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Abstract We study infinite covolume discrete subgroups of higher rank semisimple
Lie groups, motivated by understanding basic properties of Anosov subgroups from
various viewpoints (geometric, coarse geometric and dynamical). The class of Anosov
subgroups constitutes a natural generalization of convex cocompact subgroups of
rank one Lie groups to higher rank. Our main goal is to give several new equivalent
characterizations for this important class of discrete subgroups. Our characterizations
capture “rankonebehavior” ofAnosov subgroups and are direct generalizations of rank
one equivalents to convex cocompactness. Along the way, we considerably simplify
the original definition, avoiding the geodesic flow. We also show that the Anosov
condition can be relaxed further by requiring only non-uniform unbounded expansion
along the (quasi)geodesics in the group.
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Anosov subgroups: dynamical and geometric characterizations

1 Introduction

This paper is devoted to studying basic properties of Anosov subgroups of semisimple
Lie groups from various viewpoints (geometric, coarse geometric and dynamical).
The class of Anosov subgroups, introduced by Labourie [25] and further extended by
Guichard andWienhard [12], constitutes a natural generalization of convex cocompact
subgroups of rank one Lie groups to higher rank. Our main goal here is to give several
new equivalent characterizations for this important class of discrete subgroups, includ-
ing a considerable simplification of their original definition. For convex cocompact
subgroups as well as for word hyperbolic groups, it is very fruitful to have different
viewpoints and alternative definitions, as theywere developed bymany authors starting
with Ahlfors’ work on geometric finiteness in the 60s, and later by Beardon, Maskit,
Marden, Thurston, Sullivan, Bowditch and others. Besides a deeper understanding, it
enables one to switch perspectives in a nontrivial way, adapted to the situation at hand.
A main purpose of this paper is to demonstrate that much of this theory extends to
Anosov subgroups, and we hope that the concepts and results presented here will be
useful for their further study. In our relatedwork, they lay the basis for the results on the
Higher Rank Morse Lemma [21], compactifications of locally symmetric spaces for
Anosov subgroups [15], the local-to-global principle and the construction of Morse–
Schottky subgroups [20]. We refer to [22] for a survey of our work and to [16] for
background discussion and many examples.

In rank one, amongKleinian groups and, more generally, among discrete subgroups
of rank one Lie groups, one distinguishes geometrically finite subgroups. They form a
large and flexible class of discrete subgroups which are strongly tied to the negatively
curved symmetric spaces they act on. Therefore they have especially good geometric,
topological and dynamical properties and one can provemany interesting results about
them. The simplest are geometrically finite subgroups without parabolics, which lie
at the root of this paper. They can be characterized in many (not obviously) equivalent
ways: as convex cocompact subgroups, as undistorted subgroups, as subgroups with
conical limit set, as subgroups which are expanding at their limit set, and as word
hyperbolic subgroups with Gromov boundary equivariantly homeomorphic to their
limit set, to name some.

In higher rank, a satisfying and sufficiently broad definition of geometric finiteness,
with orwithout parabolics, remains yet to be found.Convex cocompactness turns out to
bemuch too restrictive a condition: it was shown byKleiner and the second author [24]
that in higher rank only few subgroups are convex cocompact. Undistortion by itself,
on the other hand, is way too weak: undistorted subgroups can even fail to be finitely
presented. Thus, one is forced to look for suitable replacements of these notions in
higher rank. It turns out that some of the other equivalent characterizations of convex
cocompactness in rank one do admit useful modifications in higher rank, which lead to
the class of Anosov subgroups. The Anosov condition is not too rigid and, at the same
time, it imposes enough restrictions on the subgroups making it possible to analyze
their geometric and dynamical properties. One way to think of Anosov subgroups
is as geometrically finite subgroups without parabolics which exhibit some rank one
behavior. Indeed, they are word hyperbolic and we will see that also extrinsically they
display hyperbolic behavior in a variety of ways.
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In this paper, we primarily consider four notions generalizing convex cocompact-
ness to higher rank, all equivalent to the Anosov condition, see the Equivalence
Theorem 1.1 below:

(i) asymptotic embeddedness,
(ii) expansivity,
(iii) conicality,
(iv) Morse property.

Whereas the Anosov condition and conditions (i) and (ii) are dynamical, (iii) is a
condition on the asymptotic geometry of the subgroup, and (iv) is coarse geometric.

We now describe in more detail some of our concepts and results. Let X = G/K
be a symmetric space of noncompact type and, for simplicity, let the semisimple Lie
group G be the connected component of its isometry group. Our approach to studying
Anosov subgroups �<G begins with the observation that they satisfy a strong form
of discreteness which we call regularity and which is primarily responsible for their
extrinsic “rank one behavior” alluded to above. Discreteness of a subgroup �<G
means that for sequences (γn) of distinct elements the distance d(x, γnx) in X diverges
to infinity. For higher rank symmetric spaces there is a natural vector-valued refinement
d� of the Riemannian distance d, which takes values in the euclideanWeyl chamber�
of X . The regularity assumption on �, in its strongest form of σmod-regularity, means
that d�(x, γnx) diverges away from the boundary of �. We will work more generally
with relaxations of this condition, called τmod-regularity, associated with a face τmod
of the model spherical Weyl chamber σmod, where one only requires divergence of
d�(x, γnx) away from some of the faces of�, depending on τmod. To be precise, think
of σmod as the visual boundary of the euclidean Weyl chamber, σmod ∼= ∂∞�. Given
a face τmod ⊆ σmod, we define τmod-regularity by requiring that d�(x, γnx) diverges
away from the faces of � whose visual boundaries do not contain τmod. We will also
need the stronger notion of uniform τmod-regularitywhere one requires the divergence
to be linear in terms of d(x, γnx). Most of the discussion in this paper will take place
within the framework of τmod-regular subgroups.

Classically, the asymptotic behavior of discrete subgroups �<G is captured by
their visual limit set �(�) which is the accumulation set of their orbits �x ⊂ X in
the visual boundary ∂∞X . In our context of τmod-regular subgroups, the visual limit
set is replaced by the τmod-limit set �τmod (�) contained in the partial flag manifold
Flagτmod = G/Pτmod and defined as the accumulation set of�-orbits in the bordification
X � Flagτmod of X , equipped with the topology of flag convergence (see Sect. 4.5).
Here, Pτmod is a parabolic subgroup in the conjugacy class corresponding to τmod. The
notion of τmod-limit set extends to arbitrary discrete subgroups.

We call a τmod-regular subgroup �<G nonelementary if |�τmod(�)| � 3, and
antipodal if it satisfies the visibility condition that any two distinct limit simplices in
�τmod (�) are antipodal. The latter means that they can be connected by a geodesic in
X in the sense that the geodesic is asymptotic to interior points of the simplices. It is
worth noting that the action of a τmod-regular antipodal subgroup on its τmod-limit set
enjoys the classical convergence property, which is a typical rank one phenomenon.

Regularity, which is a condition on the asymptotic geometry of orbits in the sym-
metric space, can be converted into an equivalent dynamical condition about a certain
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contraction behavior of the subgroup on suitable flag manifolds (see Definition 4.1),
allowing one to switch between geometry and dynamics. The contraction behavior
here is a higher rank version of the classical convergence (dynamics) property in the
theory of Kleinian groups. This yields an equivalent characterization of τmod-regular
subgroups as τmod-convergence subgroups (see Definition 4.2). Also the limit sets,
respectively, limit simplices can be defined purely dynamically as the possible limits
of contracting sequences in �, i.e. of sequences converging to constants on suitable
open and dense subsets of the flag manifolds, see Definition 4.25.

Much of the material in Sect. 4 can be found in some form already in the work
of Benoist, see [3, Section 3], in the setting of Zariski dense subgroups of reductive
algebraic groups over local fields, notably the notions of regularity and contraction,
their essential equivalence, and the notion of limit set. For the sake of completeness
we give independent proofs in our setting of discrete subgroups of semisimple Lie
groups. Also our methods are rather different. We give here a geometric treatment and
present the material in a form suitable to serve as a basis for the further development
of our theory of discrete isometry groups acting on Riemannian symmetric spaces and
euclidean buildings of higher rank, such as in our papers [15,19–21].

We now (mostly) restrict to the class of τmod-regular, equivalently, τmod-
convergence subgroups and introduce various geometric and dynamical conditions
in the spirit of geometric finiteness. We begin with three dynamical ones:

1. We say that a subgroup �<G is τmod-asymptotically embedded if it is an antipo-
dal τmod-convergence subgroup, � is word hyperbolic and there exists a �-equivariant
homeomorphism

α : ∂∞�
∼=−→ �τmod (�) ⊂ Flagτmod

from its Gromov boundary onto its τmod-limit set.
This condition can be understood as a continuity at infinity property for the orbit

maps ox : � → �x ⊂ X : By extending an orbit map ox to infinity by the boundary
map α, one obtains a continuous map

ox � α : ��∂∞� → X�Flagτmod

from the Gromov compactification of � (see Proposition 5.16).

2. Our next condition is inspired by Sullivan’s notion of expanding actions [29].
Following Sullivan, we call a subgroup �<G expanding at infinity if its action on the
appropriate partial flag manifold is expanding at the limit set. More precisely:

We call a τmod-convergence subgroup �<G τmod-expanding at the limit set if for
every limit flag in �τmod (�) there exist a neighborhood U in Flagτmod and an element
γ ∈ � which is uniformly expanding on U , i.e. for some constant c > 1 and all
τ1, τ2 ∈ U it holds that

d(γ τ1, γ τ2) � c ·d(τ1, τ2).

Here, and in what follows the distance d is induced by a fixed Riemannian background
metric on the flag manifold. Now we can formulate our second condition:

We say that a subgroup �<G is τmod-CEA (Convergence Expanding Antipodal) if
it is an antipodal τmod-convergence subgroup which is expanding at the limit set.
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We note that the CEA condition does not a priori assume word hyperbolicity, not
even finite generation.

3. The next condition is motivated by the original definition of Anosov sub-
groups. It is a hybrid of the previous two definitions, where we weaken asymptotic
embeddedness (to boundary embeddedness) and strengthen expansivity. We drop the
regularity/convergence assumption and, accordingly, make no use of the limit set in
our definition. Compared to asymptotic embeddedness, we keep the word hyperbol-
icity of the subgroup but, instead of identifying its Gromov boundary with the limit
set as in asymptotic embeddedness, we only require a boundary map embedding the
Gromov boundary into the flag manifold. Compared to CEA, we require a stronger
form of expansivity, now at the image of the boundary map.

We call a subgroup �<G τmod-boundary embedded if � is word hyperbolic and
there exists a �-equivariant continuous embedding

β : ∂∞� → Flagτmod

sending distinct visual boundary points to antipodal simplices. If � is virtually cyclic,
we require in addition that it is discrete in G. (Otherwise, discreteness is a conse-
quence.)Wewill refer toβ as aboundary embedding. In general, boundary embeddings
are not unique.

The infinitesimal expansion factor of an element g ∈ G at a simplex τ ∈ Flagτmod

is
ε(g, τ ) = min

u
|dg(u)|

where the minimum is taken over all unit tangent vectors u ∈ Tτ Flagτmod , again using
the Riemannian background metric.

Now we can formulate our version of the Anosov condition:
We say that a subgroup�<G is τmod-Anosov if it is τmod-boundary embedded with

boundary embedding β and satisfies the following expansivity condition: For every
ideal point ζ ∈ ∂∞� and every normalized (by r(0) = e ∈ �) discrete geodesic ray
r : N → � asymptotic to ζ , the action ��Flagτmod satisfies

ε(r(n)−1, β(ζ )) � AeCn

for n � 0 with constants A,C > 0 independent of r . (Here, we fix a word metric on
�.)

The uniformity of expansion in this definition can be significantly weakened:
We say that a subgroup �<G is non-uniformly τmod-Anosov if it is τmod-boundary

embedded with boundary embedding β and, for every ideal point ζ ∈ ∂∞� and every
discrete geodesic ray r : N → � asymptotic to ζ , the action ��Flagτmod satisfies
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sup
n∈N

ε(r(n)−1, β(ζ )) = +∞.

The original definition of Anosov subgroups in [12,25] is rather involved. It is based
on geodesic flows for word hyperbolic groups and formulated in terms of expan-
sion/contraction properties for lifted flows on associated bundles over the geodesic
flow spaces (see Sect. 5.11). Our definition requires only an expansion property for
the group action on a suitable flag manifold and avoids using the geodesic flow, whose
construction is highly technical for word hyperbolic groups which do not arise as the
fundamental group of a closed negatively curved Riemannian manifold. The geodesic
flow is replaced by a simpler coarse geometric object, the space of quasigeodesics.

Now we come to the geometric notions.

4. The first geometric condition concerns the orbit asymptotics. The notion of
conicality of limit simplices, due to Albuquerque [1, Definition 5.2], generalizes a
well-known condition from the theory of Kleinian groups: In the case τmod = σmod,
a limit chamber σ ∈ �σmod (�) of a σmod-regular subgroup �<G is called conical if
there exists a sequence γn → ∞ in � such that for a(ny) point x ∈ X the sequence
of orbit points γnx is contained in a tubular neighborhood of the euclidean Weyl
chamber V (x, σ ) with tip x and asymptotic to σ . For general τmod and limit simplices
τ ∈ �τmod (�) of τmod-regular subgroups �<G, one replaces the euclidean Weyl
chamber with the Weyl cone V (x, st(τ )) over the star of τ , that is, by the union of
the euclidean Weyl chambers V (x, σ ) for all spherical Weyl chambers σ ⊃ τ . A
τmod-regular subgroup �<G is called conical if all limit simplices are conical. Here
is our fourth condition:

We say that a subgroup �<G is τmod-RCA if it is τmod-regular, conical and antipo-
dal.

For nonelementary τmod-regular antipodal subgroups, this extrinsic notion of coni-
cality is equivalent to an intrinsic one defined in terms of the dynamics on the τmod-limit
set (Proposition 5.34), which enables one to relate it to the dynamical notions above.

5. The last set of definitions concerns the coarse extrinsic geometry. We recall
that a finitely generated subgroup �<G is undistorted if the orbit maps � → X are
quasiisometric embeddings. They then send discrete geodesics in � (with respect to a
fixed word metric) to uniform quasigeodesics in X . Undistortion by itself is too weak
a restriction, compared with the other notions defined previously. We will strengthen
it in two ways. The first is by adding uniform regularity:

We say that a subgroup �<G is τmod-URU if it is uniformly τmod-regular and
undistorted.

According to the classical Morse Lemma in negative curvature, quasigeodesic
segments in rank one symmetric spaces are uniformly Hausdorff close to geodesic
segments with the same endpoints. This is no longer true in higher rank because it
fails already in euclidean plane. Another way of strengthening undistortion is there-
fore by imposing a “Morse” type property on the quasigeodesics arising as orbit map
images of the discrete geodesics in �.

