is totally geodesic; then we split 4 along ~1 and consider the 
"upper half" 4 ~- (Fig. 2): 

Then 4 ~ contains an incompressible Euclidean rectangle suborbifold, that is 
impossible. So, cq cannot be the boundary of the underlying set of any totally 
geodesic suborbifold in 4. 

(ii) Consider @z. According to Andreev's theorem (see IT]) there exists 
a convex polyhedron 4+ cIH 3 as on Fig. 3. The face ~zcal4+l is a rectangle 
symmetric under rotation 0 of order 2 around the axis (. Let 4 2  =0(4+);  then 
4 2 ~ 4 ~  is a convex polyhedron isometric to the initial one 4. So ~2 is a totally 
geodesic suborbifold. 

(iii) The same arguments imply that the orbifold ~3 is totally geodesic. 

Thus the orbifold 4 has exactly two totally geodesic 2-dimensional suborbifolds 
~2,@3. Fundamental groups of ~ 2 , ~ 3  have 1-dimensional centralizers in 
Isom(lH4). The corresponding bending deformations f12, f13 of the group G in 
Isom(IH 4) define classes fl~, fl~ which span the 2-dimensional space H 1 (G, so(4, 1)). 
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On the other hand, deformation space R(G, 4) is a smooth 2-dimensional 
surface. This shows that bending deformations in intersecting surthces can span 
a plane tangent to a smooth surface in the representation variety. This result shows 
the striking difference between lattices in Isom(lH 3) and Isom(IH") (n> 3) since 
in higher dimensions there are examples [JM] when a linear combination 
of two bending cocycles is not tangent to any smooth curve in the representation 
variety. 
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Fig. 3 

2 

2 

\ 

\ 

6.3 Example 3. Our next aim is to construct an example of group H which does 
not admit bending deformations at all, while it is possible to deform H since its 
fundamental polyhedron has six faces. 

Change only one dihedral angle of the polyhedron ~: instead of the angle rt/3 at 
the edge j we consider the angle re/5. Denote the new polyhedron by 7 J. 

(i) The same arguments as in Example 2 imply that a 1 cannot be boundary of 
a totally geodesic suborbifold @~ of 7'. 

Next notice that both ~z, a3 do not intersect the edge j.  
(ii) Consider the curve ~ 2 c t~l 7 j I and suppose that ~ 2 = ~ I~A'~21, g2 CS t// is a total- 

ly geodesic suborbifold. Then split ~ along g2 and obtain two parts: ~ -  ~ j  and 
7'~ which does not contain j.  The hyperbolic polyhedron 7J~ is isometric to ~2 .  
Then the rectangles @2 and g2 are also isometric. Fix the polyhedron ~ ~, the face 
o~2~(31~[ and denote the faces in St* by Qi ( i = 1 , . . .  ,4) so that QI~j.  The 
remaining face in Oq'~ \Ste2 will be denoted by S. Then: 

S meets Qi (i= 1,2, 3) by the angles r~/2,rt/3,n/2, (a) 

Sp(S) is orthogonal to OlI-I 3 . (b) 

The sphere Sp(S) with the properties (a), (b). is unique up to the reflection z2 in ~2 
(~2 preserves Q 1). Thus, (a) and (b) r the angle between S and Q 1 is equal to n/5. 
However, we can consider Sp(Q i) as spheres which contain faces of the polyhedron 
�9 f (since ~2 is isometric to ~2). Let R be the remaining face of Ol~- I\St~,. Then R 
has the same properties (a), (b), however the angle between R and Q 1 is equal to re/3. 
This contradiction implies that g2 cannot be a totally geodesic suborbifold in 7 j. 

(iii) The same arguments as above are valid for the curve ct 3. 
So the curves ak (k = 1, 2, 3) cannot be boundaries of underlying sets of totally 

geodesic suborbifolds of 7'. Hence ~ does not contain totally geodesic suborbifolds 
at all. 

Let H be the discrete group generated by reflections in faces of 7 ~. Then H does 
not admit bending deformations, however Theorem 1 implies that the deformation 
space R(H, 4) is 2-dimensional. 
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6.4 Conjecture  2. F o r  every c o c o m p a c t  discrete subg roup  G c I som( lH 3) the var-  
iety R(G, 4) is smoo th  at  the po in t  [ id ] .  

Remark 7. As John  Mi l l son  expla ined  to me, the first obs t ruc t ion  for de fo rmat ions  
in this case is a lways  zero because  it be longs  to the subspace  H2(G, so(3, 1)) of  
H2(G, so(4, 1)), however  H2(G, so(3, 1))_~ H 1 (G, so(3, 1))= 0. 
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