M. É. Kapovich

UDC 512.817

The Weil theorem [1] on local rigidity is one of the fundamental results of the theory of discrete subgroups of Lie groups. The theorem asserts that for any connected semisimple Lie group G without compact components whose Lie algebra does not have any sl(2, R) factors, the orbit of any uniform lattice $\Gamma \subset G$ (with respect to the adjoint action ad G) is open in Hom (Γ, G). The assertion follows from the fact that the cohomology group H^{1} (Γ, Ad) is trivial (for the definitions, see e.g. [2]). The above result of Weil can often be generalized ([3-6], etc.). Garland and Raghunathan [7] proved the "disappearance theorem," according to which for any lattice Γ in a simple connected lie group G of real rank 1 that is not locally isomorphic with SL_{2}, the cohomology group $\mathrm{H}^{1}(\Gamma, \mathrm{Ad})$ is equal to zero. Thurston [8] proved that the corresponding "disappearance theorem" is no longer valid for nonuniform lattices in the case $G=S_{2}(\mathbb{C})$. Namely, if Γ is a lattice in $\mathrm{SL}_{2}(\mathrm{C})$ that has no finite-order elements and n is the number of conjugacy classes of the maximal parabolic subgroups of Γ, then the complex dimension of $\operatorname{Hom}\left(\Gamma, S L_{2}(C)\right) / a d L_{2}(\mathbb{C})$ at any point corresponding to an irreducible representation ρ is not less than n. Alternative proofs of this fact were presented in $[9$, 10]. However, each of the proofs rests upon some algebraic (or geometric) properties of the group $\mathrm{SL}_{2}(\mathrm{C})$, the representations in which were considered in these articles. In particular, Thurston's proof was based on the fact that for any $a, b \in \mathrm{SL}_{2}(\mathrm{C})$ and for any word $w(a, b)=1$, the word $w\left(a^{-1}, b^{-1}\right)$ is also equal to 1.

The goal of the present article is to explain the fact that the absence of rigidity in the above case is caused by the topology of $M=\Pi^{3} / \Gamma$, where H^{3} is a hyperbolic space, rather than by any algebraic or geometric properties of $\mathrm{SL}_{2}(\mathrm{C})$. The fact that M is a three-dimensional manifold turns out to be essential (besides, Thurston's proof was also purely topological).

Let M be a three-dimensional compact nonspherical manifold, G be a Lie group with Lie (G), $\partial M=T_{1} \cup \ldots \cup T_{n}$ be a system of tori, and let ρ be a representation of $T_{1}(M)$ in G.

THEOREM 1. If the above conditions are satisfied, then the following inequality holds:

$$
\begin{gather*}
\operatorname{dim} H^{1}\left(\pi_{1} M, \operatorname{Ad} \circ \rho\right) \geqslant \operatorname{dim} H^{0}\left(\pi_{1} M, \operatorname{Ad} \circ \rho\right)-\operatorname{dim} H_{0}\left(\pi_{\mathrm{i}} M, \operatorname{Ad} \circ \rho\right)+ \\
+\sum_{i=1}^{n} \operatorname{dim} H_{0}\left(\pi_{1} T_{i},\left.\operatorname{Ad} \circ \rho\right|_{\pi_{1}\left(T_{i}\right)}\right) \tag{1}
\end{gather*}
$$

COROLLARY. If G is a semisimple group, then the inequality

$$
\begin{equation*}
\operatorname{dim} H^{1}\left(\pi_{i} M, \operatorname{Ad} \circ \rho\right) \geqslant d=\sum_{i=1}^{n} \operatorname{dim} Z_{G}\left(\rho\left(\pi_{1} T_{i}\right)\right) \tag{2}
\end{equation*}
$$

holds. $Z_{G}(A)$ denotes the centralizer of a subgroup A of G. If G is an infinite algebraic group and the groups $\rho\left(\pi_{1} \mathrm{~T}_{\mathrm{i}}\right)$ are infinite for $a l l i=1, \ldots, n$, then $d \geqslant n$. In particular,

$$
\begin{equation*}
\operatorname{dim} H^{1}\left(\pi_{1} M, \mathrm{Ad} \circ \rho\right) \geqslant n>0 \tag{3}
\end{equation*}
$$

Remark. If $G=\mathrm{SL}_{2}(\mathrm{C})$, then (3) implies the above-mentioned result of Thurston.
The proof of the theorem is contained in Sec. 2. In Sec. 3 some consequences of the theorem are presented and questions connected with the problem of local rigidity for the natural embedding of the lattice $\mathrm{T} \subset S O(3,1)$ in $S O(4,1)$ are discussed.

The results of the present article were announced by the author in [11].

Khabarovsk. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 32, No. 1, pp. 4349, January-February, 1991. Original article submitted October 18, 1988.

Fig. 1

Fig. 2

1. HEEGAARD INTERLACINGS FOR MANIFOLDS WITH TOROIDAL BOUNDARIES

1.1. This section contains an auxiliary construction of a section of M, which is necessary to prove the theorem.

Definition. Let M be a three-dimensional manifold whose boundary consists of tori. A pair ($\mathrm{V}_{1}, \mathrm{~V}_{2}$) of two homeomorphic bodies (generally speaking, nonorientable) with handles such that
(a) $V_{1} \cup V_{2}=M, V_{1} \cap V_{2}=\Sigma \equiv \operatorname{cl}\left(\partial V_{1} \backslash\left(\partial V_{1} \cap \partial M\right)\right)$,
(b) the intersection of the surface Σ with any of the components T_{i} of the boundary is the union of two disjoint circles which yield a nontrivial element of $H_{1}\left(T_{i}\right)$ (Fig. 1), is called a Heegaard interlacing.

Remark. If $\partial M=\varnothing$, then $\left(V_{1}, V_{2}\right)$ is an ordinary Heegaard interlacing (for example, see [12]).
1.2. Proposition 1. For every three-dimensional compact manifold M with toroidal boundary there exists a Heegaard interlacing.

Proof. Let M^{*} be a closed manifold obtained by attaching a solid torus \mathscr{T}_{i} to each of the boundary tori T_{i}. We shall regard \mathscr{T}_{i} as regular neighborhoods of simple loops $\gamma_{i} \subset M^{*}$ which are piecewise linear with respect to a sufficiently fine triangulation. The first barycentric subdivision of a triangulation K will be called K^{\prime} and $N(S, K)$ will denote a regular neighborhood of a complex $S \subset K$. We shall consider a triangulation K on M^{*} such that $\gamma=\gamma_{1} \cup \ldots U \gamma_{n}$ is a part of its 1 -skeleton Γ_{1}, and we denote by Γ_{2} the dual skeleton to Γ_{1} (i.e., the maximal 1-subcomplex K^{\prime} that does not intersect Γ_{1}).

Then [12, Theorem 2.5] $V_{i}^{*}=N\left(\Gamma_{i}, K^{\prime \prime}\right)$ is a body with handles $(i=1,2)$ and $\left(V_{i}^{*}, V_{2}^{*}\right)$ is a Heegaard interlacing for M^{*}. Moreover, one can assume without loss of generality that V_{1}^{*} and V_{2}^{*} are simultaneously orientable (or nonorientable), and so V_{i}^{*} is homeomorphic with V_{2}^{*}.

Let Δ_{i} be any simplex from K^{\prime} that intersects γ_{i} along the edge e_{i} (one can assume that $\Delta_{i} \cap \Delta_{j}=\varnothing$ if i $\neq j$). Let $v_{i} \in \Gamma_{2}$ be a vertex of Δ_{i} that does not lie on γ_{i}. Let us now replace Y_{i} by the piecewise linear loop $\gamma_{i}^{\prime}=\left(\gamma_{i} \backslash e_{i}\right) \cup\left(c_{i} \cup d_{i}\right)$, where c_{i} and d_{i} are the edges of Δ_{i} that connect v_{i} with the end-points of e_{i} (Fig. 2). $\gamma^{\prime}=\gamma_{i}^{\prime} U \ldots U \gamma_{n}^{\prime}$ is a union of disjoint simple loops.

We denote the manifold $N\left(\gamma^{\prime}, K^{\prime \prime \prime}\right)$ by V. It is easily seen that V_{1}^{*} int $V=V_{1}$ is homeomorphic with a body with handles, and so is $V_{2}=V_{2}^{*}$ int V. Besides, these manifolds are simultaneously (orientable or nonorientable) and have the same genus (as bodies with handles). Moreover, each of the components of ∂V intersects ∂V_{I} along two circles which divide ∂V into two rings. Now, it remains to note that since γ^{\prime} and γ are isotopic in M^{*}, it follows that M^{*} int V is isomorphic with M. Therefore, $\left(V_{1}, V_{2}\right)$ is a Heegaard interlacing for M. The proposition is proved.

2. PROOF OF THEOREM 1

2.1. We denote by $\left(V_{1}, V_{2}\right)$ an arbitrary Heegaard interlacing for a manifold M (which satisfies the assumptions of the theorem) and we consider the actions of $\Gamma_{i}=\operatorname{Ad} \circ \rho\left(\pi_{1}\left(V_{i}\right)\right)$ on (G) and $\Gamma_{i}^{*}=* \circ A d \circ \rho\left(\pi_{1}\left(V_{i}\right)\right)$ on \mathscr{G}^{*}, where \mathscr{G}^{*} is the dual space to \mathscr{B}°. If X is a vector space and $H \subset G L(X)$, then we denote by fix (H) the set of points $x \in X$ such that $h(x)=x$ for all $h \in H$. We recall that fix $\left(\Gamma_{i}\right) \simeq H^{0}\left(\pi_{1} V_{i}, \operatorname{Ad} \circ \rho\right)$, fix $\left(\Gamma_{i}^{*}\right) \simeq H_{0}\left(\pi_{1} V_{i}, \operatorname{Ad} \circ \rho\right) ; \quad \operatorname{fix}(\Gamma) \simeq H^{0}\left(\pi_{1} M, \operatorname{Ad} \circ \rho\right)$, and $\operatorname{fix}\left(\Gamma^{*}\right) \simeq H_{0}\left(\pi_{1} M\right.$, Ad $\left.\circ \rho\right)$, where $\Gamma=\left\langle\Gamma_{1}, \Gamma_{2}\right\rangle$ and $\Gamma^{*}=\left\langle\Gamma_{1}^{*}, \Gamma_{2}^{*}\right\rangle$ are the images of π_{1} (M). Our goal is to find a Heegaard interlacing such that $\operatorname{fix}(\Gamma)=\operatorname{fix}\left(\Gamma_{i}\right)$ and fix $\left(\Gamma^{*}\right)=$ fix $\left(\Gamma_{i}^{*}\right)$ for $i=1,2$.

Let $\left(V_{1}, V_{2}\right)$ be an arbitrary Heegaard interlacing for M. We denote by n_{i} the codimension of fix (Γ) in $f i x\left(\Gamma_{i}\right)$, and we denote by $n_{\dot{i}}^{*}$ the codimension of fix $\left(\Gamma^{*}\right)$ in fix (Γ_{i}^{*}). We assume that $n=n_{1}+n_{2}>0$ and, consequently, one of these numbers (for example n_{1}) is greater than zero. We assume that the desired modification of the Heegaard interlacing exists for all $\mathrm{m}<\mathrm{n}$. We denote by $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{g}}$ the standard system of generators for the free group $\pi_{1}\left(V_{2}, x\right)$, where $x \in \Sigma$. Then, since $n_{1}>0$, there is an element of the system (for example v_{1}) such that fix $\left(\operatorname{Ad} \circ \rho\left\langle v_{1}\right\rangle\right)$ does not contain fix $\left(\Gamma_{1}\right)$. As a representative of the class $v_{1} \in \pi_{1}\left(V_{2}, x\right)$ we choose a loop w that is unknotted in V_{2} (i.e., int $V_{2} \backslash w$ is homeomorphic with an open body with handles). Such a choice is possible due to the fact that v_{2} is a standard generator of $\pi_{1}\left(V_{2}, x\right)$. Let $N(w)$ be a regular neighborhood of w in $V_{2}, V_{1}^{\prime}=V_{2} \cup N(w)$ and $V_{2}^{\prime}=V_{2}$ int $N(w)$. It is easily seen that ($V_{2}^{\prime}, V_{2}^{\prime}$) defines a new Heegaard interlacing for $M, \operatorname{codim}\left(\operatorname{fix}(\Gamma), \quad \operatorname{fix}\left(\operatorname{Ad} \circ \rho\left(\pi_{1} V_{1}^{\prime}\right)\right)\right)<n_{1}$, and the numbers n_{2} and n_{i}^{2} for the new Heegaard interlacing do not exceed the corresponding codimensions for the original interlacing (V_{1}, V_{2}).

It follows that one can use an inductive argument. With the aid of analogous considerations one can ensure that $n_{1}^{*}+n_{2}^{*}$ is equal to zero. We denote the resulting Heegaard interlacing (such that $n_{1}+n_{2}=n_{1}^{*}+n_{2}^{*}=0$) anew by $\left(V_{1}, V_{2}\right)$. The genus of V_{i} is equal to g. Now, we can immediately set about proving Theorem 1 .
2.2. In the discussion below we shall find it expedient to pass from the cohomology of the group $\pi_{1} M$ to the cohomology of M itself (with coefficients in some bundle). Let $L_{0}=$ $M X_{A d \rho}(\mathbb{S})$ be a fiber bundle over M constructed from the representation $A d \circ \rho: \dot{x}_{1} M \rightarrow G L(G)$, where (G) is equipped with the discrete topology, and let \mathscr{L}_{0} be the bundle of continuous sections of L_{ρ}.

Then (since M is nonspherical) there is a natural isomorphism between the groups $H^{p}\left(\pi_{1} M\right.$, Ad $\circ \rho$) and $H^{\dot{p}}\left(M, \mathscr{\mathscr { L }}_{\rho}\right)$ (for example, see [2, Chap. 7]). In what follows we shall suppress the given bundles in the notation for the cohomology groups (assuming that either \mathscr{L}_{0} or the restriction of \mathscr{L}_{0} to the appropriate submanifold of M is the bundle in question).

It follows from the discussion in Sec. 2.1 that $H^{0}(M) \simeq H^{0}\left(V_{i}\right) \simeq H^{0}\left(o V_{i}\right)$ [the latter equality follows from the fact that the homomorphism $\pi_{1}\left(\partial V_{i}\right) \rightarrow \pi_{1}\left(V_{i}\right)$ is an epimorphism] and $H_{0}(M) \simeq$ $I_{0}\left(V_{i}\right) \simeq H_{0}\left(d V_{i}\right)$. The dimensions of these linear spaces will be denoted by h^{\prime} and h, respec ${ }^{-}$ tively.

Let $N(Q)$ be a regular neighborhood of the complex $Q=\partial V_{1} \cup \partial M, N(Q)=N\left(0 V_{1}\right) \cup N(\partial M)$, and let $N(C)=N\left(\partial V_{1}\right) \cap N(\partial M)=N\left(\partial V_{1} \cap\left(T_{1} \cup \ldots J T_{n}\right)\right)$ be a regular neighborhood of the system of cylinders $C_{j}=\partial V_{1} \cap T_{j}$ in M. Since the Euler characteristic $\chi\left(\partial V_{1}\right)$ is equal to $2-2 \mathrm{~g}, \chi(\partial M)=0$, $x(N(C))=0$, it follows from Poincarés duality that $H^{0}(N(C)) \simeq H^{\prime}\left(N^{\prime}(C)\right), H^{\prime}(\partial M) \simeq H^{0}(\partial M) \oplus$ $H_{0}(\partial M)$, and $\operatorname{dim} H^{1}\left(\partial V_{1}\right)=(2 g-2) \operatorname{dim}\left(G+\operatorname{dim} I^{0}\left(\partial V_{1}\right)+\operatorname{dim} H_{0}\left(\partial V_{1}\right)=(2 g-2) \operatorname{dim}\left(\mathfrak{G}+h^{\prime}+h\right.\right.$.
2.3. Let us write down the Mayer-Vietoris sequence [13] for the covering of $N(Q)$ by the pair $\left(N\left(\partial V_{1}\right), N(\partial M)\right.$ of closed sets:

$$
0 \rightarrow H^{0}(N(Q)) \rightarrow H^{0}\left(\partial V_{1}\right) \oplus H^{0}(\partial M) \rightarrow H^{0}(N(C)) \rightarrow H^{1}(N(Q)) \rightarrow H^{1}\left(\partial V_{1}\right) \oplus H^{1}(\partial M) \rightarrow H^{1}(N(C)) \rightarrow \ldots
$$

Since the sequence is exact, we have the inequality

$$
\operatorname{dim} H^{1}(Q) \geqslant \operatorname{dim} H^{0}(Q)+(2 g-2) \operatorname{dim}(G)+h+\operatorname{dim} H_{0}(\partial M)
$$

2.4. Since $\pi_{1}\left(V_{i}\right)$ is a free group of rank g, it follows that $\operatorname{dim} H^{1}\left(V_{1}^{\prime}\right)=h^{\prime}+(g-1) \quad x$ $\operatorname{dim} \mathfrak{B}^{(G)}$, where $V_{i}^{\prime} \subset V_{i}$ is a component of the manifold $M \backslash i n t(Q)$, which is a deformation retract for V_{i}. We shall now consider the covering of M by the pair $\left(V_{1}^{\prime} \cup V_{2}^{\prime}, N(Q)\right.$) of closed sets. The surfaces $S_{1}=N(Q) \cap V_{1}^{\prime}$ and $S_{2}=N(Q) \cap V_{2}^{\prime}$ are homotopic with ∂V_{1} and ∂V_{2} in M, and so $H^{1}\left(S_{i}\right) \simeq H^{\prime}\left(\partial V_{i}\right)$ the space being of dimension $(2 g-2) \operatorname{dim}\left(B+h^{\prime}+h, i=1,2\right.$. Analogously, dim x $H^{1}\left(V_{i}^{\prime}\right)=(g-1) \operatorname{dim}+h^{\prime}, i=1,2$.
2.5. Taking the above observations into account, let us write down the Mayer-Vietoris sequence for the covering ($\left.V_{1}^{\prime} \cup V_{2}^{\prime}, N(Q)\right)$ of M :

$$
\begin{aligned}
& 0 \rightarrow H^{0}(M) \rightarrow H^{0}\left(V_{1}^{\prime}\right) \oplus H^{0}\left(V_{2}^{\prime}\right) \oplus H^{0}(N(Q)) \rightarrow H^{0}\left(S_{1} \cup S_{2}\right) \rightarrow \\
& \rightarrow H^{1}(M) \rightarrow H^{1}\left(V_{1}^{\prime}\right) \oplus H^{1}\left(V_{2}^{1}\right) \oplus H^{1}(N(Q)) \rightarrow H^{1}\left(S_{1} \cup S_{2}\right) \rightarrow \ldots
\end{aligned}
$$

From (4) and the fact that the sequence is exact there follows the estimate

$$
\begin{gathered}
\operatorname{dim} H^{1}\left(\pi_{1} M, A d \circ \rho\right)=\operatorname{dim} H^{1}(M) \geqslant h^{\prime}+2 h^{\prime}-2 h^{\prime}-\operatorname{dim} H^{0}(N(Q))+ \\
+\left(2 h^{\prime}+2(g-1) \operatorname{dim}(6)+\operatorname{dim} H_{0}(\partial M)+\operatorname{dim} H^{0}(Q)+h\right)-
\end{gathered}
$$

$$
-2(g-4) \operatorname{dim} \mathbb{G}-2 h^{\prime}-2 h=h^{\prime}-h+\operatorname{dim} H_{0}(\partial M)=
$$

The theorem is proved.

$$
\begin{aligned}
& =\operatorname{dim} H^{0}\left(\pi_{1} M, \operatorname{Ad} \circ \rho\right)+\operatorname{dim} H_{0}\left(\pi_{1} M, \operatorname{Ad} \circ \rho\right)+\sum_{i=1}^{n} \operatorname{dim} H_{0}\left(\pi_{1} T_{i},\left.\operatorname{Ad} \circ \rho\right|_{\pi_{1}\left(T_{i}\right)}\right) .
\end{aligned}
$$

2.6. It is obvious that the proof of Theorem 1 is valid in the case of a $\pi_{1}(M)$-module of a more general form than $\mathcal{G}_{\text {Adop }}$. Namely, there holds the following result.

THEOREM 2. Under the assumptions of Theorem 1, let E be an arbitrary finite-dimensional $\pi_{1}(M)$-module (over a field of characteristic 0$)$. Then $\operatorname{dim} H^{1}\left(\pi_{1} M, E\right) \geqslant \operatorname{dim} H^{0}\left(\pi_{1} M, E\right)-$ $\operatorname{dim} H_{0}\left(\pi_{1} M, E\right)+\sum_{i=1}^{n} \operatorname{dim} H_{0}\left(\pi_{1}\left(T_{i}\right), E\right)$.

3. SOME CONSEQUENCES OF THEOREM 1 AND REMARKS

3.1. Proof of the Corollary (for the Formulation, see the Introduction). We assume that G is a semisimple Lie group. Then the Killing metric on G_{6} defines a nondegenerate Ad-invariant bilinear coupling on (G), and so $H_{0}(\Gamma, A d \circ \rho) \simeq H^{0}(\Gamma, * \circ A d \circ \rho) \simeq H^{\circ}(\Gamma, A d \circ \rho)$ for any group I. Therefore $\operatorname{dim} H^{0}\left(\pi_{1} M, \operatorname{Ad} \circ \rho\right)=\operatorname{dim} H_{0}\left(\pi_{1} M, \operatorname{Ad} \circ \rho\right)$. It is easily seen that $\operatorname{dim} H^{0}\left(\pi_{1} T_{i}, A d\right.$ 。 $\left.\left.\rho\right|_{\pi_{1}\left(T_{i}\right)}\right)=\operatorname{dim} Z_{G}\left(\rho\left(\pi_{1} T_{i}\right)\right)$, from which there follows inequality (2).

We shall now demonstrate that for any connected semisimple Lie group $G \neq 1$, the dimension of $Z_{G}(A)$ is greater than zero, A being an arbitrary infinite Abelian subgroup of G [in particular, $\left.\rho\left(\pi_{1}\left(T_{i}\right)\right)\right] . G$ is an algebraic group. The algebraic envelope $3(A)$ of A is also an Abelian group and consists of a finite number of connected components. Therefore [since $3(A)$) is infinite] the dimension of $B(A)$ is greater than zero, and so $\operatorname{dim}_{\mathrm{G}}(\mathrm{A})>0$. The corollary is proved.
3.2. Let $G=\mathrm{SE}_{2}(\mathrm{C})$, let M be a three-dimensional compact manifold such that. $\mathrm{H}^{3} / \Gamma=\operatorname{int} M$, where Γ is a torsion-free nonuniform lattice in G, and let n be the number of components of the boundary of M; $\Gamma \simeq \pi_{1} M$.

Proposition 2. If $\rho=\mathrm{id}: \Gamma \rightarrow G$, then $\operatorname{dim}_{\mathrm{C}} H^{1}(\Gamma, \mathrm{Ad})=n=(1 / 2) \operatorname{dim}_{\mathrm{C}} H^{1}\left(\partial M, \mathscr{L}_{\rho}\right)=(1 / 2) \sum_{i=1}^{n} \operatorname{dim} \times$ $H^{1}\left(\pi_{i} T_{i}, A d\right)$.

Proof. We denote by $Z_{p a r}^{1}\left(\pi_{1} M\right.$, Ad) the space of cocycles c such that $\left.c\right|_{\langle\gamma\rangle}$ is the coboundary in $Z^{1}(\langle\gamma\rangle$, Ad $)$ for any $\gamma \in \pi_{1}\left(T_{i}\right)$, where $i=1, \ldots, n, Z_{\text {par }}^{1}(\Gamma, \operatorname{Ad}) / B^{1}(\Gamma$, Ad) is the space of parabolic cohomologies of $H_{\mathrm{par}}^{1}\left(\pi_{1} M, \mathrm{Ad}\right)$ (see, for example, [14]). It is easily seen that $\operatorname{am}_{\mathrm{C}} H_{\mathrm{par}}^{1}\left(\pi_{1} T_{i}, \mathrm{Ad}\right)=1=(1 / 2) \operatorname{dim}_{\mathrm{C}} H^{1}\left(\pi_{1} T_{i}, \mathrm{Ad}\right)$ in the case under consideration. We set $\mathrm{H}_{\mathrm{par}} \times$ $\left(\partial_{1}, \mathscr{L}_{p}\right)={ }_{i} \oplus H_{p a r}^{1}\left(\tau_{1} T_{i}, \mathrm{Ad}\right), \quad i_{*}: H^{1}\left(M, \mathscr{L}_{0}\right) \rightarrow H^{1}\left(\partial M, \mathscr{L}_{\rho}\right)$ is the natural "restriction" homomorphism. By virtue of the results of [7], $H_{\text {par }}^{1}\left(M, \mathscr{L}_{\rho}\right)=0$, and so $i_{\%}\left(H^{1}\left(M, \mathscr{L}_{\rho}\right)\right)$ intersects $H_{\text {par }}^{1}\left(\partial M, \mathscr{L}_{\rho}\right)$ at the point 0 only and i_{*} is a monomorphism. Hence it follows immediately that $\operatorname{dim}_{\mathrm{C}} H^{1}(M$, $\left.\mathscr{L}_{\mathrm{p}}\right) \leqslant(1 / 2) \operatorname{dim}_{\mathrm{C}} H^{1}\left(\partial M, \mathscr{L}_{\rho}\right)$. On the other hand, by virtue of $(3), \operatorname{dim}_{\mathrm{G}} H^{1}\left(\pi_{1} M, \mathrm{Ad}\right) \geqslant n$, and so $\operatorname{dim}_{\mathrm{C}} H^{1}\left(\pi_{1} M, A \mathrm{~d}\right)=n . \quad$ Proposition 2 is proved.

We remark that $\operatorname{dim}_{C} H^{1}(\Gamma, A d)=n$ is the dimension of the tangent space (in the sense of Zariski) to $R(\Gamma, G)=\operatorname{Hom}(\Gamma, G) / a d(G)$ at the point $[\rho]$ (see [15, Sec. 2]). Therefore, from inequality (3), Proposition 2, and the fact that simple points are dense in the complexalgebraic manifold $R(\Gamma, G)$, it follows that $[\rho=i d]$ is a simple point in $R(\Gamma, G)$ and there is a smooth manifold of complex dimension n in a neighborhood of this point. However, this fact can also be proved directly [without referring to the complex-algebraic nature of $R(\Gamma$, G)].
3.3. Let G be a Lie group, M be a three-dimensional manifold that satisfies the assumptions of Theorem 1 , and let $\rho: \Gamma \rightarrow G$ be a homomorphism, where $\Gamma=\pi_{1}(M)$. We now assume that
(a) there holds the equality in (1),
(b) $H_{0}(\Gamma, A d \circ \rho)=0$,
(c) for all $\mathrm{i}=1, \ldots, \mathrm{n}, \quad\left(\left.\rho\right|_{\pi_{1}\left(T_{i}\right)}\right)$ is a nonsingular point of the algebraic set $\operatorname{Hom}\left(\pi_{1}\left(T_{i}\right), G\right)$.
THEOREM 3. Under the above assumptions (a)-(c), $R(\Gamma, G)$ is a smooth manifold of dimension $\operatorname{dim}^{1}(\Gamma, A d \circ \rho)$ in a neighborhood of $[\rho]$.

Proof. Since there holds the equality in (1), there also holds the equality in (4), and so the homomorphisms $\alpha: H^{1}\left(\partial V_{1}\right) \oplus H^{1}(\partial M) \rightarrow H^{\perp}(N(C))$ and $\beta: H^{1}\left(V_{1}^{\prime} \cup V_{2}^{\prime}\right) \oplus H^{1}(N(Q)) \rightarrow H^{1}\left(S_{1}\right) \oplus H^{1}\left(S_{2}\right)$
from the corresponding Mayer-Vietoris sequences (see Secs.2.3 and 2.5) are endomorphisms. We remark that assumption (b) implies that $H^{2}\left(S_{1}\right)=H^{2}\left(S_{2}\right)=0$ and the point $\left[\left.\rho\right|_{\pi_{1}\left(S_{i}\right)}\right]$ is nonsingular in $R\left(\pi_{1}\left(S_{i}\right)\right.$, G) [16].

Remark. In what follows we find it convenient to pass from considering the representation spaces $R\left(\pi_{1} Y, G\right)$ to the corrsponding spaces of flat connections (because we shall deal with disconnected manifolds). If Y is a manifold and $p: \pi_{1}(Y) \rightarrow G$ is a representation of its fundamental group, then we shall denote by $E=E(Y)$ the fiber bundle over Y with fiber © (equipped with the standard vector space topology) constructed from the representation Ad o ρ : $\pi_{1}(Y) \rightarrow G L(\mathbb{B})$.

We consider the space of flat connections on $E(Y)$ and its quotient space $R(E(Y))$ with respect to the group of gauge transformations. Then $R(E(Y))$ is diffeomorphic with the connected component of $R\left(\pi_{1} Y, G\right)$ that contains [ρ] (see [17]). We denote the corrsponding diffeomorphism by hol: $R\left(\pi_{1} Y, G\right) \rightarrow R(E)$. There is a natural isomorphism between the "tangent space" $H^{1}\left(\pi_{1} Y, A d \circ \rho\right.$) to $R\left(\pi_{1} Y, G\right)$ (at the point $[\rho]$) and the "tangent space" $\mathscr{F}_{A} P(E)$ to $\mathrm{R}(\mathrm{E})$ (at $\mathrm{A}=$ hol $[\rho]) . \mathscr{T}_{A} R(E)$ is nothing but the quotient space $\operatorname{Ker}\left(d_{A}: \mathcal{A}(\dot{Y}, E) \rightarrow \Lambda^{2}(X, E)\right) /$ $d_{A}\left(\lambda^{0}(Y, E)\right)$.

Let us go back to the proof of Theorem 3. We consider the natural "restriction" mappings $\left(r_{1}, r_{2}\right): R\left(E\left(\partial V_{1}\right)\right) \times R(E(\partial M)) \rightarrow R(E(C))^{2}$ and $\left(r_{s}, r_{4}\right): R\left(E\left(V_{1}^{\prime} \cup V_{2}^{\prime}\right)\right) \times R(E(N(Q))) \rightarrow R\left(E\left(S_{1} \cup S_{2}\right)\right)^{2}$ [for $Y \subset M$, we denote by $E(Y)$ the restriction of the corresponding fiber bundle $E(M, \rho)$ constructed from the homomorphisms $\left.\rho: \pi_{I}(M) \rightarrow G\right]$.

Let us now remark that the space $R(E(N)(Q))$ of connections is diffeomorphic with the inverse image of the diagonal of the Cartesian product $R(E(N(C)))^{2}$ in $R\left(E\left(\partial V_{1}\right)\right) \times R(E(\partial M))$ and, analogously, $R\left(E\left(V_{1}^{\prime} \cup V_{2}^{\prime} \cup N(Q)=M\right)\right.$) is diffeomorphic with the inverse iamge of the diagonal of $R\left(E\left(S_{1} \cup S_{2}\right)\right)^{2}$. The analytic sets $R\left(E(\partial M)\right.$) and $R\left(E\left(\partial V_{1}\right)\right)$ are smooth (in neighborhoods of the points hol [$\rho]$) by virtue of (b) and (c). From the fact that α is an epimorphism and the above remark it follows that the mapping $\left(r_{1}, r_{2}\right)$ is transversal with respect to the diagonal of $R(E(\mathbb{N}(Q))$). Hence it follows immediately that hol $[\rho]$ is a nonsingular point of the analytic set $R(E(N(Q))$). By analogy (owing to the fact that β is an epimorphism), the smooth mapping $\left(r_{3}, r_{4}\right)$ is transversal with respect to the diagonal $R\left(E\left(S_{1} \cup S_{2}\right)\right)^{2}$, and so [p] is a nonsingular point in $R\left(\pi_{2} M, G\right)$ and the dimension of $R(\Gamma, G)$ is equal to dim $H^{1}[\Gamma, A d \circ \rho)$ in a neighborhood of [ρ]. The theorem is proved.
3.4. We go back to the case where n. M is the hyperbolic manifold $\mathbb{H}^{3} / \Gamma, \Gamma \subset P S L_{2}(C)=G$, and $\rho: \pi_{1} M \rightarrow \Gamma$ is the natural isomorphism. Then $\rho\left(\pi_{1} T_{i}\right)$ is a group generated by two parabolic elements and $R\left(\pi_{1} T_{i}, G\right)$ is a smooth manifold of complex dimension $2=2$ dim $H^{\circ}\left(\pi_{i} T_{i}\right.$, An op). in a neighborhood of $\left[\rho \mid \pi_{1}\left(T_{i}\right)\right]$. Therefore (by virtue of Theorem 3), $R(\Gamma, G)$ is a smooth manifold of complex dimension n in a neighborhood of [ρ].
3.5. We consider the natural embeddings $i_{1}: \Gamma \subset \operatorname{MSL}_{2}(\mathrm{O})=S O_{+}(3,1)$ and $i_{2}: \Gamma \in S O(4,1)$. Then, by virtue of the corollary, $\operatorname{dim} H^{1}\left(\mathrm{~T}, \mathrm{Ad} \circ i_{2}\right) \geqslant 3 n>\operatorname{dim} H^{i}\left(\mathrm{\Gamma}, \mathrm{Ad} \circ i_{1}\right)=2 n$. Therefore, there exist infinitesimal deformations of Γ in $S(4,1)$ that move the group out of $\mathrm{PSL}_{2}(\mathrm{C})=\mathrm{SO}_{+}(3,1)$.

Let N be a closed hyperbolic manifold, and let $\rho: \pi_{1} N \rightarrow \Gamma \varrho \operatorname{PSL}_{2}(C)$ be the natural representation of its fundamental group.

Conjecture. The embedding $\Gamma \subset S O(4,1)$ is not locally rigid if and only if there exists an incompressiblesurface W in N that is not a virtual fiber of the fibration over S^{1} (i.e., no connected component $p^{-1}(W)$ of any finite-sheeted covering $p: M \rightarrow N$ is a fiber for the fibration of M over a circle).

LITERATURE CITED

1. A. Weil, "Discrete subgroups of Lie groups. I, II," Ann. Math., 72, 369-384 (1960); 75, 578-602 (1962).
2. M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag, New York-Heidelberg (1972).
3. G. Mostow, Strong Rigidity of Locally Symmetric Spaces, Princeton Univ. Press, Princeton (1973).
4. G. A. Margulis, "Arithmetic properties of discrete groups," Usp. Mat. Nauk, 29, No. 1, 50-96 (1974).
5. G. Prasad, "Strong rigidity of Q-rank 1 lattices," Invent. Math., 21, No. 4, 225-286 (1973).
6. D. Sullivan, "On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions," Ann. Math. Stud., No. 97, 465-496 (1981).
7. H. Garland and M. Raghunathan, "Fundamental domains for lattices in R-rank 1 semisimple Lie groups," Ann. Math., 92, 272-326 (1970).
8. W. Thurston, Geometry and Topology of 3-Manifolds, Princeton Univ. Press. Lecture Notes, Princeton (1978).
9. M. Culler and P. Shalen, "Varieties of group representations and splittings of 3 -manifolds," Ann. Math., 117, No. 1, 109-146 (1983).
10. M. Neumann and D. Zagier, "Volumes of hyperbolic manifolds," Topology, 24, No. 3, 303-332 (1985).
11. M. E. Kapovich, "Deformations of the representations of the fundamental groups of threedimensional manifolds," in: Proceedings of the All-Union Conference on Geometry, Kishinev, September 1988, Kishinev (1988).
12. J. Hempel, 3-Manifolds, Princeton Univ. Press, Princeton (1976).
13. G. E. Bredon, Sheaf Theory, McGraw-Hill, New York (1967).
14. A. Weil, "Remarks on the cohomology of groups," Ann. Math., 80, No. 1, 149-157 (1964).
15. A. Lubotzky and A. Magid, "Varieties of representations of finitely generated groups," Mem. Am. Math. Soc., 58, No. 336 (1985).
16. W. Goldman and J. Millson, "Deformations of flat bundles over Kahler manifolds," Lect. Notes Pure App1. Math., 105, 129-145 (1987).
17. W. Goldman, "The symplectic nature of fundamental groups of surfaces," Adv. Math., 54, No. 2, 200-225 (1984).

TRANSITION PHENOMENA FOR THE TOTAL NUMBER OF OFFSPRINGS IN A
GALTON - WATSON BRANCHING PROCESS
A. V. Karpenko

UDC 519.218 .23

INTRODUCTION

We consider a Galton-Watson branching process, starting with one particle at generation zero. $B y Z_{n}, n=0,1, \ldots$, we denote the number of particles in the $n-t h$ generation. In our case $\mathrm{Z}_{0}=1$. We set $p_{k}=\mathrm{P}\left(Z_{1}=k\right) ; \quad f_{n}(x)=E\left(x^{Z_{n}}\right), \quad|x| \leqslant 1, f(x)=f_{1}(x)$. Let λ be the smallest root of the equation $s=f(s), 0 \leqslant s \leqslant 1$. We shall make use of the following notations: $\mathrm{A}=$ $f^{\prime}(1), B=f^{\prime \prime}(1), L=f^{\prime \prime \prime}(1), A_{0}=f^{\prime}(\lambda), B_{0}=f^{\prime \prime}(\lambda)$. If $A \leqslant 1$, then $\lambda=1$ and, therefore, $A_{0}=A$, $\mathrm{B}_{0}=\mathrm{B}$. If $\mathrm{A}>1$, then $\lambda<1$ and $\mathrm{A}_{0}<1$.

In this paper we prove limit theorems for the distribution $S_{n}=\sum_{0}^{n} Z_{i}$. As in [1], we investigate the conditional distribution $\mathrm{P}\left(S_{n}<x \mid Z_{n}>0\right)$, but, unlike the cases $\mathrm{A}=$ const, we consider the case when simultaneously $n \rightarrow \infty, A \rightarrow 1$. Limit theorems of this type are proved for $\mathrm{P}\left(Z_{n} \mid Z_{n}>0\right)$ in $[2,3]$, while for $\mathrm{P}\left(S_{n} \mid Z_{n}=0, Z_{n-1}>0\right)$ in $[4]$. We mention that the limit law for $\mathrm{P}\left(S_{n} / m_{n}<x \mid Z_{n}>0\right)$ depends on the rate and the direction of the convergence of A to 1 with the increase of n. As normalizing constant we take $m_{n}=\mathrm{E}\left(S_{n} \mid Z_{n}>0\right)$. In connection with this, the asymptotic behavior of $\mathrm{E}\left(S_{n} \mid Z_{n}>0\right)$ is investigated.

We shall assume that the convergence for $n \rightarrow \infty$, $A \rightarrow 1$ is carried out with respect to the class K of distributions, satisfying the following conditions:
A) $\sum_{2}^{\infty} l(l-1) p_{l}(F)>\beta_{0}>0$ for some β_{0} and for any $F \in K$;
B) $\lim _{n \rightarrow \infty} \sup _{F \in K} \sum_{n}^{\infty} l^{2} p_{l}(F)=0$;
C) $\mathrm{p}_{0}(F)>\alpha_{0}>0$ for all $F \in K$.

Here $p_{\ell}(F)$ is the atom of the distribution F at the point ℓ. We note that by virtue of B) there exists β_{1} such that for each $F \in K$ we have

Novosibirsk. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 32, No. 1, pp. 5059, January-February, 1991. Original article submitted December 28, 1988.