As in the case of conicality above, where one replaces rays with Weyl cones when
passing from rank one to higher rank, it is natural to replace geodesic segments with
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“diamonds” in a higher rank version of the Morse property. (This is suggested, for
instance, by the geometry of free Anosov subgroups, see our examples of Morse–
Schottky subgroups in [20] and [16, Section 3.10].) We define diamonds as follows:
If τmod = σmod and xy is a σmod-regular segment, then the σmod-diamond with tips
x, y is the intersection

♦(x, y) = V (x, σ ) ∩ V (y, σ̂ )

of the euclidean Weyl chambers with tips at x and y containing xy. In the case of
general τmod, the euclidean Weyl chambers are replaced with τmod-Weyl cones (see
Sect. 2.5.3).

We say that a subgroup �<G is τmod-Morse if it is τmod-regular, � is word hyper-
bolic and an(y) orbit map ox : � → �x ⊂ X satisfies the following Morse condition:
The images ox ◦s of discrete geodesic segments s : [n−, n+] ∩ Z → � are contained
in uniform tubular neighborhoods of τmod-diamonds with tips uniformly close to the
endpoints of ox ◦s (see Definition 5.21).

The definition does not a priori assume undistortion, but we show in this paper that
Morse implies URU. That, conversely, URU implies Morse may seem unexpected at
first but follows from our Higher RankMorse Lemma for regular quasigeodesics [21].

Wenowarrive at ourmain result on the equivalence of various conditions introduced
above. We state it for nonelementary subgroups because we use this assumption in
some of our proofs.

Equivalence Theorem 1.1 The following properties for subgroups �<G are equiv-
alent in the nonelementary case:

(i) τmod-asymptotically embedded,
(ii) τmod-CEA,
(iii) τmod-Anosov,
(iv) non-uniformly τmod-Anosov,
(v) τmod-RCA,
(vi) τmod-Morse.

These properties imply τmod-URU. Moreover, the boundary maps for properties (i),
(iii) and (iv) coincide.

Here, “nonelementary” means |∂∞�| � 3 in the Anosov conditions (iii) and (iv),
which assume word hyperbolicity but no τmod-regularity, and means |�τmod(�)| � 3
in all other cases.

Remark 1.2 (i) We prove in [21] that, conversely, τmod-URU implies τmod-Morse
(without assuming nonelementary).

(ii) All implications between properties (i)–(vi) hold without assuming nonelemen-
tary, with the exception of (ii)⇒ (v)⇒ (i). In particular, the properties (i), (iii),
(iv), (vi) and τmod-URU are equivalent in general.

(iii) The implication Anosov⇒URU had been known before [12].
(iv) Some of the implications in the theorem can be regarded as a description of

geometric and dynamical properties of Anosov subgroups. Different charac-
terizations of Anosov subgroups are useful in different contexts. For example:
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Expansivity (ii) is used in [18,19] to establish the cocompactness of�-actions on
suitable domains of discontinuity in flag manifolds. Asymptotic embeddedness
is used in [15] to construct Finsler compactifications of locally symmetric spaces
for Anosov subgroups. The Morse property is used in [20] to prove a local-to-
global principle for Anosov subgroups. The latter in turn leads to new proofs of
openness and structural stability of Anosov representations, to a construction of
freeAnosov subgroups (Morse–Schottky subgroups), and to the semidecidability
of Anosovness, see [20].

(v) In our paper [15] we establish two more characterizations of Anosov sub-
groups among uniformly regular subgroups, namely as coarse retracts and by
S-cocompactness. The former property is a strengthening of undistortion. The
latter means the existence of a certain kind of compactification of the correspond-
ing locally symmetric space.

(vi) Other characterizations of Anosov subgroups can be found in [11].

Remark 1.3 Boundary embeddedness appears to be a considerable weakening of
asymptotic embeddedness, even in the regular case. Nevertheless two results in this
paper establish a close relation between the two concepts:

(i) Forσmod-regular subgroups, boundary embeddedness, conversely, implies asymp-
totic embeddedness, while the boundary embeddingmay have to bemodified (see
Theorem 5.11).

(ii) For general τmod-regular subgroups, there is the followingdichotomy for boundary
embeddings (see Theorem 5.7) which is useful for verifying asymptotic embed-
dedness:
Either the image of the boundary embedding equals the τmod-limit set and the
subgroup is asymptotically embedded. Or the image is disjoint from the limit set,
and the limit set is not Zariski dense. The latter cannot happen for Zariski dense
subgroups.

While the main results in this paper concern discrete subgroups of Lie groups, in
Sect. 5.10, motivated by the Morse property, we discuss Morse quasigeodesics and
Finsler geodesics. We characterize Morse subgroups as word hyperbolic subgroups
whose intrinsic geodesics are extrinsically1 uniform Morse quasigeodesics. Further-
more, we characterize Morse quasigeodesics as bounded perturbations of Finsler
geodesics. Lastly, we analyze the�-distance along Finsler geodesics andMorse quasi-
geodesics.We show that, via the�-distance function, they project to Finsler geodesics
and Morse quasigeodesics in �.

Most of the results in this paper were already contained in Chapters 1–6 of the
preprint [20], however the presentation in this paper is more efficient. The further
material on the Morse property in [20, Section 7] will appear elsewhere.

Organization of the paper. In Sect. 2we first go through some standardmaterial on
symmetric spaces and spherical buildings and then, in Sects. 2.5–2.12, mostly develop
concepts specific to our work, such as stars at infinity, Weyl cones and diamonds;
these objects will appear frequently throughout the paper. In Sect. 3 we review several

1 with respect to the ambient symmetric space
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general notions from topological and smooth dynamics, notably convergence actions
and expansivity. These notions will be applied in the context of dynamics of discrete
isometry groups of symmetric spaces. In Sect. 4 we introduce two closely related
notions, regularity and contraction, for sequences of isometries of symmetric spaces,
specifying divergence to infinity in higher rank. Contraction is a higher rank analogue
of the classical convergence property. Using these notions we define limit sets in
flag manifolds. Section 5 is the brain of the paper. We introduce and analyze various
notions generalizing the rank one concept of convex-cocompactness and prove their
equivalence. In the Appendix to this section we verify that our simplified definition of
Anosov subgroups is equivalent to the original one.

2 Geometry of symmetric spaces

In this section, we collect some material from the geometry of symmetric spaces
and buildings. We explain the notions which are most important for the purposes of
this paper, establish notation and give proofs for some of the less standard facts. No
attempt of a complete review is made. For more detailed discussions, we refer the
reader to [2,7,23] and [26].

We give a brief description of where various parts of this section are used in the
paper:

Sections 2.2–2.5 are used essentially everywhere.
While the vector valued distance function d� is used in many places in the paper,

the rest of the material in Sects. 2.6 and 2.7 is used primarily in Sect. 2.9.1 on the
separation of nested Weyl cones and in Sect. 5.10 where we analyze projections of
Morse quasigeodesics to the euclidean model Weyl chamber �.

The material of Sect. 2.9 dealing with shadows at infinity is used in Sect. 4.4 when
we prove the equivalence of regularity and contractivity for sequences of isometries
of X . The main result of Sect. 2.9.1 on the separation of nested Weyl cones is used in
Sect. 5.3 to prove that Morse subgroups are URU (Theorem 5.18).

The main results of Sects. 2.10 and 2.11 are Theorem 2.41 and Proposition 2.42
establishing estimates for the contraction and expansion of isometries of X acting on
flag manifolds. (The other results are used only in Sects. 2.10 and 2.11). Theorem 2.41
and Proposition 2.42 are used in Sects. 5.7 and 5.8 while discussing discrete subgroups
satisfying expansion properties (CEA and Anosov).

The material of Sect. 2.12 is used only in Sect. 5.10 where it is proven that Morse
quasigeodesics are uniformly closed to Finsler geodesics and that �-distance projec-
tions of Finsler geodesics are again Finsler geodesics.

2.1 General metric space notation

We will use the notation B(p, r) for the open r -ball with center p in a metric space,
and B(p, r) for the closed r -ball.

A tubular neighborhood of a subset A in a metric space (Z , d) is a subset of the
form
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NR(A) = {z ∈ Z : d(z, A) < R}

for some R > 0, its radius.
A geodesic in (Z , d) is an isometric embedding I → Z from a (possibly infinite)

interval I ⊂ R. In the context of finitely generated groups equipped with word met-
rics, we will also work with discrete geodesics; these are isometric embeddings from
intervals I ∩ Z in Z. The notion of discrete quasigeodesic will be used similarly.

2.2 Spherical buildings

Spherical buildings occur in this paper as the visual boundaries of symmetric spaces
of noncompact type, equipped with their structures of thick spherical Tits buildings.

2.2.1 Spherical geometry

Let S be a unit sphere in a euclidean space, and let σ ⊂ S be a spherical simplex with
dihedral angles � π

2 . Then diam(σ ) � π
2 .

For a face τ ⊆ σ , we define the τ -boundary ∂τ σ as the union of faces of σ which
do not contain τ , and the τ -interior intτ (σ ) as the union of open faces of σ whose
closure contains τ . We obtain the decomposition

σ = intτ (σ ) � ∂τ σ.

If τ ′ ⊂ τ , then ∂τ ′σ ⊂ ∂τ σ and intτ ′(σ ) ⊃ intτ (σ ). Note that ∂σ σ = ∂σ and
intτ (σ ) = int(σ ).

We need the following fact about projections of spherical simplices to their faces:

Lemma 2.1 The nearest point projection intτ (σ ) → int(τ ) is well-defined.

In other words, for every point x ∈ intτ (σ ) there exists a point p ∈ int(τ ) such that
px⊥τ . In view of diam(σ ) � π

2 , this point is necessarily unique.

Proof We argue by induction on the dimension of σ . Let x ∈ intτ (σ ). We apply the
induction assumption to the link�vσ at a vertex v of τ . Note that ∂�vτ�vσ = �v∂τ σ .
Since −→

vx ∈ int�vτ (�vσ), the nearest point projection δ of this direction to �vτ is
contained in int(�vτ) and has angle < π

2 with −→
vx . It follows that the nearest point

projection p of x to τ is different from v and lies on the arc in direction δ, −→vp = δ.
In particular, it is not contained in a face of τ with vertex v. Letting run v through the
vertices of τ , we conclude that p ∈ int(τ ). ��

As a consequence of the lemma, the nearest point projection intτ (σ ) → τ agrees with
the nearest point projection intτ (σ ) → s to the geodesic sphere s ⊂ S spanned by τ

(i.e. containing τ as a top-dimensional subset), and its image equals int(τ ).
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2.2.2 Spherical Coxeter complexes

A spherical Coxeter complex (amod,W ) consists of a unit sphere (in a euclidean space)
amod and a finite reflection group W acting isometrically on amod. We will refer to
amod as the model apartment (because it will serve as the model for apartments in
spherical buildings, see below).

Awall in amod is the fixed point set of a reflection inW . A half-apartment is a closed
hemisphere in amod bounded by a wall. A singular sphere in amod is an intersection
of walls.

A chamber in amod is the closure of a connected component of the complement
of the union of the walls. The group W acts transitively on the set of chambers. The
chambers are simplices with diameter � π

2 iff W fixes no point in amod, equivalently,
theCoxeter complex does not split off a spherical join factor (in the category ofCoxeter
complexes). In this case, the collection of chambers defines on amod the structure of a
simplicial complex, the simplices being intersections of chambers.

Every chamber is a fundamental domain for the action W�amod. The spherical
model chamber can be defined as the quotient σmod = amod/W . We identify it with a
chamber in the model apartment, σmod ⊂ amod, which we refer to as the fundamental
chamber.

We call the natural projection

θ : amod → amod/W ∼= σmod

the type map for amod. It restricts to an isometry on every chamber. A face type is a
face of σmod. The type of a simplex τ ⊂ amod is then defined as θ(τ ). Throughout the
paper, we will use the notation τmod, τ

′
mod, νmod, ν

′
mod, . . . for face types. Furthermore,

we will denote by Wτmod � W the stabilizer of the face type τmod ⊆ σmod.
The longest element of the Weyl group is the unique element w0 ∈ W sending

σmod to the opposite chamber −σmod. The standard involution (also known as the
opposition involution) of the model chamber is given by

ι ..= −w0 : σmod → σmod. (1)

2.2.3 Spherical buildings

A spherical building modeled on a Coxeter complex (amod,W ) is a CAT(1) metric
space B equipped with a collection of isometric embeddings κ : amod → B, called
charts. The image of a chart is an apartment in B. One requires that any two points are
contained in an apartment and that the coordinate changes between charts are induced
by isometries in W . (The precise axioms can be found e.g. in [23,26].) We will use
the notation � for the metric on B.

We assume thatW fixes no point, equivalently, that σmod is a simplex with diameter
� π

2 .
Via the atlas of charts, the spherical building inherits from the spherical Coxeter

complex a natural structure of a simplicial complexwhere the simplices are the images
of the simplices in themodel apartment. As alreadymentioned, the images of the charts
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are called apartments. Accordingly, the images of chambers (walls, half-apartments,
singular spheres) inamod are called chambers (walls, half-apartments, singular spheres)
in the building. The codimension one faces are called panels. The interior int(τ ) of a
simplex τ is obtained by removing all proper faces; the interiors of simplices are called
open simplices. The simplex spanned by a point is the smallest simplex containing it,
equivalently, the simplex containing the point in its interior.Wewill sometimes denote
the simplex spanned by ξ by τξ .

A spherical building is thick if every wall is the bounds of at least three half-
apartments, equivalently, if every panel is adjacent to (i.e. contained in the boundary
of) at least three chambers. One can always pass to a thick spherical building structure
by reducing the Weyl group, thereby coarsifying the simplicial structure.

The space of directions �ξ B at a point ξ ∈ B is the space of germs
−→
ξη of nonde-

generate geodesic segments ξη ⊂ B, equipped with the natural angle metric �
ξ . Two

segments ξη and ξη′ represent the same direction in �ξ B,
−→
ξη = −→

ξη ′, iff they initially
agree. The space of directions is again a spherical building.

A subset C ⊂ B is called (π -)convex if for any two points ξ, η ∈ C with distance
� (ξ, η) < π the (unique) geodesic ξη connecting ξ and η in B is contained in C .

Due to the compatibility of charts, i.e. the property of the building atlas that the
coordinate changes are induced by isometries in W , there is a well-defined type
map

θ : B → σmod.

It is 1-Lipschitz and restricts to an isometry on every chamber σ ⊂ B. We call the
inverse κσ = (θ |σ )−1 : σmod → σ the chart of the chamber σ . For a simplex τ ⊂ B,
we call the face θ(τ ) ⊆ σmod the type of the simplex and κτ = (θ |τ )−1 : θ(τ ) → τ

its chart. We define the type of a point ξ ∈ B as its image θ(ξ) ∈ σmod. A point ξ ∈ B
is called regular if its type is an interior point of σmod, ξ ∈ int(σmod), and singular
otherwise.

