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Summary. We prove that for any nonelementary representation 
p: n l ( S ) - ,  SL(2, ~) of the fundamental group of a closed orientable hyper- 
bolic surface S there exists a complex projective structure on S with the 
monodromy p. 

1. Introduction 

Let S be a smooth closed surface. A complex projective structure a on S is 
a maximal atlas such that all transition maps belong to the group PSL(2, ~). 
Each complex projective structure a on S defines a homomorphism 
p: F = nl(S) ~ SL(2, ~)  which is called the monodromy representation of a. 
The projection of this representation into PSL(2, ~) is unique up to conjuga- 
tion. An important  class of complex projective structures is given by uniformiz- 
ation. Suppose that F c SL(2,~) is a torsion-free Kleinian group acting 
discontinuously on a nonempty domain / )  c ~.  Then the canonical complex 
projective structure on D projects to a complex projective structure on 
S = D/F. In this case the monodromy representation is an epimomorphism 
P: nl(S)-~ F with the kernel nl(D). However complex projective structure 
does not have to appear this way, in particular the monodromy representation 
can be nondiscrete. 

Recall that a representation p : G -~ SL(2, ~)  is nonelementary if there is no 
invariant point or geodesic in ~q3w �9 for the action of the group p(G). It is 
well-known that if p: F ~ SL(2, r is a monodromy representation of a com- 
plex projective structure on a closed surface S of negative Euler characteristic 
then the representation p must be nonelementary, see [1, p. 297-305], [13], 
[12], [18]. In this paper we prove that this is the only restriction on mono- 
dromy representations. 
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Theorem 1. Suppose that S is a closed orientable surface of  the genus g > 1. Let 
p: 7h(S )-~ SL(2,112) be a nonelementary representation. Then there exists 
a complex projective structure on S with the monodromy homomorphism p. 

This theorem was conjectured by R. Gunning in [13] and a proof was 
announced by D. Gallo in [7]. Some particular cases of Theorem 1 were 
established earlier. Under the assumption that the monodromy group p(F) is 
contained in SL(2, IR) Theorem 1 was proven in the preprint [8]. Suppose that 
p factors through a homomorphism onto a free group of rank g so that the 
images in SL(2,C) of free generators are loxodromic. Under these assump- 
tions Theorem 1 was proven by D. Hejhal in [15]. D. Hejhal also conjectured 
that "generic" representations into SL(2, ~) are monodromy representations. 
Our proof of Theorem 1 is based on ideas of [4], [7], [8] and [9]. 

The idea of the proof of Theorem 1 is to combine the "continuity method" 
of [4] with combinatorial arguments of [7], [8] using properties [9] of the 
representation variety Hom(F, SL(2,tlS))/SL(2,112). Namely, we connect the 
representation p with a Fuchsian representation r o by a special family of 
homomorphisms r~ : F -~ SL(2, ~), 0 < t < l, r~ = p (Theorem 2). This is done 
by generalizing arguments of [8] and [9]. The map from the space of all 
complex projective structures on S into the representation variety 
Hom(F, SL(2, C))/SL(2,r is open [15]. Thus the hyperbolic structure on 
S with the monodromy r0 belongs to a family of complex projective structures 
ct with the monodromy rt (0 < t < tl, where tl < 1). If the family of structures 
ct degenerates as t --* tl, then using grafting of ct we "regenerate" ct and pass 
through the point of degeneration tl, retaining the family rt of the mono- 
dromy representations (Theorem 3). Then we repeat the process. The families 
ct and rt are chosen so that there are only finitely many points of degeneration. 
Therefore, eventually we get a complex projective structure with the mono- 
dromy p. In Section 7 we consider the possibility of extending these arguments 
to an arbitrary family of representations F ~ SL(2, C). In the same section we 
also discuss relation between degenerations of complex projective structures 
and properties of unstable bundles. 

It is unclear at this moment whether one can avoid combinatorial argu- 
ments in the proof of Theorem 1 using instead harmonic maps or pleated 
surfaces. In Section 4.3 we prove the following 

Corollary. Suppose that S is a closed orientable hyperbolic surface, r: rh (S) 
P SL(2,112) is a nonelementary representation. Then there exists an r-equivariant 
pleated map f :  R-I 2 = S ~ IH 3. 

Note that the existence of an equivariant harmonic map was established 
by S. Donaldson and K. Corlette. 

2. Definitions and notations 

2.1. We shall consider the extended complex plane 1i2 = C w { ~ } as the 
sphere at infinity of the 3-dimensional hyperbolic space 1H 3. Thus the group 
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PSL(2, r  is identified with the group of orientation-preserving isometries of 
IH 3. Denote by 3: SL(2, ~)  ~ PSL(2, C) the projectivization. In this paper we 
shall assume that the hyperbolic plane IH 2 is embedded in �9 as the upper-half 
plane 

{z ~ ~ :  lm(z) > 0} 

with the metric ds = [dzl/Im(z). Then the hyperbolic metric in IH 2 is invariant 
under the group PSL(2,1R) of conformal automorphisms of IH 2. If X c IH 2 
then we shall denote by N,(X)  the ~-neighborhood of X in the hyperbolic 
plane IH 2. 

Let G be a subgroup of PSL(2,1E). The group G acts discontinuously at 
z ~ C provided that there exists a neighborhood U ofz  such that 9 U ~  U = 0 
for all but finitely many g E G. Denote by f2(G) the region of discontinuity of G, 
i.e. the set of points z ~ ~ such that G acts discontinuously at z. If ~2(G) # 0 
then the group G is called Kleinian. Let 9 ~ SL(2, ~) be an element so that r(g) 
is different from the identity. If 3(9) has only one fixed point in ~; then g is 
called parabolic. An element g 4: + 1 is parabolic if and only if Tr2(9) = 4. 
For any parabolic element g the Moebius transformation r(g) is conjugate in 
PSL(2, ~) to the translation z w-~ z + 1. 

An element y of SL(2, ~)  is called loxodromic if Tr(g) ~ [ - 2, 2]. For  any 
loxodromic element g the Moebius transformation ~(9) is conjugate in 
PSL(2,11~) to a dilation z ~ 2.z ,  where 2 ~ C, 12l 4: I. Therefore g has two 
fixed points in ~,  one of them is attractive, another is repulsive. 

An element 9 is called elliptic if Tr(0) ~ ( - 2, 2) or 9 = 4- 1. An element 
g is elliptic if and only if z(y) is conjugate to a rotation z ~ e~~ If 
g ~ P S L ( 2 , ~ ) -  {1} has a lift ~ into SL(2,1E) which is loxodromic (resp. 
parabolic, elliptic) then the element 9 itself will be called loxodromic (resp. 
parabolic, elliptic). 

