Consequently, $\operatorname{dim}\left[R\left(d_{\mathrm{r}}\right) / R\left(d_{v}\right)\right]<\infty$. By Theorem 1 , the operator d_{V} is compactly solvable. By Lemma 3, the operator d_{Γ} is compactly solvable. The theorem is proved.

Note that in [1] there have been constructed for every $k \neq 0, n-1$ and $p=q=2$ examples of operators d_{Γ} which are not normally or compactly solvable.

LITERATURE CITED

1. V. M. Gol'dshtein, V. I. Kuz'minov, and I. A. Shvedov, "On the normal and compact solvability of the operator of exterior differentiation under homogeneous boundary conditions," Sib. Mat. Zh., 28, No. 4, 82-96 (1987).
2. V. M. Gol'dshtein, V. I. Kuz'minov, and I. A. Shvedov, "Dual spaces of spaces of differential forms," Sib. Mat. Zh., 27, No. 1, 45-56 (1986).
3. V. M. Gol'dshtein, V. I. Kuz'minov, and I. A. Shvedov, "Integral representation of the integral of a differential form," in: Functional Analysis and Mathematical Physics [in Russian], Akad. Nauk SSSR, Sib. Otd., Inst. Mat., Novosibirsk (1985).
4. N. N. Tarkhanov, "A formula and estimates for the solutions of the equation du $=\mathrm{f}$ in a domain and on the boundary of a domain," Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 58-66 (1980).

CONFORMALLY FLAT STRUCTURES ON 3-MANIFOLDS: EXISTENCE PROBLEM. I*
M. É. Kapovich

UDC 515.16.165:512.817

INTRODUCTION

A conformally flat structure on a manifold M (of dimension $n \geqslant 3$) is a maximal atlas $K=\left\{\left(\overline{U_{i}}, \varphi_{i}\right) \varphi_{i}: U_{i} \rightarrow V_{i} \subset \overline{\mathbf{R}}^{n}, i \in I\right\}$, in which the transition maps are conformal (i.e., $\varphi_{i} \circ \varphi_{j}^{-1}$ is a restriction of a Möbius automorphism of $\overrightarrow{\mathbf{R}}^{n}$. There is also another, classical definition of conformally flat structure (CFS), as the class of conformally equivalent conformally Euclidean metrics on M [i.e., metrics locally expressible as $\rho(x)|d x|^{2}$, where $\rho(\mathrm{x})$ is a smooth positive function]. That these definitions are equivalent was proved in [1, 2]. It is well known that metrics of constant sectional curvature are conformally Euclidean (see [3]). Yet another characterization of CFS makes use of Kleinian groups: if a Kleinian group Γ is free and acts discontinuously on a domain Ω (for the detailed definitions see below, Sec. 1), then the quotient manifold $M=\Omega / \Gamma$ admits a natural CFS K_{Γ} for which the cover $p: \Omega \rightarrow M$ is a conformal map. Such structures are said to be uniformizable, and Γ is a uniformizing group.

The particular interest in conformally flat structures on 3 -manifolds is due largely to the fact that five of the eight homogeneous Riemann spaces in three dimensions are conformally Euclidean: $\mathrm{S}^{3}, \mathbf{E}^{3}, \mathbf{H}^{3}, \mathrm{~S}^{2} \times \mathbf{R}, \mathbf{H}^{2} \times \mathbf{R}$ (see [4]). The following theorem of Thurston is well known $[5,6]:$

THEOREM H. Let M be a closed atoroidal Haken manifold. Then there exists a hyperbolic structure (i.e., a metric of sectional curvature -1) on M.

Thus manifolds of this class admit CFSs. On the other hand, it follows from results of Goldman [7] that if M is a closed 3 -manifold whose fundamental group is solvable but not a finite extension of an Abelian group (i.e., M is either a Sol- or a Nil-manifold; see [4]), then M does not admit a CFS.

Our aim is to prove the following theorem, according to which there exist CFSs on a broader (than atoroidal) class of Haken manifolds.

THEOREM C. Let M be a closed Haken 3 -manifold with unsolvable fundamental group, such that \bar{M}, when obtained by gluing hyperbolic and Seifert pieces together along tori, does not contain combinations of hyperbolic manifolds with hyperbolic or Euclidean manifolds (in the sense of [4]). Then there exists a finite-sheeted cover M_{0} over M which admits a uniformizable CFS.
*Dedicated to Yurii Grigor'evich Reshetnyak on his sixtieth birthday.
Novosibirsk. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 30, No. 5, pp. 60-73, September-October, 1989. Original article submitted November 19, 1987.

The proof will be divided into three steps. In this paper we carry out the first two; the third will be the subject of a forthcoming paper. In Sec. 1 we introduce the necessary definitions. In Sec. 2 we prove

THEOREM A. Let $S(g, e)$ be a fiber space over a closed orientable surface S_{g} of genus g, with fiber S^{2} and Euler number $e>0$ such that $e \leqslant(g-1) / 11$. Then the space of $S(g$, e) admits a uniformizable CFS.

COROLLARY. If M is a Seifer fiber space and $\pi_{1}(M)$ is unsolvable, then the conclusion of Theorem C is true for this manifold.

As an application we shall construct an example of a discrete uníformly quasiconformal group Γ which is not topologically conjugate to any subgroup of the Möbius group (Corollary $3)$.

In Sec. 3 we prove
THEOREM B. Let M be a closed manifold obtained by gluing Seifert fiber spaces Z_{1}, \ldots, Z_{S} together along boundary tori (i.e., M is a "graph-manifold" in Waldhausen's sense), such that $\pi_{1}(M)$ is unsolvable. Then the conclusion of Theorem C is true for M.

In Sec. 3 we again construct an example: a manifold which itself does not admit a CFS, but has a conformally flat finite-sheeted cover. This manifold will be obtained from a certain Seifert fiber space by gluing together two components of the boundary (Theorem D).

In our forthcoming paper we shall prove Theorem C in the general case - when the manifold is obtained by gluing together both Seifert and hyperbolic components. The main idea of the proof of Theorem C is to deform the CFSs on finite-sheeted covers over the hyperbolic and Seifert components glued together to get M, in such a way that the gluing operation can be done conformally.

We recall that by a result of Kulkarni [2], if M_{1} and M_{2} are conformally flat manifolds, there exists a CFS on their connected sum. In view of Theorem C and Kulkarni's theorem, the following conjecture is plausible.

Conjecture. Let M be a closed 3-manifold satisfying Thurston's geometrization conjecture. Conjecture (see [4, 6]), i.e., obtained from manifolds admitting a geometric structure by gluing together along tori and connected sum operations. Assume further that the decomposition of M as a connected sum of primitive manifolds does not involve terms with Sol- or Nil-structure. Then M has a finite-sheeted cover that admits a CFS.

1. DEFTNITTONS AND NOTATION

1.1. Let \mathscr{M}_{n} be the group of all orientation-preserving Möbius automorphisms of the n-dimensional sphere $S^{n}=\overline{\mathbf{R}}^{n}=\mathbf{R}^{n} \cup\{\infty\}$. If $\gamma \in \mathscr{M}_{n}$, we let $F i x(\gamma)$ denote the set $\left\{x \in S^{n}: \gamma(x)=x\right\}$. The region of discontinuity of a group $\Gamma \subset \mathscr{M}_{n}$ is the set $R(\Gamma)$ of all points $x \in S^{n}$, having a neighborhood $U(x)$ such that the intersection $U(x) \cap \gamma U(x)$ is empty for all but a finite number of $\gamma \in \Gamma$. A connected component $R_{0} \subset R(\Gamma)$, which is invariant under Γ is called an invariant component of Γ. The group Γ acts freely on R_{0} is the stabilizer Γ_{X} of every point $x \in R_{0}$ is trivial. Thus, Γ acts freely on an invariant component $R_{0} \subset R(\Gamma)$ if and only if the natural projection $q: R_{0} \rightarrow R_{0} / \Gamma$ is a cover. A group $\Gamma<\mathscr{M}_{n}$, with a nonempty set $R(\Gamma)$ is called a Kleinian group, and $L(\Gamma)=S^{n} \backslash R(\Gamma)$ is known as the limit set of Γ.

If Γ is a Kleinian group, R_{0} an invariant component of Γ on which the group acts freely, then a set $\Phi_{0} \subset R_{0}$ is called a fundamental region for the action of Γ on R_{0} if (a) cl $\Phi_{0}=c l i n t \Phi_{0}$, $\operatorname{int} \Phi_{0}=\operatorname{intcl} \Phi_{0}$, (b) $\bigcup_{\gamma \in \Gamma} \gamma \Phi_{0}=R_{0}$, (c) $\gamma \Phi_{0} \cap \Phi_{0}=\varnothing$ for all $\gamma \in \Gamma \backslash\{1\}$, (d) the family $\Gamma \mathrm{cl} \Phi_{0}$ is locally finite. The details may be found, e.g., in $[8,9]$. Thus, a manifold $M(\Gamma)=R_{0} / \Gamma$ uniformizable by Γ is obtained from $c l \Phi_{0}$ by identifying boundary points that are equivalent relative to Γ (i.e., x and $\gamma x, \gamma \in \Gamma$).
1.2. A 3 -manifold M is said to be irreducible if any polyhedral sphere embedded in M bounds a ball. An irreducible 3 -manifold M is called a Haken manifold if it admits an embedding i: $S \rightarrow M$ of a closed surface, neither S^{2} nor R^{2}, such that the induced map $i_{*}: \pi_{1} \times$ $(S) \rightarrow \pi_{1}(M)$.