We will sometimes say that a singular sphere has type τmod if it contains a top-
dimensional simplex of type τmod. (A singular sphere has in general several types.)

For a singular sphere s ⊂ B, we define B(s) ⊂ B as the union of all apartments
containing s. It is a convex subset and splits off s as a spherical join factor. Moreover,
B(s) is a subbuilding, i.e. it inherits from B a spherical building structure modeled on
the same Coxeter complex; the apartments of B(s) are precisely the apartments of B
containing s. This building structure is however not thick, except in degenerate cases.
In order to pass to a thick spherical building structure, take a maximal atlas of charts
κ : amod → B(s) for which the maps κ−1|s : s → amod coincide, and reduce the Weyl
group to the pointwise stabilizer of s in W .

Two points ξ,̂ξ ∈ B are antipodal or opposite if � (ξ,̂ξ) = π , equivalently, if
they are antipodal in one (every) apartment containing them. We then define the sin-
gular sphere s(ξ,̂ξ) ⊂ B spanned by the points ξ,̂ξ as the smallest singular sphere
containing them. Moreover, we define the suspension B(ξ,̂ξ) ⊂ B of {ξ,̂ξ} as the
union of all geodesics connecting ξ and̂ξ , equivalently, as the union of all apartments
containing ξ and ̂ξ . Then B(ξ,̂ξ) = B(s(ξ,̂ξ)). As above, a thick spherical build-
ing structure on B(ξ,̂ξ) is obtained by taking all charts κ : amod → B(ξ,̂ξ) so that
κ−1(ξ) = θ(ξ) ∈ σmod, and reducing the Weyl group to the stabilizer of θ(ξ) in W .
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Similarly, one defines antipodal or opposite faces τ, τ̂ ⊂ B as faces which are
antipodal in the apartments containing themboth, equivalently, whose interiors contain
a pair of antipodal points ξ ∈ int(τ ) and̂ξ ∈ int (̂τ ). We define the singular sphere
s(τ, τ̂ ) ⊂ B spanned by the simplices τ, τ̂ again as the smallest singular sphere
containing them, and the suspension B(τ, τ̂ ) as the union of all apartments containing
τ ∪ τ̂ ; then s(τ, τ̂ ) = s(ξ,̂ξ) and B(τ, τ̂ ) = B(ξ,̂ξ).

We will need some facts about antipodes. Recall that in a spherical building B every
point ξ ∈ B has an antipode in every apartment a ⊂ B, and hence for every simplex
τ ⊂ B there exists an opposite simplex τ̂ ⊂ a, cf. e.g. the first part of [23, Lemma
3.10.2]. We need the more precise statement that a point has several antipodes in an
apartment unless it lies itself in this apartment:

Lemma 2.2 Suppose that ξ ∈ B has only one antipode in the apartment a ⊂ B. Then
ξ ∈ a.

Proof Suppose that ξ /∈ a and let̂ξ ∈ a be an antipode of ξ . We choose a “generic”
segment ξ̂ξ of length π tangent to a at̂ξ as follows. The suspension B(ξ,̂ξ) contains
an apartment a′ with the same unit tangent sphere at̂ξ , �

̂ξ a
′ = �

̂ξ a. Inside a
′ there

exists a segment ξ̂ξ whose interior does not intersect simplices of codimension � 2.
Hencêξξ leaves a at an interior point η �= ξ,̂ξ of a panel π ⊂ a, i.e. a ∩ ξ̂ξ = η̂ξ

and π ∩ ξ̂ξ = η, and ηξ initially lies in a chamber adjacent to π but not contained
in a. Let s ⊂ a be the wall containing π . By reflectinĝξ at s, one obtains a second
antipode for ξ in a. ��
In thick buildings, simplices can be represented as intersections of apartments:

Lemma 2.3 In a thick spherical buildingB, any simplex τ ⊂ B equals the intersection
of the apartments containing it.

Proof Since every simplex is an intersection of chambers, we are reduced to the case
when τ is a chamber. Furthermore, since every chamber is an intersection of half-
apartments, we are reduced to the corresponding assertion for half-apartments. The
latter holds by thickness. ��

2.3 Hadamard manifolds

In this section only, X denotes a Hadamardmanifold, i.e. a simply connected complete
Riemannian manifold with nonpositive sectional curvature. We will use the notation
Isom(X) for the full isometry group of X .

Any two points in X are connected by a unique geodesic segment. We will use the
notation xy for the oriented geodesic segment connecting x to y.

For points x �= y, z we denote by � x (y, z) the angle of the geodesic segments xy
and xz. Furthermore, we denote by �x X the space of directions of X at x equipped
with the angle metric � x . It coincides with the unit tangent sphere at x .

A basic feature of Hadamard manifolds is the convexity of the distance function:
Given any pair of geodesics c1(t), c2(t) in X , the function t �→ d(c1(t), c2(t)) is
convex.
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Two geodesic rays ρ1, ρ2 : [0,+∞) → X are called asymptotic if the convex
function t �→ d(ρ1(t), ρ2(t)) on [0,+∞) is bounded, and they are called strongly
asymptotic if d(ρ1(t), ρ2(t)) → 0 as t → +∞.

Two geodesic lines l1, l2 ⊂ X are parallel if they have finite Hausdorff distance.
Equivalently, l1∪l2 bounds a flat strip in X .

The ideal or visual boundary ∂∞X of X is the set of asymptote classes of geodesic
rays in X . Points in ∂∞X are called ideal points. For x ∈ X and ξ ∈ ∂∞X we denote
by xξ the unique geodesic ray emanating from x and asymptotic to ξ , i.e. representing
the ideal point ξ . There are natural identifications logx : ∂∞X → �x X sending the

ideal point ξ to the direction
−→
xξ .

The cone or visual topology on ∂∞X is characterized by the property that the
maps logx are homeomorphisms with respect to it. Thus, ∂∞X is homeomorphic to
the sphere of dimension dim(X) − 1. The visual topology has a natural extension to
X = X � ∂∞X which can be described as follows in terms of sequential convergence:
A sequence (xn) in X converges to an ideal point ξ ∈ ∂∞X iff, for some (any) base
point x ∈ X , the sequence of geodesic segments or rays xxn converges to the ray
xξ (in the pointed Hausdorff topology with base points at x). This topology makes
X into a closed ball. We define the visual boundary of a subset A ⊂ X as the set
∂∞A = A ∩ ∂∞X of its accumulation points at infinity.

The visual boundary ∂∞X carries the natural Tits angle metric � Tits defined as

� Tits(ξ, η) = sup
x∈X

� x (ξ, η),

where � x (ξ, η) is the angle between the geodesic rays xξ and xη. The Tits boundary
∂TitsX is the metric space (∂∞X, � Tits). The Tits metric is lower semicontinuous
with respect to the visual topology and, accordingly, the Tits topology induced by
the Tits metric is finer than the visual topology. It is discrete if there is an upper
negative curvature bound, and becomes nondiscrete if X contains nondegenerate flat
sectors. For instance, the Tits boundary of flat r -space is the unit (r − 1)-sphere,
∂TitsR

r ∼= Sr−1(1). An isometric embedding X → Y of Hadamard manifolds induces
an isometric embedding ∂TitsX → ∂TitsY of their Tits boundaries.

We will be using the visual topology on ∂∞X , unless explicitly said otherwise.
Let ξ ∈ ∂∞X be an ideal point. For a geodesic ray ρ : [0,+∞) → X asymptotic

to ξ one defines the Busemann function bξ on X as the uniform monotonic limit

bξ (x) = lim
t→+∞(d(x, ρ(t)) − t).

Along the ray, we have
bξ (ρ(t)) = − t.

Altering the ray ρ changes bξ by an additive constant. The point at infinity ξ thus
determines bξ up to an additive constant. To remove this ambiguity, given x ∈ X , we
define bξ,x to be the Busemann function bξ,x normalized at the point x by bξ,x (x) = 0.
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TheBusemann function bξ is convex, 1-Lipschitz andmeasures the relative distance
from the ideal point ξ . The sublevel sets

Hbξ,x
..= {bξ � bξ (x)} ⊂ X

are called (closed) horoballs centered at ξ . As sublevel sets of convex functions, they
are convex. The visual boundaries of horoballs are π

2 -balls at infinity with respect to
the Tits metric,

∂∞Hbξ,x = B

(

ξ,
π

2

)

..=
{

� Tits(ξ, ·) � π

2

}

⊂ ∂∞X.

The level sets
Hsξ,x

..= {bξ = bξ (x)} = ∂Hbξ,x

are called horospheres centered at ξ .
As convex Lipschitz functions, Busemann functions are asymptotically linear along

rays. If ρ : [0,+∞) → X is a geodesic ray asymptotic to η ∈ ∂∞X , ρ(+∞) = η,
then

lim
t→+∞

bξ (ρ(t))

t
= − cos � Tits(ξ, η).

2.4 Symmetric spaces of noncompact type: basic concepts

In this section, we go through some well-known material and establish notation. Stan-
dard references are [2,7].

A symmetric space, denoted by X throughout this paper, is said to be of noncompact
type if it is nonpositively curved and has no euclidean factor. In particular, it is a
Hadamard manifold. We will write the symmetric space as

X = G/K

where G is a connected2 semisimple Lie group with finite center acting isometrically
and transitively on X , and K <G is a maximal compact subgroup. The natural epi-
morphism G → Isom(X)o then has compact kernel. Every connected semisimple Lie
group with finite center occurs in this way. The Lie group G carries a natural structure
of a real algebraic group.

By the definition of symmetric spaces, in every point x ∈ X there is a point reflection
or Cartan involution, that is, an isometry σx which fixes x and has differential− idTx X
in x .

A transvection of X is an isometry which is the product σx ′σx of two point reflec-
tions; it preserves the oriented geodesic through x and x ′ and the parallel vector fields

2 What is really needed is aweaker property than connectedness, namely thatG has finitelymany connected
components and acts on the Tits building of X by (type preserving) automorphisms. The latter is equivalent
to the triviality of the G-action on the model chamber σmod, equivalently, on the Dynkin diagram. Under
this assumption, the theory of discrete subgroups presented in this paper goes through unchanged.
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along it. The transvections preserving a geodesic line c(t) form a one parameter sub-
group (T c

t ) of Isom(X)o where T c
t denotes the transvection mapping c(s) �→ c(s+ t).

An isometry φ of X is called axial if it preserves a geodesic l and does not fix l
pointwise. Thus, φ acts as a nontrivial translation on l. (Note that an axial isometry
need not be a transvection.) The geodesic l is called an axis ofφ. Axes are in general not
unique, but they are parallel to each other. For each axial isometry φ, the displacement
function x �→ d(x, φ(x)) on X attains its minimum on the convex subset of X which
is the union of axes of φ. An isometry φ of X is parabolic if

inf
x∈X d(x, φ(x)) = 0

but g does not fix a point in X . Isometries fixing points are called elliptic.
A flat in X is a complete totally geodesic flat submanifold, equivalently, a convex

subset isometric to a euclidean space. A maximal flat in X is a flat which is not
contained in any larger flat; we will use the notation F for maximal flats. The group
Isom(X)o acts transitively on the set of maximal flats; the common dimension of
maximal flats is called the rank of X . The space X has rank one if and only if it has
strictly negative sectional curvature.

Amaximal flat F is preserved by all transvections along geodesic lines contained in
it. In general, there exist nontrivial isometries of X fixing F pointwise. The subgroup
of isometries of F which are induced by elements of G is isomorphic to a semidirect
productWaff

..= R
r
�W , the affineWeyl group, where r is the rank of X . The subgroup

R
r acts simply transitively on F by translations. The linear partW is a finite reflection

group, called the Weyl group of G and X . Since maximal flats are equivalent modulo
G, the action Waff �F is well-defined up to isometric conjugacy.

We will think of the Weyl group as acting on a model flat Fmod ∼= R
r fixing the

origin 0 ∈ Fmod, and on its visual boundary sphere at infinity, the model apartment
amod = ∂TitsFmod ∼= Sr−1. The pair (amod,W ) is the spherical Coxeter complex
associated to G. We identify the euclidean model Weyl chamber � with the complete
cone V (0, σmod) ⊂ Fmod with tip in the origin and visual boundary the spherical
model Weyl chamber σmod ⊂ amod.

For every maximal flat F ⊂ X , we have an induced Tits isometric embedding
∂∞F ⊂ ∂∞X of its visual boundary sphere. The natural identification F ∼= Fmod,
unique up to the action of Waff , induces a natural identification ∂∞F ∼= amod, unique
up to the action of W .

The Coxeter complex structure on amod induces simplicial structures on the visual
boundary spheres ∂∞F of themaximal flats F ⊂ X . The spheres ∂∞F cover ∂∞X , and
their simplicial structures are compatible (i.e. the intersections are simplicial and the
simplicial structures on the intersections agree). One thus obtains a G-invariant piece-
wise spherical simplicial structure on ∂∞X which makes ∂∞X into a thick spherical
building and, also taking into account the visual topology, into a topological spher-
ical building. It is called the spherical or Tits building ∂TitsX associated to X . The
Tits metric is the path metric with respect to the piecewise spherical structure, unless
rank(X) = 1, in which case ∂TitsX is discrete with distance π between distinct points.
We will sometimes refer to the simplices in ∂TitsX also as faces. The visual bound-
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aries of the maximal flats in X are precisely the apartments in ∂∞X , which in turn
are precisely the convex subsets isometric, with respect to the Tits metric, to the unit
sphere Sr−1.

We call a flat f ⊂ X singular if it is the intersection of maximal flats. Its visual
boundary ∂∞ f is then a singular sphere in ∂∞X .

We define the Weyl sector V = V (x, τ ) ⊂ X with tip x and asymptotic to a
simplex τ ⊂ ∂∞X as the union of rays xξ for the ideal points ξ ∈ τ . Weyl sectors are
contained in flats; they are isometric images of Weyl sectors V (0, τmod) ⊂ � under
charts Fmod → X . These apartment charts restrict to canonical sector charts κx,τ =
κV (x,τ ) : V (0, τmod) → V (x, τ ); at infinity, they induce simplex charts, ∂∞κx,τ = κτ .

If σ ⊂ ∂∞X is a chamber, the sector V (x, σ ) is a euclidean Weyl chamber.
For a flat f ⊂ X , the parallel set P( f ) ⊂ X is the union of all flats f ′ ⊂ X parallel

to f , equivalently, with the same visual boundary sphere ∂∞ f ′ = ∂∞ f . The parallel
set is a symmetric subspace and splits as the metric product

P( f ) ∼= f ×CS( f ) (2)

of f and a symmetric space CS( f ) called the cross section. The latter has no euclidean
factor iff f is singular. Accordingly, the Tits boundary metrically decomposes as the
spherical join

∂Tits P( f ) ∼= ∂Tits f ◦∂TitsCS( f ).

