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1 Introduction

This set of notes contains basic material on Riemann surfaces, Teichmüller spaces and
Kleinian groups. It is based on a course I taught at University of Utah in 1992–1993.
This course was a prequel to the 1993-1994 course on Thurston’s Hyperbolization
Theorem which later became a book [K].
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2 Conformal geometry on surfaces.

Conformal maps are smooth maps in domains in C with derivatives in

CSO(2) = R+ × SO(2)

The special feature of the complex dimension 1 is that the classes of (locally) biholo-
morphic and (locally) conformal maps in subdomains of C̄ coincide.

Definition 2.1. Riemann surface is a (connected) 1-dimensional complex manifold.

Classes of (locally) biholomorphic and (locally) conformal maps in C coincide.
Therefore, each complex curve 1-1 corresponds to a conformal structure on the 2-
dimensional surface S (maximal atlas with conformal transition maps).

Riemann surface with punctures X is obtained from a Riemann surface X̄ by
removing some discrete set of points. We mainly will be interested in Riemann surface
X of “finite type” (g, p) which have g = genus of compact surface X̄; p = number of
punctures.

Infinitesimally, conformal structure is a reduction of the principalGL(2, R) (frame)
bundle F (S) over S to a principal bundle with the structure group CSO(2). The
Riemannian structure on S is a reduction of F (S) to a principal subbundle with the
structure group SO(2). Thus, each conformal structure can be obtained from a Rie-
mannian metric (this is true in arbitrary dimension). This is a general fact of the
reduction theory: the quotient CSO(n)/SO(n) ∼= R+ is contractible. Therefore we
can use:

Theorem 2.2. Suppose that G is a Lie group and H is its Lie subgroup so that G/H
is contractible. Then for each manifold M any principal G-bundle can be reduced to
a principal H-subbundle.

As we shall see, for the surfaces the converse is true as well:

Theorem 2.3. (Gauss’ theorem on isothermal coordinates). For each Riemannian
surface (S, ds2) there exists a local system of coordinates such that ds2 = ρ(z)|dz|2.
I.e. any Riemannian metric in dimension 2 is locally conformally-Euclidean.

Notice that the system of coordinates on S where ds2 has the type ds2 = ρ(z)|dz|2
is a conformal structure on S. Really, the transition maps are isometries between
metrics λ1|dz|, λ2|dz| on domains in C, thus they are conformal maps with respect to
the Euclidean metric. Two metrics define one and the same conformal structure if
they are “proportional”.

Theorem 2.4. (Uniformization theorem). For any Riemann surface S the universal
cover of S is conformally- equivalent either to the (a) unit disc ∆ or to (b) C or to
(c) C.
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These classes of Riemann surface correspond to the following types:
(a) (0, 0) (rational type),
(b) (1, 0), (0, 1), (0, 2) (elliptic type: torus, complex plane, C

∗ = C − {0}),
(c) other (hyperbolic type).
The proof of these theorems will be given later as a corollary from some existence

theorem in PDEs in the case of surfaces of finite type.
The groups of conformal automorphisms of ∆, C, C̄ consist of linear-fractional

transformations. In the case (a) our surface is simply connected.
The fundamental group Γ of X acts properly on X̃. Thus, in the case (b) the

group Γ consists only of Euclidean isometries. As we shall see later in the case (c) all
conformal automorphisms preserve the hyperbolic metric.

1) Torus. Metric can be obtained by identification of sides of Euclidean rectangle.
2) exp(C) = C

∗ - the universal covering.
We will be mainly interested in surfaces of “hyperbolic type”.
Our strategy in proving U.T.: (1) use some geometry to construct a complete

hyperbolic metric on S. Then (2) use some analytic technique to prove that each
metric is conformally hyperbolic.

Hyperbolic plane: H
2 = {z : Im(z) > 0} with the hyperbolic metric ds =

|dz|/Im(z) (that has curvature −1). Recall that the group of biholomorphic au-
tomorphisms of the upper half-plane consists of linear-fractional transformations, i.e.
equals PSL(2,R). Suppose that f ∈ PSL(2,R); then Im(fz) = Im(z)|f ′(z)|; thus,
f is an isometry of H

2.

Definition 2.5. A hyperbolic surface X is a complete connected 2-dimensional Rie-
mannian surface of the constant curvature −1.

The universal cover X̃ of X is again complete, hence it is isometric to H
2. There-

fore we get an equivalent definition of a hyperbolic surface:

Definition 2.6. Let G be a properly discontinuous group of isometries of H
2 which

acts freely. Then X = H
2/G is a hyperbolic surface.

We will use two models of the hyperbolic plane H
2: the upper half-plane and

the unit disk. Geodesics in the hyperbolic plane are the arcs of Euclidean circles
orthogonal to ∂H

2. Proof: use the inversion and the property that between each 2
points the geodesic is unique.

Horoballs and hypercycles. Horoballs in the unit disc model (∆) of the hy-
perbolic plane are Euclidean discs in ∆ which are tangent to the boundary of ∆. If h
is a geodesic in H

2 then the boundary of its r-neighborhood is called a “hypercycle”.

Definition 2.7. (Types of isometries.) Consider a space X of negatively pinched
sectional curvature −b < KX < a < 0. Then an isometry g of X is called elliptic

if it has a fixed point in X. An isometry is called parabolic if it has a single fixed
point in X̄ = X ∪ ∂X. An isometry is called hyperbolic (or loxodromic) if it has
exactly two fixed points in X̄ = X ∪ ∂X.

Examples: z → 2z (hyperbolic) ; z → z + a (parabolic); Euclidean rotation of ∆
around the center (elliptic).
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Remark 2.8. Suppose that p in a puncture on X. Then p has a neighborhood U
which is conformally equivalent to a puncture on C/ < γ > where γ is a translation.
Really, U can be realized as a neighborhood of 0 ∈ C. Then the universal covering of
C

∗ is
exp : C → C

∗

and the deck-transformation group is < z 7→ 2iπ + z >.

Non-example. Now suppose that the boundary of the strip

1 ≤ Re(z) ≤ 2 ; Im(z) > 0

is identified by the homothety (hyperbolic transformation):

h : z 7→ 2z

denote the result by A. Let’s prove that the neighborhood ∂1A of ∞ at A isn’t
conformally equivalent to a neighborhood of ∞ in C.

Notice that A is conformally isomorphic to {z ∈ C : Re(z) > 0, Im(z) > 0}/ <
h >. Then A ⊂ T 2 = C

∗/ < h > ; ∂1A is a curve on T . There is a nondegenerate
holomorphic map f : T → C̄; f(∂1A) is a smooth compact curve in C. Suppose that
q : U → T is a biholomorphic embedding where U is a closed neighborhood of ∞
in C; q(U) is a one-sided neighborhood N of ∂1A. Then f(N) is relatively compact
in C. Thus, the function q ◦ f is bounded in U ; then it extends holomorphically
to ∞. Thus, qf(U ∪ ∞) is compact and contains q(∂1A). However, it means that
qf(∞) ⊃ q(∂1A) which is impossible. QED of Non-example.

Here is a way to construct a hyperbolic surface. Suppose that P is a convex
closed polygon in H

2 and we have some isometric identifications of its sides so that
after gluing the total angle around each point is 2π and the result of gluing is a
surface (without boundary). Then S = P/ ∼ has a natural hyperbolic structure.
Unfortunately, this structure can be incomplete.

Example 2.9. Put A = {z ∈ C : Im(z) > 0, 1 < Re(z) ≤ 2} ⊂ H
2. Let g : z 7→ 2z ;

then identify the sides of A by the equivalence relation: z ∼= 2z. The surface A/ ∼= is
not complete.

Let’s try to figure out the criterion of the completeness. First assume that P
is compact. Then S is complete. Now consider closed finite-sided polygons P of
finite area. Then, our problem is reduced to the consideration of the isolated vertices
which can be the only source of incompleteness. Let Γ be a group generated by
identifications.

Theorem 2.10. (Criterion of completeness.) S is complete iff the stabilizer of each
vertex is parabolic.

In particular we proved now the following. Under conditions above (S is complete)
the action of the group Γ can be identified with the fundamental group of S and P
is the fundamental domain for Γ.
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Theorem 2.11. Let (l1, l2, l3) ∈ R
3 be nonnegative numbers. Then there exists a

complete hyperbolic structure X with geodesic boundary on the pair of pants (S2 \
3 discs) such that lengths of boundary curves are (l1, l2, l3).

Proof: Use 3 disjoint mutually nonseparating geodesics in H
2 such that hyperbolic

distances between them are the numbers: l1/2, l2/2, l3/2 (the continuity principle).
Then connect the geodesics by orthogonal segments. This gives a hexagon Y in H

2

with right angles such that lengths of 3 sides are (l1/2, l2/2, l3/2). Take a double of
Y to obtain X.

Remark 2.12. We allow some lj to be 0, the corresponding boundary curves degen-
erate to punctures in this case.

Theorem 2.13. (Existence theorem for hyperbolic structures). Each surface of the
hyperbolic type has a complete hyperbolic structure.

Proof: Each surface with punctures can be split along disjoint simple curves to a
union of “pairs of pants”. Find hyperbolic structures on each component such that
punctures correspond to curves of 0-length, other curves have one and the same length
(say 1). Finally glue these pairs of pants together via isometries of their boundary
components.

3 Quasiconformal maps

The main analytic tool for proof of the Uniformization Theorem and for all further
discussion will be the theory of quasiconformal maps.

3.1 Smooth quasiconformal maps

An orientation preserving homeomorphism f of a domain A ⊂ C̄ is K-quasiconformal
iff the function

H(z) = lim supr→0
max |f(z + riφ) − f(z)|
min |f(z + riφ) − f(z)| (1)

is bounded in A− {∞, f−1∞} and H(z) ≤ K a.e. in A.
Suppose in addition that uxvy − uyvx = |fz|2 − |fz̄|2 = Jf (z) > 0. Denote

∂αf(z) = lim
r→0

f(z + reiα) − f(z)

reiα
(2)

Then ∂αf(z) = ∂f + ∂̄fe−2iα, so

max
α

|∂αf(z)| = |∂f(z)| + |∂̄f(z)| (3)

min
α

|∂αf(z)| = |∂f(z)| − |∂̄f(z)| (4)

Recall that a function φ : R → R
m is called absolutely continuous if it has measur-

able derivative φ′ almost everywhere (in the domain D of φ) and for each subinterval
[a, b] ∈ D we have:

φ(b) − φ(a) =

∫ b

a

φ′(x)dx
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A function φ : D ⊂ R
2 → R

2 (defined on an open subset D) is called ACL
(absolutely continuous on lines) if for almost every line L the restriction φ|LD is
absolutely continuous. Thus, each ACL function has measurable partial derivatives
a.e. in D.

Suppose that f is ACL and (or has weak L2 partial derivatives). Then, the K-
quasiconformality is equivalent to the fact that the quotient

Df =
maxα |∂αf(z)|
minα |∂αf(z)| =

|∂f(z)| + |∂̄f(z)|
|∂f(z)| − |∂̄f(z)| (5)

is finite and a.e. bounded by K.
This is the same as:

|∂̄f(z)| ≤ K − 1

K + 1
|∂f(z)|

Suppose in addition that Jf (z) > 0. Then we can form the complex dilatation of

f :

µ(z) =
∂̄f(z)

∂f(z)
(6)

|µ(z)| ≤ K − 1

K + 1
< 1 (7)

The differential equation
∂̄f(z) = µ(z)∂f(z) (8)

is called the Beltrami equation. If µ(z) = 0 then it becomes the Cauchy-Riemann
equation. Each solution of the latter equation is holomorphic.

Complex dilatation under the composition. Let ζ = g(z), then

µf◦g−1(ζ) =
µf (z) − µg(z)

1 − µf (z)µg(z)
(
∂g(z)

|∂g(z)|)
2 (9)

Theorem 3.1. (Existence-Uniqueness Theorem.) If f, g are quasiconformal in
A with the same complex dilatation a.e. then f ◦ g−1 is conformal.

For every measurable function µ in the domain A with ‖µ‖∞ < 1 there exists a
quasiconformal homeomorphism with the complex dilatation µ.

Definition 3.2. A map f in D is K- quasiconformal if

• f is a homeomorphism ;

• f is AC (absolutely continuous) on a.e. coordinate line in D (ACL property);

• |fz̄| ≤ k|fz| where k = K−1
K+1

< 1.

3.2 Properties of quasiconformal maps

1) Gehring- Lehto: quasiconformal maps f are differentiable a.e. in D.
2) Partial derivatives are locally in L2. And vice- versa: if the partial derivatives

are locally in L2 then f is ACL.
3) Area is absolutely continuous function under q.c. maps. Thus, fz 6= 0 a.e. in

D.
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4) Mori’s inequality:
Let Ω ⊂ C̄ , f : Ω → Ω′. Normalize f so that f(∞) = ∞, f(aj) = bj , j = 1, 2.
Then for every compact subset G ⊂ Ω ∩ C we have the Holder inequality:

|f(z) − f(w)| ≤MG|z − w|1/K (10)

5) Convergence property: Suppose that fn be a sequence of Kn-q.c. mappings
of C so that :

(a) fn fix three points: ∞ , a1 6= a2 ∈ C;
(b) Kn ≤ K <∞.
Then fn has a subsequence which is uniformly convergent on compacts to a qua-

siconformal homeomorphism.
6) Extension property. Suppose that f : H

2 → H
2 is a quasiconformal self-map

of the upper half-plane. Then f extends to C to a quasiconformal homeomorphism,
whose restriction to the line ∂H

2 is quasisymmetric if we normalize it by f(∞) = ∞
:

C−1 ≤ φ(x+ t) − φ(x)

φ(x) − φ(x− t)
≤ C (11)

However, the boundary value isn’t necessarily AC. According to Ahlfors and Beurling
the condition (11) is also sufficient for the extension of φ to a quasiconformal map
of C.

See proofs in [Ah1].

3.3 The existence theorem

Consider the Beltrami equation:
fz̄ = µfz (12)

where µ ∈ L∞ and ‖µ‖ ≤ k < 1.
Recall that for f with L1-derivatives we have:

f(ζ) = − 1

π
(P.V.)

∫

D

fz̄
z − ζ

dxdy +
1

2iπ

∫

∂D

f(z)

z − ζ
dz (13)

(generalized Cauchy formula). Here P.V. means the principal value in the sense of
Cauchy. In particular,

ζ̄ = − 1

π
(P.V.)

∫

∆R

1

z − ζ
dxdy (14)

Consider the operator P on the functions h ∈ Lp, p > 2,

Ph(ζ) = − 1

π
(P.V.)

∫

C

h(z)
ζ

z(z − ζ)
dxdy = − 1

π

∫

C

h(z)(
1

z
− 1

z − ζ
)dxdy (15)

The integral is correctly defined as (P.V.) since h ∈ Lp in a compact domain implies
that f ∈ L1.

Lemma 3.3. Ph is continuous and satisfies the uniform Holder inequality with the
exponent (p− 2)/(p− 1).
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Proof: h ∈ Lp, ζ(z(z − ζ))−1 ∈ Lq where 1/p+ 1/q = 1, 1 < q < 2. Then the Holder
inequality implies that:

|Ph(ζ)| ≤ 1

π
‖h‖p‖

|ζ|
z(z − ζ)

‖q (16)

∫ |ζ|q
|z(z − ζ)|q dxdy = |ζ|2−q

∫

C

|z(z − 1)|−qdxdy = |ζ|2−qKp (17)

Then:
|Ph(ζ)| ≤ |ζ|(p−2)/(p−1)Kp‖h‖p (18)

and if h1(z) = h(z + ζ1) then:

Ph1(ζ2 − ζ1) = Ph(ζ2) − Ph(ζ1) (19)

so Ph is Holder with the exponent (p− 2)/(p− 1).

Remark 3.4. The formula 16 implies that Ph(0) = 0.

The operator T is defined for h ∈ C2
0 :

Th(ζ) = lim
ǫ→0

− 1

π

∫

|z−ζ|>ǫ

h(z)

(z − ζ)2
dxdy (20)

This operator is called “Hilbert transformation”. Notice that Th(ζ) = O(|ζ|−2)
as ζ → ∞, since

|Th(ζ)| ≤ (

∫

DR

h) · sup
DR

1

|z − ζ|2 = (

∫

DR

h) · |ζ −R|2 = O(|ζ|−2) (21)

Lemma 3.5. For h ∈ C2
0 , Th has class C1 and:

(Ph)z̄ = h ; i.e. ∂ ◦ P = id (22)

(Ph)z = Th ; (Th)z̄ = (Phz)z̄ = hz (23)
∫

|Th|2dxdy =

∫

|h|2dxdy (24)

and moreover, ‖Th‖p ≤ Cp‖h‖p for any p > 1 so that

lim
p→2

Cp = 1 (25)

(Calderon- Zygmund inequality). Thus we can extend T to Lp.

Proof: We shall skip the proof of the Calderon- Zygmund inequality, the reader can
find it in [Ah1].

(i) The generalized Cauchy formula (13) implies that

(Ph)z̄ = − 1

π

∫

C

hz̄
z − ζ

dxdy

(Ph)z̄ = − 1

π

∫

C

hz
z − ζ

dxdy (26)

9



Thus,

− 1

π

∫

C

hz̄
z − ζ

dxdy = − 1

2πi

∫

C

dhdz

z − ζ

= lim
ǫ→0

1

2πi

∫

|z−ζ|=ǫ

hdz

z − ζ
= h(ζ)

(ii)

P (hz) =
1

2πi

∫

C

dhdz̄

z − ζ
= (27)

lim
ǫ→0

(− 1

2πi

∫

|z−ζ|=ǫ

hdz̄

z − ζ
) +

1

2πi

∫

C

hdzdz̄

(z − ζ)2
= Th(ζ) (28)

Remark 3.6. It follows that Ph is holomorphic near ∞ and ∼= a0 + a1

z
as z → ∞

since ∂Ph = Th ∼= z−2. Thus, if a0 = 0, then

Ph ∈ Lp({z ∈ C : |z| ≥ R})

(iii) Now, let’s prove that T is L2-isometry.

∫

C

|Th|2dzdz̄ =

∫

C

(Th)(Ph)z̄dzdz̄

=

∫

(ThPh)z̄dzdz̄ −
∫

(Th)z̄Phdzdz̄ = − 1

2i

∫

hzPhdzdz̄

because (Th)z̄ = hz and

∫

(ThPh)z̄dzdz̄ =

∫

∂DR

ThPhdz → 0 (29)

since Th = O(|z|−2) as |z| → ∞.
On another hand,

∫

C

hh̄dzdz̄ =

∫

C

h(Ph)z =

∫

C

(hPh)z −
∫

C

hzPh (30)

the 1-st term is approximately equal to

∫

∂DR

hPhdz̄ = 0 (31)

since h has a compact support. So, T is an isometry.

Theorem 3.7. If µ has a compact support then there exists a unique solution f of
the Beltrami equation such that f(0) = 0 and fz − 1 ∈ Lp where p is such that
Cp‖µ‖∞ ≡ Cpk < 1. Such solution f = fµnormal is called “normal”.
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Proof: (a) Uniqueness. Suppose that f is a solution. Then fz̄ ∈ Lp (because it has
a compact support and locally it’s roughly proportional to fz) and there exists P (fz̄)
so P (fz̄)(0) = 0. Then the function

F = f − P (fz̄) (32)

is analytic. Then fz − 1 ∈ Lp implies that Fz − 1 = fz − 1 − T (fz̄) is in Lp since the
last term has quadratic decay at infinity. Hence, Fz = 1 and F = z since F (0) = 0.

Thus f = P (fz̄) + z and fz = T (µfz) + 1. Let g be another solution. Then
fz − gz = T (µ(fz − gz)), hence

‖fz − gz‖p ≤ kCp‖fz − gz‖p (33)

and fz = gz , fz̄ = gz̄ so f = g.
(b) Existence. Consider the equation:

h = T (µh) + Tµ (34)

The linear operator h 7→ T (µh) on Lp has norm ≤ kCp < 1. Then the series

h = Tµ+ Tµ(Tµ) + Tµ(Tµ(Tµ))... (35)

is convergent in Lp. This is a solution of (34). Then, for this h the function

f = P [µ(h+ 1)] + z (36)

is the solution since µ(h+ 1) is in Lp;

fz̄ = µ(h+ 1) ; fz = T [µ(h+ 1)] + 1 = h+ 1 (37)

and f(0) = 0 and fz − 1 = h ∈ Lp.

Remark 3.8. It follows from the formulas (37) that ∂f = T (∂̄f) + 1 = T (µ∂f) + 1.

Lemma 3.9. If νn → µ uniformly a.e. and supports are bounded; then

‖∂gνn

normal − ∂fµnormal‖p → 0 (38)

and gνn

normal → fµnormal uniformly on compacts. Moreover, since these functions are
holomorphic near ∞, the convergence is uniform on C.