Remark. Throughout this paper we shall be concerned only with orientable 3-manifolds.
Thurston's hyperbolization theorem [5, 6] states that if M is Haken, ∂M is the union of finitely many tori $T_{1} \cup \ldots U T_{n}$ and M is atoroidal [i.e., for any subgroup $Z+\mathbb{Z} \subset \pi_{1}(M)$ there
exists a conjugate subgroup $A \subset \pi_{1}\left(T_{i}\right)$ for some i], then there exists a complete metric of constant negative curvature on int M. A manifold satisfying this condition is said to be hyperbolic.

The main definitions and facts from the theory of orbifolds may be found, e.g., in [4], and the definition of compact three-dimensional Seifert fiber spaces in [4, 10, 11]. We mention only that (if $\left|\pi_{1}(M)\right|=\infty$) a manifold M is a Seifert fiber space if and only if it has a finite-sheeted cover which is an ordinary fiber space over an orientable surface (possibly with boundary) with fiber S^{1}. In addition, the fundamental group of a Seifert fiber space over an orbifold \mathcal{O} can be embedded in a short exact sequence $1 \rightarrow \mathbf{Z} \rightarrow \pi_{1}(M) \rightarrow \pi_{1}(\mathcal{O}) \rightarrow 1$, where $\mathrm{Z} \subset \pi_{1}(M)$ is generated by a regular fiber of the Seifert fiber space (for short, we shall call this a fiber).
1.3. We shall also need the following geometric description of a fiber space $S(g, e)$ with fiber S^{1}, base space S_{g} and Euler number $e \in \mathbf{Z}$.

Let $\Sigma_{g}=S_{g} \backslash i n t B^{2}$, where B^{2} is a closed disk, $x \in \partial B^{2}, \mathfrak{M}=\Sigma_{5} \times S^{1}, t=\{x\} \times S^{1} \subset \mathfrak{M}, \beta=\partial B^{2} \times\{\varphi\}$, where $\varphi \in S^{1}, T=\partial B^{2} \times S^{1}$ is the boundary of the manifold \mathfrak{M}. Let $\mathrm{T}=B^{2} \times S^{1}$ be a solid torus, $\tau=\{x\} \times S^{1} \subset \partial \mathrm{~T}, x=\partial B^{2} \times\{\varphi\} \subset \partial \mathrm{T}$. The corresponding elements of $\pi_{I}(T)$ and $\pi_{I}(\partial T)$ are again denoted by t, β, τ, χ. Glue T to $\partial \mathfrak{M}$ so that the loop t is glued to τ and the loop β to the loop $火 \tau^{e}$. The manifold thus obtained is precisely $S(g, e)$ (clearly, only $|e|$ is of topological significance).
1.4. Let M be a 3 -manifold. We shall say that M admits a geometric structure (is geometrical) if it has the form X / Γ, where X is one of the eight three-dimensional homogeneous Riemannian spaces (see [4]): $E^{3}, S^{3}, \mathbf{H}^{3}, \mathbf{H}^{2} \times \mathbf{R}, S^{2} \times \mathbf{R}, S L_{2}(\mathbf{R})$, Sol, Nil, and Γ is a discrete subgroup of subgroup of Isom (X) acting freely on X. In the case of a manifold admitting a Sol- (or Nil)-structure we shall speak of a Sol- (or Nil)-manifold.

It follows from results of $[5,6,11,12]$ that if M is a closed Haken manifold, then M can be cut into maximal geometrical components (in this case - open ones); up to isotopy this can be done in only one way.

2. CONFORMALLY FLAT STRUCTURES ON SEIFERT FIBER SPACES

2.1. We first observe that if M is a Seifert fiber space over a hyperbolic base with Euler number zero, there exists a Kleinian group F uniformizing M. Indeed, a Seifert fiber space satisfying this condition admits an $\mathbf{H}^{2} \times \mathbf{R}$-structure (see [4]), i.e., it has the form $\mathbf{H}^{2} \times \mathbf{R} / \Gamma$, where Γ is a subgroup of the group of isometries of $H^{2} \times \mathbf{R}$. It is readily verified that a generator t of Γ generating a normal cyclic subgroup may be chosen as follows: $t(z, \varphi)=$ $(z, \varphi+2 \pi)$, where z is a coordinate on \mathbf{H}^{2}, and φ a coordinate on \mathbf{R}. Then $\mathbf{H}^{2} \times \mathbf{R} /\langle t\rangle$ is isometric to $X=R^{3} \backslash\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}=0\right\}$, where we have introduced the metric $d s^{2}=|d x|^{2}\left(x_{2}^{2}+x_{3}^{2}\right)^{-1}$, and the group $F=\Gamma /\langle t\rangle$ acts freely on X as a discrete group of isometries. Clearly $F \subset \mathscr{M}_{3}$ is the required group uniformizing M.

At the same time, an invariant Riemannian metric on the group $\widetilde{S L}_{2}(\mathbf{R})$ is not conformally Euclidean, and so this kind if argument collapses entirely in the attempt to define a CFS on an $\widetilde{S L}_{2}(\mathbf{R})$-manifold.
2.2. Proof of Theorem A. Our main goal will be to construct a Kleinian group $H=H(g$, 1) such that $R(H) / H=M(H)$ is homeomorphic to $S(g, 1)$, where $g=12$ [and in that case $H \simeq$ $\left.\pi_{1}\left(\mathrm{Sg}_{\mathrm{g}}\right)\right]$. The fundamental polyhedron Φ of H is homeomorphic to a solid torus and satifies the following conditions.
(a) The faces of the polyhedron, $Q_{1}, R_{1}^{\prime}, Q_{1}^{\prime}, R_{1}, \ldots, Q_{g}, R_{g}^{\prime}, Q_{g}^{\prime}, R_{g}$, lie on Euclidean spheres in \mathbf{R}^{3} and are homeomorphic to annuli. Two adjacent faces (i.e., appearing successively in the above chain, and also Rg_{g} and Q_{1}) intersect in a circle; faces which are not adjacent do not intersect (Fig. 1).

The faces of Φ are identified by Möbius transformations $A_{1}: Q_{1} \rightarrow Q_{1}^{\prime}, B_{1}: R_{1} \rightarrow R_{1}^{\prime}, \ldots, A_{g}: Q_{g} \rightarrow Q_{g}^{\prime}$, $B_{g}: R_{g} \rightarrow R_{g}^{\prime}$, which generate the group H.

Let $x_{0} \in Q_{1} \cap R_{s}, \quad x_{1}=B_{1}^{-1} \circ A_{1}^{-1} \circ B_{1} \circ A_{1}\left(x_{0}\right)=\left[A_{1}, B_{1}\right]\left(x_{0}\right) \in Q_{2} \cap R_{1}$ and so on, $x_{s}=\left[A_{s}, B_{g}\right] \circ \ldots \circ\left[A_{1}\right.$, $\left.B_{1}\right]\left(x_{0}\right) \in R_{\mathrm{g}} \cap Q_{1}$.
(b) We stipulate that $\mathrm{x}_{\mathrm{g}}=\mathrm{x}_{0}$. If in addition the sum of the dihedral angles of Φ is 2π, then Φ is a fundamental region for the group $H=\left\langle A_{1}, B_{1}, \ldots, A_{g}, B_{g}:\left[A_{g}, B_{g}\right] \times \ldots \times\left[A_{1}, B_{1}\right]=1\right\rangle$. In order to see this, it suffices to extend Φ into the hyperbolic space \mathbf{H}^{4} (every sphere can be extended to a geodesic hypersurface) and to apply the arguments of [13].

Fig. 1

Fig. 2

Let α_{1} be a simple curve on Q_{1} connecting x_{0} and $A_{1}^{-1} B_{1} A_{1}\left(x_{0}\right)$, let $\gamma_{1} \subset R_{1}$ be a curve connecting $\mathrm{A}_{1}\left(\mathrm{x}_{0}\right)$ and $x_{1}, \quad \alpha_{1}^{\prime}=A_{1}\left(\alpha_{1}\right), \gamma_{1}^{\prime}=B_{1}\left(\gamma_{1}\right)$. Similar constructions yield curves $\alpha_{2}, \alpha_{2}^{\prime}, \ldots, \gamma_{g}$, γ_{g}^{\prime} (see Fig. 1). Thanks to condition (b), the union of these curves is a simple closed curve on $\partial \Phi$, which we denote by η. Assume that the following condition holds:
(c) The linking number of η and the axis of the solid torus $S^{3} \backslash \Phi$ is $|e|=1$.