It coincides with the subbuilding (∂TitsX)(∂∞ f ) ⊂ ∂TitsX consisting of the union of
all apartments in ∂∞X containing ∂∞ f , see Sect. 2.2.3.

For a singular sphere s ⊂ ∂∞X , we define the parallel set P(s) ⊂ X as the union
of the (necessarily singular) flats f ⊂ X with visual boundary sphere ∂∞ f = s,
i.e. P(s) = P( f ); we denote its cross section by CS(s). For a pair of opposite
points ξ,̂ξ ∈ ∂∞X , we define P(ξ,̂ξ) ⊂ X as the parallel set of the singular sphere
s(ξ,̂ξ) ⊂ ∂∞X spanned by them, P(ξ,̂ξ) = P(s(ξ,̂ξ)). Similarly, for a pair of
opposite simplices τ, τ̂ ⊂ ∂∞X , we define P(τ−, τ+) = P(s(τ−, τ+)).

The action G�∂∞X on ideal points is not transitive if rank(X) � 2. However,
every G-orbit meets every chamber exactly once. The quotient is naturally identified
with the spherical model chamber, and the projection

θ : ∂∞X → ∂∞X/G ∼= σmod

is the type map, cf. Sect. 2.2.3.
A nondegenerate geodesic segment xy ⊂ X is called regular if the unique geodesic

ray xξ extending xy is asymptotic to a regular ideal point ξ ∈ ∂∞X .
Two ideal points ξ, η ∈ ∂∞X are antipodal, � Tits(ξ, η) = π , iff there exists a

geodesic line l ⊂ X asymptotic to them, ∂∞l = {ξ, η}. Their types are then related
by θ(ξ2) = ι(θ(ξ1)), where ι is the standard involution of σmod, see (1).

We say that two simplices τ1, τ2 ⊂ ∂∞X are x-antipodal or x-opposite if τ2 = σxτ1,
using the induced action of the point reflection σx on ∂∞X . Two simplices τ1, τ2 are
opposite iff they are x-opposite for some point x ∈ X . Their types are then related by
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θ(τ2) = ι(θ(τ1)). Wewill frequently use the notation τ, τ̂ and τ± for pairs of antipodal
simplices. A pair of opposite chambers σ± is contained in a unique apartment, which
we will denote by a(σ−, σ+). It is the visual boundary of a unique maximal flat
F(σ−, σ+) ⊂ X .

Wewill sometimes say that a singular flat f ⊂ X has type τmod if its visual boundary
∂∞ f has type τmod, i.e. contains a top-dimensional simplex of type τmod. (A singular
flat has in general several types.) The set Fτmod of singular flats of type τmod is a
homogeneous G-manifold. The flats of type σmod are the maximal flats and we denote
F = Fσmod . A family of flats inFτmod is bounded if these flats intersect a fixed bounded
subset of X .

Also, we will sometimes call the parallel set P(s) of a singular sphere ⊂ ∂∞X of
type τmod or a τmod-parallel set if s has type τmod.

The stabilizers Pτ < G of the simplices τ ⊂ ∂∞X are the parabolic subgroups of
G. The space Flagτmod of simplices of type τmod is called a (generalized) (partial) flag
manifold. The action G�Flagτmod is transitive and we can write the flag manifold as
a quotient Flagτmod

∼= G/Pτmod , where Pτmod stands for a parabolic subgroup in the
conjugacy class of parabolic subgroups Pτ of type θ(τ ) = τmod. Flag manifolds are
compact smooth manifolds; they admit natural structures of projective real algebraic
varieties (see e.g. [14, p. 160]). The topology on flag manifolds induced by the visual
topology on ∂∞X agrees with their manifold topology as homogeneous G-spaces. We
will always use this topology. For ideal points ξ ∈ ∂∞X with type θ(ξ) ∈ int(τmod),
there is a natural G-equivariant homeomorphic identification of the G-orbit Gξ ⊂
∂∞X with Flagτmod by assigning to the point gξ the (unique) simplex of type τmod
containing it.

The flagmanifolds Flagτmod and Flagιτmod
are opposite in the sense that the simplices

opposite to simplices of type τmod have type ιτmod. To ease notation, we will denote
the pair of opposite flag manifolds also by Flag±τmod

whenever convenient, i.e. we
put Flag+τmod

..= Flagτmod and Flag−τmod
..= Flagιτmod

. The latter is also reasonable,
because the simplices −τmod, ιτmod ⊂ amod lie in the same W -orbit, i.e. −τmod has
type ιτmod. (Here we extend the notion of type to the model apartment, defining the
type of a simplex in amod as its image under the natural quotient projection amod →
amod/W ∼= σmod.) Similarly, we will use the notation P±τmod for a pair of parabolic
subgroups fixing opposite simplices in Flag±τmod

.
The stabilizers Bσ < G of the chambers σ ⊂ ∂∞X are the minimal parabolic

subgroups3 of G; they are conjugate. The space ∂Fü X ..= Flagσmod of chambers is
called the (generalized) full flag manifold or Furstenberg boundary of X , and we can
write ∂Fü X = G/B, where again B stands for a minimal parabolic subgroup.

For a simplex τ̂ ∈ Flagιτmod
we define the open Schubert stratum C (̂τ ) ⊂ Flagτmod

as the subset of simplices opposite to τ̂ ; it is the open and dense P̂τ -orbit. With respect
to the algebraic structure on Flagτmod , it is Zariski open, i.e. its complement is a proper
subvariety.

We note that, if rank(X) = 1, then there is only one flag manifold, namely ∂∞X ,
and the open Schubert strata are the complements of points.

3 When the group G is complex, the minimal parabolic subgroups are the Borel subgroups, which is why
we use the notation B for these subgroups.
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2.5 Stars, cones and diamonds

2.5.1 Stars and suspensions

We first work inside the spherical model chamber σmod. We recall from Sect. 2.2.1
that, for a face type τmod ⊆ σmod, the τmod-boundary ∂τmodσmod of σmod is the union
of the faces of σmod which do not contain τmod. The τmod-interior intτmod (σmod) of
σmod is the union of the open faces of σmod whose closure contains τmod. There is the
decomposition

σmod = intτmod (σmod) � ∂τmodσmod.

In particular, intσmod(σmod) = int σmod and ∂σmodσmod = ∂σmod.
We say that a type in σmod is τmod-regular if it lies in intτmod (σmod).
Now let B be a spherical building. As before, we assume that diam(σmod) � π

2 . A
point ξ ∈ B is called τmod-regular if its type is, θ(ξ) ∈ intτmod (σmod). We will quantify
τmod-regularity as follows: Given a compact subset � ⊂ intτmod (σmod), we will say
that a τmod-regular point ξ ∈ B is �-regular if θ(ξ) ∈ �.

It will often be natural to impose a convexity property on �:

Definition 2.4 (Weyl convex) A subset � ⊆ σmod is τmod-Weyl convex if its sym-
metrization Wτmod� ⊂ amod is convex.

Let τ ⊂ B be a simplex of type τmod. The τmod-star st(τ ) ⊂ B is the union of all
chambers containing τ . Its boundary ∂ st(τ ) is the union of all simplices in st(τ )which
do not contain τ ; it consists of the points in st(τ ) with type in ∂τmodσmod. The open
τmod-star ost(τ ) is the complement ost(τ ) = st(τ ) − ∂ st(τ ); it consists of the τmod-
regular points in st(τ ) and is open in B. For any simplex τ̂ opposite to τ , the star st(τ )

is contained in the suspension B(τ, τ̂ ).
Furthermore, we define the �-star st�(τ) ⊂ ost(τ ) as the subset of points with

type �, that is, st�(τ) = st(τ ) ∩ θ−1(�).
We will use the following separation property: If � (�, ∂τmodσmod) � ε > 0, then

ost(τ ) contains the open ε-neighborhood of st�(τ).
Note that for chambers σ we have st(σ ) = σ and ost(σ ) = int(σ ).
The next result implies that stars are convex:

Lemma 2.5 (Convexity of stars)

(i) st(τ ) is an intersection of simplicial π
2 -balls.

(ii) For any simplex τ̂ opposite to τ , the star st(τ ) is an intersection of the suspension
B(τ, τ̂ )with simplicial π

2 -balls containing st(τ ) and centered at points inB(τ, τ̂ ).

Proof (i) Let σ �⊂ st(τ ) be a chamber, and let a be an apartment containing σ and
τ . We can separate σ and st(τ ) ∩ a by a wall in a, i.e. there exists a half-apartment
h ⊂ a which contains st(τ ) ∩ a but not σ . Indeed, choose points ξ ∈ int(τ ) and η ∈
int(σ ) such that the segment ξη intersects ∂σ in a panel, and take the wall containing
this panel. The simplicial π

2 -ball with the same center as h then contains st(τ ) but
not σ .
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(ii) Note first that st(τ ) ⊂ B(τ, τ̂ ). Then we argue as in part (i), observing that if
σ ⊂ B(τ, τ̂ ) then a can be chosen inside B(τ, τ̂ ). ��
We extend convexity to �-stars:

Lemma 2.6 (Convexity of �-stars) Let � ⊆ σmod be τmod-Weyl convex, and let τ be
a simplex of type τmod. Then st�(τ) is an intersection of π

2 -balls.

Proof For any apartment a ⊃ τ , the intersection st�(τ)∩a is convex, as a consequence
of the Weyl convexity of �.

Let ζ ∈ B. Every point in st�(τ) lies in an apartment a ⊃ τ, ζ .
For any two apartments a, a′ ⊃ τ, ζ there exists an isometry a → a′ fixing τ and

ζ . (This follows from the compatibility of apartment charts axiom in the definition
of spherical buildings.) It carries st�(τ) ∩ a to st�(τ) ∩ a′. Hence, B(ζ, π

2 ) contains
the first intersection iff it contains the second. Letting a′ vary, it follows that B(ζ, π

2 )

contains st�(τ) iff it contains st�(τ) ∩ a.
Let ξ /∈ st�(τ). Then there is an apartment a ⊃ τ, ξ and, due to the convexity of

st�(τ) ∩ a, a point ζ ∈ a such that B(ζ, π
2 ) contains st�(τ) ∩ a but not ξ . By the

above, st�(τ) ⊆ B(ζ, π
2 ). ��

In the following, we restrict ourselves to the case B = ∂∞X and, besides the met-
ric, also take into account the visual topology on the flag manifolds Flagτmod . The
discussion readily generalizes to arbitrary topological spherical buildings.

The τmod-regular part ∂
τmod-reg∞ X of the visual boundary equals the union of the

open τmod-stars. The natural projection

∂
τmod-reg∞ X =

⋃

τ∈Flagτmod

ost(τ ) → Flagτmod (3)

assigns to every τmod-regular point ξ ∈ ∂∞X the unique simplex τ ∈ Flagτmod so that
ξ ∈ ost(τ ).

Lemma 2.7 The projection (3) is continuous.

Proof Since both domain and target are manifolds, and thus metrizable, it suffices
to verify sequential continuity. Suppose that ξn → ξ is a convergent sequence in
∂

τmod-reg∞ X , and let τn, τ ∈ Flagτmod be the images under the projection, i.e. the (unique)
simplices so that ξn ∈ ost(τn) and ξ ∈ ost(τ ). We must show that τn → τ .

Let σn ∈ Flagσmod be chambers (in general non-unique) containing the ξn . Then
ξn ∈ σn ⊇ τn . Due to the compactness of flag manifolds, we may assume after
extraction that we have convergence τn → τ ′ and σn → σ ′. Then ξ ∈ σ ′ ⊇ τ ′, i.e.
ξ ∈ ost(τ ′), and hence τ ′ = τ . Again by compactness of Flagτmod , it follows that
τn → τ also before extraction. ��
One can show that the projection (3) is a fiber bundle, but this fact will not be needed.

Let τ ∈ Flagτmod and let τ̂ be opposite to τ . Then τ is the only simplex in B(τ, τ̂ )

which is opposite to τ̂ . In other words, the closed subset

{τ ′ ∈ Flagτmod : τ ′ ⊂ B(τ, τ̂ )} (4)
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intersects the open Schubert stratum C (̂τ ) in the single point τ , which is therefore an
isolated point of this subset.

We know that ost(τ ) is an open subset of B(τ, τ̂ ) with respect to the (Tits) metric.

Lemma 2.8 (Open stars) ost(τ ) is open in B(τ, τ̂ ) also with respect to the visual
topology.

Proof Consider the fiber bundle (3). The union U of the open τmod-stars over the
simplices in C (̂τ ) is open in ∂∞X . Since τ is an isolated point of (4), the suspension
B(τ, τ̂ ) intersects U precisely in ost(τ ), which is therefore open in the suspension. ��

2.5.2 Cones and parallel sets

We transfer notions about stars by coning off. Our discussion takes place in X and
Fmod.

Consider first the euclidean model chamber � = V (0, σmod). Its τmod-boundary

∂τmod�
..= V (0, ∂τmodσmod) ⊆ ∂�

is the union of the faces which do not contain the face V (0, τmod). In particular
∂σmod� = ∂�.

In the symmetric space X , we define for a point x ∈ X and a subset A ⊂ ∂∞X the
cone V (x, A) ⊂ X as the union of the rays xξ for ξ ∈ A. We put V (x, ∅) ..= {x}.

Let τ ⊂ ∂∞X be a simplexof type τmod. TheWeyl cone V (x, st(τ ))with tip at x ∈ X
is the union of the euclidean Weyl chambers V (x, σ ) for all chambers σ ⊆ st(τ ),
equivalently, σ ⊇ τ . Its boundary is given by ∂V (x, st(τ )) = V (x, ∂st(τ )), and its
interior by V (x, ost(τ )) − {x}. We call the Weyl sector V (x, τ ) the central sector of
the Weyl cone V (x, st(τ )). Similarly, we will refer to V (0, τmod) ⊆ � as the central
sector of the cone Wτmod� = V (0,Wτmodσmod) ⊂ Fmod.

For the unique simplex τ̂ x-opposite to τ , the Weyl cone V (x, st(τ )) is contained
in the parallel set P(τ, τ̂ ). We say that the cone spans the parallel set.

Furthermore, for a compact subset � ⊂ intτmod (σmod), we define the �-cone
V (x, st�(τ)).

Note that for chambers σ ⊂ ∂∞X we have V (x, st(σ )) = V (x, σ ).
We will call two Weyl cones or �-cones asymptotic if their visual boundary stars

coincide.
The Hausdorff distance of asymptotic Weyl cones V (y, st(τ )) and V (y′, st(τ )) is

finite and bounded by the distance d(y, y′) of their tips. This follows immediately
from the corresponding fact for rays.

Thedistance betweenboundaries ofWeyl coneswill be discussed later inSect. 2.9.1.
We will need a fact about projections. Let

πx,τ = πV (x,τ ) : V (x, st(τ )) → V (x, τ ) (5)

denote the nearest point projection of the Weyl cone to its central sector.