Given an element g ~ SL(2,~) we shall denote by ~ its projection to 
PSL(2, ~); if p : F ~ SL(2, ~)  is a representation then ~3 will denote the com- 
position r o p. 

Consider the projective model for the hyperbolic space ~ 3  ~ Rp3, then 

PSL(2, C) ~ PSL(3, ~ )  

If ,~ ~ PSL(2, r  is an elliptic element then the axis of ~ is the set of points 
z ~ R P  3 such that ffz = z. Suppose that 9 ~ SL(2, C) is a loxodromic element. 
Then the axis of 9 to be denoted by Axis(g) is a geodesic in IH 3 which connects 
the fixed points of ~. The translational length l(g) of the element g is the 
hyperbolic distance between z and O(z) for any z ~ Axis(y). 

A subgroup F c SL(2, r  is called elementary if it has an invariant point 
or geodesic in ~ w IH 3. Any elementary group is either relatively compact or is 
not Zariski dense (over 112) in SL(2, r 

If G is a finitely-generated group then Hom(G, SL(2,112)) 0 will denote the 
space of all nonelementary representations of G into SL(2,11~). The quotient 
R(G) ~ = Hom(G, SL(2, r176 C) is an algebraic variety. 
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The commutator of elements a, b eG will be denoted by [a,b] = 
aba- 1 b- 1. For every surface S we denote by g the universal cover of S, then 
the fundamental group F = rtl (S) acts on S as the group of covering trans- 
formations. All surfaces in this paper are assumed to be orientable. 

Suppose that S is an oriented surface, ~ is a simple loop on S, then 
D~ denotes the Dehn twist on S along ~ (see [3]). Let a,b be a pair of closed 
loops on S. By i(a, b) we denote the geometric intersection number between 
a and b, i.e. the minimal number of points of intersection for all loops a', b' 
homotopic to a, b resplectively. Therefore, a is homotopic to a simple loop iff 
i(~, ~) = 0. Suppose that i(a, b) = 1. Then i(a". b, a". b) = 0 for all n ~ 2~. Let 
a, b be a pair of smooth simple loops so that a ~ b is a single point q where a is 
tangent to b. Suppose that a, b are oriented so that at the point of tangency 
q they have opposite directions. Then i(ab, ab)= 0. A compact subsurface 
S' c S is called incompressible if each component of OS' is homotopically 
nontrivial in S. 

A compact surface S is called "pants" (or "pair of pants") if it is homeomor- 
phic to 

{ z e • : l z l < 4 , [ z - 2 1 > l , [ z + 2 1 > l }  (1) 

Suppose that T is a 2-dimensional torus, D c T is an embedded closed disc. 
Then the surface T - int(D) is called a "handle". Let C c X be a smooth 
simple curve on a surface X. Then a eoorientation v on C is a nonvanishing 
smooth vector-field along C such that at each point q e C the vector vq and the 
tangent space Tq(C) span the whole tangent plane Tq(X). 

Suppose that we are given a collection D1, Di . . . .  , Dr, De of disjoint closed 
topological discs in ~. Let g~ e PSL(2, r  = 1 . . . . .  r, be a family of Moebius 
transformations such that g j ( D j )  = ~ .  - -  int(Dj). The group G generated by 
gl, ... ,g, is called a Schottky group. This group is always Kleinian, it is 
isomorphic to the free group on r generators F, .  Each Schottky group G can 
be isomorphically lifted to (~ c SL(2, IE), the group (7 will be also called 
a Schottky group. Suppose that a Schottky group G has an invariant closed 
disc U c C and the rank of the group G is equal 2. Then the quotient 
(U c~ O(G))/G is either a pair of pants or a handle. Conversely, if a torsion-free 
Kleinian group G has an invariant closed disc U ~ �9 and (U c~O(G))/G is 
homeomorphic to a pair of pants (or a handle) then G is a Schottky group of 
rank 2. 

A Kleinian group G is called Fuchsian if it has an invariant round disc A in 
(we do not require A(G) to be the whole circle c~A). A Kleinian group G will 

be called quasifuchsian if its limit set is a topological circle and G preserves the 
orientation on A(G). 

2.2. Suppose that a is a complex projective structure of a surface S. Then 
a defines a local diffeomorphism dev from the universal covering S to the 
extended complex plane ~. Locally the map dev is a complex projective 
diffeomorphism with respect to the complex projective structures on ,~ and ~. 
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The map dev is called the developing map of a. Assume that the fundamental  
group F = n~ (S) acts on S as the group of covering transformations.  Then the 
developing map dev induces a homomorphism p: F --* SL(2, II?) which satisfies 
the property: 

~(g) o dev = dev,, g for any g e F (2) 

The representation p is called the monodromy representation of the structure a. 
The representation fi is unique up to conjugat ion in PSL(2,~) .  The group 
p(F) is called the monodromy group. Conversely, suppose that we are given 
a local homeomorphism dev: S --* r and a representation p which satisfy (2). 
Consider the pull back dev*(can) of the canonical  complex projective struc- 
ture from q2 to S. The group F acts as a group of automorphisms of dev* (can), 
thus the projection ofdev*(can) to S/F is a complex projective structure a. The 
map dev is a developing map of this structure. 

3. Outline of the proof of Theorem 1 

The proof of Theorem 1 consists of 3 main steps. Suppose that S is a closed 
oriented surface of the genus g > 1 and we are given a nonelementary 
representation p: n~(S) = F ~ SL(2,112). We shall identify S with the hyper- 
bolic plane and F with a Fuchsian group so that S = IH2/F. 

3.1. Step I. Theorem 2. There exists a decomposit ion of the surface S into the 
union of pairs of pants P2 and a cont inuous family of representations 
r~: F --. SL(2,112) so that: 

(a) ro = id, rl = p; 
(b) for every t ~ [0, 1] the restriction of r, to each subgroup nl(Pj) is an 

isomorphism between Schottky groups nl(Pj)  = Fj and rt(Fj). 

3.2. Step II. Consider the annulus  A = {z ~ I12:1 =< [z[ = R} with the bound-  
ary curves ~ -  = {z: 1 = Izl}, ~+ = {z: e = Izl}. Suppose that 

g f : ~ - + - - * T  2, t~[-0 ,1]  (3) 

is a smooth "generic" family of C2-smooth embeddings into the two-dimen- 
sional torus T 2. Here "generic" means that for all but  finitely many  t ~ [0, 1] 
the oriented curves 7 + = g+(c~ +) and 7f  = g f (~  ) are transversal. Assume 
that the conformal structure ct on the torus T depends cont inuously  on t. 
Suppose that for t = 0 the map g ~ u g o  can be extended to a smooth 
embedding ~b of A into T 2. 

