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The goal of this note is to give a proof of the Ahlfors Finiteness theorem which
requires just the bare minimum of the complex analysis: (a) the existence theorem for
the Beltrami equation and (b) the Rado-Cartan uniqueness theorem for holomorphic
functions. However our proof does require some (by now standard) 3-dimensional
topology and Greenberg’s algebraic trick to deal with the triply-punctured spheres.
The key ideas of the proof are due to Ahlfors [Ahl64] and Carleson & Gamelin
[CGI3, pp. 72-72].

For a Kleinian group G we let Q(G) denote the discontinuity domain of G
and A(G) the limit set of G. In this note all Kleinian groups are assumed to be
nonelementary, i.e. their limit sets are infinite. Under such assumption the limit
set is known to be perfect, i.e. every point is an accumulation point. Recall that
a Kleinian group G is called analytically finite if Q(G)/G is an orbifold of finite
conformal type, i.e. has only finite number of cone points after removing which we
get a surface conformally equivalent to a hyperbolic surface of finite area.

Theorem 1. (L. Ahlfors.) Every finitely generated Kleinian group G C PSL(2,C)
1s analytically finite.

Proof. In what follows we will need the following boundary version of the uniqueness
theorem for holomorphic functions.

Theorem 2. (T.Rado, H. Cartan, see e.g. [Nar, Ch. 11, §8, Theorem 2].) Suppose
that f 1s a holomorphic function in a connected open subset D C C and the bound-
ary 0D contains a nonisolated point zy so that the following holds. There ezists a
netghborhood U of zy in C such that for each z € UN 0D,

lim f(w) = 0.

w—rz

Then f is identically zero in D.
We now begin the proof the Ahlfors’ theorem.



Step 1. Recall that according to Selberg Lemma, the group G contains a finite
index torsion-free subgroup G’. It is clear that G’ is finitely generated, hence analyt-
ical finiteness of G’ would imply analytical finiteness of G. Thus we assume that G
is torsion-free. We next note that it suffices to prove analytical finiteness for finitely
generated Kleinian groups G such that each component of Q(G) is contractible. To
prove this implication we apply the Loop Theorem to the pair

(M(G), 5(G))

where S(G) = Q(G)/G and M(G) = (H* U Q(G))/G. The Loop Theorem implies
that S(G) is the conformal connected sum of a finite number of surfaces S(G;),
j =1,..., k, where each component of {2(G;) is simply-connected for every j. If we
know that each S(G;) has finite conformal type, this would imply that S(G) has
finite conformal type as well and we are done.

Step 2.

Claim 3. Suppose that G C Isom(H?) is a finitely generated Kleinian group such
that A(G) = S. Then the Riemann surface H2 /G is has finite conformal type (equiv-
alently, this is a surface of finite hyperbolic area,).

Proof. 1t is elementary that (any) Dirichlet fundamental polygon P of G in H? has

finitely many sides (see for instance [CB88]). Since A(G) = S? it follows that P is

a finitely-sided polygon of finite area, its accumulation set in S! consists of a finite

number of vertices. Now the claim trivially follows. O
Step 3. This is the most interesting part of the proof.

Proposition 4. For each component Qy C Q(G) the stabilizer Gy of Qo in G has
the property: A(Go) = 0.

Proof. Suppose the assertion is false. Then there exists a point zo € 99 — A(Go),
moreover, a whole neighborhood U of z, in C is disjoint from A(Gy). It is clear that
2o cannot be an isolated point of 02y (since A(G) is perfect).

We pick a base-point point z € {2y which is not fixed by any element of G, then
choose a sufficiently small disk D, C Qq centered at z. (The disk is chosen so that
its images under the elements of G, are disjoint.) Consider an infinite-dimensional
space V' of quasiconformal homeomorphisms f : D, — D, which fix three distinct
points 21, 29, 23 in D, and so that the restriction mapping

V — Homeo(0D,), [+ f|OD.

is injective. (For instance, start with the infinite-dimensional space W of piecewise-
linear homeomorphisms 7 : 0D, — 0D, which fix the points z1, 29, 23 and take V to
be the space of the radial extensions of 7’s.) Let uf denote the Beltrami differential

2



of f € V. For each f extend uy G-invariantly from D, to the G-orbit of this disk and
by zero to the rest of the 2-sphere. We will use the notation vy for this extension.
Let hy denote the normalized (at three limit points of G) solution of the Beltrami

equation )
Oh =vg0h, hy=h.