Lemma 2.9 πx,τ maps the interior of theWeyl cone to the interior of its central sector.
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In other words, for every point y in the interior of the Weyl cone there exists a point
p in the interior of its central sector such that py⊥V (x, τ ).

Proof This is a consequence of the general Lemma 2.1 on projections of spherical
simplices to their faces. It yields at infinity that, for every chamber σ ⊇ τ , the nearest
point projection intτ (σ ) → int(τ ) is well-defined. Equivalently, the nearest point
projection ost(τ ) → int(τ ) is well-defined. The assertion follows by coning off. ��
As a consequence of the lemma, πx,τ agrees with the nearest point projection of the
Weyl cone to the singular flat spanned by the sector V (x, τ ), because it does so on the
interior.

Now we address convexity. We will see that the results on stars carry over to
cones. First of all, by the definition of Weyl convexity, the cone V (0,Wτmod�) =
WτmodV (0,�) ⊂ Fmod is convex iff � is τmod-Weyl convex.

Proposition 2.10 (Convexity of cones)

(i) The cones V (x, st(τ )) are convex.
(ii) If � is τmod-Weyl convex, then also the cones V (x, st�(τ)) are convex.

Proof It suffices to verify (ii). We show that cones are intersections of horoballs. The
horoball Hbζ,x contains the cone V (x, st�(τ)) iff st�(τ) ⊆ B(ζ, π

2 ) in ∂∞X .
Let y �= x be a point and let xξ be a ray extending xy. Then y /∈ V (x, st�(τ)) iff

ξ /∈ st�(τ). Let F ⊂ X be a maximal flat such that xy ⊂ F and τ ⊂ ∂∞F . According
to the proof of Lemma 2.6, there exists a point ζ ∈ ∂∞F such that B(ζ, π

2 ) contains
st�(τ) but not ξ . Since Hbζ,x ∩ F is a half-space containing x in its boundary, it
follows that also y /∈ Hbζ,x . ��
The convexity of cones implies their nestedness:

Corollary 2.11 (Nestedness of cones)

(i) If y ∈ V (x, st(τ )), then V (y, st(τ )) ⊆ V (x, st(τ )).
(ii) If y ∈ V (x, st�(τ)), then V (y, st�(τ)) ⊆ V (x, st�(τ)).

Next we show an openness property for Weyl cones in the parallel sets spanned by
them:

Lemma 2.12 (Open cones) Let x ∈ P(τ, τ̂ ). Then the boundary ∂V (x, st(τ )) of the
Weyl cone V (x, st(τ )) disconnects the parallel set, and its interior V (x, ost(τ ))−{x}
is one of the connected components.

Proof Since parallel sets are cones over their visual boundaries, i.e. P(τ, τ̂ ) =
V (x, ∂∞X (τ, τ̂ )), this follows from the visual openness of stars, cf.
Lemma 2.8. ��

2.5.3 Diamonds

We say that a nondegenerate oriented geodesic segment xy ⊂ X is τmod-regular if
the unique geodesic ray xξ extending xy is asymptotic to a τmod-regular ideal point
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ξ ∈ ∂∞X . In this case, we denote by τ(xy) ∈ Flagτmod the unique simplex such
that ξ ∈ ost(τ ). Furthermore, we say that xy is �-regular with � ∈ intτmod (σmod) if
θ(ξ) ∈ �.

Note that xy is τmod-regular if and only if yx is ιτmod-regular, and �-regular iff yx
is ι�-regular. The types of the simplices τ(xy) and τ(yx) ∈ Flagιτmod

are then related
by

θ(τ (yx)) = ιθ(τ (xy)).

Let xy be a τmod-regular segment. We define its τmod-diamond as the intersection of
Weyl cones

♦τmod (x, y) = V (x, st(τ+)) ∩ V (y, st(τ−)) ⊂ P(τ−, τ+)

where τ+ = τ(xy) and τ− = τ(yx). The points x, y are the tips of the diamond.
Furthermore, if xy is �-regular, we define its �-diamond

♦�(x, y) = V (x, st�(τ+)) ∩ V (y, st�(τ−)) ⊂ ♦τmod (x, y).

The convexity of cones (Proposition 2.10) implies:

Proposition 2.13 (Convexity of diamonds)

(i) ♦τmod (x, y) is convex.
(ii) If � is τmod-Weyl convex, then also ♦�(x, y) is convex.

And furthermore:

Corollary 2.14 (Nestedness of diamonds) Suppose that xy and x ′y′ are τmod-regular
segments such that τ(x ′y′) = τ(xy), τ(y′x ′) = τ(yx) and x ′y′ ⊂ ♦τmod (x, y). Then:

(i) ♦τmod (x
′, y′) ⊆ ♦τmod (x, y).

(ii) If xy and x ′y′ are �-regular, where � is τmod-Weyl convex, and if x ′y′ ⊂
♦�(x, y), then ♦�(x ′, y′) ⊆ ♦�(x, y).

2.6 Vector valued distances

The Riemannian distance is not the complete two-point invariant on the symmetric
space X , if rank(X) � 2. In view of the natural identifications X×X/G ∼= X/K ∼= �,
the full invariant is given by the quotient map

d� : X×X → �

arising from dividing out the G-action, which we refer to as the �-distance. We will
think of the elements of � ⊂ Fmod as vectors and of d� as a vector-valued distance.
It relates to the Riemannian distance d on X by
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d = ‖d�‖,

where ‖·‖ is the euclidean norm on Fmod. See [16, Example 2.12] for the case G =
SL(n, R).

For the model flat, there are corresponding identifications Fmod×Fmod/Waff ∼=
Fmod/W ∼= � and a �-distance

d� : Fmod×Fmod → �.

It is compatible with the �-distance on X in that the charts Fmod → X are d�-
isometries. Similarly, one defines the�-distance on euclidean buildings via apartment
charts, see [17].

The distance d� is not symmetric, but satisfies

d�(y, x) = ιd�(x, y).

We refer the reader to [17] and [28] for the detailed discussion of metric properties
(such as “triangle inequalities” and “nonpositive curvature behavior”) of d�.

We note that a geodesic segment xy ⊂ X is regular iff d�(x, y) ∈ int(�). Similarly,
xy is �-regular iff d�(x, y) ∈ V (0,�).

We define certain coarsifications of d� by composing it with linear maps: For a
face type τmod, let

π�
τmod

: � → V (0, τmod)

denote the nearest point projection. The composition

dτmod
..= π�

τmod
◦d� (6)

can also be regarded as a vector-valued distance on X , with values in the Weyl sector
V (0, τmod) ⊂ �. Note that dσmod = d�. Obviously,

‖dτmod‖ � d

because π�
τmod

is 1-Lipschitz.
Given a compact subset � ⊂ intτmod (σmod), for �-regular segments xy ⊂ X it

holds that
‖dτmod (x, y)‖ � ε(�) ·d(x, y) (7)

with a constant ε(�) > 0, where ‖·‖ denotes the euclidean norm. For the constant
ε(�) one can take the sine of the angular distance � (�, ∂τmodσmod).
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2.7 Refined side lengths of triangles

In this section, we assume more generally that X is a CAT(0) model space, i.e. a
nonpositively curved Riemannian symmetric space or a thick euclidean building. We
denote by

P3(X) ⊂ �3

the set of possible �-side lengths (d�(x1, x2), d�(x2, x3), d�(x3, x1)) of triangles
�(x1, x2, x3) in X . The following general result reduces the problem of determining
P3(X) from the symmetric space case to the euclidean building case:

Theorem 2.15 ([17, Theorem 1.2]) P3(X) depends only on the Weyl group W, and
not on whether X is a Riemannian symmetric space or a thick euclidean building.

In the paper [17], a detailed description of the set P3(X) is given.
The next result concerns the �-side lengths of triangles �(x, y, z) in X such that

the broken geodesic xyz is a Finsler geodesic (in the sense of Sect. 2.12 below):

Proposition 2.16 (i) If y ∈ V (x, st(τ )) and z ∈ V (y, st(τ )) with τ ∈ Flagτmod , then

d�(x, z) ∈ V (d�(x, y),Wτmodσmod) ∩ �.

(ii) If z ∈ V (y, st�(τ)), where � ⊂ intτmod (σmod) is τmod-Weyl convex, then

d�(x, z) ∈ V (d�(x, y),Wτmod�) ∩ �.

Here, the cones V (d�(x, y), ·) are to be understood as subsets of Fmod.

Proof We prove the stronger claim (ii).
The triangle �(x, y, z) lies in the parallel set P = P (̂τ , τ ) for the simplex τ̂ ∈

Flagιτmod
x-opposite to τ . The parallel set P is itself a symmetric space (with euclidean

factor)withWeyl groupW ′ = Wτmod ⊂ W . There is a natural inclusionσmod ⊂ σ ′
mod ⊂

amod of spherical Weyl chambers such that σ ′
mod equals the convex hull of σmod and

the simplex −τmod opposite to τmod, and a corresponding inclusion � ⊂ �′ ⊂ Fmod
of euclidean Weyl chambers such that �′ is the convex hull of � and the sector
−V (0, τmod).

Our claim is then a consequence of the following assertion on �′-side lengths: If
d�′(x, y) ∈ � and d�′(y, z) ∈ V (0,�) ⊂ �, then

d�′(x, z) ∈ V (d�′(x, y),Wτmod�) ∩ �.

Using Theorem 2.15, we may pass from symmetric spaces to euclidean buildings: The
assertion is equivalent to the same assertion for any thick euclidean building ˜P with
the same Weyl group W ′. (For instance, one can take ˜P to be the complete euclidean
cone over the spherical building ∂TitsP , which is a non-locally compact euclidean
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building with just one vertex.) It is easier to verify the statement in the building case
due to the locally conical geometry of euclidean buildings.

Suppose therefore that �( x̃, ỹ, z̃) is a triangle in a euclidean building ˜P with Weyl
group W ′, satisfying the same assumptions d�′ (̃x, ỹ) ∈ � and d�′(ỹ, z̃) ∈ V (0,�).
Taking advantage of the local conicality of buildings, we will do “induction along ỹ̃z”
and show that

d�′ (̃x, z̃ ′) ∈ V (d�′ (̃x, ỹ),Wτmod�) ∩ � (8)

for all points z̃ ′ ∈ ỹ̃z. Since this is a closed condition on z̃ ′, it suffices to show that
the subset of points satisfying it is half-open to the right. Moreover, since the points
z̃ ′ ∈ ỹ̃z satisfying (8) also satisfy, like ỹ, the assumptions that d�′ (̃x, z̃ ′) ∈ � and
d�′ (̃z ′, z̃) ∈ V (0,�), it suffices to verify (8) for all points z̃ ′ ∈ ỹ̃z sufficiently close to
ỹ.

This however reduces our claim to the flat case, because there exists a maximal flat
˜F ⊂ ˜P which contains x̃ ỹ along with a nondegenerate initial portion of the segment
ỹ̃z.4 Wemay therefore assume that the triangle�( x̃, ỹ, z̃) lies entirely in ˜F . Identifying
˜F ∼= Fmod, we can once more reformulate our claim: If δ ∈ � and v ∈ V (0,Wτmod�),
then

d�′(0, δ + tv) ∈ V (δ,Wτmod�) ∩ �

for all sufficiently small t � 0.
The stabilizer of δ inW ′ = Wτmod is a subgroupWνmod � Wτmod for a face type νmod

with τmod ⊆ νmod ⊆ σmod (namely, for the minimal face type νmod ⊇ τmod such that
δ ∈ V (0, νmod)). We observe that the cone δ + V (0,Wτmod�) is Wνmod -invariant and
can be represented locally near δ as

δ + V (0,Wτmod�) = Wνmod

(

(δ + V (0,Wτmod�)) ∩ �
)

.

The Wτmod -invariance of d�′(0, ·) yields the assertion. ��

2.8 Strong asymptote classes

Let ρ1(t) and ρ2(t) be asymptotic geodesic rays in X , i.e. with the same ideal endpoint
ρ1(+∞) = ρ2(+∞) = ξ . Equivalently, the convex function t �→ d(ρ1(t), ρ2(t)) on
[0,+∞) is bounded. The rays are called strongly asymptotic if d(ρ1(t), ρ2(t)) → 0 as
t → +∞. One sees then using Jacobi fields that d(ρ1(t), ρ2(t)) decays exponentially
with rate depending on the type of ξ (see [7]).

Strong asymptote classes are represented by rays in a parallel set:

Lemma 2.17 Let ξ,̂ξ ∈ ∂∞X be antipodal. Then every geodesic ray asymptotic to ξ

is strongly asymptotic to a geodesic ray in the parallel set P = P(ξ,̂ξ).

4 This is clear for discrete euclidean buildings. (In particular, for buildings with only one vertex, like the
complete euclidean cone over ∂Tits P .) For the general case, see e.g. [23, Section 4.1.3].
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Proof Let c1(t) be a geodesic line forward asymptotic to ξ (extending the given ray).
Then the function t �→ d(c1(t), P) is convex and bounded on [0,+∞), and hence
non-increasing. We claim that the limit

D ..= lim
t→+∞d(c1(t), P)

equals zero. To see this, we choose a geodesic line c2(t) in P forward asymptotic
to ξ and use the transvections T c2

t along c2 to “pull back” c1: The geodesics cs1
..=

T c2−sc1( · + s) form a bounded family as s → +∞ and subconverge to a geodesic
c+∞
1 . Since the transvections T c2

s preserve P , the distance functions d(cs1( ·), P) =
d(c1( · + s), P) converge locally uniformly on R and uniformly on [0,+∞) to the
constant D. It follows that the limit geodesic c+∞

1 has distance ≡ D from P . The
same argument, applied to c2 instead of the parallel set, implies that c+∞

1 is parallel
to c2. Thus, c

+∞
1 ⊂ P(c2) = P and, hence, D = 0.

Now we find a geodesic in P strongly asymptotic to c1 as follows. Let tn → +∞.
We choose geodesics c′

n(t) in P forward asymptotic to ξ by requiring that c′
n(tn) ∈ P

is the nearest point projection of c1(tn). Then d(c1(tn), c′
n(tn)) = d(c1(tn), P) → 0.

The geodesics c′
n ⊂ P are parallel, and their mutual Hausdorff distances dmn are

bounded above by the distances d(c′
m(t), c′

n(t)) independent of t . To estimate the
Hausdorff distances, we observe that

dmn � d(c′
m(t), c′

n(t)) � d(c′
m(t), c1(t)) + d(c1(t), c

′
n(t))

� d(c′
m(tm), c1(tm)) + d(c1(tn), c

′
n(tn))

for t � tm, tn . The right-hand side converges → 0 as m, n → +∞, and hence also
dmn . Thus, the geodesics c′

n form a Cauchy sequence and therefore converge to a
geodesic in P . The limit geodesic is strongly asymptotic to c1. ��
Wenow derive a criterion for the strong asymptoticity of rays. Consider a geodesic line
c(t) asymptotic to ξ ∈ ∂∞X . We observe that for every η ∈ ∂∞P(c) the restriction
bη◦c is linear, because there exists a flat f containing c with η ∈ ∂∞ f .

