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The Well theorem [I] on local rigidity is one of the fundamental results of the theory 
of discrete subgroups of Lie groups. The theorem asserts that for any connected semisimple 
Lie group G without compact components whose Lie algebra does not have any sl(2: R) factors, 
the orbit of any uniform lattice F c G (with respect to the adjoint action adG) is open in 
Hom(F, G). The assertion follows from the fact that the cohomology group HI(F, Ad) is triv- 
ial (for the definitions, see e.g. [2]). The above result of Weil can often be generalized 
([3-6], etc.). Garland and Raghunathan [7] proved the "disappearance theorem," according to 
which for any lattice F in a simple connected Lie group G of real rank 1 that is not locally 
isomorphic with SL2, the cohomology group HI(F, Ad) is equal to zero. Thurston [8] proved 
that the corresponding "disappearance theorem" is no longer valid for nonuniform lattices in 
the case G----SL~(C). Namely, if F is a lattice in SL2(C) that has no finite-order elements 
and n is the number of conjugacy classes of the maximal parabolic subgroups of F, then the 
complex dimension of Horn(F, SL2(C))/adSL2(C) at any point corresponding to an irreducible 
representation p is not less than n. Alternative proofs of this fact were presented in [9, 
i0]. However, each of the proofs rests upon some algebraic (or geometric) properties of the 
group SLy(C) , the representations in which were considered in these articles. ]in particular~ 
Thurston's proof was based on the fact that for any a, b~SL~(C) and for any word w(a, b) = i, 
the word w(a -l, b -I) is also equal to i. 

The goal of the present article is to explain the fact that the absence of rigidity in 
the above case is caused by the topology of M=Ha/F, where H 3 is a hyperbolic space~ rather 
than by any algebraic or geometric properties of SL2(C) . The fact that M is a three-dimen- 
sional manifold turns out to be essential (besides, Thurston's proof was also purely topolog- 
ical). 

Let M be a three-dimensional compact nonspherical manifold, G be a Lie group with Lie 
~, ~M----TIU .... UT~ be a system of tori, and let p be a representation of ~l(M) in G. 

THEOREM I. If the above conditions are satisfied, then the following inequality holds: 

d i m H  ~ ( ~ M ,  Ado @ ~ d i m H  o ( ~ M ,  Ado 9) - -  dim H o ( ~ M ,  Ado p) + 

+ ~ dim Ho (n l r i ,  Ado p i ~,(Ti)). (1 )  

COROLLARY. I f  G i s  a s e m i s i m p l e  g r o u p ,  t h e n  t h e  i n e q u a l i t y  

d i rnH t ( a t M  , Ado p) ~ d  = ~ dimZo(p(~lT0) ,  (2 )  
i = l  

h o l d s .  ZG(A) d e n o t e s  t h e  c e n t r a l i z e r  o f  a s u b g r o u p  A o f  g.  I f  G i s  an i n f i n i t e  a l g e b r a i c  
g r o u p  and t h e  g r o u p s  p ( v l T  i )  a r e  i n f i n i t e  f o r  a l l  i = 1 . . . . .  n ,  t h e n  d>~n. I n  p a r t i c u l a r ,  

d i m H  ;(a~M, Ado p)/> n >  0. (3 )  

Remark .  I f  G = S L 2 ( C ) ,  t h e n  (3 )  i m p l i e s  t h e  a b o v e - m e n t i o n e d  r e s u l t  o f  T h u r s t o n .  

The p r o o f  o f  t h e  t h e o r e m  i s  c o n t a i n e d  in  See .  2. I n  Sec .  3 some c o n s e o u e n c e s  o f  t h e  
t h e o r e m  a r e  p r e s e n t e d  and q u e s t i o n s  c o n n e c t e d  w i t h  t h e  p r o b l e m  o f  l o c a l  r i g i d i t y  f o r  t h e  
natural embedding of the lattice Fc-SO(3 ,  1) in S0(4, I) are discussed. 

The results of the present article were announced by the author in [II]. 
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i. HEEGAARD INTERLACINGS FOR MANIFOLDS WITH TOROIDAL BOUNDARIES 

i.i. This section contains an auxiliary construction of a section of M, which is neces- 
sary to prove the theorem. 

Definition. Let M be a three-dimensional manifold whose boundary consists of tori. A 
pair (VI, V 2) of two homeomorphic bodies (generally speaking, nonorientable) with handles 
such that 

(a)  V1U V2 =M, V I ~  V2 = ~ ~ cl(aVl\(OYl~ ~M)), 
(b) the intersection of the surface X with any of the components T i of the boundary is 

the union of two disjoint circles which yield a nontrivial element of HI(T i) (Fig. 
i), is called a Heegaard interlacing. 

Remark. If ~M = ~, then (Vl, V2) is an ordinary Heegaard interlacing (for example, see 
[i2]). 

1.2. Proposition i. For every three-dimensional compact manifold M with toroidal 
boundary there exists a Heegaard interlacing. 

Proof. Let M* be a closed manifold obtained by attaching a solid torus Y~ to each of the 
boundary tori T i. We shall regard 3-~ as regular neighborhoods of simple loops ?~cM* which 
are piecewise linear with respect to a sufficiently fine triangulation. The first barycentric 
subdivision of a triangulation K will be called K' and N(S, K) will denote a regular neigh- 
borhood of a complex S c K. We shall consider a triangulation K on M* such that 7=71@,..U7~ 
is a part of its 1-skeleton Fi, and we denote by F 2 the dual skeleton to F 1 (i.e., the maxi- 
mal l-subcomplex K' that does not intersect FI). 

* K") = Then [12, Theorem 2.5] V i = N(Fi, is a body with handles (i i, 2) and (V~, V~) is 
a Heegaard interlacing for M*. Moreover, one can assume without loss of generality that ~ 
and V~ are simultaneously orientable (or nonorientable), and so V? is homeomorphic with Y~. 

Let h i be any simplex from K' that intersects ~i along the edge e i (one can assume that 
A~I]A~:~ if i ~ j). Let v~F2 be a vertex of Ai that does not lie on Yi- Let us now replace 
u by the piecewise linear loop Y~-- (Y~\e 0 U(ciLjdi),where ci and d i are the edges of h i that 
connect v i with the end-points of e i (Fig. 2). ~'=YIU ... U?~ is a union of disjoint simple 
loops. 

We denote the manifold N(7', K'") by Y. It is easily seen that V~\intV~V I is homeo- 
morphic with a body with handles, and so is V2 = V$ kitlt V. Besides, these manifolds are 
simultaneously (orientable or nonorientable) and have the same genus (as bodies with handles). 
Moreover, each of the components of 8V intersects bV l along two circles which divide ~V into 
two rings. Now, it remains to note that since y' and 7 are isotopic in M*, it follows that 
M*\intV is isomorphic with M. Therefore, (Vi, V2) is a Heegaard interlacing for M. The 
proposition is proved. 

2. PROOF OF THEOREM 1 

2.1. We denote by (V I, V 2) an arbitrary Heegaard interlacing for a manifold M (which 
satisfies the assumptions of the theorem) and we consider the actions of F~=Adop(~I(V~)) on 
| and I~ =* o Ad op(~i(Vi)) on | where 6" is the dual space to 6. If X is a vector space 
and H c GL(X), then we denote by fix (H) the set of points z~#i such that h(x) = x for all 
h ~ l t .  We r e c a l l  t h a t  fix(Fi)~_H~ Adop), fix(F*)~Ho(~,Vi, Adop); fix(F) ~H~ Adop), 
andfix(F*)--~H0(a~M, Ado9), .where F=<F , ,  F~> and r*=<r* ,  are  the  images of ~I(M). Our 
goal  i s  to  f i n d  a Heegaard i n t e r l a c i n g  such t h a t  f ix (F)=f ix(F  0 and fix ( r*)  = fix ( r * )  fo r  i = 1, 2. 
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Let (V:, Vi) be an arbitrary Heegaard interlacing for M. We denote by n i the codimen- 
sion of fix(F) in fix(Fi), and we denote by n'~ the codimension of fix(F*) in fix(F~=). We 
assume that n = n I + n 2 > 0 and, consequently, one of these numbers (for example n I) is 
greater than zero. We assume that the desired modification of the Heegaard interlacing 
exists for all m < n. We denote by vl,...,Vg the standard system of generators for the free 
group ~:(Vi~ x), where x~. Then, since n I > 0, there is an element of the system (for 
example v I) such that fix(Adop<v1>) does not contain fix(F:). As a representative of the 
class vl~n~(Vi, x) we choose a loop w that is unknotted in V 2 (i.e., intVe\w is homeomorphic 
with an open body with handles). Such a choice is possible due to the fact that v: is a 

y 

standard generator of ~:(Vi, x). Let N(w) be a regular neighborhood of w in Vi, V 1=V 2uN(w) 
and Fi-Fi~intfV(w ). It is easily seen that (V:, Vi) defines a new Heegaard interlacing for 

= U' M, codim(fix(f), fix(Ad 9(~I :)))<e:~ and the numbers n 2 and n~ for the new Heegaard inter- 
lacing do not exceed the corresponding codimensions for the original interlacing (V:, Vi). 

It follows that one can use an inductive argument~ With the aid of analogous consider- 
ations one can ensure that n* + n~2.is equal to zero. We denote the resulting Heegaard inter- 
lacing (such that n I + n 2 = n~" + n~ = 0) anew by (V:, Vi). The genus of V i is equal to g. 
Now, we can immediately set about proving Theorem i. 

2.2~ In the discussion below we shall find it expedient to pass from the cohomology of 
the group ~:M to the cohomology of M itself (with coefficients in some bundle)~ Let L D = 
M XAdo~| be a fiber bundle over M constructed from the representation Ail o 9: ~!M -+ GL(C~), 
where | is equipped with the discrete topology, and let ~p be the bundle of continuous sec- 
tions of Lp~ 

Then (since M is nonspherical) there is a natural isomorphism between the groups H~(n~,M, 
Ado9) and H~(M, 2~) (for example, see [2, Chap. 7]). In what follows we shall suppress the 
given bundles in the notation for the cohomology groups (assuming that either 5fp or the 
restriction of 2~ to the appropriate submanifold of M is the bundle in question). 

It follows from the discuss ion in Sec. 2.1 that ff0(M) -H ~ ~ [the latter equal- 
ity follows from the fact that the homomorphism a:(0V~)-~:(V~))is an epimorphism] and H0(M)-- ~ 
ff0(V~)-~ ff0(0V~). The dimensions of these linear spaces will be denoted by h' and h, respec- 
tivelyo 

Let N(Q) be a regular neighborhood of the complex 0=~VIUOM, N(Q)=~\(&V:)JN(0M), and 
let N(C)=N(~V,)AN(0M)=N(0V:N(T~U.. 5F~)) be a regular neighborhood of the system of cyl- 
inders C;=OV:~T; in M. Since the Euler characteristic %(0V~) is equal to 2 - 2g, x(DM) = 0, 
• = 0, it follows from Poincarg's duality that H~ _~]f~(N(C)), 77 (OM) ~-H~174 
Ho(OM), and  d i r a H  ~ ( 0 V : ) - ( 2 g - 2 ) d i m | 1 7 4  

2.3. Let us write down the Mayer-Vietoris sequence [13] for the covering of N(Q) by 
the pair (N(0V:), N($M)) of closed sets: 

o ~ ~~ (~(~)) + ~o(ov~) �9 ~o(~M)-~ ~o(N(c) ) ~ ~: (W (~)) -+ H~ (~:/:) �9 H: (~M)~ ~:~ (N (C)) ..... 
Since the sequence is exact, we have the inequality 

dim IF (Q) >~ dim tl~ + (2g -- 2) dim @ + h + dim [to (OM). 

2.4. Since ~:(Vi) is a free group of rank g, it follows that dimH:(V~)=h'+(g--'l) • 
dim ~, where V~V~ is a component of the manifold M\intN(Q), which is a deformation retract 
for V i. We shall now consider the covering of M by the pair (V:UV~, X(Q)) of closed sets. 

The surfaces $~7u NV~ and Si=7V(Q)NV ~ are homotopic with DV: and 3V~ in M, and so 

H:(S~)~--ff~(0V~) the space being of dimension (ig-2)dim~+h'+h, ~----~, 2 Analogously, dim • 
H : ( V ' ~ ) = ( g - - t ) d i m |  i = l ,  .2. 

2.5. Taking the above observations into account, let us write down the Mayer-Vietoris 
sequence for the covering (V~UV[, N(Q)) of M: 

o -+ ~o (M) - +  ~ ' o  (V':) ~ ~o (V'~) ~ S o (X ( ~ ) )  - +  ~ ~  (s: u s~) 

- +  H: (M) -+ H: (V'0 ~ ~ :  (V:) ~ Z~: (N (Q)) - +  n :  (s: U s~)-+ . . . .  

From (4) and the fact that the sequence is exact there follows the estimate 

dim H :  ( ~ M ,  Ado p) = dim H :  (M) ~ h '  + 2h '  - -  2 h ' -  d i m H  ~ (N (Q)) + 

+ (2h'  + 2 (g - -  ~) dim ~ + d im H o (OM) + dim H o (Q) + h) - -  
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- -  2 (g - -  ~) dim | - -  2h'  - -  2h = h '  - -  h + dim H o (OM) = 

= d i m H ~  Ado p ) +  d i m H o ( z q M  , Ado p ) +  ~ d i m H  0 (alTo, Ado p [al(T0). 
The t h e o r e m  i s  p r o v e d .  ~=~ 

2 . 6 .  I t  i s  o b v i o u s  t h a t  t h e  p r o o f  o f  Theo rem 1 i s  v a l i d  i n  t h e  c a s e  o f  a ~ l ( M ) - m o d u l e  
of a more general form than @Ado~. Namely, there holds the following result. 

THEOREM 2. Under the assumptions of Theorem i, let E be an arbitrary finite-dimensional 
~l(M)-module (over a field of characteristic 0). Then dimH1(~iM, E) ~dim ]q0 (~IM, E)- 

dim H 0 (~IM, E) + ~.  d im H 0 (~ l (T i ) ,E ) .  

3 .  SOME CONSEQUENCES OF THEOREM 1 AND REMARKS 

3 . 1 .  P r o o f  o f  t h e  C o r o l l a r y  ( f o r  t h e  F o r m u l a t i o n ,  s e e  t h e  I n t r o d u c t i o n ) .  We a s sume  t h a t  
G i s  a s e m i s i m p l e  L i e  g r o u p .  Then  t h e  K i l l i n g  m e t r i c  on @ d e f i n e s  a n o n d e g e n e r a t e  A d - i n -  
v a r i a n t  b i l i n e a r  c o u p l i n g  on (~ , and  so  H0(F, Adop)~- -H~ ~ o A d o p ) - - ~ H ~  A d ~  f o r  an y  g r o u p  

r .  T h e r e f o r e  dimH~ A d o p ) - - d i m H o ( a l M ,  A d o p ) .  I t  i s  e a s i l y  s e e n  t h a t  d i m H ~  Ado 

Pla~(T~)) = dim ZG (p (aiTi)), from which there follows inequality (2). 

We shall now demonstrate that for any connected semisimple Lie group G a i, the dimen- 
sion of ZG(A) is greater than zero, A being an arbitrary infinite Abelian subgroup of G [in 
particular, p(~l(Ti))]. G is an algebraic group. The algebraic envelope 3(A) of A is also 
an Abelian group and consists of a finite number of connected components. Therefore [since 
3(A)) is infinite] the dimension of 3(A) is greater than zero, and so dimZG(A) > 0. The 
corollary is proved. 

3.2. Let G=SL2(C), let M be a three-dimensional compact manifold such that HZ/F=intM, 
where F is a torsion-free nonuniform lattice in G, and let n be the number of components of 
the boundary of M; F -- ~IM. 

Proposition 2. If p=id: F-~G, then dimcHi(F, Ad)----n =(I/2)dimcH1(OM,~9?o)=(I/2)~dim x 

H~- (~riTi, Ad). ~=i 
i Proof. We denote by Zpar(viM, Ad) the space of cocycles c such that cl<~> is the co- 

boundary in ZI(<?>, Ad) for any 7~a1(T,), where i = l,...,n. Z~ar(] ~, Ad)/B~(F, Ad) is the 
Hvar(~IM, Ad ) (see, for example, [14]). It is easily seen space of parabolic cohomologies of i 

I 
that ,, "~':.~,c- ~;~1>ar vq ~-'~ '~'~, Ad):= i----(I/2) dimcH~ (~IT~, Ad) in the case under consideration. We set Hpa r x 

(0J[, c~) :- O ~par(~x~T.,, Ad), i*: HI( M, ~)-+H~(&~, ~o) is the natural "restriction" homomorphism. 

�9 H~ar By virtue of the results of [7] ~ , H~ar (M, 5#o) : 0, and  so  i ,  (H ~(M, 5Fo)) i n t e r s e c t s  (OM, ~qao) 

at the point 0 only and i, is a monomorphism. Hence it follows immediately that dimcH~(M, 

Sf0)<<(i/2)din~c//~(0~]/,~o). On the other hand, by virtue of (3), dtmcH (~M, Ad)~n, and so 

din~cH~(~M, Ad)=n. Proposition 2 is proved. 

We remark that dimcB~(F, Ad):n is the dimension of the tangent space (in the sense of 
Zariski) to R(F, G) = Hom(F, G)/ad(G) at the point [p] (see [15, Sec. 2]). Therefore, from 
inequality (3), Proposition 2, and the fact that simple points are dense in the complex- 
algebraic manifold R(F, G), it follows that [p = id] is a simple point in R(F, G) and there 
is a smooth manifold of complex dimension n in a neighborhood of this point. However, this 
fact can also be proved directly [without referring to the complex-algebraic nature of R(F, 

G ) ] .  

3.3. Let G be a Lie group, M be a three-dimensional manifold that satisfies the assump- 
tions of Theorem i, and let p: F § G be a homomorphism, where F = ~(M). We now assume that 

(a) there holds the equality in (i), 

( b )  H0(F, Ad ~ p)-~ O, 

(c) for all i = i, ... ,n, (PI=,(T{)) is a nonsingular point of the algebraic set 

Hom(~ (Ti), G). 

THEOREM 3. Under the above assumptions (a)-(c), R(F, G) is a smooth manifold of dimen- 
sion dimH~(F, Ad ~ p) in a neighborhood of [@]. 

Proof. Since there holds the equality in (i), there also holds the equality in (4), 
and  so  t h e  homomorph i sms  ~: H ~ (0V~) �9 H ~ (~M)-~ H ~ (N (C)) and  ~: H ~ (V'~ U V~) ~ H ~ (N (Q)) - ~ H  ~ (S~) O H ~ (S2) 
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from the corresponding Mayer-Vietoris sequences (see Secs.2.3 and 2.5) are endomorphisms. 
We remark that assumption (b) implies that H2(S~)=H2(S2)=O and the point [91=I(s0] is nonsingu- 
lar in R(~z(Si), G) [16]. 

Remark. In what follows we find it convenient to pass from considering the representa- 
tion spaces R(wiY, G) to the corrsponding spaces of flat connections (because we shall deal 
with disconnected manifolds). If Y is a manifold and p: v~(Y) * G "is a representation of its 
fundamental group, then we shall denote by E = E(Y) the fiber bundle over Y with fiber | 
(equipped with the standard vector space topology) constructed from the representation Ado 0: 
~(Y) ~ GL(~). 

We consider the space of flat connections on E(Y) and its quotient space R(E(Y)) with 
respect to the group of gauge transformations. Then R(E(Y)) is diffeomorphic with the con- 
nected component of R(WlY , G) that contains [p] (see [17])o We denote the corrsponding dif- 
feomorphism by hol: R(wIY, G) § R(E). There is a natural isomorphism between the "tangent 
space" Hl(~iY, Ado p) to R(~IY , G) (at the point [p]) and the "tangent space" YAR(E) to 
R(E) (at A = hol [p]). 3-AR(E) is nothing but the quotient space Ker(d~:.\i(Y, E) ~A2(u E))/ 
dA(X~ E)).  

Let us go back to the proof of Theorem 3. We consider the natural "restriction" map- 
pings (r~,r2): R(E(OV~)) X R(E(OM))-+ B(E(C)) s and ( r~,r4): B ( E ( V i  UV~))XB(E(N(Q)))-+B(E(S~US~)) 2 
[for Y c M, we denote by E(Y) the restriction of the corresponding fiber bundle E(M, p) con- 
structed from the homomorphisms P: ~l(M) § G]. 

Let us now remark that the space R(E(N(Q))) of connections is diffeomorphic with the 
inverse image of the diagonal of the Cartesian product R(E(N(C))) 2 in R(E(3Vz)) • R(E(3M)) 
and, analogously, R(E(VI U V2UN(Q) = ~[)) is diffeomorphic with the inverse iamge of the diago- 
nal of R(E(SIUS2)) 2. The analytic sets R(E(3M)) and R(E(3VI)) are smooth (in neighborhoods 
of the points hol [p]) by virtue of (b) and (c). From the fact that ~ is an epimorphism and 
the above remark it follows that the mapping (rz, r2) is transversal with respect to the 
diagonal of R(E(N(Q))). Hence it follows imm~ediateiy that hol [p] is a nonsingular point of 
the analytic set R(E(N(Q))). By analogy (owing to the fact that $ is an epimorphism), the 
smooth mapping (r3, r~) is transversal with respect to the diagonal R(E(SIUS2)) 2, and so [p] 
is a nonsingular point in R(~zM , G) and the dimension of R(F, G) is equal to dimHi[F, Ad ~ p) 
in a neighborhood of [p]. The theorem is proved. 

3.4. We go back to the case where int M is the hyperbolic manifold H3/F. ~ ~PSL2(C)= G, 
and p: vim § F is the natural isomorphism. Then p(ziTi) is a group generated by two para- 
bolic elements and R(~ITi, G) is a smooth manifold of complex dimension 2=2dimH~ Afl~?). 

in a neighborhood of [pl~(Ti) ]. Therefore (by virtue of Theorem 3), R(F, G) is a smooth 

manifold of complex dimension n in a neighborhood of [p]. 

3.5. We consider the natural embeddings f~: Fr P$L~(C) =SO+(3,~) and ~2: ~SO(4,~)~ Then, 
by virtue of the corollary, dimH~(F, Adoi~)~3~,>dimH~(F, Adoi~)=2n. Therefore, there exist 
infinitesimal deformations of F in SO(4, i) that move the group out of PSL2(C)=SO+(3, I). 

Let N be a closed hyperbolic manifold, and let 9: n~N-+P~PSL~(C) be the natural repre- 
sentation of its fundamental group. 

Conjecture. The embedding Fc ~O(4, I) is not locally rigid if and only if there exists 
an incompressible surface W in N that is not a virtual fiber of the fibration over S ~ (i.e., 
no connected component p-~(W) of any finite-sheeted covering p: M § N is a fiber for the 
fibration of M over a circle). 
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TRANSITION PHENOMENA FOR THE TOTAL NUMBER OF OFFSPRINGS IN A 

GALTON-WATSON BRANCHING PROCESS 

A.V. Karpenko UDC 519.218.23 

INTRODUCTION 

We consider a Galton-Watson branching process, starting with one particle at generation 
zero. By Zn, n = 0, i,..., we denote the number of particles in the n-th generation. In 
our case Z 0 = i. We set p~=P(ZI=k); /~(x)~E(xZ~), Ixl~i, ](x)=],(x). Let I be the smallest 

root of the equation s =/(s), 0 ~ s ~ I We shall make use of the following notations: A = 

/'(1), B=f~(i), L=/"(~), A0=/'(~), B0=/~(%) If A~I, then I = 1 and, therefore, A 0 = A, 

B 0 = B. If A > i, then I < 1 and A 0 < i. 

In this paper we prove limit theorems for the distribution Sn~Zi. As in [i], we 
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investigate the conditional distribution P(Sn < xlZ~ > 0), but, unlike the cases A = const, we 
consider the case when simultaneously n § ~, A § I. Limit theorems of this type are proved 
for P(Z~IZ~>O) in [2, 3], while for P(S,~!Z~ =0, Z~_~ > 0) in [4]. We mention that the limit 
law for P(S,~/mn < xiZ~ > 0) depends on the rate and the direction of the convergence of A to 1 
with the increase of n. As normalizing constant we take m~=E(S~IZ~> 0). In connection 
with this, the asymptotic behavior of E(S~IZ,~>0) is investigated. 

We shall assume that the convergence for n § ~, A + 1 is carried out with respect to the 
class K of distributions, satisfying the following conditions: 

A) ~l(l--i)pl(F)>~o>O for some $0 and for any F~K; 
2 

B) lira sup ~] ?Pz (f) = 0; 
n ~  F E K  n 

C) po(F)  > ~o > 0 f o r  a l l  F ~ K .  
Here p~(F) is the atom of the distribution F at the point ~. We note that by virtue of B) 
there exists $i such that for each F~K we have 
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