Claim 5. The mapping A : f +— hf|A(G) is injective.

Proof. Suppose that fi, fo € V are such that A(f;) coincide, i = 1,2. Let h; :=
hs,i = 1,2. Recall that v; = vy, are zero on ¥ := y — Go(D,), hence each h;
is conformal in that part of . On the other hand, the disks in Gy(D,) do not
accumulate to the points of the set U N0 (since this set is disjoint from the limit
set of Gy). Hence U N 09y = U N OX (provided that D, is sufficiently small).

Therefore the holomorphic function (k1 —ho)|X tends to zero as w — z € UNIX.
Applying Theorem 2 we conclude that the functions h; and hy are equal on 3, in
particular they are equal on dD,.. On the other hand, h;| D, satisfy the same Beltrami
equation as f;. It follows that h;|D. = ¢; o f; for conformal mappings ¢; of D, to
the complex plane. Since both

hythy = fy ey toifi and fo

preserve D, we get:
03" o1f1: De — De.

Thus the mapping ¢ = ¢;'¢; : D, — D, is a conformal automorphism. It follows
that ¢ is the identity (since it fixes three distinct boundary points zi, 29, z3). We
conclude that ¢; = ¢y and hence

fl‘aDe = @I1h1|8D5 = @;1h2|8D6 = fﬂ@De

Recall that V is chosen so that if fi|0D. = f3|0D, then f; = fy. This proves
injectivity of the mapping A. O

We now proceed as in the standard proof [Ahl64] of the Ahlfors finiteness the-
orem: the mapping A determines an embedding of the infinite-dimensional space V'
to the finite-dimensional algebraic variety Hom(G, PSL(2,C)), which is a contra-
diction.

Corollary 6. The surface Q(G)/G contains no disks and annuli.

Proof. Tf a component Sy = /G is a disk or an annulus then Gy is either trivial
or cyclic. This implies that the complement to €y in S? is either empty or consists
of one or two points. In any case it follows that G is elementary which contradicts
our assumptions. ]



Step 4. Suppose that G is a finitely generated Kleinian group and €2 is a com-
ponent of 2(G) with the stabilizer G in G. Then §2y/Gy is conformally equivalent
to the quotient H? /Ty where I’y C PSL(2,R) is a subgroup whose limit set is the
whole boundary circle of HZ.

Proof. Let x € {0y be a base-point and let R : D — )y be the Riemann mapping
from the unit disk to Q. We will identify D with the hyperbolic plane H?. Recall
that R has radial limits a.e. on the boundary of D. Let Ty := R™'GoR C Isom(H?).
It suffices to show that A(Ig) = S*. Suppose that the limit set of Iy is a proper
subset of the unit circle. Let v C Q(Iy) N'S* be a (nondegenerate) arc. Since the
Riemann mapping has radial limits a.e. in 7y take a pair of “generic” distinct points
p,q € v so that the hyperbolic geodesic o C H? connecting them is mapped by R
to a smooth arc R(a) C Qg which has limit points a, b € 0y N C, so that

@= z—g)I,TzlEaR(Z)’ b - z—B}I,?Ea R(Z)
I will use the notation  for the part of v between p and ¢ since we will not need the
rest of this arc. Let H denote the half-plane in H? bounded by o which is adjacent
to vy, by choosing 7 sufficiently small we get: x ¢ R(H). We note that if a = b and
the topological circle L := R(«) U a bounds the open disk R(H) C €, then the
function R(z) — a tends to zero on ; this contradicts Theorem 2.

Remark 7. Alternatively one can use F. and M. Rees theorem (see e.g. [Nar|) for
this part of the proof.