As a consequence, for any two strongly asymptotic geodesic lines c1(t) and c2(t)
asymptotic to ξ , the restricted Busemann functions bη◦ci coincide for every η ∈
st(τξ ) ⊂ ∂∞P(c1) ∩ ∂∞P(c2), where τξ denotes the simplex spanned by ξ .

There is the following useful criterion for strong asymptoticity:

Lemma 2.18 For geodesic lines c1(t) and c2(t) asymptotic to ξ the following are
equivalent:

(i) c1(t) and c2(t) are strongly asymptotic.
(ii) bη◦c1 = bη◦c2 for every η ∈ st(τξ ).
(ii′) bη◦c1 = bη◦c2 for every η ∈ B(ξ, ε) for some ε > 0.

Proof (i)⇒ (ii) follows from the above discussion and (ii)⇒ (ii′) is immediate.
In order to prove (ii′)⇒ (i), we replace the geodesics ci by a pair of parallel ones

without changing their strong asymptote classes, applying Lemma 2.17. Using the
implication (i)⇒ (ii), which we already proved, we see that the ci keep satisfying
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hypothesis (ii′). Since they now lie in a common flat, (ii′) immediately implies that
they coincide, i.e. (i) follows. ��
We generalize the discussion of strong asymptoticity to sectors.

Two Weyl sectors in X are asymptotic iff their visual boundary simplices coincide,
equivalently, iff they have finite Hausdorff distance.

Fix a simplex τ ∈ Flagτmod and consider two asymptotic sectors V (x1, τ ) and
V (x2, τ ). The function V (0, τmod) → [0,+∞) given by

y �→ d(κx1,τ (y), κx2,τ (y)), (9)

where κxi ,τ are the sector charts, is convex and bounded. We denote its infimum by
dτ (x1, x2). This defines a pseudo-metric dτ on X , viewed as the set of (tips of) sectors
asymptotic to τ .5

We say that the sectors V (x1, τ ) and V (x2, τ ) are strongly asymptotic if
dτ (x1, x2) = 0. For any ideal point ξ ∈ int(τ ) this is equivalent to the rays x1ξ
and x2ξ being strongly asymptotic. We denote by6

Xpar
τ = X / ∼dτ

the space of strong asymptote classes of Weyl sectors asymptotic to τ .
We show now that, also in the case of sectors, parallel sets represent strong asymp-

tote classes. For a simplex τ̂ opposite to τ we consider the restriction

P(τ, τ̂ ) → Xpar
τ (10)

of the natural projection X → Xpar
τ .

Proposition 2.19 The map (10) is an isometry.

Proof For points x1, x2 ∈ P(τ, τ̂ ) the function (9) is constant ≡ d(x1, x2). Hence
(10) is an isometric embedding. To see that it is also surjective, we need to verify
that every sector V (x, τ ) is strongly asymptotic to a sector V (x ′, τ ) ⊂ P(τ, τ̂ ). This
follows from the corresponding fact for geodesic rays, see Lemma 2.17. ��

2.9 Asymptotic Weyl cones

2.9.1 Separation of nested Weyl cones

Suppose that y ∈ V (x, st(τ )) with τ ∈ Flagτmod . By nestedness (Corollary 2.11), we
have the inclusion of Weyl cones V (y, st(τ )) ⊆ V (x, st(τ )). We now determine the
separation of their boundaries:

5 Observe that dτ (x1, x2) depends only on the strong asymptote classes of the sectors V (xi , τ ), and hence
dτ descends to X

par
τ ×X

par
τ . The triangle inequality is a consequence of Proposition 2.19 below. One

can also verify the triangle inequality for dτ directly, using the fact that, for bounded convex functions
φ, ψ : V (0, τmod) → [0, +∞), it holds that inf φ + inf ψ = inf (φ + ψ).
6 Here, par stands for parametrized.
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Proposition 2.20 (Separation) The nearest point distance of the boundaries
∂V (x, st(τ )) and ∂V (y, st(τ )) equals d(δ, ∂τmod�) = d(y, ∂V (x, st(τ ))), where
δ = d�(x, y).

Proof The natural submersion

d�(x, ·) : X → �

is 1-Lipschitz and restricts to an isometry on every euclidean Weyl chamber with tip
at x . By restricting it to the Weyl cone V (x, st(τ )), one sees that

d( ·, ∂V (x, st(τ ))) = d(d�(x, ·), ∂τmod�)

onV (x, st(τ )).According toProposition 2.16 (i), the values ofd�(x, ·)onV (y, st(τ ))

are contained in
V (δ,Wτmodσmod) ∩ �,

and clearly all these values are attained (on a euclideanWeyl chamber with tip at x and
containing y). It follows that the nearest point distance of V (y, st(τ )) and ∂V (x, st(τ ))

equals the nearest point distance of V (δ,Wτmodσmod) ∩ � and ∂τmod�.
In order to see that the latter is given by d(δ, ∂τmod�), note that d( ·, ∂τmod�) is the

minimum of finitely many root functionals on �, namely of those corresponding to
the walls of � not containing the sector V (0, τmod), equivalently, of those which are
nonnegative on Wτmod�. Each of these functionals attains its minimum on the cone
V (δ,Wτmodσmod) at its tip δ. ��

2.9.2 Shadows at infinity and strong asymptoticity of Weyl cones

For a simplex τ− ∈ Flagιτmod
and a point x ∈ X , we consider the function

τ �→ d(x, P(τ−, τ )) (11)

on the open Schubert stratum C(τ−) ⊂ Flagτmod . We denote by τ+ ∈ C(τ−) the
simplex x-opposite to τ−.

Lemma 2.21 The function (11) is continuous and proper.

Proof This follows from the fact that C(τ−) and X are homogeneous spaces for the
parabolic subgroup Pτ− . Indeed, continuity follows from the continuity of the function

g �→ d(x, P(τ−, gτ+)) = d(g−1x, P(τ−, τ+))

on Pτ− which factors through the orbit map Pτ− → C(τ−), g �→ gτ+.
Regarding properness, note that a simplex τ ∈ C(τ−) is determined by any point y

contained in the parallel set P(τ−, τ ), namely as the simplex y-opposite to τ−. Thus,
if P(τ−, τ ) ∩ B(x, R) �= ∅ for some fixed R > 0, then there exists g ∈ Pτ− such that
τ = gτ+ and d(x, gx) < R. In particular, g lies in a compact subset. This implies
properness. ��
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Moreover, the function (11) has a unique minimum zero in τ+.
We define the following open subsets of C(τ−) which can be regarded as shadows

of balls in X with respect to τ−. For x ∈ X and r > 0, we put

Uτ−,x,r
..= {τ ∈ C(τ−) : d(x, P(τ−, τ )) < r }. (12)

The next fact expresses the strong asymptoticity of asymptotic Weyl cones:

Lemma 2.22 For r, R > 0 there exists d = d(r, R) > 0 such that:
If y ∈ V (x, st(τ−)) with d(y, ∂V (x, st(τ−))) � d(r, R), then Uτ−,x,R ⊂ Uτ−,y,r .

Proof If Uτ−,x,R �⊂ Uτ−,y,r then there exists x ′ ∈ B(x, R) such that

d(y, V (x ′, st(τ−))) � r.

Thus, if the assertion is wrong, there exist a sequence xn → x∞ in B(x, R) and an
ιτmod-regular sequence (yn) in V (x, st(τ−)) such that d(yn, V (xn, st(τ−))) � r .

Let ρ : [0,+∞) → V (x, τ−) be a geodesic ray with initial point x and asymptotic
to an interior point of τ−. By ιτmod-regularity, the sequence (yn) eventually enters
every Weyl cone V (ρ(t), st(τ−)). Since the distance function d( ·, V (xn, st(τ−))) is
convex and bounded, and hence non-increasing along rays asymptotic to st(τ−), we
have that

R � d(x, V (xn, st(τ−))) � d(ρ(t), V (xn, st(τ−))) � d(yn, V (xn, st(τ−))) � r

for n � n(t). It follows that

R � d(ρ(t), V (x∞, st(τ−))) � r

for all t � 0. However, the ray ρ is strongly asymptotic to V (x∞, st(τ−)), cf. Propo-
sition 2.19, a contradiction. ��

2.10 Horocycles

We discuss various foliations of X naturally associated to a simplex τ ⊂ ∂∞X .
We begin with foliations by flats and parallel sets: First, we denote by Fτ the

partition of X into the singular flats f ⊂ X such that τ ⊂ ∂∞ f is a top-dimensional
simplex. Second, we consider the partition Pτ of X into the parallel sets P(τ, τ̂ ) for
the simplices τ̂ opposite to τ . Note that Pτ is a coarsening7 of Fτ , and coincides with
it iff τ is a chamber. The parabolic subgroup Pτ preserves both partitions and acts
transitively on their leaves. This implies that these partitions are smooth foliations.

We will now show that there exist complementary orthogonal foliations. To do so,
we describe preferred mutual identifications between the leaves of Fτ as well as of Pτ

by the actions of certain subgroups of Pτ . Their orbits will be submanifolds orthogonal

7 Meaning that the leaves of Pτ are unions of leaves of Fτ .
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and complementary to the foliations, i.e. the integral submanifolds of the distributions
normal to them.

The tuple (bξ )ξ∈Vert(τ ) of Busemann functions for the vertices ξ of τ (well-defined
up to additive constants) provides affine coordinates simultaneously for each flat f ∈
Fτ . The Busemann functions at the other ideal points in τ are linear combinations of
these. The group Pτ preserves the family of horospheres at every ξ ∈ τ , and the action
on it yields a natural “shift” homomorphism φξ : Pτ → R. The intersection of their
kernels forms the normal subgroup

⋂

ξ∈Vert(τ )

Stab(bξ ) =
⋂

ξ∈τ

Stab(bξ )�Pτ . (13)

It acts transitively on the set Fτ of flats and preserves the coordinates; it thus pro-
vides consistent identifications between these flats. The level sets of (bξ )ξ∈Vert(τ ) are
submanifolds orthogonal and complementary to these flats, because the gradient direc-
tions of the Busemann functions bξ at a point x ∈ f ∈ Fτ constitute a basis of the
tangent space Tx f . These level sets form a smooth foliation F⊥

τ and are the orbits of
the subgroup (13).

In order to describe the foliation normal to Pτ , we define the horocyclic subgroup
at τ as the (smaller) normal subgroup Nτ �Pτ given by

Nτ =
⋂

ξ∈st(τ )

Stab(bξ )� Fix(st(τ ))� Pτ .

It is the kernel of the Pτ -action on the set of all (unnormalized) Busemann functions
centered at ideal points in st(τ ).

Note that as a consequence of Lemma 2.18, Nτ preserves the strong asymptote
classes of geodesic rays at all ideal points ξ ∈ ost(τ ).

We nowgive amethod for constructing isometries in Nτ . Let ξ ∈ int(τ ), and let c(t)
be a geodesic line forward asymptotic to it, c(+∞) = ξ . Consider the one parameter
group (T c

t )t∈R of transvections along c. The transvections T c
t fix ∂∞P(c) pointwise

and shift the Busemann functions bη centered at ideal points η ∈ ∂∞P(c) by additive
constants:

bη◦T c
t − bη ≡ − t · cos � Tits(η, ξ).

Note that st(τ ) ⊂ ∂∞P(c).

Lemma 2.23 Let c1(t) and c2(t) be geodesic lines forward asymptotic to ξ ∈ int(τ ),
which are strongly asymptotic. Then there exists an isometry8 n ∈ G with the proper-
ties:

(i) n◦c1 = c2.
(ii) n fixes ∂∞P(c1) ∩ ∂∞P(c2) pointwise.
(iii) bη◦n ≡ bη for all η ∈ ∂∞P(c1) ∩ ∂∞P(c2).

In particular, n ∈ Nτ .

8 This isometry is unipotent but we will not need this fact.
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Proof By our observation above, the isometries T c2−t ◦T c1
t fix ∂∞P(c1) ∩ ∂∞P(c2) ⊇

st(τ ) pointwise and preserve the Busemann functions bη for all η ∈ ∂∞P(c1) ∩
∂∞P(c2). Thus, they belong to Nτ . Moreover, they form a bounded family. Therefore,
as t → +∞, they subconverge to an isometry n ∈ Nτ which maps c1 to c2 while
preserving parameterizations. ��
Corollary 2.24 Nτ acts transitively on

(i) every strong asymptote class of geodesic rays at every ideal point ξ ∈ int(τ );
(ii) the set of leaves of Pτ .

Proof Part (i) is a direct consequence of the lemma.
Also (ii) follows because every parallel set in Pτ contains a (in fact, exactly one)

geodesic ray of every strong asymptote class at any point ξ ∈ int(τ ), cf. Proposi-
tion 2.19. ��
Remark 2.25 One also obtains that every geodesic asymptotic to an ideal point ξ ∈
∂τ can be carried by an isometry in Nτ to any other strongly asymptotic geodesic.
However, Nτ does not preserve strong asymptote classes at ξ in that case.

Lemma 2.26 If n ∈ Nτ preserves a parallel set P(τ, τ̂ ), nτ̂ = τ̂ , then it acts trivially
on it.

Proof The hypothesis implies that n fixes st(τ ) and τ̂ pointwise, and hence also their
convex hull ∂∞P(τ, τ̂ ) in ∂TitsX . Thus n preserves every maximal flat F ⊂ P(τ, τ̂ ).
Moreover it preserves all Busemann functions bξ centered at points ξ ∈ ∂∞F ∩ st(τ ),
and therefore must fix F pointwise, compare Lemma 2.18. ��
Corollary 2.27 The stabilizer of P(τ, τ̂ ) in Nτ is its pointwise fixator Kτ,̂τ < G.

Proof The claim follows from the obvious inclusion Kτ,̂τ ⊂ Nτ together with the
lemma. ��
Remark 2.28 The subgroup Nτ decomposes as the semidirect product Uτ �Kτ,̂τ ,
where Uτ �Pτ is the unipotent radical of Pτ .

By the above, Nτ provides consistent identifications between the parallel sets P(τ, τ̂ ).
The Nτ -orbits are submanifolds orthogonal to the parallel sets and must have comple-
mentary dimension. They form a smooth foliation

Hτ = P⊥
τ (14)

refining F⊥
τ , which we call the horocyclic foliation and its leaves the horocycles at τ .

We denote the horocycle at τ through the point x by Hcτ,x , i.e. Hcτ,x = Nτ x .
For incident faces, the associated subgroups and foliations are contained in each

other: If υ ⊂ τ , then st(υ) ⊃ st(τ ) and Nυ < Nτ . Therefore, e.g. Hυ refines Hτ .
Note that in rank one, horocycles are horospheres.
We also see how horocycles and strong asymptote classes relate; by Corol-

lary 2.24 (i):
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Corollary 2.29 (Strong asymptote classes are horocycles) The sectors V (x1, τ ) and
V (x2, τ ) are strongly asymptotic if and only if x1 and x2 lie in the same horocycle
at τ .