Choose two cont inuous  families v, + of coorientat ions on ~,,-+ so that they 
"agree" with the map ~b at t = 0. This means that the preimages of Vt+o under  
the derivative of 4~ are directed "inward" the domain  A c II;. 
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Theorem 3. There exists a continuous family of  local diffeomorphisms 
9,: A --* T 2, t e [0, 1], such that .qtl~ +- = gt • and the coorientations vt +- agree 
with the maps g,. 

Step III. Now we can explain how Theorems 2 and 3 imply Theorem 1. 

3.3. Let p be the universal cover p: S =  lH 2 --+S. Denote by {P/ 1 < j  < 
29 - 2} the collection of pants in the decomposition of S given by Theorem 2. 

For  each Pj choose a connected component 0 j  of p-1pj .  Let Fj be the 
stabilizer of 0j  in F. Denote by r jr the restriction of r, to Fj. Then for each 
j there exists a continuous family of quasiconformal homeomorphisms 

fit: l~ ---~ l~ 

realizing the isomorphisms r~, so thatfjo = id and fj, are C 2-smooth diffeomor- 
phisms in s'2(F) (see [5]). 

Let B be the union of boundary curves of all pants Pj and /3 = p ~B. 
Choose a sufficiently small positive number e so that any closed hyperbolic 
disc in ~I z of the radius 2e can intersect not more than one component of/3. 

3.4. Remove from all the components intPj oflH 2 - / 3  the e-neighborhoods of 
t3P~; put t3- = P1 - N~(/~). Choose representatives Bjk c ~ for the cosets in 
B = B/F; the index jk  means that B/~ is the common boundary arc of two 
adjacent connected components Pj, Pk of IH 2 --/3. 

For  each domain /3 -  = 7Q* (where 7 ~ F)  we define the developing map 

f = rt(?) ~ ~ 7-1 (4) 

This definition does not depend on the choice of 7 sinceaS, are r,-equivariant. 
Thus, we have a r,-equivariant continuous family of local diffeomorphisms 

f , :  n4  2 - N~( /~)  --, e (5) 

Denote by C3k the e-neighborhood N~(Bjk) of BjR in lH 2. Let gjk C dPj, 
gt,i C OPk be the arcs bounding Cjk; let (b jk )  be the stabilizer of Cjk in F. 

Our aim is to define a continuous family of local homeomorphisms 
hi,.,: Cjk ~ ~. which satisfy the following properties: 

(a) hjk., are equivariant with respect to the representations 

r, I<h,k > (6) 

(b) h.,,t coincide with the restriction o f f  to the boundary of Cjk SO that for 
each t the map d, defined as the union o f f  and hjk.t is locally injective near all 
components of aN~(/~). 

3.5. The construction of the local homeomorphisms hjk,t" Cjk ~ ~ is an 
application of Theorem 3. Consider the projections o f f :  

g+ : 7ik = ~k /  (b jk )  -'+ f2( (~,(bjk) > )/ (~,(b~k) ) = V 2 (7) 

g;- : ~,j = gtkj/(b3k) -+ fa( (~,(bjk)))/(~,(bjk) ) = T 2 
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Denote by A ~ S the annulus  p(Cjk) bounded by ~+ = ~jk a n d ,  = ~kj. 
Then without loss of generality we can assume that 9+ and g~ are "generic" 
(in the sense of Theorem 3). The map q~ is the projection of the identity map to 
the annulus  A. The coorientat ion on ~jk is given by a (bjk)- invar iant  vec- 
tor-field directed inward the crescent Cjk; the coorientat ion on f'(~jk ) is given 
by the image under  f of the coorientation on ~jk. Then we apply Theorem 
3 and lift the family of maps 9, (given by Theorem 3) to a family of local 
homeomorphisms hjk,t: Cjk -+ ~. 

Denote by dt: lI-I 2 -~ ~ the extension off, via hjk, t a s  above. Then, for each 
7 ~ F we define d, on the domain  7Cjk as 

dt = rt(y) ~' hjk,t " ~'- 1 (8) 

The local injectivity of the map 

dr: II-I 2 ~ ~ (9) 

near 3Ckj follows from the fact that g, agrees with the coorientat ion of the 
loops g,• (~ + ). The map d, is a local homeomorphism on IH 2 - N~(/~) and on 
x~(~). 

Therefore the map d~: ]H 2 - - ~  is a local homeomorphism which is 
equivariant with respect to the representation p = q .  Thus the map dl is 
a developing map of a complex projective structure a on S with the mono-  
dromy p = r 1 . 

This finishes the proof of Theorem 1. []  

4. Proof of Theorem 2 

4.1. The representation space 

R(F) = Horn(F,  SL(2, (;))/SL(2, (?) 

is connected according to [9]. The subset of elementary representations has 
real codimension > 2 in R(F). Therefore there exists a cont inuous  family P, of 
nonelementary representations of F into SL(2,~)  such that Pl = P, P0 is 
a Fuchsian representation corresponding to the uniformization of S, i.e. 
S = IH2/F. Choose a set ~ = {al,a2 . . . . .  ao, bl . . . . .  bo} of canonical  gener- 
ators of F, so that [al ,bl]  . . . . .  [ao,bo] = 1. Then each loop 

ajai, ajbi,bjbi ( j  =~ i) (10) 

is simple and nonseparat ing.  Our  first goal is to prove 

Proposition 1. The group F has a canonical system of generators (~ such that the 
elements al, bl ~ c~ have loxodromic images under the representation p and the 
group ( p (a 1 ), P (b 1 ) )  is not elementary. 

This Proposition is analogous to [8] and it is a generalization of the well 
known fact that each nonelementary group in PSL(2,1E) contains a nonabelian 
Schottky subgroup. The proof of this statement occupies Sections 4.2, 4.3. 



250 M. Kapovich 

4.2. Suppose that images under p of all canonical generators and their 
products (10) are elliptic. Consider the projective model of IH 3 in RP 3 and 
denote by L(px) c A 3 ~ RP 3 the axis of the elliptic element fix; x E N. This 
fixed-point set is either a line in RP 3 or it is the whole space RP 3 (if ~3(x) = 1). 