It is easy to see that condition (c) is equivalent to the following: η is homotopic on $\partial \Phi$ to a loop $t+\chi$, where $t=Q_{1} \cap R_{g}$, and the class [x] generates the kernel of the homomorphism $\pi_{1}(\partial \Phi) \rightarrow \pi_{1}(\Phi)$ (the loop x is homotopic in $S^{3} \backslash \Phi$ to the axis of the solid torus).
2.3. We claim that if conditions (a)-(c) are fulfilled, then H uniformizes $S(g, 1)$ (the fiber space over S_{g} with fiber S^{1} and Euler number 1). Let $T^{\prime} \subset \Phi$ be a torus parallel to $\partial \Phi$ and \mathscr{F} a component of $\Phi \backslash T^{\prime}$, lying between $\partial \Phi$ and T '. The manifold $M(H)=R(H) / H$ is homeomorphic to Φ, provided that points of the boundary equivalent relative to H are identified. Let $\mathrm{q}: \Phi \rightarrow \mathrm{M}(\mathrm{H})$ be the natural projection, $\mathfrak{M}=q(\mathscr{F}), \beta=q\left(\beta^{\prime}\right)$, where $\beta^{\prime} \subset T^{\prime}$ is a loop parallel in $\Phi \backslash \mathscr{F}$ to η. Then the manifold $M(H)$ is obtained by gluing together \mathbb{M} (which is homeomorphic to $\Sigma_{8} \times S^{1}$) and $\mathrm{T}=q(\Phi \backslash \mathscr{F})$ - but this is precisely the construction of Sec. 1.3 for the case $|e|=1$.
2.4. We now proceed to the construction of Φ. Note that on the twice twisted tape L_{1} (Fig. 2) the linking number of the central line σ and the curve η is 1 . In the same figure we also see an equivalent tape L_{2} in which the folded-over sections have been "separated." Our problem will be to "pave" L_{2} with spheres in such a way that conditions (a)-(c) of 2.2 will be satisfied.

Dividing L_{2} into two parts: L_{2}^{\prime}, lying in the horizontal plane I^{\prime}, and $L_{2}^{\prime \prime}$ in which the central line σ lies in the vertical plane $\mathbb{I}^{\prime \prime}$. Let $l=\Pi^{\prime} \cap \Pi^{\prime \prime}$ and let $\Lambda^{\prime} \subset \Pi^{\prime}$ be the axis of symmetry of $L_{2}, O=l \cap \Lambda^{\prime}$. We shall treat l and Λ^{\prime} as coordinate axes in Π^{\prime} (Fig. 3).

Let O_{1} and O_{2} be the points with coordinates (0,1) and (2, 1), respectively, and $l_{1} \subset \Pi^{\prime}$ the straight line through O_{1} and O_{2}. Let $\alpha=\pi / 8, \varepsilon=\pi / 24$, and let C_{1} be the point with coordinates (1, $1-\tan (\alpha / 2)$). Define Q_{1} (the same letter will denote the sphere and the face of the polyhedron Φ on it) to be the sphere with center C_{1} and radius $r=\tan (\alpha / 2) /$ $\cos (\varepsilon / 2)$. The spheres $R_{1}^{\prime}, Q_{1}^{\prime}, R_{1}$ and Q_{2} are obtained from Q_{1} by rotations about O_{2} through angles $\alpha, 2 \alpha, 3 \alpha, 4 \alpha$. Similarly, the spheres $R_{12}, Q_{12}^{\prime}, E_{12}$ and Q_{12}^{\prime} are obtained by rotating the same sphere about O_{1} through the same angles (see Fig. 3). It is readily seen that the angles between adjacent spheres are ε, and the centers of R_{1} and Q_{2} lie on the axis ℓ. We have thus constructed the required "paving" of L_{2}^{\prime}. Let J_{1} be inversion with respect to Q_{1} and σ_{1} symmetry with respect to the plane orthogonal to Π^{\prime} and passing through O_{1} and the center of the sphere R_{1}^{\prime}; define $A_{1}=\sigma_{1} \circ J_{1}$. Similarly, we let I_{1} be inversion with respect to R_{1} and θ_{1} symmetry with respect to the plane orthogonal to Π_{1} and passing through O_{1} and the center of $Q_{1}^{\prime}, B_{1}=\theta_{1} \circ I_{1}$. It is easy to see that $\Lambda_{1}\left(Q_{1}\right)=Q_{1}^{\prime}, B_{1}\left(R_{1}\right)=R_{1}^{\prime}, \quad A_{1}\left(Q_{1} \cap R_{1}^{\prime}\right)=R_{1}^{\prime} \cap Q_{1}^{\prime}$ and so on.

We now turn to the plane $\Pi^{\prime \prime}$. Let $\Lambda^{\prime \prime} \subset \Pi^{\prime \prime}$ be the straight line orthogonal to l and passing through O. Introduce a coordinate system ($l, O, \Lambda^{\prime \prime}$) on $\Pi^{\prime \prime}$ (see Fig. 3). Let $O_{3}=$ $(2,1), O_{4}=(1,0)$ be points on $\Pi^{\prime \prime}$. The spheres $R_{2}^{\prime}, Q_{2}^{\prime}, R_{2}, \ldots, R_{4}, Q_{5}$ are obtained from Q_{2} by rotation about O_{3} through angles $\alpha, 2 \alpha, 3 \alpha, \ldots, 11 \alpha, 12 \alpha$. All these spheres are orthogonal to
$\Pi^{\prime \prime}$ and the angles between them are ε. Finally, the spheres R_{5}^{i}, Q_{5}^{1} and R_{5} are obtained from Q_{5} by rotation about O_{4} through angles $\alpha, 2 \alpha, 3 \alpha$. The center of R_{5} is on the line ℓ.

The system of spheres $Q_{6}, R_{6}^{\prime}, \ldots, Q_{11}^{\prime}, R_{11}$ is obtained by symmetry about the axis Λ^{\prime} from the already constructed family of spheres. The angle between any two adjacent spheres is ε. The exterior of the spheres Q_{1}, \ldots, R_{12} is the required polyhedron Φ. Indeed, the sum of its dihedral angles is $48 \varepsilon=2 \pi$. The generators $A_{2}, B_{2}, \ldots, A_{12}, B_{12}$ are constructed by analogy with A_{1} and $B_{1}: A_{i}=\sigma_{i} \circ J_{i}, B_{i}=\theta_{i} \circ I_{i}$, where J_{i} and I_{i} are inversions with respect to Q_{i} and R_{i}, and σ_{i} and θ_{i} symmetry with respect to planes equidistant from the centers of Q_{i}, Q_{i}^{\prime} and R_{i}, R_{i}^{1}, respectively.

