
Consequently, dim[R(dr)/R(dv)] < ~. By Theorem i, the operator d V is compactly solvable. By 
Lemma 3, the operator d F is compactly solvable. The theorem is proved. 

Note that in [i] there have been constructed for every k ~ 0, n - 1 and p = q = 2 ex- 
amples of operators d F which are not normally or compactly solvable. 
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CONFORMALLY FLAT STRUCTURES ON 3-MANIFOLDS: EXISTENCE PROBLEM. I* 

M. E. Kapovich UDC 515.16.165:512.817 

INTRODUCTION 

A conformally flat structure on a manifold M (of dimension n ~ 3) is a maximal atlas 

K={(UI, %) ~: U~-+V~cR~,i~f},in which the transition maps are conformal (i.e., ~i ~ is a 

restriction of a MSbius automorphism of R~). There is also another, classical definition 
of conformally flat structure (CFS), as the class of conformally equivalent conformally 
Euclidean metrics on M [i.e., metrics locally expressible as p(x) Idxl 2, where p(x) is a smooth 
positive function]. That these definitions are equivalent was proved in [I, 2]. It is well 
known that metrics of constant sectional curvature are conformally Euclidean (see [3]). Yet 
another characterization of CFS makes use of Kleinian groups: if a Kleinian group F is free 
and acts discontinuously on a domain S (for the detailed definitions see below, Sec. i), then 
the quotient manifold M = ~/F admits a natural CFS K F for which the cover p: Q + M is a con- 
formal map. Such structures are said to be uniformizable, and F is a uniformizinK group. 

The particular interest in conformally flat structures on 3-manifolds is due largely to 
the fact that five of the eight homogeneous Riemann spaces in three dimensions are conformally 
Euclidean: S 3, E 3, H 3, S 2XR, H 2 XR (see [4]). The following theorem of Thurston is well known 
[5, 6]: 

THEOREM H. Let M be a closed atoroidal Haken manifold. Then there exists a hyperbolic 
structure (i.e., a metric of sectional curvature -i) on M. 

Thus manifolds of this class admit CFSs. On the other hand, it follows from results of 
Goldman [7] that if M is a closed 3-manifold whose fundamental group is solvable but not a 
finite extension of an Abelian group (i.e., M is either a Sol- or a Nil-manifold; see [4]), 
then M does not admit a CFS. 

Our aim is to prove the following theorem, according to which there exist CFSs on a 
broader (than atoroidal) class of Haken manifolds. 

THEOREM C. Let M be a closed Haken 3-manifold with unsolvable fundamental group, such 
that M, when obtained by gluing hyperbolic and Seifert pieces together along tori, does not 
contain combinations of hyperbolic manifolds with hyperbolic or Euclidean manifolds (in the 
sense of [4]). Then there exists a finite-sheeted cover M 0 over M which admits a uniform- 
izable CFS. 

*Dedicated to Yurii Grigor'evich Reshetnyak on his sixtieth birthday. 
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The proof will be divided into three steps. In this paper we carry out the first two; 
the third will be the subject of a forthcoming paper. In Sec. i we introduce the necessary 
definitions. In Sec. 2 we prove 

THEOREM A. Let S(g, e) be a fiber space over a closed orientable surface Sg of genus 
g, with fiber S I and Euler number e > 0 such that e ~(g-- 1)/ll. Then the space of S(g, e) 
admits a uniformizable CFS. 

COROLLARY. If M is a Seifer fiber space and v1(M) is unsolvable, then the conclusion 
of Theorem C is true for this manifold. 

As an application we shall construct an example of a discrete uniformly quasiconformal 
group F which is not topologically conjugate to any subgroup of the MSbius group (Corollary 
3). 

In Sec. 3 we prove 

THEOREM B. Let M be a closed manifold obtained by gluing Seifert fiber spaces ZI,...,Z s 
together along boundary tori (i.e., M is a "graph-manifold" in Waldhausen's sense), such 
that v1(M) is unsolvable. Then the conclusion of Theorem C is true for M. 

In Sec~ 3 we again construct an example: a manifold which itself does not admit a CFS, 
but has a conformally flat finite-sheeted cover. This manifold will be obtained from a cer- 
tain Seifert fiber space by gluing together two components of the boundary (Theorem D). 

In our forthcoming paper we shall prove Theorem C in the general case - when the mani- 
fold is obtained by gluing together both Seifert and hyperbolic components. The main idea 
of the proof of Theorem C is to deform the CFSs on finite-sheeted covers over the hyperbolic 
and Seifert components glued together to get M, in such a way that the gluing operation can 
be done conformally. 

We recall that by a result of Kulkarni [2], if M I and M 2 are conformally flat manifolds, 
there exists a CFS on their connected sum. In view of Theorem C and Kulkarni's theorem, 
the following conjecture is plausible. 

Conjecture. Let M be a closed 3-manifold satisfying Thurston's geometrization conjec- 
ture. Conjecture (see [4, 6]), i.e., obtained from manifolds admitting a geometric struc- 
ture by gluing together along tori and connected sum operations. Assume further that the 
decomposition of M as a connected sum of primitive manifolds does not involve terms with 
Sol- or Nil-structure. Then M has a finite-sheeted cover that admits a CFS. 

i. DEFINITIONS AND NOTATION 

i.i. Let ~f~ be the group of all orientation-preserving MSbius automorphisms of the 

n-dimensional sphere S ~ = R ~ ~ R~U{~}. If ?~Jf~, we let Fix (y) denote the set {xES': ?(x)=x}. 
The region of discontinuity . of a group l'cj/f~ is the set R(F) of all points x~S ~, having a 
neighborhood U(x) such that the intersection U(x)NTU(x)is empty for all but a finite number 
of 7 ~ F. A connected component R0cR(F), which is invariant under F is called an invariant 
component o 6 F. The group F acts freely on R 0 is the stabilizer F x of every point x ~R0 is 
trivial. Thus, F acts freely on an invariant component R0cR(F) if and only if the natural 
projection if: R0-+R0/F is a cover. A group F<J{~, with a nonempty set R(F) is called a 
Kleinian ~ ,  and L(F)= S%R(F) is known as the limit set of F. 