The group generated by px, py such that Tr(px), Tr(py), Tr(p(xy)) ~ IR is 
either conjugate to a subgroup of SL(2,1R) or SU(2) or to a group of 
upper-triangular matrices. Thus, for each pair of different generators x, y e 
we have: 

Rp3~L(px)nL(py)c3L(p(xy))  4 = 0 

This implies that all one-dimensional axes L(px), x ~ ~: 
(i) either have a common point q, 
(ii) or they are contained in one plane P. 

In the case (i) we have 2 possibilities: 
(ia) q E cl(IH3), in this case the group p(F) has a fixed point q in cl(IH 3) 

and hence p(F) is elementary. 
(ib) q~cl(n-I3). Denote by q* the dual plane to q (with respect to c31H3). 

Therefore q* c~IH 3 is a hyperbolic plane which is invariant under p(F). 
Consider the case (ib). 
Let x ~ {a 2 . . . . .  bg } be an element such that p ( a l ,  x )  is not Abelian. Then 

we can change the basis f#: 

bl ~ b lx  (11) 

The loop blX is simple, nonseparating and i (a l ,b lx )=  1. Hence we can 
consider a l , b t : =  blx  as elements of another canonical basis. After this 
change of the basis we may assume that p(aa) and p(b~) do not commute. 
Therefore we can apply the following 

Lemma 1. [8]. I f  x, ~ e PSL(2, F,) are elliptic elements which do not commute, 
then there exists a number m ~ 7Z such that: 

either x~y, or xy m is loxodromic. 

Proof. This lemma was proven algebraically in [8]. In Section 6 we give 
a geometric proof of Lemma 1. []  

Lemma 1 implies that some nonseparating simple loop aa bT e F (or aTbl) 
has loxodromic image under p. Take this loop as an element aa of a new basis 
of the fundamental group F. 

Consider the case (ii). Suppose that px, py do not commute and p(xy) is 
elliptic. There exists z e f r  - {x, y} such that the intersection of axes of p(x), 
p(y), p(z) is empty. The axis L(p(xy)) doesn't belong to P and so the product 
p(w = xyz) is loxodromic. Again the loop w is simple and does not separate S. 

We conclude that in the case when all elements p(aj), p(bi) are elliptic one 
can change the basis f# so that image of one element of the new basis is 
loxodromic. 
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4.3. To consider the parabolic case we shall need the following 

Lemma 2. Suppose that a ~ SL(2, ~) is parabolic and b ~ SL(2, ~)  is an element 
such that a,b generate a nonelementary group. Then there exists a positive 
integer no such that the element a"b is loxodromic for each n > no. 

Proof. See Section 6. []  

Suppose now that the image of the canonical generator a~ is parabolic. 
Then we use the change of the basis (11) to find a new basis .~ so that p(aa) is 
parabolic and the elements p(al) ,p(b~) generate a nonelementary group. 
Therefore, according to Lemma 2, for sufficiently large m the element p(a'~bl ) 
is loxodromic. Again, the product a~b~ is represented by a simple nonseparat- 
ing loop. 

Thus, in any case, there is a simple nonseparating loop a l c  S such that 
p(al ) is loxodromic. Applying the transformation (11) we can change the basis 
.~g so that the group p ( a l , b ~ )  is not Abelian and p(bl)  is loxodromic. 
However this group can be elementary. Then ~(al ) ,~(b l )  have a common 
fixed point w in ~.  We may assume that this point is attractive for the element 
fi(al). Let q + w be the second fixed point of ~(aa). Since w is not fixed by the 
group ~(F), there exists an element x ~ { a 2 , b 2  . . . . .  ao, bo} such that 
~(x)(w) + w. It follows that for large values of n the element p(xa"lbl) is 
loxodromic and its fixed-point set does not intersect {w,q}. The loop 
b~ = xa'~bl is homotopic to a simple closed curve so that i(al,b'~) = 1. This 
means that we can use the change of the basis ba ~ b; to find ~r so that the 
group (p(a~), p ( b l ) )  is not elementary and both p(al ) ,p (b l )  are loxodromic. 
This concludes the proof of Proposition 1. 

Remark 1. In these arguments we actually did not use the fact that the 
representation fi has a lift into SL(2,11~). Therefore as a corollary of the above 
discussion we get the following 

Corollary. Suppose tnar S is a closed orientable hyperbolic surface, ~: ~1 (S) -~ 
PSL(2, •) is a nonelementary representation. Then there exists a ~-equivariant 
pleated map f :  IH 2 = S -~ IH 3. 

Proof. There exists a simple closed loop al c S such that t3(al) is loxodromic 
transformation. Thus we can apply the arguments in [21, Section 6] to 
construct an equivariant pleated map f. [ ]  

Remark 2. Note that the conditions of Corollary are necessary and sufficient 
for existence of an equivariant nondegenerate harmonic map h: S-* IH3. 

4.4. Splitting the surface 

In this section we shall need the following lemmas: 
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Lemma 3. (Cf. [8]) Suppose that a, b ~ SL(2, IE) are such that b is loxodromic 
and aba- ~ 4= b -  1. Then there exists a positive integer no such that the element 
b"a is loxodromic either for all n > no or for all n < - no. 

Proof  See Section 6. []  

Lemma 4. (Cf. [8]) Suppose that a, b, c ~ SL(2,117) are such that b, c are Ioxod- 
romic and the group (a, c )  is not elementary. Then there exists a positive integer 
mo so that the element cmbc-~a is loxodromic for all m > rag. 

Proof  See Section 6. []  

Proposition 2. There exists a decomposition orS into the union o f  pairs of  pants 
Pj such that: 

The restriction o f  p to each rtl(Pfl is nonelementary and images ~f  the 
peripheral elements o f  nl (Pfl are loxodromic. 

Proof  Suppose that S' c S is a compact connected incompressible subsur- 
face (with or without boundary) which is different from a handle. Let e, fl be 
simple nonseparating loops on S' so that i (~ , f l )= 1, images of a, fl are 
loxodromic and the group (p(a),  p( f l ) )  is not elementary. Assume also that 
for any boundary loop b c c3S' the image of b under p is loxodromic. 

Then there exists a simple homotopically nontrivial loop ~ on S' so that: 
(i) either ~ is the product of two boundary loops a, b (Splitting I); 

(ii) or ~ is a nonseparating loop which has zero geometric intersection 
number with c~, fl (Splitting II), see Fig. 1. 