Therefore we can assume that either a # b (Case 1) or @ = b and the topological
circle L = R(a) Ua bounds an open disk which contains R(H) and a nonempty part
E of the limit set of Gy (Case 2). In the former case the arc « separates a part E of
09 from the base-point z (if 7y is chosen sufficiently small). See Figure 1.

Since E C A(G)), there exists a sequence g, € Gy such that lim, g,(z) € E.
Therefore all but finitely many members of the sequence g,(z) belong to R(H).
Let h, € I'y be the elements corresponding to g, under the isomorphism I'y — G,
induced by R, let y := R~*(z). Since v N A(I'y) = @, only finitely many members of
the sequence h,(y) belong to the half-plane H. Contradiction. O

Step 5. Now there are several ways to argue. One can refer to [KS89] which gives
a purely topological proof (under the assumption that S(G) = Q(G)/G contains no
disks and annuli) that S(G) has finite topological type (i.e. it has finite number
of components each of which is homeomorphic to a compact surface with a finite
number of disks removed). Given this, we conclude that S(G) = Q(G)/G has finite
conformal type.

Alternatively, one can repeat the deformation-theoretic argument, however it
cannot exclude the possibility that S(G) contains infinitely many triply punctured



Case 1. Case 2.

Figure 1:

spheres. To finish the proof one would have to use the algebraic trick of L. Greenberg
[Gre67).

The deformation-theoretic argument. Suppose that there is a component
Qp of Q(G) such that €y/Gy does not have finite topological type (where Gy is
the stabilizer of Qy in G). Then Qy/Gy is conformally equivalent to S, = H? /T
where I'y is a non-finitely generated Kleinian group whose limit set is the whole
boundary circle of A = H?. The Teichmiiller space T (Sp) of the surface S is infinite-
dimensional. Let R : H? — g be the Riemann mapping. This map has (distinct)
radial limits a1, as, a3 at three distinct fixed points b1, be, b3 of hyperbolic elements
of T'y (since R conjugates the Kleinian groups I'g and Gy). We represent, elements of
T (So) by quasiconformal homeomorphisms f : cl(A) — c¢l(A) which fix the points
by, by, b3. These homeomorphisms form an infinite-dimensional Banach space V.

We now proceed as above, each f € V corresponds to a Gy-invariantBeltrami
differential y ;. Extend py to a G-invariant Beltrami differential v; on S% Let hy de-
note the solution of the Beltrami equation Oh; = v;0hy normalized to fix the points
a;,7 = 1,2,3. This determines a continuous mapping A : V. — Hom(G, PSL(2,C)).
We will show that the mapping A is injective. Note that our normalization conven-
tion implies that each h; has the property:

R'ohjoR=f

since the mappings R™' o h; o R and f differ by a conformal automorphism of H?
which fixes three distinct points by, by, bs. Suppose f1, fo € V are quasiconformal
homeomorphisms such that A(f;) = A(f,). Then the mapping h := h;* o h; com-
mutes with each element of G. Let 6 : 'y — Gy denote the isomprphism induced by



conjugation via R. Then the mapping f := f, ' o f satisfies:
f=R'ohoR
and f commutes with each element ~y of I'y:
frf =R 'MR)y(R 'h"'R) = R 'h0(y)h 'R =R '6(y)R = 7.

Hence fi, fo represent the same point of the Teichmiiller space T (Sp). This proves
injectivity of A. Since V is infinite-dimensional and Hom(G, PSL(2,C)) is finite-
dimenaional we get a contradiction.

This proves that each component of S(G) has finite conformal type. Let S(G)*
denote S(G) with triply punctured spheres removed. To prove that S(G)* has fi-
nite number of components we have to repeat the same argument once again. If
So = Q0/Gy is not a triply-punctured sphere then the complex dimension of the
Teichmiiller space T (Sp) is at least 1. Let S;,7 € I denote the components of S(G).
Since (by the same arguments as above) the Bers mapping

A:T(S(R) = T(G) C Hom(G, PSL(2,C))//PSL(2,C)

is injective we conclude that

T(S@) =[] 7(s)

is finite-dimensional. Hence, I is finite. U
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