Moreover, the discussion shows that for the stabilizer Pτ ∩ P̂τ of P(τ, τ̂ ) in Pτ it holds
that Nτ (Pτ ∩ P̂τ ) = Pτ and Pτ ∩ P̂τ ∩ Nτ = Kτ,̂τ , and so the sequence

1 → Nτ → Pτ → Isom(Xpar
τ )

is exact.

Remark 2.30 Note that the homomorphism Pτ → Isom(Xpar
τ ) is in general not surjec-

tive. Namely, let Xpar
τ = .. fτ ×CS(τ ) denote the decomposition (2) of Xpar

τ
∼= P(τ, τ̂ ).

Then Pτ acts on the flat factor fτ only by the group Aτ of translations. On the cross
section, it acts by a subgroup Mτ � Isom(CS(τ )) containing the identity component.
The above exact sequence is then a part of the Langlands decomposition of Pτ ,

1 → Nτ → Pτ → Aτ ×Mτ → 1,

which, on the level of Lie algebras, is a split exact sequence.

We return now to Lemma 2.23. For later use, we elaborate on the special case when
the geodesics ci are contained in the parallel set of a singular flat of dimension rank
minus one.

Consider a half-apartment h ⊂ ∂∞X ; it is a simplicial π
2 -ball in ∂∞X . We call its

center ζ the pole of h. We define the star st(h) as the union of the stars st(τ ) where
τ runs through all simplices with int(τ ) ⊂ int(h), equivalently, which are spanned
by interior points of h. Similarly, we define the open star ost(h) as the union of the
corresponding open stars ost(τ ). Note that int(h) ⊂ ost(h). Furthermore, we define
the subgroup Nh < G as the intersection of the horocyclic subgroups Nτ at these
simplices τ ,

Nh =
⋂

int(τ )⊂int(h)

Nτ .

We observe that Nh preserves the strong asymptote classes of geodesic rays at all ideal
points ξ ∈ ost(h), and it preserves the family of maximal flats F with ∂∞F ⊃ h. The
action on this set of flats is transitive. Indeed, parallel to Lemma 2.23, we have:

Lemma 2.31 Let F1, F2 ⊂ P(∂h) be maximal flats with ∂∞Fi ⊃ h. Then there exists
an isometry n ∈ Nh with the properties:

(i) nF1 = F2.
(ii) n fixes st(h) pointwise.
(iii) bη◦n ≡ bη for all η ∈ st(h).

Proof The parallel set P(∂h) splits as the product f ×CS(∂h), see (2), where f ⊂ X
is a singular flat with ∂∞ f = ∂h, and the cross section CS(∂h) is a rank one symmetric
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space. Accordingly, the maximal flats Fi split as products f ×ci with geodesics ci ⊂
CS(∂h) asymptotic to the pole ζ ∈ CS(∂h) of h.

Let ξ ∈ int(h).We choose geodesics c1(t), c2(t) in F1, F2 asymptotic to ξ . Their f -
components are parallel geodesics in f , and their CS(∂h)-components are geodesics
in CS(∂h) asymptotic to ζ , equal to c1, c2 up to reparametrization. The geodesics
c1, c2 are strongly asymptotic iff they have the same f -component and their CS(∂h)-
components are strongly asymptotic. We choose them in this way, using the fact
that any two asymptotic geodesics in a rank one symmetric space become strongly
asymptotic after suitable reparameterization.

We then can apply the limiting argument (in the proof of Lemma 2.23) to the
compositions T c2−t ◦T c1

t and obtain an isometry n ∈ Nτξ where τξ ⊂ h denotes the
simplex spanned by ξ . The isometry n carries F1 to F2, fixes st(τξ ) pointwise and
satisfies (iii) for all η ∈ st(τξ ).

We observe that the isometries T c2−t ◦T c1
t act trivially on f and the limiting isom-

etry n depends only on the CS(∂h)-components of the geodesics ci . Thus, by
replacing the f -component of the ci , we are not affecting n, but we can change
the ideal endpoint ξ of the ci to any other ideal point ξ ′ ∈ int(h). (We work
here with constant speed parametrizations ci (t).) It follows that n fixes also st(τξ ′)
pointwise and satisfies (iii) also for all η ∈ st(τξ ′). Varying ξ ′, we let τξ ′ run
through all simplices with int(τ ) ⊂ int(h) and conclude also parts (ii)–(iii) of the
assertion. ��

We obtain an analogue of Corollary 2.24:

Corollary 2.32 Nh acts transitively on

(i) every strong asymptote class of geodesic rays at every ideal point ξ ∈ int(h);
(ii) the set of maximal flats F with ∂∞F ⊃ h.

We describe a consequence of our discussion for the horocyclic foliations. The max-
imal flats F with ∂∞F ⊃ h are contained in the parallel set P(∂h) ∼= f ×CS(∂h)

and form the leaves of a smooth foliation Ph of P(∂h). This foliation is the pullback
(via the natural projection P(∂h) → CS(∂h)) of the one-dimensional foliation of
the rank one symmetric space CS(∂h) by the geodesics asymptotic to the ideal point
ζ ∈ ∂∞CS(∂h), the center of h. There exists a foliation Hh of P(∂h) whose leaves
are normal (orthogonal and complementary) to those of Ph . The leaves of Hh have
the form {y}×Hsζ,z , where y ∈ f and Hsζ,z ⊂ CS(∂h) is the horosphere centered at
ζ and passing through z ∈ CS(∂h). We call the leaves of Hh the horocycles at h and
the foliation Hh the horocyclic foliation. The leaf of Hh passing through x ∈ P(∂h)

will be denoted Hch,x . Corollary 2.32 implies that Hch,x = Nhx .
Let τ be a simplex so that int(τ ) ⊂ int(h). Then the foliationPτ of X by parallel sets

restricts on P(∂h) to the foliationPh bymaximal flats, and the horocyclic foliationHτ

restricts to the horocyclic foliation Hh . (This follows from the fact that the foliations
Pτ andHτ are normal to each other, cf. (14).) In other words, the horocyclic foliations
Hτ for the various simplices τ with int(τ ) ⊂ int(h) coincide on the parallel set
P(∂h).
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2.11 Contraction at infinity

2.11.1 Identifications of horocycles

We fix a simplex τ ⊂ ∂∞X . Since every horocycle at τ intersects every parallel set
P(τ, τ̂ ), τ̂ ∈ C(τ ), exactly once, there are Nτ -equivariant diffeomorphisms

Hcτ,x
∼=−→ C(τ ) (15)

sending a point y ∈ Hcτ,x to the unique simplex τ̂ ∈ C(τ ) such that Hcτ,x ∩P(τ, τ̂ ) =
{y}. (The smoothness of these identifications follows from their Nτ -equivariance.)
Composing the maps (15) and their inverses, we obtain Nτ -equivariant diffeomor-
phisms

πτ
x ′x : Hcτ,x → Hcτ,x ′ , (16)

sending the intersection point Hcτ,x ∩P(τ, τ̂ ) to the intersection Hcτ,x ′ ∩P(τ, τ̂ ) for
τ̂ ∈ C(τ ).

Let h ⊂ ∂∞X be a half-apartment such that int(τ ) ⊂ int(h). Then, as discussed
in the end of the previous section, the horocycles at τ intersect the parallel set P(∂h)

in the horocycles at h. The latter are homogeneous spaces for the subgroup Nh <

Nτ . Thus, for x, x ′ ∈ P(∂h), the diffeomorphisms (16) restrict to Nh-equivariant
diffeomorphisms

πh
x ′x : Hch,x

∼=−→ Hch,x ′

between the horocycles at h, while the diffeomorphisms (15) restrict to Nh-equivariant
diffeomorphisms

Hch,x
∼=−→ C(h)

between the horocycles at h and the Nh-orbitC(h) ⊂ C(τ ) consisting of the simplices
which are contained in ∂∞P(∂h).

We estimate now the contraction-expansion of the identifications πh
x ′x . We build

on the discussion at the end of the previous section. As we saw, the horocycles Hch,x

in P(∂h) ∼= f ×CS(∂h) are horospheres in the cross sections pt×CS(∂h). They
therefore project isometrically onto the horospheres Hsζ,x in CS(∂h), where x denotes
the projection of x . Under these projections, the identifications πh

x ′x correspond to the
identifications

π
ζ

x ′x : Hsζ,x
∼=−→ Hsζ,x ′ (17)

of horospheres, i.e. for x, x ′ ∈ P(∂h), we have the commutative diagram:

Hch,x

πh
x ′x

Hch,x ′

Hsζ,x

π
ζ

x ′x
Hsζ,x ′ .
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Estimating the contraction rate of πh
x ′x therefore reduces to estimating it for π

ζ

x ′x in
the rank one symmetric space CS(∂h).

We estimate the infinitesimal contraction. We assume that x ′ is closer to ζ than
x , bζ (x) � bζ (x ′). Then there is actual contraction, at a uniform rate in terms of

the distance between the horospheres. For the differential dπ
ζ

x ′x of π
ζ

x ′x , one has the
estimate

e−c1(bζ (x)−bζ (x ′))‖v‖ � ‖(dπ
ζ

x ′x )v‖ � e−c2(bζ (x)−bζ (x ′))‖v‖
for all tangent vectors v ∈ THsζ,x , with constants c1 � c2 > 0 depending only on the
rank one symmetric space CS(∂h), in fact, depending only on X , because there are
only finitely many isometry types of rank one symmetric spaces occurring as cross
sections of parallel sets in X . The estimate follows from the standard fact that the
exponential decay rate of decaying Jacobi fields along geodesic rays in CS(∂h) is
bounded below and above (in terms of the eigenvalues of the curvature tensor).

In view of bζ (x) − bζ (x ′) = bζ (x) − bζ (x ′), we obtain for πh
x ′x :

Lemma 2.33 (Infinitesimal contraction of horocycle identifications) If bζ (x) �
bζ (x ′), then

e−c1(bζ (x)−bζ (x ′))‖v‖ � ‖(dπh
x ′x )v‖ � e−c2(bζ (x)−bζ (x ′))‖v‖ (18)

for all tangent vectors v to Hch,x , with constants c1, c2 > 0 depending only on X.

2.11.2 Infinitesimal contraction of transvections

Wenow focus on transvections and their action at infinity. Suppose that x, x ′ ∈ P(τ, τ̂ )

are distinct points. Let ϑxx ′ denote the transvection with axis l = lxx ′ through x and x ′
mapping x ′ �→ x ; we orient the geodesic lxx ′ from x ′ to x , i.e. so that ϑxx ′ translates
along it in the positive direction.The transvectionϑxx ′ preserves the parallel set P(τ, τ̂ )

and fixes the simplices τ, τ̂ at infinity.
We consider the action of ϑxx ′ on C(τ ) and its differential at the fixed point τ̂ .

Modulo the identifications (15) and (16), the action of ϑxx ′ on C(τ ) corresponds to
the action of ϑxx ′ ◦πτ

x ′x on Hcτ,x , and the differential (dϑxx ′)τ̂ of ϑxx ′ at τ̂ to the
differential of ϑxx ′ ◦πτ

x ′x at x .
We first consider the case when ϑxx ′ when ξ ..= lxx ′(−∞) ∈ ost(τ ), equivalently,

when x ′ lies in the interior of the Weyl cone V (x, st(τ )). Then (dϑxx ′)τ̂ strictly
contracts:

Lemma 2.34 If ξ ∈ ost(τ ), then (dϑxx ′)τ̂ is diagonalizable with eigenvalues in (0, 1).

Proof Since ξ ∈ ost(τ ), the group Nτ preserves the strong asymptote classes of
geodesic rays at ξ ,9 cf. Sect. 2.10, i.e. the geodesics nlxx ′ for n ∈ Nτ are strongly
backward asymptotic to lxx ′ . Thus, by assigning tonτ̂ ∈ C(τ ) the geodesicnlxx ′ ,which
is the unique geodesic in the parallel set P(τ, nτ̂ ) strongly backward asymptotic to

9 However, Nτ does not act transitively on it, unless ξ ∈ int(τ ).
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lxx ′ , we obtain a smooth family of geodesics in the strong backward asymptote class
of lxx ′ , parametrized by the manifold C(τ ).

By differentiating this family, we obtain a linear embedding of the tangent space
T̂τC(τ ) into the vector space Jaclxx ′ ,ξ of Jacobi fields along lxx ′ which decay to zero
at ξ . The effect of the differential (dϑxx ′)τ̂ on C(τ ) is given, in terms of these Jacobi
fields, by the push-forward

J �→ (ϑxx ′)∗(J ) = dϑxx ′ ◦ J ◦ϑx ′x .

The Jacobi fields in Jacl,ξ , which are of the form of a decaying exponential function
times a parallel vector field along lxx ′ , correspond to the eigenvectors of (dϑxx ′)τ̂ with
eigenvalues in (0, 1). It is a standard fact from the Riemannian geometry of symmetric
spaces that the vector space Jaclxx ′ ,ξ has a basis consisting of such special Jacobi
fields.10 The same then follows for the linear subspace L ⊆ Jaclxx ′ ,ξ corresponding to
T̂τC(τ ). Thus the eigenvectors of (dϑxx ′)τ̂ for positive eigenvalues span T̂τC(τ ). ��
We now give a uniform estimate for the contraction of (dϑxx ′)τ̂ :

Lemma 2.35 If ξ ∈ ost(τ ), then the eigenvalues λ of (dϑxx ′)τ̂ satisfy an estimate

− log λ � c ·d(x ′, ∂V (x, st(τ ))) (19)

with a constant c > 0 depending only on X.

Proof We continue the argument in the previous proof. Let F ⊃ lxx ′ be a maximal
flat. Then F ⊂ P(τ, τ̂ ). The smooth family nτ̂ �→ nlxx ′ of geodesics parametrized
by C(τ ) embeds into the smooth family of maximal flats nτ̂ �→ nF . They are all
asymptotic to st(τ ) ∩ ∂∞F , i.e. ∂∞(nF) ⊃ st(τ ) ∩ ∂∞F . Accordingly, each Jacobi
field J ∈ L ⊆ Jaclxx ′ ,ξ extends to a Jacobi field

̂J along F which decays to zero at all
ideal points in ost(τ )∩∂∞F . (Hereweuse again that Nτ preserves the strong asymptote
classes of geodesic rays at all points in ost(τ ).) Thus, we obtain a natural identification
of T̂τC(τ ) and L with a linear subspacêL of the vector space JacF,ost(τ )∩∂∞F of Jacobi
fields along F which decay to zero at all ideal points in ost(τ ) ∩ ∂∞F .

The decomposition of Jacobi fields mentioned in the previous proof works in the
same way along flats.11 The vector space JacF,ost(τ )∩∂∞F has a basis consisting of
Jacobi fields of the form e−αV with an affine linear form α on F and a parallel vector
field V along F . Furthermore, since G acts transitively on maximal flats, only finitely
many affine linear forms α occur for these basis elements, independently of F . (The
possible forms are determined by the root system of G, but we do not need this fact
here.)

The decay condition on the forms α occurring in our decomposition is equivalent to
the property that α � α(x) on V (x, st(τ )∩∂∞F) ⊂ F and α > α(x) on the interior
of this cone. It implies an estimate

10 A transvection along a geodesic acts on the space of Jacobi fields along this geodesic as a diagonalizable
transformation, see [7,13].
11 As in the case of geodesics, a transvection along a flat acts on the space of Jacobi fields along this flat
as a diagonalizable transformation, see [7,13].
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α(x ′) − α(x) � c · d(x ′, ∂V (x, st(τ )∩∂∞F))
︸ ︷︷ ︸

=d(x ′,∂V (x,st(τ )))

with a constant c = c(α) > 0. (The equality of distances follows from Proposi-
tion 2.20.) Since there are only finitely many forms α involved, the constant c can be
taken independent of α.

Notice that the eigenvalues λ of (dϑxx ′)τ̂ are of the form

e−(α(x ′)−α(x)).

The claimed upper bound for the eigenvalues follows. ��
By continuity, the result extends to the case when x ′ lies in the boundary of the Weyl
cone V (x, st(τ )). We obtain:

Corollary 2.36 If x ′ ∈ V (x, st(τ )), then (dϑxx ′)τ̂ is diagonalizable with eigenvalues
in (0, 1] satisfying an estimate (19). In particular, the eigenvalues lie in (0, 1), if x ′
lies in the interior of V (x, st(τ )).

If x ′ lies outside the Weyl cone V (x, st(τ )), then d(ϑxx ′)τ̂ has expanding directions.
In order to see this, we consider the action of ϑxx ′ on certain invariant submanifolds
of C(τ ) corresponding to parallel sets of singular hyperplanes.

Again, there exists a maximal flat F with lxx ′ ⊂ F ⊂ P(τ, τ̂ ). Let h ⊂ ∂∞F be a
half-apartment such that int(τ ) ⊂ int(h). Then lxx ′ ⊂ F ⊂ P(∂h). The transvection
ϑxx ′ fixes ∂∞F pointwise. Hence it preserves the parallel set P(∂h) and the subman-
ifold C(h) = Nh τ̂ ⊂ C(τ ).

If lxx ′ is parallel to the euclidean factor of P(∂h), equivalently, if ∂∞lxx ′ ⊂ ∂h,
then ϑxx ′ acts trivially on ∂∞P(∂h). Hence, ϑxx ′ acts also trivially on C(h), because
the latter consists of simplices contained in ∂∞P(∂h).

In the general case, the action of ϑxx ′ on C(h) corresponds to the restriction of the
action of ϑxx ′ ◦πτ

x ′x to Hch,x = Hcτ,x ∩P(∂h). When projecting to CS(∂h), the latter

action in turn corresponds to the action of ϑxx ′ ◦π
ζ

x ′x on the horosphere Hsζ,x . Here,
ϑxx ′ denotes the transvection on CS(∂h) with axis lxx ′ through x and x ′ mapping
x ′ �→ x , and π

ζ

x ′x is the natural identification (17). The axis lxx ′ is the image of F
under the projection (if x = x ′, we define it in this way). It is asymptotic to ζ and
another ideal point ̂ζ ∈ C(ζ ) = ∂∞CS(∂h) − {ζ }. The simplex τ̂ corresponds to ̂ζ

under the natural Nh-equivariant identification C(h) ∼= C(ζ ), and the action of ϑxx ′
on C(h) corresponds to the action of ϑxx ′ on C(ζ ).

We now obtain analogues of Lemmas 2.34 and 2.35. Recall that ξ = lxx ′(−∞).

Lemma 2.37 If ξ ∈ int(h), then (dϑxx ′)τ̂ |T̂τC(h) is diagonalizable with eigenvalues
λ ∈ (0, 1) satisfying an estimate

c2 � − log λ

bζ (x) − bζ (x ′)
� c1 (20)

with constants c1, c2 > 0 depending only on X.
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Proof The diagonalizablility follows by applying Lemma 2.34 to CS(∂h) and
(dϑxx ′ )̂ζ . Since ξ ∈ int(h), we have that bζ (x) − bζ (x ′) = bζ (x) − bζ (x ′) > 0,
and the eigenvalue estimate follows from the contraction estimate (18). ��
Corollary 2.38 If x ′ ∈ P(τ, τ̂ )−V (x, st(τ )), then (dϑxx ′)τ̂ has some eigenvalues in
(1,+∞).

Proof By our assumption, we have that ξ /∈ st(τ ). Therefore, the half-apartment
h ⊂ ∂∞F can be chosen so that its interior contains, besides int(τ ), also lxx ′(+∞).
(Recall that the convex subcomplex st(τ )∩ ∂∞F is an intersection of half-apartments
in ∂∞F , cf. Lemma 2.3.) Then the estimate (20) applied to ϑx ′x = ϑ−1

xx ′ yields that

(dϑxx ′)−1
τ̂ has some eigenvalues in (0, 1). ��

Complementing Corollary 2.36, we bound the contraction rate from above, if x ′ ∈
V (x, st(τ )):

Lemma 2.39 If ξ ∈ st(τ ), then (dϑxx ′)τ̂ has some eigenvalue λ ∈ (0, 1] satisfying
an estimate

− log λ � c1 ·d(x ′, ∂V (x, st(τ )))

with a constant c1 > 0 depending only on X.

Proof Since xx ′ ⊂ F , somenearest point y′ to x ′ on ∂V (x, st(τ )) lies in F , cf. Proposi-
tion 2.20. Hencewe can choose the half-apartment h ⊂ ∂∞F such that bζ (y′) = bζ (x)
and

d(x ′, ∂V (x, st(τ ))) = bζ (x) − bζ (x
′).

Now let λ be an eigenvalue of (dϑxx ′)τ̂ |T̂τC(h) and apply the upper bound in (20). ��
Putting the information (Corollaries 2.36, 2.38 and Lemmas 2.37, 2.39) together, we
obtain:

Proposition 2.40 (Infinitesimal contraction of transvections at infinity) Let τ, τ̂ ⊂
∂∞X be opposite simplices, and let ϑ be a nontrivial transvection with an axis l ⊂
P(τ, τ̂ ) through the point x. Then the following hold for the differential dϑτ̂ of ϑ on
C(τ ) at the fixed point τ̂ :

(i) dϑτ̂ is diagonalizable with eigenvalues in (0, 1] iff ϑ−1x ∈ V (x, st(τ )), and
diagonalizable with eigenvalues in (0, 1) iff ϑ−1x ∈ V (x, ost(τ )).

(ii) If ϑ−1x ∈ V (x, st(τ )), then the eigenvalues λ of dϑτ̂ satisfy an estimate

c2 ·d(ϑ−1x, ∂V (x, st(τ ))) � − log λ � c1 ·d(ϑ−1x, ∂V (x, st(τ )))

with constants c1, c2 > 0 depending only on X.

We deduce a consequence for the action of general isometries in G. For later use, we
will formulate it in terms of expansion (of their inverses) rather than contraction.

We need the following notion: For a diffeomorphism � of a Riemannian manifold
M , we define the expansion factor at x ∈ M as

ε(�, x) = inf
v∈Tx M−{0}

‖d�(v)‖
‖v‖ = ‖(d�x )

−1‖−1, (21)
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compare (25) in Sect. 3.1 below.
We equip the flag manifolds Flagτmod with auxiliary Riemannian metrics.

Theorem 2.41 (Infinitesimal expansion of isometries at infinity) Let τ ∈ Flagτmod ,
x ∈ X, and g ∈ G be such that d(gx, V (x, st(τ ))) � r . Then for the action of g−1

on Flagτmod we have the estimate

C−1 ·d(gx, ∂V (x, st(τ ))) − A � log ε(g−1, τ ) � C ·d(gx, ∂V (x, st(τ ))) + A

with constants C, A > 0 depending only on x, r and the chosen Riemannian metric
on Flagτmod .

12

Proof We write g as a product g = tb of a transvection t along a geodesic l through
x with l(+∞) ∈ st(τ ) and an isometry b ∈ G such that d(x, bx) � r . Then t fixes τ

on Flagτmod , and the expansion factor ε(g−1, τ ) equals ε(t−1, τ ) up to a multiplicative
constant depending on r and the chosen Riemannian metric on Flagτmod .

When replacing the metric, ε(t−1, τ ) changes at most by another multiplicative
constant, and we may therefore assume that the Riemannian metric is invariant under
the maximal compact subgroup Kx < G fixing x . Now the eigenspace decomposition
of dtτ on Tτ Flagτmod is orthogonal. Consequently,

ε(t−1, τ ) = λ−1
max

where λmax denotes the maximal eigenvalue of dtτ .
Let τ̂ denote the simplex x-opposite to τ . Applying Proposition 2.40 (ii) to ϑ = t

while exchanging the roles of τ and τ̂ , we obtain the estimate

c2 ·d(t−1x, ∂V (x, st (̂τ ))) � − log λ � c1 · d(t−1x, ∂V (x, st (̂τ )))
︸ ︷︷ ︸

=d(t x,∂V (x,st(τ )))

for the eigenvalues λ of dtτ , and so

c2 ·d(t x, ∂V (x, st(τ ))) � log ε(t−1, τ ) � c1 ·d(t x, ∂V (x, st(τ ))),

which is the desired estimate. ��
Let us now consider sequences (gn) inG. The theorem can be used to draw conclusions
from the expansion behavior at infinity of the sequence of inverses (g−1

n ) on the
geometry of an orbit sequence (gnx) in X : If (gnx) lies in a tubular neighborhood
of the Weyl cone V (x, st(τ )), then the expansion factors ε(g−1

n , τ ) on Flagτmod are
bounded below, and their logarithms measure the distance of (gnx) to the boundary
of the Weyl cone. In particular, if the expansion factors diverge, ε(g−1

n , τ ) → +∞,
then (the projection of) (gnx) enters deep into the cone V (x, st(τ )).

12 The estimate depends also on the point x because the choice of the auxiliary metric on Flagτmod reduces
the symmetry: The action of a compact subgroup of G on Flagτmod is uniformly bilipschitz, but not the
G-action.

123



M. Kapovich et al.

The next result shows how to recognize from expansion whether the orbit sequence
(gnx) remains in a tubular neighborhood of the Weyl cone V (x, st(τ )), once it stays
close to the parallel set spanned by it:

Proposition 2.42 Let τ, τ̂ ⊂ ∂∞X be opposite simplices. Suppose that (gn) is a
sequence in G such that, for some point x ∈ X, the sequence (gnx) is contained in a
tubular neighborhood of the parallel set P(τ, τ̂ ), but drifts away from the Weyl cone
V (x, st(τ )),

d(gnx, V (x, st(τ ))) → +∞
as n → +∞. Then ε(g−1

n , τ ) → 0.

Proof We may assume that x ∈ P = P(τ, τ̂ ). As in the proof of Theorem 2.41, we
can reduce to the case that the gn are transvections along geodesics ln in P through
the point x . We need to show that the differentials (dg−1

n )τ on Flagτmod have (some)
small eigenvalues, i.e. that their minimal eigenvalue goes → 0.

We proceed as in the proof of Corollary 2.38. Let Fn ⊂ P be a maximal flat
containing ln . Then also

d(gnx, V (x, st(τ ))∩ Fn) → +∞,

cf. Proposition 2.20. There exist half-apartments hn ⊂ ∂∞Fn with centers ζn , so that
bζn � bζn (x) on V (x, st(τ )) ∩ Fn (and hence also on V (x, st(τ ))) and bζn (gnx) −
bζn (x) → +∞. Let ̂hn ⊂ ∂∞Fn denote the complementary half-apartments, ∂̂hn =
∂hn , and̂ζn their centers. Then bζn + b

̂ζn
≡ const on Fn . It suffices to show that the

differentials (dg−1
n )τ are contracting on the invariant subspaces TτC(̂hn) ⊆ TτC (̂τ )

with norms going→ 0. According to Lemma 2.37, the eigenvalues of (dg−1
n )τ |TτC(̂hn)

are positive and bounded above by

e−c2
(

b
ζ̂n

(x)−b
ζ̂n

(gnx)
)

= e−c2(bζn (gnx)−bζn (x))→ 0.

This finishes the proof. ��

2.12 Finsler geodesics

We will work with the following notion of Finsler geodesic:

Definition 2.43 (Finsler geodesics) A continuous path c : I → X is a τmod-Finsler
geodesic if it is contained in a parallel set P(τ−, τ+) with τ± ∈ Flag±τmod

such that13

c(t+) ∈ V (c(t−), st(τ+)) (22)

for all subintervals [t−, t+] ⊆ I . It is �-regular if, moreover,

c(t+) ∈ V (c(t−), st�(τ+)). (23)

13 The notation is to be understood here in the formula τ± ∈ Flag±τmod
and in other formulas later that

either both signs are plus or both signs are minus.
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We call a τmod-Finsler geodesic uniformly τmod-regular if it is �-regular for some
Wτmod -convex compact subset � ⊂ intτmod (σmod).

Note that we do not require the parameterization of Finsler geodesics to be by arc
length. The terminology is justified by the fact that τmod-Finsler geodesics are (up to
parameterization) the geodesics for certain G-invariant “polyhedral” Finsler metrics,
see [15, Section 5.1.3].

The condition (22) is equivalent to c(t−) ∈ V (c(t+), st(τ−)), and it follows that
the subpaths c|[t−,t+] are contained in the diamonds ♦τmod(c(t−), c(t+)). Similarly,
(23) is equivalent to c(t−) ∈ V (c(t+), st�(τ−)), because � is assumed ι-invariant,
and in the �-regular case c|[t−,t+] is contained in ♦�(c(t−), c(t+)).

It is worth mentioning the following Finsler geometric interpretation of diamonds:
They are Finsler versions of Riemannian geodesic segments in the sense that the union
of all τmod-Finsler geodesic segments with endpoints x± fills out ♦τmod(x−, x+), see
also [15, Section 5.1.3].

We now discuss the “drift” component of τmod Finsler geodesics. We work with
the vector valued distance dτmod = π�

τmod
◦d�, introduced in (6). We first consider the

case of broken geodesics xyz which are τmod-Finsler geodesics:

Lemma 2.44 (Additivity) Let τ ∈ Flagτmod . If y ∈ V (x, st(τ )) and z ∈ V (y, st(τ )),
then

dτmod (x, y) + dτmod (y, z) = dτmod (x, z).

Proof The τmod-distance can be expressed in terms of the projections of Weyl cones
to their central sectors. