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Abstract

We study discrete group actions on coarse Poincare duality spaces, e.g. acyclic sim-
plicial complexes which admit free cocompact group actions by Poincare duality groups.
When G is an (n − 1) dimensional duality group and X is a coarse Poincare duality
space of formal dimension n, then a free simplicial action G y X determines a collection
of “peripheral” subgroups H1, . . . , Hk ⊂ G so that the group pair (G, {H1, . . . , Hk}) is
an n-dimensional Poincare duality pair. In particular, if G is a 2-dimensional 1-ended
group of type FP2, and G y X is a free simplicial action on a coarse PD(3) space
X , then G contains surface subgroups; if in addition X is simply connected, then we
obtain a partial generalization of the Scott/Shalen compact core theorem to the setting
of coarse PD(3) spaces. In the process we develop coarse topological language and
a formulation of coarse Alexander duality which is suitable for applications involving
quasi-isometries and geometric group theory.

1. Introduction. In this paper we study metric complexes (e.g. metric simplicial com-
plexes) which behave homologically in the large-scale like R

n, and discrete group actions on
them. One of our main objectives is a partial generalization of the Scott/Shalen compact
core theorem for 3-manifolds ([37], see also [26]) to the setting of coarse Poincare duality
spaces and Poincare duality groups of arbitrary dimension. In the one ended case, the com-
pact core theorem says that if X is a contractible 3-manifold and G is a finitely generated
one-ended group acting discretely and freely on X, then the quotient X/G contains a com-
pact core — a compact submanifold Q with (aspherical) incompressible boundary so that
the inclusion Q→ X/G is a homotopy equivalence. The proof of the compact core theorem
relies on standard tools in 3-manifold theory like transversality, which has no appropriate
analog in the 3-dimensional coarse Poincare duality space setting, and the Loop Theorem,
which has no analog even for manifolds when the dimension is at least 4.

We now formulate our analog of the core theorem. For our purpose, the appropriate
substitute for a finitely generated, one-ended, 2-dimensional group G will be a duality group
of dimension1 n − 1. We recall [6] that a group G is a k-dimensional duality group if G
is of type FP , H i(G; ZG) = 0 for i 6= k, and Hk(G; ZG) is torsion-free 2 . Examples of
duality groups include:

A. Freely indecomposable 2-dimensional groups of type FP2; for instance, torsion free
one-ended 1-relator groups.

B. The fundamental groups of compact aspherical manifolds with incompressible as-
pherical boundary [6].

C. The product of two duality groups.

D. Torsion free S-arithmetic groups [9].

Instead of 3-dimensional contractible manifolds, we work with a class of metric com-
plexes which we call “coarse PD(n) spaces”. We defer the definition to the main body
of the paper (see sections 6 and Appendix 11), but we note that important examples

Received March 24, 2005.
1By the dimension of a group we will always means the cohomological dimension over Z.
2We never make use of the last assumption about Hk(G; ZG) in our paper.
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include universal covers of closed aspherical n-dimensional PL-manifolds, acyclic com-
plexes X with H∗c (X) ' H∗c (Rn) which admit free cocompact simplicial group actions,
and uniformly acyclic n-dimensional PL-manifolds with bounded geometry. We recall
that an n-dimensional Poincare duality group (PD(n) group) is a duality group G with
Hn(G; ZG) ' Z. Our group-theoretic analog for the compact core will be an n-dimensional
Poincare duality pair (PD(n) pair), i.e. a group pair (G, {H1, . . . ,Hk}) whose double with
respect to the Hi’s is an n-dimensional Poincare duality group, [14]. In this case the “pe-
ripheral” subgroups Hi are PD(n− 1) groups. See section 3 for more details.

Theorem 1.1. Let X be a coarse PD(n) space, and let G be an (n − 1)-dimensional
duality group acting freely and discretely on X. Then:

1. G contains subgroups H1, . . . Hk (which are canonically defined up to conjugacy by
the action G y X) so that (G, {Hi}) is a PD(n) pair.

2. There is a connected G-invariant subcomplex K ⊂ X so that K/G is compact, the
stabilizer of each component of X −K is conjugate to one of the Fi’s, and each component
of X −K/G is one-ended.

Thus, the duality groups G which appear in the above theorem behave homologically
like the groups in example B. As far as we know, Theorem 1.1 is new even in the case that
X ' R

n, when n ≥ 4. Theorem 1.1 and Lemma 11.6 imply

Corollary 1.2. Let Γ be a n-dimensional Poincare duality group. Then any (n − 1)-
dimensional duality subgroup G ⊂ Γ contains a finite collection H1, . . . ,Hk of PD(n −
1) subgroups so that the group pair (G, {Hi}) is a PD(n) pair; moreover the subgroups
H1, . . . ,Hk are canonically determined by the embedding G→ Γ.

Corollary 1.3. Suppose that G is a group of type FP2, dim(G) ≤ 2, and G acts freely
and simplicially on a coarse PD(3) space. Then

1. Each 1-ended factor of G admits the structure of a PD(3) pair.

2. Either G contains a surface group, or G is free. In particular, an infinite index FP2

subgroup of a 3-dimensional Poincare duality group contains a surface subgroup or is free.

Proof. LetG = F ∗(∗iGi) be a free product decomposition where F is a finitely generated
free group, and each Gi is finitely generated, freely indecomposable, and non-cyclic. Then
by Stallings’ theorem on ends of groups, each Gi is one-ended, and hence is a 2-dimensional
duality group. Since dim(G) ≤ 2, this group is not a PD(3)-group. By Theorem 1.1, each
Gi has structure of a PD(3)-pair (G, {H1, ...,Hk}). Each Hi is a PD(2) subgroups, and
therefore these subgroups are surface groups. q.e.d.

Remark 1.4. Each PD(2) group over a commutative ring R with a unit is the funda-
mental group of a 2-dimensional orbifold, see [16, 17] for R = Z, [10] in case when R is a
field and [31, 29] in the general case.

We believe that Corollary 1.3 still holds if one relaxes the FP2 assumption to finite gen-
eration, and we conjecture that any finitely generated group which acts freely, simplicially
but not cocompactly, on a coarse PD(3) space is finitely presented. We note that Bestvina
and Brady [2] construct 2-dimensional groups which are FP2 but not finitely presented.

In Theorem 1.1 and Corollary 1.2, one can ask to what extent the peripheral structure
– the subgroups H1, . . . ,Hk – are uniquely determined by the duality group G. We prove
an analog of the uniqueness theorem for peripheral structure [27] for fundamental groups
of acylindrical 3-manifolds with aspherical incompressible boundary:

Theorem 1.5. Let (G, {Hi}i∈I) be a PD(n) pair, where G is not a PD(n− 1) group,
and Hi does not coarsely separate G for any i. If (G, {Fj}j∈J) is a PD(n) pair, then there
is a bijection β : I → J such that Hi is conjugate to Fβ(i) for all i ∈ I.
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COARSE ALEXANDER DUALITY AND DUALITY GROUPS 3

Remark 1.6. In a recent paper [38], Scott and Swarup give a group-theoretic proof of
Johannson’s theorem, see also [39].

Remark 1.7. The results and methods of this paper, in particular Theorem 1.1, Corol-
laries 1.2, 1.3, and Theorem 1.5, remain valid (with minor modifications) if one replaces
the coefficient ring Z with an arbitrary commutative ring with unit. In Corollary 1.3, the
conclusion in the second case is that G either contains a surface group, or is virtually free.

We were led to Theorem 1.1 and Corollary 1.3 by our earlier work on hyperbolic groups
with one-dimensional boundary [28]; in that paper we conjectured that every torsion-free
hyperbolic group G whose boundary is homeomorphic to the Sierpinski carpet is the fun-
damental group of a compact hyperbolic 3-manifold with totally geodesic boundary. In the
same paper we showed that such a group G is part of a canonically defined PD(3) pair and
that our conjecture would follow if one knew that G were a 3-manifold group. One approach
to proving this is to produce an algebraic counterpart to the Haken hierarchy for Haken
3-manifolds in the context of PD(3) pairs. We say that a PD(3) pair (G, {H1, . . . ,Hk}) is
Haken if it admits a nontrivial splitting3 . One would like to show that Haken PD(3) pairs
always admit nontrivial splittings over PD(2) pairs whose peripheral structure is compati-
ble with that of G. Given this, one can create a hierarchical decomposition of the group G,
and try to show that the terminal groups correspond to fundamental groups of 3-manifolds
with boundary. The corresponding 3-manifolds might then be glued together along bound-
ary surfaces to yield a 3-manifold with fundamental group G. At the moment, the biggest
obstacle in this hierarchy program appears to be the first step; and the two theorems above
provide a step toward overcoming it.

Remark 1.8. It is a difficult open problem due to Wall whether each PD(n) group
G (that admits a compact K(G, 1)) is isomorphic to the fundamental group of a compact
aspherical n-manifold (here n ≥ 3), see [30]. The case of n = 1 is quite easy, for n = 2 the
positive solution is due to Eckmann, Linnell and Müller [16, 17]. Partial results for n = 3
were obtained by Kropholler [32] and Thomas [42]. If the assumption that G has finite
K(G, 1) is omitted then there is a counter-example due to Davis [13]; he construct PD(n)
groups (for each n ≥ 4) which do not admit finite Eilenberg-MacLane spaces. For n ≥ 5
the positive answer would follow from Borel Conjecture [30].

As an application of Theorems 1.1 and Corollary 1.3 and the techniques used in their
proof, we give examples of (n − 1)-dimensional groups which cannot act freely on coarse
PD(n) spaces (in particular, they cannot be subgroups of PD(n) groups), see section 9 for
details:

1. A 2-dimensional one-ended group of type FP2 with positive Euler characteristic
cannot act on a coarse PD(3) space. The semi-direct product of two finitely generated free
groups is such an example.

2. For i = 1, ..., ` let Gi be a duality group of dimension ni and assume that for i = 1, 2
the group Gi is not a PD(ni) group. Then the product G1× ...×G` cannot act on a coarse
PD(n) space where n− 1 = n1 + ...+ n`. The case when n = 3 is due to Kropholler, [32].

3. If G1 is a k-dimensional duality group and G2 is the the Baumslag-Solitar group
BS(p, q) (where p 6= ±q), then the direct product G1×G2 cannot act on a coarse PD(3+k)
space. In particular, BS(p, q) cannot act on a coarse PD(3) space (unless |p| = |q| = 1).

Remark 1.9. Peter Kropholler had proven that a Baumslag-Solitar group as above
cannot be embedded in a PD(3) group G, under an assumption on centralizers of elements
of G.

3If k > 0 then such a splitting always exists.
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4. An (n − 1)-dimensional group G of type FPn−1 which contains infinitely many
conjugacy classes of coarsely non-separating maximal PD(n − 1) subgroups cannot act
freely on a coarse PD(n) space .

Our theme is related to the problem of finding an n-thickening of an aspherical poly-
hedron P up to homotopy, i.e. finding a homotopy equivalence P → M where M is a
compact manifold with boundary and dim(M) = n. If k = dim(P ) then we may immerse
P in R

2k by general position, and obtain a 2k-manifold thickening M by “pulling back” a
regular neighborhood. Given an n-thickening P → M we may construct a free simplicial
action of G = π1(P ) on a coarse PD(n) space by modifying the geometry of Int(M) and
passing to the universal cover. In particular, if G cannot act on a coarse PD(n) space
then no such n-thickening can exist. In the paper with M. Bestvina [3] we give examples
of finite k-dimensional aspherical polyhedra P whose fundamental groups cannot act freely
simplicially on any coarse PD(n) space for n < 2k, and hence the polyhedra P do not admit
n-thickening for n < 2k.

We conclude the discussion of our results with a couple of questions:

Question 1.10. Is there a uniform embedding of a Baumslag-Solitar group B(p, q)
(with |p| = |q| 6= 1) into the fundamental group of a compact 3-manifold?

Note that one can easily construct a uniform embedding of B(p, q) into a uniformly
contractible 3-manifold M of bounded geometry, however it seems difficult to find an M
which is the universal cover of a compact 3-manifold.

Question 1.11. Is it true that PD(3) groups Γ are coherent, i.e. every finitely generated
subgroup of Γ is also finitely presented (or even FP2)? It seems unclear even if finitely
generated normal subgroups in Γ are finitely presented.

More generally,

Question 1.12. 1. Suppose that G is a finitely generated group acting freely and
simplicially on a coarse PD(3) space. Is it true that G is of type FP2?

2. Suppose that a finitely generated group G admits a uniform embedding into a coarse
PD(3) space (e.g. a uniformly contractible 3-manifold). Is it true that G is of type FP2?

Below is a heuristic explanation of why Theorem 1.1 is true. Suppose that the space X
in question is the hyperbolic space H

n. Suppose in addition that G ⊂ Isom(X) is a convex-
cocompact discrete group of isometries, i.e. there exists a closed convex G-invariant subset
C ⊂ X with compact quotient C/G. The hypothesis that G is an (n−1)-dimensional duality
group means that its boundary (i.e. the limit set Λ(G) ⊂ Sn−1) has the same homology
as a wedge of (n− 2)-spheres. Then Alexander duality implies that each component of the
complement of the discontinuity domain Ω(G) = Sn−1 \ Λ(G) is acyclic. Moreover, since
G is convex-cocompact, there are only finitely many G-orbits of such components and the
stabilizer Hi of such a component acts on it cocompactly. Therefore each Hi is a PD(n−1)-
group. Thus we obtain a collection of peripheral subgroups {H1, ...,Hk} and it follows that
(G, {H1, . . . ,Hk}) is a PD(n) pair.

To give an idea of the actual proof of Theorem 1.1, consider the case when the coarse
PD(n)-space X happens to be R

n with a uniformly acyclic bounded geometry triangulation.
We take combinatorial tubular neighborhoods NR(K) of a G-orbit K in X and analyze the
structure of connected components ofX−NR(K). Following R. Schwartz we call a connected
component C of X −NR(K) deep if C is not contained in any tubular neighborhood of K.
When G is a group of type FPn, using Alexander duality one shows that deep components
of X −NR(K) stabilize: there exists R0 so that no deep component of X −NR0(K) breaks
up into multiple deep components as R increases beyond R0. If G is an (n−1)-dimensional
duality group then the idea is to show that the stabilizers of of deep components of X −
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COARSE ALEXANDER DUALITY AND DUALITY GROUPS 5

NR0(K) are PD(n − 1)-groups, which is the heart of the proof. These groups define the
peripheral subgroups H1, . . . ,Hk of the PD(n) pair structure (G, {H1, . . . ,Hk}) for G.

When X is a coarse PD(n)-space rather than R
n, one does not have Alexander duality

since Poincare duality need not hold locally. However there is a coarse version of Poincare
duality which we use to derive an appropriate coarse analogue of Alexander duality; this
extends Richard Schwartz’s coarse Alexander duality from the manifold context to the
coarse PD(n) spaces. Roughly speaking this goes as follows. If K ⊂ R

n is a subcomplex
then Poincare duality gives an isomorphism

H∗c (K)→ Hn−∗(R
n,Rn −K).

This fails when we replace R
n by a general coarse PD(n) space X. We prove however that

for a certain constant D there are homomorphisms defined on tubular neighborhoods of K:

PR+D : Hk
c (ND+R(K))→ Hn−k(X,YR), where YR := X −NR(K),

which determine an approximate isomorphism. This means that for every R there is an
R′ (one may take R′ = R + 2D) so that the homomorphisms a and b in the following
commutative diagram are zero:

ker(PR′) → Hk
c (NR′(K))

PR′

−→ Hn−k(X,YR′−D) → coker(PR′)
a ↓ ↓ ↓ b ↓

ker(PR) → Hk
c (NR(K))

PR−→ Hn−k(X,YR−D) → coker(PR)

This coarse version of Poincare duality leads to coarse Alexander duality, which suffices for
our purposes.

In this paper we develop and use ideas in coarse topology which originated in earlier work
by a number of authors: [8, 20, 22, 24, 34, 35, 36]. Other recent papers involving similar
ideas include [10, 43, 18, 19]. We would like to stress however the difference between
our framework and versions of coarse topology in the literature. In [34, 24, 25], coarse
topological invariants appear as direct/inverse limits of anti-Čech systems. By passing
to the limit (or even working with pro-categories á la Grothendieck) one inevitably loses
quantitative information which is essential in many applications of coarse topology to quasi-
isometries and geometric group theory. The notion of approximate isomorphism mentioned
above (see section 4) retains this information.

In the main body of the paper, we deal with a special class of metric complexes, namely
metric simplicial complexes. This makes the exposition more geometric, and, we believe,
more transparent. Also, this special case suffices for many of the applications to quasi-
isometries and geometric group theory. In Appendix (section 11) we explain how the defi-
nitions, theorems, and proofs can be modified to handle general metric complexes.

Organization of the paper. In section 2 we introduce metric simplicial complexes and
recall notions from coarse topology. Section 3 reviews some facts and definitions from coho-
mological group theory, duality groups, and group pairs. In section 4 we define approximate
isomorphisms between inverse and direct systems of abelian groups, and compare these with
Grothendieck’s pro-morphisms. Section 5 provides finiteness criteria for groups, and estab-
lishes approximate isomorphisms between group cohomology and cohomologies of nested
families of simplicial complexes. In section 6 we define coarse PD(n) spaces, give examples,
and prove coarse Poincare duality for coarse PD(n) spaces. In section 7 we prove coarse
Alexander duality and apply it to coarse separation. In section 8 we prove Theorems 1.1,
Proposition 8.10, and variants of Theorem 1.1. In section 9 we apply coarse Alexander
duality and Theorem 1.1 to show that certain groups cannot act freely on coarse PD(n)
spaces. In the section 10 we give a brief account of coarse Alexander duality for uniformly
acyclic triangulated manifolds of bounded geometry. The reader interested in manifolds
and not in Poincare complexes can use this as a replacement of Theorem 7.5.
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6 MICHAEL KAPOVICH AND BRUCE KLEINER

Suggestions to the reader. Readers familiar with Grothendieck’s pro-morphisms may
wish to read the second part of section 4, which will allow them to translate statements
about approximate isomorphisms into pro-language. Readers who are not already familiar
with pro-morphisms may simply skip this. Those who are interested in finiteness properties
of groups may find section 5, especially Theorems 5.11 and Corollary 5.14, of independent
interest.
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2. Geometric Preliminaries. Metric simplicial complexes4 . Let X be the geometric
realization of a connected locally finite simplicial complex. Henceforth we will conflate
simplicial complexes with their geometric realizations. We will metrize the 1-skeleton X 1

of X by declaring each edge to have unit length and taking the corresponding path-metric.
Such an X with the metric on X1 will be called a metric simplicial complex. The complex X
is said to have bounded geometry if all links have a uniformly bounded number of simplices;
this is equivalent to saying that the metric space X 1 is locally compact and every R-ball in
X1 can be covered by at most C = C(R, r) r-balls for any r > 0. In particular, dim(X) <∞.
IfK ⊂ X is a subcomplex and r is a positive integer then we define (combinatorial) r-tubular
neighborhood Nr(K) of K to be r-fold iterated closed star of K, Str(K); we declare N0(K)
to be K itself. Note that for r > 0, Nr(K) is the closure of its interior. The diameter of K
is defined to be the diameter of its zero-skeleton, and ∂K denotes the frontier of K, which
is a subcomplex. For each vertex x ∈ X and R ∈ Z+ we let B(x,R) denote NR({x}), the
“R-ball centered at x”.

Coarse Lipschitz and uniform embeddings. We recall that a map f : X → Y between
metric spaces is called (L,A)-Lipschitz if

d(f(x), f(x′)) ≤ Ld(x, x′) +A

4The definition of metric complexes, which generalize metric simplicial complexes, appears in Appendix
11.
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COARSE ALEXANDER DUALITY AND DUALITY GROUPS 7

for any x, x′ ∈ X. A map is coarse Lipschitz if it is (L,A)-Lipschitz for some L,A. A
coarse Lipschitz map f : X → Y is called a uniform embedding if there is a proper function
φ : R+ → R+ (a distortion function) such that

d(f(x), f(x′)) ≥ φ(d(x, x′))

for all x, x′ ∈ X.

Throughout the paper we will use simplicial (co)chain complexes and integer coefficients.
If C∗(X) is the simplicial chain complex and A ⊂ C∗(X), then the support of A, denoted
Support(A), is the smallest subcomplex K ⊂ X so that A ⊂ C∗(K). Throughout the
paper we will assume that morphisms between simplicial chain complexes preserve the
usual augmentation.

If X,Y are metric simplicial complexes as above then a homomorphism

h : C∗(X)→ C∗(Y )

is said to be coarse Lipschitz if for each simplex σ ⊂ X, Support(h(C∗(σ))) has uniformly
bounded diameter. The Lipschitz constant of h is

max
σ

diam(Support(h(C∗(σ)))).

A homomorphism h is said to be a uniform embedding if it is coarse Lipschitz and there
exists a proper function φ : R+ → R+ (a distortion function) such that for each subcomplex
K ⊂ X of diameter ≥ r, Support(h(C∗(K))) has diameter ≥ φ(r). We will apply this
definition only to chain mappings and chain homotopies5 . We say that a homomorphism
h : C∗(X)→ C∗(X) has displacement ≤ D if for every simplex σ ⊂ X, Support(h(C∗(σ))) ⊂
ND(σ).

We may adapt all of the definitions from the previous paragraph to mappings between
other (co)chain complexes associated with metric simplicial complexes, such as the com-
pactly supported cochain complex C∗c (X).

Coarse topology. An n-dimensional metric simplicial complex X is said to be uniformly
acyclic if for every R1 there is an R2 such that for each subcomplex K ⊂ X of diameter
≤ R1 the inclusion K → NR2(K) induces zero on reduced homology groups. Such a
function R2 = R2(R1) will be called an acyclicity function for C∗(X). Let C∗c (X) denote
the complex of compactly supported simplicial cochains, and suppose α : Cn

c (X)→ Z is an
augmentation for C∗c (X), i.e. a homomorphism which is zero on all coboundaries. Then the
pair (C∗c (X), α) is called uniformly acyclic if there is an R0 > 0 and a function R2 = R2(R1)
so that for all x ∈ X0 and all R1 ≥ R0,

Im(H∗c (X,X −B(x,R1))→ H∗c (X,X −B(x,R2)))

maps isomorphically onto H∗c (X) under H∗c (X,X −B(x,R2))→ H∗c (X), and α induces an
isomorphism ᾱ : Hn

c (X)→ Z.

Let K ⊂ X be a subcomplex of a metric simplicial complex X. For every R ≥ 0, we
say that an element c ∈ Hk(X −NR(K)) is deep if it lies in

Im(Hk(X −NR′(K))→ Hk(X −NR(K)))

for every R′ ≥ R; equivalently, c is deep if belongs to the image of

lim
←−

r

Hk(X −Nr(K)) −→ Hk(X −NR(K)).

5Recall that there is a standard way to triangulate the product ∆k
× [0, 1]; we can use this to triangulate

X × [0, 1] and hence view it as a metric simplicial complex.
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8 MICHAEL KAPOVICH AND BRUCE KLEINER

We let HDeep
k (X −NR(K)) denote the subgroup of deep homology classes of X −NR(K).

Hence we obtain an inverse system {HDeep
k (X −NR(K))}. We say that the deep homology

stabilizes at R0 if the projection homomorphism

lim
←−

R

HDeep
k (X −NR(K))→ HDeep

k (X −NR0(K))

is injective.

Specializing the above definition to the case k = 0, we arrive at the definition of deep
complementary components. If R ≥ 0, a component C of X −NR(K) is called deep if it is
not contained within a finite neighborhood of K. A subcomplex K coarsely separates X if
there is an R so that X−NR(K) has at least two deep components. A deep component C of
X −NR(K) is said to be stable if for each R′ ≥ R the component C meets exactly one deep
component of X −NR′(K). K is said to coarsely separate X into (exactly) m components
if there is an R so that X −NR(K) consists of exactly m stable deep components.

Note that HDeep
0 (X − NR(K)) is freely generated by elements corresponding to deep

components of X−NR(K). The deep homology HDeep
0 (X −NR(K)) stabilizes at R0 if and

only if all deep components of X −NR0(K) are stable.

If G y X is a simplicial action of a group on a metric simplicial complex, then one orbit
G(x) coarsely separates X if and only if every G-orbit coarsely separates X; hence we may
simply say that G coarsely separates X. If H is a subgroup of a finitely generated group
G, then we say that H coarsely separates G if H coarsely separates some (and hence any)
Cayley graph of G.

Let Y,K be subcomplexes of a metric simplicial complex X. We say that Y coarsely
separates K in X if there is R > 0 and two distinct components C1, C2 ⊂ X − NR(Y ) so
that the distance function dY (·) := d(·, Y ) is unbounded on both K ∩C1 and K ∩C2. The
subcomplex Y will coarsely separate X in this case.

3. Group theoretic preliminaries. Resolutions, cohomology and relative coho-

mology. Let G be group and K be an Eilenberg-MacLane space for G. If M is a system
of local coefficients on K, then we have homology and cohomology groups of K with coef-
ficients in M: H∗(K;M) and H∗(K;M). Now let A be a ZG-module. We recall that a
resolution of A is an exact sequence of ZG-modules:

. . .→ Pn → . . .→ P0 → A→ 0.

Every ZG-module has a unique projective resolution up to chain homotopy equivalence. If
M is a ZG-module, then the cohomology of G with coefficients in M , H ∗(G;M), is defined
as the homology of chain complex HomZG(P∗,M) where P∗ is a projective resolution of the
trivial ZG-module Z; the homology of G with coefficients in M , H∗(G;M), is the homology
of the chain complex P∗⊗ZGM . Using the 1-1 correspondence between ZG-modules M and
local coefficient systemsM on an Eilenberg-MacLane space K, we get natural isomorphisms
H∗(K;M) ' H∗(G;M) and H∗(K;M) ' H∗(G;M). Henceforth we will use the same
notation to denote ZG-modules and the corresponding local systems on K(G, 1)’s.

Group pairs. We now discuss relative (co)homology following [7]. Let G be a group, and
H := {Hi}i∈I an indexed collection of (not necessarily distinct) subgroups. We refer to

(G,H) as a group pair. Let qiK(Hi, 1)
f
→ K(G, 1) be the map induced by the inclusions

Hi → G, and let K be the mapping cylinder of f . We therefore have a pair of spaces
(K,qi K(Hi, 1)) since the domain of a map naturally embeds in the mapping cylinder.
Given any ZG-module M , we define the relative cohomology H ∗(G,H;M) (respectively
homology H∗(G,H;M)) to be the cohomology (resp. homology) of the pair (K,qiK(Hi, 1))
with coefficients in the local system M . As in the absolute case, one can compute relative
(co)homology groups using projective resolutions, see [7]. For each i ∈ I, let

. . .→ Qn(i)→ . . .→ Q0(i)→ Z→ 0
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be a resolution of Z by projective ZHi-modules, and let

. . .→ Pn → . . .→ P0 → Z→ 0

be a resolution of Z by projective ZG-modules. The inclusions Hi → G induce ZHi-chain
mappings fi : Q∗(i) → P∗, unique up to chain homotopy. We define a ZG-chain complex
Q∗ to be ⊕i(ZG⊗ZHi

Q∗(i)) with an augmentation

Q0 → ⊕i(ZG⊗ZHi
Z)

induced by the augmentations Q0(i)→ Z; the chain mappings fi yield a ZG-chain mapping
f : Q∗ → P∗. We let C∗ be the algebraic mapping cylinder of f : this is the chain complex
with Ci := Pi ⊕Qi−1 ⊕Qi with the boundary homomorphism given by

(3.1) ∂(pi, qi−1, qi) = (∂pi + f(qi−1),−∂qi−1, ∂qi + qi−1).

We note that each Ci is clearly projective, a copy D∗ of Q∗ naturally sits in C∗ as the
third summand, and the quotient C∗/D∗ is a chain complex of projective ZG-modules.
Proposition 1.2 of [7] implies that the relative homology (resp. cohomology) of the group
pair (G,H) with coefficients in a ZG-module M (defined as above using local systems on
Eilenberg-MacLane spaces) is canonically isomorphic to homology of the chain complex
(C∗/D∗)⊗ZG M (resp. HomZG((C∗/D∗),M)).

Finiteness properties of groups. The (cohomological) dimension dim(G) of a group
G is n if n is the minimal integer such that there exists a resolution of Z by projective
ZG-modules:

0→ Pn → ...→ P0 → Z→ 0.

Recall that G has cohomological dimension n if and only if n is the minimal integer so that
Hk(G,M) = 0 for all k > n and all ZG-modules M . Moreover, if dim(G) <∞ then

dim(G) = sup{n | Hn(G;F ) 6= 0 for some free ZG-module F},

see [12, Ch. VIII, Proposition 2.3]. If

1→ G1 → G→ G2 → 1

is a short exact sequence then dim(G) ≤ dim(G1) + dim(G2), [12, Ch. VIII, Proposition
2.4]. If G′ ⊂ G is a subgroup then dim(G′) ≤ dim(G).

A partial resolution of a ZG-module A is an exact sequence ZG-modules:

Pn → . . .→ P0 → A→ 0.

If A∗:
...→ An → An−1 → . . .→ A0 → A→ 0

is a chain complex then we let [A∗]n denote the n-truncation of A∗, i.e.

An → . . .→ A0 → A→ 0.

A group G is of type FPn if there exists a partial resolution of Z by finitely generated
projective ZG-modules:

Pn → ...→ P0 → Z→ 0.

The group G is of type FP (resp. FL) if there exists a finite resolution of Z by finitely
generated projective (resp. free) ZG-modules. A group pair (G, {H1, ...,Hm}) (where Hi’s
are subgroups of G) is said to be of type FP if G and all Hi’s are of type FP .

Lemma 3.2. 1. If G is of type FP then dim(G) = n if and only if

n = max{i : H i(G; ZG) 6= 0}.

2. If dim(G) = n and G is of type FPn then there exists a resolution of Z by finitely
generated projective ZG-modules:

0→ Pn → ...→ P0 → Z→ 0.

In particular G is of type FP .
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Proof. The first assertion follows from [12, Ch. VIII, Proposition 5.2]. We prove 2.
Start with a partial resolution

Pn → Pn−1 → ...→ P0 → Z→ 0

where each Pi is finitely generated projective. By [12, Ch. VIII, Lemma 2.1], the kernel
Qn := ker[Pn−1 → Pn−2] is projective. However Pn maps onto Qn, hence Qn is also finitely
generated. Thus replacing Pn with Qn we get the required resolution. q.e.d.

Examples of groups of type FP and FL are given by fundamental groups of finite
Eilenberg-MacLane complexes, or more generally, groups acting freely cocompactly on
acyclic complexes. According to the theorem of Eilenberg-Ganea and Wall, if G is a finitely
presentable group of type FL then G admits a finite K(G, 1) of dimension max(dim(G), 3).

Let G be a group, let H := {Hi}i∈I be an indexed collection of subgroups, and let

ε : ⊕i (ZG⊗ZHi
Z)→ Z

be induced by the usual augmentation ZG→ Z. Then the group pair (G,H) has finite type
if the ZG-module Ker(ε) admits a finite length resolution by finitely generated projective
ZG-modules. If the index set I is finite and the groups G and Hi are of type FP then one
obtains the desired resolution of Ker(ε) using the quotient C∗/D∗ where (C∗, D∗) is the
pair given by the algebraic mapping cylinder construction (3.1).

For the next three topics, the reader may consult [5, 6, 7, 12, 14].

Duality groups. Let G be a group of type FP . Then G is an n-dimensional duality group
if H i(G; ZG) = {0} when i 6= n = dim(G), and Hn(G; ZG) is torsion-free, [6]. There is an
alternate definition of duality groups involving isomorphisms H i(G;M) ' Hn−i(G;D⊗M)
for a suitable dualizing module D and arbitrary ZG-modules M , see [6, 12]. Examples of
duality groups include:

1. The fundamental groups of compact aspherical manifolds with aspherical boundary,
where the inclusion of each boundary component induces a monomorphism of fundamental
groups.

2. Torsion-free S-arithmetic groups, [6, 9].

3. 2-dimensional one-ended groups of type FP2 [5, Proposition 9.17]; for instance
torsion-free, one-ended, one-relator groups.

4. Any group which can act freely, cocompactly, and simplicially on an acyclic simplicial
complex X, where H i

c(X) vanishes except in dimension n, and Hn
c (X) is torsion-free.

Poincaré duality groups. These form a special class of duality groups. If G is an n-
dimensional duality group andHn(G; ZG) = Z, then G is an n-dimensional Poincare duality
group (PD(n) group). As in the case of duality groups, there is an alternate definition
involving isomorphisms H i(G;M) ' Hn−i(G;D⊗M) where M is an arbitrary ZG-module
and the orientation ZG-moduleD is isomorphic to Z as an abelian group. Examples include:

1. Fundamental groups of closed aspherical manifolds.

2. Fundamental groups of aspherical finite Poincare complexes. Recall that an (ori-
entable) Poincare complex of formal dimension n is a finitely dominated complex K to-
gether with a fundamental class [K] ∈ Hn(K; Z) so that the cap product operation [K]∩ :
Hk(K;M) → Hn−k(K;M) is an isomorphism for every local system M on K and for
k = 0, . . . , n.

3. Any group which can act freely, cocompactly, and simplicially on an acyclic simplicial
complex X, where X has the same compactly supported cohomology as R

n.

4. Each torsion-free Gromov-hyperbolic group G whose boundary is a homology man-
ifold with the homology of sphere (over Z), see [4]. Note that every such group is the
fundamental group of a finite aspherical Poincare complex, namely the G-quotient of a Rips
complex of G.

PROOF COPY NOT FOR DISTRIBUTION



COARSE ALEXANDER DUALITY AND DUALITY GROUPS 11

Below are several useful facts about Poincare duality groups (see [12]):

(a) If G is a PD(n) group and G′ ⊂ G is a subgroup then G′ is a PD(n) group if and
only if the index [G : G′] is finite.

(b) If G is a PD(n) group which is contained in a torsion-free group G′ as a finite index
subgroup, then G′ a PD(n) group.

(c) If G × H is a PD(m) group then G and H are PD(n) and PD(k) groups, where
m = n+ k.

(d) If GoH is a semi-direct product whereG is a PD(n)-group andH is a PD(k)-group,
then GoH is a PD(n+ k)-group. See [6, Theorem 3.5].

There are several questions about PD(n) groups and their relation with fundamental
groups of aspherical manifolds. It was an open question going back to Wall [44] whether
every PD(n) group is the fundamental group of a closed aspherical manifold. The answer
to this is yes in dimensions 1 and 2, [40, 16, 17]. Recently, Davis in [13] gave examples
for n ≥ 4 of PD(n) groups which do not admit a finite presentation, and these groups are
clearly not fundamental groups of compact manifolds. This leaves open several questions:

1. Is every finitely presented PD(n) group the fundamental group of a compact aspher-
ical manifold?

2. A weaker version of 1: Is every finitely presented PD(n) group the fundamental
group of a finite aspherical complex? Equivalently, by Eilenberg-Ganea, one may ask if
every such group is of type FL.

3. Does every PD(n) group act freely and cocompactly on an acyclic complex? We
believe this question is open for groups of type FP . One can also ask if every PD(n) group
acts freely and cocompactly on an acyclic n-manifold.

Poincare duality pairs. Let G be an (n − 1)-dimensional group of type FP , and let
H1, . . . ,Hk ⊂ G be PD(n − 1) subgroups of G. Then the group pair (G, {H1, . . . ,Hk}) is
an n-dimensional Poincare duality pair, or PD(n) pair, if the double of G over the Hi’s is a
PD(n) group. We recall that the double of G over the Hi’s is the fundamental group of the
graph of groups G, where G has two vertices labeled by G, k edges with the ith edge labeled
by Hi, and edge monomorphisms are the inclusions Hi → G. An alternate homological
definition of PD(n) pairs is the following: A group pair (G, {Hi}i∈I) is a PD(n) pair if
it has type FP , and H∗(G, {Hi}; ZG) ' H∗c (Rn). For a discussion of these and other
equivalent definitions, see [7, 14]. We will sometimes refer to the system of subgroups {Hi}
as the peripheral structure of the PD(n) pair, and theHi’s as peripheral subgroups. The first
class of examples of duality groups mentioned above have natural peripheral structure which
makes them PD(n) pairs. In [28] we proved that if G is a torsion-free Gromov-hyperbolic
group whose boundary is homeomorphic to the Sierpinski carpet S, then (G, {H1, ...,Hk})
is a PD(3) group pair, where Hi’s are representatives of conjugacy classes of stabilizers of
the peripheral circles of S in ∂∞G. If (G, {H1, . . . ,Hk}) is a PD(n) pair, where G and
each Hi admit a finite Eilenberg-MacLane space X and Yi respectively, then the inclusions
Hi → G induce a map tiYi → X (well-defined up to homotopy) whose mapping cylinder
C gives a Poincare pair (C,tiYi), i.e. a pair which satisfies Poincare duality for manifolds
with boundary with local coefficients (where tiYi serves as the boundary of C). Conversely,
if (X,Y ) is a Poincare pair where X is aspherical and Y is a union of aspherical components
Yi, then (π1(X), {π1(Y1), . . . , π1(Yk)}) is a PD(n) pair.

Lemma 3.3. Let (G, {Hi}) be a PD(n) pair, where G is not a PD(n− 1) group. Then
the subgroups Hi are pairwise non-conjugate maximal PD(n− 1) subgroups.

Proof. IfHi is conjugate toHj for some i 6= j, then the double Ĝ of G over the peripheral
subgroups would contain an infinite index subgroup isomorphic to the PD(n) group Hi×Z.
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12 MICHAEL KAPOVICH AND BRUCE KLEINER

The group Ĝ is a PD(n) group, which contradicts property (a) of Poincare duality groups
listed above.

We now prove that each Hi is maximal. Suppose that Hi ⊂ H ⊂ G, where H 6= Hi

is a PD(n − 1) group. Then [H : Hi] < ∞. Pick h ∈ H −Hi. Then there exists a finite

index subgroup Fi ⊂ Hi which is normalized by h. Consider the double Ĝ of G along the
collection of subgroups {Hi}, and let Ĝ y T be the associated action on the Bass-Serre
tree. Since G is not a PD(n − 1) group, Hi 6= G for each i, and so there is a unique

vertex v ∈ T fixed by G. The involution of the graph of groups defining Ĝ induces an
involution of Ĝ which is unique up to an inner automorphism; let τ : Ĝ→ Ĝ be an induced
involution which fixes Hi element-wise. Then G′ := τ(G) fixes a vertex v′ adjacent to v,
where the edge vv′ is fixed by Hi. So h′ := τ(h) belongs to τ(G) = G′ but h′ does not fix
vv′. Therefore the fixed point sets of h and h′ are disjoint, which implies that g := hh′ acts
on T as a hyperbolic automorphism. Since h′ ∈ Normalizer(τ(Fi)) = Normalizer(Fi),
we get g ∈ Normalizer(Fi). Hence the subgroup F generated by Fi and g is a semi-direct
product F = Fi o〈g〉, and 〈g〉 ' Z since g is hyperbolic. The group F is a PD(n) group (by

property (d)) sitting as an infinite index subgroup of the PD(n) group Ĝ, which contradicts
property (a). q.e.d.

4. Algebraic preliminaries. In this section we introduce a notion of “morphism” between
inverse systems. Approximate isomorphisms, which figure prominently in the remainder of
the paper, are maps between inverse (or direct) systems which fail to be isomorphisms in a
controlled way, and for many purposes are as easy to work with as isomorphisms.

Approximate morphisms between inverse and direct systems. Recall that a par-
tially ordered set I is directed if for each i, j ∈ I there exists k ∈ I such that k ≥ i, j.
An inverse system of (abelian) groups indexed by a directed set I is a collection of abelian

groups {Ai}i∈I and homomorphisms (projections) pj
i : Ai → Aj , i ≥ j so that

pi
i = id and pk

j ◦ p
j
i = pk

i

for any i ≤ j ≤ k. (One may weaken these assumptions but they will suffice for our
purposes.) We will often denote the inverse system by (A•, p•) or {Ai}i∈I . Recall that a
subset I ′ ⊂ I of a partially ordered set is cofinal if for every i ∈ I there is an i′ ∈ I ′ so that
i′ ≥ i.

Let {Ai}i∈I and {Bj}j∈J be two inverse systems of (abelian) groups indexed by I and

J , with the projection maps pi′

i : Ai → Ai′ and qj′

j : Bj → Bj′ . The directed sets appearing
later in the paper will be order isomorphic to Z+ with the usual order.

Definition 4.1. Let α be an order preserving, partially defined, map from I to J . Then
α is cofinal if it is defined on a subset of the form {i ∈ I | i ≥ i0} for some i0 ∈ I, and the
image of every cofinal subset I ′ ⊂ I is a cofinal subset α(I ′) ⊂ J .

Definition 4.2. Let α : I → J be a cofinal map. Suppose that ({Ai}i∈I , p•) and
({Bj}j∈J , q•) are inverse systems. Then a family of homomorphisms fi : Ai → Bα(i), i ∈ I,
is an α-morphism from {Ai}i∈I to {Bj}j∈J if

(4.3) q
α(i′)
α(i) ◦ fi = fi ◦ p

i′

i

whenever i, i′ ∈ I and i ≥ i′. The saturation f̂•• of the α-morphism f• is the collection of

maps f̂ j
i : Ai → Bj of the form

qj

α(k) ◦ fk ◦ p
k
i .

In view of (4.3) this definition is consistent, and f̂•• is compatible with the projection maps
of A• and B•.
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Suppose that {Ai}i∈I , {Bj}j∈J , {Ck}k∈K are inverse systems, α : I → J , β : J → K are
cofinal maps. Then the composition of α- and β-morphisms

f• : A• → B•, g• : B• → C•

is a γ-morphism for the cofinal map γ = β ◦ α : I → K. (The composition β ◦ α is defined
on the subset Domain(α) ∩ α−1(Domain(β)) which contains {i : i ≥ i1} where i1 is an
upper bound for non-cofinal subset α−1(J −Domain(β)) in I.)

Definition 4.4. Let A•
f•
→ B• be an α-morphism of inverse systems (A•, p•), (B•, q•).

1. When I is totally ordered, we define Im(f̂ j
• ), the image of f• in Bj, to be ∪{Im(f̂ j

i :
Ai → Bj) | α(i) ≥ j}.

2. Let ω : I → I be a function with ω(i) ≥ i for all i ∈ I. Then f• is an ω-approximate
monomorphism if for every i ∈ I we have

Ker(Aω(i)

fω(i)
−→ Bα(ω(i))) ⊂ Ker(Aω(i)

p•
−→ Ai).

3. Suppose I is totally ordered. If ω̄ : J → J is a function with ω̄(j) ≥ j for all j ∈ J ,
then f• is an ω̄-approximate epimorphism if for every j ∈ J we have:

Im(Bω̄(j)
q•
−→ Bj) ⊂ Im(f̂ j

• ).

4. Suppose I is totally ordered. If ω : I → I and ω̄ : J → J are functions, then f is an
(ω, ω̄)-approximate isomorphism if both 2 and 3 hold.