Proof: Put gn := gνn

normal. The Remark above implies that

∂f − ∂gn = T (µ∂fz − ∂νgn) (39)

and hence
‖∂f − ∂gn‖p ≤ ‖T (νn(∂f − ∂gn))‖p+

‖T (µ− νn)∂f‖p ≤ kCp‖∂f − ∂gn‖p + Cp‖(µ− νn)fz‖p (40)

Thus, ‖∂f − ∂gn‖p(1 − kCp) ≤ Cp‖(µ− νn)fz‖p → 0.
This implies the statement about convergence of derivatives (since fz ∈ Lploc). The

Beltrami equation implies the Lp convergence of the ∂̄ -derivatives.
Now consider f = P (µhµ + 1) + z = P (fz̄) + z Then |f − g| = |P (fz̄ − gz̄)| ≤

Kp‖fz̄ − gz̄‖p|z|2−q which implies the last assertion.
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Lemma 3.10. If µ has a compact support and distributional derivative µz ∈ Lp
(p > 2) then the normal solution f ∈ C1 and is a homeomorphism.

Proof: Let’s try to determine λ such that the system:

fz = λ ; fz̄ = λµ (41)

has a solution (which will be the solution of the Beltrami equation). The necessary
and sufficient condition is that

λz̄ = (λµ)z = λzµ+ λµz (42)

Or, for σ := logλ:
(σ)z̄ = µ(σ)z + µz (43)

Consider the operator:
Tµ : h 7→ T (µh) (44)

The Lp norm of it is less than 1, hence in Lp we have:

(Tµ − 1)−1 = 1 + Tµ + T 2
µ + ... (45)

Therefore, we can find q ∈ Lp such that

q = T (µq) + T (µz) (46)

Put σ = P (µq + µz) + const so that σ → 0 as z → ∞. Thus, σ is Holder continuous
and

σz̄ = µq + µz ;σz = T (µq + µz) = q (47)

Hence λ = exp(σ) satisfies the equation and there is a solution f of the class C1

and we can normalize f(0) = 0 so that fz = λ → 1 as z → ∞. Then λ − 1 ∼=
σ(z) = P (µq+µz)+ const as z → ∞. Thus, we can use the Remark 3.6 to show that
λ− 1 ∈ Lp and f is a normal solution.

The Jacobian
|fz|2 − |fz̄|2 = (1 − |µ|2)exp(2σ) (48)

is positive, hence, f is a diffeomorphism.

Corollary 3.11. For any µ with compact support the normal solution is a homeo-
morphism.

Proof: We can approximate any µ ∈ L∞ by smooth µn with compact support, solu-
tions fµn

normal are diffeomorphisms and then fµn

normal are convergent to fµnormal uniformly
on compacts. Therefore, we can use the property (5) of q.c. maps (compactness prop-
erty) to prove that the limit is a homeomorphism.

Now we need a formula for composition of f with Moebius maps g.
Namely, (under assumption ζ = h(z)) it follows from

µf◦h−1(ζ) =
µf (z) − µh(z)

1 − µf (z)µh(z)
(
∂h(z)

|∂h(z)|)
2 (49)
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that:

µg−1fg(ζ) = µf (g(ζ))
∂g(ζ)

∂g(ζ)
=: g∗µ (50)

Convention. Now, by fµ we shall mean the solution which fixes 0, 1,∞. It is
called the “normalized” solution.

Theorem 3.12. For any µ on C with the norm ‖µ‖∞ < 1 there exists a normalized
solution of the equation ∂̄f = µ∂f . This solution is a homeomorphism.

Proof: (a) The solution exists if µ has a compact support, just adjust the normal
solution by Moebius transformation.

(b) Suppose that µ vanishes in ∆r(0). Then take ν = g∗µ where g(z) = z−1.
Then ν has a compact support and there exists h = f ν . Now take f = ghg−1 and
µf = g−1

∗ ν = µ.
(c) Consider the general case. We can decompose µ as µ1 + µ2 where µ1 has a

compact support ∆ and µ2 has support outside ∆. Try to find the solution

fµ = fλ ◦ fµ2 (51)

i.e. g := fµ2 ,
fλ = fµ ◦ g−1 (52)

Then, according to (9) we have:

λ = [(
µ− µ2

1 − µµ2

)(
∂g

|∂g|)
2] ◦ g−1 (53)

Then, since µ − µ2 = µ1 has compact support and, by convention, g fixes some
neighborhood of ∞, the characteristic λ also has a compact support. So, there
exists fλ. Put f = fλ ◦ fµ2 ; ν = µf . We have to show that ν = µ, and we can find fµ

from (51). Notice that µ and ν satisfy to one and the same equation (53). Suppose
that µ 6= ν on some set E of nonzero measure. The equation:

µ− µ2

1 − µµ2

= φ

is linear by µ, thus the nonuniqueness implies that on E we have: φ ≡ −µ2 and
1 ≡ −φµ2; i.e. |µ2|2 ≡ 1 on the set E which is impossible since ‖µ2‖∞ < 1. Thus,
µ = ν and f = fµ.

3.4 Analytical dependence of fµ on the complex dilatation

Theorem 3.13. The normal and normalized solutions of the Beltrami equations de-
pend holomorphically on µ which means that the map

Belt : µ ∈ B(1) ⊂ L∞ 7→ fµ ∈ C0(∆,C)

has complex derivative for any disc ∆ ⊂ C; where C0(∆,C) is the space of continuous
C-valued functions with supremum norm; B(1) ⊂ L∞ is the open unit ball.
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For proof see [Ah1]. We shall need and prove much weaker statement:
Denote by ∆(r) the open disc of radius r in C with center at 0.

Theorem 3.14. Let µ, ν ∈ B(1) have compact support. Then for each z ∈ C, the
function

w ∈ ∆(ǫ =
1 − ‖ν‖∞
‖µ‖∞

) 7→ fwµ+ν
normal(z)

is holomorphic.

Proof: Recall the representation for the normal solution (36 -37):

f(z) = P [(wµ+ ν)(1 + T (wµ+ ν) + T [(wµ+ ν)(T (wµ+ ν)] + ...)] + z =

P [(wµ+ ν)(1 + A1(w) + A2(w) + ...)] = P [(wµ(1 + A1(w) + A2(w) + ...)]+

P [ν(1 + A1(w) + A2(w) + ...)] + z

this series is uniformly convergent for all w ∈ ∆(ǫ) and each term is a holomorphic (in
fact, polynomial) function on w. Then each z ∈ C, the limit depends holomorphically
on w.

Exercise 3.15. Suppose that D is a domain in C such that: each conformal auto-
morphism of D is Moebius. Then any quasiconformal automorphism of D can be
extended to C.

4 Quasiconformal maps on Riemann surfaces

Let X be a Riemannian surface, ds2 is a metric. Then locally we can write

ds2 = Edx2 + 2Fdxdy +Gdy2

Put dz = dx+ idy, dz̄ = dx− idy. Thus, ds = λ|dz + µdz̄|,
where λ2 = (E +G+ 2

√
EG− F 2),

µ =
E −G+ 2iF

E +G+ 2
√
EG− F 2

Notice that

|µ|2 =
E +G− 2

√
EG− F 2

E +G+ 2
√
EG− F 2

< 1

Theorem 4.1. (Gauss’ theorem on isothermal coordinates). For each Riemannian
surface (S, ds2) there exists a local system of coordinates such that µ = 0. I.e. any
Riemannian metric in dimension 2 is conformally- Euclidean.

Proof: Suppose that w = fµ(z) is the q.c. homeomorphism with the dilatation µ.
Then |dw| = |∂wdz + ∂̄wdz̄| = |∂w||dz + µdz̄|; thus ds = λ|dw|/|∂w|.

Thus, we should look more carefully on the µf as an object on Riemann surface.
The formula (50) shows that µdz/dz is a differential of the type (−1, 1) on the surface
X, i.e. µdz⊗ ∂/∂z. Such differential will be called a conformal structure since (a)

14



each conformal class of Riemannian metrics on S gives us some µ and (b) given µ we
can solve the Beltrami equation and the maps fµ will define a complex (conformal)
structure:

For each point z ∈ X we have a neighborhood U where we can solve the Beltrami
equation ∂̄f = µ∂f , where f : U → C is a homeomorphism.

If fi, fj : U → C are solutions of the Beltrami equation then by uniqueness of
solution fi ◦ (fj)

−1 is holomorphic.
As the result we get a conformal structure on X corresponding to µ. We will

retain the notation µ for this conformal structure. Automorphisms of µ are the self-
diffeomorphisms h of X such that iff h∗(µ) = µ. If µ is defined in some domain D in
the plane C̄, then this condition means that:

µ(z) ≡ µ(hz)h′(z)/h′(z) (54)

where we assume h ∈ Mob(C). Let fµ be the solution of the B.e.: where µ = 0
outside D. Then f : (C̄, µ) → (C̄, can) is conformal. Therefore, since h ∈ Aut(µ),
then f ◦ h ◦ f−1 belongs to Mob(C).

Corollary 4.2. Suppose that G ⊂ PSL(2,C); fµ is a quasiconformal map of C so
that (54) holds for each h ∈ G. Then fµ ◦ h ◦ f−1

µ ∈ PSL(2,C).

Corollary 4.3. Suppose that f : A ⊂ C → f(A) ⊂ C is a quasiconformal homeo-
morphism and G is a subgroup of conformal automorphisms of A and (54) holds for
each h ∈ G. Then fµ ◦ h ◦ f−1

µ is a conformal automorphism of f(A) for each h ∈ G.

Theorem 4.4. Let X,Y be surfaces of the same type. Then there is a quasiconfor-
mal map X → Y .

Proof: Let X̄, Ȳ be conformal compactifications of X,Y ; then there is a diffeomor-
phism f : X̄ → Ȳ which maps punctures to punctures. The restriction of f to X̄ is
the desired quasiconformal homeomorphism.

Formula for transformation of the Beltrami differential under complex
conjugation g : z → z̄. If f = fµ and h = g ◦ f ◦ g then

µh = g ◦ µ ◦ g (55)

i.e. µh(z) = µ(z̄).

5 Proof of the Uniformization Theorem for sur-

faces of finite type

LetX be a Riemann surface of finite type. Then we can construct a hyperbolic surface
X0 of the same type. denote by f a q.c. homeomorphism f : X0 → X (which exists
due to Theorem 4.4). Let µ be the dilatation of f lifted in ∆. Extend µ to ext(∆)
by the symmetry. Put µ = 0 on ∂∆. Then the resulting differential Beltrami ν will
be compatible with the action of the group Γ0 = π1(X0). Therefore, f ν conjugate Γ0

to a group Γ ⊂ PSL(2,C) and since f ν commutes with conjugation, Γ ⊂ PSL(2,R).
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However, the universal cover X̃ of the surface X is biholomorphic to (∆, µ) which
is conformally equivalent to ∆ via f . Thus, we proved the Uniformization Theorem
for surfaces of hyperbolic type. The proof for the elliptic type is essentially the
same. Proof for the rational type is just a particular case of the existence theorem
for quasiconformal maps.

6 Elementary theory of discrete groups.

6.1 Definitions

Let S
k be a round sphere in S

k+1 = Rk+1. Then the inversion J in S
k defined as

follows. If S
k is an extended Euclidean plane, then J is just the Euclidean symmetry

in S
k. Otherwise, if O is the center of S

k, x ∈ ext(Sk), L is the Euclidean line through
x,O and K is the tangent cone from x to S

k, then J maps x to the orthogonal
projection of K ∩ S

k to L.
It is easy to prove that each element γ ∈ PSL(2,C) is a composition of even

number of inversions.
Consider the group G = PSL(2,C) acting on C. Extend this action in R

3
+ = H

3

using inversions. Namely, if γ ∈ PSL(2,C) is a composition J1 ◦ ... ◦ Js of inversions
in the circles σj ⊂ C , then each Jk is extended canonically to the inversion J̃k in
the Euclidean sphere Σj which contains σj and is orthogonal to C. Then, define the
extension γ̃ as the product of extensions J̃1◦ ...◦ J̃s. It’s easy to see that this extension
doesn’t depend on the decomposition of γ in the product of inversions.

The extended complex plane C can be identified with S
2 via stereographic projec-

tion. This defines on C the metric of constant positive curvature |dz|/(1 + |z|2). We
can describe H

3 as G/K where K is the maximal compact subgroup SO(3). Three
types of isometries of H

3 can be distinguished by the matrices in SL(2,C) representing
these isometries:

elliptic: Tr(g) ∈ (−2, 2);

parabolic: Tr(g) = ±2;

loxodromic: Tr(g) /∈ [−2, 2].

A special type of loxodromic elements are hyperbolic elements, which have real
trace. They can be characterized as elements with invariant Euclidean discs in C.

The group G has the “Cartan decomposition”: G = KAK where

A = {a : z 7→ kz, k ∈ C
∗}

One can prove the existence of this decomposition geometrically. Namely, H
3 =

X = G/K and G acts on X transitively on the right. Let x0 ∈ X be the class of K;
let x ∈ X be any point. Then there is an element k ·a ∈ KA such that ak(x) = x0 (if
γ is the invariant geodesic for A then there is an element k ∈ K such that k(x) ∈ γ,
then the action of A translates k(x) into x0). Therefore, for each g ∈ G we can find
k, a such that: akgK = K, since gK = x,K = x0; thus g ∈ KAK.
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6.2 The convergence property

A quasiconstant map zx : C → C is a map such that for z, x ∈ C we have:

zx(w) = z for each w 6= x

We let z−1
x := xz. Each quasiconstant map naturally extends to H

3. Let Ĝ :=
G ∪ {quasiconstants}

Topology. A sequence of elements gn ∈ Ĝ is convergent to a quasiconstant zx iff
gn converges to zx uniformly on compacts in C − {x}.

Exercise 6.1. gn → g iff g−1
n → g−1.

Theorem 6.2. Ĝ = G ∪ {quasiconstants} is compact.

Proof: For any sequence gn we have gn = knancn where kn, cn ∈ K, an ∈ A. Up to
subsequence we can assume that kn → k, cn → c, an → a where a is either element of
A or quasiconstant ∞0. Then gn is convergent on C− c−1(0) to k(∞). Thus, gn → ab
where a = k(∞), b = c−1(0).

6.3 Discontinuous groups

A subgroup Γ of PSL(2,C) is called elementary if it has either an invariant point in
H

3 ∪C or invariant geodesic L in H
3 (in the latter case Γ can change the orientation

on L).
Examples of elementary groups: (i) Consider the group B ⊂ SL(2,C) which

consists of upper-triangular matrices. Let PB is the projection of B to PSL(2,C).
Then each subgroup of PB is elementary (since PB fixes the point ∞ of C̄.

(ii) Let Γ be a finite subgroup of Isom(Hn). Then Γ has a fixed point in H
n (hint:

consider the Γ-orbit Γp of a point p ∈ H
n, take the smallest metric ball D in H

n

which contains Γp; then the center of D is Γ-invariant).

Definition 6.3. Let Γ ⊂ G. Then x ∈ C is a point of discontinuity for Γ if there is
a neighborhood U of x such that U ∩ gU 6= ∅ only for finitely many g ∈ Γ. Usually,
this means that U ∩ gU 6= ∅ for all G−{1}; the exceptional case is: x is a fixed point
of a finite subgroup F ⊂ Γ.

The domain of discontinuity Ω(Γ) consists of all points of discontinuity. Clearly
this is an open subset of C. If g is an element of Γ which has infinite order then the
fixed-point set of g is disjoint from Ω(Γ).

Definition 6.4. A discontinuous (another name is Kleinian) group is a subgroup
of PSL(2,C) with nonempty discontinuity domain.

More general concept is a discrete group, i.e. a subgroup Γ of PSL(2,C) which
is a discrete subset in the induced topology (i.e. if Γ ∋ γn → γ ∈ PSL(2,C) then
γn = γ for all but finite elements of the sequence {γn}.

Exercise 6.5. Γ is discrete iff 1 is an isolated point of Γ. (Hint: if Γ isn’t discrete,
consider the sequence γn+1γ

−1
n ).
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Clearly all Kleinian groups are discrete. Therefore all their elliptic elements have
finite orders (however there is no a priori bound on these orders). One can show that
if Γ ⊂ PSL(2,R) is nonelementary then the absence of elliptic elements of infinite
order is also a sufficient condition for discreteness. However, the discreteness doesn’t
imply that the group is Kleinian.

Exercise 6.6. Consider Γ := PSL(2,Z[i]) where Z[i] is the ring of “Gaussian in-
tegers” (i.e. complex numbers of the form x + iy where x, y ∈ Z). Show that Γ is
discrete. Prove that the domain of discontinuity of Γ is empty. (Hint: show that each
rational Gaussian number is a fixed point of a parabolic element of Γ.)

Theorem 6.7. (Schur’s Lemma.) Suppose that Γ is a finitely generated torsion

subgroup of GL(n,C) (i.e. each element of Γ has finite order). then Γ is finite.

This lemma immediately implies that if a discrete group Γ consists only of elliptic
elements, then Γ is finite (and hence elementary).

However, there are examples of infinite (nondiscrete) subgroups T ⊂ Isom(H5)
such that each element t ∈ T has a fixed point in H

5 but the group T doesn’t have a
fixed point in H

5. Nevertheless, such group necessarily has a fixed point in H
5∪S

4. To
construct such example, take a free 2-generated subgroup < a, b >= H ⊂ SU(2) ⊂
SO(4) and v, w ∈ R

4 − {0}; g(x) = ax + v, f(x) = bx + w for x ∈ R
4. Then each

element of the free group T =< g, f >⊂ Isom(E4) has a fixed point in R
4 but there

is no global fixed point for the action of T in E
4. The extension of T in H

5 provides
the desired example. Such examples are impossible for H

k, k < 5.

Now we can define the limit set Λ(Γ) of a Kleinian group Γ as the set of accumu-
lation points for the orbit Γx for some x ∈ Ω(Γ) (i.e. y ∈ Λ(Γ) iff there is an infinite
sequence of (different) elements γn ∈ Γ such that lim γnx = y ).

It is clear that both the domain of discontinuity and the limit set are Γ-invariant.

Remark 6.8. More generally one can define the limit set for each subgroup Γ ⊂
Isom(Hn) as follows. Start with a point x ∈ H

n, then consider the closure cl(Γx) of
the Γ-orbit of x in H

n ∪ ∂H
n. Finally let Λ(Γ) := cl(Γx) ∩ ∂H

n.

The Convergence Property implies that if x ∈ Ω(Γ) then zx /∈ clĜ(Γ) for any z. It
follows that Λ(Γ) does not depend on the choice of x ∈ Ω(Γ). Also: Λ(Γ)∩Ω(Γ) = ∅.

Theorem 6.9. C = Λ(Γ) ∪ Ω(Γ).

Proof: Let x /∈ Ω(Γ). Then there exist a sequence gn ∈ Γ and zn → x such that

lim
n→∞

(gn(zn)) = x (54)

Then up to subsequence gn → ab. Since x 6= b then (54) implies that x = a which is
impossible.

Example: For each elementary Kleinian group the limit set consists of 0, 1 or 2
points.

Lemma 6.10. For nonelementary groups Λ(Γ) = cl(Γx) for each x ∈ Λ(Γ).

18



Proof: Let x, z ∈ Λ(Γ). There exists a sequence gn ∈ Γ such that gn(p) → z for all
p ∈ Ω(Γ). By taking a subsequence (if necessary) we can assume that gn → zw. If
w 6= x then gn(x) → z and we are done. Otherwise find f ∈ Γ such that f(x) 6= x.
Then gnf(x) → z.

Corollary 6.11. If Γ is nonelementary then Λ(Γ) is the smallest nonempty Γ-inva-
riant closed subset of C̄.

Theorem 6.12. If Γ is not elementary, then the loxodromic fixed points are dense in
Λ(Γ).

Proof: First we need to find a loxodromic element in Γ. Indeed, the group Γ is infinite,
hence it contains either a parabolic or loxodromic element g. If g is a loxodromic
element we are done. Suppose that g is parabolic. The fixed point p of g is not fixed
by the whole Γ, hence there is h ∈ Γ such that h(p) = q 6= p. Then the element
f = hgh−1 is again parabolic and its fixed point is q. By conjugating Γ in PSL(2,C)
we can assume that g : z 7→ z + a. Since g is parabolic there are two closed tangent
(at p) round discs D,D′ ∈ C such that f(intD) = ext(D′). Then, for large n we have:
E = g−n(D)∩D′ = ∅. It follows that α := f ◦gn : intE → extD′. Thus, the iterations
of α show that α is loxodromic and it has a fixed point x ∈ Λ(Γ). Finally, by the
previous lemma the Γ-orbit of x is dense in Λ(Γ). For each γ ∈ Γ the fixed-point set
of γαγ−1 is the γ-image of the fixed point set of α. Hence Γx consists of fixed points
of loxodromic elements of Γ.

Corollary 6.13. For nonelementary group, loxodromic fixed pairs are dense in Λ(Γ)×
Λ(Γ).

Proof: Take disjoint open U and V which intersect the limit set. Then there are
loxodromic p, q such that pn → x ∈ U , qn → y ∈ V . Find a lox element f with fixed
points different from that of p and take g = pnfp−m. Then fixed point of g are in
U and gn → zw where z, w ∈ U . Thus, for some large k we have: hn = qkgn → vw
where v ∈ V . Thus, one fixed point of hn is in U , another is in V .

So, if Γ isn’t elementary and Kleinian , then the limit set of G is perfect, closed
and has empty interior.

7 Fundamental domains and quotient-surfaces

Let Γ ⊂ PSL(2,C) be a Kleinian group. A subset F ⊂ Ω(Γ) is called a fundamental
set of the group Γ if:

(i) gF ∩ F = ∅ for all g ∈ Γ − 1 with the exception: gF ∩ F is a fixed point (or
the set of two fixed points) of an elliptic g ∈ Γ, and

(ii)

ΓF ≡
⋃

g∈Γ

gF = Ω(Γ) (55)

This is reasonable but too general definition. It allows to reconstruct the surface
S(Γ) = Ω(Γ)/Γ as a set, but we would like also to recapture the topology of S(Γ) as
well.
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Definition 7.1. A fundamental domain D for a Kleinian group Γ is an open
subset of Ω(Γ) such that:

(1) “The fundamentality”: There is a fundamental subset F ⊂ cl(D), D ⊂ F for
the group Γ;

(2) The “side-pairing property”: The boundary of D in Ω(Γ) is piecewise-smooth
submanifold in Ω(Γ) and is divided in a union of smooth arcs which are called sides

(or edges1.); for each side s there another side s′ and an element g = gss′ ∈ Γ − 1
so that gs = s′ (g is called the “side-pairing transformation”); gss′ = g−1

s′s .
(3) The “finiteness condition”: The action of Γ defines an equivalence relation on

the boundary of D in Ω(Γ). We require the equivalence set of each vertex of D to be
finite2.

Notice that the property (2) implies that ∂Ω(Γ)D is “locally finite” in Ω(Γ) , i.e.
each compact K ⊂ Ω(Γ) can intersect not more than finitely many sides of D.

There are several other conditions on D which imply (3):

(3’) The orbit GD is locally finite in Ω(Γ), i.e. for each compact K ⊂ Ω(Γ) there
is not more than finitely elements g ∈ Γ such that gD ∩K 6= ∅.

Alternatively: (3”) D has only finitely many components.

It is obvious that (3’)⇒(3), the fact that (3”)⇒(3’) is less obvious, see Theorem
7.3 below.

Introduce the equivalence relation “∼=” on ∂Ω(Γ)D generated by the equivalence:
x ∼= y iff there is a “side-pairing transformation” g such that gx = y. The factor-space

E = clΩ(Γ)(D)/ ∼=
has the quotient topology. Denote by π the projection Ω(Γ) → Ω(Γ)/Γ = S(Γ).

Theorem 7.2. The natural map θ : E → S(Γ) is a homeomorphism, where θ : [x] ∈
E 7→ Gx ∈ S(Γ).

Proof: The projections π̃ : clD → E and π are open which implies that θ is continuous.
The map θ is surjective, thus we need to prove that θ is injective and open. It’s easy to
see that the restriction of θ to the complement to the projection of the set of vertices
of ∂D is open and injective. Thus, our problem is the set of vertices. Let x ∈ ∂Ω(Γ)D
be any vertex, x1 is the end point of a side s1, then there is another side s′1 and the
pairing element g1 such that g1(s1) = s′1, x2 = g1(x1). Now, x2 is the vertex for 2
sides: s′1 and another side s2. For s2 we again find a pairing transformation g2 and get
x3 = g2(x2) etc. Thus, after finitely many steps we end up with some point xn = xk,
k < n. In this case rename our sequence so that x1 = xk, x2 = xk+1 etc. The product
h = g−1

1 ◦ ... ◦ g−1
n−1 maps x1 to x1. Let U1 be a small neighborhood of the point

x1 in clD, U2 be small neighborhood of the point x2 in clD (see the Figure 1) etc.
Put V = U1 ∪ g−1

1 (U2) ∪ ... ∪ g−1
1 ◦ ... ◦ g−1

n−2Uk−1 and the element h maps the “free”
boundary component s (of V ) adjacent to x1 and different from s1 to another “free”
boundary component σ ⊂ g−1

1 ◦ ... ◦ g−1
n−2Uk−1. The element h is a priori nontrivial

since G can have torsion. Put W = V ∪ hV ∪ ...∪ hqV , where q+ 1 is the order of h.
Then W is a neighborhood of x1 and the images of Uj cover it without “overlaps”.

1Their end-points are called the vertices
2This property is void if D is compact
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Figure 1:

This has two consequences. (1) If g ∈ Γ is such that gx = y, x = x1 and y ∈ ∂D,
then g−1D∩W should be hi◦g−1

1 ◦ ...◦g−1
n−j(D)∩W . Thus, g−1 = hi◦g−1

1 ◦ ...◦g−1
n−j(D)

since D is a fundamental domain and so, x ∼= y.
(2) Let A ⊂ E be open, then there is B which is an open subset of Ω such that

clD ∩B = π̃−1(A). Let Z be the G–orbit of clD ∩B. Then Z is a neighborhood of x
according to the discussion above. However, π(Z) = π(clD ∩B) = θ ◦ π̃(clD ∩B) =
θ(A). Thus, since π̃ is open, θ(A) is a neighborhood of θ(π(x)). This is true for all
vertices of ∂D. Thus, θ is open.

Theorem 7.3. Suppose that D satisfies (1) and (2) and has only finitely many con-
nected components. Then D satisfies the local finiteness condition (3’).

Proof: Suppose that Ω ∋ x ∈ lim gnD
0, where D0 is a connected component of D.

There can be not more than countably many exceptional points x ∈ Ω(Γ); all are
vertices of ∂D. If D0 is relatively compact, then we are done. If not, then there is a
point z ∈ ∂ ∩ Λ(Γ). Let w = lim gnz ∈ Λ(G). Let E be the set of points in C whose
neighborhood s intersect gnD

0 infinitely many times (the set of “exceptional” points
and the limit set are contained in E) . Then (since D0 is connected) x and w belong
to a common connected component of E which is impossible.

Exercise 7.4. Let Γ be the cyclic group generated by z 7→ 2z. Construct example
of an open connected domain D ⊂ Ω(Γ) which satisfies (1), has piecewise-smooth
boundary, however clΩ(Γ)(D)/Γ is not compact.

7.1 Dirichlet fundamental domain

Let Γ be a discrete subgroup of PSL(2,C), suppose that O ∈ H
3 = X is not a fixed

point of any nontrivial element of G. Then, define Dg = {x ∈ X : d(x,O) < d(x, gO)}
for g ∈ Γ − 1; D̃g = clDg − ∂XDg where the closure is taken in H3 = H

3 ∪ C. Define
Bg to be the hyperbolic plane ∂XDg.

Definition 7.5. The intersection

DO(Γ) =
⋂

g∈Γ−1

Dg
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is called the Dirichlet polyhedron of Γ with center at O. The set

ΦO(Γ) =
⋂

g∈G−1

D̃g ∩ C

is called the Dirichlet fundamental domain for Γ.

Theorem 7.6. ΦO(Γ) is a fundamental domain for the action of Γ in Ω(Γ) ⊂ C.

Proof: Let x ∈ Bg ∩ D. Pick h 6= g−1. Then d(g−1(x), h(O)) = d(x, g ◦ h(O)) ≥
d(x,O) = d(g−1(x), O). This implies the “side-pairing property”. The nontriv-
ial statement is that for each z ∈ Ω(Γ) there is an element g ∈ G such that
z ∈ cl(g(ΦO(G)). If z doesn’t belong to G-orbit of the closure of any face of DO

then the conclusion follows from the fact that there is a neighborhood V of x in H
3

such that V ⊂ g(DO); thus z ∈ g(Φ). Suppose else. Then the set of such points
form a nowhere dense subset E in Ω(G). Consider p : Ω(G) → Ω(G)/G = S ;
p(z) ∈ p(E), p(z) = lim p(zn), p(zn) ∈ S − p(E). Thus, z = lim gn(zn), zn ∈ Φ. If
gn is relatively compact, then gn = g, z = lim g(zn) ⊂ clg(Φ). Otherwise, gn → ab.
However, diam(gn(Φ)) → 0 as n → ∞. Thus, lim gn(zn) = lim gn(Φ) = z which is
impossible.

-1/2 1/2

i

|z|=1

Im(z)=0

P

Re(z)=1/2Re(z)= -1/2

Figure 2:

Example. Let G be the classical or elliptic modular group SL(2,Z) (later we
shall deal also with “Teichmüller modular group). Denote by P ⊂ H

2 be the open
triangle bounded by {Re(z) = ±1/2} and {|z| = 1}. Then, P is the Dirichlet polygon
with center at w = iv, 1 < v ∈ R. Really,

(i) f(z) = z + 1 and g(z) = −z−1 are in G. Then P ⊂ Dw. Thus, we need only
to show that P has no equivalent points. Suppose that z ∈ P, hz ∈ P ;

h(x) =
ax+ b

cx+ d
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Then |cz+d|2 = c2|z|2 +2Re(z)cd+d2 > c2 +d2 −|cd| = (|c|− |d|)2 + |cd| = α. Then
α ∈ Z and α = 0 iff c = d = 0, thus α ≥ 1 and |cz + d| > 1. Then,

Im(hz) =
Im(z)

|cz + d|2 < Im(z)

On another hand, we have hz ∈ P , so Im(hz) > Im(z). This contradiction shows
the absence of such point z.

To be more precise, the Dirichlet fundamental domain for the action of G in C is
the union of P and it’s image under inversion in ∂H

2. The center O for this domain
is contained in a copy of the hyperbolic plane in H

3 which is invariant under G, O
is a point on the geodesic L in H

3 which connects the fixed points of f and gfg and
lies between a fixed point of f and the fixed point j for the action of g on L.

Thus, DO(G) is bounded by 3 hyperbolic planes, two of them are tangent at the
fixed point of f . See Figure 2.

7.2 Ford fundamental domain

Another example of the fundamental domain is so called Ford fundamental domain.
Let PSL(2,C) ∋ g : z 7→ (az + b)/(cz + d), g(∞) 6= ∞, i.e. c 6= 0; we assume that
ad− bc = 1. Then, g′(z) = (cz+ d)−2 and define Ig to be the set of points in C where
g′ is an Euclidean isometry i.e. Ig = {z ∈ C : |g′(z)| = 1} = {z ∈ C : |cz + d| = 1}.
Then Ig is a circle which is called isometric circle of g. The center of this circle is
g−1(∞) = −d/c and |c|−1 is the radius of Ig. Thus, the radius of Ig is the same as the
radius of Ig−1 . Any Euclidean circle with the center at g−1(∞) is mapped by g in a
Euclidean circle with the center at g(∞) (since the last bunch of circles is described
by the property that they are orthogonal to each line through ∞, g(∞)).

However, the radius of Ig should be the same as the radius of g(Ig), thus g(Ig) =
Ig−1 and g(extIg) = intIg−1 . Now, assume that ∞ ∈ Ω(Γ) and it isn’t a fixed point
of any nontrivial element of the Kleinian group Γ, then

F (Γ) = {z ∈ C : |g′(z)| < 1, g ∈ Γ} =
⋂

g∈Γ−1

extIg

is called the Ford fundamental domain of Γ.
It’s possible to realize F (Γ) as the degenerate case of the Dirichlet fundamental

domain. To do this we need we need another point of view on Bg. namely, if O ∈ H
3

then there is a unique ball B(O, r) with center at O (and radius r) such that ∂B(O, r)
is tangent to ∂(gB(O, r)) at some point x = xg ∈ H

3. Then Bg is the unique
hyperbolic plane which is tangent to both ∂B(O, r), ∂gB(O, r) at x. Now we can
move the point O to the point s at the “infinity” C of the hyperbolic space assuming
that s isn’t a fixed point of g), thus r → ∞ and B(O, r) degenerates to a horoball
Ug with center at s and gB(O, r) – to a horoball gUg with center at gs. (See Figure
4 below where s = ∞ ∈ C).

Then it’s clear that Bg ∩ C is the isometric circle of g−1 since it has center at
g(∞), the same (Euclidean) radius as Bg−1 and g(Bg−1) = Bg. Notice also that the
Euclidean diameters of Ig(n) tend to 0 for any infinite sequence of different elements
g(n) ∈ Γ. Really, the centers of Ig(n) belong to a compact subset K of C (since
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∞ ∈ Ω(Γ)) and the Euclidean distances of the points xn = Bg ∩Ug to C are bounded
from above (since ∞ ∈ Ω(Γ) and it isn’t a fixed point of any element of Γ−1). Thus,
either infinitely many points xn belong to a compact subset of H

3 (which contradicts
to the discreteness of Γ) or dist(xn,C) = Rad(Ig(n)) → 0. The last implies that we
can apply to F (Γ) the same arguments as to ΦO(Γ) to prove that it is fundamental.

7.3 Quasiconformal conjugations of Fuchsian groups

Theorem 7.7. Suppose that S is a hyperbolic surface of finite area; S = H
2/G. Then

Λ(G) = S
1 = ∂H

2.

Proof: Suppose that x ∈ S
1∩Ω(G) , then let Vx = Ux∩H

2, so that gVx∩Vx = ∅ for all
g ∈ G− 1. Then, Vx projects isometrically to S; thus ∞ = Area(Vx) < Area(S).

Corollary 7.8. Fixed points of loxodromic elements of G are dense on S
1.

Theorem 7.9. (Extension Theorem). Each quasiconformal self-map of the unit disc
∆ can be extended continuously to ext(f) : ∂∆ → ∂∆ (see Property 6 of quasiconfor-
mal maps).

Moreover suppose that f : ∆ → ∆ is a quasiconformal homeomorphism such that
fgf−1 ∈ PSL(2,C) for all elements of some Kleinian group Γ ⊂ PSL(2,R). Then we
can extend f to a quasiconformal map of C which conjugate Γ to a Kleinian group.
To prove this, extend the complex dilatation µ of f to the Beltrami differential ν on C

using j∗µ (see (49)) where j is the inversion in ∂∆. Then, the solution of the Beltrami
equation ∂̄f̃ = ν∂f̃ (after composition with some Moebius transformation) defines
the desired extension of f (since f̃ is a self-map of ∆, the solution of the Beltrami
equation in ∆ is unique up to composition with a conformal automorphism). Notice
that the coefficient of the quasiconformality of this extension is the same as that of
f .

Theorem 7.10. Suppose that f0, f1 : X → Y . Then f0 is homotopic to f1 they
induce “equivalent” isomorphisms of the fundamental group.

Proof: The nontrivial implication is ⇐. The isomorphisms are “equivalent” iff they
differ by “tale” between f0(x), f1(x) where x is the base-point. Thus, there are
lifts f̃j : H

2 → H
2 such that the induced isomorphisms of π1(X), π1(Y ) are equal
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to θ; i.e. θ(g) ◦ f̃j = f̃j ◦ g for all g ∈ G = π1(X). Define f̃(z, t) to be the point
of [f0(z), f1(z)] which divides this segment as t : (1 − t). Consider f̃(gz, t) = the
point of [f0(gz), f1(gz)] which divides as t : (1 − t) ; however, [f0(gz), f1(gz)] =
[θ(g)f0(z), θ(g)f1(z)], so f̃(gz, t) = the point of [θ(g)f0(z), θ(g)f1(z)] which divides as
t : (1 − t). I.e. this is the same point as θ(g)f̃(z, t). Thus, f̃(z, t) projects to the
homotopy X → Y between f0, f1.

Corollary 7.11. Quasiconformal homeomorphisms f0, f1 : X → Y are homotopic iff
the extensions of f̃j to ∂H

2 coincide (for some choice of the lifts).

Corollary 7.12. Suppose that f : X → Y is a conformal automorphism homotopic
to id. Then f = 1.

Theorem 7.13. (Theorem of Nielsen). Let X,Y be two surfaces of the same finite
conformal type. Suppose that φ : π1(X) → π1(Y ) is an isomorphism, such that the
image of “peripheral” (representing a loop around a puncture) element of π1(X) is
again peripheral. homeomorphism. Then there exists a homeomorphisms f : X → Y
which induces φ. If h is orientation- preserving, then f is homotopic to a quasicon-
formal homeomorphism.

Corollary 7.14. Suppose that G1, G2 be a pair of torsion-free Kleinian subgroups of
PSL(2,R) such that H

2/Gj have finite type and θ : G1 → G2 is a type preserving
isomorphism (i.e. the image of parabolic element is parabolic etc.) Then, θ can be
induced by a homeomorphism f̃ of the hyperbolic plane. If f̃ is orientation-preserving,
then it can be chosen quasiconformal .

We postpone the proof of this result. The isomorphisms that can be induced by
quasiconformal maps are called admissible.

7.4 Finiteness of area versus finiteness of type

Theorem 7.15.

8 Teichmüller theory

8.1 Teichmüller space

Now, let’s go back to Riemann surfaces. Our current goal- construction of Teichmüller
space. Fix once and for all a Riemann surface S of finite type. The quasiconfor-
mal maps f : S → Y, g : S → Z are equivalent if f ◦ g−1 is homotopic to a conformal
map between Z and Y . The space of equivalence classes of the pairs (Y, g) is the
Teichmüller space T (S).

Several alternative definitions.
(i) Recall that each Riemannian metric on S defines a complex structure. Consider

the space R(S) of Riemannian metrics which have finite conformal type. The groups
Diff0 (of diffeomorphisms of S homotopic to identity) and C∞(S,R+) act on R(S)
as g · ds = g∗ds, and C∞(S,R+) ∋ φ : ds 7→ φds. Then

R(S)/Diff0 × C∞(S,R+) ∼= T (S)
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Namely, if [X, g] ∈ T (S) then g−1(X) is a complex structure on S which corresponds
conformally to a Riemannian metric of finite type on S. Conversely, if ds is a metric,
let f ∈ Diff0 be so that f ∗ds near the punctures of S is conformally equivalent to
the S. Then define the Beltrami differential µ as in the section 3. Then define the
Beltrami differential µ as in the section 3. The supremum norm of µ is less than 1 and
we can solve the Beltrami equation on S: ∂̄h = µDh, h : S → S. then (h(S, ds), h)
projects to a point in T (S).

If we consider the space H(S) of complete metrics of constant curvature −1 then
the quotient H(S)/Diff0 = F (S) is called “Fricke space” and it’s diffeomorphic to
T (S).

(ii) Using the Uniformization identify π1(S) with a discrete subgroup

F ⊂ PSL(2,R)

Consider the space Homa(F → PSL(2,R)) consisting of admissible monomorphisms
(which have discrete images, preserve the type of elements and “orientation”). Then
take the quotient T (F ) = Homa(F → PSL(2,R))/PSL(2,R), where γ ∈ PSL(2,R)
acts on r ∈ Homa(F → PSL(2,R)) by conjugation γ · r(g) = γr(g)γ−1, g ∈ F . This
space is called the Teichmüller space of the group F .

The space T (F ) has a natural topology induced by the matrix topology of the
group PSL(2,R).

This space coincide with T (F ) = {h : ∆ → ∆ = H
2 : h∗(g) ≡ hgh−1 ∈ PSL(2,R)

for all g ∈ F , h is quasiconformal }/ ∼=, where h1
∼= h2 iff there exists an element

γ ∈ PSL(2,R) such that:

ext(h1)|∂∆ = γ ◦ ext(h2)|∂∆

We can avoid the composition with elements of PSL(2,R) assuming that all quasicon-
formal maps ext(h) fix 3 distinguished points pj on ∂∆ (i.e. ext(h) is normalized).

Teichmüller metric on T (S). If p, q ∈ T (S) then put

dT (p, q) = inf{logK(f ◦ g−1) : f ∈ p, g ∈ q} (56)

The Convergence property for quasiconformal mappings implies that the Teichmüller
distance is always achieved by some quasiconformal map. The triangle inequality is
obvious since K(f ◦ g) ≤ K(f)K(g); dT (p, q) = dT (q, p) since K(h) = K(h−1).

Several other definitions of dT (p, q). Let τ1(p, q) = log inf{K(f ◦ g−1
0 ) : f ∈ [q])};

τ2(p, q) = log inf{K(h) : h ∈ [f ◦ g−1]}. Then: τ2 ≤ dT ≤ τ1; given h we can take
g = h−1f , thus τ1 ≤ τ2.

Another point of view. Recall that for z, w ∈ ∆ the hyperbolic distance

d(z, w) = log
1 + |z − w|/|1 − z̄w|
1 − |z − w|/|1 − z̄w| = log

|1 − z̄w| + |z − w|
|1 − z̄w| − |z − w| (57)

where ds = |dz|
1−|z|2

∼= |dz|
Im(z)

. Therefore (by (9)),

dT (p, q) = inf log
1 + ‖µ− ν‖/‖1 − µ̄ν‖
1 − ‖µ− ν‖/‖1 − µ̄ν‖ =

inf{d(µ(z), ν(z)) : z ∈ ∆, µ ∈ [p], ν ∈ [q]}
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Remark 8.1. Let’s compare two distances in the open unit ball B(1) of complex
characteristics. We have:

‖µ(fµ1 ◦ fµ2)‖ = ‖µ1 − µ2‖/‖1 − µ̄1µ2‖ < 2‖µ1 − µ2‖

since ‖1 − µ̄1µ2‖ < 2. On another hand, if ‖µ1‖ or ‖µ2‖ ≤ C < 1 then

‖µ(fµ1 ◦ fµ2)‖ ≥ ‖µ1 − µ2‖2/(C + 1).

Thus, for each r < 1 the metric on B(r) defined by the supremum norm and the
“Teichmüller metric” are equivalent.

Thus dT is a metric. The space T (S) is path-connected. If X,Y are quasiconfor-
mal equivalent then T (X), T (Y ) are canonically isomorphic.

8.2 The modular group

Define the (Teichmüller) modular group ModS as the quotient

Homeo+(S)/Homeo0(S)

where Homeo+(S) is the group of orientation preserving homeomorphisms of S and
Homeo0(S) is the subgroup of homeomorphisms homotopic to idS. Then ModS acts
on T (S) by the precomposition ModS ∋ g : [X, f ] → [X, f ◦ g]. The quotient
T (S)/ModS is called the moduli space of complex structures on S. The group ModS
is isomorphic to

Out+(S) = Aut+(S)/Inn(S)

where Aut+(S) consists of “admissible” automorphisms “preserving the orientation”.
The bijection T (S) → T (F ) is continuous (with the Teichmüller topology on

T (S) and the “matrix” topology on T (F )) because of the continuous dependence of
the solution of Beltrami equation on the dilatation. The fact that this an open map
is more subtle. One way to prove it is to show that both are manifolds (as we shall
see). Another way is to prove so called “quasiconformal stability” which is more
general fact. The rough idea of the second approach is that small deformation of the
representation leads to small deformation of the Dirichlet fundamental polygon and
we can organize a quasiconformal diffeomorphism of the fundamental domains which
is C1 close to id and preserves the equivalence relation on the boundary of domains.

8.3 Teichmüller space of the torus

Let Γ ⊂ Isom(C) be a torsion-free lattice, Γ =< g1, g2 >∼= Z
2. Using conformal

conjugations of representations r : Γ → Isom(C) we can assume that g1(z) = z and
g2(z) = z + τ . Thus, τ ∈ {t ∈ C : Re(t) > 0} is the only invariant of the conjugacy
class of the admissible representation. Another way to describe this invariant is to
embed Homa(Γ, Isom(C)) in C

2 so that r 7→ (t1, t2), where r(gj) : z 7→ z + t2.
Then, the conformal factorization of the space of representations is equivalent to the
projectivization of C

2. The point (t1 : t2) ∈ CP (1) corresponds to τ = t2/t1. Anyway,
the Teichmüller space of the torus T (T 2) is the upper-half plane H

2. The modular
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group of the torus ModT 2 acts on T (T 2) ⊂ CP (1) as SL(2,Z) = Aut+(S). This
action isn’t effective, so let PSL(2,Z) = Aut+(S)/{±I}.

Remark. The same happens with the surfaces of genus 2 which are hyperelliptic
and the hyperelliptic involution is always induced by conformal map of the surface.
But, anyway, the kernel is Z2. Now the action of PSL(2,Z) on H

2 is just the action
of the “classical” modular group.

The next step is to calculate the Teichmüller distance, in particular to show the
equivalence of the Teichmüller topology with the topology of C. Suppose that r1, r2
are admissible representation with the normalization rj(g1) = 1; r1(g2) : τ 7→ τ + w,
r2(g2) : τ 7→ τ + z, τ ∈ C.

Lemma 8.2. There is an affine map of C which is an extremal quasiconformal map
conjugating r1 and r2 (it’s a particular case of the Teichmüller’s analysis of the ex-
tremal maps which claims that moreover, the extremal map is unique).

Proof: Let L be the lattice Z + wZ ⊂ C, L′ be the lattice Z + zZ ⊂ C. denote by A
the unique R-linear map which transforms L to L′, A(1) = 1, A(w) = z,

A(τ) =
z − w̄

w − w̄
· τ +

w − z

w − w̄
· τ̄ (58)

µ(A) =
w − z

z − w̄
(59)

Suppose that f is an extremal map. After normalization we can assume that f(0) = 0,
f(1) = 1, thus f(w) = z. Therefore, restriction of f to L coincides with A. Denote by
Φ the rectangle bounded by the segments [0, 1], [1, w+ 1], [w+ 1, w], [w, 0], which is a
fundamental domain for Γ. For k ∈ Z+ put fk(z) = f(2kz) ·2−k. Then K(fk) = K(f)
and they induce the same conjugation between r1 and r2. However, the restriction of
fk to 2−k · L coincide with A and Lk = Φ ∩ 2−k · L ⊂ Lk+1. Therefore,

L∞ =
⋃

k∈Z+

Lk

is dense in Φ. On another hand, there is a uniform limit f∞ = lim fk and the
restriction of f∞ to L∞ coincides with A. Thus, f∞ = A on C, K(f∞) = K(f) and
thus A is an extremal map.

Thus we can calculate K(A) as

K(A) =
|z − w̄| + |z − w|
|z − w̄| − |z − w| (60)

and dT (r1, r2) = logK(A) is the hyperbolic distance between z and w. Really, on the
imaginary axis it coincides with logw/z if Im(w) ≥ Im(z). The invariance of K(A)
under homotheties and translations in PSL(2,R) is evident. The invariance under
the inversion j : τ 7→ 1/τ̄ can be verified by a direct calculation.

Thus, in the case of the torus the Teichmüller and hyperbolic metrics coincide.
This is a particular case of more general theorem of Royden that we shall (probably)
discuss later.

Remark. Another simple case is the punctured torus S1,1. In this case the
Teichmüller space is the same as the Teichmüller space for the torus. Really, let
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[X, f ] ∈ T (S1,1), f is quasiconformal. Then φ([X, f ]) ∈ T (T 2) is just the extension
of the complex structure and of the quasiconformal map to the puncture. This map
is injective since the group of conformal automorphisms of the torus is transitive.

8.4 Simple example of the moduli space.

Let S be a sphere with n+ 3 punctures. Then the moduli space of S is

(C − {0, 1})n − diagonals/S(n)

where S(n) is the symmetric group on n symbols. The fact that the topology is
the same as Teichmüller’s just follows from the continuous dependence of solution of
Beltrami equation on the dilatation and the fact that if (z1, ..., zn) ∈ C

n is close to
(w1, ..., wn) ∈ C

n then there is a diffeomorphism f : C → C which is C1 close to id
such that f(zj) = wj.

8.5 Completeness of the Teichmüller space.

Theorem 8.3. The space T (S) is complete.

Proof: Let [Xn, fn] be a Cauchy sequence in T (S). fn : C → C be a Cauchy sequence
in T (S). Without loss of generality we can assume that Xn are complex structures
on one and the same smooth surface S. First fix fi such that

inf{logK(fi+p ◦ f−1
i ), fi+p ∈ [fi+p]} < 1/2

for all p = 1, 2, .... Renumber the sequence, put fi = f1. Then choose f2 such that
logKf2◦f1 < 1/2 and dT ([Xi, fi], [Xi+p, fi+p] ≤ 1/4. Finally we get a sequence of maps
fn : S → Xn so that

logKfn+1◦f
−1
n
< 2−n

for each n. Then this Cauchy sequence in T (S) has logKfn+p◦fn
< 2−n+1 for each p.

Thus,

‖µn+p − µn‖∞ ≤ 2‖(µn+p − µn)/(1 − µ̄nµn+p)‖ < 2 exp
2−n+1 − 1

2−n+1 + 1
= 2 tanh 2−n+1

(See Remark 8.1) Thus µn is a Cauchy sequence in L∞. Since L∞ is complete, the
limit µ exists. On another hand, K(fn) ≤ K(f1)2

−n+1 < C <∞. This estimate also
implies that ‖µ‖ < 1 and we can solve the Beltrami equation with µ. The solution-
fµ belongs to T (S). The points µn are convergent to µ in the supremum norm, thus
the points of the Teichmüller space are convergent in the Teichmüller topology.

8.6 Real-analytic model of the Teichmüller space

We will also use another realization for T (S).
Namely, let Γ be the Fuchsian group such that H

2/Γ = S. Then consider the
space B(Γ) of all Beltrami differentials which are automorphic under Γ:

B(Γ) = {µ ∈ L∞(H2) : ‖µ‖ < 1, µ(z) = µ(γz)γ′(z)/γ′(z), γ ∈ Γ} (61)
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Introduce the equivalence relation: µ ∼ ν iff fµ and f ν coincide on ∂H
2 (q.c. maps

are canonically normalized and the complex dilatation is extended to C − H
2 by

the inversion). Then f conjugate Fuchsian groups to Fuchsian groups. Denote by
Ψ : B(Γ) → T (S) the corresponding projection.

8.7 Complex-analytic model of the Teichmüller space

We now extend the complex dilatation µ to C−H
2 by 0. Denote by fµ the normalized

solution of the equation ∂̄f = µ∂f in C. Then (by formula (50)) we still have:
fµ∗ (g) = fµ ◦ g ◦ (fµ)−1 ∈ PSL(2,C), g ∈ Γ. Thus, fµ conjugates the group Γ to
a Kleinian group Γ′ = f∗(Γ). The group Γ′ has two simply connected components
of the discontinuity domain- images of H

2 and H
2
∗. Then the surface fµ(H2

∗)/Γ
′ is

conformally equivalent to H
2
∗/Γ

′. The surface fµ(H2)/Γ′ with the marking given by
the isomorphism of fundamental groups fµ∗ : Γ → Γ′ gives the point of the Teichmüller
space T (S). This point is the same as the point of T (Γ) given by the solution fµ :
H

2 → H
2 of the Beltrami equation ∂̄f = µ∂f in H

2. Indeed, the map g = fµ ◦ (fµ)−1

of the domain fµ(H2) is conformal (by uniqueness of solution of Beltrami equation)
and g conjugates the representations fµ∗ and fµ∗.

Thus we have the correspondence: Φ : [µ] ∈ T (X) 7→ f |H2
∗

is a univalent (i.e.
injective) holomorphic function in H

2
∗.

Theorem 8.4. The map Φ is injective.

Proof: If f = g on H
2
∗ then their extensions to R also coincide. Thus, the induced

homeomorphisms f∗, g∗ of the group Γ to PSL(2,C) are the same and f(H2) = g(H2),
therefore the surfaces f(H2)/f∗(Γ), g(H2)/g∗(Γ) are the same and their markings
defined by f∗, g∗ coincide.

Thus, we obtained an embedding of T (X) in the space of holomorphic functions
in H

2
∗. Certainly, this map is very far from being surjective. Our aim is to describe

somehow the image.

9 Schwarzian derivative and quadratic differentials

9.1 Spaces of quadratic differentials

Let Q(Γ) be the space of all holomorphic in H
2
∗ functions φ such that φdz2 is Γ-

automorphic (i.e. φ(z) = f(γz)γ′(z)2) and have finite norm:

‖φ‖ = sup
z∈H2

∗

y2|φ(z)| (62)

where we realized H
2
∗ as the lower half plane. The norm ‖φ‖ is invariant under the

precomposition with elements of Γ.
Notice that the condition (62) is equivalent to finiteness of the ds2-norm of the

projection of φ to X = (S, ds2) = H
2
∗/G.

Later we shall show that the space Q(Γ) is finite-dimensional. Its dimension is
3g − 3 + n, where (g, n) is the type of X.
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Schwarzian derivative of the holomorphic function f is

Sf ≡ {f, z} = (
f ′′

f ′
)′ − 1

2
(
f ′′

f ′
)2 =

f ′′′

f ′
− 3

2
(
f ′′

f ′
)2 (63)

Suppose that f ∈ PSL(2,C), then Sf ≡ 0. The inverse statement also holds for the

holomorphic functions. Suppose that Sf = φ. Put h = f ′′

f ′
, then h′ − h2/2 = φ, if

h = −2η′/η = −2(log η)′ then for η we have the Riccati equation:

η′′ + φη/2 = 0

If φ = 0 then the only solution is: η(z) = cz + d. However, h(z) = −2(log η)′ = −2c
cz+d

;
g := f ′ implies (log g)′ = h

log g =

∫

h = −2

∫

cdz

cz + d
= log((cz + d)−2) + log a

Thus, f ′ = g = a/(cz + d)2,

f = a

∫

cdz

(cz + d)2
=
αβd+ cβz

cz + d
∈ PSL(2,C)

Then Sf = 0 iff f is Moebius. Under the composition the Schwarzian derivative be-
haves as:

Sf◦g = (Sf ◦ g)g′2 + Sg (64)

If g is Moebius, then
Sf◦g = (Sf ◦ g)g′2

in particular, if F (z) = f(1/z) then z4SF (z) = Sf (1/z).
Thus, Sf◦g = Sf for all g ∈ Γ iff Sf is Γ-automorphic quadratic differential.

Theorem 9.1. The (holomorphic) solution of the equation

Sf = φ

exists and unique up to (left) composition with a Moebius transformation. This solu-
tion is locally injective.

Proof: Using the substitute h = f ′′/f , h = −2η′/η; as above we have the Riccati
equation:

η′′ + φη/2 = 0 (65)

This equation has 2 linearly independent holomorphic solutions. (Proof: power series
expansion.) Let η1, η2 be such solutions. Then (η1η

′
2 − η2η

′
1)

′ = η1η
′′
2 − η2η

′′
1 = 0.

Thus, η1η
′
2 − η2η

′
1 = const 6= 0 (otherwise, ∂(log η1) = ∂(log η2), η1 = aη2). Thus we

can put const = 1. The function f = η1/η2 satisfies the equation Sf = φ.
Notice that η2 can have at most simple zeros (since if η2(z) = η′2(z) then const =

0). Thus, f has at most simple poles. In other points:

f ′ = (η1η
′
2 − η2η

′
1)/η

2
2 = 1/η2

2 6= 0 (66)

So, f is locally univalent.
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Uniqueness of solution. It follows from (64) that

0 = Sf◦f−1 ≡ (Sf ◦ F−1)(f−1′)2 + Sf−1

and, since, Sg = Sf we have:

0 = (Sf ◦ F−1)(f−1′)2 + Sf−1 = Sg◦f−1 .

Thus, g ◦ f−1 ∈ PSL(2,C).

Theorem 9.2. Suppose that the domain of φ includes the point ∞ and φ has a simple
pole at ∞. Then the solution of Sf = φ has at worst a simple pole at ∞.

Proof: Suppose that φ(w) = ψ(w)w−4, let F (z) = f(1/z = w). Then

z4SF (z) = w−4ψ(w) = z4ψ(w) (67)

and we have the equation SF (z) = ψ(1/z) where ψ(1/z) is holomorphic near 0. Then
we use Theorem 9.1 to conclude that the function F (and thus f) is meromorphic
with at worst simple poles.

Corollary 9.3. Suppose that φ is Γ-automorphic. Then the solution of the equation
Sf = φ defines a homomorphism ρ : Γ → PSL(2,C) such that f ◦ γ = ρ(γ) ◦ f for
each γ ∈ Γ.

Proof: Sf◦γ = Sf and uniqueness implies that there is ρ(γ) such that f ◦ γ = ρ(γ) ◦
f .

Thus, any automorphic quadratic differential defines a complex projective struc-
ture on H

2/Γ which is “subordinate” to the initial complex structure. And vice versa,
given a holomorphic developing map d : H

2 → C which is Γ-equivariant, we have the
automorphic quadratic differential Sd. Our problem is to determine, which quadratic
differential correspond to the points of the Teichmüller space.

Theorem 9.4. (Kraus- Nehari) Suppose that f : H
2
∗ → C is a univalent function.

Then
|{f, z}Im(z)2| ≤ 3/2 (68)

Proof: Step 1. We will need the following

Lemma 9.5. Let F (ζ) be a univalent holomorphic function in ext(∆) = {|ζ| > 1} so
that F (∞) = ∞, F (ζ) = ζ + b1/ζ + b2/ζ

2 + .... Then |b1| ≤ 1.

Proof: Let r > 1; Dr be the complement to the image F ({|ζ| ≥ r}) then

Area(Dr) =
1

2i

∫

|ζ|=r

F̄ dF > 0

1

2i

∫

|ζ|=r

F̄ dF =
1

2i

∫

|ζ|=r

[ζ̄ + b̄2/ζ̄
2 + ...][1 − b1/ζ

2 − 2b2/ζ
3 − ...]dζ
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However,
∫

|ζ|=r

dζ

ζsζ̄p
= 0

if s 6= p+ 1 and = 2πir1−s−p = 2πir−2p if s = p + 1. Thus, the hole integral is equal
to:

π[r2 −
∞

∑

p=1

p|bp|2
r2p

] > 0

If we put r = 1 then we will get in particular |b1| ≤ 1
Step 2. Now we can estimate {F, ζ}. We have:

F ′ = 1 − b1/ζ
2 − ... F ′′ = 2b1/ζ

3 + ...

F ′′′ = −6b1/ζ
4 − ...

SF = F ′′′/F ′ − 3(F ′′/F ′)2/2 = (−6b1/ζ
4 − ...)(1 + b1/ζ

2...)−
3

2
(2b1/ζ

3 + ...)2(1 + b1/ζ
2...)2 = −6b1/ζ

4 +O(1/ζ6)

Step 3. Finally, we consider the functions in the lower half-plane. Let x0 + iy0 =
z0 ∈ H

2
∗, then the transformation ζ = γ(z) = (z− z̄0)/(z−z0) maps H

2
∗ to the exterior

of ∆ and γ(z0) = ∞. Then put f(ζ) = f(z(ζ)); f = F ◦ γ, thus

{f, z} = {F, ζ}γ′(z)2

γ′(z) = − 2iy0

(z − z0)2

and

{f, z} = (−6b1 + powers of 1/ζ)ζ−4 −4y2
0

(z − z0)4

ζ−4 =
(z − z0)

4

(z − z̄0)4

Therefore if z = z0, ζ = ∞ we are left with

|{f, z0}| = |6b1
1

4y2
0

| ≤ 3

2y2
0

Theorem is proved.

Theorem 9.6. Suppose that ‖φ‖ ≤ 1/2, then the solution of the equation Sf =
φ admits a quasiconformal extension to C which is ρ-equivariant where ρ is the
monodromy of the complex structure as above. The complex characteristic of this
extension depends continuously on the norm of φ.

Proof: We will not only establish the existence of the extension but also construct
the canonical one. Let ηj be 2 linearly independent solutions of the Riccati equation
η′′ = −φη/2. Put

f̂(z) =
η1(z̄) + (z − z̄)η′1(z̄)

η2(z̄) + (z − z̄)η′2(z̄)
= Q1(z)/Q2(z)
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for z ∈ H
2 and f̂(z) = η1(z)/η2(z) = f(z) for z ∈ H

2
∗. Then the function f̂(z) is

smooth in its domain and ∂̄f̂/∂f̂(z) = −2y2φ(z̄) = µ in H
2 and ∂̄f̂ ≡ 0 in H

2
∗ since

in H
2 we have: ∂f̂ = 1/Q2

2, ∂̄f̂ = (z − z̄)2φ(z̄)/(2Q2
2) = 2Im(z)2φ(z̄)/Q2

2, Jac(f̂) =
|∂f̂ |2(1 − |µ|2) 6= 0 and ‖µ‖ < 1. Therefore, f̂ is a locally quasiconformal map
holomorphic in H

2
∗. The complex dilatation µ of f̂ is invariant under Γ: recall that

|Im(γz)| = |γ′(z)Im(z)|, thus

µ(γz) = 2|γ′(z)|2|Im(z)|2φ(γz̄) = 2γ′(z)γ′(z)φ(z̄)γ′(z̄)−2 = µ(z)γ′(z)/γ′(z)

and µ(γz)γ′(z)/γ′(z) = µ(z). So, our aim is to show that f̂ is the restriction of a global
quasiconformal homeomorphism of C. This will be done by some approximation.

Let gn be a sequence of Moebius transformations such that gn → id and gn(H
2
∗)

is a relatively compact subset of H
2
∗. Form the functions: φn(z) = φ(gnz)(g

′
n(z))

2.
Then |φn(z)| = O(z4) as z → ∞ and φn is holomorphic near R. Really,

|φ(gnz)(g
′
n(z))

2| ≤ Const|g′n(z))2|

in H
2
∗ since gnz belongs to a compact in H

2
∗. Then:

|g′n(z)|2 = |cnz + dn|−4 = O(z−4)

Lemma 9.7. (Contraction property for holomorphic maps) Let H
2 be a hyperbolic

plane with the Poincaré metric ρ(z)|dz|, γ : H
2 → H

2 is conformal. Then dγz is
“contracting” map of the hyperbolic metrics: ‖ξ‖ > ‖dγ(ξ)‖ for each tangent vector
at z ∈ H

2 i.e. for w = γ(z) we have: ρ(w)|dw| ≤ ρ(z)|dz| , i.e. ρ(γz)|γ′(z)| < ρ(z).

Proof: Assume that H
2 is the unit disc with ρ(z) = (1 − |z|2)−1, then let h, g ∈

Isom+(H2) be such that gγh(0) = 0, h(0) = z. Since g, h preserve the metric its
enough to prove Lemma for the point z = 0 and the conformal map f = gγh.
However, f(∆) ⊂ ∆ and f(0) = 0, thus by Schwartz Lemma: |f ′(0)| < 1; ρ(0) = 1,
thus ρ(0)|f ′(0)| < ρ(0).

The Lemma implies that |g′n(z)| < |Im(gn(z)|/|Im(z)|. Then

|y2φn(z)| = |y2||φ(gnz)| · |g′n(z)|2 < |φ(gnz)| · |Im(gn(z)|2 ≤ ‖φ‖

Thus, the hyperbolic norm of φn is bounded by ‖φ‖ < 1/2.
Therefore, for the quadratic differentials φn we can construct the functions f̂n

which are locally injective and locally quasiconformal in H
2
∗ ∪ H

2 and continuously
extend to R̄ so that the boundary values coincide.

Moreover, f̂n are holomorphic near R̄ and have at worst a simple pole at ∞; thus
f̂n is are quasiconformal homeomorphisms.

The complex dilatations µn of f̂n have supremum norms bounded by ‖φ‖. On
another hand, φn are convergent to φ uniformly on compacts, thus the normalized
solutions of the Riccati equations

η′′ = −φnη/2

are uniformly convergent η1, η2. Now for each µn form the normalized solutions of
the Beltrami equation. Then they are convergent uniformly to f̂ .
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So, φ belongs to the image of the Teichmüller space. The bicontinuity of the
correspondence [µ] → Sµf follows from the estimate on the norm of complex dilatation:
if ‖ϕ− ψ‖ ≤ ǫ, then ‖µ− ν‖ ≤ ǫ, where µ(z) = 2Im(z)2ϕ(z̄).

The correspondence
T (S) ∋ [µ] → Sfµ

is called the “Bers embedding”.

Theorem 9.8. (1) Consider the projection p : H
2
∗ → X = H

2
∗/Γ. Then the image of

Q(Γ) under p∗ is the space Q(X) of holomorphic quadratic differentials on X with at
worst simple poles at the punctures of X.

(2) The Bers map is continuous.

Proof: The elements of Q(Γ) project to quadratic differentials on X since they are
Γ-invariant. Suppose that ∞ is a parabolic fixed point of Γ stabilized by the group
A =< z 7→ z + 2π >. Then as the conformal parameter near the puncture on
X corresponding to the point ∞ we can choose w = exp(iz). Denote by D small
neighborhood of 0 in C which is in the image of local parameter near the punc-
ture. Let φ(z)dz2 be Γ-invariant, then φ is invariant under A and on D we have:
p∗(φ(z)dz2) = Φ(w)dw2 = −Φ(w = exp(iz))w2. Suppose that Φ(w) = wnΨ(w) where
Ψ(w) is holomorphic and Ψ(0) 6= 0. Then φ(z) = −Ψ(w)wn+2; Im(z) = log(|w|) and
| log(|w|)Ψ(w)wn+2| is bounded as w → 0 iff n + 2 ≥ 1, i.e. n ≥ −1, which means
that Ψ(w) has at worst a simple pole at zero. A priori there is also case when Φ(w)
has essential singularity ar zero. However, in such case wkΦ(w) would be unbounded
in D for every k, thus | log(|w|)Φ(w) is unbounded as well. This finishes the proof of
(1).

To prove (2) its enough to show that for each φn, φ0 ∈ Q(Γ) if φn → φ0 uniformly
on compacts in 2h∗ , then ‖φn − φ0‖ → 0 as n → ∞. Let φk(z) = Φk(w)w2, for
w = exp(iz), where Φk(w) = w−1Ψk(w), Ψk are holomorphic in D and Ψk → Ψ0

uniformly on compact, thus by the Maximum Principle, Ψk → Ψ0 uniformly in D.
Now,

|y2φn(z) − y2φ0(z)| = log2(|w|)|w|2|w|−1|Ψn(w) − Ψ0(w)| ≤
≤ |Ψn(w) − Ψ0(w)|

This implies that ‖φn − φ0‖ → 0 as n→ ∞.
Remark. The property that X has finite type is essential in the proof. Each

injective holomorphic function f in ∆ can be uniformly on compacts approximated by
functions fn with quasiconformal extension to C (trick: take fn(z) = f(z ·(1−1/n))).
Thus, Sfn

are convergent to Sf uniformly on compacts in ∆. However, Thurston
constructed examples of functions f so that there is no any sequence of injective
holomorphic functions fk with the property:

lim
k→∞

‖Sfk
− Sf‖ = 0

Theorem 9.9. The dimension of Q(X) is equal to 3g − 3 + n where g is the genus
of X and n is the number of punctures.
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Proof: Denote by X̄ to conformal compactification of X, let P be the divisor given
by the set of punctures. Let k be the canonical divisor of X, L(k−2 · P ) = set of
holomorphic functions on X which have divisors at k−2 · P at least of order k−2 · P .
Then, by Riemann-Roch theorem, r(L(k−2 · P )) = deg(k2/P )− g + 1 + r(k2/(Pk) =
kP−1). However, deg(kP−1) > 0, thus r(kP−1) = 0. On another hand, deg(k2/P ) =
deg(k2) − deg(P ) = 2(2g − 2) − (−n) = 4g − 4 + n; thus r(L(k−2 · P )) = 3g − 3 + n.
The dimension r(L(k−2 · P )) of L(k−2 · P ) is equal to the dimension of Q(X) since
f ∈ L(k−2 · P ) iff fω2 ∈ Q(X), where ω ∈ Ω(X̄) is the canonical class.

Theorem 9.10. Teichmüller space is a manifold of the dimension 3g − 3 + n.

Proof: We already proved that the Bers map is a homeomorphism on some neigh-
borhood U(X) of [X, id] in T (X). Thus, U(X) is a manifold of the dimension
3g − 3 + n. Now, let [Y, f ] be any other point of T (X), then we consider the home-
omorphism α between T (X) and T (Y ) given by : [Z, h] ∈ T (Y ) maps to [Z, h ◦ f ];
thus α[Y, id] = [Y, f ]. However, some neighborhood V of the point [Y, id] in T (Y ) is
also a manifold; thus the neighborhood αV of [Y, f ] is again a manifold. Therefore,
T (X) is a manifold.

Corollary 9.11. The Bers’ map is a homeomorphism on its image.

10 Poincaré theta series

Let A(H2) be the space of all holomorphic functions f in H
2 which is realized as the

unit disc in C. If Γ is a discrete torsion- free lattice in PSL(2,R) then A(Γ) is the
space of all holomorphic functions ϕ in H

2 such that :
(i) ϕ(γz)γ′(z)2 = ϕ(z) for all γ ∈ Γ;
(ii) ‖ϕ‖1 =

∫

D
|ϕ(z)|dxdy < ∞ where D is a fundamental domain for the action

of Γ in H
2.

Such quadratic differentials are called ”cusp forms” and their projections on X =
H

2/Γ are L1-integrable holomorphic quadratic differentials with at worst simple poles
at the punctures. Thus, A(Γ) = Q(Γ) as linear spaces, but they are different as the
normed spaces.

Now, define the operator Θ : A(H2) → A(Γ) by the formula:

Θ(f)(z) =
∑

γ∈Γ

f(γ(z))γ′(z)2

Theorem 10.1. (1) The series Θ(f) is convergent absolutely and uniformly on com-
pacts in H

2;
(2) ‖Θ‖ ≤ 1;
(3) The operator Θ is surjective.

Proof: First we recall the “mean value” theorem for holomorphic functions:

|ϕ(w0) =
1

2πr2
|
∫

D(w0,r)

ϕ| ≤ 1

2πr2

∫

D(w0,r)

|ϕ|

36



for each holomorphic function in the disc D(w0, r) with center at w0 and radius r.
This theorem can be proved for example via Taylor expansion for ϕ with center

at w0.
Now, we can prove the assertion (1). Let z0 ∈ H

2 and D(z0, 2r) be the Euclidean
disc which is contained in H

2. Then there is a fundamental domain D for the group
Γ such that D(z0, 2r) ⊂ cl(D). Thus, for each z ∈ D(z0, r) we have:

2πr2
∑

γ∈Γ

|f(γ)| · |γ′(z)2| ≤
∑

γ∈Γ

∫

D(z,r)

|f ◦ γ| · |γ′2| ≤

≤
∑

γ∈Γ

∫

D

f ◦ γ| · |γ′2| = sumγ∈Γ

∫

γD

|f | = ‖f‖1 <∞

Now we can prove (2). Again,

‖Θf‖1 =

∫

D

|Θf | ≤
∑

γ∈Γ

∫

D

|f ◦ γ||γ′|2

=
∑

γ∈Γ

∫

γD

|f | = ‖f‖1

Remark. Curt McMullen in [Mc] proved the old conjecture due to I. Kra that the
norm of the Theta operator is always strictly less than 1.

We skip completely the proof of the most interesting statement (3) since it will
lead us too far from the main subject (to the theory of Poisson kernel). You can find
the proof for example in [G].

11 Infinitesimal theory of the Bers map.

Consider the Beltrami differential µ with the support in the unit disc H
2; denote by

f = f tµ the normal solution of the Beltrami equation:

∂̄f tµ = tµ∂f tµ

where t is sufficiently small. Then we recall that fz = h + 1 where h = Ttµ +
Ttµ(Ttµ) + ...:

f(z) = z +
∞

∑

n=1

an(z)t
n

where

a1(z) = Pµ(z) = − 1

π

∫

H2

zµ(ζ)

ζ(ζ − z)
dξdη

Therefore,

f ′(z) = 1 +
∞

∑

n=1

a′n(z)t
n

f ′′(z) =
∞

∑

n=1

a′′n(z)t
n
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f ′′′(z) =
∞

∑

n=1

a′′′n (z)tn

Now, our aim is to calculate the Schwarzian derivative of the function f in the com-
plement to the hyperbolic plane. First,

lim
t→0

f ′′′

tf ′
= lim

t→0

a′′′1 (z) +O(t)

1 +O(t)
= a′′′1 (z)

Then,
1

t
(
f ′′

f ′
)2 =

1

t
(
a′′1(t)t+ ...

1 + ...
)2 =

t2

t

(a′′1(t) + ...)2

(1 + ...)2
= O(t)

Thus,

lim
t→0

1

t
S(f tµ) = a′′′1 (z) =

d3

dz3
(− 1

π

∫

H2

µ(ζ)

ζ − z
dξdη =

= − 6

π

∫

H2

µ(ζ)

(ζ − z)4
dξdη

This is the formula for the derivative of the Bers’ map in the direction µ:

Φ̇(0)[µ](z) = − 6

π

∫

H2

µ(ζ)

(ζ − z)4
dξdη =

∞
∑

n=0

cnz
−(n+4)

∫

H2

µ(z)ζndξdη

where cn 6= 0 for all n.

Theorem 11.1. Let Γ ⊂ PSL(2,R) be a torsion-free lattice with the fundamental
domain D in H

2 = ∆. Then Beltrami differential µ belongs to the kernel of Φ̇(0) iff
∫

D
µϕ = 0 for all ϕ ∈ A(Γ). In other words, the variation of the complex structure

on X = H
2/Γ is infinitesimally trivial along µ ∈ L∞(H2,Γ) if and only if µ belongs

to the orthogonal complement A(Γ)⊥ of A(Γ) in L∞(H2,Γ).

Proof: Let θn = Θ(zn); then
∫

∆
µ(ζ)ζndξdη =

∫

D
µ(ζ)θn(ζ). Thus, if µ ∈ A(Γ)⊥ then

∫

D
µ(ζ)θn(ζ) = 0 and

∫

∆
µ(ζ)ζndξdη = 0 for all n, therefore, Φ̇(0)[µ] = 0.

Conversely, if
∫

∆
µ(ζ)ζndξdη = 0 for all n then we can use the Carlemann’s density

theorem:
polynomial functions are dense (in L1 norm) in the space of L1 holomorphic func-

tions in the unit disc.
Therefore, µ is orthogonal to all holomorphic functions f in ∆ and

0 =

∫

∆

µf =

∫

D

µΘ(f)

However, the operator Θ is surjective, thus µ is orthogonal to each quadratic differ-
ential: µ ∈ A(Γ)⊥.

Remark 11.2. This theorem is one of fundamental facts of the Teichmüller theory.
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12 Teichmüller theory from the Kodaira-

Spencer point of view

Definition (Kodaira- Spencer): A holomorphic family is a complex manifold V =
V m+1 and a holomorphic map π : V → M = Mm where Mm is a complex manifold
and all preimages π−1(t) are Riemann surfaces (t ∈M).

In our case, M = Φ(T (X)) ⊂ Q(X) and m = 3g − 3 + n. Each point t ∈ M
corresponds to a quadratic differential φt ∈ Q(X) and to a group Γt ⊂ PSL(2,C);
for each A ∈ Γ, At depends holomorhically on t. Riemann surfaces of our family will
be: S(t) = ΩtΓt;

V = ∪t∈MS(t)

where Ωt is a component of Ω(Γt) which is the image of the upper half plane under
quasiconformal map (thus, the variation of the complex structure on S(t) isn’t trivial).
Points of the space V are the orbits Γtz where z ∈ Ωt, t ∈ M . The projection is the
obvious map π : V → M . Now we need topology and a complex structure for the
space V . Consider a point Γt0z0 ∈ V . Then there is a neighborhood N = N(z0) of
the point z0 such that clN ⊂ Ωt0 and γt0clN ∩ clN = ∅ for all nontrivial γ in Γ.

Now, the neighborhood N(ǫ, z0, t0) of Γt0z0 ∈ V consists of all Γtz such that:

‖φt − φt0‖ < ǫ , z ∈ N

Here ǫ is so small number that clN doesn’t meet it’s Γt−{1} - orbit (such ǫ exists since
ft → ft0 uniformly on compacts. Define the map h on N(ǫ, z0, t0) as: h : Γtz 7→ (z, t)
where z = Γtz ∩N .

The neighborhood s U = N(ǫ, z0, t0) define the base of topology on V and the
maps h are coordinate maps for the complex structure on V . The transition maps
are holomorphic since At are holomorphic functions on t: on U1, U2 we have:

h1(Γtz) = (z, t);h2(Γtz) = (γtz, t)

The projection map π locally is given by: (w, t) 7→ t , so this is a submersion.
Therefore, V is a holomorphic family.

It’s much easier to visualize this construction for the case of the Teichmüller space
of the torus. Namely, let H

2 = T (T 2), Ṽ = H
2 × C. For each t ∈ H

2 the lattice Z
2

acts on C as a lattice Γt. Now, V is the quotient of Ṽ by this action of the group
Z2. As the result we have the fibre bundle over H

2 with the fiber T 2 (which have
variable complex structure). Now we can even consider the quotient of V by the
modular group PSL(2,Z). The resulting variety U is fibered over the modular curve
H

2/PSL(2,Z); U is called the universal elliptic curve.
With some success we can repeat the same in the case of hyperbolic surfaces;

however instead of one and the same space C we have to consider Ωt as the fiber of
Ṽ ; Ω is a domain in C; the base of Ṽ is the Teichmüller space; V is the quotient of
Ṽ by the action of π1(X) which acts as Γt in each fiber. Again, we can take the next
quotient V/Mod(X) to obtain the universal Teichmüller curve which has the moduli
space as the base and the surface X (with variable complex structure) as the fiber.

Actually, the relation between Teichmüller and Kodaira-Spencer theory is much
deeper.....
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13 Geometry and dynamics of quadratic differen-

tials

13.1 Natural parameters

LetX be a compact Riemann surface , and φ be a holomorphic quadratic differentialon
X which is different from zero. Throughout this section φ is assumed to be fixed.
A point p ∈ X is said to be regular with respect to φ if φ(p) 6= 0 and critical if
φ(p) = 0. It’s easy to see that these definitions do not depend on the choice of local
coordinates on X. Critical point of φ form a finite set C(φ). Let p be any regular
point and q 7→ h(q) = z is a local coordinate near p such that h(p) = 0. Since
φ(p) 6= 0 then there is a small neighborhood of 0 where who branches of

√

φ(z) are
single valued. For a fixed branch of square root every integral

z 7→ Φ(z) =

∫ z

0

√

φ(w)dw (44)

is also a single-valued function in some simply-connected neighborhood of 0 and
uniquely determined up to an additive constant.

On another hand, Φ′(0) =
√

φ(0) 6= 0 and thus, Φ is locally injective near 0. It
follows that the system of maps z 7→ w = Φ(z = h(q)) is a holomorphic atlas on
X − C(φ). In these local coordinates φ(z)dz2 = dw2. The coordinate Φ is called a
natural parameter near p. An arbitrary natural parameter near p has the form
±z + const. This means that the natural parameters define a very special kind if
Euclidean structure on X − C(φ) (which is called F -structure, where F stands for
the “foliation”).

There are natural parameters at the critical points as well. Suppose that p ∈ X
is a zero of order n for φ. Again, let q 7→ h(q) = z be a local parameter near p. Then
there is a disc D = D(0, r) where φ(z) = znψ(z) with ψ(z) 6= 0. We fix a single-valued
branch of

√
ψ in D. If n is odd then we cut D along R+ and fix a branch of z 7→ zn/2

in D′ = D − R+ ; if n is even we don’t need any cut. In any case,

z 7→ Φ(z) =

∫ z

0

√

φ(w)dw = z(n+2)/2(c0 + c1z + ...) = z(n+2)/2ω(z) (45)

(where c0 6= 0) is a single-valued function in D′. Moreover, the function

z 7→ ω(z) = Φ(z)z−(n+2)/2 (46)

is single-valued at some neighborhood of 0. This,

ζ : z 7→ Φ(z)2/(n+2) = zω(z)2/(n+2) (4)

is single-valued near 0 since ω(z) 6= 0; and has nonzero derivative at 0:

ζ ′(0) = ω(0)

We call ζ : q 7→ Φ(z)2/(n+2) to be the natural parameter at p. In terms of this natural
parameter we have:

φdz2 = (
n+ 2

2
)2ζndζ2 (5)
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since:

dζ =
2

n+ 2
Φ

2

n+2
−1(zΦ′(z)dz =

2

n+ 2
Φ

−n
n+2

√

φ(z)dz

φdz2 = (
n+ 2

2
)2Φ

2n
n+2dζ2 = (

n+ 2

2
)2ζndζ2

Define the differential |φ(z)|1/2|dz|. This is a Riemannian metric outside the criti-
cal set of φ. This metric is locally Euclidean on X−C(φ) and is called φ-metric. The
natural parameter is the local isometry between this metric and the Euclidean metric
on C. The surface X has a finite diameter and area with respect to this singular
metric. We shall return to this metric later.

13.2 Local structure of trajectories of quadratic differentials

Horizontal (or vertical) trajectories of φ correspond to the (maximal) horizontal (or
vertical) Euclidean line in C under the natural parameter (on X − C(φ)). Another
way to define these trajectories is as follows. Let γ : [−1, 1] → X−C(φ) be a smooth
path, take the pull-back

φ(γ(t))(γ′(t))2dt2 (6)

of the form dz2 on [−1, 1]. Then the curve γ is called a straight line if the argument
arg(φ(γ(t))(γ′(t))2) = θ is constant. The trajectory is called horizontal if θ = 0 and
vertical if θ = π.

Near singular points the trajectories are more complicated. Let ζ = w2/(n+2) be
the natural parameter near a critical point p; then w is a natural parameter outside
of p.

If p is zero of order n for φ then there are n+2 horizontal rays emanating from p;
in the natural parametrization the angles between them are 2π/(n + 2). See Figure
5.

p

Figure 5.  The differential has a simple pole at the point p.

Trajectory is called critical if it contains one of critical points. From now on we
shall consider only horizontal trajectories of φ.

Examples on the torus. Suppose that X is a torus obtained by identification
of sides of a parallelogram P ⊂ C; denote by φ the projection on X of the quadratic
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differential dz2. In this case C(φ) = ∅. Then the natural parameter on X is the
inverse to the universal covering and restriction of it to P is the identity map. The
horizontal trajectories of φ are projections on X of the horizontal lines in C. Suppose
that P is a rectangle. Then all horizontal trajectories of φ are closed parallel geodesics
on X. However, in the generic case, the trajectories of φ are irrational lines which
are dense on X.

Now we consider the case of surface of general type. To simplify the discussion
we shall assume that X is compact. First notice that C(φ) 6= ∅ since χ(X) 6= 0. We
have the following classes of trajectories:

(a) Periodic trajectories. Let γ be a periodic trajectory of a quadratic differential.
We shall see that there is a maximal open annulus A on X which contains γ and
which is foliated by closed trajectories of φ and which has no critical points.

(b) Critical trajectories. These are trajectories γ such that at least one ray of γ
end in a critical point of φ. There is only a finite number of such trajectories.

(c) Nonperiodic noncritical (spiral) trajectories γ. We shall see that they are
recurrent in positive and negative direction. This means that γ is contained in the
limit set for both rays γ+ and γ−.

Now, let’s discuss the trajectories in more details.

13.3 Dynamics of trajectories of quadratic differential

Suppose that γ is a (horizontal) trajectory of φ. Let p ∈ γ, Φ(p) = 0, Φ(γ) ⊂ R ⊂ C.
Let I = [a, b] be the maximal open interval on R which contains 0 such that the
inverse to Φ is defined there. Denote the inverse by f .

(a) First suppose that I is bounded and Φ−1(a) = Φ−1(b). This implies that γ
is a periodic trajectory of φ. In this case we can consider the maximal horizontal
strip ]a, b[×]x, y[⊂ C where f is defined and injective. The image of R×]x, y[ is an
annulus A in X foliated by trajectories of φ. If there are points on I × {x} and
I × {y} which have the same image under f then X is a torus. So we can assume
that f is an injective holomorphic function on I × [x, y]. However, we can’t extend
f through I × {x} and I × {y} which implies that both sides of A contain critical
trajectories. Example of this type of behavior on a pair of pants is shown on the
Figure 6. The maximal annulus A has the geometric invariant- height (i.e. |x − y|).
There is a class of differentials which have only periodic and critical trajectories (of
finite length). These differentials are called Strebel differentials. Moreover, given
a maximal collection of pairwise disjoint nonhomotopic loops γj on X and a collection
of positive numbers hj there is a unique Strebel quadratic differential φ on X such
that the maximal annuli Aj of φ are homotopic to γj and have the prescribed heights
hj (see [G]). Strebel differentials are dense in Q(X).

(b) Consider the case when I 6= R and the points on the boundary of I have
different image under f . Then γ is a critical trajectory and if z is a boundary point
of I then w = f(z) is a critical point of φ. If z is the right end of I then the positive
ray of γ has unique limit point w.

(c) The most interesting case is when (say) the positive ray γ+ of γ has more than
one limit point and γ isn’t periodic. Then γ+ has necessarily infinite (Euclidean)
length. Really, if q ∈ L(γ+) then γ+ intersects any neighborhood of q infinitely many
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A1 A2

Trajectories foliate the annuli A1 and A2

There are exactly two critical points and 3 critical
trajectories.

on the pair of pants.

Figure 4:

times , thus the length of intersection of some neighborhood of q is bounded away
from zero and γ+ has infinite length. Suppose that γ isn’t critical; then both rays γ+

and γ− have infinite length and the map f is defined and injective on the whole line
R.

Theorem 13.1. If γ is the trajectory of the type (c) which is infinite in the positive
direction then the ray γ+ is recurrent.

Proof: Let p ∈ γ and β is a vertical interval with endpoint in p. We can assume that
β is so small that no critical (positive) ray intersects this interval. Suppose that for
all positive rays α emanating from points of β , α ∩ β is the origin of α. Then the
infinite horizontal strip S with base at β is embedded in X (since trajectories form a
foliation on X − C(φ). However, S has infinite area. This contradicts the finiteness
of the area of X with respect to the metric |φ(z)|1/2|dz|.

Corollary 13.2. The intersection J of γ+ with a small interval β above is dense in
β.

Proof: The closure of the intersection above is a perfect subset. On another hand,
let z be a boundary point of Cl(J) in β. Denote by σ a positive ray emanating from
z. We can assume that σ isn’t critical, thus, it intersect infinitely many times each
small interval adjacent to z on β. But σ is contained in the closure of γ+, thus the
points of J accumulate to z from 2 sides on β. This contradicts to the assumption
that z is a boundary point. Thus, cl(J) ⊃ β.

Now, consider the closure of γ. The arguments of Theorem above imply that
A = Cl(γ) has nonempty interior A0 which is called a maximal spiral domain in X.
As in the case of periodic trajectories this domain is swept by parallel trajectories.
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Lemma 13.3. The boundary of A consists of finite critical trajectories of φ and their
limiting points.

Proof: Let α ⊂ ∂A is infinite in the positive direction and P ∈ α be a regular point.
Then for some small vertical interval β with center at P the ray α+ intersects β on
dense subset (see Corollary above). Thus A contains a neighborhood of P which
contradicts to our assumption.

13.4 Examples of spiral trajectories.

As you can see, it’s rather difficult to construct examples of spiral trajectories. To do
this we shall use the construction of “interval exchange” transformations. Take the
horizontal rectangle S in the complex plane : {z : 0 ≤ Im(z) ≤ 1,−1 ≤ Re(z) ≤ 1}.
On the segment {0}× [0, 1] we choose the intervals: I+

1 = [0, x], I+
2 =]x, y], I+

3 =]y, 1]
and:

I−1 = [0, 1 − y], I−2 =]1 − y, 1 − x], I3 =]1 − x, 1]

Now, to each pair of intervals I+
k , I

−
k we glue a rectangle Sk of the width 1 in orien-

tation preserving way. We identify the ”adjacent” rectangles by 1/3 of their width.
In the bifurcation points we introduce the local complex coordinates using the square
root. The result is a Riemann surface Y with boundary, then we can take the double
X of Y by reflection. The surface X has the quadratic differential φ which is just
the projection of dz2 from the complex plane. The critical points are the points of
bifurcation. Generically the trajectories of φ are recurrent or critical. (Figure 7)

0

i

ix

iy

i- ix

i- iy

A1

A0

A2

A3

A4

A5
A0

A1

A2

A3

A4

A5

horizontal trajectories

Figure 5:

13.5 Singular metric induced by quadratic differential

Define the differential |φ(z)|1/2|dz|. This is a Riemannian metric outside the critical
set of φ. This metric is locally Euclidean on X − C(φ) and is called φ-metric. The
φ-length of curve is also defined in the case when the curve is passing through a
critical point. the total angle around the critical point of order n > 0 is equal to
(n+ 2)π > 2π. This metric is so called CAT (0).

Consider the lift of the φ-metric to the universal cover of X = H
2, suppose that

P is a polygon in H
2 with geodesic sides Ej. Denote by φ̃ the lift of φ. Let zj denote

a zero of φ̃ on P where the interior angle (in the hyperbolic metric) between adjacent
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edges is θj, nj denote the order of zj (it can be zero). Denote by wi zeros inside P
with orders mi. Let m be the number of zeros inside of P . Then we have

Lemma 13.4. (Teichmüller-Gauss-Bonnet). In the notations above we have:

∑

j

(1 − θj(nj + 2)

2π
) = 2 +

∑

i

mi = m+ 2 (7)

(This is a combinatorial Gauss-Bonnet formula for the φ-metric).

Proof: Along the sides Ej we have: arg(φdz2) = constj. Let z = hk(t) be a parame-
trization of Ek. Then

arg(φdz2) = arg[φ(hk(t))(h
′
k(t))

2] = arg[φ(hk(t))] + 2arg[h′k(t)]

therefore,
d

dt
arg φ(z(t)) = −2

d

dt
arg[h′k(t)]

abusing notations we can write this as:

d

dz
arg φ(z) = −2

d

dz
arg[dz]

along P . However the increment of arg[dz] along P is equal to

2π −
∑

j

(π − θj)

(if curve would be smooth then the total increment is 2π, in each corner we arrive
with angle smaller by π − θj than the expected vector- tangent to the next arc).

Thus we have:
1

2π

∫

P

darg[φ(z)] = − 2

2π

∫

P

darg[dz]

The last integral is equal to:

−2 +
∑

j

(1 − θj
π

)

According to the argument principle the first integral is:

∑

i

mi +
∑

j

njθj
2π

Therefore,
∑

i

mi +
∑

j

njθj
2π

= −2 +
∑

j

(1 − θj
π

)

This implies the lemma.

Corollary 13.5. The φ-geodesic between two points of H
2 is unique.

45



Proof: Suppose that we have a geodesic bigon P in the φ-metric. The Lemma 13.4
implies that at least 3 summands in the left side of (7) are positive since the left side
is ≥ 2. But this means that we have at least 3 points with θj <

nj+2

2π
. Thus, we have

at least one point on the side of bigon such that the angle at this point is less than
nj+2

2π
. Therefore,this side of the bigon isn’t geodesic.

Now, let’s count the sum of angles in a geodesic triangle in our metric. We have:

k
∑

j=4

(2π − θj(nj + 2)) + 6π − (θ1 + θ2 + θ3) = 2π(n+ 2) (8)

The summands (2π − θj(nj + 2)) = ǫj are nonpositive since we have only 3 vertices,
thus:

θ1 + θ2 + θ3 = 2π(n− 1) + ǫ (9)

where ǫ ≤ 0. Therefore, m = 0, sum of angles in the triangle is ≤ 2π and the triangle
can’t contain any critical points inside.

Thus, the radius of the inscribed disc in any geodesic triangle is bounded from
above by the diameter of (X,φ). (It’s impossible to find a bound independent on φ.)

13.6 Deformations of horizontal arcs.

Lemma 13.6. (Teichmüller). Let X be a compact Riemann surface , f : X → X be
a homeomorphism homotopic to identity and α is a horizontal arc. Then there exists
a constant M independent on α such that:

l(f(α)) ≥ l(α) − 2M (10)

where l(.) is the φ-length.

Proof: Let ft be the family of continuous maps such that f0 = id, f1 = f . For
each point p ∈ X consider the displacement function: df (p) = lφ(γp) where γp is the
φ-geodesic connecting p and f(p) which belongs to the homotopy class of the path
ft(p), t ∈ [0, 1]. The function df (p) is continuous, denote its maximum on X by M .
Now, connect the endpoints p, q of the horizontal arc to f(p), f(q) by the geodesic
segments γp, γq. We have : l(γp), l(γq) ≤M ,

length((γq)
−1 · f(α) · (γp)) ≤ l(α)

thus l(f(α)) + 2M ≥ l(α).

Corollary 13.7. Under conditions above:

lim
l(a)→∞

l(f(α))/l(α) ≥ 1
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13.7 Orientation of the horizontal foliation

Suppose that the monodromy group of the natural parameter Φ consist only of trans-
lations. Then the horizontal foliation of X − C(φ) admits an orientation which is
just the pull-back of the orientation of horizontal lines in C. In general however there
exists a nontrivial character ρ : π1(X − C(φ)) → U(1) given by the linear part of
the monodromy of Φ. Then Ker(ρ) is a subgroup of index 1 or 2 in π1(X − C(φ)).
The 2-fold ramified covering q : X0 → X corresponding to this subgroup is called the
orienting covering of X. The pull-back q∗(φ) = ψ is a quadratic differential on X0

which has only even zeros and whose horizontal foliation admits a global orientation.

14 Extremal quasiconformal mappings

14.1 Extremal maps of rectangles

We shall use the proof of the following theorem as the model for proof of the ex-
tremality theorem in the general case.

Recall that

Kf (z) =
|∂f | + |∂̄f |
|∂f | − |∂̄f |

and the coefficient of quasiconformality of f is

Kf = esssupzKf (z)

Theorem 14.1. (Grötch). Let R,R′ be rectangles: a × b and a′ × b′. Suppose that
f : R → R′ be a diffeomorphism. Then Kf ≥ K0 = (a′/a) · (b/b′) and equality is
achieved only on affine maps.

Proof: Put z = x+ iy. Let α be a horizontal line in R, then

a′ ≤
∫

α

|fx|dx (11)

Taking integral over y we have:

a′b ≤
∫

R

|fx|dxdy (12)

However, fx = fz + fz̄ and Jacobian of f is

Jf (z) = |fz|2 − |fz̄|2 (13)

Therefore,
(|∂f | + |∂̄f |)2 = Kf (z)Jf (z)

Then

a′b ≤
∫

R

|fz + fz̄|dxdy ≤
∫

R

√

Kf (z)
√

Jf (z)dxdy (14)
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The last integral is estimated as

√

∫

R

Kf (z)

√

∫

R

Jf (z) ≤
√

Kf

√
ab
√
a′b′ (15)

Finally we have:
(a′b)2 ≤ Kfaba

′b′

i.e.
a′b ≤ Kfab

′

and we are done. The equality here is achieved only under conditions:
(a) Kf = (a′/b′)/(a/b) = K0

(b) Im(f)x = 0, Re(f)y = 0
(c) Jf = Re(f)xIm(f)y = c ·Kf = cRe(f)x/Im(f)y.
Thus, f is a linear function.

15 Teichmüller differentials

Let φ ∈ Q(X) be a nonzero quadratic differential. Then for each 0 ≤ k < 1 we define

µ = k
φ̄

|φ| (16)

It’s easy to see that µ is a Beltrami differential on X. Then the Riemann surface Y
with complex structure determined by µ is quasiconformally equivalent to X. The
new Riemann surface has natural marking and thus defines a point in T (X). This
deformation of the original complex structure on X is called Teichmüller deformation.

Let’s look at this deformation in terms of the natural parameter near regular
points. Suppose that z is the natural parameter , then φ = dz2 and µ(z) = k.
Solutions of the Beltrami equation with the characteristic µ which fix the points ∞
are affine maps. The push-forward of φ under fµ is ψ ∈ Q(Y ). In terms of the natural
parameters z, ζ corresponding to φ and ψ we have:

ψ = (dζ)2, f(x+ iy) = Kx+ iy = ζ

where K = (1+k)/(1−k). The affine maps f as above form a new F -structure on Y
since the group R

2 × O(1) is normal in Aff(R2) and therefore, the transition maps
are as above. Therefore, the map f is an affine horizontal stretch in terms of the
natural parameters. For the Teichmüller mapping f the quadratic differentials φ, ψ
are called initial and terminal respectively. In such case (Y, ψ) = f(X,φ, k).

16 Stretching function and Jacobian

Suppose that we have (X,φ) and (Y, ψ) = f(X,φ, k). Suppose that g : X → Y be
any quasiconformal homeomorphism. Then, if z = x+ iy is the natural parameter
on X, and w = g(z) be the natural parameter on Y , then

λg,φ,ψ(z) = λg(z) = |wx| (17)
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In terms of the conformal structures on X,Y we have:

λg(p) = | ∂g(p)
φ(p)1/2

+
¯∂g(p)

φ̄(p)1/2
| · |ψ(g(p)|1/2 (18)

Then λg(p) is a function on X. Let α be any horizontal arc on X. Then for all but
finitely many of trajectories we have:

∫

α

λg|φ|1/2 = length(g(α)) (19)

The Jacobian of g in terms of the natural parameter is:

Jg(z) = |∂w|2 − |∂̄w|2 (20)

this is the same as

Jg(z) = (|∂w|2 − |∂̄w|2) |ψ(w(z))|
|φ(z)| (21)

which is a function on X. Therefore,

Areaψ(Y ) =

∫

X

Jg|φ| (22)

17 Average stretching

Theorem 17.1. Let g : X → X be a quasiconformal homeomorphism homotopic to
identity and φ ∈ Q(X). Define λg for φ = ψ. Then:

∫

X

λg|φ| ≥ Areaφ(X) (23)

Proof: First we define a 1-dimensional average. Let α be a subarc of a horizontal
trajectory with midpoint p and of length 2a. We set:

λa(p) =
1

2a

∫

α

λ|φ|1/2 (24)

Assume for a moment that (X,φ) has oriented trajectory structure. Let X0 be the
union of noncritical trajectories. This set has full measure on X. We define a flow
on X0. Let p be a point on a horizontal trajectory α ⊂ X0, t ∈ R. Let χ(p, t) be the
horizontal translation of p to the time t. Then χ(., t) is isometry for each t. It follows
that λt = λ ◦ χ(., t) is a measurable function on X0 and

∫

X

λt|φ| =

∫

X0

λt|φ| =

∫

X

λ|φ| (25)

Hence,
∫

X

λ|φ| =
1

2a

∫ a

−a

(

∫

X

λt|φ|)dt =

∫

X

(
1

2a

∫ a

−a

λtdt)|φ| =

∫

X

λa|φ|
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Therefore,
∫

X

λ|φ| =

∫

X

λa|φ| (27)

If the trajectory system isn’t orientable, then we pass to the 2-fold branched covering
of X, where all integrals double, thus the identity (27) is valid in this case as well.
Then, according to Teichmüller’s lemma,

λa(p) ≥ 1 −M/a (28)

almost everywhere and

∫

X

λ|φ| ≥ (1 −M/a)Areaφ(X) (29)

Finally, letting a→ ∞ we obtain

∫

X

λ|φ| ≥ Areaφ(X) (30)

Corollary 17.2. If g is as above and ‖ψ‖L1
≥ 1 then

Areaψ(Y ) ≤
∫

Y

λ2
g,ψ,ψdAψ (31)

Proof: According to Theorem 17.1 and Schwarz inequality we have:

Areaψ(Y ) ≤
∫

Y

λg,ψ,ψdAψ ≤
∫

Y

λ2
g,ψ,ψdAψ

17.1 Teichmüller’s uniqueness theorem

Theorem 17.3. (Teichmüller’s uniqueness theorem). Let

f : X → (Y, ψ) = f(X,φ, k)

be a homeomorphism of X homotopic to identity. Then

K(f) ≥ K0 = (1 + k)/(1 − k) (32)

The equality takes place only if f = id.

Proof: Without loss of generality we can assume that Areaψ(Y ) = ‖ψ‖L1
= 1. Denote

by id the identity map of X. First we notice that:

λf,φ,ψ = K0λf,ψ,ψ (33)

Jid,φ,ψ = K0 , dAψ = K0dAφ (34)
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Claim 17.4.

λ2
f,φ,ψ ≤ K(f)Jf,φ,ψ (35)

Proof: Let the natural parameter on X be z = x+ iy, and on Y : w = u+ iv = f(z).
Then in the local coordinates we have:

Kf (z)Jf (z) =
|fz| + |fz̄|
|fz| − |fz̄|

|fz|2 − |fz̄|2 = (|fz| + |fz̄|)2 ≥ (|fz + fz̄|)2 = λ2
f,φ,ψ (36)

This proves the claim.
Now, applying (33- 35) we get:

∫

Y

λ2
f,ψ,ψdAψ = K−2

0

∫

Y

λ2
f,φ,ψdAψ = K−1

0

∫

X

λ2
f,φ,ψdAφ ≤

K[f ]

K0

∫

X

Jf,φ,ψdAφ =
K[f ]

K0

∫

Y

dAψ =
K[f ]

K0

Areaψ(Y ) (37)

However, according to Corollary 17.2,

Areaψ(Y ) ≤
∫

Y

λ2
g,ψ,ψdAψ

Thus, K[f ] ≥ K0. Therefore, we proved (32).
Suppose now that in (32) we have the equality, in particular,

|∂̄w + ∂w|2 = λ2
f,φ,ψ = K0Jf,φ,ψ = K0(−|∂̄w|2 + |∂w|2) (38)

|∂̄w| = k0|∂w| (39)

Denote ∂w by r(z)eiθ(z), then ∂̄w = k0r(z)e
iν(z) and (38) can be written as:

|eiθ + k0e
iν |2 = K0(1 − k2

0) = (1 + k0)
2 (40)

i.e.
|1 + k0e

i(ν−θ)| = 1 + k0

which is possible only if ν = θ. This means that

∂̄w = k0∂w

and f is a conformal mapping from Y to Y . Therefore, f = id.

Corollary 17.5. If Y = f(X,φ, k) = f(X,ψ, t) then φ/ψ ∈ R, t = k.

17.2 Teichmüller’s existence theorem

Denote by Te(X) the space of pairs (φ, k), where φ ∈ Q(X) has norm 1, k ∈ (0, 1), and
the pair (0, 0). This space has natural topology given by supremum norm on Q(X)
and is homeomorphic to the open unit ball of dimension 3g − 3 in Q(X). Denote by
F the natural map from Te(X) to T (X):

F : (φ, k) 7→ fµ, µ = kφ̄/|φ|
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Theorem 17.6. The map F is a homeomorphism on the Teichmüller space.

Proof: Then this map is injective according to Corollary 17.5. This map is continuous
since solution of Beltrami equation depends continuously on the characteristic. We
have:

lim
n→∞

dT [F (0) = X,F (φ, kn = (1 − 1/n))] = lim
n→∞

log
1 + kn
1 − kn

= ∞

and thus for any bounded subset C ⊂ T (X) its preimage F−1(C) is relatively compact
in Te. On another hand, the map F is open since the spaces T (X) and Q(X) are
manifolds of the same dimension 3g−3. Therefore, F is a surjection on the connected
component of T (X). But as we know, T (X) is connected, thus F is a surjection.
Therefore F is a homeomorphism.

17.3 Teichmüller geodesics

We recall that ∆ = {z ∈ C : |z| < 1} is the unit disc model of the hyperbolic plane.

Theorem 17.7. For each φ ∈ Q(X) − {0} the map

hφ : ∆ → T (X)

defined by the formula
hφ : t 7→ [fµ] , µ = tφ̄/|φ|

is an isometry of the hyperbolic plane into the Teichmüller space.

Proof: We know that

dT (0, [fµ]) = log
1 + |t|
1 − |t|

since Teichmüller maps are extremal. On another hand, the hyperbolic distance
between 0 and t in ∆ is equal to

log
1 + |t|
1 − |t|

Thus, the map hφ preserves the distance from 0 to t. To prove the assertion in general
case we need

Lemma 17.8. Suppose that ψ = tφ ∈ Q(X) − {0}. Then the composition

fkψ̄/|ψ| ◦ (f rφ̄/|φ|)−1

is again a Teichmüller map.

Proof: First we notice that if f : (X,φ, k) → (Y, ψ) is a Teichmüller map then f−1 is
the Teichmüller map (Y,−ψ, k) → (X,−K2φ). Really, ...

Now, let’s prove the assertion of Lemma. Denote fkψ̄/|ψ| by f2 and f rφ̄/|φ| by f1.
Denote by ζ, ζ∗ the natural parameters for φ, ψ and ζ1, ζ2 the natural parameters for
the terminal differentials of f1, f2. Consider the map f2 ◦ (f1)

−1 in terms of ζ1, ζ2. It
can be presented as composition A◦C ◦B where B : ζ1 7→ ζ, C : ζ 7→ ζ∗, A : ζ∗ 7→ ζ2.
Here A,B are stretchings and C is a conformal map ζ 7→ ζ ·

√

ψ/φ = ζae−iθ/2, where
a > 0, 0 ≤ θ < 2π.
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18 Discreteness of the modular group

Our aim is to prove the following

Theorem 18.1. The action of ModX on T (X) is properly discontinuous.

We already know that this action is isometric. Thus, it’s enough to prove that
any orbit of ModX has no accumulation points.

Now, let [X] be the origin of T (X), [Y, f ] ∈ T (X). Then the “length spectrum”
of [Y, f ] is the function

L : γ 7→ lengthY [f(γ)]

where [f(γ)] is the geodesic in the homotopy class of f(γ), γ ∈ π1(X)/Inn(X). The
image of the function L is called the length spectrum of Y and denoted by L(Y ).

Lemma 18.2. If Y be a compact Riemann surface , then L(Y ) is discrete.

Remark 18.3. The statement is still true for surfaces of finite type but the proof is
slightly more complicated and we restrict ourself to the compact case.

Proof: We realize π1(Y ) as a discrete group Γ acting in H
2 with the (relatively)

compact fundamental domain F . Suppose that Y contains infinitely many closed
geodesics of the length not greater than C. Then we can lift them to segments [an, bn]
in H

2 which intersect the domain F . Then γn(an) = bn for some (different) elements
of Γ. Therefore, γn(F ) intersect the C-neighborhood of F . This contradicts to
discreteness.

Theorem 18.4. There is a finite number γj of elements of π1(X) such that any point
(Y, f) ∈ T (X) is determined by their length spectrum.

Remark 18.5. Y isn’t determined by L(Y ) as it was shown by M.F.Vigneras.

Proof: We identify each (Y, f) with the conjugacy class of admissible representation

ρ : Γ = π1(X) → PSL(2,R)

Then

Tr2(ρ(γ)) = 4 cosh2 L(γ)

2

Algebraic proof. We will use the fact that Γ (and thus ρ) can be lifted in SL(2,R).
Our proof follows [Mag]. Let g1, ..., gn be any system of generators of. We can assume
that ρ(g1) is the diagonal matrix with given eigenvalues α, α−1. Denote by tij the
trace of ρ(gigj), etc. After conjugation we can assume that ρ(g2) is the matrix:

(

r rs− 1 6= 0
1 s

)

.

Then t1 = α + α−1, t2 = r + s, t12 = αr + α−1s. From this linear system we can find
α, r, s. Now, let

ρ(g3) =

(

β γ
δ ǫ

)
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when βǫ− γδ = 1. Then we know that

αβ + α−1ǫ = t13

rβ + δ(rs− 1) + γ + sǫ = t23

And using t123 we can find the forth equation on β, γ, ǫ, δ. One can check that from
these equations we can find the coefficients of the matrix ρ(g3). Therefore, it’s enough
to take as the finite subset of Γ:

g1, ..., gn, g1gk, g2gj, g1g2gs

Geometric proof.

I recall that last quarter we proved that for every triple (2a, 2b, 2c) ∈ (R+)3 there
exists a hyperbolic pair of pants P with the lengths of boundary loops given by this
triple. Now we want to prove that P is unique.

We split P into union of 2 “all right” hexagons X1, X2. Denote by

a1, α, b1, β, c1, γ

the lengths of edges of X1, then there is the hyperbolic cosine formula relating these
numbers:

cosh c1 sinh a1 sinh b1 = cosh a1 cosh b1 + cosh γ

For proof see [Be].
This means that α, β, γ determine a1, b1, c1, thus a = a1, b = b1, c = c1. On

another hand, Xj is uniquely determined by a, b, c. This proves that P is uniquely
determined by a, b, c.

Let aj, bj , j = 1, ..., g be the canonical basis of Γ, di be as on Figure 8.

d1

b1 b2

a1 a2

Figure 6:

We shall assume that the traces of the elements above and their double and triple
products are preserved by the representation ρ.

We can assume that L(ρ) is the same as L(id) and

ρ(a1) = a1, ρ(d1) = d1, ρ(a1d1) = a1d1

since the surface X contains a pair of pants corresponding to a1, d1, a1d1. Now, the
image ρ(a2) is obtained by conjugating a2 via some isometry g which commutes with
d1 (since we can consider now the pair of pants corresponding to a2, d1). Denote by
α, β, γ, δ the axes of the elements a1, a1d1, a2, d1 in H

2. Then g is a translation along
δ. We have to have: dist(α, γ) = dist(α, gγ) and dist(β, γ) = dist(β, gγ) since the
restrictions of ρ on < a1, a2 >,< a1d1, a2 > are conjugations. But this means that
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g = 1, since we have to have: if g isn’t trivial then it’s a symmetry in the geodesic
which is orthogonal to δ, α, β.

So, we conclude that a2 = ρa2. The same argument can be applied to b2. Now,
we can use the fact that a2, d1 are fixed by ρ to prove that the element b1 is fixed by ρ
(applying the same arguments as above). We can continue this process to prove that
all aj, bj are fixed by ρ.

Remark 18.6. It is known that for closed manifolds of nonpositive curvature the
equality of marked length spectrums is equivalent to the existence of time preserving
conjugation of the geodesic flows. In the dimension 2 it was proven independently by
J.-P. Otal [O] and C.Croke [Cr] that surfaces of nonpositive curvature are uniquely
determined by their marked length spectrums, see also [CFF]. In higher dimensions
this is an outstanding research problem. It was later proven by U.Hamenstädt [H] that,
if M , N are closed manifolds of negative curvature with conjugate geodesic flows so
that N has constant sectional curvature, then M,N are isometric.

We shall need the following fact:

Theorem 18.7. (See for instance [FK]). If G ⊂ PSL(2,R) is a discrete group then
the area of fundamental domain of H

2/G is bounded from below by π/21.

Actually, for us it will be enough to now the existence of some nonzero lower
bound which we shall prove later.

Corollary 18.8. The order of the group of conformal automorphisms of any Riemann
surface Y of genus g is note greater than 42(2g − 2) = 84(g − 1).

Proof: The area of Y is 2π(2g − 2). This and Theorem 18.7 imply Corollary.

Corollary 18.9. The kernel of the action of ModX on T (X) is finite.

Remark 18.10. Actually, the kernel is nontrivial only if g = 2 in which case the
kernel is Z2. For any generic surface Y of genus > 2 the group Aut(Y ) is trivial.

Lemma 18.11. Let [Y, f ] ∈ T (X) have the stabilizer H in ModX . Then H is iso-
morphic to the group of conformal automorphisms of Y .

Proof: Let h ∈ H, then there is a conformal automorphism ch of Y such that f ◦ h
is homotopic to ch ◦ f . Thus, we have a homomorphism c : H → Aut(Y ). This
homomorphism is injective since the only element of Aut(Y ) homotopic to id is id;
and it is onto since for any automorphism a ∈ Aut(Y ) defines a homeomorphism h
of X by the formula h = f−1af .

Now we can start the proof of Theorem 18.1. Suppose that there exists a sequence
gn ∈ModX such that

lim
n→∞

gn[X, id] = [Y, f ]

Then, the corresponding monodromy representations in

Hom(π1(X), SL(2,R))/SL(2,R)
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are convergent. Therefore, the length spectrum of gn[X, id] = [X, (gn)
−1] = pn is

convergent to the length spectrum of [Y, f ]. But the unmarked length spectrum of
gn[X, id] is the same as L(X). Therefore, the discreteness of L(X) implies that for
each γj in Theorem 8 there exists a number nj such that for all n > nj we have:
Lγj

(pn) = Lγj
([Y, f ]). Therefore, for all large n we have: L(pn) = L[Y, f ], therefore,

[X, id] is a fixed point of the sequence gn ∈ ModX . However, we know that the
stabilizer of any point in T (x) is finite (Lemma 18.11, Corollary 18.9). Therefore the
sequence gn is finite. This contradiction proves the Theorem.

Corollary 18.12. The moduli space M(X) = T (X)/ModX is Hausdorff.

Below is an alternative (analytical) proof of discontinuity of the modular group.

Theorem 18.13. The action of ModS on T (S) is properly discontinuous.

Proof:

Lemma 18.14. Let S be a Riemann surface of finite hyperbolic type. Then the group
of conformal automorphisms Aut(S) of the surface S is finite.

Proof: Suppose that gn ∈ Aut(S) is an infinite sequence convergent to a certain
g ∈ Aut(S). Then for large n the elements gn are homotopic to each other. Recall
that if g ∈ Aut(S) is homotopic to the identity then g = id. Thus all but finitely
many elements in the sequence gn which shows that Aut(S) is discrete. If S is
compact this immediately implies finiteness of Aut(S). So we consider the case when
S is noncompact. Lift Aut(S) into the hyperbolic plane H

2. The lift is a group N
which equals the normalizer of Γ = π1(S) in PSL(2,R). The group N is discrete since
Aut(S) is. Notice that N/Γ ∼= Aut(S), thus our goal is to show that |N : Γ| < ∞.
Consider the coset decomposition of N :

N = g0Γ ⊔ g1Γ ⊔ g2Γ....

where g0 = 1. As we know, each discrete subgroup of PSL(2,R) has a fundamental
domain, let D be a (closed) fundamental polygon for N . Then

P := D ∪ g1D ∪ g2D...

is a fundamental domain for Γ.

∞ > Area(S) = Area(P ) =
∑

i

Area(giD)

Since Area(giD) = Area(D) we conclude that the sum is finite, which in turn implies
that |N : Γ| <∞.

We now continue with the proof of discontinuity.
The Teichmüller space T (S) is a proper metric space (metric balls in T (S) are

compact). Thus proper discontinuity of ModS is equivalent to discreteness of ModS
in Isom(T (S)). Suppose that ModS is not discrete. Then there exists a sequence of
distinct elements [fn] ∈ ModS such that limn[fn] = [id]. In particular, if [S] is the
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origin in T (S) then limn[fn]([S]) = [S], i.e. limn d([S, id], [S, fn]) = 0. Hence we can
choose quasiconformal representatives fn : S → S in [fn] such that

lim
n
K(fn) = 1

Each fn extends quasiconformally to the conformal compactification S̄ of the surface
S:

f̂n : S̄ → S̄

and K(f̂n) = K(fn).

Lemma 18.15. The sequence f̂n is subconvergent to a conformal self-map of S̄.

Proof: . There are several cases depending to the type of S̄, I will consider only the
cases when S̄ is rational and hyperbolic, the elliptic case is left to the reader.

(a) Suppose that S̄ is rational. Then S̄ is the sphere with p ≥ 3 punctures.
Therefore f̂n : C → C is subconvergent on the set of at least 3 points (corresponding
to the punctures). We let f̂ be the limit of a subsequence, f := f̂ |S. Then K(f) = 1
and hence f is a conformal automorphism of S.

(b) Suppose that S̄ is hyperbolic. Let f̃n be lifts of f̂n to the universal cover
S̃ ∼= H

2 of S̄; S̄ = H
2/Γ. We retain the notation f̃n for the extension of f̃n to the

closed hyperbolic plane H
2 ∪ ∂H

2. The map f̃n conjugates the group Γ into itself.
Pick a triple of distinct points x1, x2, x3 ∈ ∂H

2. Then there exists a sequence γn ∈ Γ
such that

lim
n
γnf̃n(xj) = yj

(up to a subsequence) and the points yj, j = 1, 2, 3 are mutually distinct. Therefore
the sequence of quasiconformal maps γnf̃n is subconvergent which implies that the
sequence fn is subconvergent as well. Let f : S → S be the limit of a subsequence.
Similarly to the case (a) this limit is a conformal self-map of S.

Now we can finish the argument. We choose a convergent subsequence in {fn}
(and retain the notation {fn} for this subsequence). The maps fn are homotopic to the
conformal map f = limn fn for sufficiently large n. This contradicts the assumption
that all the members of the sequence [fn] ∈ModS are distinct.

19 Compactification of the moduli space

Our first aim is to prove the Mumford’s compactness theorem for the moduli space
(which is the reminiscence of the Mahler’s compactness criterion):

Theorem 19.1. For any ǫ > 0 the subset of the moduli space M(X) consisting of
surfaces with the injectivity radius ≥ ǫ is compact.

Lemma 19.2. Let X be a Riemann surface of finite type and α2 be a simple closed
geodesic on X. Then for any geodesic loop α1 intersecting α2 we have:

exp(l(α2)) ≥ (exp(2l(α1) + 1)/(exp(2l(α1) − 1)2
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Proof: LetX = H
2/Γ. Then we can assume that α2 corresponds to the transformation

γ2 : z 7→ λ2z

where l(α2) = 2 log(λ) > 0 and the axis is ℓ =< 0,∞ >; and α1 corresponds to

γ1 : z 7→ (B − k)z +B(k − 1)

(1 − k)z + (kB − 1)

where γ1 has the fixed points 1, B and l(α1) = log(k) > 0. Since α1 intersects α2 we
conclude that B < 0. We have:

γ1(∞) = (B − k)/(1 − k) > 0

and
1 > γ1(0) > 0

Similarly, since g1(ℓ) ∩ g2g1(ℓ) = ∅,

γ2γ1(0) > γ1(∞) > 0

which means:
λ2B(k − 1)/(kB − 1) > (B − k)/(1 − k)

Therefore,
−λ2B(k − 1)2 > (B − k)(kB − 1) > −k2B −B

and
λ2 > (k2 + 1)/(k − 1)2

Remark 19.3. If l(α2) = l and α1 intersects α2 then l(α1) ≥ f(l), where

lim
l→0

f(l) = ∞

Corollary 19.4. Suppose that α1, α2 are simple loops on X such that:

l(α1) ≤ 1, l(α2) ≤ 1

Then α1, α2 are disjoint.

Proof: If α1 ≤ 1 then the left side of the inequality (*) is > (e2 + 1)/2 ≥ e.
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20 Zassenhaus discreteness theorem.

Let G be a Lie group, [, ] : G×G→ G. It’s easy to see that the first derivative of this
map at the point (e, e) is zero. Therefore, there exists a compact neighborhood U of
e in G such that [, ] is a contracting map.

Theorem 20.1. (Zassenhaus). Suppose that Γ is a discrete subgroup of G and x, y ∈
Γ ∩ U . Then the group generated by x, y is nilpotent.

Proof: Form the sequence x0 = x, xn = [xn−1, y]. Then xn ∈ Γ ∩ U for all n and
limn→∞ xn = e. Therefore, the discreteness of Γ implies that for sufficiently large n
we have xn = e.

Application. Consider the case G = Isom(Hn). Then any infinite nilpotent
subgroup of G is almost Abelian.

Suppose that G = Isom+(Hn), K is the maximal compact subgroup of G, X =
H
n = G/K. We can assume that G has left-invariant Riemannian metric which is also

right-invariant under K. Then we shall identify X with a Borel subgroup P of G. We
can assume that U in the Zassenhaus theorem is ǫ-neighborhood Uǫ(1) with respect
to the metric on G, we shall denote the number ǫ by ǫZ (Zassenhaus constant).

Lemma 20.2. There exist numbers µ < ǫ1 < ǫ and an integer N such that: if g1, ..., gk
generate a discrete group Γ so that for x = K ∈ G/K = X we have d(x, gjx) ≤ µ
then:

(1) K has a ǫ1/2–net of N elements;
(2) each word w = w(g1, ..., gk) of the length ≤ N has the property: d(x,wx) ≤ ǫ1;
(3) for each w as above we have:

w(U3ǫ1(1))w−1 ⊂ Uǫ(1)

Proof: We start with ǫ1 = ǫ/5. Then we can find N such that (1) is satisfied, then
we can choose µ such that (2) is correct. Now, w above is the product pk where
d(p, 1) ≤ ǫ1 (according to (2)), therefore, if δ ∈ U3ǫ1 then we put τ = kδk−1 then
τ ∈ U3ǫ1 since the metric on G is biinvariant under G, thus

d(1, pkδk−1p−1) = d(1, pτp−1) ≤ 2d(1, p) + d(1, τ) ≤ 5ǫ1

Denote by Γ′ the subgroup of Γ generated by all elements γ ∈ Γ ∩ Uǫ(1) (a priori
this subgroup can be trivial). Denote by

Γ =
ν

⋃

j=1

γjΓ
′

the coset decomposition of Γ.

Lemma 20.3. In the decomposition above ν <∞.
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Proof: Let γj = w = gi1 ....giM be a word of the length M > N . Then w = w1w2 =
w3w4 where l(w2) < l(w4) ≤ N , wj = pjkj and d(k2, k4) ≤ ǫ1. Therefore,

δ = w4w
−1
2 = p4k4k

−1
2 p−1

2

However, d(1, k4k
−1
2 ) ≤ ǫ1. On another hand,

ǫ1 ≥ d(wjx, x) = d(pjx, x)

Therefore, d(1, δ) ≤ 3ǫ1. This implies that

w = w3δw2 , l(w3w2) < M

Consider the element

(w3w2)
−1w = w−1

2 w−1
3 w3δw2 = w−1

2 δw2

Then the property (3) implies that this element belongs to Uǫ(1) ∩ Γ ⊂ Γ′. Thus,
w3w2 and w belong to the same coset (mod Γ′), but the length of w3w2 is strictly
smaller than M . The induction argument thus imply that for all cosets (mod Γ′) we
can find representatives such γj that l(γj) ≤ N . This implies that ν is finite.

However, according to Zassenhaus theorem, the group Γ′ is almost Abelian, there-
fore, Γ is a finite extension of an Abelian group.

Thus we proved

Theorem 20.4. For each H
n there exists a constant µ = µn such that: for any

x ∈ H
n and any elements g1, ..., gk ∈ Isom(Hn) which generate a discrete group Γ and

d(x, gj(x)) ≤ µ the group Γ is almost Abelian and is a finite extension of a subgroup
Γ′ ⊂ Γ which is generated by elements γ ∈ Uǫ(1)– Zassenhaus ǫZ–neighborhood of e
in SO(n, 1).

Remark 20.5. According to [Mart] one can take as µ the number:

9−(2+[n/2])

Remark 20.6. Actually we proved that for any ǫ < ǫZ we can find µ(ǫ) < ǫ (increas-
ing function on ǫ) such that in each discrete group Γµ(ǫ)(x) the almost Abelian subgroup
Γ′
ǫ(x) has finite index. Here Γµ(ǫ)(x) is any discrete group generated by elements gj

such that d(gj(x), x) ≤ µ(ǫ) and Γ′
ǫ(x) is the maximal subgroup in Γµ(ǫ)(x) generated

by elements in Uǫ(1). The function µ(ǫ) is invertible and ǫ = ǫ(µ). Moreover,

lim
µ→0

ǫ(µ) = 0

Corollary 20.7. There is an increasing function f(λ) defined for all λ < µ such
that:

(a) limλ→0 f(λ) = ∞;
(b) for any h, g ∈ SO(n, 1) and x ∈ H

n such that d(x, hx) ≤ λ < µ such that
< g, h > is discrete and nonelementary, we have:

d(x, gx) > f(λ)
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Proof: Let ψR(δ) be an increasing function such that:

pUδ(1)p−1 ⊂ UψR(δ)(1)

for all p ∈ P ∩ UR(1) and for fixed δ

lim
ǫ=ψR(δ)→0

R = ∞

For given R denote by δR the number such that ψR(δR) = ǫZ– Zassenhaus con-
stant. Now, let λ be µ(δR) where µ is the function from the Remark above.

Then the group Γ′
ǫ(λ)(x) has finite index in Γ =< h > and gΓ′

ǫ(λ)(x)g
−1 ⊂ UǫZ (1).

Therefore, according to Zassenhaus Theorem, the group generated by g and Γ′
ǫ(λ)(x)

is almost Abelian and elementary, and thus the group < g, h > is elementary.
The function λ = λ(R) is increasing and we can find the inverse R = f(λ). This

function has the property that if d(x, gx) ≤ f(λ) then either < g, h > isn’t discrete
or is elementary (property (b)). We have to verify the property (a):

lim
λ→0

f(λ) = ∞

Really, µ(λ) → 0 as λ→ 0 and R → ∞ as δR → 0.

Suppose now that X is a hyperbolic of finite type with totally geodesic boundary
and α ⊂ ∂X, l(α) = l. Then there are three functions A(l),W (l), L(l) such that:

Lemma 20.8. (1) α has a regular neighborhood U of the width W (l);
(2) the length of the second (different from α) component α∗ of ∂U is L(l) and

the area of U is A(l);
(3) liml→0W (l) = ∞, L(l)2 ≤ Area(X)2 + l2, liml→0 L(l) ≤ Area(X).

Proof: Let Y be the double of X. Then, according to Lemma 8 the geodesic α on Y
has the normal injectivity radius at least W (l) = f(l)/4. If we lift U in the hyperbolic
plane, then the preimage of β is a hypercycle β̃ which makes the angle ψ with α̃. Now
the hyperbolic trigonometry and integration in polar coordinates imply that:

cosh(W ) = 1/ cos(ψ)

A(l) = Area(U) = l · tan(ψ)

length(α∗) = l/ cos(ψ)

However, Area(U) < Area(X). Thus,

Area(U)/l =
√

L2/l2 − 1

and
L2 = Area(U)2 + l2 ≤ Area(X)2 + l2
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Theorem 20.9. Let X be a surface of finite type with totally geodesic boundary.
Then there exists a geodesic decomposition of X on pants such that the lengths of the
decomposing loops are bounded from above by some constant C depending only on the
topology of X and the lengths of boundary curves.

Proof: If X is a pair of pants then we are done. Let α1, ..., αm be the boundary curves
of X. Denote by Wi the width of the regular collar around αi given by the Lemma
8. Denote by ǫ the minimum of all Wi/2. denote by C(X) the union of ǫ-collars
of αj and put X∗ = X − C(X). If we can find on X∗ a homotopically nontrivial
simple loop α which is not homotopic to boundary which has length less than ǫ, then
we are done. Suppose that such loops do not exist. If two collars intersect then
the distance between two loops α∗

j and α∗
i is zero and the length of these loops is

bounded by Area(X) + length(∂X). Thus, we can find a nontrivial curve β on X as
on the Figure below. So, we assume that the collar C(X) of ∂X is embedded. Cover
X∗ = X − C(X) by a maximal set of disjoint discs D(Pj, ǫ) ⊂ X. If the number of
these discs is n then their joint area is at least nǫ2 and every point z ∈ X has the
property:

d(z, ∂(X∗ −
n

⋃

i=1

Di(z, ǫ)) < ǫ

Thus n < Area(X)/ǫ. Draw a graph G on X∗ by connecting any two points Pi, Pj
such that d(Pi, Pj) ≤ 4ǫ.

Lemma 20.10. The graph G is connected.

Proof: Suppose that G consists of two components Z1, Z2. Consider the ǫ- neigh-
borhood s U1, U2 of the unions of discs with centers at Z1, Z2 respectively. Then
U1 ∪ U2 ⊃ X∗ which means that their intersection isn’t empty. This implies that
there are vertices in Z1, Z2 such that the distance between them is ≤ 4ǫ. This con-
tradiction shows that G is connected.

Thus, for every z, w ∈ X∗ we have:

d(z, w) ≤ 4nǫ+ l(∂X∗) ≤ Area(X)/ǫ+ l(∂X∗) ≤
Area(X) + Area(X)/ǫ+ length(∂X) = c

and the diameter of X∗ is bounded by a constant c which depends only on topology
of X and the length of ∂X. If we have at least two different boundary components
α∗
j , α

∗
i of X∗ then we connect them by a shortest arc γ and thus find a loop

β = α∗
j · γ · α∗

i · g−1

which has bounded by 2cArea(X) length and not boundary-homotopic. If we have
only one boundary component α∗

j then choose a shortest arc γ with endpoints on
α∗
j such that γ ∈ π(X∗, ∂X) 6= 0. The length of this arc is bounded by 2diam(X)

(use 2-sheeted covering over X which has 2 boundary components). Let α∗
1 be one of

components of α− γ. Then take the loop

β = α∗
1 · γ

The length of β is again bounded and this loop is homologically nontrivial, and
therefore- nonparallel to the boundary.
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Corollary 20.11. Suppose that the injectivity radius of a closed surface X is bounded
from below by ǫ. Then the diameter of X is bounded from above by

c(ǫ) = Area(X)/ǫ

On another hand, the area of X in general is growing exponentially with the growth
of diam(X).

Now we can prove Theorem 20.9. There are only finitely many nonequivalent
pants decomposition of X (the number ν(X) of trivalent graphs with 2g−2 vertices.)
We fix ν(X) decompositions of X with hyperbolic metrics: X1, ..., Xν ∈ T (X). Let
Y be any point of the subset M(X)ǫ of M(X) where RadInj(Y ) ≥ ǫ. Then there is
a marking (Y, f) on Y such that dT ([Y, f ], Xi) ≤ b(ǫ, g) where g is the genus of Y .
Therefore, the set M(X)ǫ is bounded and therefore- compact.

Another remark. Suppose that S ⊂ M(X) doesn’t belong to any M(X)ǫ for any
ǫ > 0. Then S is unbounded. Really, for any choice of canonical generators of π1(Y )
we will have: aj ∩ γ 6= ∅ where length(γ) < ǫ. Therefore, length(aj) → ∞ as ǫ → 0.
This means that the sequence of surfaces is not relatively compact in M(X).

Corollary 20.12. There exists a number q > 0 so that for each (in particular non-
compact) hyperbolic surface X there is a point p such that RadInjp(X) ≥ q.

Proof: Continuity method. Let Xµ be the subset of all points in X where 2RadInj ≤
µ- Margulis constant. This is a disjoint union of annuli which at worst can be tangent.
In the worst case they decompose X to the union of pairs of pants. Consider this
worst case. Then in the universal covering we have a union of hypercycles which are
at worst tangent one to another. Then we can find a disc D in H

2 which doesn’t
intersect interiors of hypercycles and tangent at least to three of them. I claim that
the diameter of this disc is bounded from below by some universal constant. Suppose
not, we can assume that the center of this disc is the point 0. Then our configuration
has a limit where hypercycles degenerate to some discs which intersect or tangent the
boundary of H

2. But these discs are at worst tangent and do not contain 0.

Theorem 20.13. Suppose that Xn is a sequence in M(X) such that

lim
n→∞

[RadInj(Xn) = ǫn] → 0

Then the sequence Xn is not relatively compact in the moduli space M(X).

Proof: Let γn ⊂ Xn be the sequence of geodesic loops such that l(γn) = ǫn. Then
for any choice of canonical basis of π1(Xn) there is a loop αn in this basis which
has nonzero intersection number with γn. Therefore l(αn) → ∞ as n → ∞. This
means that the sequence Xn is divergent in M(X) with respect to the Teichmüller
metric.
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21 Fenchel–Nielsen coordinates on

Teichmüller space.

Consider a closed hyperbolic Riemann surface X and fix a pants decomposition D
of X. For each pair of pants Pj in D there are 3 boundary loops Cj1, Cj2, Cj3. We
connect them by the disjoint oriented geodesic arcs αji orthogonal to ∂Pj. Each arc
has the end-point ζji. Suppose that C is a common boundary loop for two pairs of
pants Pj, Pj′ and ζji, ζj′i′ are end-points of the arcs α, α′. The loop C is oriented, so
we can define

θij = 2πd(ζji, ζj′i′)λ(Cji)

where we calculate the distance in the positive direction. The number θij is defined
(mod 2π) and is called the “angle of gluing”. Therefore, we have a continuous function

F̂ = (L,Θ) : T (X) → R
3g−3 × S

3g−3

which associates with a point Y ∈ T (X) the logarithms of geodesic lengths of the
loops C and Θ consists of the coordinates θji. This map is obviously continuous and
onto.

Lemma 21.1. The map F̂ is a covering.

Proof: If F̂ (p = [Y, h]) = F̂ (q = [Z, g]) then the surfaces Y, Z are isometric as
unmarked Riemann surfaces. Therefore, q = f(p) where f ∈ ModX . The element of
the modular group f must preserve D. Denote the subgroup of ModX which preserve
D by ModX(D). Then, for each f ∈ModX(D) and each p ∈ T (X) we have:

F̂ (p) = F̂ f(p)

therefore, F̂ is a covering with the covering group ModX(D). Let’s describe this
group. This group is isomorphic to Z3g−3. Therefore, the Dehn twists along the loops
C in the pants decomposition generate ModX(D).

Now, the lift of F̂ to R
6g−6 is denoted by F and is a homeomorphism of T (X)

which is called the Fenchel- Nielsen coordinates on the Teichmüller space.

22 Riemann surfaces with nodes.

The Riemann surface with nodes is a complex space modelled on C and {zw = 0} ⊂
C

2 subject to the following topological restriction: each surface with nodes can be
obtained from a nonsingular Riemann surface S∗ by pinching to points some system
of simple disjoint nonparallel homotopically nontrivial loops. We can consider any
surface with nodes as a (disconnected in general ) Riemann surface of finite type
with a finite number of punctures together with the identification pattern of the
punctures. The space of Riemann surface with nodes forms a compactification of the
moduli space.

Consider now the space M̂(X) - the space of Riemann surfaces with nodes obtained
by pinching some loops on elements of M(X). We already have the topology on
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M(X) ⊂ M̂(X). The horocyclic neighborhood of a point S ∈ M̂(X) −M(X)
is defined as follows. If A = {α1, α2, ..., αq} are loops on X to be pinched on S then
enlarge A to a pants decompositionD of X. Convention: we shall think that the loops
αj have zero length on S. Then the base of topology at S is given by neighborhoods
Uǫ which consists of Riemann surface with nodes Y such that:

(1) for pinched loops αj the angles of gluing are arbitrary;
(2) the differences between all other Fenchel-Nielsen coordinates of S, Y are less

than ǫ.

Theorem 22.1. The space M̂(X) with the topology defined above is compact, Haus-
dorff and has countable base of topology.

Proof: The proof of compactness just repeats the proof of Theorem 20.9. We’d like
only to note that the Fenchel-Nielsen coordinates “extend” to the compactification
M̂(X), but different stratums of M̂(X)−M(X) correspond to different pant decom-
positions of X (so we have several coordinate systems which cover M̂(X)). Two other
statements are obvious.

There are several ways to construct the complex structure on the space M̂(X),
one- using algebraic geometry [Mu], another- using Kleinian groups and automorphic
functions [B].

23 Boundary of the space of quasifuchsian groups

I recall the definition of the Bers’ embedding of the Teichmüller space:
Let X = H

2/F is a compact surface of genus g > 1 , and given [µ] ∈ T (X) we lift
µ to the hyperbolic plane H

2 (the upper half plane) and extend by zero to the whole
complex plane, denote by ν the result. Take f = f ν to be solution of the Beltrami
equation with the complex characteristic ν which fixes the points 0, 1,∞. The map f
is conformal in the lower half-plane H

2
∗ and we can take the Schwarzian derivative S(f)

of the restriction of f to H
2
∗. Then S(f) ∈ Q(X) which we identify with the space

of F -invariant holomorphic quadratic differentialon H
2
∗. The quasiconformal map

f defines the representation ρ : F → PSL(2,C) so that f(g(z)) = ρ(g)f(z) for all
g ∈ F . The correspondence Φ : [µ] 7→ S(f) is called the “Bers’ embedding”, its image
is a bounded domain D in Q(X).

We can assume that 0, 1,∞ are fixed points of three elements g0, g1, g∞ of the
group F . Therefore the assumption that ρ(gj) has the fixed point j (= 0, 1,∞)
gives us a slice on a Zariski open subset of Hom(F, PSL(2,C)) to the projection
π : Hom(F, PSL(2,C)) → Hom(F, PSL(2,C))//PSL(2,C) = R(F ).

On another hand, for each φ ∈ Q(X) we have the monodromy homomorphism
ρφ of the Schwarzian equation S(f) = φ on the lower half plane H

2
∗. The map hol :

Q(X) → Hom(F, PSL(2,C)) defined by the formula hol(φ) = ρφ is a holomorphic
map of Q(X) to R(F ). It’s easy to show that the restriction of this map to D is
an embedding. Really, suppose that φ, ψ ∈ Q(X) be such that hol(φ) = hol(ψ).
Then we have two holomorphic maps f1, f2 : H

2
∗ → C which are extendable to the

boundary of the half-plane and the restrictions of f1, f2 to R̄ coincide (because the
fixed points of G = hol(φ)(F ) are dense on fi(R̄) = Λ(G) -limit set of the group G.
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Therefore, f1 = f2 and φ = ψ = S(fi). Moreover, one can prove that the map hol
is injective immersion on the whole space Q(X) (Poincaré’s lemma). Moreover, the
space hol(Q(X)) is an complex-analytic subvariety in R(F ) (i.e. is a solution of an
equation H(z) = 0 for a vector-function H : R(F ) → C

3g−3.
For each φ ∈ D the image of the representation hol(φ) is a “quasifuchsian group”G

, the limit set of this group is a topological circle in C. However, we will be interested
in the image of the boundary of D under hol. This is a compact subset of R(F ) and
the images of the representations in hol(∂D) are called b-groups (boundary groups).
For each φ ∈ ∂D the solution of the equation S(f) = φ is injective holomorphic
function in H

2
∗ (by the continuity reasons: uniform on compacts limit of injective

functions on H
2
∗ is again injective). Therefore, f(H2

∗) = Ω0(G) is invariant under G
which implies that Ω0(G) is a subset of the domain of discontinuity Ω(G). Thus, each
b-group G is Kleinian. The compactness of X = Ω0(G)/G implies that the boundary
of Ω0(G) consists of limit points of G. On another hand, Ω0(G) is G-invariant, thus
the whole limit set of G coincides with the boundary of G. Another remark is that
Ω0(G) is simply-connected, and ρ : F → G must be an isomorphism (since it is
induced by the injective conformal conjugation f on H

2
∗).

Now we have to understand the topology of other components of Ω(G) (if there are
any !). I recall that the group G is finitely generated, therefore the Ahlfors’ finiteness
theorem can be applied to G as follows:

Theorem 23.1. (Ahlfors’ finiteness Theorem.) The quotient Y = Ω(G)/G of any
finitely generated Kleinian group G ⊂ PSL(2,C) consists of a finite union of Riemann
surfaces of finite conformal type. Each puncture p on Y corresponds to a parabolic
element of G (i.e.if you lift a loop around p to Ω(G) then it is stabilized by a cyclic
parabolic subgroup of G.

For proof see [Ah2], [Kra].

I don’t have any time to discuss the proof of this central fact of theory of Kleinian
groups, hopefully we shall do it next year.

From now on we shall denote by Y0 the quotient Ω0(G)/G.
Suppose now that some component O of Ω(G) is not simply connected. Consider

the projection Z of O to Y . Then Z is a boundary surface of the 3-manifold M(G) =
(H3 ∪ Ω(G))/G and the induced homomorphism i : π1(Z) → π1(M) isn’t injective.
Therefore, according to Dehn’s lemma, we can find a simple closed curve γ on Z
which isn’t trivial on Z but bounds an embedded disc B in M(G). Therefore, the
fundamental group of M(G) (isomorphic to G) splits into a nontrivial free product.
But it contradicts to our assumption that F ∼= G is the fundamental group of the
closed surfaceX. Therefore, all components of Ω(G) are simply-connected. Thus, if Z
is any component of Y , then π1(Z) is a finitely generated subgroup of π1(X). Suppose
that the fundamental group H of some component Z of Y 6= Y0 has a finite index in
G. Then H has the same limit set as G and has at least two invariant components of
the domain of discontinuity: Ω0,Ω1. Thus, the manifold (M(H) − Y ) ∪ (Ω0/H) ∪ Z
is compact and is properly homotopy equivalent to Z × [0, 1]. Theorem of Stallings
implies that M(H) is homeomorphic to Z × [0, 1] and there exists a quasiconformal
map ψ : H

3 → H
3 conjugating H to a Fuchsian group. This homeomorphism extends
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to the boundary C of H
3. That contradicts to our assumption that G is a boundary

group.
On another hand, we know that all subgroups of π1(X) of infinite index are free.

Therefore, if Z is any component of Y − Y0, then Z is noncompact and cusps of Z
correspond to parabolic elements of G.

Conclusion. Suppose that G has no parabolic elements. Then Ω(G) = Ω0(G),
i.e. it’s connected and simply connected.

Kleinian groups with such “pathological property” are called “totally degenerate
Kleinian groups”. Our next goal is to prove the existence of such monsters.

For each γ ∈ F−{1} we consider the polynomial function Tγ on the representation
variety R(F ):

Tγ([ρ]) = Trace2(ρ(γ))

Thus the subset Sγ = T−1
γ (4) ⊂ R(F ) is a complex-analytic subvariety as well as the

preimage hol−1Sγ. Now, consider the set E of all real rays R with origin at 0 in Q(X)
so that

R ∩ ∪γ∈F−{1}hol
−1Sγ = ∅

Almost every ray in Q(X) belongs to E and for each R ∈ E the groups G = hol(R∩
∂D) have no parabolic elements. Therefore, “almost every group” G on the boundary
of Teichmüller space hol(D) is totally degenerate.

24 Examples of boundary groups

Let {c1, ..., ck} = C ⊂ X be a union of simple closed disjoint nonparallel geodesics
on X. Lift C to the universal cover ∆ = H

2 of X. Denote the preimage by L. Now,
consider the following equivalence relation on C:

x ∼ y if and only if they belong to the closure of one and the same geodesic in L.
It follows from theorem of C.Moore that the quotient C/ ∼ is homeomorphic to

the sphere S
2. The action of the group F on C projects to the action of a group of

homeomorphisms G on S
2. It can be proven that this action is conformal in some

conformal structure on S
2, thus G becomes a Kleinian group and this is a b-group.

The limit set Λ of the group G is the projection of the boundary of H
2, obtained

by “ pinching ” the geodesics in L. Projections of these geodesics are fixed points of
parabolic elements of G. The group G has simply-connected invariant component Ω0

- projection of H
2
∗. There are also some non-invariant components of the domain of

discontinuity; Ω(G)/G is homeomorphic to

X ∪ (X − C = X1 ∪ ... ∪Xs),

where the component X = X0 is covered by Ω0. This follows from the fact that
S

2 − L is equivariantly homeomorphic to C − (Λ(F ) ∪ L). The curves X1, ..., Xs are
obtained from X by “pinching” along C. The limit set of the group G looks like an
infinite union of “bubbles” : boundary curves of the domains covering X1, ..., Xs, two
bubbles can be tangent at the fixed point of a parabolic element.

Now, let me try to give you an idea how the action of a totally degenerate group
looks like. Let φ be a quadratic differential on X so that horizontal trajectories
of φ are never periodic. Lift the horizontal foliation of φ to a “foliation” F on ∆.

67



[Technically speaking, this is a foliation on a complement to some discrete subset-
preimage of zeros of φ]. Each leaf of F is a “quasigeodesic” or a “quasigeodesic ray”
in H

2 (it’s located in a finite distance from a geodesic) so its closure on ∂∆ consists
of 2 or 1 points. Now, again consider the equivalence relation ∼:

two points x, y on ∆ ∪ ∂∆ are equivalent if they belong to two leaves L1, L2 of F
so that Cl(L1) ∩ Cl(L2) 6= ∅.

It turns out that the quotient of C by ∼ is again a topological sphere and the
action of F projects to a topological action G on S

2. Under some choice of φ this
action is conformal in a conformal structure on S

2. The discontinuity domain of G
consists of a single simply connected component Ω0 - projection of H

2
∗. The limit set

Λ of G looks like an infinite tree which isn’t locally finite. This tree is “dual” to the
foliation F . The points of branching of this tree are projections of the singular points
of the foliation and they a dense on Λ.

An example of φ can be given as follows. Let h : X → X is a homeomorphism
with the property: for any γ ∈ F and for any n ∈ Z − {0} the elements γ, h∗(γ)
are not conjugate in F . Such maps are called irreducible. Let h0 is the extremal
(Teichmüller) quasiconformal map in the homotopy class of h. Then φ the quadratic
differential corresponding to h0.
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