If F is a Kleinian group, R 0 an invariant component of F on which the group acts freely, 
then a set ~0cR0 is called a fundamental region for the action of F on R 0 if (a) cl~0=clint~0, 

in~0=intcl~0, (b) ~ 7~0~R0, (c) ?~0n~0=~ for all 7 ~F\{i}' (d) the family Fcl~0 is 

locally finite. The details may be found, e.g., in [8, 9]. Thus, a manifold M(F) = R0/F 
uniformizable by F is obtained from cl #0 by identifying boundary points that are equivalent 
relative to F (i.e., x and 7x, 7 ~F). 

1.2. A 3-manifold M is said to be irreducible if any polyhedral sphere embedded in M 
bounds a ball. An irreducible 3-manifold M is called a Haken manifold if it admits an em- 
bedding i: S + M of a closed surface, neither S 2 nor RP 2, such that the induced map f, : ~ x 
( s )  ~ a~ (M).  

Remark. T h r o u g h o u t  t h i s  p a p e r  we s h a l l  be c o n c e r n e d  o n l y  w i t h  o r i e n t a b l e  3 - m a n i f o l d s .  

Thurston's hyperbolization theorem [5, 6] states that if M is Haken, 8M is the union 
of finitely many tori TIU...UT~ and M is atoroidal [i.e., for any subgroup Z+ZcaI(M) there 
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exists a conjugate subgroup Ac~I(T 0 for some i], then there exists a complete metric of 
constant negative curvature on int M. A manifold satisfying this condition is said to be 
hyperbolic. 

The main definitions and facts from the theory of orbifolds may be found, e.g., in [4], 
and the definition of compact three-dimensional Seifert fiber spaces in [4, i0, ii]. We 
mention only that (if In1(M) l = ~) a manifold M is a Seifert fiber space if and only if it 
has a finite-sheeted cover which is an ordinary fiber space over an orientable surface (pos- 
sibly with boundary) with fiber S I In addition, the fundamental group of a Seifert fiber 
space over an orbifold ~ can be embedded in a short exact sequence ~ ~ Z ~ ~I(M)~ ~I(G)~ I, 
where Zc ~I(M) is generated by a regular fiber of the Seifert fiber space (for short, we 
shall call this a fiber). 

1.3. We shall also need the following geometric description of a fiber space S(g, e) 
with fiber S l, base space Sg and Euler number e ~Z. 

Let Ee = Sg\intB 2, where B 2 is a closed disk, x ~ OB 2, ~ = E~ ~ S~, t  = {x} ~ S~c  ~ ,  ~ = OB ~ ~ {~}, 
where  ~ S  t , T = O B  ~ N S  ~ i s  t h e  b o u n d a r y  o f  t h e  m a n i f o l d  ~ .  L e t  T = B  ~ N S  ~ be a s o l i d  t o r u s ,  
�9 = { x } N S ~ 0 T ,  •  ~ { ~ }  ~ 8 T .  The c o r r e s p o n d i n g  e l e m e n t s  o f  ~z (T)  and ~z (ST)  a r e  a g a i n  
d e n o t e d  by t ,  ~, ~, x. Glue  T t o  8 ~  so t h a t  t h e  l o o p  t i s  g l u e d  t o  ~ and t h e  l o o p  $ t o  t h e  
l o o p  •  The m a n i f o l d  t h u s  o b t a i n e d  i s  p r e c i s e l y  S ( g ,  e )  ( c l e a r l y ,  o n l y  ]el i s  o f  t o p o -  
l o g i c a l  s i g n i f i c a n c e ) .  

1 . 4 .  L e t  M be a 3 - m a n i f o l d .  We s h a l l  s a y  t h a t  M a d m i t s  a g e o m e t r i c  s t r u c t u r e  ( i s  g e o -  
m e t r i c a l )  i f  i t  h a s  t h e  fo rm X/F ,  where  X i s  one o f  t h e  e i g h t  t h r e e - d i m e n s i o n a l  homogeneous  
R i e m a n n i a n  s p a c e s  ( s e e  [ 4 ] ) :  E 3, S ~, ~ ,  H~NR,  S ~NR,  SLy(R), Sol, Nil, and r i s  a d i s c r e t e  s u b g r o u p  
o f  s u b g r o u p  o f  I som (X) a c t i n g  f r e e l y  on X. I n  t h e  c a s e  o f  a m a n i f o l d  a d m i t t i n g  a S o l -  ( o r  
N i l ) - s t r u c t u r e  we s h a l l  s p e a k  o f  a S o l -  ( o r  N i l ) - m a n i f o l d .  

I t  f o l l o w s  f rom r e s u l t s  o f  [5 ,  6, 11, 12] t h a t  i f  M i s  a c l o s e d  Haken m a n i f o l d ,  t h e n  M 
can  be c u t  i n t o  max ima l  g e o m e t r i c a l  c o m p o n e n t s  ( i n  t h i s  c a s e  - open o n e s ) ;  up t o  i s o t o p y  
t h i s  can  be done  in  o n l y  one way.  

2. CONFORMALLY FLAT STRUCTURES ON SEIFERT FIBER SPACES 

2.1. We first observe that if M is a Seifert fiber space over a hyperbolic base with 
Euler number zero, there exists a Kleinian group F uniformizing M. Indeed, a Seifert fiber 
space satisfying this condition admits an H 2XR -structure (see [4]), i.e., it has the form 
H 2XR/F, where F is a subgroup of the group of isometries of H 2 X R. It is readily verified 
that a generator t of F generating a normal cyclic subgroup may be chosen as follows: t(z, ~)= 
(z. ~+ 2a), where z is a coordinate on H2, and ~ a coordinate on R. Then H2X R/<t> is iso- 

2--1 metric to X=R3\{(x~,x2, x3): x,=0}, where we have introduced the metric ds 2=Idxl2(x~+x3) . and 
the group F = F/<t> acts freely on X as a discrete group of isometries. Clearly FcJ{3 is 
the required group uniformizing M. 

At the same time, an invariant Riemannian metric on the group SL2(R) is not conformally 
Euclidean, and so this kind if argument collapses entirely in the attempt to define a CFS on 

an SL2(R) -manifold. 

2.2. Proof of Theorem A. Our main goal will be to construct a Kleinian group H = H(g, 
i) such that R(H)/H = M(H) is homeomorphic to S(g, i), where g = 12 [and in that case H = 
~l(Sg)]. The fundamental polyhedron ~ of H is homeomorphic to a solid torus and satifies 
the following conditions. 

r y r r 

(a) The faces of the polyhedron, QI, Bi, QI, RI ..... Q~, Re, Qg, Rg, lie on Euclidean spheres in 
R 3 and are homeomorphic to annuli. Two adjacent faces (i.e., appearing successively in the 
above chain, and also Rg and Ql) intersect in a circle; faces which are not adjacent do not 
intersect (Fig. i). 

The faces of ~ are identified by MSbius transformations A,:QI-+QI, Bi: RI-+RI ..... Ag: Q~-+Qg, 
Bg: Rg-+Rg,, which generate the group H. 

L e t  x0 ~ Q1 ~ Rg, Zl ~ B 7 1 o A [ I o  B~o A~ (xo) =[A1,B1](xo)~ Q2n ~1 and so on,  x~ = [A~, B~]o . . .o [Al ,  

B,](xo)~ R~n QI. 

(b) We stipulate that Xg = x 0. If in addition the sum of the dihedral angles of ~ is 
2~, then ~ is a fundamental region for the group H=<AI, Bl, ..., A~, Bg: [A~, B~]X...X[AI, BI]~ I>. 
In order to see this, it suffices to extend ~ into the hyperbolic space H4 (every sphere can 
be extended to a geodesic hypersurface) and to apply the arguments of [13]. 
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Rg Q ~ D ,  

Fig. 1 Fig. 2 

Let ~l be a simple curve on QI connecting x 0 and A~]I3~At(x~,), let T~7~ be a curve con- 
t 

necting A l(X 0) and xh ~'i ~ AI (~I), 7'i - B, (?I). Similar constructions yield curves ~, ~ ..... yg, 

7g (see Fig. i). Thanks to condition (b), the union of these curves is a simple closed curve 
on 0~, which we denote by q. Assume that the following condition holds: 

(c) The linking number of q and the axis of the solid torus S3\<D is iel = i. 

It is easy to see that condition (c) is equivalent to the following: q is homotopic 
on ~ to a loop t§215 where t=QINR~, and the class [~] generates the kernel" of the homo- 
morphism a1(0dP)-+n,(qb) (the loop • is homotopic in S3\QD to the axis of the solid torus). 

2.3. We claim that if conditions (a)-(c) are fulfilled, then H uniformizes S(g, i) 
(the fiber space over Sg with fiber S l and Euler number i). Let T'c~ be a torus parallel 
to 8~ and ~- a component of qb\T. lying between 8~ and T' The manifold M(H) = R(H)/H is 
homeomorphic to ~, provided that points of the boundary equivalent relative to H are identi- 
fied. Let q: ~ + M(H) be the natural projection, ~=q(~), ~=q(~'), where ~'cT' is a loop 
parallel in (D\~ to q. Then the manifold M(H) is obtained by gluing together ~ (which is 
homeomorphic to E~XS ~) and T=q(<D\6~) - but this is precisely the construction ,of Sec~ 1.3 
for the case [e[ = I. 

2.4. We now proceed to the construction of ~. Note that on the twice twisted tape L~ 
(Fig. 2) the linking number of the central line o and the curve q is i. In the same figure 
we also see an equivalent tape L 2 in which the folded-over sections have been "separated, " 
Our problem will be to "pave" L 2 with spheres in such a way that conditions (a)-(c) of 2.2 
will be satisfied. 

Dividing L 2 into two parts: L'2, lying in the horizontal plane H', and L 2 in which the 
central line o lies in the vertical plane ~". Let {=II'N II ~' and let A'~ If' be the axis of 
symmetry of L2, O=l~A'. We shall treat I and A' as coordinate axes in H' (Fig. 3)~ 

Let O~ and 02 be the points with coordinates (0, i) and (2, i), respectively, and l~fI' 
the straight line through O~ and 02. Let ~ = ~/8, g = ~/24, and let C~ be the point with 
coordinates (i, 1 - tan (~/2)). Define Q~ (the same letter will denote the sphere and the 
face of the polyhedron ~ on it) to be the sphere with center C~ and radius r = tan (~/2)/ 
cos (s/2). The spheres R~, Q'~, R~ and Q2 are obtained from Q~ by rotations about O~ through 
angles a, 2a, 3a, 4~. Similarly, the spheres R~, Q[2, E~2 and Q~2 are obtained by rotating 
the same sphere about O~ through the same angles (see Fig. 3). It is readily seen that the 
angles between adjacent spheres are g, and the centers of R~ and Q2 lie on the axis s We 
have thus constructed the required "paving" of L~. Let Jz be inversion with respect to Qz 
and o I symmetry with respect to the plane orthogonal to ~' and passing through O~ and the 
center of the sphere R~; define A~=o~o]~. Similarly, we let I~ be inversion with respect to 
R~ and ~z symmetry with respect to the plane orthogonal to ~ and passing through O~ and the 
center of Q'~,, BI=O~oI~. It is easy to see that A~(Q~)=Q~, B~(I{~)~, A~(Q~fr and 
SO on. 

We now turn to the plane H". Let A ~ c H ~ be the straight line orthogonal to I and 
passing through O. Introduce a coordinate system (Z, O, A H) on ~" (see Fig. 3). Let 03 = 
(2, ~), 04 =(I, 0) be points on W'. The spheres R~, Q~, R 2 ..... R4, Q5 are obtained from Q2 by ro- 
tation about 03 through angles a, 2~, 3~, ..., li~, 12~. All these spheres are orthogonal to 
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9" and the angles between them are s. Finally, the spheres R~, Q~ and R s are obtained from 
Qs by rotation about 04 through angles ~, 2~, 3~. The center of R s is on the line Z. 

The system of spheres Q6, R~, .... Q$~, R11 is obtained by symmetry about the axis A' from 
the already constructed family of spheres. The angle between any two adjacent spheres is ~. 
The exterior of the spheres QI,...,R12 is the required polyhedron ~. Indeed, the sum of its 
dihedral angles is 48~ = 2~. The generators A2, B2,...,A12, Bl2 are constructed by analogy 
with A I and BI: Ai=o~oJi, B~=@~~ where Ji and I i are inversions with respect to Qi and R i, 
and o i and 0 i symmetry with respect to planes equidistant from the centers of Qi, Qi and Ri, 
R~, respectively. 

Let xo ~QINll be the point nearest 02 It is readily seen that [N12, BI2]~176 Bl](x0)=x0, 
and the curve ~ and 8~ constructed as in Sec. 2.2 has linking number 1 with the axis of the 
solid torus R3\~. We have thus constructed the required group H = H(12, i) uniformizing ' 
S(12, I). 

2.5. We now show that for any g and e [such that I ~ lel ~(g- l)/il) there exists a 
Kleinian group H(g, e) uniformizing S(g, e). Let H be a subgroup of H(12, i) of index j. 
It follows at once from Lemma 3.5 of [4] and the Riemann-Hurwitz formula that H = H(Ilj + i, 
j). If H(12, 1) = H + hiH +... + hlH is the coset decomposition of this group, then the fun- 
damental polyhedronP of H is the unlon ~Uhi(~)U ...Uhj(~).The elements hl, .... hj may be so 
chosen that ~ is homeomorphic to a solid torus. We may assume that the boundary of P con- 
tains the piece hl (~ N (Q~ U... u R12)). The transformations All= h~A~lh[ ~, Bll ~ hlB~h[ I , AI2 
hlA12h~ I and B12= hiB1~h~ I of H, which identify the faces of this piece, leave invariant a 
certain circle C [the image under h I of the circle about O~ of radius 1 - r 2 sin 2 (e/2), in 
the plane H']. Let F m be a Kleinian group leaving C invariant (as well as the Euclidean 
disc D spanned by the circle), such that (D\L(F~))/F~ is homeomorphic to,a surface of genus 
m + 2 w i t h  one b o u n d a r y  componen t  F~ = <E~I, Dll, . . . ,  E12+~, Dl~+m>, [A12, B~2][An, B~l] = [E~2+m, 
Dl~§ X . . .  ~ [El~' D~].  Then F m can  be combined  in  M a s k i t ! s  s e n s e  ( s e e  [ 1 4 ] ,  a l s o  [15 ,  Chap. 
IV. Sec .  1, p.  169 ] )  w i t h  t h e  g r o u p  H' g e n e r a t e d  by t h e  e l e m e n t s  o f  H t h a t  i d e n t i f y  t h e  f a c e s  
o f  t h e  p o l y h e d r o n  W\h,(Qi~ U . . .  U~12) ( t h e  a m a l g a m a t e d  s u b g r o u p  i s  <h = [A~,B~=] [A~, B~]>). I t  i s  
n o t  h a r d  t o  s e e  t h a t  t h e  combined  g roup  t h u s  f o r m e d ,  H ( ~ ) =  H ' ~  F~ ,  u n i f o r m i z e s  t h e  m a n i f o l d  

S (11 j  + 1 + m, j ) ;  h e n c e ,  s e t t i n g  m = g - (11 j  + 1 ) ,  j = l e [ ,  we o b t a i n  t h e  r e q u i r e d  g roup  
H(g ,  e ) ,  c o m p l e t i n g  t h e  p r o o f  o f  t h e  t h e o r e m .  

2 . 6 .  L e t  H(g ,  e )  be an e x t e n s i o n  o f  H(g ,  e )  t o  R$={(x~ ,  x 2, x~,x~): x ~ 0 } U { e o } = H a ~ S  ~, 
M ( g , e ) ~ R ~ \ L ( H ( g , e ) ) / H ( g , e ) .  Note  t h a t  t h e  m a n i f o l d  M(g, e )  i s  a f i b e r  s p a c e  o v e r  Sg whose 
f i b e r  i s  a " c l o s e d  d i s k , "  and t h e  a b s o l u t e  v a l u e  o f  i t s  E u l e r  number  i s  e .  I n  o r d e r  t o  s e e  
t h a t  M(g, e )  i s  t h e  t o t a l  s p a c e  o f  t h e  f i b r a t i o n ,  i t  w i l l  s u f f i c e  t o  e x t e n d  t h e  f u n d a m e n t a l  
r e g i o n  $ o f  H(g ,  e )  t o  a p o l y h e d r o n  r i n  H 4, whose f a c e s  a r e  h y p e r p l a n e s  b a s e d  on c o r r e s p o n d -  
ing  spheres in S 3 The natural foliation of ~ into circles extends to a foliation of 8~ 
into two-dimensional planes in H t, which in turn extends to a foliation of ~ having the local 
structure of a product. The structure of the foliation is now dropped to M(g, e), which 
becomes a fiber space over Sh with fiber D ~. The Euler class of the resulting fibration is 
equal in absolute value to e; this follows from the fact that 3M(g, e) = S(g, e) is a fiber 
space with Euler number e. 

COROLLARY i~ Let E + S~ be a fibration with fiber R ~ and Euler number e~Z, such that 

~-12 [where x~S ) is the Euler characteristic of Sg]. Then there exists a com- [el ~-[%(S~)[/22, g g 
p l e t e  m e t r i c  o f  c o n s t a n t  n e g a t i v e  c u r v a t u r e  on E. 

Remark.  A n a l o g u e s  o f  Theorem A and C o r o l l a r y  1 - t h o u g h  w i t h o u t  e x p l i c i t  e s t i m a t e s  o f  
le] - h a v e  been  p r o v e d  i n d e p e n d e n t l y  in  a p r e p r i n t  o f  Gromov,  Lawson,  and T h u r s t o n  [ 1 6 ] .  

COROLLARY 2. Any S e i f e r t  f i b e r  s p a c e  w i t h  h y p e r b o l i c  b a s e  ( s e e  [ 4 ] )  i s  a l m o s t  c o n f o r -  
mally flat (i.e., it has a finite-sheeted cover by which is a manifold admitting a CFS). 

Proof. It will suffice to consider the case of a closed Seifert fiber space with Euler 

number zero. The group ~(M) can be embedded in a short exact sequence I~Z-+~(M)--F-+I, 
where F is isomorphic to a discrete subgroup of PSL(2, R). Then F contains a subgroup of 
finite index F 0 which is isomorphic to ~(Sg), where the genus of Sg is at least 12. Let 
G0=~-~(F0) .  Then G O h a s  a c o r e p r e s e n t a t i o n  <a~, b~, . . . ,  ag, bg, t: [a~, t]=[b~, t]~=[al ,  b~]~...~[a~,bg] t -~= 
i>, where e ~ 0. If �9 = t e, then the index of the subgroup G~--<a~, b~ . . . . .  ag, bg, ~:[a 1, 1)~] ~ . . .  
[ag, bg]~ -a= I> in v~(M) is finite. 
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The cover constructed on the basis of this subgroup is homeomorphic to S(g, i) and is the 
required conformally flat manifold (since g~ 12 and Theorem A is applicable). 

Remark. The analogous assertion for the case g = I, i.e., when the base space is Euclid- 
ean, is no longer true [7]. 

2.7. Later we shall need a certain modification of the groups H(g, e) constructed in 
Theorem A. Consider a circle in a plane v, say O(P, p) with center P and radius p; let I be 
a straight line in the same plane, whose distance from P is P + R, where R > 0. Rotating 
O(P, p) in R 3 about l, we obtain a torus, denoted by T(R, 0); call p the inner and R the 
outer radius of the torus. 

Note that the exterior of the fundamental polyhedron ~ of any group H(g, e) as con- 
structed in Sec. 2.3 is contained in a ball of radius 4 (centered at O), and the radius of 
any sphere (containing a face of @) is at most r = tan ~/cos s < 0.2. For every natural number 
m~0, let us consider the torus T = T(10(m + i), 8) with rotation axis f. Within this torus, 
consider the solid torus T m obtained by rotating the disk D(Q, 0.5) about I (Fig~ 4), where 
the center Q of the disk is situated on the perpendicular dropped from P to l, at a distance 
2 from P. Then for given m and Euler number e there exists a number go = g0( m , e) such that 
for all g~g0 there is a Kleinian group Hm(g, e) [the above-mentioned modification of H(g~ e)] 
with the following properties: 

(a) Hm(g, e) uniformizes S(g, e); 

(b) Hm(g , e) has a fundamental polyhedron ~m(g, e) homeomorphic to a solid torus, whose 
complement in S 3 (I) lies in the union of the solid torus T m and the ball B(P, 8) 
of radius 8 about P, (2) forms a link of index i (as the construction of this group 
is entirely analogous to the construction of Sec. 2.5, we shall not go into details). 

2.8. Recall that a group F of homeomorphisms of S n is said to be (uniformlv~uasicon- 
formal if sup{K(?), ?~F}<~, where K(~) is the quasiconformality coefficient (seed eog., 
[17]). Various examples have been constructed [18-20] to refute the conjecture, advanced 
in [21], that any such group is quasiconformally conjugate to a conformal group. We are 
going to show how Theorem A can be used to construct an example of a quasiconformal topologi- 
cally nonstandard (i.e., not conjugate to a topologically conformal) action of the group 
~I(Sg)XZ~ on the 3-sphere. 

Let H = H(12, i) be the group constructed in Theorem A, ~: M(H)-~M(H)a diffeomorphism 
of order n~2~ isotopic to the identity (which exists because Seifert fiber spaces admit an 
SZ-action [i0]). Let ~ denote a lifting of order n of ~ to the region of discontinuity R(H). 

Then K($)<~, ~oh=ho~ for all h~H, so $ extends to a quasiconformal homeomorphism on the 
whole of S 3 (see [22-24]). 

Remark. We have thus proved that L(H) is an unknotted circle in S ~ for any group H that 
uniformizes a Seifert fiber space over a hyperbolic orbifold [24]. Denote the extension of 
to S ~ by f. Then F=HX</> ~nI(S~)XZ~ is a discrete quasiconformal group. In addition, 

every element of F is quasiconformally conjugate to some M6bius transformation, and F itself 
is isomorphic to a subgroup of .//{3. 

COROLLARY 3. The group F is not topologically conjugate to any subgroup of J{3. 
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Proof. Suppose that there is such a conjugation g, then the group G--gFg ~cJ[~ leaves 
the Euclidean circle Fix (g/g-Z) invariant. But the manifold M(gHg -l) is homeomorphic to 
M(H) and has a nontrivial Euler class, which is impossible since there is an H ~XN -struc- 
ture on M(gHg -~) (cf. Sec. 2.1 in this paper, and also [4, Sec. 4]). 

3. CONFORMAL GLUING OF SEIFERT FIBER SPACES 

3.1. Let Z I ..... Z s be a collection of Seifert fiber spaces and M an orientable manifold 
obtained by gluing them together at boundary tori (i.e., M is a "graph-manifold"). Assume 
that ~l(M) is not solvable. In this section we shall prove that there exists a finite- 
sheeted cover M 0 of M which admits a uniformizable conformally flat structure. 

Before proceeding to the proof, we outline the main idea. Let Z I =S'gl xS I, Z~S'~2xS I, 
! �9 

where Sg i is a surface of genus gi > 0 with one boundary component. Splitting Z i into a 
direct product determines a "natural" basis in ~I(OZ~) (for more details, see Sec. 3.3). Sup- 
pose that M is obtained by gluing Z l and Z 2 together by means of a homeomorphism /: OZI ~ OZ2, 
defined relative to the natural bases by a matrix A~GL$(Z), where a2~=~. Take the groups 
H(gl, a22) andH(g2, alr). constructed in Theorem A (they exist if gl and g2 are sufficiently 
large), and place them in S 3 in such a way that the complements of the fundamental polyhedra 
form a link of index i. It is not hard to see that the Klein combination G =H(gb a22) ~ H(g2, 
a11), of these groups uniformizes M (note that with this method of constructing the condition 
a21 = I is absolutely unavoidable). Our goal will be to construct a finite-sheeted cover of 
M (in Theorem B) obtained by gluing products of surfaces of large genus to a circle, with 
coefficients a2L equal to unity for all the gluing homeomorphisms. 

3.2. Proof of Theorem B. By Theorem A, we may assume without loss of generality that M 
is not a Seifert fiber space. Our first task is to construct a cover over M which, when cut 
along incompressible tori, will contain as components only trivial Seifert fiber spaces (i.e., 
products of a surface and a circle). Let Z i be a fiber space over an orbifold O~, other than 
S l • [0, i] (we may assume without loss of generality that there are no components T 2 x [0, 
I] among the Zi). To each component ~jc0~ we glue a disk ~i with a singular conical point 
r (with angle 2v/p, 7 ~p a prime). Denote the resulting orbifold by C~i. It is readily 
seen that ~ is a "good" orbifold (see [4, Sec. 2]), and therefore there exists an even- 
sheeted regular cover %: ~-+Gi of the orbifold which is orientable by a surface. Remove 
the disks -i ~ (~)ij),from ~. The resulting surface ~ covers our original orbifold ~. It is 
not hard to see that there exist a Seifert fiber space W i over ~ and a cover ~: ~V~-+Z~, 
corresponding to a cover %: ~-+ ~ of the bases and a p-fold cover of the fiber of Z i by 
the fiber of Z i by the fiber of W i (cf. [25]). Since OW~, the surface ~ is orientable 
and the Seifert fibration ][~ ~ ~ has no singular fibers, it follows that W i is homeomorphic 
to ~XS I [4]. The cover @i has the property that if Tij is a component of 8Z i and @ij: 
Tij § Tij is the restriction of @i to a component of ~lZ(Tij), the the defining subgroup 
of ~ij is the subgroup p(Z+Z) cZ+Z~I(T~j). Thanks to this property we can glue the mani- 
folds W i together to get a cover M l over M (cf. [25, Proposition i.i]). 

3.3. As Vl(M) is not solvable, we may assume that the toric decomposition of M I does 
not contain components T 2 • [0, i] (since a fiber space over S I with toric fiber can finitely 
cover only manifolds that admit E s, Sol- or Nil-structure [4]). All components of the de- 
composition of M l are products S ~ X~, where ~P~ has an even number of boundary components. 
Fix the orientation on all the Wi's so that the homeomorphisms gluing them together to get M~ 
reverse the induced orientation of the boundary (recall that M is orientable). Let oij be 
a component of a~, - we shall use the same symbol to denote its natural embedding in S l • 
~,- and let t o = S ~ ~ {m0}(z0 ~ o~)denote a representative of the fiber of S ~ X~ on the boundary 
component S IX~i~-ii. Orient all til, ti2,.., in the same way and oil, oi2,.., in such a 
way that the sum of the corresponding elements of Hm(Wi, Z) vanishes and the orientation of 
the pairs (t~, o~), (t~2, ~2), ... coincides with the chosen orientation of 8W i. The same letters 
tij, oij will denote basis elements of the groups ~L( ~j)~<g~i>~<o~>. From now on we shall 
call these,bases "natural." Let W i and W k be components of the tormc" decomposition of,,,M l, 
~-iI~OW~,J-~OW~n components of the boundary glued together by the homeomorphism / ~/~): 

t 

~-~-+~-a,~, assuming that the manifold thus obtained is not a Seifert fiber space. Then 

/ , ( to )  ~ a~t~n + a~O~n, / , ( ~ j )  =a~t~n+a~O~n (where a2~ ~ 0, otherwise the gluing operation produces 

a Seifert fiber space). We shall call A--(aa~)~GL~(Z)the gluing matrix (relative to the 

n a t u r a l  b a s e s ) .  L e t  oo = a21o~ a n d  o~  = a21o~.. Then  / ,  (t~j) = a~t~, + ~ , ,  / ,  (~j) ~ a~a~tt~n + a . , . , ~ ,  
therefore /.(<t~j> @ <~)>) = <t~> ~ <ah~>. We thus select loops oij on all the tori ~i~, along 
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which the manifold Ml will be cut. For all surfaces 5~i, construct covers p~: P~-+~ such that 
for each component o~c 0~ the defining subgroup of the corresponding restriction of Pi is the 
subgroup <oij> (cf. Sec. 3.2). Let N~: f~i-~lq/~ be the cover induced by the cover Pi 9f the 
base space and the trivial cover of the fiber S I. Lifting the loops ~ij and tij to Wi clearly 
yields natural bases for the components H~t(J-~j), relative to which the gluing matrix ~ =(5~) 
has its entry 521, equal to 1 (the gluing is carried out by lifting the map /~ to the covering 
spaces). 

3.4. Let M 2 § M l be a finite-sheeted cover, glued together from Seifert fiber spaces 
Yi (each of which is homeomorphic to some one of the Wi~s). Associated with each Yi, which 
has r i boundary components, we have a collection of numbers 522(i, /), j = I, ..., r~, - the ele- 
ments of the gluing matrix A(i, j) (see Sec. 3.2). Let e~=1522(i, I)+...+~22(i, r~)i, and let gi 
be the genus of the surface PF (the base space of Yi)" 

Recall that by construction (see Sec. 3.2) the numbers r i are even for all i. Hence 
each surface ~ admits a regular cyclic cover Ni: Zi-+~ of arbitrary multiplicity qi, where 
the number of boundary components of ~i is, as before, r i. The genus k i of E i is 1 + ri(qi - 
I)/2 + qi(gi - i), and we shall choose the numbers qi to be the same prime number q (for all 
i). Moreover, we choose q so large that k i > g0(ei, ri), where g0(e, m) is the same function 
as in Sec. 2.7 [the condition k i > g0(ei, r i) guarantees the existence of the modified group 
Hri(ki, ei); see Sec. 2.7]. Finally, consider the covers ~i: X~=S IXEi-+Yi=S IX~, where 

G: SI~S ' is a q-sheeted cover. Then the homeomorphisms by means of which M 2 is glued to- 

gether from the manifolds Yi lift to homeomorphisms /~ of the boundaries Xi~ with the same 
gluing matrix A. The components X i are now glued together to get a manifold M 0 which is a 
finite-sheeted cover of M. Our next goal is to construct a Kleinian group G uniformizing 

H 0 �9 

3.5. Let G i denote the groups Hri(ki, e i) (see Sec. 3.4). These groups (and their 
conjugates in ~3) will be combined in the Klein-Maskit sense (see [14, 15]) to construct 
the required group G. We begin the operation with the group G? = G~, The boundary of the 
fundamental region of GI is in the interior of the torus T(10(r~ + I), 8) (see Sec. 2.7). 
It is readily seen that, together with B(P, 8), the interior of this torus also contains r~ 
disjoint balls B(Pj, 8) of the same radius, whose centers Pj lie at the same distance 8 + 
10(rl + i) from the axis of rotation { as the point P (j = 1 ..... r~). 

Let ~j be the plane through l and Pj, and l~c~ the straight line parallel to I at a 
distance 2 from Pj. Construct a torus T(I,I) with axis of rotation l~ and take its image 
under inversion with respect to the sphere of radius 1 about Pj (Fig. 5). Let T,(I,I) be 
the image of the resulting torus after dilation with center Pj and coefficient 7.5. We shall 
call Pj the center of this torus. It is readily verified that T,(I,I) is contained in the 
ball B(Pj, 8), and if ~, (IA) denotes the solid torus bounded by T,(I,I) and not containing 
the point ~, then Y-, (I,i) and the solid torus Trl (see Sec. 2.7 and Fig. 6) form a link in 
R 3 of index i. 

We now place tori Y-lj~_T,(l,!), as well as T,(I,I) in the interior of each ball B(Pj, 8)c 
int(T~l) -- T ( t0 ( r l  + 1), 8)) .  

~21. 3.6. Suppose the manifold X 2 is glued to X I along several boundary components / 1 1 - ~ 1  
OX 1-+~r'21~ c OX 2 . . . . .  ~2q./lq. Y l q c  OXI-+Y2qcOX2. Working  w i t h  X 2, c o n s t r u c t  a t o r u s  T(2) = T(t0(r2  + 
1 ) ,  8 ) ,  g r o u p  G 2 = H r 2 ( k 2 ,  e2)  and s y s t e m  o f  q t o r i  J-~j, i s o m e t r i c  t o  T ( 1 , 1 ) ,  s i t u a t e d  in  
balls of radius 8 and forming with Tr2 a link of index 1 (as done previously inside the torus 
T~ )) The remaining r 2 - q disjoint balls inside T(2) will be filled with tori of the form 

,li or T,(I,I) at the end of this subsection. Let J-~1 and $r21 be any two tori in the T[ 
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interior of T(l ) and T(2 ), respectively. There exists a Mbbius transformation ?~: extJ-21 

intJ-!1 [see the definition of T(I,I) and T,(I,I)]. It is not hard to see that the groups 
* ~ l l . ' T  21 Hq(k I, e~)=G1 and G2~ 721~2~t form exactly the same "link" as described in See. 3.1. The ele- 

ments 721~ are clearlynot uniquely determined. However, if we confine attention to the in- 
duced isomorphism (?Zl),: ~i(J-21) ~- ~i(3-,i), there exist exactly two possible choices for the map 
7~1 l (differing from one another by a Euclidean axial symmetry of $rL1). We shall see later 
how to choose ~. 

12 l q .  
Let ~22: ext3-22-+intJ-12, ..., ~2q. extJ-2q-+intJ-lq be Mbbius transformations. We construct 

a successive HNN-extension of the group Gt~G~ by the elements ~o?~ ..... ?~qqO.f~. It is 
easy to see that under these conditions the conditions of Maskit's combination theorem (see 

�9 11 [14]) are fulfilled, since the solid tori intJ-l~,int~2i(J-2i) are strictly invariant (with re- 
spect to the identity subgroup). 

This process can be continued, considering the Klein-Maskit combinations of the groups 
G~=H~i(k~,eO (and their conjugates) in accordance with the way in which M 0 is glued together 
from components X i. When this is done, if manifolds X i and Xj are to be glued together, we 
place in each of the unfilled balls of radius 8 in intT(i), intT(j) one torus, interlinked 
with Tr i (resp., Tri) if the torus placed in T(i ) was of type T.,.(I,I), that placed in a ball 
of T(j) will be of type T(I,I). The group G resulting from this combination procedure is 
the required group. 

3.7. In this section we shall indicate how to choose the Mbbius transformations ~ij 
and explain why G uniformizes the manifold M 0 . 

We consider the natural orientation of the curve N~0QD, defined by the ordering ~, 
t ! 

?~,a~,~l . . . .  (see Fig. i, Sec. 2.2, and Fig. 2, Sec. 2.4), where ~ is the fundamental poly- 
hedron of the group H(g, e). The very same orientation can be considered on the loop • 
parallel to the axis of the solid torus S~\O (see Fig. 2). The orientation of the loop 
toO0, t=Q~flR e (see Sec. 2.2) is defined by the condition ~ lelt+~. 

In a similar manner we orient the loops D~, • t~ 0dP~i, where ~ri is the fundamental poly- 

hedron of the group Hr~(k~, e O. The loop u~ generates the kernel of the homomorphism ~(0~,.~)-+ 

~(~Pri), and the loop t i the kernel of ~(O~)-+;~(SS\~). Let ~-~cint(T(~)), on this torus 

we then obtain a pair of basis loops ~, • parallel in qb~int~-ii to t i and • , respectively. 

We now choose the MSbius transformation %,i~n: ext~i~-+int~-m~ subject to the condition 

~n / m'n.\$ , . 

( ~ ) ,  (~)  : •  ~ ~ ( ~ ) ,  t ~  ~ t ~.~) = ~ ~ ~ ( ~ ) -  
Now p u t  )~o=5~(i, ])'~A-• S e c s .  3 . 3 ,  3 . 4 ) ;  t h e  same symbol  Xij  w i l l  d e n o t e  a 

s i m p l e  l oop  on ~-~, r e p r e s e n t i n g  t h i s  e l e m e n t  o f  n, (~r-~). A d i r e c t  check  now shows t h a t  (~]~),  • 

(~):a~l(i 'j)~mn-~)~n, ( ' ~ n ) . ( ; L ~ ) - - a ~ ( i , j ) ~ n @ ~ m ~ . a ~ ( i , j ) ,  where 5H(i,j)=--5~(m, n), ~ ( i , j ) = ~  
(m, n)----SH(i, ])a~(i, J)+ 1. 

On t h e  o t h e r  hand ,  we r e c a l l  thate~=]5~2(i, t ) + . . . + 5 2 ~ ( i ,  r~)[ ( s e e  Sec .  3 . 4 ) .  T h e r e f o r e ,  
in  t h e  m a n i f o l d  

X~= R ( G 0 \  U g U ~ /a~  
g~Gi J 

the sum of projections of the loops Xij bounds a surface Ei [recall that G i = Hri(ki, el), 
and R(G i) is the region of discontinuity of Gi]. Denoting the projections of Xii in X i by 
oi" and the projections of Tii by tii, we see that the pairs (Sij, tii) are natural bases 
of axi, and the gluing matrix of the homeomorphism f~, obtained when 7~ descends to 8X i 

and 3Xj, coincides with A(i, j) (see Secs. 3.3, 3.4). In sum, the manifold M(F) = R(G)/G 
(obtained from M(G) =R(G)/G by gluing together at boundary points which are equivalent 

mn 
relative to G i and the elements ~ij) is homeomorphic to M 0. Thus Mo, which finitely covers 
M, is uniformized by the Kleinian group G. This completes the proof of Theorem B. 

3.8. As an application of Theorem B, we shall construct an example of a 3-manifold M 
which does not admit a CFS, but M has a uniformizable finite-sheeted cover. 

Let O be an orbifold whose support is the annulus S I x [0, i] and its singular set a 
conical point with angle ~. Let N be a Seifert fiber space over ~ whose fundamental group 
has the corepresentation<a, b, r t: c 2~t, abc=1, [a, t]=[b, t]=1>., The boundary of N consists 

720 



of two toric components whose fundamental groups are generated by the elements a and t, b 
and t, respectively. Let f be a homeomorphism mapping one boundary component onto the other, 
/,(a) = t. /$~(b) ~ t, where f, is the induced homomorphism of the fundamental groups [the gen- 
erators of ~l(M) can be so chosen that f reserves the induced orientation of the boundary]~ 
Let M denote the manifold obtained by identifying points x, /(x)~ON. 

It is easy to see that M satisfies the assumptions of Theorem B (since the base orbi- 
fold o is not Euclidean). Hence there exists a finite-sheeted cover over M that admits a 
uniformizable conformally flat structure. 

THEOREM D. There exist no conformally flat structure on M. 

Proof. Let us suppose that there exists a conformally flat structure K on M, and let 

d.: ~,(M)~J3 be the holonomy homomorphism (for the definition see [I, 2, 7]). If g~(M), 
we let g* denote d,(g). The fundamental group of M has a corepresentation <a, b~ c, 

abc = l,[a, t] =[b, t]= I, ~-ta~ = t, ~-it~ = b>. We claim that the group H =d.(~1(M)) must satisfy 

one of the following conditions: it is conjugate to a subgroup of SO(4)cJfs, it has two 

fixed points in ~3, it is Abelian; it is polycyclic of rank r<3, it is nilpotent. Since 
]nI(M)]=~, the first possibility cannot occur (cf. [26]); that the second case is impossible 
follows from [24, lemma and Theorem i]. The group H can be neither nilpotent nor polycyclic 
of rank r~3, in view of results of Kuiper [27] and Goldman [7] (see also [28]), since ~i(H) 
is not Abelian. Thus verification of our claim will complete the proof. 

(a) Suppose first that t* = i. Then a* =b* = I, e* = i, and therefore H is a cyclic group. 

(b) Now let 1 x t* be an elliptic transformation. Then the elements a*, b*, c* are also 
elliptic. If t* has no fixed points in ~3, then its extension to H 4 leaves exactly one point 
fixed there (denote this point by q). Clearly, q is also a fixed point of a*, b*~ Thusthe 
group d,(wl(N)) leaves q fixed. In addition, it follows at once from the condition (~,)-Io 

a*o 9*=t* that ~*(q)= q. Therefore H(q) = q and H is conjugate to a subgroup of SO(4). 

Suppose now that t* leaves a circle It ~S ~ fixed point for point. Then the fixed sets 
of a*,b ~ are circles $, $~S 3. If at least one of these circles is l~, then ~=~=$ and H 
is Abelian. Note that for any g~z(N) g*(/t)=$. Hence there exists only one possibility 
in case (b): the pairs l= and L, ~ and l~, have linking number i. But then, as is easily 
seen, (e*)2=(a*b*)-2~ and this element cannot have a circle of fixed points ft; consequently, 
(e*) z~t*, which is false. 

(c) Suppose that t* is a loxodromic element with fixed points 0 and ~ 3  Then a* and 
b* are also loxodromic transformations and their fixed points are 0 and ~ (since [a*,t*]=[b*, 
t*] = i). Therefore ~*(0)=0, ~*(~)= ~ and the entire group H leaves 0 and ~ fixed. 

(d) The last case: t* is a parabolic transformation, t*(~) = (~). It is readily seen 
that then the group d, ~iN) leaves invariant either a straight line or a plane in R 3. This 
invariant line (or plane) may be so chosen that it is also invariant to ~* [note that ~*(~)= 
~]. It follows at once that H is either polycyclic of rank r~ 3 or nilpotent. This com- 
pletes the proof. 

COROLLARY. The manifold M just constructed does not admit a CFS, but it has a uniform- 
izable finite-sheeted cover. 

This settles Problem No. 41 in [8]. 

Remark. The author's preprint [29] contains a proof of Theorem A and a sketch of the 
proof of Theorem B. 

In conclusion the author would like to express his profound gratitude to the participants 
in a seminar led by S. L. Krushkal' for their useful comments, and to S. L. Krushkal' and 
N. A. Gusevskii for their scientific guidance and constant support. Thanks are also due to 
W. Goldman, J. Kamishima, R. Kulkarni, N. Kuiper, H. Lawson and many other mathematicians, 
who kindly sent preprints. 
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