We will frequently suppress the functions α, ω, ω̄ when speaking of morphisms, approx-
imate monomorphisms (epimorphisms, isomorphisms).

Note that an α-morphism induces a homomorphism between inverse limits, since for
each cofinal subset J ′ ⊂ J we have:

lim
←−
j∈J

Bj
∼= lim
←−
j∈J′

Bj .

Similarly, an approximate monomorphism, resp. isomorphism, of inverse systems induces a
monomorphism, resp. isomorphism, of their inverse limits.6 However the converse is not
true. For instance, let Ai := Z for each i ∈ N, where N has the usual order. Let

pi−n
i : Ai → Ai−n be the index n inclusion.

It is clear that the inverse limit of this system is zero. We leave it to the reader to verify
that the system (A•, p•) is not approximately isomorphic to zero inverse system.

We have similar definitions for homomorphisms of direct systems. A direct system of
(abelian) groups indexed by a directed set I is a collection of abelian groups {Ai}i∈I and

homomorphisms (projections) pj
i : Ai → Aj , i ≤ j so that

pi
i = id, pk

j ◦ p
j
i = pk

i

for any i ≤ j ≤ k. We often denote the direct system by (A•, p•). Let {Ai}i∈I and {Bj}j∈J

be two direct systems of (abelian) groups indexed by directed sets I and J , with projection

maps pi′

i : Ai → Ai′ and qj′

j : Bj → Bj′ .

Definition 4.5. Let α : I → J be a cofinal map. Then a family of homomorphisms
fi : Ai → Bα(i), i ∈ I, is a α-morphism of the direct systems {Ai}i∈I and {Bj}j∈J if

q
α(i′)
α(i) ◦ fi = fi′ ◦ p

i′

i

whenever i ≤ i′. We define the saturation f̂•• the same way as for morphisms of inverse
systems.

6Eric Swenson observed that similar assertion is false for approximate epimorphisms.
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Definition 4.6. Let f• : A• → B• be an α-morphism of direct systems:

f• = {fi : Ai → Bα(i), i ∈ I}.

1. When I is totally ordered we define Im(f̂ j
• ), the image of f• in Bj, to be ∪{Im(f̂ j

i ) |
α(i) ≤ j}.

2. Let ω : I → I be a function with ω(i) ≥ i for all i ∈ I. Then f• is an ω-approximate
monomorphism if for every i ∈ I we have

Ker(Ai
fi−→ Bα(i)) ⊂ Ker(Ai

p•
−→ Aω(i)).

3. Suppose I is totally ordered, and ω̄ : J → J is a function with ω̄(j) ≥ j for all j ∈ J .
f• is an ω̄-approximate epimorphism if for every j ∈ J we have:

Im(Bj
q•
−→ Bω̄(j)) ⊂ Im(f̂

ω̄(j)
• ).

4. Suppose I is totally ordered and ω : I → I and ω̄ : J → J are functions. Then f is
an (ω, ω̄)-approximate isomorphism if both 2 and 3 hold.

An inverse (direct) system A• is said to be constant if Ai = Aj and pi
j = id for each

i, j. An inverse (direct) system A• is approximately constant if there is an approximate
isomorphism between it and a constant system (in either direction). Likewise, an inverse
or direct system is approximately zero if it is approximately isomorphic to a zero system.
The reader will notice that approximately zero systems are the same as pro-zero systems
[1, Appendix 3], i.e. systems A• such that for each i ∈ I there exists j ≥ i such that

pi
j : Aj → Ai (resp. pj

i : Ai → Aj) is zero (see below).

The proof of the following lemma is straightforward and is left to the reader.

Lemma 4.7. The composition of two approximate monomorphisms (epimorphisms,
isomorphisms) is an approximate monomorphism (epimorphism, isomorphism).

Category-theoretic behavior of approximate morphisms and Grotendieck’s

pro-categories.

The remaining material in this section relates to the category theoretic behavior of
approximate morphisms and a comparison with pro-morphisms, and it will not be used
elsewhere in the paper.

In what follows (A•, p•) and (B•, q•) will once again denote inverse systems indexed by
I and J respectively. However, for simplicity we will assume that I and J are both totally
ordered.

Definition 4.8. Let f• : A• → B• be an α-morphism with saturation f̂•• . The kernel
of f• is the inverse system {Ki}i∈I where Ki := Ker(fi : Ai → Bα(i)) with the projection
maps obtained from the projections of A• by restriction. We define the image of f• to be

the inverse system {Dj}j∈J where Dj := Im(f̂ j
• ), with the projections coming from the

projections of B•. Note that Dj is a subgroup of Bj , j ∈ J . We also define the cokernel
coKer(f•) of f•, as the inverse system {Cj}j∈J where Cj := Bj/Dj .

An inverse (respectively direct) system of abelian groups A• is pro-zero if for every i ∈ I

there exists j ≥ i such that pi
j : Aj → Ai (resp. pj

i : Ai → Aj) is zero (see [1, Appendix 3]).
Using this language we may reformulate the definitions of approximate monomorphisms:

Lemma 4.9. Let f• : A• → B• be a morphism of inverse systems of abelian groups.
Then

1. f• is an approximate monomorphism iff its kernel K• := Ker(f•) is pro-zero.

2. f• is an approximate epimorphism iff its cokernel is a pro-zero inverse system.
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3. f• is an approximate isomorphism iff both Ker(f•) and coKer(f•) are pro-zero
systems.

Proof. This is immediate from the definitions. q.e.d.

For a fixed cofinal map α : I → J , the collection of α-morphisms from A• to B• forms
an abelian group the obvious way. In order to compare morphisms A• → B• with different
index maps I → J , we introduce an equivalence relation:

Definition 4.10. Let f : A• → B• and g : A• → B• be morphisms with saturations f̂••
and ĝ•• . Then f• is equivalent g• if there is a cofinal function ρ : J → I so that for all j ∈ J ,

both f̂ j

ρ(j) and ĝj

ρ(j) are defined, and they coincide.

This equivalence relation is compatible with composition of approximate morphisms. Hence
we obtain a category Approx where the objects are inverse systems of abelian groups and
the morphisms are equivalence classes of approximate morphisms. An approximate inverse
for an approximate morphism f• is an approximate morphism g• which inverts f• in Approx.

Lemma 4.11. Suppose I, J ∼= Z+, D• is a sub inverse system of A• (i.e. Di ⊂ Ai,
i ∈ I), and let Q• be the quotient system: Qi := Ai/Di. Then

1. The morphism A• → Q• induced by the canonical epimorphisms Ai → Qi has an
approximate inverse iff D• is a pro-zero system.

2. The morphism D• → A• defined by the inclusion homomorphisms Di → Ai has an
approximate inverse iff Q• is a pro-zero system.

3. If f• : A• → B• is a morphism, Ker(f•) is zero (i.e. Ker(f•)i = {0} for all i ∈ I),
and Im(f•) = B•, then f• has an approximate inverse.

Proof. We leave the “only if” parts of 1 and 2 to the reader.

When D• is pro-zero the map β : I → I defined by

β(i) := max{i′ | Di ⊂ Ker(Ai → Ai′)}

is cofinal. Let g• : Q• → A• be the β-morphism where gi : Ai/Di = Qi → Aβ(i) is induced
by the projection Ai → Aβ(i). One checks that g• is an approximate inverse for A• → Q•.

Suppose Q• is pro-zero. Define a cofinal map β : I → I by

β(i) := max{i′ | Im(Ai → Ai′) ⊂ Di′},

and let g• : A• → D• be the β-morphism where gi : Ai → Dβ(i) is induced by the projection
Ai → Aβ(i). Then g• is an approximate inverse for the inclusion D• → A•.

Now suppose f• : A• → B• is an α-morphism with zero kernel and cokernel. Let
J ′ := α(I) ⊂ J , and define β ′ : J ′ → I by β′(j) = minα−1(j). Define a cofinal map
σ : J → J ′ by σ(j) := max{j ′ ∈ J ′ | j′ ≤ j}; let β : J → I be the composition β ′ ◦ σ, and

define a β-morphism g• by gj := f−1
β(j) ◦ q

σ(j)
j . Then g• is the desired approximate inverse

for f•. q.e.d.

Lemma 4.12. Let f• : A• → B• be a morphism.

1. If f• has an approximate inverse then it is an approximate isomorphism.

2. If f• is an approximate isomorphism and I, J ∼= Z+ then f• has an approximate
inverse.

Proof. Let f• : A• → B• and g• : B• → A• be α and β morphisms respectively, and let
g• be an approximate inverse for f•. Since h• := g• ◦ f• is equivalent to idA•

then for all

i there is an i′ ≥ i so that ĥi
i′ is defined and ĥi

i′ = pi
i′ . Letting γ := β ◦ α we have, by the

definition of the saturation ĥ••, p
i
i′ = ĥi

i′ = pi
γ(i) ◦hi′ . So Ker(hi′) ⊂ Ker(p

i
i′). Thus f• is an

approximate monomorphism. The proof that f• is an approximate epimorphism is similar.
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We now prove part 2. Let {Ki}i∈I be the kernel of f•, let {Qi}i∈I = {Ai/Ki}i∈I

be the quotient system, and let {Dj}j∈J be the image of f•. Then f• may be factored
as f• = t• ◦ s• ◦ r• where r• : A• → Q• is induced by the epimorphisms Ai → Ai/Ki,
s• : Q• → D• is induced by the homomorphisms of quotients, and t• : D• → B• is the
inclusion. By Lemma 4.11, s• has an approximate inverse. When the kernel and cokernel
of f• are pro-zero then r• and t• also admit approximate inverses by Lemma 4.11. Hence
f• has an approximate inverse in this case. q.e.d.

Below we relate the notions of α-morphisms, approximate monomorphisms (epimorphisms,
isomorphisms) with Grothendieck’s pro-morphisms. Strictly speaking this is unnecessary
for the purposes of this paper, however it puts our definitions into perspective. Also,
readers who prefer the language of pro-categories may use Lemma 4.14 and Corollary 4.15
to translate the theorems of sections 6 and 7 into pro-theorems.

Definition 4.13. Let {Ai}i∈I , {Bj}j∈J be inverse systems. The group of pro-mor-
phisms proHom(A•, B•) is defined as

lim
←−
j∈J

lim
−→
i∈I

Hom(Ai, Bj)

(see [23], [1, Appendix 2], [15, Ch II, §1]). The identity pro-morphism is the element of
proHom(A•, A•) determined by (idAj

)j∈I ∈
∏

j lim
−→
i∈I

Hom(Ai, Aj).

This yields a category7 Pro-Abelian where the objects are inverses systems of abelian groups
and the morphisms are the pro-morphisms. A pro-isomorphism is an isomorphism in this
category.

By the definitions of direct and inverse limits, an element of proHom(A•, B•) can be
represented by an admissible “sequence”

([hj

ρ(j)
: Aρ(j) → Bj ])j∈J

of equivalence classes of homomorphisms hj

ρ(j) : Aρ(j) → Bj; here two homomorphisms

hj
i : Ai → Bj , h

j
k : Ak → Bj are equivalent if there exists ` ≥ i, k such that

hj
i ◦ p

i
` = hj

k ◦ p
k
` ;

and the “sequence” is admissible if for each j ≥ j ′ there is an i ≥ max{ρ(j), ρ(j ′)} so that

qj′

j ◦ h
j
ρ(j) ◦ p

ρ(j)
i = hj′

ρ(j′) ◦ p
ρ(j′)
i .

Given a cofinal map α : I → J between directed sets, we may construct8 a function
ρ : J → I so that α(ρ(j)) ≥ j for all j; then any α-morphism f• : A• → B• induces

an admissible sequence ([f̂ j
ρ(j) : Aρ(j) → Bj ]}j∈J . The corresponding element pro(f•) ∈

proHom(A•, B•) is independent of the choice of ρ by condition (4.3) of Definition 4.2.

Lemma 4.14. 1. If f : A• → B• and g : A• → B• are morphisms, then pro(f) = pro(g)
iff f• is equivalent to g•. In other words, pro descends to a faithful functor from Approx to
Pro-Abelian.

2. When I, J ∼= Z+ then every pro-morphism from A• to B• arises as pro(f•) for some
approximate morphism f• : A• → B•. Thus pro descends to a fully faithful functor from
Approx to Pro-Abelian in this case.

7By relaxing the definition of inverse systems, this category becomes an abelian category, [1, Appendix
4]. However we will not discuss this further.

8Using the axiom of choice we pick ρ(j) ∈ α−1(j).
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Proof. The first assertion follows readily from the definition of proHom(A•, B•) and
Definition 4.10.

Suppose I, J ∼= Z+ and φ ∈ proHom(A•, B•) is represented by an admissible sequence

([hj

ρ0(j) : Aρ0(j) → Bj ])j∈J .

We define ρ : J → I and another admissible sequence (h̄j
ρ(j) : Aρ(j) → Bj)j∈J representing

φ by setting ρ(0) = ρ0(0), h̄
0
ρ(0) := h0

ρ0(0), and inductively choosing ρ(j), h̄j

ρ(j)
so that

ρ(j) > ρ(j − 1), h̄j
ρ(j) := hj

ρ0(j) ◦ p
ρ0(j)
ρ(j) and qj−1

j ◦ h̄j
ρ(j) = h̄j−1

ρ(j−1) ◦ p
ρ(j−1)
ρ(j) . Note that the

mapping ρ is strictly increasing and hence cofinal. Now define a cofinal map α : Z+ → Z+

by setting α(i) := max{j | ρ(j) ≤ i} for i ≥ ρ(0) = ρ0(0). We then get an α-morphism

f• : A• → B• where fi := h̄
α(i)
ρ(α(i)) ◦ p

ρ(α(i))
i . Clearly pro(f•) = (h̄j

ρ(j))j∈J . q.e.d.

Corollary 4.15. Suppose I, J ∼= Z+ and f• : A• → B• is a morphism. Then f• is an
approximate isomorphism iff pro(f•) is a pro-isomorphism.

Proof. By Lemma 4.12, f• is an approximate isomorphism iff it represents an invertible
element of Approx, and by Lemma 4.14 this is equivalent to saying that pro(f•) is invertible
in Pro-Abelian. q.e.d.

5. Recognizing groups of type FPn. The main result in this section is Theorem 5.11,
which gives a characterization of groups G of type FPn in terms of nested families of G-
chain complexes, and Lemma 5.1 which relates the cohomology of G with the corresponding
cohomology of the G-chain complexes. A related characterization of groups of type FPn

appears in [11]. We will apply Theorem 5.11 and Lemma 5.1 in section 8 to show that
peripheral subgroups Hi are of type FP.

Suppose for i = 0, . . . , N we have an augmented chain complex A∗(i) of projective ZG-
modules, and for i = 1, . . . , N we have an augmentation preserving G-equivariant chain
map ai : A∗(i − 1) → A∗(i) which induces zero on reduced homology in dimensions < n.
Let G be a group of type FPk, and let

0← Z← P0 ← . . .← Pk

be a chain complex of finitely generated projective ZG-modules. We assume that k ≤ n ≤
N .

Lemma 5.1. Under the above conditions we have:

1. There is an augmentation preserving G-equivariant chain mapping P∗ → A∗(n).

2. If k < n and ji : P∗ → A∗(0) are augmentation preserving G-equivariant chain

mappings for i = 1, 2, then the compositions P∗
ji→ A∗(0) → A∗(k) are G-equivariantly

chain homotopic.

Proof of 1. We start with the diagram

P0

↓
Z ← A0(0).

Then projectivity of P0 implies that we can complete this to a commutative diagram by
a ZG-morphism f0 : P0 → A0(0). Assume inductively that we have constructed a G-
equivariant augmentation preserving chain mapping fj : [P∗]j → A∗(j). Then the image of

the composition Pj+1
∂
→ Pj

fj
→ Aj(j)→ Aj(j+1) is contained in the image of Aj+1(j+1)

∂
→

Aj(j + 1) since aj+1 induces zero on reduced homology. So projectivity of Pj+1 allows us
to extend fj to a G-equivariant chain mapping fj+1 : [P∗]j+1 → A∗(j + 1).

Proof of 2. Similar to the proof of 1: Use induction and projectivity of the P`’s. q.e.d.

We now assume in addition that P∗ is a partial resolution of Z. Then
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18 MICHAEL KAPOVICH AND BRUCE KLEINER

Lemma 5.2. Suppose k < n and f : P∗ → A∗(0) is an augmentation preserving G-
equivariant chain mapping. Then for any ZG-module M , the map

Hi(f) : H i(A∗(0);M)→ H i(P∗;M)

carries the image Im(H i(A∗(n);M) → H i(A∗(0);M)) isomorphically onto H i(P∗;M) for
i = 0, . . . k − 1. The map

Hi(f) : Hi(P∗;M)→ Hi(A∗(n);M)

is an isomorphism onto the image of Hi(A∗(0);M) → Hi(A∗(n);M) for i = 0, . . . k − 1.
The map

Hk(f) : Hk(P∗;M)→ Hk(A∗(n);M)

is onto the image of Hk(A∗(0);M) → Hk(A∗(n);M).

Proof. Let ρ∗ : [A∗(n)]k → P∗ be a G-equivariant chain mapping constructed using the
fact that Hi(P∗) = {0} for i < k. Consider the compositions

αk−1 : [P∗]k−1
f∗
→ [A∗(0)]k−1 → [A∗(n)]k−1

ρ∗
→ P∗

and

βk : [A∗(0)]k → [A∗(n)]k
ρ∗
→ [P∗]k

f∗
→ [A∗(0)]k → A∗(n).

Both are (G-equivariantly) chain homotopic to the inclusions; the first one since P∗ is
a partial resolution, and the second by applying assertion 2 of Lemma 5.1 to the chain
mapping [A∗(0)]k → A∗(0). Assertion follows immediately from this. q.e.d.

We note that the above lemmas did not require any finiteness assumptions on the ZG-
modules Ai(j). Suppose now that the group G satisfies assumptions in Lemma 5.2 and
let G y X be a free simplicial action on a uniformly (n − 1)-acyclic locally finite metric
simplicial complex X, k ≤ n − 1. Then by part 1 of Lemma 5.1 we have a G-equivariant
augmentation-preserving chain mapping f : P∗ → C∗(X). Let K ⊂ X be the support of
the image of f . It is clear that K is G-invariant and K/G is compact. As a corollary of the
proof of the previous lemma, we get:

Corollary 5.3. Under the above assumptions the direct system of reduced homology
groups {H̃i(NR(K))}R≥0 is approximately zero for each i < k.

Proof. Given R > 0 we consider the system of chain complexes A∗(0) := C∗(NR(K)),

A∗(1) = A∗(2) = ... = A∗(N) = C∗(X). The mapping [A∗(0)]k
βk→ A∗(N) = C∗(X) from

the proof of Lemma 5.1 is chain homotopic to the inclusion via a G-equivariant homotopy
hR. On the other hand, this map factors through P∗, hence it induces zero mapping of the
reduced homology groups

H̃i(NR(K))
0
→ H̃i(Support(Im(βk))), i < k.

The support of Im(hR) is contained in NR′(K) for some R′ <∞, since hR is G-equivariant.

Hence the inclusion NR(K)→ NR′(K) induces zero map of H̃i(·) for i < k. q.e.d.

Before stating the next corollary, we recall the following fact:

Lemma 5.4. (See [12].) Let G y X be a discrete, free, cocompact action of a group on
a simplicial complex. Then the complex of compactly supported simplicial cochains C ∗c (X)
is canonically isomorphic to the complex HomZG(C∗(X); ZG); in particular, the compactly
supported cohomology of X is canonically isomorphic to H ∗(X/G; ZG).

In the next corollary we assume that G, P∗, X, f , K are as above, in particular, X is a
uniformly (n− 1)-acyclic locally finite metric simplicial complex, and for some k ≤ n− 1,

Pk → ...→ P0 → Z→ 0

is a resolution by finitely generated projective ZG modules.
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Corollary 5.5. 1. For any local coefficient system (ZG-module) M the family of maps

Hi(NR(K)/G;M)
f i

R→ Hi(P∗;M)

defines a morphism between the inverse system {H i(NR(K)/G;M)}R≥0 and the constant
inverse system {H i(P∗;M)}R≥0 which is an approximate isomorphism when 0 ≤ i < k.

2. The map

Hi
c(NR(K)) ' H i(NR(K)/G; ZG)

f i
R−→ H i(P∗; ZG)

is an approximate isomorphism when 0 ≤ i < k.

3. The ZG-chain map

fR,∗ : P∗ → C∗(NR(K))

induces a homomorphism of homology groups

fR,i : H̃i(P∗; ZG)→ H̃i(NR(K))

which is an approximate isomorphism for 0 ≤ i < k.

Proof. 1. According to Corollary 5.3 the direct system of reduced homology groups
{H̃i(NR(K))} is approximately zero for each i < k. Thus for N > k we have a sequence of
integers R0 = 0 < R1 < R2 < ... < RN so that the maps

H̃i(NRj
(K))→ H̃i(NRj+1(K))

are zero for each j < N, i < k. We now apply Lemma 5.1 where A∗(j) := C∗(NRj
(K)).

2. This follows from part 1 and Lemma 5.4.

3. Note that H̃i(P∗; ZG) ' {0} for i < k; this follows directly from the definition of a
group of type FPk. Thus the assertion follows from Corollary 5.3. q.e.d.

There is also an analog of Corollary 5.5 which does not require a group action:

Lemma 5.6. Let X and Y be bounded geometry metric simplicial complexes, where Y

is uniformly (k − 1)-acyclic and X is uniformly k-acyclic. Suppose C∗(Y )
f
→ C∗(X) is a

chain mapping which is a uniform embedding, and K := Support(Im(f)) ⊂ X. Then

1. The induced map on cohomology

Hi
c(f) : H i

c(NR(K))→ H i
c(Y )

defines a morphism between the inverse system {H i
c(NR(K))}R≥0 and the constant inverse

system {H i
c(Y )}R≥0 which is an approximate isomorphism for 0 ≤ i < k, and an approxi-

mate monomorphism for i = k.

2. The approximate isomorphism approximately respects support in the following sense.
There is a function ζ : N→ N so that if i < k, S ⊂ Y is a subcomplex,

T := Support(f∗(C∗(S))) ⊂ X

is the corresponding subcomplex of X, and α ∈ Im(H i
c(Y, Y − S)→ H i

c(Y )), then α belongs
to the image of the composition

Hi
c(NR(K), NR(K)−Nζ(R)(T ))→ H i

c(NR(K))
Hi

c(f)
−−−−−→ H i

c(Y ).

3. The induced map

H̃i(f) : {0} ' H̃i(Y )→ H̃i(NR(K))

is an approximate isomorphism for 0 ≤ i < k.

4. All functions ω, ω̄ associated with the above approximate isomorphisms and the func-
tion ζ can be chosen to depend only on the geometry of X,Y and f .
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Proof. Since f is a uniform embedding, using the uniform (k − 1)-acyclicity of Y and
uniform k-acyclicity of X, we can construct a direct system {ρR} of uniform embeddings of
the truncated chain complexes

[0← C0(NR(K))← . . .← Ck(NR(K))]
ρR→ [0← C0(Y )← . . .← Ck(Y )]

so that the compositions f ◦ ρR are chain homotopic to the inclusions

[0← C0(NR(K))← . . .← Ck(NR(K))]

→ [0← C0(NR′(K))← . . .← Ck(NR′(K))]

(for R′ = ω(R)) via chain homotopies of bounded support. Moreover the restriction of
the composition ρR ◦ f to the (k − 1)-truncated chain complexes is chain homotopic to the
identity via a chain homotopy with bounded support.

We first prove that the morphism of inverse systems defined by

Hi
c(f) : H i

c(NR(K))→ H i
c(Y )

is an approximate monomorphism. Suppose

α ∈ Ker(H i
c(f) : H i

c(NR′(K))→ H i
c(Y ))

where R′ = ω(R). Then H i(f ◦ρR′)(α) = 0. But the restriction of H i(f ◦ρR′)(α) to NR(K)
is cohomologous to the restriction of α to NR(K).

Since the restriction of the composition ρR ◦ f to the (k − 1)-truncated chain complex
[C∗(Y )]k−1 is chain homotopic to the identity, it follows that

Hi
c(f) : H i

c(NR(K))→ H i
c(Y )

is an epimorphism for R ≥ 0 and i < k.

Part 2 of the lemma follows immediately from the fact that ρR is a uniform embedding
and the coarse Lipschitz property of the chain homotopies constructed above.

We omit the proof of part 3 as it is similar to that of part 2. q.e.d.

Lemma 5.7. Let (X, d) and (X ′, d′) be bounded geometry uniformly acyclic metric
simplicial complexes, Z ⊂ X a subcomplex; suppose f : (Z, d|Z) → (X ′, d′) is a uniform
embedding, and set K := f(Z). Then f “induces” approximate isomorphisms of the direct
and inverse systems

{H∗(NR(Z))}R≥0 → {H∗(NR(K))}R≥0,

{H∗c (NR(Z))}R≥0 → {H
∗
c (NR(K))}R≥0.

As in part 2 of Lemma 5.6 these approximate isomorphisms respect support, and as in part
4 of that lemma, the functions ω, ω̄ can be chosen to depend only on the geometry of X, X ′,
and f .

Proof. We argue as in the previous lemma. Since f is a uniform embedding, using
the uniform acyclicity of X and X ′ we construct direct systems {ρR}, {φr} of uniform
embeddings of chain complexes

C∗(NR(Z))
ρR→ C∗(Nα(R)(K))

(extending f∗ : C∗(Z)→ C∗(K)) and

C∗(Nr(K))
φr
→ C∗(Nβ(r)(Z)),

so that the compositions φα(R) ◦ ρR, ρβ(r) ◦ φr, regarded as maps

C∗(NR(Z))→ C∗(Nω(R)(Z)), C∗(Nr(K))→ C∗(Nω̄(r)(K))

for certain ω(R) ≥ α(R), ω̄(r) ≥ β(r), are chain homotopic to the inclusions

C∗(NR(Z))→ C∗(Nω(R)(Z)), C∗(Nr(K))→ C∗(Nω̄(r)(K))
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via chain homotopies of bounded support. Thus the induced maps of homology (and com-
pactly supported cohomology) groups are approximate inverses of each other. q.e.d.

Note that in the above discussion we used finiteness assumptions on the group G to
make conclusions about (co)homology of families of G-invariant chain complexes. Our next
goal is to use existence of a family of chain complexes A∗(i) of finitely generated projective
ZG modules as in Lemma 5.1 to establish finiteness properties of the group G (Theorem
5.11). We begin with a homotopy-theoretic analog of Theorem 5.11.

Proposition 5.8. Let G be a group, and let X(0)
a1→ X(1)

a2→ . . .
an+1
→ X(n + 1) be a

diagram of free, simplicial G-complexes where X(i)/G is compact for i = 0, . . . n + 1. If
the maps ai are n-connected for each i, then there is an (n+1)-dimensional free, simplicial
G-complex Y where Y/G is compact and Y is n-connected.

Proof. We build Y inductively as follows. Start with Y0 = G where G acts on Y0 by left
translation, and let j0 : Y0 → X(0) be any G-equivariant simplicial map. Inductively apply

Lemma 5.9 below to the composition Yi
ji→ X(i)→ X(i+1) to obtain Yi+1 and a simplicial

G-map ji+1 : Yi+1 → X(i+ 1). Set Y := Yn+1. q.e.d.

Lemma 5.9. Let Z and A be locally finite simplicial complexes with free cocompact
simplicial G-actions, where dim(Z) = k, and Z is (k − 1)-connected. Let j : Z → A,
be a null-homotopic G-equivariant simplicial map. Then we may construct a k-connected
simplicial G-complex Z ′ by attaching (equivariantly) finitely many G-orbits of simplicial 9

(k + 1)-cells to Z, and a G-map j ′ : Z ′ → A extending j.

Proof. By replacing A with the mapping cylinder of j, we may assume that Z is a
subcomplex of A and j is the inclusion map. Let Ak denote the k-skeleton of A. Since Z
is (k − 1)-connected, after subdividing Ak if necessary, we may construct a G-equivariant
simplicial retraction r : Ak → Z. For every (k + 1)-simplex c in A, we attach a simplicial
(k+1)-cell c′ to Z using the composition of the attaching map of c with the retraction r. It
is clear that we may do this G-equivariantly, and there will be only finitely many G-orbits
of (k + 1)-cells attached. We denote the resulting simplicial complex by Z ′, and note that
the inclusion j : Z → A clearly extends (after subdivision of Z ′) to an equivariant simplicial
map j′ : Z ′ → A.

We now claim that Z ′ is k-connected. Since we built Z ′ from Z by attaching (k + 1)-
cells, it suffices to show that πk(Z) → πk(Z

′) is trivial. If σ : Sk → Z is a simplicial map
for some triangulation of Sk, we get a simplicial null-homotopy τ : Dk+1 → A extending σ.

Let Dk+1
k denote the k-skeleton of Dk+1. The composition Dk+1

k

τ
→ A

r
→ Z → Z ′ extends

over each (k + 1)-simplex ∆ of Dk+1, since τ |
∆

: ∆→ A is either an embedding, in which

case r ◦ τ |
∂∆

: ∂∆ → Z ′ is null homotopic by the construction of Z ′, or τ |
∆

: ∆ → A has
image contained in a k-simplex of A, and the composition

∂∆
τ
→ A

r
→ Z

is already null-homotopic. Hence the composition Sk σ
→ Z ↪→ Z ′ is null-homotopic. q.e.d.

The next lemma is a homological analog of Lemma 5.9 which provides the inductive
step in the proof of Theorem 5.11.

Lemma 5.10. Let G be a group. Suppose 0 ← Z
ε
← P0 ← . . . ← Pk is a partial

resolution by finitely generated projective ZG-modules, and Z
ε
← A0 ← . . . ← Ak+1 is an

augmented chain complex of finitely generated projective ZG-modules. Let j : P∗ → A∗
be an augmentation preserving chain mapping which induces zero on homology groups10 .

9A simplicial cell is a simplicial complex PL-homeomorphic to a single simplex.
10We declare that Hk(P∗) := Zk(P∗).
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Then we may extend P∗ to a partial resolution P ′∗:

0← Z
ε
← P0 ← . . .← Pk ← Pk+1

where Pk+1 is finitely generated free, and j extends to a chain mapping j ′ : P ′∗ → A∗.

Proof. By replacing A∗ with the algebraic mapping cylinder of j, we may assume that
P∗ is embedded as a subcomplex of A∗, j is the inclusion, and for i = 0, . . . , k, the chain
group Ak splits as a direct sum of ZG-modules Ai = Pi ⊕Qi where Qi is finitely generated
and projective. Applying the projectivity of Qi, we construct a chain retraction from the
k-truncation [A∗]k of A∗ to P∗. Choose a finite set of generators a1, . . . , a` for the ZG-
module Ak+1. We let Pk+1 be the free module of rank `, with basis a′1, . . . , a

′
`, and define

the boundary operator ∂ : Pk+1 → Pk by the formula ∂(a′i) = r(∂(ai)). To see that
Hk(P

′
∗) = 0, pick a k-cycle σ ∈ Zk(P∗). We have σ = ∂τ for some τ =

∑
ciai ∈ Ak+1. Then

σ = r(∂τ) =
∑
cir(∂ai) =

∑
ci∂a

′
i; so σ is null-homologous in P ′∗. The extension mapping

j′ : P ′∗ → A∗ is defined by a′i 7→ ai, 1 ≤ i ≤ `. q.e.d.

Theorem 5.11. Suppose for i = 0, . . . , N we have an augmented chain complex A∗(i)
of finitely generated projective ZG-modules, and for i = 1, . . . , N we have an augmentation
preserving G-equivariant chain map ai : A∗(i − 1) → A∗(i) which induces zero on reduced
homology in dimensions ≤ n ≤ N .

Then there is a partial resolution

0← Z← F0 ← . . .← Fn

of finitely generated free ZG-modules, and a G-equivariant chain mapping f : F∗ → A(n).
In particular, G is a group of type FPn.

Proof. Define F0 to be the group ring ZG, with the usual augmentation Z← ZG. Then
construct Fi and a chain map Fi → Ai(i) by applying the previous lemma inductively.
q.e.d.

Corollary 5.12. Suppose that G y X is a free simplicial action of a group G on a
metric simplicial complex X. Suppose that we have a system of (nonempty) G-invariant
simplicial subcomplexes X(0) ⊂ X(1) ⊂ ... ⊂ X(N) so that:

(a) X(i)/G is compact for each i,

(b) The induced mappings H̃i(X(k)) → H̃i(X(k + 1)) are zero for each i ≤ n ≤ N and
0 ≤ k < N .

Then the group G is of type FPn.

Proof. Apply Theorem 5.11 to A∗(i) := C∗(X(i)). q.e.d.

Note that the above corollary is the converse to Corollary 5.3. Thus

Corollary 5.13. Suppose that G y X is a free simplicial group action on a uniformly
acyclic bounded geometry metric simplicial complex, K := G(?), where ? ∈ X. Then G is

of type FP if and only if the the direct system of reduced homology groups {H̃∗(NR(K))} is
approximately zero.

Combining Theorem 5.11 and Lemma 5.1 we get:

Corollary 5.14. Suppose for i = 0, . . . , 2n + 1 we have an augmented chain complex
A∗(i) of finitely generated projective ZG-modules, and for i = 1, . . . , 2n + 1 we have aug-
mentation preserving G-equivariant chain maps ai : A∗(i − 1) → A∗(i) which induce zero
on reduced homology in dimensions ≤ n. Then:

1. There is a partial resolution F∗:

0← Z← F0 ← . . .← Fn
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by finitely generated free ZG-modules and a G-equivariant chain mapping f∗ : F∗ → A∗(n).
In particular G is of type FPn.

2. For any ZG-module M , the map H i(f) : H i(A∗(n);M) → H i(F∗;M) carries the
image Im(H i(A(2n);M)→ H i(A(n);M)) isomorphically onto H i(F∗;M) for i = 0, . . . n−
1.

3. The map Hi(f) : Hi(P∗;M)→ Hi(A∗(2n);M) is an isomorphism onto the image of
Hi(A∗(n);M)→ Hi(A∗(2n);M).

We now discuss a relative version of Corollaries 5.5 and 5.14. Let X be a uniformly
acyclic bounded geometry metric simplicial complex, andG a group acting freely and simpli-
cially on X; thus G has finite cohomological dimension since X is acyclic and dim(X) <∞.
Let K ⊂ X be a G-invariant subcomplex so that K/G is compact; and let {Cα}α∈I be the

deep components of X −K. Define YR := X −NR(K), Yα,R := Cα ∩ YR. We will assume
that the system

{H̃j(Yα,R)}R≥0

is approximately zero for each j, α. In particular, {H̃0(Yα,R)}R≥0 is approximately zero,
which implies that each Cα is stable. Let Hα denote the stabilizer of Cα in G. Choose a
set of representatives Cα1 , . . . , Cαk

from the G-orbits in the collection {Cα}. For notational
simplicity we relabel α1, . . . , αk as 1, . . . , k. Let Hi = Hαi

be the stabilizer of Ci = Cαi
. This

defines a group pair (G, {H1, ...,Hk}). Let P∗ be a finite length projective resolution of Z by
ZG-modules, and for each i = 1, . . . , k, we choose a finite length projective resolution of Z

by ZHi-modules Q∗(i). Using the construction described in section 3 (see the discussion of
the group pairs) we convert this data to a pair (C∗, D∗) of finite length projective resolutions
(consisting of ZG-modules). We recall that D∗ decomposes in a natural way as a direct
sum ⊕αD∗(α) where each D(α) is a resolution of Z by projective ZHα-modules. Now
construct a ZHi-chain mapping C∗(Yαi,0)→ D∗(αi) using the acyclicity of D∗(αi). We then
extend this G-equivariantly to a mapping C∗(Y0) → D∗, and then to a ZG-chain mapping
ρ0 : (C∗(X), C∗(Y0))→ (C∗, D∗). By restriction, this defines a morphism of inverse systems
ρR : (C∗(X), C∗(YR))→ (C∗, D∗).

Lemma 5.15. The mapping ρ• induces approximate isomorphisms between relative
(co)homology with local coefficients:

H∗(G, {Hi};M)→ H∗(C∗(X), C∗(YR);M) ' H∗(X/G, YR/G;M)

H∗(X/G, YR/G;M) ' H∗(C∗(X), C∗(YR);M)→ H∗(G, {Hi};M)

for any ZG-module M .

Proof. We will prove the lemma by showing that the maps ρR form an “approximate
chain homotopy equivalence” in an appropriate sense.

For each i we construct a ZHi-chain mapping D∗(i)→ C∗(Yi,R) using part 1 of Lemma
5.1 and the fact that

{H̃j(Yα,R)}R≥0

is an approximately zero system. We then extend these to ZG-chain mappings

fR : (C∗, D∗)→ (C∗(X), C∗(YR)).

Using part 2 of Lemma 5.1, we can actually choose the mappings fR so that they form a
compatible system chain mappings up to chain-homotopy. The composition

ρR ◦ fR : (C∗, D∗)→ (C∗, D∗)

is ZG-chain mapping, hence it is chain-homotopic to the identity. The composition

fR ◦ ρR : C∗(X,YR)→ C∗(X,YR)
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need not be chain homotopic to the identity, but it becomes chain homotopic to the pro-
jection map when precomposed with the restriction C∗(X,YR′)→ C∗(X,YR) where R′ ≥ R
is suitably chosen (by again using part 2 of Lemma 5.1 and the fact that

{H̃j(Yα,R)}R≥0

is an approximately zero system). This clearly implies the induced homomorphisms on
(co)homology are approximate isomorphisms. q.e.d.

6. Coarse Poincare duality. We now introduce a class of metric simplicial complexes
which satisfy coarse versions of Poincare and Alexander duality, see Theorems 6.7, 7.5, 7.7.

¿From now on we will adopt the convention of extending each (co)chain complex indexed
by the nonnegative integers to a complex indexed by the integers by setting the remaining
groups equal to zero. So for each (co)chain complex {Ci, i ≥ 0} we get the (co)homology
groups Hi(C∗),H

i(C∗) defined for i < 0.

Definition 6.1 (Coarse Poincaré duality spaces). A coarse Poincaré duality space of
formal dimension n is a bounded geometry metric simplicial complex X so that C∗(X) is
uniformly acyclic, and there is a constant D0 and chain mappings

C∗(X)
P̄
→ Cn−∗

c (X)
P
→ C∗(X)

so that

1. P and P̄ have displacement ≤ D0 (see section 2 for the definition of displacement).

2. P̄ ◦ P and P ◦ P̄ are chain homotopic to the identity by D0-Lipschitz11 chain
homotopies Φ : C∗(X)→ C∗+1(X), Φ̄ : C∗c (X)→ C∗−1

c (X).

We will often refer to coarse Poincare duality spaces of formal dimension n as coarse
PD(n) spaces. Throughout the paper we will reserve the letter D0 for the constant which
appears in the definition of a coarse PD(n) space; we let D := D0 + 1.

Note that for each coarse PD(n) space X we have

H∗c (X) ' Hn−∗(X) ' Hn−∗(R
n) ' H∗c (Rn).

We will not need the bounded geometry and uniform acyclicity conditions until Theorem
7.7. Later in the paper we will consider simplicial actions on coarse PD(n) spaces, and we
will assume implicitly that the actions commute with the operators P̄ and P , and the chain
homotopies Φ and Φ̄.

The next lemma gives important examples of coarse PD(n) spaces:

Lemma 6.2. The following are coarse PD(n) spaces:

1. An acyclic metric simplicial complex X which admits a free, simplicial, cocompact
action by a PD(n) group.

2. An n-dimensional, bounded geometry metric simplicial complex X, with an aug-
mentation α : Cn

c (X) → Z for the compactly supported simplicial cochain complex, so that
(C∗c (X), α) is uniformly acyclic (see section 2 for definitions).

3. A uniformly acyclic, bounded geometry metric simplicial complex X which is a topo-
logical n-manifold.

Proof of 1. Let 0 ← Z ← P0 ← . . . ← Pn ← 0 be a resolution of Z by finitely
generated projective ZG-modules. X is acyclic, so we have ZG-chain homotopy equivalences

P∗
α
' C∗(X) and Hom(P∗,ZG) ' C∗c (X) where α is augmentation preserving. Hence to

construct the two chain equivalences needed in Definition 6.1, it suffices to construct a ZG-
chain homotopy equivalence p : P∗ → Hom(Pn−∗,ZG) of ZG-modules (since the operators

11See section 2.
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are G-equivariant conditions 1 and 2 of Definition 6.1 will be satisfied automatically). For
this, see [12, p. 221].

Proof of 2. We construct a chain mapping P : C∗(X) → Cn−∗
c (X) as follows. We first

map each vertex v of X to an n-cocycle β ∈ Cn
c (X,X −B(v,R0)) which maps to 1 under

the augmentation α, (such a β exists by the uniform acyclicity of (C ∗c (X), α)), and extend
this to a homomorphism C0(X)→ Cn

c (X). By the uniform acyclicity of (C∗c (X), α) we can
extend this to a chain mapping P . By similar reasoning we obtain a chain homotopy inverse
P̄ , and construct chain homotopies P̄ ◦ P ∼ id and P ◦ P̄ ∼ id.

Proof of 3. X is acyclic, and therefore orientable. An orientation of X determines an
augmentation α : Cn

c (X)→ Z. The uniform acyclicity of X together with ordinary Poincare
duality implies that (C∗c (X), α) is uniformly acyclic. So 3 follows from 2.

We remark that if G y X is a free simplicial action then these constructions can be
made G-invariant. q.e.d.

When K ⊂ X is a (nonempty) subcomplex we will consider the direct system of tubular
neighborhoods {NR(K)}R≥0 of K and the inverse system of the closures of their comple-
ments

{YR := X −NR(K)}R≥0.

We get four inverse and four direct systems of (co)homology groups:

{Hk
c (NR(K))}, {Hj(X,YR)}, {Hk

c (X,NR(K))}, {Hj(YR)}

{Hk
c (YR)}, {Hj(X,NR(K))}, {Hk

c (X,YR)}, {Hj(NR(K))}

with the usual restriction and projection homomorphisms. Note that by excision, we have
isomorphisms

Hj(X,YR) ' Hj(NR(K), ∂NR(K)), etc.

Extension by zero defines a group homomorphism Ck
c (NR+D(K))

ext
⊂ Ck

c (X). When we
compose this with

Ck
c (X)

P
→ Cn−k(X)

proj
→ Cn−k(X,YR)

we get a well-defined induced homomorphism

PR+D : Hk
c (NR+D(K))→ Hn−k(X,YR)

where D is as in Definition 6.1. We get, in a similar fashion, homomorphisms

(6.3) Hk
c (NR+D(K))

PR+D
−→ Hn−k(X,YR)

P̄R−→ Hk
c (NR−D(K))

(6.4) Hk
c (YR)

PR−→ Hn−k(X,NR+D(K))
P̄R+D
−→ Hk

c (YR+2D)

(6.5) Hk
c (X,NR+D(K))

PR+D
−→ Hn−k(YR)

P̄R−→ Hk
c (X,NR−D(K))

(6.6) Hk
c (X,YR)

PR−→ Hn−k(NR+D(K))
P̄R+D
−→ Hk

c (X,YR+2D)

Note that the homomorphisms in (6.3), (6.5) determine α-morphisms between inverse sys-
tems and the homomorphisms in (6.4), (6.6) determine β-morphisms between direct systems,
where α(R) = R−D, β(R) = R+D (see section 4 for definitions). These operators inherit
the bounded displacement property of P and P̄ , see condition 1 of Definition 6.1. We let
ω(R) := R+ 2D, where D is the constant from Definition 6.1.

Theorem 6.7 (Coarse Poincare duality). Let X be a coarse PD(n) space, K ⊂ X be a
subcomplex as above. Then the morphisms P•, P̄• in (6.3), (6.5) are (ω, ω)-approximate
isomorphisms of inverse systems and the morphisms P•, P̄• in (6.4), (6.6) are (ω, ω)-
approximate isomorphisms of direct systems (see section 4). In particular, if X 6= NR0(K)
for any R0 then the inverse systems {Hn

c (NR(K))}R≥0 and {Hn(YR)}R≥0 are approximately
zero.
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Proof. We will verify the assertion for the homomorphism P• in (6.3) and leave the rest
to the reader. We first check that P• is an ω-approximate monomorphism. Let

ξ ∈ Z∗c (NR+2D(K))

be a cocycle representing an element [ξ] ∈ Ker(PR+2D), and let ξ1 ∈ C
∗
c (X) be the extension

of ξ by zero. Then we have

P (ξ1) = ∂η + ζ

where η ∈ Cn−∗(X) and ζ ∈ Cn−∗(X −NR+D(K)). Applying P̄ and the chain homotopy
Φ, we get

δΦ(ξ1) + Φδ(ξ1) = P̄ ◦ P (ξ1)− ξ1 = P̄ (∂η + ζ)− ξ1

so

ξ1 = δP̄ (η) + P̄ (ζ)− δΦ(ξ1)− Φδ(ξ1).

The second and fourth terms on the right hand side vanish upon projection to H ∗c (NR(K)),
so [ξ] ∈ Ker(H∗c (NR+2D(K))→ H∗c (NR(K)).

We now check that P• is an ω-approximate epimorphism. Let

[σ] ∈ Im(Hn−∗(X,X −NR+2D(K))→ Hn−∗(X,X −NR(K))),

then σ lifts to a chain τ ∈ Cn−∗(X) so that ∂τ ∈ Cn−∗(X −NR+2D(K)). Let [τ ] ∈
Hn−∗(X,YR+2D) be the corresponding relative homology class. Applying P and the chain
homotopy Φ̄, we get

P (P̄ (τ))− τ = ∂Φ̄(τ) + Φ̄(∂τ).

Since Φ̄(∂τ) vanishes in Cn−∗(X,X −NR(K)), we get that

[σ] = PR+D(P̄R+2D([τ ])).

The proof of the last assertion about {Hn
c (NR(K))}R≥0 and {Hn(YR)}R≥0 follows since

they are approximately isomorphic to zero systems H0(X,YR) and H0(X,NR(K)). q.e.d.

Corollary 6.8. Suppose W be a bounded geometry uniformly acyclic metric simplicial
complex (with metric dW ), Z ⊂ W and f : (Z, dW |Z) → (X, dX ) be a uniform embedding
to a coarse PD(n) space X.

1. NR(f(Z)) = X for some R iff {Hn
c (NR(Z))}R≥0 is approximately isomorphic to the

constant system Z.

2. If W is a coarse PD(k)-space for k < n then NR(f(Z)) 6= X for any R.

3. If W = Nr(Z) for some r and W is a coarse PD(n)-space then NR(f(Z)) = X for
some R. The thickness R depends only on r, and the geometry of W , X, and f .

Proof. 1. Let K = f(Z). The mapping f induces an approximate isomorphism between
the inverse systems {Hn

c (NR(Z))}R≥0 and {Hn
c (NR(K))}R≥0 (see Lemma 5.7), and the

latter is approximately isomorphic to {H0(X,X −NR(K))}R≥0 by coarse Poincare duality.

Note that H0(X,X −NR(K)) = 0 unless NR(K) = X, in which case H0(X,X −NR(K)) =
Z. In the latter case {Hn

c (NR(Z))}R≥0 is approximately isomorphic to Z. In the former
case {Hn

c (NR(Z))}R≥0 is approximately zero.

2. If W is a coarse PD(k)-space then by applying Theorem 6.7 to Z ⊂ W we get that
{Hn

c (NR(Z))}R≥0 is approximately zero (recall our convention that both homology and
cohomology groups are defined to be zero in negative dimensions). Thus 2 follows from 1.

3. This follows by applying part 1 twice. q.e.d.
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7. Coarse Alexander duality and coarse Jordan separation. In this section as in
the previous one, we extend complexes indexed by the nonnegative integers to complexes
indexed by Z, by setting the remaining groups equal to zero.

Let X, K, D, YR, and ω be as in the preceding section. Composing the morphisms
P• and P̄• with the boundary operators for long exact sequences of pairs, we obtain the
compositions AR+D

(7.1) H∗c (NR+D(K))
PR+D

−−−−−→ Hn−∗(X,YR)
∂
' H̃n−∗−1(YR)

and ĀR+D

(7.2) H̃n−∗−1(YR+D)
∂−1

' Hn−∗(X,YR+D)
P̄R+D

−−−−−→ H∗c (NR(K)).

Similarly, composing the maps from (6.3)-(6.4) with boundary operators and their inverses,
we get:

(7.3) H∗c (YR)
AR−→ H̃n−∗−1(NR+D(K))

and

(7.4) H̃n−∗−1(NR(K))
ĀR−→ H∗c (YR+D).

Theorem 7.5 (Coarse Alexander duality). 1. The morphisms A• and Ā• in (7.1)-(7.4)
are (ω, ω)-approximate isomorphisms.

2. The maps A• in (7.1) and (7.3) have displacement at most D. The map Ā• in (7.2)
(respectively (7.4)) has displacement at most D in the sense that if σ ∈ Zn−∗−1(YR+D)
(σ ∈ Zn−∗−1(NR(K)), and σ = ∂τ for τ ∈ Cn−∗(X), then the support of ĀR+D([σ])
(respectively ĀR([σ])) is contained in ND(Support(τ)).

Like ordinary Alexander duality, this theorem follows directly from Theorem 6.7, and the
long exact sequence for pairs.

Combining Theorem 7.5 with Corollary 5.5 we obtain:

Theorem 7.6 (Coarse Alexander duality for FPk groups). Let X be a coarse PD(n)
space, and let G, P∗, G y X, f , and K be as in the statement of Corollary 5.5. Then

1. The family of compositions

H̃n−i−1(YR+D)
Ā
→ Hi

c(NR(K))
f i

R−→ H i(P∗; ZG)

defines an approximate isomorphism when i < k, and an approximate monomorphism when
i = k. Recall that for i < k we have a natural isomorphism H i(P∗,ZG) ' H i(G,ZG).

2. The family of compositions

H̃i(P∗; ZG)→ H̃i(NR(K))
ĀR−→ Hn−i−1

c (YR+D)

is an approximate isomorphism when i < k, and an approximate epimorphism when i = k.
Recall that H̃i(P∗; ZG) = {0} for i < k since G is of type FPk.

Theorem 7.7 (Coarse Alexander duality for maps). Suppose X is a coarse PD(n)
space, X ′ is a bounded geometry uniformly (k − 1)-acyclic metric simplicial complex,
and f : C∗(X

′) → C∗(X) is a chain map which is a uniform embedding. Let K :=

Support(f(C∗(X
′)), YR := X −NR(K). Then:

1. The family of compositions

H̃n−i−1(YR+D)
Ā
→ Hi

c(NR(K))
Hi

c(fR)
−−−−−→ H i

c(X
′)

defines an approximate isomorphism when i < k, and an approximate monomorphism when
i = k.
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2. The family of compositions

H̃i(X
′)→ H̃i(NR(K))

ĀR−→ Hn−i−1
c (YR+D)

is an approximate isomorphism when i < k, and an approximate epimorphism when i = k.12

3. Furthermore, these approximate isomorphisms approximately respect support in
the following sense. There is a function ζ : N → N so that if i < k, S ⊂ X ′ is
subcomplex, T := Support(f∗(C∗(S))) ⊂ X is the corresponding subcomplex of X, and
α ∈ Im(H i

c(X
′, X ′ − S)→ H i

c(X
′)), then α belongs to the image of the composition

H̃n−i−1(YR ∩Nζ(R)(T ))→ H̃n−i−1(YR)
Hi

c(f)◦Ā
−−−−−→ H i

c(X
′).

4. If k = n+ 1, then Hn
c (X ′) = {0} unless NR(K) = X for some R.

Proof. Parts 1, 2 and 3 of Theorem follow from Lemma 5.6 and Theorem 7.5. Part 4
follows since for i = n, {H̃n−i−1(YR+D)} = {0} is approximately isomorphic to the constant
system {Hn

c (X ′)}. q.e.d.

We now give a number of corollaries of coarse Alexander duality.

Corollary 7.8 (Coarse Jordan separation for maps). Let X and X ′ be n-dimensional
and (n− 1)-dimensional coarse Poincaré duality spaces respectively, and let g : X ′ → X be
a uniform embedding. Then

1. g(X ′) coarsely separates X into (exactly) two components.

2. For every R, each point of NR(g(X ′)) lies within uniform distance from each of the

deep components of YR := X −NR(g(X ′)).

3. If Z ⊂ X ′, X ′ 6⊂ NR(Z) for any R and h : Z → X is a uniform embedding, then h(Z)
does not coarsely separate X. Moreover, for any R0 there is an R1 > 0 depending only on
R0 and the geometry of X,X ′, and h such that precisely one component of X −NR0(h(Z))
contains a ball of radius R1.

Proof. We have the following diagram:

H̃0(YR)
Hn−1

c (g)◦Ā
−−−−−→ Hn−1

c (X ′) = Z

↑

lim
←−
R

H̃Deep
0 (YR)

where the family of morphismsHn−1
c (g)◦Ā gives rise to an approximate isomorphism. Thus

lim
←−
R

H̃Deep
0 (YR) = Z

which implies 1. Let x ∈ NR(K). Then there exists a representative α of a generator of
Hn−1

c (X ′) such that Hn−1
c (g)(α) ∈ Cn−1

c (X) is supported uniformly close to x. We apply
Part 3 of Theorem 7.7 to the class [Hn−1

c (g)(α)] to prove 2.

To prove part 3, we first note that by Corollary 6.8 we have X − NR(h(Z)) 6= ∅ for
all R. By Lemma 5.7 and coarse Alexander duality (Theorem 7.5) the inverse system

{H̃0(X −NR(h(Z)))}R≥0 is approximately zero. But this means that there is precisely one
deep component of X − NR(f(Z)) for every R; it also implies the second half of part 3.
q.e.d.

As a special case of the above corollary we have:

12The function ω for the above approximate isomorphisms depends only on the distortion of f , the
acyclicity functions for X and X ′, and the bounds on the geometry of X and X ′.
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Corollary 7.9 (Coarse Jordan separation for submanifolds). Let X and X ′ be n-
dimensional and (n − 1)-dimensional uniformly acyclic PL-manifolds respectively, and let
g : X ′ → X be a uniform embedding. Then the assertions 1, 2 and 3 from the preceding
theorem hold.

Similarly to the Corollary 7.8 we get:

Corollary 7.10 (Coarse Jordan separation for groups). Let X be a coarse PD(n)-space
and G be a PD(n− 1)-group acting freely simplicially on X. Let K ⊂ X be a G-invariant
subcomplex with K/G compact. Then:

1. G coarsely separates X into (exactly) two components.

2. For every R, each point of NR(K) lies within uniform distance from each of the deep

components of X −NR(K).

Lemma 7.11. Let W be a bounded geometry metric simplicial complex which is home-
omorphic to a union of W = ∪i∈IWi of k half-spaces Wi ' R

n−1
+ along their boundaries.

Assume that for i 6= j, the union Wi ∪Wj is uniformly acyclic and is uniformly embedded
in W . Let g : W → X be a uniform embedding of W into a coarse PD(n) space X. Then
g(W ) coarsely separates X into k components. Moreover, there is a unique cyclic ordering
on the index set I so that for R sufficiently large, the frontier of each deep component C
of X − NR(g(W )) is at finite Hausdorff distance from g(Wi) ∪ g(Wj) where i and j are
adjacent with respect to the cyclic ordering.

Proof. We have Hn−1
c (W ) ' Z

k−1, so, arguing analogously to Corollary 7.8, we see that
g(W ) coarsely separates X into k components. Applying coarse Jordan separation and the
fact that no Wi coarsely separates Wj in W , we can define the desired cyclic ordering by
declaring that i and j are consecutive iff g(Wi)∪ g(Wj) coarsely separates X into two deep
components (Corollary 7.8), one of which is a deep component of X − g(W ). We leave the
details to the reader. q.e.d.

Lemma 7.12. Suppose G is a group of type FPn−1 of cohomological dimension ≤ n−1,
and let P∗, f , G y X, K ⊂ X and YR be as in Theorem 7.6. Then every deep component
of YR is stable for R ≥ D; in particular, there are only finitely many deep components of
YR modulo G. If dim(G) < n− 1 then there is only one deep component.

Proof. The composition

(7.13) lim
←−

R

H̃Deep
0 (YR)→ H̃Deep

0 (YD)
f i

D
◦ĀD

−−−−−→ Hn−1(P∗; ZG)

is an isomorphism by Theorem 7.6. Therefore

H̃Deep
0 (YR)→ H̃Deep

0 (YD)

is a monomorphism for any R ≥ D, and hence every deep component of YD is stable. If
dim(G) < n − 1 then Hn−1(P∗,ZG) = {0}, and by (7.13) we conclude that YD contains
only one deep component. q.e.d.

Another consequence of coarse Jordan separation is:

Corollary 7.14. Let G y X be a free simplicial action of a group G of type FP on
a coarse PD(n) space X, and let K ⊂ X be a G-invariant subcomplex on which G acts
cocompactly. By Lemma 7.12 there is an R0 so that all deep components of X − NR0(K)
are stable; hence we have a well-defined collection of deep complementary components {Cα}
and their stabilizers {Hα}. If H ⊂ G is a PD(n − 1) subgroup, then one of the following
holds:

1. H coarsely separates G.

2. H has finite index in G, and so G is a PD(n− 1) group.

PROOF COPY NOT FOR DISTRIBUTION



30 MICHAEL KAPOVICH AND BRUCE KLEINER

3. H has finite index in Hα for some α.

In particular, G contains only finitely many conjugacy classes of maximal, coarsely
non-separating PD(n− 1) subgroups.

Proof. We assume that H does not coarsely separate G. Pick a base-point ? ∈ K,
and let W := H(?) be the H-orbit of ?. Then by Corollary 7.10 there is an R1 so that
X − NR1(W ) has two deep components C+, C− and both are stable. Since H does not
coarsely separate G, we may assume that K ⊂ NR2(C−) for some R2. Therefore C+ has
finite Hausdorff distance from some deep component Cα of X − NR0(K), and clearly the
Hausdorff distance between the frontiers ∂C+ and ∂Cα is finite. Either H preserves C+ and
C−, or it contains an element h which exchanges the two. In the latter case, h(Cα) is within
finite Hausdorff distance from C−; so in this case K is contained in Nr(W ) for some r, and
this implies 2. When H preserves C+ then we have H ⊂ Hα, and since H acts cocompactly
on ∂C+, it also acts cocompactly on ∂Cα and hence [Hα : H] <∞. q.e.d.

8. The proof of Theorem 1.1. Sketch of the proof of Theorem 1.1. Consider an
action G y X as in the statement of Theorem 1.1. Let K ⊂ X be a G-invariant subcom-
plex with K/G compact. By Lemma 7.12 the deep components of X − NR(K) stabilize
at some R0, and hence we have a collection of deep components Cα and their stabilizers
Hα. Naively one might hope that for some R ≥ R0, the tubular neighborhood NR(K) is
acyclic, and the frontier of NR(K) breaks up into connected components which are in one-
to-one correspondence with the Cα’s, each of which is acyclic and has the same compactly
supported cohomology as R

n−1. Of course, this is too much to hope for, but there is a
coarse analog which does hold. To explain this we first note that the systems H̃∗(NR(K))
and H∗c (NR(K)) are approximately zero and approximately constant respectively by Corol-

lary 5.5. Applying coarse Alexander duality, we find that the systems H ∗c (YR) and H̃∗(YR)

corresponding to the complements YR := X −NR(K) are approximately zero and approx-
imately constant, respectively. Instead of looking at the frontiers of the neighborhoods
NR(K), we look at metric annuli A(r,R) := NR(K)−Nr(K) for r ≤ R. One can try to
compute the (co)homology of these annuli using a Mayer-Vietoris sequence for the covering
X = NR(K)∪Yr; however, the input to this calculation is only approximate, and the system
of annuli does not form a direct or inverse system in any useful way. Nonetheless, there are
finite direct systems of nested annuli of arbitrary depth for which one can understand the
(co)homology, and this allows us13 to apply results from section 5 to see that the Hα’s are
Poincare duality groups.

The proof of Theorem 1.1. We now assume that G is a group of type FP acting freely
and simplicially on a coarse PD(n) space X. This implies that dim(G) ≤ n, so by Lemma
3.2 there is a resolution 0→ Pn → . . .→ P0 → Z→ 0 of Z by finitely generated projective
ZG-modules. We may construct G-equivariant (augmentation preserving) chain mappings
ρ : C∗(X)→ P∗ and f : P∗ → C∗(X) using the acyclicity of C∗(X) and P∗; the composition
ρ◦f : P∗ → P∗ is ZG-chain homotopic to the identity. If L ⊂ X is a G-invariant subcomplex
for which L/G is compact, then we get an induced homomorphism

H∗(G; ZG)
H∗(ρ)
−→ H∗(X/G; ZG)→ H∗(L/G; ZG) ' H∗c (L);

abusing notation we will denote this composition by H ∗(ρ).

Let K ⊂ X be a connected, G-invariant subcomplex so that K/G is compact and the

image of f is supported in K. For R ≥ 0 set YR := X −NR(K). Corollary 5.5 tells us that
the families of maps

(8.1) {0} → {H̃∗(P∗; ZG)} → {H̃∗(NR(K))}

13There is an extra complication in calculating Hn−1
c for the annuli which we’ve omitting from this sketch.
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(8.2) H∗c (f) : H∗c (NR(K))→ H∗(G; ZG) ' H∗(P ; ZG).

define approximate isomorphisms. Applying Theorems 7.6 we get approximate isomor-
phisms

(8.3) {0} → Hk
c (YR) for all k

and

(8.4) φk,R : H̃k(YR)→ Hn−k−1(P∗; ZG) ' Hn−k−1(G; ZG) for all k.

We denote φ∗,D by φ∗.

We now apply Lemma 7.12 to see that every deep component of X −ND(K) is stable.
Let {Cα} denote the collection of deep components of X−ND(K), and set YR,α := YR∩Cα

and ZR,α := X − YR,α. Note that for every α, and D < r < R we have ZR,α ∩ Yr,α =

NR(K)−Nr(K) ∩ Cα.

Lemma 8.5. 1. There is an R0 so that if R ≥ R0 then YR,α = X − ZR,α and ZR,α =
NR−R0(ZR0 ,α).

2. The systems {H̃k(YR,α)}, {H̃k(ZR,α)}, {Hk
c (YR,α)}, {Hk

c (ZR,α)} are approximately
zero for all k.

Proof. Pick R0 large enough that all shallow components of X −ND(K) are contained
in NR0−1(K). Then for all R ≥ R0, ∂Cα ∩ YR = ∅ and hence YR,α, like YR itself, is the

closure of its interior; this implies that YR,α = X −X − YR,α = X − ZR,α. We also have
ZR,α = NR(K) t (tβ 6=αCβ) for all R ≥ R0. Since tβ 6=αNR(Cβ) ⊂ NR0+R(K) ∪ (tβ 6=αCβ),
we get

NR(ZR0 ,α) = NR0+R(K) ∪ (tβ 6=αNR(Cβ))

= NR0+R(K) ∪ (tβ 6=αCβ)

= ZR0+R,α.

Thus we have proven 1.

To prove 2, we first note that {H̃0(YR,α)} is approximately zero by the stability of the
deep components Cα. When R ≥ R0 then ZR,α is connected (since NR(K) and each Cβ are

connected), and this says that {H̃0(ZR,α)} is approximately zero. When R ≥ R0 then YR is
the disjoint union tαYR,α, so we have direct sum decompositionsHk(YR) = ⊕αHk(YR,α) and

Hk
c (YR) = ⊕αH

k
c (YR,α) which are compatible projection homomorphisms. This together

with (8.3) and (8.4) implies that {H̃k(YR,α)} and {Hk
c (YR,α)} are approximately zero for all

k. By part 1 and Theorem 7.5 we get that {Hk
c (ZR,α)} and {H̃k(ZR,α)} are approximately

zero for all k. q.e.d.

Lemma 8.6. There is an Rmin > D so that for any R ≥ Rmin and any integer M ,
there is a sequence R ≤ R1 ≤ R2 ≤ ... ≤ RM with the following property. Let A(i, j) :=

NRj
(K)−NRi

(K) ⊂ YRi
, and Aα(i, j) := A(i, j) ∩ Cα. Then for each 1 < i < j < M ,

1. The image of H̃k(A(i, j)) → H̃k(A(i− 1, j + 1)) maps isomorphically onto
Hn−k−1(G; ZG) under the composition

H̃k(A(i − 1, j + 1))→ H̃k(YD)
φk→ Hn−k−1(G; ZG)

for 0 ≤ k ≤ n− 1. The homomorphism

H̃n(A(i, j)) → H̃n(A(i− 1, j + 1))

is zero.

2. Hk(ρ) : Hk(G; ZG) → Hk
c (A(i, j)) maps Hk(G; ZG) isomorphically onto the image

of Hk
c (A(i − 1, j + 1))→ Hk

c (A(i, j)) for 0 ≤ k < n− 1.
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3. There is a system of homomorphisms Hn−1
c (Aα(i, j))

θα
i,j
−→ Z (compatible with the

inclusions Aα(i, j) → Aα(i − 1, j + 1)) so that the image of Hn−1
c (Aα(i − 1, j + 1)) →

Hn−1
c (Aα(i, j)) maps isomorphically to Z under θα

i,j.

4. For each α, H̃0(Aα(i, j))
0
→ H̃0(Aα(i− 1, j + 1)).

Proof. We choose Rmin large enough so that for any R ≥ Rmin, the following inductive
construction is valid. Let R1 := R. Using the approximate isomorphisms (8.1), (8.2), (8.3),
(8.4), and Lemma 8.5, we inductively choose Ri+1 so that:

A. H̃k(NRi
(K))

0
→ H̃k(NRi+1(K)) for 0 ≤ k ≤ n.

B. Im(H̃k(YRi+1) → H̃k(YRi
)) maps isomorphically to Hn−k−1(G; ZG) under φk,Ri

for

0 ≤ k < n, and Im(H̃k(YRi+1)→ H̃k(YRi
)) is zero when k = n.

C. Im(H∗c (NRi+1(K)) → H∗c (NRi
(K))) maps isomorphically onto H∗(G; ZG) under

H∗c (f).

D. H∗c (YRi
)

0
→ H∗c (YRi+1).

E. For each α, Hn−1
c (YRi,α)

0
→ Hn−1

c (YRi+1,α), and Hn−1
c (ZRi+1,α)

0
→ Hn−1

c (ZRi,α).

F. For each α, H̃0(YRi+1,α)
0
→ H̃0(YRi,α) and H̃0(ZRi,α)

0
→ H̃0(ZRi+1,α).

Now take 1 < i < j < M , and consider the map of Mayer-Vietoris sequences for the
decompositions X = NRj

(K) ∪ YRi
and X = NRj+1(K) ∪ YRi−1 :

H̃k+1(X)→ H̃k(A(i, j)) → H̃k(NRj
(K))⊕ H̃k(YRi

) → H̃k(X)
↓ ↓ 0 ↓ ↓ ↓

H̃k+1(X)→ H̃k(A(i − 1, j + 1))→ H̃k(NRj+1(K))⊕ H̃k(YRi−1) → H̃k(X)

↓ φk|A(i−1,j+1)
↓ φk

Hn−k−1(G,ZG)→ Hn−k−1(G,ZG)

Since H̃∗(X) = {0}, conditions A and B and the diagram imply the first part of assertion
1. The same Mayer-Vietoris diagram for k = n implies the second part.

Let 0 ≤ k < n− 1. Consider the commutative diagram of Mayer-Vietoris sequences:

Hk(G,ZG)→ Hk(G,ZG)
Hk(ρ) ↓ Hk(ρ) ↓

Hk
c (X)→ Hk

c (NRj+1(K))⊕Hk
c (YRi−1)→ Hk

c (A(i − 1, j + 1)) → Hk+1
c (X)

↓ ↓ 0 ↓ ↓ ↓
Hk

c (X)→ Hk
c (NRj

(K))⊕Hk
c (YRi

)→ Hk
c (A(i, j)) → Hk+1

c (X)

Assertion 2 now follows from the fact that Hk
c (X) ∼= Hk+1

c (X) = 0, conditions C and D,
and the diagram.

Assertion 3 follows from condition E, the fact that Hn
c (X) ' Z, and the following

commutative diagram of Mayer-Vietoris sequences (θα
i,j is the coboundary operator in the

sequence):

Hn−1
c (ZRj+1,α)⊕Hn−1

c (YRi−1,α)→ Hn−1
c (Aα(i− 1, j + 1))

θi−1,j+1
−−−−−→ Hn

c (X)→ 0
0 ↓ 0 ↓ ↓ ↓

Hn−1
c (ZRj ,α)⊕Hn−1

c (YRi,α)→ Hn−1
c (Aα(i, j))

θi,j
−−−−−→ Hn

c (X)→ 0

Assertion 4 follows from condition F and the following commutative diagram:
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H̃1(X)→ H̃0(Aα(i, j)) → H̃0(ZRj ,α)⊕ H̃0(YRi,α) → H̃0(X)
↓ ↓ 0 ↓ 0 ↓ ↓

H̃1(X)→ H̃0(Aα(i− 1, j + 1))→ H̃0(ZRj+1 ,α)⊕ H̃0(YRi−1,α) → H̃0(X)

q.e.d.

Corollary 8.7. If G is an (n−1)-dimensional duality group, then each deep component
stabilizer is a PD(n− 1) group.

Proof. Fix a deep component Cα of X −ND(K), and let Hα be its stabilizer in G. Let
R = D, M = 4k+2, and apply the construction of Lemma 8.6 to get D ≤ R1 ≤ R2 ≤ . . . ≤
R4k+2 satisfying the conditions of Lemma 8.6.

Pick 1 < i < j < M . The mappings H̃`(A(i, j)) → H̃`(A(i− 1, j + 1)) are zero for each
` = 1, ..., n by part 1 of Lemma 8.6, since Hk(G,ZG) = 0 for k < n − 1. Because A(p, q)

is the disjoint union qαAα(p, q) for all 0 < p < q < M , we actually have H̃`(Aα(i, j))
0
→

H̃`(Aα(i − 1, j + 1)) for 1 ≤ ` ≤ n. By part 4 of Lemma 8.6 the same assertion holds
for ` = 0. Applying Theorem 5.11 to the chain complexes C∗(Aα(i, j)), we see that when
k > 2n + 5, Hα is a group of type FPn. Since dim(Hα) ≤ dim(G) = n− 1 it follows that
Hα is of type FP (see section 3).

The mappings H`
c(Aα(i− 1, j + 1))→ H`

c(Aα(i, j)) are zero for 0 ≤ ` < n− 1 by part 2
of Lemma 8.6 and the fact that A(p, q) = qαAα(p, q). By parts 1 and 2 of Lemma 5.1, we
have Hk(Hα,ZHα) = {0} for 0 ≤ k < n− 1, and Hn−1(Hα,ZHα) ' Z by part 3 of Lemma
8.6. Hence Hα is a PD(n− 1) group. q.e.d.

Remark. For the remainder of the proof, we really only need to know that each deep
component stabilizer is of type FP .

Proof of Theorem 1.1 concluded. Let C1, . . . , Ck be a set of representatives for the G-
orbits of deep components of X −NR(K), and let H1, . . . ,Hk ⊂ G denote their stabilizers.
Recall that both G and each Hi are assumed to be of type FP , see section 3. By Lemma
5.15, we have

H∗(G, {Hi}; ZG) ' lim
−→

R

H∗c (X,YR),

while limRH
∗
c (X,YR) ' limRHn−∗(NR(K)) by Coarse Poincare duality, and

lim
−→

R

H∗(NR(K)) ' H∗(X) ' H∗(pt)

since homology commutes with direct limits. Therefore the group pair (G, {Hi}) satisfies
one of the criteria for PD(n) pairs (see section 3), and we have proven Theorem 1.1. q.e.d.

We record a variant of Theorem 1.1 which describes the geometry of the action G y X
more explicitly:

Theorem 8.8. Let G y X be as in Theorem 1.1, and let K ⊂ X be a G-invariant
subcomplex with K/G compact. Then there are R0, R1, R2 so that

1. The deep components {Cα}α∈I of X −NR0(K) are all stable, there are only finitely
many of them modulo G, and their stabilizers {Hα}α∈I are PD(n− 1) groups.

2. For all α ∈ I, the frontier ∂Cα is connected, and NR1(∂Cα) has precisely two deep
complementary components, Eα and Fα, where Eα has Hausdorff distance at most R2 from
Cα. Unless G is a PD(n−1) group, the distance function d(∂Cα, ·) is unbounded on K∩Fα.

3. The Hausdorff distance between X −qαEα and K is at most R2.

Proof. This is clear from the discussion above. q.e.d.

We remark that there are α1 6= α2 ∈ I so that the Hausdorff distance

dH(∂Cα1 , ∂Cα2) <∞
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iff G is a PD(n− 1) group.

In Proposition 8.10 below we generalize the following uniqueness theorem of the periph-
eral structure from 3-dimensional manifolds to PD(n) pairs:

Theorem 8.9. (Johannson [27], see also [41].) Let M be a compact connected acylin-
drical 3-manifold with aspherical incompressible boundary components S1, ..., Sm. Let N be
a compact 3-manifold homotopy-equivalent to M , with incompressible boundary components
Q1, . . . , Qn, and ϕ : π1(M) → π1(N) be an isomorphism. Then ϕ preserves the peripheral
structures of π1(M) and π1(N) in the following sense. There is a bijection β between the
set of boundary components of M and the set of boundary components on N so that after
relabeling via β we have:

ϕ(π1(Si)) is conjugate to π1(Qi)) in π1(N).

Proposition 8.10. Let (G, {Hi}i∈I) be a PD(n) pair, where G is not a PD(n − 1)
group, and Hi does not coarsely separate G for any i. Now let G y X be a free simplicial
action on a coarse PD(n) space, and let (G, {Lj}j∈J) be the group pair obtained by applying
Theorem 1.1 to this action. Then there is a bijection β : I → J so that Hi is conjugate to
Lβ(i) for all i ∈ I.

Proof. Under the assumptions above, each Hi and Lj is a maximal PD(n−1) subgroup
(see Lemma 3.3). By Corollary 7.14, each Hi is conjugate to some Lj, and by Lemma 3.3

this defines an injection β : I → J . Consider the double Ĝ of G over the Lj’s. Then the

double of G over the Hi’s sits in Ĝ, and the index will be infinite unless β is a bijection.
q.e.d.

We now establish a relation between the acylindricity assumption in Theorem 8.9 and
coarse nonseparation assumption in Proposition 8.10. We first note that if M is a compact
3-manifold with incompressible aspherical boundary components S1, . . . , Sm, then M is
acylindrical iff π1(Si) ∩ g(π1(Sj))g

−1 = {e} whenever i 6= j or i = j but g /∈ π1(Si).

Lemma 8.11. Suppose G is a duality group and G y X is a free simplicial action on a
coarse PD(n) space, and let (G, {Hj}j∈J) be the group pair obtained by applying Theorem
1.1 to this action. Assume that Hi ∩ (gHjg

−1) = {e} whenever i 6= j or i = j but g /∈ Hi.
Then no Hi coarsely separates G.

Proof. Let K0 ⊂ X be a connected G-invariant subcomplex so that K0/G is compact
and all deep components of X −K0 are stable. Now enlarge K0 to a subcomplex K ⊂ X
by throwing in the shallow (i.e. non-deep) components of X − K0; then K is connected,
G-invariant, K/G is compact, and all components of X −K are deep and stable. Let {Cα}
denote the components of X − K, and let Ci be a component stabilized by Ci. We will
show that ∂Ci does not coarsely separate K in X. Since K ↪→ X is a uniform embedding,
G y K is cocompact, and Hi y ∂Ci is cocompact, this will imply the lemma.

For all components Cα and all R, the intersectionHi∩Hα acts cocompactly onNR(∂Ci)∩
C̄α, where Hα is the stabilizer of Cα; when α 6= i the group Hi ∩ Hα is trivial, so in this
case Diam(NR(∂Ci) ∩ C̄α) < ∞. For each R there are only finitely many α – modulo
Hi – for which NR(∂Ci) ∩ Cα 6= ∅, so there is a constant D1 = D1(R) so that if α 6= i
then Diam(NR(∂Ci) ∩ Cα) < D1. Each ∂Cα is connected and 1-ended, so we have an
R1 = R1(R) so that if α 6= i, and x, y ∈ ∂Cα −NR1(∂Ci), then x may be joined to y by a
path in ∂Cα −NR(∂Ci).

By Corollary 7.10, there is a function R2 = R2(R) so that if x, y ∈ K −NR2(∂Ci) then
x may be joined to y by a path in X −NR(∂Ci).

Pick R, and let R′ = R2(R1(R)). If x, y ∈ K − NR′(∂Ci) then they are joined by a
path αxy in X −NR1(R)(∂Ci). For each α 6= i, the portion of αxy which enters Cα may be
replaced by a path in ∂Cα−NR(∂Ci). So x may be joined to y in K −NR(∂Ci). Thus ∂Ci

does not coarsely separate K in X. q.e.d.
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Lemma 8.12. Let M be a compact 3-manifold with ∂M 6= ∅, with aspherical incom-
pressible nonempty boundary components S1, . . . , Sm. Then M is acylindrical if and only if
π1(M) is not a surface group and no Hi = π1(Si) ⊂ π1(M) = G coarsely separates G.

Proof. The implication ⇒ follows from Lemma 8.11. To establish ⇐ assume that M is
not acylindrical. This implies that there exists a nontrivial decomposition of π1(M) as a
graph of groups with a single edge group C which is a cyclic subgroup of some Hi. Thus C
coarsely separates G. Since [G : Hi] = ∞ it follows that Hi coarsely separates G as well.
q.e.d.

Corollary 8.13. Suppose G is not a PD(n − 1) group, both (G, {Hi}i∈I) and
(G, {Lj}j∈J) are PD(n) pairs, no Hi coarsely separates G, and each Lj admits a finite
Eilenberg-MacLane space. Then there is a bijection β : I → J so that Hi is conjugate to
Lβ(i) for all i ∈ I. Thus the peripheral structure of G in this case is unique.

Proof. Under the above assumptions the double Ĝ of G with respect to the collection
of subgroups {Lj}j∈J admits a finite Eilenberg-MacLane space K(Ĝ, 1). Thus we can take

as a coarse PD(n)-space X the universal cover of K(Ĝ, 1). Now apply Proposition 8.10.
q.e.d.

9. Applications. In this section we discuss examples of (n− 1)-dimensional groups which
cannot act on coarse PD(n) spaces.

2-dimensional groups with positive Euler characteristic. Let G be a group of type
FP2 with cohomological dimension 2. If the χ(G) > 0 then G cannot act freely simplicially
on a coarse PD(3) space. To see this, note that by Mayer-Vietoris some one-ended free
factor G′ of G must have χ(G′) > 0. If G′ acts on a coarse PD(3) space then G′ contains
a collection H of surface subgroups so that (G′,H) is a PD(3) pair. Since the double of a
PD(3) pair is a PD(3) group ( which has zero Euler characteristic) by Mayer-Vietoris we
have χ(G′) ≤ 0, which is a contradiction.

We are grateful to the referee for the following remark:

Remark 9.1. A generalization of the Chern–Hopf Conjecture asserts that if H is a
2n-dimensional Poincaré duality group, then (−1)nχ(H) ≥ 0. So, if this conjecture is true,
then Theorem 1.1 implies that if G is a 2n-dimensional duality group with (−1)nχ(G) < 0,
then G cannot act freely and simplicially on a coarse PD(2n+ 1) space.

Bad products. Suppose G =
∏k

i=1Gi where each Gi is a duality group of dimension ni,
and G1, G2 are not Poincare duality groups. Then G cannot act freely simplicially on a

coarse PD(n) space, where n− 1 =
∑k

i=1 ni.

Proof. Let G y X be a free simplicial action on a coarse PD(n) space.

Step 1. G contains a PD(n − 1) subgroup. This follows by applying Theorem 1.1 to
G y X, since otherwise G y X is cocompact and Lemma 5.4 would give Hn(G; ZG) ' Z,
contradicting dim(G) = n− 1.

We apply Theorem 1.1 to see that G y X defines deep complementary component
stabilizers Hα ⊂ G which are PD(n− 1) groups.

Step 2. Any PD(n − 1) subgroup V ⊂ G virtually splits as a product
∏k

i=1 Vi where
Vi ⊂ Gi is a PD(ni) subgroup. Consequently each Gi contains a PD(ni) subgroup.

Lemma 9.2. A PD(m) subgroup V of a m-dimensional product group W :=
∏k

i=1Wi

contains a finite index subgroup V ′ which splits as a product V ′ =
∏k

i=1 Vi where Vi ⊂ Wi

is a Poincare duality group of dimension dim(Wi).
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Proof. Look at the kernels of the projections

p̂j : W →
∏

i6=j

Wi

restricted to V . The dimension of the middle group in a short exact sequence has dimension
at most the sum of the dimensions of the other two groups. Applying this to the exact
sequence

1→ Wj ∩ V → V → p̂j(V )→ 1

we get that Wj ∩ V has the same dimension as Wj. Hence
∏

j(Wj ∩ V ) has the same

dimension as V , so it has finite index in V (see section 3). Therefore
∏

j(Wj ∩ V ) is a

PD(n) group and so the factor groups (Wj ∩ V ) are PD(dim(Wj)) groups. q.e.d.

Step 3. No PD(n − 1) subgroup V ⊂ G can coarsely separate G. This follows
immediately from step 2 and:

Lemma 9.3. For i = 1, 2 let Ai ⊂ Bi be finitely generated groups, with [Bi : Ai] =∞.
Then A1 ×A2 does not coarsely separate B1 ×B2.

Proof. Suppose that x = (x1, x2), y = (y1, y2) are points in the Cayley graphs of B1, B2

which are at distance at least R from A := A1 × A2. Without loss of generality we may
assume that d(x1, A1) ≥ R/2. We then pick a point x′2 ∈ B2 with distance at least R/2 from
A2 and connect x2 to x′2 by a path x2(t) the the Cayley graph of B2. The path (x1, x2(t))
does not intersect NR

2
(A). Applying similar argument to y we reduce the proof to the case

where d(xi, Ai) ≥ R/2 and d(yi, Ai) ≥ R/2, i = 1, 2. Now connect x1 to y1 by a path x1(t),
and y2 to x2 by a path y2(t); it is clear that the paths (x1(t), x2), (y1, y2(t)) do not intersect
NR

4
(A). On the other hand, these paths connect x to (y1, x2) and y to (y1, x2). q.e.d.

Step 4. By steps 1 and 2 we know that each Gi contains a PD(ni) subgroup. Let

Li ⊂ Gi be a PD(ni) subgroup for i > 1. Set L := G1 × (
∏k

i=2 Li). Observe that L is not
a PD(n− 1) group since G1 is not a PD(n1) group. Therefore no finite index subgroup of
L can be a PD(n− 1) subgroup, see section 3.

Step 5. Choose a base-point ? ∈ X. We now apply Theorem 8.8 to the action L y X
with K := L(?), and we let Ri, Cα, Hα Eα, and Fα be as in the Theorem 8.8. Since L
has infinite index in G, the distance function d(∂Cα, ·) is unbounded on G(?)∩Eα for some
α ∈ I, while part 2 of Theorem 8.8 implies that d(∂Cα, ·) is unbounded on K ∩ Fα. Hence
Hα coarsely separates G, which contradicts step 3. q.e.d.

Baumslag-Solitar groups. Pick p 6= ±q, and let G := BS(p, q) denote the Baumslag-
Solitar group with the presentation

(9.4) 〈a, b | bapb−1 = aq〉.

If G1 is a k-dimensional duality group then the direct product G1 ×G does not act freely
simplicially on a coarse PD(3 + k) space.

We will prove this whenG1 = {e}. The general case can be proved using straightforward
generalization of the argument given below, once one applies the “Bad products” example
above to see that G1 must be a PD(k) group if G1 ×G acts on a coarse PD(3 + k) space.
Assume that G y X is a free simplicial action on a coarse PD(3) space. Choosing a
base-point ? ∈ X, we obtain a uniform embedding G→ X.

We recall that the presentation (9.4) defines a graph of groups decomposition of G with
one vertex labeled with Z, one oriented edge labeled with Z, and where the initial and final
edge monomorphisms embed the edge group as subgroups of index p and q respectively. The
Bass-Serre tree T corresponding to this graph of groups has the following structure. The
action G y T has one vertex orbit and one edge orbit. For each vertex v ∈ T , the vertex
stabilizer Gv is isomorphic to Z. The vertex v has p incoming edges and q outgoing edges;
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the incoming (respectively outgoing) edges are cyclically permuted by Gv with ineffective
kernel the subgroup of index p (respectively q).

Let Σ̄ be the presentation complex corresponding to the presentation (9.4), and let Σ
denote its universal cover. Then Σ admits a natural G-equivariant fibration π : Σ → T ,
with fibers homeomorphic to R. For each vertex v ∈ T , the inverse image π−1(v) has a
cell structure isomorphic to the usual cell structure on R, and Gv acts freely transitively
on the vertices. For each edge e ⊂ T , the inverse image π−1(e) ⊂ Σ is homeomorphic to
a strip. The cell structure on the strip may be obtained as follows. Take the unit square
in R

2 with the left edge subdivided into p segments and the right edge subdivided into q
segments; then glue the top edge to the bottom edge by translation and take the induced
cell structure on the universal cover. The edge stabilizer Ge acts simply transitively on the
2-cells of π−1(e).

We may view Σ as a bounded geometry metric simplicial complex by taking a G-
invariant triangulation of Σ. Given k distinct ideal boundary points ξ1, . . . , ξk ∈ ∂∞T
and a base-point ? ∈ T , we consider the geodesic rays ?ξi ⊂ T , take the disjoint union
of their inverse images Yi := π−1(?ξi) ⊂ Σ and glue them together along the copies of
π−1(?) ⊂ π−1(?ξi). The resulting complex Y inherits bounded geometry metric simplicial
complex structure from Σ. The reader will verify the following assertions:

1. Y is uniformly contractible.

2. For i 6= j, the union Yi∪Yj ⊂ Y is uniformly contractible and the inclusion Yi∪Yj → Y
is a uniform embedding.

3. The natural map Y → Σ is a uniform embedding.

4. The cyclic ordering induced on the Yi’s by the a uniform embedding which is the
composition C∗(Y )→ C∗(Σ)→ C∗(X) (see Lemma 7.11) defines a continuous G-invariant
cyclic ordering on ∂∞T .

Let a be the generator of Gv for some v ∈ T . Setting ek := (pq)k, the sequence gk := aek

– viewed as elements in Isom(T ) – converges to the identity as k → ∞. So the sequence
of induced homeomorphisms of the ideal boundary of T converges to the identity. The
invariance of the cyclic ordering clearly implies that gk acts trivially on the ideal boundary
of T for large k. This implies that gk acts trivially on T for large k. Since this is absurd, G
cannot act discretely and simplicially on a coarse PD(3) space.

Remark 9.5. The complex Σ – and hence BS(p, q) – can be uniformly embedded in a
coarse PD(3) space homeomorphic to R

3. To see this we proceed as follows. First take a
proper PL embedding T → R

2 of the Bass-Serre tree into R
2. For each co-oriented edge

−→e of T ⊂ R
2 we take product cell structure on the half-slab P (−→e ) := π−1(e) × R+ where

R+ is given the usual cell structure. We now perform two types of gluings. First, for
each co-oriented edge −→e we glue the half-slab P (−→e ) to Σ by identifying π−1(e) × 0 with
π−1(e) ⊂ Σ. Now, for each pair −→e1 ,

−→e2 of adjacent co-oriented edges, we glue P (−→e1) to
P (−→e2) along π−1(v)×R+ where v = e1 ∩ e2. It is easy to see that after suitable subdivision
the resulting complex X becomes a bounded geometry, uniformly acyclic 3-dimensional PL
manifold homeomorphic to R

3.

Higher genus Baumslag-Solitar groups. Note that BS(p, q) is the fundamental group
of the following complex K = K1(p, q). Take the annulus A with the boundary circles
C1, C2. Let B be another annulus with the boundary circles C ′1, C

′
2. Map C ′1, C

′
2 to C1, C2

by mappings f1, f2 of degrees p and q respectively. Then K is obtained by gluing A and
B by f1 t f2. Below we describe a “higher genus” generalization of this construction.
Instead of the annulus A take a surface S of genus g ≥ 1 with two boundary circles C1, C2.
Then repeat the above construction of K by gluing the annulus B to S via the mappings
C ′1 → C1, C

′
2 → C2 of the degrees p, q respectively. The fundamental group G = Gg(p, q) of
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the resulting complex Kg(p, q) has the presentation

〈a1, b1, ..., ag, bg, c1, c2, t : [a1, b1]...[ag, bg]c1c2 = 1, tcq2t
−1 = cp1〉.

One can show that the group Gg(p, q) is torsion-free and Gromov-hyperbolic [28]. Note

that the universal cover K̃ of the complex Kg(p, q) does not fiber over the Bass-Serre tree
T of the HNN-decomposition of G. Nevertheless there is a properly embedded c1-invariant
subcomplex in K̃ which (c1-invariantly) fibers over T with the fiber homeomorphic to R.
This allows one to repeat the arguments given above for the group BS(p, q) and show that
the group Gg(p, q) cannot act simplicially freely on a coarse PD(3) space (unless p = ±q).
However in [28] we show that Gg(p, q) contains a finite index subgroup isomorphic to the
fundamental group of a compact 3-manifold with boundary.

Groups with too many coarsely non-separating Poincare duality subgroups. By
Corollary 7.14, if G is of type FP , and G y X is a free simplicial action on a coarse
PD(n) space, then there are only finitely many conjugacy classes of coarsely non-separating
maximal PD(n− 1) subgroups in G.

We now construct an example of a 2-dimensional group of type FP which has infinitely
many conjugacy classes of coarsely non-separating maximal surface subgroups; this example
does not fit into any of the classes described above. Let S be a 2-torus with one hole, and
let {a, b} ⊂ H1(S) be a set of generators. Consider a sequence of embedded loops γk ⊂ S
which represent a+ kb ∈ H1(S), for k = 0, 1, . . .. Let Σ be a 2-torus with two holes. Glue
the boundary torus of S × S1 homeomorphically to one of the boundary tori of Σ× S1 so
that the resulting manifold M is not Seifert fibered. Consider the sequence Tk ⊂ M of
embedded incompressible tori corresponding to γk × S

1 ⊂ S × S1 ⊂M . Let L ⊂ π1(M) be
the infinite cyclic subgroup generated by the homotopy class of γ0. Finally, we let G be the
double of π1(M) over the cyclic subgroup L, i.e. G := π1(M) ∗L π1(M). Then the reader
may verify the following:

1. Let Hi ⊂ π1(M) ⊂ G be the image of the fundamental group of the torus Ti for i > 0
(which is well-defined up to conjugacy). Then each Hi is maximal in G, and the Hi’s are
pairwise non-conjugate in G.

2. Each Hi ⊂ π1(M) coarsely separates π1(M) into precisely two deep components.

3. For each i > 0, the subgroup Hi ⊂ π1(M) coarsely separates some conjugate of L in
π1(M).

4. It follows from 3 that Hi is coarsely non-separating in G for i > 0.

5. G is of type FP and has dimension 2.

Therefore G cannot act freely simplicially on a coarse PD(3) space.

10. Appendix: Coarse Alexander duality in brief. We will use terminology and no-
tation from section 2.

Theorem 10.1. Let X and Y be bounded geometry uniformly acyclic metric simplicial
complexes, where X is an n-dimensional PL manifold. Let f : C∗(Y )→ C∗(X) be a chain
map which is a a uniform embedding, and let K ⊂ X be the support of f(C∗(Y )) ⊂ C∗(X).
For every R we may compose the Alexander duality isomorphism A.D. with the induced
map on compactly supported cohomology:

(10.2) H̃n−k−1(X \NR(K))
A.D.
−→ Hk

c (NR(K))
Hk

c (f)
−−−−−→ Hk

c (Y );

we call this composition AR. Then

1. For every R there is an R′ so that

(10.3) Ker(AR′) ⊂ Ker(H̃n−k−1(X −NR′(K))→ H̃n−k−1(X \NR(K))).

2. AR is an epimorphism for all R ≥ 0.
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3. All deep components of X \K are stable; their number is 1 + rank(Hn−1
c (Y )).

4. If Y is an (n−1)-dimensional manifold, then for all R there is a D so that any point
in NR(K) lies within distance D of both the deep components of X −NR(K).

The functions R′ = R′(R) and D = D(R) depend only on the geometry of X and Y
(via their dimensions and acyclicity functions), and on the coarse Lipschitz constant and
distortion of f .

Proof. Step 1. We construct a coarse Lipschitz chain map g : C∗(X) → C∗(Y ) as
follows. For each vertex x ∈ X, y ∈ Y we let [x], [y] denote the corresponding element of
C0(X), C0(Y ). To define g0 : C0(X) → C0(Y ) we map [x] for each vertex x ∈ X ⊂ C0(X)
to [y], where we choose a vertex y ∈ Y ⊂ C0(Y ) for which the distance d(x, Support(f(y)))
is minimal, and extend this homomorphism Z-linearly to a map C0(X) → C0(Y ). Now
assume inductively that gj : Cj(X)→ Cj(Y ) has been defined by j < i. For each i-simplex
σ ∈ Ci(X), we define gi(σ) to be a chain bounded by gi−1(∂σ) (where Support(gi(σ)) lies
inside the ball supplied by the acyclicity function of Y ). Using a similar inductive procedure
to construct chain homotopies, one verifies:

a) For every R there is an R′ so that the composition

(10.4) C∗(NR(K))
g∗
→ C∗(Y )→ C∗(K)→ C∗(NR′(K))

is chain homotopic to the inclusion by an R′-Lipschitz chain homotopy with displacement
< R′.

b) There is a D so that

C∗(Y )
f
→ C∗(K)

g
→ C∗(Y )

is a chain map with displacement at most D and g ◦ f is chain homotopic to idC∗(Y ) by a
D-Lipschitz chain map with displacement < D.

Step 2. Pick R, and let R′ be as in a) above. If

α ∈ Ker(Hk
c (NR′(K))

Hk
c (f)

−−−−−→ Hk
c (Y )),

then α is in the kernel of the composition

Hk
c (NR′(K))

Hk
c (f)

−−−−−→ Hk
c (Y )

Hk
c (g)

−−−−−→ Hk
c (NR(K))

which coincides with the restriction Hk
c (NR′(K)) → Hk

c (NR(K)) by a) above. Similarly,
the composition

Hk
c (Y )

Hk
c (g)

−−−−−→ Hk
c (NR(K))

Hk
c (f)

−−−−−→ Hk
c (Y )

is the identity, so Hk
c (f) is an epimorphism. Applying the Alexander duality isomorphism

to these two assertions we get parts 1 and 2.

Step 3. Let C be a deep component of X −K. Suppose C1, C2 are deep components of
X − NR(K) with Ci ⊂ C. Picking points xi ∈ Ci, the difference [x1] − [x2] determines an

element of H̃0(X −NR(K)) lying in Ker(H̃0(X −NR(K))→ H̃0(X −K). Hence

AR([x1]− [x2]) = A0(pR([x1]− [x2])) = A0(0) = 0

where pR : H̃0(X −NR(K))→ H̃0(X −K) is the projection. Since C1 and C2 are deep, for

any R′ ≥ R there is a c ∈ H̃0(X −NR′(K)) which projects to [x1]− [x2] ∈ H̃0(X −NR(K)).
But then AR′(c) = 0 and part 1 forces [x1]− [x2] = 0. This proves that C1 = C2, and hence
that all deep components of X −K are stable. The number of deep components of X −K
is

1 + rank(lim
←−

R

H̃0(X −NR(K)),

and by part 1 this clearly coincides with 1 + rank(Hn−1
c (Y )). Thus we have proved 2.
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Step 4. To prove part 4, we let C1, C2 be the two deep components of X−K guaranteed
to exist by part 3. Pick x ∈ NR(K), and let R′ be as in part 1. Since f is coarse Lipschitz
chain map, there is a y ∈ Y with d(x, Support(f([y]))) < D1 where D1 is independent of
x (but does depend on R). Choose a cocycle α ∈ Cn−1

c (Y ) representing the generator of
Hn−1

c (Y ) which is supported in an (n − 1)-simplex containing y. Then the image α′ of α

under Cn−1
c (Y )

Cn−1
c (g)
−→ Cn−1

c (NR′(K)) is a cocycle supported in B(x,D2) ∩NR′(K) where
D2 depends on R′ but is independent of x. Applying the Alexander duality isomorphism14

to [α′] ∈ Hn−1
c (NR′(K)), we get an element c ∈ C̃0(X − NR′(K)) which is supported in

B(x,D2 + 1) ∩ (X − NR′(K)), and which maps under AR′ to [α] ∈ Hn−1
c (Y ). Picking

xi ∈ Ci far from K, we have [x1]− [x2] ∈ H̃0(X −NR′(K)) and AR′([x1]− [x2]) = ±[α]. By

part 1 it follows that the images of c and [x1] − [x2] under the map H̃0(X − NR′(K)) →
H̃0(X −NR(K)) coincide up to sign. In other words, support(c) ∩ Ci 6= ∅, so we’ve shown
that d(x,Ci) < D2 for each i = 1, 2. q.e.d.

11. Appendix: Metric complexes. In this section we discuss the definition of metric
complexes, and explain how one can modify statements and proofs from the rest of the
paper so that they work with metric complexes rather than metric simplicial complexes.

We have several reasons for working with objects more general than metric simplicial
complexes. First of all, Poincare duality groups are not known to act freely cocompactly
on acyclic simplicial complexes (or even on simplicial complexes that are acyclic through
dimension n + 1). Second, many maps arising in our arguments (e.g. retraction maps
and chain maps associated with a uniform embedding) are chain mappings which are not
realizable using PL maps. Also one would like to have natural constructions like mapping
cylinders for chain mappings of geometric origin.

11.1. Metric complexes.

Definition 11.1. A metric space X has bounded geometry if there is a constant a > 0
such that for every x, x′ ∈ X we have d(x, x′) > a, and for every R ≥ 0, every R-ball
contains at most N = N(R) points.

We observe that this definition relates the the usual notion of a Riemannian manifold
of bounded geometry as follows. Recall that a complete Riemannian manifold is said to
have bounded geometry if its injectivity radius is bounded away from zero and the sectional
curvature is bounded both from above and from below. For 0 < r <∞ pick a maximal r-net
X ⊂M in such a manifold and consider X as a metric space with the metric induced from
M . Then the metric space X has bounded geometry in the sense of the above definition.

In the remainder of this section X and X ′ will denote bounded geometry metric spaces.

A free module over X is a triple (M,Σ, p) where M is the free Z-module with basis

Σ, and Σ
p
→ X is a map.15 We will refer to the space X as the control space, and p as

the projection map. A free module over X has finite type if #p−1(x) is uniformly bounded
independent of x ∈ X. We will often suppress the basis Σ and the projection p in our
notation for free modules over X. A D-morphism from a free module (M,Σ, p) over X to

a free module (M ′,Σ′, p′) over X ′ is a pair (f, f̂) where f : X → X ′ is a map, f̂ : M →M ′

is module homomorphism such that for all σ ∈ Σ, f̂(σ) ∈ span((p′)−1(B(f(p(σ)), D)). A

morphism (f, f̂) is coarse Lipschitz (resp. a uniform embedding) if the map of control

spaces f is coarse Lipschitz (resp. a uniform embedding). When X = X ′ we say that (f, f̂)

has displacement (at most) D if f = idX and (f, f̂) defines a D-morphism.

14That is ultimately induced by taking the cap product with the fundamental class of H lf
n (X), the locally

finite homology group of X.
15This definition can be generalized to the category of projective modules M over X by considering the

pair (M, supp) where supp : M → (bounded subsets of X) is the support map for the elements m ∈ P .
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A chain complex over X is a chain complex C∗ where each Ci is a free module over
X, and the boundary operators ∂i : Ci → Ci−1 have bounded displacement (depending
on i). A chain map (resp. chain homotopy) between a chain complex C∗ over X and a
chain complex C ′∗ over X ′ is a chain map (resp. chain homotopy) C∗ → C ′∗ which induces
bounded displacement morphisms Ci → C ′i (resp. Ci → C(i+1)′) for each i. Note that any
chain complex over X has a natural augmentation ε : C0 → Z which maps each element of
Σ0 to 1 ∈ Z. A metric complex is a pair (X,C∗) where

1. X is a bounded geometry metric space and C∗ is a chain complex over X.

2. Each (Ci,Σi, pi) is a free module over X of finite type.

3. The projection map p0 is onto.

The space X is called the control space of the metric complex (X,C∗).

Example 11.2. If Y is a metric simplicial complex, we may define two closely related
metric complexes:

1. Let X be the zero skeleton of Y , equipped with the induced metric. We orient each
simplex in Y , and let C∗ be the simplicial chain complex, where the basis Σi is just the
collection of oriented i-simplices. We then define the projection pi : Σi → X by setting
pi(σ) equal to some vertex of σ, for each σ ∈ Σi.

2. Let X ′ be the zero skeleton of the first barycentric subdivision Sd(Y ), equipped
with the induced metric. We consider the subcomplex of the singular chain complex of Y
generated by the singular simplices of the form σ : ∆k → Y where σ is an affine isomorphism
from the standard k-simplex to a k-simplex in Y ; these maps form the basis Σ′k for C ′k, and
we define p′ : Σ∗ → X by projecting each σ ∈ Σ∗ to its barycenter.

If C∗ is a chain complex over X, and W ⊂ C∗, then the support of W , supp(W ), is the
image under p of the smallest subset of Σ∗ whose span contains W .

If K ⊂ X we define the (sub)complex over K, denoted C[K], to be the metric subcom-
plex (K,C ′∗) where the basis Σ′∗ for the chain complex C ′∗ is the largest subset of Σ∗ such
that p(Σ′∗) ⊂ K and span(Σ′∗) is a sub-complex of the chain complex C∗. In other words,
the triple (C ′i,Σ

′
i, p
′
i) can be described inductively as follows. Start with Σ′0 = p−1

0 (K), and
inductively let

Σ′i := {σ ∈ Σi | pi(σ) ∈ K and ∂i(σ) ∈ C ′i−1}.

By abusing notation we shall refer to the homology groups H∗(C∗[K]) (resp. compactly
supported cohomology groups) as the homology (resp. compactly supported cohomology )
of K.

If L ⊂ X then [C∗(L)]k, the “k-skeleton of C∗ over L”, is defined as the k-truncation of
C∗[L]:

C0[L]← C1[L]← ...← Ck[L].

If (X,C∗) is a metric complex, K ⊂ X, then we have a chain complex C∗[X,K] (and
hence homology groups H∗[X,K]) for the pair [X,K] defined by the formula C∗[X,K] :=
C∗[X]/C∗[K]. Likewise, we may define the cochain complexes

C∗[X,K] := Hom(C∗[X,K],Z)

and cohomology of pairs H∗[X,K]. The compactly supported cochain complex
C∗c [X,L] of [X,L] is the direct limit limH∗[X,X −K] where K ⊂ X ranges over compact
subsets disjoint from L. The compactly supported cochain complex is clearly isomorphic
to the subcomplex of C∗[X,L] consisting of cochains α with α(σ) = 0 for all but finitely
many σ ∈ Σ∗. The support of α ∈ C∗[X] is {p∗(σ) | σ ∈ Σ∗, α(σ) 6= 0}. Note that there is a
constant D depending on k such that for all α ∈ Ck[X,L], we have Supp(α) ⊂ ND(X −L).

If K ⊂ X, we define an equivalence relation on p−1
0 (K) ⊂ Σ0 by saying that σ ∼ σ′ if

σ − σ′ is homologous to zero in C∗[K]. We call the equivalence classes of the relation the
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components of K. By abusing notation we will also refer to the projection of such component
to X is called a “component” of K. Note that uniform 0-acyclicity of (X,C∗) implies that
there exists r0 > 0 so that for each “component” L ⊂ K, there exists a component of
C0[Nr0(L)] which contains C0[L].

With this in mind, deep components of X − K, stable deep components and coarse
separation in X are defined as in Section 2. For instance, a component L ⊂ Σ0 of X −K
is deep if p0(L) is not contained in NR(K) for any R.

The deep homology classes and stabilization of the deep homology of the complement
X −K are defined similarly to the case of metric simplicial complexes.

The relation between the deep components and the deep 0-homology classes is the same
as in the case of metric simplicial complexes.

If [σ] ∈ HDeep
0 (C∗[X −K]) and σ ∈ Σ0, then σ belongs to a deep component of X −K

and this component does not depend on the choice of σ representing [σ]. Vice-versa, if
L ⊂ Σ0 is a deep component of X −K then each ξ ∈ Span(L) determines an element of

HDeep
0 (C∗[X −K]).

The deep homology HDeep
0 (C∗[X −NR(K)]) stabilizes at R0 iff all deep components of

X −NR0(K) are stable.

Note also that for each k ∈ Z+ there exists r > 0 so that the following holds for each
K ⊂ X:

Suppose that Lα ⊂ X, α ∈ A, is a collection of “components” of X − K so that
d(Lα, Lβ) ≥ r for all α 6= β. Then

[C∗(∪α∈ALα)]k = ⊕α∈A[C∗(Lα)]k.

An action of a group G on a metric complex (X,C∗) is a pair (ρ, ρ̂) where G
ρ
y X and

G
ρ̂
y Σ∗ are actions, ρ̂ induces an action G y C∗ by chain isomorphisms, and p∗ : Σ∗ → X

is G-equivariant with respect to ρ and ρ̂. For many of our results a more general notion of
action (or quasi-action) would suffice here. An action G y (X,C∗) is free (resp. discrete,

cocompact) provided the action G
ρ
y X is free (resp. discrete, cocompact). We can identify

C∗c [X] with HomZG(C∗,ZG) whenever G acts freely cocompactly on a metric complex
(X,C∗), [12, Lemma 7.4].

We say that a metric complex (X,C∗) is uniformly k-acyclic if for each R there is an
R′ = R′(R) such that for all x ∈ X the inclusion

C∗[B(x,R)]→ C∗[B(x,R′)]

induces zero in reduced homology H̃j for all j = 0 . . . k. We say that (X,C∗) is uniformly
acyclic if it is uniformly k-acyclic for every k. Observe that a group G acts freely cocom-
pactly on a uniformly (k − 1)-acyclic metric complex iff it is a group of type FPk, and it
acts freely cocompactly on a uniformly acyclic metric complex iff it is a group of type FP∞.

The next lemma implies that for uniformly 0-acyclic metric complexes (X,C∗) the metric
space X is “uniformly properly equivalent” to a path-metric space.

Lemma 11.3. Suppose (X,C∗) is a uniformly 0-acyclic metric complex. For any subset
Y ⊂ X and any r > 0 let Gr(Y ) be the graph with vertex set Y , with y, y ′ ∈ Y joined by an
edge iff d(y, y′) < r. Let dGr : Y × Y → Z ∪ {∞} be the combinatorial distance in Gr (the
distance between points in the distinct components of Gr is infinite). Then the following
hold:

1. Let r0 be the displacement of ∂1 : (C1,Σ1, p1) → (C0,Σ0, p0). If r ≥ r0, then

(X, dGr )
idX→ (X, d) is a uniform embedding (here Gr = Gr(X)). In particular, dGr(x, x

′) <
∞ for all x, x′ ∈ X.
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2. For all R there exists R′ = R′(R) such that if σ, σ′ ∈ Σ0, d(p0(σ), p0(σ
′)) ≤ R and

K ⊂ X, then either σ and σ′ belong to the same component of X −K, or d(p0(σ),K) < R′

and d(p0(σ
′),K) < R′.

Proof. Pick r ≥ r0. To prove 1, it suffices to show that for all R there is an N such that
if d(x, x′) < R then dGr(x, x

′) < N .

Pick R and x, x′ ∈ X with d(x, x′) < R. Choose σ ∈ p−1
0 (x) and σ′ ∈ p−1

0 (x′). By
the uniform 0-acyclicity of X, there is an R′ = R′(R) such that σ − σ′ represents zero in
H0[B(x,R′)]. So

σ − σ′ =
∑

aiτi

where τi ∈ p
−1
1 (B(x,R′)) and ∂τi ∈ C0[B(x,R′)] for all i. Let Z ⊂ X be the set of vertices

lying in the same component of Gr(B(x,R′)) as x. Then

∑

τi∈p−1
1 (Z)

ai∂1τi

has augmentation zero, forcing σ′ ∈ p−1
0 (Z). It follows that dGr(x, x

′) ≤ #B(x,R′) ≤ N =
N(R).

Part 2 follows immediately from the uniform 0-acyclicity of X. q.e.d.

Recall that if X is a metric space and d ∈ [0,∞), the Rips complex RipsD(X) is defined
as follows: The vertices of RipsD(X) are points in X. Distinct points x0, x1, ..., xn ∈ X
span an n-simplex in RipsD(X) if

d(xi, xj) ≤ D, ∀ 0 ≤ i, j ≤ n.

Note that Rips0(X) = X. Then for r ≤ R we have a natural embeddings

Ripsr(X)→ RipsR(X).

We metrize each connected component of RipsD(X) by using the path metric so that each
simplex is isometric to the regular Euclidean simplex with edges of the unit length.

Suppose that X is a bounded geometry metric space, consider the sequence of Rips
complexes

X → Rips1(X)→ Rips2(X)→ Rips3(X)→ ...

of X. The arguing analogously to the proof of Lemma 5.10 one proves

Proposition 11.4. X is the control space of a uniformly acyclic complex C∗ iff the
sequence of Rips complexes Ripsj(X) is uniformly pro-acyclic.

Using the above definitions, one can translate the results from sections 2 and 5 into the
language of metric complexes by

1. Replacing metric simplicial complexes X with metric complexes (X,C∗).

2. Replacing simplicial subcomplexes K ⊆ X with subsets of the control space X.

3. Replacing tubular neighborhoods NR(K) of simplicial subcomplexes of metric sim-
plicial complexes with metric R-neighborhoods NR(K) of subsets K of the control space
X.

4. Replacing the simplicial chain complex C∗(K) (resp. C∗c (K)) with C∗[K] (resp.
C∗c [K]), and likewise for homology and compactly supported cohomology.

5. Replacing coarse Lipschitz and uniform embeddings (resp. chain maps, chain homo-
topies) with coarse Lipschitz and uniform embeddings (resp. chain maps, chain homotopies)
of metric complexes.
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11.2. Coarse PD(n) spaces. A coarse PD(n) space is a uniformly acyclic metric complex
(X,C∗) equipped with chain maps

(X,C∗c )
P
→ (X,Cn−∗) and (X,C∗)

P̄
→ (X,Cn−∗

c )

over idX , and chain homotopies P̄ ◦ P
Φ
∼ id and P ◦ P̄

Φ̄
∼ id over idX .

As with metric simplicial complexes, we will assume implicitly that any group action
G y (X,C∗) on a coarse PD(n) space commutes with P, P̄ , Φ, and Φ̄.

Remark 11.5. Most of the results only require actions to commute with the operators
P and P̄ up to chain homotopies with bounded displacement (in each dimension).

It follows from our assumptions that if G y (X,C∗) is a free action on a coarse PD(n)
space, then the cohomological dimension of G is ≤ n: for any ZG-module M we may
computeH∗(G;M) using the cochain complex HomZG(C∗,M) which is ZG-chain homotopy
equivalent to the complex HomZG(Cn−∗

c ,M), which vanishes in dimensions > n.

Example 11.6. Suppose G is a PD(n) group. Then (see [12]) there is a resolution

0← Z← A0 ← A1 ← . . .

of Z by finitely generated free ZG-modules, ZG-chain mappings

A∗
P̄
→ HomZG(An−∗,ZG)

and HomZG(An−∗,ZG)
P
→ A∗, and ZG-chain homotopies P ◦ P̄

Φ
∼ id and P̄ ◦ P

Φ̄
∼ id. For

each i, let Σ̄i be a free basis for the ZG-module Ai, and let

Σi := {gτ | g ∈ G, τ ∈ Σ̄i} ⊂ Ai.

Define a G-equivariant map pi : Σi → G by sending gτ ∈ Σi to g, for every g ∈ G, τ ∈ Σ̄i.
Then (Ai,Σi, pi) is a free module over G (equipped with a word metric and regarded here as
a metric space) for each i, and the pair (G,A∗) together with the maps P, P̄ , Φ, Φ̄ define a
coarse PD(n) space on whichG acts freely cocompactly (recall thatHomZG(A∗,ZG) ' A∗c).
Conversely, if G y (X,C∗) is a free cocompact action of a group G on a coarse PD(n) space,
then G is FP∞, cdim(G) ≤ n (by the remark above), and the existence of the duality
operators implies that Hk(G,ZG) = {0} for k 6= n and Hn(G,ZG) ' Z; these conditions
imply that G is a PD(n) group [12, Theorem 10.1]

Remark 11.7. If G y X is any group acting freely on a coarse PD(n) space (X,C∗),
then dim(G) ≤ n. To prove this note that we can use the action G y C∗ to compute the
cohomology H∗(G;M) of G. Then the ZG-chain homotopy equivalence C∗ ↔ C∗c implies
that Hk(G;M) = 0 for k ≥ n.

The material from sections 6 and 7 now adapts in a straightforward way to the more
general setting of coarse PD(n)-spaces, with the caveat that the displacement, distortion
function, etc, may depend on the dimension (since the chain complexes will be infinite
dimensional in general). For instance, we have the coarse Jordan separation theorem

Theorem 11.8. Let (X,C∗) and (X ′, C∗) be coarse PD(n) and PD(n − 1) spaces
respectively, and let g : X ′ → X be a uniform embedding. Then

1. g(X ′) coarsely separates X into (exactly) two components.

2. For every R, each point of NR(g(X ′)) lies within uniform distance from each of the

deep components of YR := X −NR(g(X ′)).

3. If Z ⊂ X ′, X ′ 6⊂ NR(Z) for any R and h : Z → X is a uniform embedding, then h(Z)
does not coarsely separate X. Moreover, for any R0 there is an R1 > 0 depending only on
R0 and the geometry of X,X ′, and h such that precisely one component of X −NR0(h(Z))
contains a ball of radius R1.
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11.3. The proof of Theorem 1.1. We now explain how to modify the main argument in
section 8 for metric complexes.

For simplicity we will assume that Σ0 = X. One can reduce to this case by replacing the
X with Σ0, and modifying the projection maps pi accordingly (in a G-equivariant fashion).

The direct translation of the proof using the rules 1-5 above applies until Lemma 8.5.
The only part of the lemma that is needed later is part 2, so we explain how to deduce this.

First note that the system {H̃0(YR,α)} is approximately zero as before. Likewise, for ev-
ery k, the k-skeleton of the chain complex C∗(YR) decomposes as a direct sum ⊕β[C∗(YR,β)]k
for R sufficiently large, since the distance between the subsets YR,β for different β tends to
infinity as R→∞ by Lemma 11.3. This implies that as before, {Hj(YR,α)} is approximately
zero for every j.

Let

r0 := displacement(∂1 : (C1,Σ1, p1)→ (C0,Σ0, p0)).

We now claim that for each R there is an R′ such that NR(Cβ) is contained in Cβ∪NR′(K).
(Here and below Cβ ⊂ X are the components of X − NR0(K) following the notation of
Section 8.) To see this, pick x ∈ Cβ, x′ ∈ X with d(x, x′) ≤ R, and apply part 1 of Lemma
11.3 to get a sequence x = x1, . . . , xj = x′ with d(xi, xi+1) ≤ r0 and j ≤ M = M(R). By
Lemma 11.3 either xj ∈ Cβ (and we’re done) or there is an i such that d(xi, ND(K)) < r =
r(r0). In the latter case we have x′ ∈ Nr+Mr0(K), which proves the claim.

Following the proof of Lemma 8.5, there is an R0 such that for R ≥ R0, we have ZR,α =
NR(K)∪(∪β 6=αCβ). From the claim in the previous paragraph, it now follows that for every
R ≥ R0 there is an R′ such that ZR,α ⊂ NR′(ZR0,α) and NR(ZR0,α) ⊂ ZR′,α. Therefore the
homology and compactly supported cohomology of the systems {ZR,α} and {NR(ZR0,α)}
are approximately isomorphic, and similar statements also apply to the complements of
these systems. Part 2 of Lemma 8.5 now follows from coarse Alexander duality.

The only issue in the remainder of the proof that requires different treatment for general
metric complexes is the application of Mayer-Vietoris sequences for homology and compactly
supported cohomology. If (X,C∗) is a metric complex, and X = A ∪ B, then the Mayer-
Vietoris sequences

→ Hk[A ∩B]→ Hk[A]⊕Hk[B]→ Hk(X)
∂
→ Hk−1[A ∩B]→

→ Hk−1
c [A ∩B]

δ
→ Hk

c [X]→ Hk
c [A]⊕Hk

c [B]→ Hk
c [A ∩B]→

need not be exact in general. By the Barratt-Whitehead Lemma [21, Lemma 7.4], in order
for the sequences to be exact through dimension k, it suffices for the inclusion of pairs (B,A∩
B) → (X,A) to induce isomorphisms in homology and compactly supported cohomology
through dimension k + 2. One checks that there is a constant r = r(k) (depending on
the displacements of the boundary operators ∂1, . . . , ∂k+1) such that this will hold provided
d(A − B,X − A) ≥ r. So the proof of Lemma 8.6 goes through provided one chooses the
numbers R1 ≤ . . . ≤ RM to be well enough separated that the Mayer-Vietoris sequences
hold through the relevant range of dimensions.

11.4. Attaching metric complexes. Suppose that Y ⊂ X is a pair of spaces of bounded
geometry so that the inclusion Y → X is a uniform embedding.

Let P,Q be metric complexes over X and Y respectively:

Q : 0← Z← Q0 ← Q1 ← . . .← Qn ← ...,

the complex

P : 0← Z← P ′0 ⊕ P
′′
0 ← P ′1 ⊕ P

′′
1 . . .← P ′n ⊕ P

′′
n ← ...
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has the boundary maps ∂ ′j ⊕ ∂
′′
j : Pj → P ′j−1 ⊕ P

′′
j−1, where

P ′ : 0← Z← P ′0 ← P ′1 . . .← P ′n ← ...

is a subcomplex over Y . Let φ : P ′ → Q,φj : P ′j → Qj , j = 0, 1, ..., be a chain map over

Y , called the “attaching map.” We will define a complex R = Att(P,Q, φ) determined by
“attaching” P to Q via φ; the complex R will be a metric complex over X. This construction
is similar to attaching a cell complex A to a complex B via an attaching map f : C → B,
where C is a subcomplex of A.

We let Rj := P ′′j ⊕ Qj , this determines free generators for Rj ; the boundary map

∂j : Rj → Rj−1 = P ′′j−1 ⊕Qj−1 is given by

∂|P ′′ := ∂′′ ⊕ (φ ◦ ∂′),

the restriction of ∂ to Q is the boundary map ∂Q of the complex Q. (It is clear that
∂ ◦ ∂ = 0.) The control maps to X are defined by restricting the control map for P to the
(free) generators of P ′′j and using the control map of Q for the (free) generators of Qj .

The following lemma is straightforward and is left to the reader.

Lemma 11.9. Suppose that we are given a complex P over X, complexes Q,T over
Y , a chain homotopy-equivalence h : Q → T and attaching maps φ : P ′ → Q,ψ : P ′ → T
are such that ψ = h ◦ φ, where all the chain homotopies in question have bounded dis-
placement ≤ Const(j). Then the metric complexes Att(P,Q, φ), Att(P, T, ψ) are chain
homotopy-equivalent with bounds on the displacement of the chain homotopy depending only
on Const(j).

11.5. Coarse fibrations. The goal of this section is to define a class of metric spaces W
which are “coarsely fibered” over coarse PD(n) metric simplicial complexes X so that the
“coarse fibers” Yx are control spaces of PD(k) spaces. We will show that under a mild
restriction on the base X and the fibers Yx, the metric space W is the control space of a
coarse PD(n+ k) space.

Suppose that X is an n-dimensional metric simplicial complex equipped with an orien-
tation of its 1-skeleton, and L, A ∈ R. Assume that for each vertex x ∈ X (0) we are given a
metric space Yx, and (L,A)-quasi-isometries fpq : Yp → Yq for each positively oriented edge
[pq] in X. We will assume that each Yx is the control space of a metric complex (Yx, Qx)
where the complexes Qx are uniformly acyclic (with acyclicity function independent of x)
16 ; in particular, there exists C <∞ so that the C-Rips complex of each Yx is connected.
It follows that fpq induce morphisms f̂pq : Qp → Qq which are uniform embeddings and
uniform chain homotopy-equivalences with the displacements independent of p, q.

The family of maps fpq : Yp → Yq together with the metric on X determine a metric
space W = W (X, {Yp}, {fpq}) which “coarsely fibers” over X with the fibers Yp:

As a set, W is the disjoint union tx∈X(0)Yx. Declare the distance between y, fpq(y) (for
each y ∈ Yp) equal 1 and then induce the quasi-path metric on W by considering chains
where the distance between the consecutive points is at most max(C, 1). It is clear that W
has bounded geometry.

The reader will verify that the maps Yp → W are uniform embeddings, where the
distortion functions are independent of p. Let projX : W → X denote the “coarse fibration”;
projX : Yx → {x}.

Example 11.10. Suppose that we have a short exact sequence

1→ H → G→ K → 1

16For much of what follows this assumption can be relaxed.
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of finitely generated groups where the group H has type FP. This exact sequence determines
a coarse fibration with the total space G, base K and fibers H × {k}, k ∈ K. (Each group
is given a word metric.)

Example 11.11. The following example appears in [33]. Suppose that we have a
graph of groups Γ := {Gv , hvw : Ee− → Ee+}, where Gv are vertex groups, Ee± are the
edge subgroups for the edge e; we assume that each edge group Ee± has type FP and
each edge group has finite index in the corresponding vertex group. Let G = π1(Γ) be the
fundamental group of this graph of groups, L ⊂ T be a geodesic in the tree T dual to the
graph of groups Γ. There is a natural projection p : G→ T , let W := p−1(L). Then W can
be described as a coarse fibration whose base consists of the vertices of L and whose fibers
are copies of the edge groups.

Examples of the above type as well as a question of Papasoglu motivate constructions
and the main theorem of this section.

Our next goal is to define a metric complex R with the control space W . We define the
complex R inductively.

Let R0 := ⊕x∈X(0)Qx. The (free) generators of R0 are the free generators of Qx, x ∈

X(0). Define the control map to W by sending generators of (Qx)0 to the points of Yx via
the control map for the complex Qx.

Orient each edge e ⊂ X (1), e = [e−e+]. To construct R1 first consider the complex
P 1 := ⊕e∈X(1)C∗(e)⊗Qe− . We have the attaching map φ1

φ1 : ⊕e∈X(1)C∗(∂e)⊗Qe− ⊂ P
1 → R0

given by the identity maps

C0(e−)⊗Qe− → C0(e−)⊗Qe− ⊂ R
0

and by

C0(e+)⊗Qe− → Qe−

f̂e−e+
→ Qe+ .

We then define R1 as Att(P 1, R0, φ1) by attaching P 1 to R0 via φ1, see section 11.4. Note
that Att(C∗(e) ⊗ Qe− , R

0, φ1) is nothing but the mapping cone of the restriction of φ1 to
C∗(e) ⊗Qe−.

Let x0 be any point in X (0). Then using uniform acyclicity of Qx’s and Lemma 11.9 one
constructs (inductively, by attaching one C∗(e)⊗Qe− at a time) a proper chain homotopy-
equivalence

R1 h
→ C∗(X

(1))⊗Qx0

h̄
→ R1

with uniform control of the displacement of h, h̄, h ◦ h̄ ∼= id, h̄ ◦ h ∼= id as functions of the
distance from projX(supp(σ)) to x0. These displacement functions are independent of x0.

We continue inductively. Suppose that we have constructed Rm. We also assume that
for each x0 ∈ X

(0) there is a proper chain homotopy-equivalence

Rm h
→ C∗(X

(m))⊗Qx0

h̄
→ Rm

with uniform control of the displacement for the chain homotopies h ◦ h̄ ∼= id, h̄ ◦ h ∼= id as
functions of the distance from projX(supp(σ)) to x0. (Here h = hx0 , h̄ = h̄x0 depend on x0

and m.) These displacement functions are independent on x0.

For each m+ 1-simplex ∆m+1 in X we choose a vertex v = v(∆m+1). We define Pm+1

as
⊕∆m+1∈X(m+1)C∗(∆)⊗Qv(∆m+1).

Note that we have the maps C∗(∂∆) ⊗ Qv(∆m+1) → Rm constructed using the maps h̄v .
These maps composed with ∂ ⊗ id define the attaching maps

φm+1 : Pm+1 → Rm.
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Now we define the complex Rm+1 as

Att(Pm+1, Rm, φm+1).

The proper chain homotopy-equivalences

Rm+1 h
→ C∗(X

(m+1))⊗Qx0

h̄
→ Rm+1

are constructed using uniform acyclicity of Qx’s, the induction hypothesis and Lemma 11.9.

As the result we get the complex R := Rn which is a metric complex over W . We also get
the proper chain homotopy-equivalences hv, h̄v between R and C∗(X)⊗Qv (v ∈ X(0)) with
uniform control over the displacement of the chain homotopies hv ◦ h̄v

∼= id, h̄v ◦ hv
∼= id as

functions of the distance from projX(supp(σ)) to v. These functions in turn are independent
of v.

Lemma 11.12. Assume that the complexes X, Homc(Qx,Z) and Homc(C∗(X),Z) are
uniformly acyclic. Then the metric chain complexes R and Homc(R,Z) are also uniformly
acyclic.

Proof. The Künneth formula for C∗(X) ⊗ Qv implies the acyclicity of the chain and
cochain complexes. Uniform estimates follow from uniform control on the chain homotopies
hv ◦ h̄v

∼= id, h̄v ◦ hv
∼= id above. q.e.d.

Recall that if we have an exact sequence of groups

1→ A→ B → C → 1

where A and C are PD(n) and PD(k) groups respectively, then B is a PD(n+ k) group.
The following is a geometric analogue of this fact.

Theorem 11.13. Assume that X is an n-dimensional metric simplicial complex which
is a coarse PD(n)-space and that each Qx is a coarse PD(k) metric complex of dimension
k:

0← Z← Qx,0 ← Qx,1 ← . . .← Qx,k ← 0.

Then the metric complex R, whose control space is the coarse fibration

W = W (X, {Yp}, {fpq}),

is a PD(n+ k) metric complex of dimension n+ k.

Proof. By construction, the complex R has dimension n+k. The complexesX, Cc(X,Z),
Homc(Qx,Z) are uniformly acyclic. It now follows from Lemma 11.12 and Lemma 6.2 that
R is a coarse PD(n+ k) complex17 . q.e.d.

Remark 11.14. A version of this theorem was proven in [33], where it was assumed
that X is a contractible surface and the fibers Yx are PD(n) groups each of which admits
a compact Eilenberg-MacLane space. Under these conditions Mosher, Sageev and Whyte
[33] prove that W is quasi-isometric to a coarse PD(n+ k) space.

References

[1] M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, No. 100, Springer-Verlag,
Berlin, 1969. MR883959, Zbl 0182.26001.

[2] M. Bestvina and N. Brady, Morse theory and finiteness properties of groups, Invent. Math., 129
(1997), pp. 445–470. MR1465330, Zbl 0888.20021.

[3] M. Bestvina, M. Kapovich, and B. Kleiner, Van Kampen’s embedding obstruction for discrete
groups, Inventiones Math., 150 (2002), pp. 219–235. MR1933584, Zbl pre01965444.

[4] M. Bestvina and G. Mess, The boundary of negatively curved groups, J. Amer. Math. Soc., 4 (1991),
pp. 469–481. MR1096169, Zbl 0767.20014.

17Lemma 6.2 was stated for metric simplicial complexes. The proof for metric complexes is the same.

PROOF COPY NOT FOR DISTRIBUTION



COARSE ALEXANDER DUALITY AND DUALITY GROUPS 49

[5] R. Bieri, Homological dimension of discrete groups, Queen Mary College Mathematics Notes, Mathe-
matics Department, Queen Mary College, London, 1976. MR0466344, Zbl 0357.20027.

[6] R. Bieri and B. Eckmann, Groups with homological duality generalizing Poincaré duality, Invent.
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[16] B. Eckmann and P. Linnell, Poincaré duality groups of dimension two. II, Comment. Math. Helv.,
58 (1983), pp. 111–114. MR0699010, Zbl 0518.57003.
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