Let $x_{0} \in Q_{1} \cap l_{1}$ be the point nearest $O_{2} \quad$ It is readily seen that $\left[A_{12}, B_{12}\right] \circ \ldots \circ\left[A_{1}, B_{1}\right]\left(x_{0}\right)=x_{0}$, and the curve η and $\partial \Phi$ constructed as in Sec. 2.2 has linking number 1 with the axis of the solid torus $\mathbf{R}^{3} \backslash \Phi$. We have thus constructed the required group $H=H(12,1)$ uniformizing $S(12,1)$.
2.5. We now show that for any g and e [such that $1 \leqslant|e| \leqslant(g-1) / 11)$ there exists a Kleinian group $H(g$, e) uniformizing $S(g, e)$. Let H be a subgroup of $H(12$, 1) of index j. It follows at once from Lemma 3.5 of [4] and the Riemann-Hurwitz formula that $H=H(11 j+1$, j). If $H(12,1)=H+h_{1} H+\ldots+h_{j} H$ is the coset decomposition of this group, then the fundamental polyhedron Ψ of H is the union $\Phi \cup h_{1}(\Phi) \cup \ldots \cup h_{j}(\Phi)$. The elements h_{1}, \ldots, h_{j} may be so chosen that Ψ is homeomorphic to a solid torus. We may assume that the boundary of Ψ contains the piece $h_{1}\left(\Phi \cap\left(Q_{11} \cup \ldots \cup R_{12}\right)\right.$). The transformations $A_{11}^{\prime}=h_{1} A_{11} h_{1}^{-1}, B_{11}^{\prime}=h_{1} B_{11} h_{1}^{-1}, A_{12}^{\prime}=$ $h_{1} A_{12} h_{1}^{-1}$ and $B_{12}^{\prime}=h_{1} B_{12} h_{1}^{-1}$ of H , which identify the faces of this piece, leave invariant a certain circle C [the image under h_{1} of the circle about O_{1} of radius $1-r^{2} \sin ^{2}(\varepsilon / 2)$, in the plane $\left.\Pi^{\prime}\right]$. Let Γ_{m} be a Kleinian group leaving C invariant (as well as the Euclidean disc D spanned by the circle), such that $\left(D \backslash L\left(\Gamma_{m}\right)\right) / \Gamma_{m}$ is homeomorphic to a surface of genus $\mathrm{m}+2$ with one boundary component $\Gamma_{m}=\left\langle E_{11}, D_{11}, \ldots, E_{12+m}, D_{12+m}\right\rangle,\left[A_{12}^{\prime}, B_{12}^{\prime}\right]\left[A_{11}^{\prime}, B_{11}^{\prime}\right]=\left[E_{12+m}\right.$, $\left.D_{12+m}\right] \times \ldots \times\left[E_{11}, D_{11}\right]$. Then Γ_{m} can be combined in Maskit!s sense (see [14], also [15, Chap. IV. Sec. 1, p. 169]) with the group H^{\prime} generated by the elements of H that identify the faces of the polyhedron $\Psi \backslash h_{1}\left(Q_{11} \cup \ldots \cup R_{12}\right)$ (the amalgamated subgroup is $\left\langle h=\left[A_{12}^{\prime}, B_{12}^{\prime}\right]\left[A_{11}^{\prime}, B_{11}^{\prime}\right]\right\rangle$). It is not hard to see that the combined group thus formed, $H^{(m)}=H^{\prime} * \Gamma_{r, i}$, uniformizes the manifold $S(11 j+1+m, j)$; hence, setting $m=g-(11 j+1), j=|e|$, we obtain the required group $\mathrm{H}(\mathrm{g}, \mathrm{e})$, completing the proof of the theorem.
2.6. Let $\tilde{H}(g, e)$ be an extension of $H(g, e)$ to $\overline{\mathbf{R}}_{+}^{4}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{4} \geqslant 0\right\} \cup\{\infty\}=\mathbf{H}^{4} \cup \varsigma^{3}$, $M(g, e)=\overline{\mathbf{R}}_{+}^{4} \backslash L(H(g, e)) / H(g, e)$. Note that the manifold $M(\mathrm{~g}$, e) is a fiber space over Sg whose fiber is a "closed disk," and the absolute value of its Euler number is e. In order to see that $M(g, e)$ is the total space of the fibration, it will suffice to extend the fundamental region Φ of $\mathrm{H}\left(\mathrm{g}\right.$, e) to a polyhedron $\tilde{\Phi}$ in H^{4}, whose faces are hyperplanes based on corresponding spheres in S^{3}. The natural foliation of $\partial \Phi$ into circles extends to a foliation of $\partial \tilde{\Phi}$ into two-dimensional planes in H^{4}, which in turn extends to a foliation of $\tilde{\Phi}$ having the local structure of a product. The structure of the foliation is now dropped to $M(g$, $e)$, which becomes a fiber space over $S h$ with fiber D^{2}. The Euler class of the resulting fibration is equal in absolute value to e; this follows from the fact that $\partial M(g$, e) $=S(g$, e) is a fiber space with Euler number e.

COROLLARY 1: Let $\mathrm{E} \rightarrow \mathrm{S}_{\mathrm{g}}$ be a fibration with fiber R^{2} and Euler number $e \in \mathrm{Z}$, such that $|e| \leqslant\left|\chi\left(S_{g}\right)\right| / 22, g \geqslant 12$ [where $\chi\left(S_{g}\right)$ is the Euler characteristic of S_{g}]. Then there exists a complete metric of constant negative curvature on E.

Remark. Analogues of Theorem A and Corollary 1 - though without explicit estimates of $|\mathrm{e}|$ - have been proved independently in a preprint of Gromov, Lawson, and Thurston [16].

COROLLARY 2. Any Seifert fiber space with hyperbolic base (see [4]) is almost conformally flat (i.e., it has a finite-sheeted cover by which is a manifold admitting a CFS).

Proof. It will suffice to consider the case of a closed Seifert fiber space with Euler number zero. The group $\pi_{1}(M)$ can be embedded in a short exact sequence $1 \rightarrow Z \rightarrow \pi_{1}(M) \rightarrow P \rightarrow 1$, where F is isomorphic to a discrete subgroup of $\operatorname{PSL}(2, \mathbf{R})$. Then F contains a subgroup of finite index F_{0} which is isomorphic to $\pi_{I}\left(\mathrm{Sg}_{\mathrm{g}}\right)$, where the genus of Sg is at least 12 . Let $G_{0}=\varphi^{-1}\left(F_{0}\right)$. Then G_{0} has a corepresentation $\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}, t:\left[a_{i}, t\right]=\left[b_{j}, t\right]:=\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{g}, b_{g}\right] t^{e}=\right.$ $1\rangle$, where $\mathrm{e} \neq 0$. If $\tau=\mathrm{t}^{\mathrm{e}}$, then the index of the subgroup $G_{0}^{\prime}=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}, \tau:\left[a_{1}, b_{1}\right] \times \ldots \times\right.$ $\left.\left[a_{g}, b_{g}\right] \tau^{-1}=1\right\rangle$ in $\pi_{1}(M)$ is finite.

Fig. 3

Fig. 4

The cover constructed on the basis of this subgroup is homeomorphic to $S(g, 1)$ and is the required conformally flat manifold (since $g \geqslant 12$ and Theorem A is applicable).

Remark. The analogous assertion for the case $g=1$, i.e., when the base space is Euclidean, is no longer true [7].
2.7. Later we shall need a certain modification of the groups $H(g, e)$ constructed in Theorem A. Consider a circle in a plane π, say $O(P, \rho)$ with center P and radius ρ; let l be a straight line in the same plane, whose distance from P is $\rho+R$, where $R>0$. Rotating $O(P, \rho)$ in \mathbf{R}^{3} about l, we obtain a torus, denoted by $T(R, \rho)$; call ρ the inner and R the outer radius of the torus.

Note that the exterior of the fundamental polyhedron Φ of any group $H(g$, e) as constructed in Sec. 2.3 is contained in a ball of radius 4 (centered at 0), and the radius of any sphere (containing a face of Φ) is at most $r=\tan \alpha / \cos \varepsilon<0.2$. For every natural number $m \geqslant 0$, let us consider the torus $T=T(10(m+1), 8)$ with rotation axis l. Within this torus, consider the solid torus T_{m} obtained by rotating the disk $\mathrm{D}(\mathrm{Q}, 0.5)$ about l (Eig. 4), where the center Q of the disk is situated on the perpendicular dropped from P to l, at a distance 2 from P. Then for given m and Euler number e there exists a number $g_{0}=g_{0}(m$, e) such that for all $g \geqslant g_{0}$ there is a Kleinian group $\mathrm{H}_{\mathrm{m}}(\mathrm{g}$, e) [the above-mentioned modification of $\mathrm{H}(\mathrm{g}$, e)] with the following properties:
(a) $\mathrm{H}_{\mathrm{m}}(\mathrm{g}$, e) uniformizes $\mathrm{S}(\mathrm{g}, \mathrm{e})$;
(b) $H_{m}(g, e)$ has a fundamental polyhedron $\Phi_{m}(g$, e) homeomorphic to a solid torus, whose complement in S^{3} (1) lies in the union of the solid torus T_{m} and the ball $B(P, 8)$ of radius 8 about P, (2) forms a link of index 1 (as the construction of this group is entirely analogous to the construction of Sec. 2.5 , we shall not go into details).
2.8. Recall that a group Γ of homeomorphisms of S^{n} is said to be (uniformly) quasiconformal if $\sup \{K(\gamma), \gamma \in \Gamma\}<\infty$, where $K(\gamma)$ is the quasiconformality coefficient (see, e.g., [17]). Various examples have been constructed [18-20] to refute the conjecture, advanced in [21], that any such group is quasiconformally conjugate to a conformal group. We are going to show how Theorem A can be used to construct an example of a quasiconformal topologically nonstandard (i.e., not conjugate to a topologically conformal) action of the group $\pi_{1}\left(S_{g}\right) \times \mathbf{Z}_{n}$ on the 3-sphere.

Let $H=H(12,1)$ be the group constructed in Theorem $A, \varphi: M(H) \rightarrow M(H)$ a diffeomorphism of order $n \geqslant 2$, isotopic to the identity (which exists because Seifert fiber spaces admit an $\left.S^{1}-a c t i o n[10]\right)$. Let $\tilde{\varphi}$ denote a lifting of order n of $\tilde{\varphi}$ to the region of discontinuity $R(H)$. Then $K(\tilde{\varphi})<\infty, \varphi \circ h=h \circ \tilde{\varphi}$ for all $h \in H$, so $\tilde{\varphi}$ extends to a quasiconformal homeomorphism on the whole of S^{3} (see [22-24]).

Remark. We have thus proved that $L(H)$ is an unknotted circle in S^{3} for any group H that $\underset{\sim}{u}$ unformizes a Seifert fiber space over a hyperbolic orbifold [24]. Denote the extension of $\tilde{\varphi}$ to S^{3} by f. Then $\Gamma=H \times\langle f\rangle \simeq \pi_{1}\left(S_{g}\right) \times Z_{n}$ is a discrete quasiconformal group. In addition, every element of Γ is quasiconformally conjugate to some Möbius transformation, and Γ itself is isomorphic to a subgroup of \mathscr{M}_{3}.

COROLLARY 3. The group Γ is not topologically conjugate to any subgroup of \mathscr{M}_{3}.

Proof. Suppose that there is such a conjugation g, then the group $G=g \Gamma g^{-1} \subset \mathscr{M}_{3}$ Leaves the Euclidean circle Fix $\left(\mathrm{g} / \mathrm{g}^{-1}\right)$ invariant. But the manifold $\mathrm{M}\left(\mathrm{gHg}^{-1}\right)$ is homeomorphic to $M(H)$ and has a nontrivial Euler class, which is impossible since there is an $\mathbf{H}^{2} \times \mathbf{R}-$ structure on $M\left(\mathrm{gHg}^{-1}\right)$ (cf. Sec. 2.1 in this paper, and also [4, Sec. 4]).

3. CONFORMAL GLUING OF SEIFERT FIBER SPACES

3.1. Let Z_{1}, \ldots, Z_{S} be a collection of Seifert fiber spaces and M an orientable manifold obtained by gluing them together at boundary tori (i.e., M is a "graph-manifold"). Assume that $\pi_{1}(M)$ is not solvable. In this section we shall prove that there exists a finitesheeted cover M_{0} of M which admits a uniformizable conformally flat structure.

Before proceeding to the proof, we outline the main idea. Let $Z_{1}=S_{g_{1}}^{\prime} \times S^{1}, Z_{2}=S_{g_{2}}^{\prime} \times S^{1}$, where $S_{g i}^{1}$ is a surface of genus $g_{i}>0$ with one boundary component. Splitting Z_{i} into a direct product determines a "natural" basis in $\pi_{1}\left(\partial Z_{i}\right)$ (for more details, see Sec. 3.3). Suppose that M is obtained by gluing Z_{1} and Z_{2} together by means of a homeomorphism $f: \partial Z_{1} \rightarrow \partial Z_{2}$, defined relative to the natural bases by a matrix $A \in G L_{2}^{-}(\mathbb{Z})$, where $a_{21}=1$. Take the groups $H\left(g_{1}, a_{22}\right)$ and $H\left(g_{2}, a_{11}\right)$, constructed in Theorem A (they exist if g_{1} and g_{2} are sufficiently large), and place them in S^{3} in such a way that the complements of the fundamental polyhedra form a link of index 1 . It is not hard to see that the Klein combination $G=H\left(g_{1}, a_{22}\right) * H\left(g_{2}\right.$, a_{11}), of these groups uniformizes M (note that with this method of constructing the condition $a_{21}=1$ is absolutely unavoidable). Our goal will be to construct a finite-sheeted cover of M (in Theorem B) obtained by gluing products of surfaces of large genus to a circle, with coefficients a_{21} equal to unity for all the gluing homeomorphisms.
3.2. Proof of Theorem B. By Theorem A, we may assume without loss of generality that M is not a Seifert fiber space. Our first task is to construct a cover over M which, when cut along incompressible tori, will contain as components only trivial Seifert fiber spaces (i.e., products of a surface and a circle). Let Z_{i} be a fiber space over an orbifold O_{i}, other than $S^{1} \times[0,1]$ (we may assume without loss of generality that there are no components $\mathrm{T}^{2} \times[0$, 1] among the Z_{i}). To each component $\beta_{i j} \subset \partial \mathcal{O}_{i}$ we glue a disk $\mathscr{D}_{i j}$ with a singular conical point $\zeta_{i j}$ (with angle $2 \pi / p, 7 \leqslant p$ a prime). Denote the resulting orbifold by C_{i}. It is readily seen that \mathcal{O}_{i}^{\prime} is a "good" orbifold (see [4, Sec. 2]), and therefore there exists an evensheeted regular cover $\varphi_{i}: \mathscr{P}_{i}^{\prime} \rightarrow \mathcal{O}_{i}^{\prime}$ of the orbifold which is orientable by a surface. Remove the disks $\varphi_{i}^{-1}\left(\mathscr{D}_{i j}\right)$, from \mathscr{P}_{i}^{\prime}. The resulting surface \mathscr{P}_{i} covers our original orbifold O_{i}. It is not hard to see that there exist a Seifert fiber space W_{i} over \mathscr{P}_{i} and a cover $\psi_{i}: W_{i} \rightarrow Z_{i}$, corresponding to a cover $\varphi_{i}: \mathscr{P}_{i} \rightarrow \mathcal{O}_{i}$ of the bases and a p-fold cover of the fiber of Z_{i} by the fiber of Z_{i} by the fiber of W_{i} (cf. [25]). Since $\partial W_{i} \neq \varnothing$, the surface \mathscr{P}_{i} is orientable and the Seifert fibration $W_{i} \rightarrow \mathscr{P}_{i}$ has no singular fibers, it follows that W_{i} is homeomorphic to $\mathscr{P}_{i} \times S^{1}$ [4]. The cover ψ_{i} has the property that if $T_{i j}$ is a component of ∂Z_{i} and $\psi_{i j}$: $\tilde{T}_{i j} \rightarrow T_{i j}$ is the restriction of ψ_{i} to a component of $\psi_{i}^{1}\left(T_{i j}\right)$, the the defining subgroup of $\psi i j$ is the subgroup $p(\mathbf{Z}+\mathbf{Z}) \subset \mathbf{Z}+\mathbf{Z} \simeq \pi_{1}\left(T_{i j}\right)$. Thanks to this property we can glue the manifolds W_{i} together to get a cover M_{1} over M (cf. [25, Proposition 1.1]).
3.3. As $\pi_{1}(M)$ is not solvable, we may assume that the toric decomposition of M_{I} does not contain components $\mathrm{T}^{2} \times[0,1]$ (since a fiber space over S^{1} with toric fiber can finitely cover only manifolds that admit E^{3}, Sol- or Nil-structure [4]). All components of the decomposition of M_{1} are products $S^{1} \times \mathscr{P}_{i}$, where \mathscr{P}_{i} has an even number of boundary components. Fix the orientation on all the $W_{i}^{\prime \prime}$ s so that the homeomorphisms gluing them together to get M_{1} reverse the induced orientation of the boundary (recall that M is orientable). Let $\sigma_{i j}$ be a component of $\partial \mathscr{P}_{i}$, - we shall use the same symbol to denote its natural embedding in $S^{i} \times$ \mathscr{P}_{i}, - and let $t_{i j}=S^{1} \times\left\{x_{0}\right\}\left(x_{0} \in \sigma_{i j}\right)$ denote a representative of the fiber of $\dot{S}^{1} \times \mathscr{P}_{i}$ on the boundary component $S^{1} \times \sigma_{i j}=\mathscr{T}_{i j}^{\prime}$. Orient all $t_{i 1}, t_{i_{2}}, \ldots$ in the same way and $\sigma_{i 1}, \sigma_{i 2}, \ldots$ in such a way that the sum of the corresponding elements of $H_{1}\left(W_{i}, Z\right)$ vanishes and the orientation of the pairs $\left(t_{i 1}, \sigma_{i 1}\right),\left(t_{i 2}, \sigma_{i 2}\right), \ldots$ coincides with the chosen orientation of ∂W_{i}. The same letters $t_{i j}, \sigma_{i j}$ will denote basis elements of the groups $\pi_{1}\left(\mathscr{T}_{i j}^{\prime}\right)=\left\langle t_{i j}\right\rangle \oplus\left\langle\sigma_{i j}\right\rangle$. From now on we shall call these bases "natural." Let W_{i} and W_{k} be components of the toric decomposition of M_{1}, $\mathscr{T}_{i j}^{\prime} \subset \partial W_{i}, \mathscr{T}_{k n}^{\prime} \subset \partial W_{k n}$ components of the boundary glued together by the homeomorphism $f=f_{i j}^{\prime \prime \prime}$: $\mathscr{T}_{i j}^{\prime} \rightarrow \mathscr{T}_{k n}^{\prime}$, assuming that the manifold thus obtained is not a Seifert fiber space. Then $f_{*}\left(t_{i j}\right)=a_{11} t_{k n}+a_{21} \sigma_{k n}, f_{*}\left(\sigma_{i j}\right)=a_{12} t_{k n}+a_{22} \sigma_{k n}$ (where $a_{21} \neq 0$, otherwise the gluing operation produces a Seifert fiber space). We shall call $A=\left(a_{\alpha \beta}\right) \in \mathrm{GL}_{2}^{-}(\mathrm{Z})$ the gluing matrix (relative to the natural bases). Let $\widetilde{\sigma}_{i j}=a_{21} \sigma_{i j}$ and $\widetilde{\sigma}_{k n}=a_{21} \sigma_{k n}$. Then $f_{*}\left(t_{i j}\right)=a_{11} t_{k n}+\widetilde{\sigma}_{k n}, f_{*}\left(\sigma_{i j}\right)=a_{21} a_{12} t_{k n}+a_{22} \widetilde{\sigma}_{k n}$, therefore $f_{*}\left(\left\langle t_{i j}\right\rangle \oplus\left\langle\tilde{\sigma}_{i j}\right\rangle\right)=\left\langle t_{n n}\right\rangle \oplus\left\langle\tilde{\sigma}_{k n}\right\rangle$. We thus select loops $\tilde{\sigma}_{i j}$ on all the tori $\mathscr{T}_{i j}^{\prime}$, along

Fig. 5

Fig. 6
which the manifold M_{1} will be cut. For all surfaces \mathscr{P}_{i}, construct covers $p_{i}: \mathscr{P}_{i}^{-} \rightarrow \mathscr{P}_{i}$ such that for each component $\sigma_{i j} \subset \partial \mathscr{P}_{i j}$ the defining subgroup of the corresponding restriction of p_{i} is the subgroup $\left\langle\sigma_{i j}\right\rangle$ (cf. Sec. 3.2). Let $\Pi_{i}: \widehat{W}_{i} \rightarrow W_{i}$ be the cover induced by the cover p_{i} of the base space and the trivial cover of the fiber S^{1}. Lifting the loops $\tilde{\sigma}_{i j}$ and $t_{i j}$ to \tilde{W}_{i} clearly yields natural bases for the components $\Pi_{i}^{-1}\left(\mathscr{F}_{i j}^{\prime}\right)$, relative to which the gluing matrix $\widetilde{A}=\left(\tilde{a}_{\alpha \beta}\right)$ has its entry \tilde{a}_{21}, equal to 1 (the gluing is carried out by lifting the map $f_{i j}^{h n}$ to the covering spaces).
3.4. Let $M_{z} \rightarrow M_{1}$ be a finite-sheeted cover, glued together from Seifert fiber spaces Y_{i} (each of which is homeomorphic to some one of the \tilde{W}_{i} 's). Associated with each Y_{i}, which has r_{i} boundary components, we have a collection of numbers $\tilde{a}_{22}(i, j), j=1, \ldots, r_{i}$, the elements of the gluing matrix $\tilde{A}(i, j)$ (see Sec. 3.2). Let $e_{i}=\left|\tilde{a}_{22}(i, 1)+\ldots+\tilde{a}_{22}\left(i, r_{i}\right)\right|$, and let g_{i} be the genus of the surface \mathscr{P}_{i}^{-}(the base space of $\mathrm{Y}_{\mathfrak{i}}$).

Recall that by construction (see Sec. 3.2) the numbers r_{i} are even for all i. Hence each surface \mathscr{P}_{i}^{-}admits a regular cyclic cover $\eta_{i}: \Sigma_{i} \rightarrow \mathscr{P}_{i}^{-}$of arbitrary multiplicity q_{i}, where the number of boundary components of Σ_{1} is, as before, r_{i}. The genus k_{i} of Σ_{i} is $1+r_{i}\left(q_{i}-\right.$ 1) $/ 2+q_{i}\left(g_{i}-1\right)$, and we shall choose the numbers q_{i} to be the same prime number q (for all i). Moreover, we choose q so large that $k_{i}>g_{0}\left(e_{i}, r_{i}\right)$, where $g_{0}(e, m)$ is the same function as in Sec. 2.7 [the condition $k_{i}>g_{0}\left(e_{i}, r_{i}\right)$ guarantees the existence of the modified group $H_{r_{i}}\left(\mathrm{k}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}}\right)$; see Sec. 2.7]. Finally, consider the covers $\xi_{i}: X_{i}=S^{1} \times \Sigma_{i} \rightarrow Y_{i}=S^{1} \times \mathscr{P}_{i}^{-}$, where $\theta_{i}: S^{1} \rightarrow S^{1}$ is a q-sheeted cover. Then the homeomorphisms by means of which M_{2} is glued together from the manifolds Y_{i} lift to homeomorphisms $\tilde{f}_{i j}^{n}$ of the boundaries X_{i}, with the same gluing matrix \tilde{A}. The components X_{i} are now glued together to get a manifold M_{0} which is a finite-sheeted cover of M. Our next goal is to construct a Kleinian group G uniformizing M_{0}.
3.5. Let G_{i} denote the groups $H_{i}\left(k_{i}, e_{i}\right)$ (see Sec. 3.4). These groups (and their conjugates in \mathscr{M}_{3}) will be combined in the Klein-Maskit sense (see [14, 15]) to construct the required group G. We begin the operation with the group $G_{1}^{*}=G_{1}$. The boundary of the fundamental region of G_{1} is in the interior of the torus $T\left(10\left(r_{1}+1\right), 8\right)$ (see Sec. 2.7). It is readily seen that, together with $B(P, 8)$, the interior of this torus also contains r_{1} disjoint balls $B\left(P_{j}, 8\right)$ of the same radius, whose centers P_{j} lie at the same distance $8+$ $10\left(r_{1}+1\right)$ from the axis of rotation l as the point $P\left(j=1, \ldots, r_{1}\right)$.

Let πj be the plane through l and P_{j}, and $l_{j} \subset \pi_{j}$ the straight line parallel to l at a distance 2 from P_{j}. Construct a torus $T(1,1)$ with axis of rotation l_{i} and take its image under inversion with respect to the sphere of radius 1 about P_{j} (Fig. 5). Let $\mathrm{T}_{\%}(1,1)$ be the image of the resulting torus after dilation with center P_{j} and coefficient 7.5. We shall call P_{j} the center of this torus. It is readily verified that $\mathrm{T}_{\%}(1,1)$ is contained in the ball $\mathrm{B}\left(\mathrm{P}_{\mathrm{j}}, 8\right)$, and if $\mathscr{T}_{*}(1,1)$ denotes the solid torus bounded by $T_{*}(1,1)$ and not containing the point ∞, then $\mathscr{T}_{*}(1,1)$ and the solid torus Tr_{1} (see Sec. 2.7 and Fig. 6) form a link in \mathbf{R}^{3} of index 1.

We now place tori $\mathscr{T}_{1 j} \simeq T_{*}(1,1)$, as well as $T_{*}(1,1)$ in the interior of each ball $B\left(P_{j}, 8\right) \subset$ $\operatorname{int}\left(T_{(1)}=T\left(10\left(r_{1}+1\right), 8\right)\right)$.
3.6. Suppose the manifold X_{2} is glued to X_{1} along several boundary components $\widetilde{f}_{11}^{21}: \widetilde{\mathscr{F}}_{11} \subset$ $\partial X_{1} \rightarrow \widetilde{\mathscr{T}}_{21} \subset \partial X_{2}, \ldots, \widetilde{f}_{1 q}^{2 q}: \widetilde{\mathscr{T}}_{1 q} \subset \partial X_{1} \rightarrow \widetilde{\mathscr{T}}_{2 q} \subset \partial X_{2}$. Working with X_{2}, construct a torus $T_{(2)}=T\left(10\left(r_{2}+\right.\right.$ 1), 8), group $G_{2}=H_{r_{2}}\left(k_{2}, e_{2}\right)$ and system of q tori $\mathscr{T}_{2 j}$, isometric to $T(1,1)$, situated in balls of radius 8 and forming with $\mathrm{T}_{\mathrm{r}_{2}}$ a link of index 1 (as done previously inside the torus $\left.T_{(1)}\right)$. The remaining $r_{2}-q$ disjoint balls inside $T_{(2)}$ will be filled with tori of the form $T(1,1)$ or $T_{\psi}(1,1)$ at the end of this subsection。 Let \mathscr{T}_{11} and \mathscr{T}_{21} be any two tori in the
interior of $\mathrm{T}_{(1)}$ and $\mathrm{T}_{(2)}$, respectively. There exists a Möbius transformation γ_{21}^{11} ext $\mathscr{T}_{21} \rightarrow$ int \mathscr{T}_{11} [see the definition of $T(1,1)$ and $\left.T_{*}(1,1)\right]$. It is not hard to see that the groups $H_{r_{1}}\left(k_{1}, e_{1}\right)=G_{1}^{*}$ and $G_{2}^{*}=\gamma_{21}^{11} G_{2} \gamma_{11}^{21}$ form exactly the same "link" as described in Sec. 3.1. The elements $\gamma_{2}^{\frac{1}{1}}$ are clearlynot uniquely determined. However, if we confine attention to the induced isomorphism $\left(\gamma_{21}^{71}\right)_{*}: \pi_{1}\left(\mathscr{F}_{2 i}\right) \rightarrow \pi_{1}\left(\mathscr{T}_{11}\right)$, there exist exactly two possible choices for the map $\gamma_{2}^{\frac{1}{1}}$ (differing from one another by a Euclidean axial symmetry of \mathscr{T}_{11}). We shall see later how to choose $\gamma_{2}^{\frac{1}{2}}{ }_{1}^{1}$.

Let $\gamma_{22}^{12}: \operatorname{ext} \mathscr{F}_{22} \rightarrow \operatorname{int} \mathscr{T}_{12}, \ldots, \gamma_{2 q}^{1 q}: \operatorname{ext} \mathscr{T}_{2 q} \rightarrow \operatorname{int} \mathscr{T}_{1 q}$ be Möbius transformations. We construct a successive HNN-extension of the group $G_{1}^{*} * G_{2}^{*}$ by the elements $\gamma_{22}^{12} \circ \gamma_{11}^{21}, \ldots, \gamma_{2 q}^{1 q} \circ \gamma_{11}^{21}$. It is easy to see that under these conditions the conditions of Maskit's combination theorem (see [14]) are fulfilled, since the solid tori int $\mathscr{T}_{1 i}$, int $\gamma_{21}^{11}\left(\mathscr{T}_{2 i}\right)$ are strictly invariant (with respect to the identity subgroup).

This process can be continued, considering the Klein-Maskit combinations of the groups $G_{i}=H_{r_{i}}\left(k_{i}, e_{i}\right)$ (and their conjugates) in accordance with the way in which M_{0} is glued together from components X_{i}. When this is done, if manifolds X_{i} and X_{j} are to be glued together, we place in each of the unfilled balls of radius 8 in int $\mathrm{T}_{(i)}$, int $\mathrm{T}(\mathrm{j})$ one torus, interlinked with Tr_{i} (resp., $\mathrm{T}_{\mathrm{r}_{j}}$) if the torus placed in $\mathrm{T}_{(i)}$ was of type $\mathrm{T}_{*}(1,1)$, that placed in a ball of $T(j)$ will be of type $T(1,1)$. The group G resulting from this combination procedure is the required group.
3.7. In this section we shall indicate how to choose the Möbius transformations $\gamma_{i j}^{\operatorname{mn}}$ and $\operatorname{explain}$ why G uniformizes the manifold M_{0}.

We consider the natural orientation of the curve $\eta \subset \partial \Phi$, defined by the ordering α_{1}, $\gamma_{1}^{\prime}, \alpha_{1}^{\prime}, \gamma_{1}, \ldots$ (see Fig. 1, Sec. 2.2, and Fig. 2, Sec. 2.4), where Φ is the fundamental polyhedron of the group $H(g, e)$. The very same orientation can be considered on the loop $x \subset \partial \Phi$, parallel to the axis of the solid torus $S^{3} \backslash \Phi$ (see Fig. 2). The orientation of the loop $t \in \partial \Phi, t=Q_{1} \cap R_{g}$ (see Sec. 2.2) is defined by the condition $\eta \sim|e| t+x$.

In a similar manner we orient the loops $\eta_{i}, \chi_{i}, t_{i} \subset \partial \Phi_{r_{i}}$, where $\Phi_{r_{i}}$ is the fundamental polyhedron of the group $H_{r_{i}}\left(k_{i}, e_{i}\right)$. The loop x_{i} generates the kernel of the homomorphism $\pi_{1}\left(\partial \Phi_{r_{i}}\right) \rightarrow$ $\pi_{1}\left(\Phi_{r_{i}}\right)$, and the loop t_{i} the kernel of $\pi_{1}\left(\partial \Phi_{r_{i}}\right) \rightarrow \pi_{1}\left(S^{3} \backslash \Phi_{r_{i}}\right)$. Let $\mathscr{T}_{i j} \subset \operatorname{int}\left(T_{(i)}\right)$, on this torus we then obtain a pair of basis loops $\tau_{i j}, x_{i j}$, parallel in $\Phi_{r_{i}}$ int $\mathscr{T}_{i j}$ to t_{i} and x_{i}, respectively. We now choose the Möbius transformation $\gamma_{i j}^{m n}: \operatorname{ext} \mathscr{T}_{i j} \rightarrow$ int $\mathscr{T}_{m n}$ subject to the condition

$$
\left(\gamma_{i j}^{m n}\right)_{*}\left(\tau_{i j}\right)=\chi_{m n} \in \pi_{1}\left(\mathscr{T}_{m n}\right), \quad\left(\gamma_{i j}^{m n}\right)_{*}\left(\chi_{i j}\right)=\tau_{m n} \in \pi_{1}\left(\mathscr{T}_{m n}\right)
$$

Now put $\lambda_{i j}=\tilde{a}_{22}(i, j) \tau_{i j}+x_{i j} \in \pi_{1}\left(\mathscr{T}_{i j}\right)$ (see Secs. 3.3, 3.4); the same symbol $\lambda_{i j}$ will denote a simple ${ }_{\sim}^{l}$ loop on $\mathscr{T}_{i j}$, representing this element of $\mathscr{\pi}_{1}\left(\mathscr{T}_{i j}\right)$. A direct check now shows that $\left(\gamma_{i j}^{m n}\right)_{*} \times$ $\left(\tau_{i j}\right)=\tilde{a}_{11}(i, j) \tau_{m n}+\lambda_{m n}, \quad\left(\gamma_{i j}^{m n}\right)_{*}\left(\lambda_{i j}\right)=\tilde{a}_{12}(i, j) \tau_{m n}+\lambda_{m n} \cdot \tilde{a}_{22}(i, j), \quad$ where $\tilde{a}_{11}(i, j)=-\tilde{a}_{22}(m, n), \tilde{a}_{12}(i, j)=\tilde{a}_{12}$ $(m, n)=\tilde{a}_{11}(i, j) \tilde{a}_{22}(i, j)+1$.

On the other hand, we recall that $e_{i}=\left|\tilde{a}_{22}(i, 1)+\ldots+\tilde{a}_{22}\left(i, r_{i}\right)\right|$ (see Sec. 3.4). Therefore, in the manifold

$$
X_{i}=\left(R\left(G_{i}\right) \backslash \bigcup_{g=G_{i}}^{\bigcup} g\left(\bigcup_{j=1}^{\bigcup_{i}} \operatorname{int} \mathscr{T}_{i j}\right)\right), G_{i}
$$

the sum of projections of the loops $\lambda_{i j}$ bounds a surface \sum_{i} [recall that $G_{i}=H_{i}\left(k_{i}, e_{i}\right)$, and $R\left(G_{i}\right)$ is the region of discontinuity of $\left.G_{i}\right]$. Denoting the projections of $\lambda i j$ in X_{i} by $\tilde{\sigma}_{i j}$ and the projections of $\tau_{i j}$ by $\tilde{t}_{i j}$, we see that the pairs ($\tilde{\sigma}_{i j}, t_{i j}$) are natural bases of ∂X_{i}, and the gluing matrix of the homeomorphism $\tilde{f}_{\tilde{i} j}^{m n}$, obtained when $\gamma_{i j}^{m n}$ descends to ∂X_{i} and ∂X_{j}, coincides with $\tilde{A}(i, j)$ (see Secs. $3.3,3.4$). In sum, the manifold $M(F)=R(G) / G$ (obtained from $M(G)=R(G) / G$ by gluing together at boundary points which are equivalent relative to G_{i} and the elements $\gamma_{i j} \mathrm{~m}_{\mathrm{j}}$) is homeomorphic to M_{0}. Thus M_{0}, which finitely covers M, is uniformized by the Kleinian group G. This completes the proof of Theorem B.
3.8. As an application of Theorem B, we shall construct an example of a 3-manifold M which does not admit a CFS, but M has a uniformizable finite-sheeted cover.

Let O be an orbifold whose support is the annulus $S^{1} \times[0,1]$ and its singular set a conical point with angle π. Let N be a Seifert fiber space over O whose fundamental group has the corepresentation $\left\langle a, b, c, t: c^{2}=t, a b c=1,[a, t]=[b, t]=1\right\rangle$. The boundary of N consists
of two toric components whose fundamental groups are generated by the elements a and t, b and t, respectively. Let f be a homeomorphism mapping one boundary component onto the other, $f_{*}(a)=t, f_{*}^{-1}(b)=t$, where f_{*} is the induced homomorphism of the fundamental groups [the generators of $\pi_{1}(M)$ can be so chosen that f reserves the induced orientation of the boundaryl. Let M denote the manifold obtained by identifying points $x, f(x) \equiv \partial N$.

It is easy to see that M satisfies the assumptions of Theorem B (since the base orbifold σ is not Euclidean). Hence there exists a finite-sheeted cover over M that admits a uniformizable conformally flat structure.

THEOREM D. There exist no conformally flat structure on M.
Proof. Let us suppose that there exists a conformally flat structure K on M, and let $d_{*}: \pi_{1}(M) \rightarrow \mathscr{M}_{3}$ be the holonomy homomorphism (for the definition see $[1,2,7]$). If $g \in \pi_{1}(M)$, we let $\mathrm{g} *$ denote $\mathrm{d}_{*}(\mathrm{~g})$. The fundamental group of M has a corepresentation $\langle a, b, c$, $\left.a b c=1,[a, t]=[b, t]=1, \varphi^{-1} a \varphi=t, \varphi^{-1} t \varphi=b\right\rangle$. We claim that the group $H=d_{*}\left(\pi_{1}(M)\right)$ must satisfy one of the following conditions: it is conjugate to a subgroup of $S O(4) \subset \mathscr{M}_{3}$, it has two fixed points in $\overline{\mathbf{R}}^{3}$, it is Abelian; it is polycyclic of rank $r \leqslant 3$, it is nilpotent. Since $\left|\pi_{1}(M)\right|=\infty$, the first possibility cannot occur (cf. [26]); that the second case is impossible follows from [24, lemma and Theorem 1]. The group H can be neither nilpotent nor polycyclic of rank $r \leqslant 3$, in view of results of Kuiper [27] and Goldman [7] (see also [28]), since $\pi_{1}(M)$ is not Abelian. Thus verification of our claim will complete the proof.
(a) Suppose first that $t^{*}=1$. Then $a^{*}=b^{*}=1, c^{*}=1$, and therefore H is a cyclic group.
(b) Now let $1 \neq t^{*}$ be an elliptic transformation. Then the elements a^{*}, b^{*}, c^{*} are also elliptic. If t^{*} has no fixed points in \bar{R}^{3}, then its extension to H^{*} leaves exactly one point fixed there (denote this point by q). Clearly, q is also a fixed point of a^{*}, b^{*}. Thus. the group $d_{\%}\left(\pi_{1}(N)\right)$ leaves q fixed. In addition, it follows at once from the condition ($\left.\rho^{*}\right)^{-1}$. $a^{*} \circ \varphi^{*}=t^{*}$ that $\varphi^{*}(q)=q$. Therefore $H(q)=q$ and H is conjugate to a subgroup of $S O(4)$.

Suppose now that $t *$ leaves a circle $l_{t} \subset S^{3}$ fixed point for point. Then the fixed sets of a^{*}, b^{*} are circles $l_{a}, l_{b} \subset S^{3}$. If at least one of these circles is l_{t}, then $l_{t}=l_{a}=l_{b}$ and H is Abelian. Note that for any $g \in \pi_{1}(N) g^{*}\left(l_{i}\right)=l_{t}$. Hence there exists only one possibility in case (b): the pairs l_{a} and l_{i}, l_{b} and l_{t}, have linking number 1 . But then, as is easily seen, $\left(c^{*}\right)^{2}=\left(a^{*} b^{*}\right)^{-2} \neq 1$ and this element cannot have a circle of fixed points l_{i}; consequently, $\left(c^{*}\right)^{2} \neq t^{*}$, which is false.
(c) Suppose that $t *$ is a loxodromic element with fixed points 0 and $\infty \in \overline{\mathbf{R}}^{3}$. Then a^{*} and b^{*} are also loxodromic transformations and their fixed points are 0 and ∞ (since $\left[a^{*}, t^{*}\right]=\left[b^{*}\right.$, $\left.t^{*}\right]=1$). Therefore $\varphi^{*}(0)=0, \varphi^{*}(\infty)=\infty$ and the entire group H leaves 0 and ∞ fixed.
(d) The last case: $t *$ is a parabolic transformation, $t *(\infty)=(\infty)$. It is readily seen that then the group $d_{*}\left(\pi_{1} N\right)$ leaves invariant either a straight line or a plane in R^{3}. This invariant line (or plane) may be so chosen that it is also invariant to φ^{*} [note that $p^{*}(\infty)=$ ∞]. It follows at once that H is either polycyclic of rank $r \leqslant 3$ or nilpotent. This completes the proof.

COROLLARY. The manifold M just constructed does not admit a CFS, but it has a uniformizable finite-sheeted cover.

This settles Problem No. 41 in [8].
Remark. The author's preprint [29] contains a proof of Theorem A and a sketch of the proof of Theorem B.

In conclusion the author would like to express his profound gratitude to the participants in a seminar led by S. L. Krushkal' for their useful comments, and to S. L. Krushkal' and N. A. Gusevskii for their scientific guidance and constant support. Thanks are also due to W. Goldman, J. Kamishima, R. Kulkarni, N. Kuiper, H. Lawson and many other mathematicians, who kindly sent preprints.

LITERATURE CITED

1. N. H. Kuiper, "On conformally-flat spaces in the large," Ann. Math., 50, No. 4, 916-924 (1949).
2. R. S. Kulkarni, "On principle of uniformization," J. Diff. Geom., 13, No. 1, 109-138 (1978).
3. J. A. Wolf, Spaces of Constant Curvature, Publish or Perish Inc., Boston (1974).
4. P. Scott, "The geometries of 3-manifolds," Bull. London Math. Soc., 15, No. 56, 401487 (1983).
5. J. Morgan, "On Thurston's uniformization theorem for three-dimensional manifolds," in: The Smith Conjecture, Academic Press, New York-London (1984), pp. 37-125.
6. W. Thurston, "Hyperbolic structures on 3-manifolds. I: Deformations of acylindrical manifolds," Ann. Math., 124, No. 2, 203-246 (1986).
7. W. Goldman, "Conformally flat manifolds with nilpotent holonomy," Trans. Am. Math. Soc., 278, 573-583 (1983).
8. S. L. Krushkal, B. N. Apanasov, and N. A. Gusevskii, Kleinian Groups and Uniformization in Examples and Problems (Transl. of Math. Monographs, 62), American Mathematical Society, Providence, R.I. (1986).
9. E. B. Vinberg and O. V. Shvartsman, "Discrete Groups of Motions of Spaces of Constant Curvature," Itogi Nauki i Tekhn. VINITI, Sovr. Probl. Mat. Fundamental'nye Napravleniya, 29, 147-259 (1988).
10. P. Orlik, Seifert Manifolds, Springer, Berlin (1972).
11. W. Jaco and P. Salen, Seifert Fibered Spaces in 3-Manifolds (Memoirs Am. Math. Soc., 220), American Mathematical Society, Providence, R.I. (1979).
12. K. Johannson, Homotopy Equivalences of 3 -Manifolds with Boundaries, Springer, Berlin (1979) .
13. B. Maskit, "On Poincaré's theorem for fundamental polygons," Adv. Math., 7, No. 2, 219230 (1971).
14. B. Maskit, "On Klein's combination theorem. III," in: Advances in the Theory of Riemann Surfaces, Princeton, N.J. (1971), pp. 297-316.
15. S. L. Krushkal', B. N. Apanasov, and N. A. Gusevskii, Kleinian Groups and Uniformization in Examples and Problems [in Russian], Nauka, Novosibirsk (1981).
16. M. Gromov, B. Lawson, and W. Thurston, "Hyperbolic 4-manifolds and conformally flat 3-manifolds," Preprint/IHES (1987).
17. Yu. G. Reshetnyak, Three-Dimensional Maps with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).
18. P. Tukkia, "A quasiconformal group not isomorphic to a Möbius group," Ann. Acad. Sci. Fenn. Ser. A.I, 6, 149-160 (1981).
19. M. Freedman and \bar{R}. Scora, "Strange actions of groups on spheres," J. Diff. Geom., 25, No. 1, 75-98 (1987).
20. G. Martin, "Discrete quasiconformal groups that are not the quasiconformal conjugates of Möbius groups," Ann. Acad. Sci. Fenn. Ser. A.I, 11, 179-202 (1987).
21. F. Gehring and B. Palka, "Quasiconformally homogeneous domains, J. Anal. Math., 30, 172-199 (1976).
22. B. Maskit, "Self-maps of Kleinian groups," Am. J. Math., 93, No. 3, 840-856 (1971).
23. L. Bers, "On moduli of Kleinian groups," Usp. Mat. Nauk, $\overline{29}$, No. 2, 86-102 (1974).
24. M. E. Kapovich, "Some properties of developments of conformal structures on threedimensional manifolds," Dokl. Akad. Nauk SSSR, 292, No. 4, 807-810 (1987).
25. D. McCullough and A. Miller, "Manifold covers of 3-orbifolds with geometric pieces," Norman, Okl. (1987) (University of Oklahoma/Preprint).
26. N. A. Gusevskii and M. E. Kapovich, "Conformal structures on three-dimensional manifolds," Dok1. Akad. Nauk SSSR, 290, No. 3, 537-541 (1986).
27. N. H. Kuiper, "On compact conformally Euclidean spaces of dimension >2," Ann. Math., 52, No. 2, 478-490 (1950).
28. J. Kamishima, "Conformally flat manifolds whose development maps are not surjective," Trans. Am. Math. Soc., 294, No. 2, 607-621 (1986).
29. M. E. Kapovich, "Conformally flat structures on three-dimensional manifolds," Novosibirsk (1987) (Preprint/Academy of Sciences of the USSR, Siberian Branch, Institute of Mathematics, No. 17).