We choose a base-point Xo on the loop e and (in the case (i)) connect b to 
Xo by a "tail" t so that b ' =  t . b . t  1 is homotopic to a simple loop and 
i(b',fl) = 0. Denote by 6 a simple loop homotopic ab'. This loop is non- 
separating. In the case (ii) instead of a boundary curve take any loop b such that 
i(b, 3) = 1, i(b, cO = i(fl) = 0, connect b with a by a "tail" t and let b' = t .  b.  t -  1, 
3 = ~b'. We can always assume that p(6) is loxodromic and p ( b , b )  is not 
elementary (using the base-change a --* fl"a, fl ~ fl if necessary). Then: 

f 3m ~, in the case (ii) 

D~'(~) = <( a6mb6 -" ,  in the case (i) 

Notice that 

D';'(fl) = 6raft (12) 

In any case, for sufficiently large m the elements pD~'(~), pD';'(fl) are loxo- 
dromic and the group 

(p(a), p(D~(fl))  ) (13) 

is not elementary (see Lemma 3, Lemma 4). Then split the surface S' along the 
simple loop D~'(~). 
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In the case (i) the result S" will consist of two surfaces: a pair  of pants  P and 
a surface S" with at  least one nonsepara t ing  loop D~"/~ which has loxodromic  
image. Then the group 

p(nl(P)) = (p(a),p(D'~(~))) (14) 

is not  elementary.  The group  p(nl(S")) is not  elementary as well since 

p(6,0';'(~) = 6"/~)  (15) 

is not elementary.  
In the case (ii) the surface S" is connected and has the same propert ies  as in 

the case (i). 
Now, using the Splittings I and II, we start  decomposi t ion  of the surface S. 

To begin with we consider  S ' : =  S and the pair  of loops {c~,/~} = { a l , b l }  as 
constructed in Section 4.3. Then we apply  the Splitting II  to split all but  one 
handles of S (Fig. 2). 

Then, applying the Splitting | ,  we "chop off" the split ted handles (Fig. 3). 
The result is a collection of g - 1 pairs  of pants  Kj  ( j  = 1 . . . . .  g - 1) and 
a surface S '  of the genus 1 with g - 1 bounda ry  components .  
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Fig. 2. 

$1 

Fig. 3. 

Using the Splitting I we decompose the rest of the surface into the union of 
pairs of pants Q~ and a handle T '  with a boundary loop 6. The group 
p(n~(T')) is not elementary and p(fi) is loxodromic. Split T '  along a simple 
nonseparating loop c~ which has loxodromic image under p and such that the 
fixed-point sets of ~(~), t9(~5) are disjoint (Fig. 4). The fundamental group of the 
surface Kg = T '  - ~ has nonelementary image under p. 
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This finishes the first decomposition of the surface S. As the result we 
obtain a decomposition of S into the union of pairs of pants K~, Qj such that: 

(a) The union of Qj is a sphere with holes So. 
(b) One boundary component of each Kg is adjacent to 0So along 

a boundary curve of Qi, i = 1, . . . ,  g. 
(c) By identifying 2 other boundary loops of each Kj we obtain a collec- 

tion of handles 

H1,H2, . . . ,H o 

in the surface S. 
(d) For  each pair of pants P in this decomposition the group p(n,(P)) is 

not elementary and images of all boundary loops are loxodromic. 
This finishes the proof of Proposition 2. [] 

4.5. Deformations of representations 

Recall that in Section 4.4 we have constructed a special decomposition of the 
surface S into collection of pairs of pants. 

Proposition 3. There exists a continuous family of representations 
rt: F ~ SL(2,~) such that: 

(3 
Fig. 4. 
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( a )  ro  = P o ,  rx = Pl; 
(b) for each pair of  pants P in the decomposition of S,for each boundary loop 

of  P and for each t ~ [0, 1] the element r~(7) is loxodromic and the restriction of 
rt o n  7Zl(P ) is nonelementary. 

Proof The construction of the family r, is based on a generalization of 
methods and results of [9]. Let P be a pair of pants, ]172 = ~ I ( P ) .  Denote by 
a, b, ab the boundary loops of P. The variety of nonelementary representations 

R(IF2) ~ = Hom(lF2, SL(2, ffT))~ ~) (16) 

is parameterized by 

(E 3 = {(Tr(h(a)),Tr(h(b)),Tr(h(ab))): h ~ Hom(~'2,SL(2,~))  ~ } (17) 

see [9]. 

Lemma 5. Suppose that 2t is a family of  representations of lF  2 into SL(2, ~)  such 
that ,~1,2o are nonelementary and the restrictions of  21,2o to a,b, ab are 
loxodromic. Then the curve )~r in (•2) is homotopic (relative to {0,1} ) to a curve 
I~ t of  nonelementary representations such that: 

/~t(a),/~t(b), I~t(ab) are loxodromic for all t. 

Proof The existence of the path #, follows from the fact that the interval 
[ - 2,2] of traces of non-loxodromic elements doesn't separate r  []  

Recall the properties of the decomposition of S that was constructed in 
Section 4.4. The surface S is the union of "handles" H~ and the "sphere with 
holes" So. The graph dual to the decomposition of So into the union of pairs of 
pants Qj is a tree. 

Therefore Lemma 5 implies that we can change the family of representa- 
tions 

Ptl~,(so) 

so that the new path of representations r ~ satisfies the properties: 
(1) r ~ coincides with the restriction of p, to hi(So) for t = 0, 1; 
(2) for each Q~ and every t ~ [0, 1] the group r~ is nonelementary 

and every y c ~Qj has loxodromic image r~ 

4.6. Now we have to extend r ~ to representations of the fundamental groups 
of the "handles" Hi. First, using [9], we can extend r ~ to some smooth family 
of representations r; of ~1(S) so that r; = p, for t = 0, 1. 

Suppose that H is a handle, r; is a smooth family of nonelementary 
representations of 7rl (H) into SL(2, C), ~ c H is a simple nonseparating loop, 
6 is the boundary curve of H. Let K denote the surface H - ~. Assume that 

(a) r~(6) are loxodromic for all t and r~(~) and r~ (~) are also loxodromic; 
(b) the restrictions r,l,~(r) are nonelementary for t = 0, 1. 
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Lemma 6. Under the conditions above there exists a smooth family of repres- 
entations, r,: IF 2 = n l ( H ) ~  SL(2, ~)  such that: 

(a) r,(~) are loxodromic for all t; 
(b) rt(6) = r; (6) and the restrictions r~l~l~K) are nonelementary for t ~ [0, 1]. 

Proof Denote by fl an oriented simple closed curve on H such that i(~,/~) = 1; 
let 7 -- aft, then 6 = [~,3] .  Consider the restriction map 

Res: R(~'2) ~ ~ R ( ( 6 ) )  

The variety R ( ( 6 ) )  ~ of loxodromic representations in R ( ( 6 ) )  contains the 
curve (r;(6)) .  Take any point  r ~ R ( ( O ) )  ~, thus T r ( r ( f ) ) = u  4= __+ 2. The 
preimage Res-~(r) is biholomorphic  to the quadric 

= {(x,y, 2) e I~ 3 : X 2 + y2 + 22 __ xyz  = U + 2} 

where x = Tr(h(/~)), y = Tr(h(7)), z = Tr(h(~)) for h ~ Res-  l(r), see [9]. 

Remark 3. The quadric ~ is smooth since u 2 4 = 4. 

Claim 1. For fixed u 4= _+ 2 there exists a nonseparat ing compact  real curve 
J = J(u) ~ I1; such that for every Xo2r the real curve 

Cxo[ - 2,2] = { (x , y , z )~  Q: x = Xo;Z~ [ -  2,2]} 

does no t  separate the complex curve Cxo = {(x, y, z) ~ ~:  x = Xo }. 

Proof For  any Xo * +_ 2 the curve Cxo is nonsingular .  The projection 
z: Cxo ~ IF is a 2-fold ramified covering. Therefore z - 1 ( [ _  2,2])  does no t  
separate Cx0 if the set critical values C(z) of the projection z does no t  intersect 
the segment [ - 2,2]. The set of values o f x  2 such that C(z)c~ [ - 2,2] 4= 0 is 
a simply-connected curve 

J = {4(z 2 _ u - 2)/(z 2 + 4) such that z ~ [ - 2, 2] } []  (18) 

To construct  the curve r, we first per turb r,' to a curve of representations 
r;' which is transversal to 

Rp(IF2) ~ = {r ~ Horn(F2,  SL(2, II~))~ J Tr(r(6)) E [ - 2, 2] }/SL(2, liP) (19) 

Therefore {te  [ 0 , 1 ] l r , ' ~  Rp(F2)} = {t~ < t2 ... < t,} where 0 < t~ < t~ < 1. 
Denote by u, the number  Tr(r['(6)). We can assume that for each tj 

Tr(r;i(/?)) r J(ut)  (20) 

Then we use Claim 1 to change the curve rt" to a curve r, near all points tj so 
that Tr(r,(a))r [ - 2, 2]. All representations in the curve rt belong to R(~'2) ~ 
and they are loxodromic on the elements 3, c~. Therefore, the restriction of each 
r, to n t ( K )  is nonelementary.  [ ]  
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We apply Lemma 6 to all handles Hj in S. As the result we obtain a path 
rt which satisfies the conditions (a) and (b) of Proposition 3. This finishes the 
proof of Proposit ion 3. [ ]  

4. 7. Final decomposition of  the surface S 

Let Ks, Q~ be pairs of pants in the decomposition of S which have one 
common boundary curve c~. Then E = int(K~)wint(Qi)wct is a sphere with 
4 holes. 

Proposition 4. There is a decomposition orE into the union of 2 pairs of pants P, 
R such that the restrictions of each rt to ~zl(P ), ~I(R) are isomorphisms of 
Schottky 9roups. 

Proof The proof of this Proposition is similar to [8]. Let c,b~Th(Qi), 
g, h ~ ~1 (Ki) be primitive peripheral elements of ~1 (E) (see Fig. 5). Denote by 
6 a simple loop on E which is freely homotopic to b. 9. The Dehn twists D~ act 
on na(E) as follows: 

D~(c)=c,  D"~(b)=b, D~(g)=g '=~"gc t -" ,  D~(h)=h'=ct"hct -"  (21) 

Our goal is to prove that there exists a number n such that for all t e [0, 1] 
the groups (r,(,q'), r,(b)) and (rt(h'), rt(c)) are Schottky groups of the rank 2. 
Recall that for a loxodromic element f e  PSL(2, r  the translational length 
l ( f )  is min{d(x, fx):x e IH 3 }. We shall need the following: 

Lemma 7. Let sinh(L(e)/2), sinh(e) = 1. Suppose that 9x, 92 E PSL(2, ~)  are 
loxodromic elements such that 

min{l(91),l(92)} > e > 0, dist(Axis(91),Axis(92)) > L(~) 

Then the group (91,f f2) is a Schottky 9roup or rank 2. 

Proof. Let [X1,X2] the shortest segment between AI =Axis(g1)  and 
Az = Axis(g2) so that X i ~ Aj. Denote by 7 the geodesic in IH 3 which contains 
[XI ,X2] .  Set 

Vj = Bj w Bj = {z ~ IH 3 : d(Xj, z) >= d(z, gjXj)} w {z ~ ~-I 3: d(Xj, z) >= d(z, 971X j)} 

(22) 

The distance between Xj and gjXj  is at least e. Therefore the diameter of the 
orthogonal projection rc(Vj) of Vj onto ~ is at most q where 

sinh(q) = 1/sinh(e) (23) 

Thus, since dist(Axis(91),Axis(92)) ~ L(~) > L = 2q then 7t(V1)c~Tt(Vz) = O. 
This implies that the intersection between V~ and Vz is empty. The real 
boundary in ~ of Vj is the disjoint union of two discs D j, Dj so that 
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,qj(int D j) = ext(D}). Moreover, all the discs D1, D[, D2, D; are disjoint. Thus the 
group generated by 01,92 is a Schottky group of rank 2. []  

The assertion (b) of Proposition 3 implies that for each t the spherical 
distance from any of the-fixed point of ?t(b), ~t(c), rt(g), ~f(h) to any of the fixed 
point of ~,(a) is greater than some positive number v which is independent of t. 
Moreover, min{E(r,(~)),t ~ [0,1]} >/~ > 0 for some/~. 

Denote by e the number 

rain {g(r,(b)), #(r,(c)), ((r,(h)), f(rt(g)): t e [0,1] } (24) 

Therefore there exists a number n which does not depend on t such that the 
distance from ~t(ct")Axis(rt(g)) to Axis(r,(b)) and from ~t(ct")Axis(r,(h)) to 
Axis(r,(c)) is at least L(e) for every t. However 

?t(~t")Axis(r,(9)) = Axis(r,(9')), ~(ct")Axis(r,(h)) = Axis(r,(h')) (25) 

Hence we can find a number n independent on t such that for every t the 
distance between the axes of ~t(O'),Ft(b) and ~t(h'),~t(c) is not less than L(e). 
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This means that the conditions of Lemma 7 are satisfied and the groups 
(r,(g') ,r,(b)) and (r,(h'), r,(c)) are Schottky groups of rank 2. 

The simple loop 6(n) = D~(6) separates 9', b from h', c. We split E along 6{n) 
to obtain a new decomposition of E into the union of pair of pants P, R (Fig. 5). 
This finishes the proof of Proposition 4. [ ]  

Recall that according to Proposition 2 the surface S is the union of pairs of 
pants Ki, Qi, i =  1, ... ,g, where each Ki and Qi share a common boundary 
loop. We apply Proposition 4 to each pair Ki, Qi to get a new decomposition of 
S. This decomposition and the family of representations r, satisfy the properties 
(a) and (b) in Theorem 2. 

This concludes the proof of Theorem 2. []  

5. Proof of Theorem 3 

Let 0 < tl < t2 < "'" < tl, ~ 1 be the set of points where the curves 7 + and 
7~- are not transversal. 

5.1. Step I. For 0 < t < tl we define a continuous family of smooth extensions 
9m of ,at +- as follows. 

Let h, be any continuous family of smooth embeddings A ~ T 2 defined for 
0 < t < tl which satisfies the properties: 

(a) the restriction of each h~ to the boundary of A coincides with g,-+, and 
(b) ht agrees with the coorientation of the curves 7t +- . 
We recall that the conformal structure c, on the torus T 2 depends continu- 

ously on t. Let int(A) be conformally-equivalent t o  ]HZ/(q) and int(h,A) be 
conformally equivalent to IH2/(q,)  where q, ~ PSL(2, IR) depends continuously 
on the parameter t. Then g,+- lifts to a diffeomorphism 

~ +  
g,-" ~ - I  2 - -  A ( ( q ) )  --+ ~ o o ] H  2 - A ( ( q t ) )  (26) 

which continuously depends on t and is equivariant with respect to the isomor- 
phism (q )  --" (qt) .  Thus, g,-~+ admits a canonical equivariant extension to 
a diffeomorphism 

9t: IH2 -+ IH2 (27) 

which depends continuously on the parameter t (see [6]). Then the projection of 
9, to A defines a smooth extension 91,,: A ~ T 2 of the map g,• 

5.2. Grafting. A general description of the grafting can be found in [10], [17], 
here we consider only a particular case. Denote by pl,t: (T 2, c2,t) ~ (T 2, c,) 
a holomorphic 4-fold covering whose defining subgroup in n a (T 2) contains the 
homotopy class of ~+. The family c2.t of conformal structures on the torus T 2 

+ ' ~ + ~ ( T 2 , c 2 , )  of the depends continuously on t. We choose lifts gs 
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I p = p%%. 

Fig. 6. 

+ + + 
maps gt +- under these coverings so that 7z.t = g2-.d~-) and 7z,t = g2,,(~ ) do not 
intersect each other for all 0 < t < t2. See Fig. 6. The coorientations on curves 

+ 
7~t are obtained by pull-back of the coorientations on 7, + 

5.3. Step 2. Now we can apply Step 1 to the family + 7 s  
We continue this process until we pass through all singular values 

tl , t2, . . . , t  k. 
As the result we obtain a continuous family of homeomorphic embeddings 

Ok,z: A - ' ( T  Z, Ck,,) 

The restriction of gk., tO the boundary of A coincides with the lift of g, +- via the 
covering 

(TZ, ck., ) Pk-,.,)(T2, Ck_l,t) ~ ... Pt., , (T2  c,) (28) 

and these maps "agree" with the coorientation. 
We define gt to be 

g t  = P l , t  . . . . .  P k -  1,~ ~ gk,~ 

This family of local homeomorphisms has all required properties. 

(29) 

[ ]  
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6. Products of matrices 

6.1. Proof  o f  Lemma 1. Consider  the group H generated by x, y, xy  = z. Let 
X, Y, Z be the fixed points for action of x, y, z in IH 2. All these points are distinct. 
Take the geodesic It through X, Y, the geodesic 12 through Y , Z ,  and the 
geodesic 13 through X, Z. These geodesics bound a triangle A in IH 2. Denote by 
R~ the reflection in IH 2 with the fixed-point set 1~. Then x = R3R1, z = R2R3, 
y = R~ R2 (cf. [11]). In particular, the angles ,~,,~. at the vertices X,  Y of A are 
equal to one half of the rotat ional  angles of x, y. Suppose now that c~ < ~y. 
Then there is a number  m such that: 

rc - o~, < mex < rc (30) 

Let I,,x be the geodesic through X so that  the angle between l,,x and 11 is mex. 
Then Rm~RI = x m where R,.~ is the reflection in [rex. On the other hand, the 
condit ion (30) implies that  lmx and 12 do not intersect even on the boundary of 
IH 2 (since the sum of angles in any hyperbolic triangle is less than ~). Thus the 
element xmy = R ,~R2  is hyperbolic. [ ]  

6,2. Proof  o f  Lemma 2. Applying conjugation we can assume that  

a = ( o 1  _+11)' b = ( ~  ~ )  (31, 

Tr(a"b)  = ___ (~ + 6) + n7 (32) 

The number  7 is different from zero since a, b generate a nonelementary group. 
Therefore, for n > 21~ + fi + 2l/lyl the trace of the matrix a"b does not belong 
to the interval [ - 2, 2]. [ ]  

6.3. Proof  o f  Lemma 3. Applying conjugation we can assume that  b: z ~ 2z, 
IAI > 1. Note  that  ~: z ~-, c/z would imply that  a,b anticommute.  Therefore 
[ T r ( b " . a ) l ~  ~ a s n ~  ~ or n--* - ~ .  [ ]  

6.4. Proof  o f  Lemma 4. If the element a is not  elliptic, then the conclusion of 
Lemma follows from the Klein Combinat ion  Theorem (see [16]). Thus suppose 
that  a is elliptic and ~: z ~ ei~ and e i~ 4: + 1. Let I , I '  be a pair  of disjoint 
discs in �9 such that/~: int(I)  ~ ext(l ') ;  put  I,, = c"(1), I"  = c"(I'). The attract-  
ive fixed point  ~ of the element ~ is neither zero nor  infinity. As m ~ 0o the discs 
I m and I "  accumulate to ~. Therefore for sufficiently large m the union I m u I ~  
lies between two rays emanat ing from zero: R1 and Rz = fi(Rl). The disc 
J,n = (a) -  1 Im satisfies the property: 

z(cmbc-ma): int(J,.) ~ e x t ( l ' )  (33) 

We conclude that  the element cmbc-ma is loxodromic since J m n l "  = O. [] 
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7. Degeneration and regeneration of complex projective structures 

7.1. In this section we discuss the behavior of a degenerating family of complex 
projective structures after 9rafting. The operation of graftin9 was originally 
introduced by B. Maskit for structures with Fuchsian monodromy [17]. A gen- 
eral definition was given later by W. Goldman [10]. Fix a complex projective 
structure c with the developing map d and monodromy p. Let L be a union of 
disjoint simple closed homotopically nontrivial curves 2j on S. Suppose that for 
each curve 2j and for each component 7q of its lift to S the restriction of d to 2-/is 
injective and p(2-/) is loxodromic. Then split S along L and for each Z/split 

along d(,~j). Glue the quotients (~ - cl(d(7,-/))/(pZj) to the surface S - L 
along 2-/. The surface obtained by gluing has a natural complex projective 
structure which is denoted by gr(c, L) and is said to be obtained by grafting of 
c along L. The monodromy representation of the structure gr(c, L) is equal to p. 

The space C(S) of "marked" complex projective structures on S is a fiber 
bundle over the Teichmuller space p: C(S)~ T(S). Each fiber p- l ( ( )  is the 
space of holomorphic quadratic differentials Q(~) on the marked Riemann 
surface (S, ~). Denote by hol: C(S) ~ Hom(F, SL(2, ~))~ the mono- 
dromy map. This map is a local homeomorphism which is not a covering [15]. 
The space C(S) has a "natural compactification" C(S) which is the projective 
compatification along the fibers Q(() and the compactification along T(S) by 
measured foliations. 

We are left with the following challenging problems. 

Problem 1. Describe points z ~ C(S) - C(S) such that there is a continuous 
path c: [0, 1] --* C(S) with the properties: c([0, 1)) c C(S) and there exists 
a limit 

lim hol(c(t)) e Hom(F, SL(2, C))~ r  (34) 

This would measure the deflation of hol from a covering map. In the very 
interesting particular case when c(t) is contained in the space QF(S) of 
quasifuchsian complex projective structures, the answer is given by the "double 
limit" theorem of W. Thurston [20]. However Thurston uses different compac- 
tification of QF(S) which can not be generalized to C(S). 

Problem 2. For given r ~ Hom(F, SL(2, •))~ I12) describe hol- 1 (r). 
Actually, two problems are closely related since the difficulty in solving 

Problem 2 lies in the failure of hol to be a covering. 

7.2. Problem 2 was solved by W. Goldman [10] in the case of faithful 
quasifuchsian representations r. Every structure in hol-l(r) can be obtained 
from a "quasifuchsian structure" c by "grafting". 
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Not so much is known about Problem 1. The space 

R(F) ~ = Hom(F, SL(2, (E))~ C) 

has a natural structure of a smooth algebraic variety. Consider the holomorphic 
family ~: V ~ R(F) ~ of holomorphic bundles, where re- l ( [ r ] )  is the flat holo- 
morphic CZ-bundle over S with the monodromy r. Then hol(Q(~)) is the set of 
points [r] in R(F) ~ for which ~-1(Jr])  is maximally unstable (see [12, Proposi- 
tion A4]). 

Thus, the upper-semicontinuity theorem for cohomology (see [2]) implies 
that hol(Q(~)) is an analytic subvariety in R(F) ~ and therefore it is properly 
embedded (cf. [19]). On the other hand, R(F) ~ has a holomorphic foliation 
where each leaf consists of holomorphically equivalent flat bundles. It follows 
from [12,14] that the subvariety hol(Q(~)) is a leaf of this foliation and hence it is 
smooth. The restriction of hol to Q(ff) is injective, therefore it is a proper map. 

Thus the degeneration of a family of marked complex projective structures 
c(t) in Question 1 implies that the underlying marked complex structures also 
degenerate. The last can happen either because of the action of the modular 
group on T(S) or because of "pinching" of S along a finite family of simple 
disjoint loops ~j, j = 1 . . . . .  q. Suppose that there exists a system of simple 
loops {11 . . . . .  lq} = L c S such that: 

(a) the grafting along L is possible for all 0 < t < 1, 
(b) i(~j, L) 4:0 for each j and 
(c) the elements pl(li) are loxodromic. 

Remark 4. There are examples when such system of curves does not exist, see 
Section 7.3. 

Then the curves ~j are not pinched as t ~ 1 in the family of complex 
structures p(gr(ct, L)). Indeed, the limit of the complex structures (S, p(c,)) (as 
t ~ 1) is a stable singular curve $1 where the loops c~j are pinched to singular 
points. The application of grafting to $1 along L results in a nonsingular 
complex curve S~. 

7.3. Example. Suppose that a family of representation r~: F ~ SL(2, C) con- 
sists of quasifuchsian representations for 0 < t < 1 so that ro(F) is a Fuchsian 
group that we shall identify with F. 

Assume also that the image of rl is a "regular b-group", so that an element 
a s F is the only accidental parabolic element for r l  (up to conjugation in F), 
see [16] for definitions. The discontinuity domain of F consists of two 
components D, D*; suppose that D is the component such that the representa- 
tion rl cannot be induced by a homeomorph i smf :  D ~ ~2(r~(F)). However, 
for each 0 < t < 1 there are homeomorphisms f :  D ~ O(r,(F)) so that 
rt(7)of = f o 7  for all 7 ~ F and f depends continuously on t. Thus, ft are 
developing maps for a family of complex projective structures c, on S with the 
monodromy r ,  Let at = gr(c, A) where A is a simple loop on S representing a. 
Then, the families of structures c,, or, degenerate as t ~ 1 since the under- 
lying complex structures are "pinched" along A. Denote by dt the family of 
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developing maps  for at. Let fl be any  simple homotop ica l ly  nont r iv ia l  loop  on  
S. Fo r  each c o m p o n e n t  fiofp l(fl)  c D the image d,(fl) is no t  a simple arc in 
Ii?. Thus  for each t the graf t ing of at a long fl is impossible.  Therefore,  it is 
impossible to " regenera te"  a, (as t ~ 1) using grafting. There  are two or ienta-  
t ion classes of complex  project ive s t ructures  with  the m o n o d r o m y  r l .  O n e  can 
prove tha t  any  two s t ruc tures  with the m o n o d r o m y  rl  and  the  same or ienta-  
tion can be  related by  a sequence of graf t ing and  its inverse. 

We  shall discuss the p rob lem of regenera t ion  of complex project ive struc- 
tures in detai ls  in a n o t h e r  paper .  

Acknowledqements. I am grateful to W. Goldman and to the referee of this paper for helpful 
remarks. 
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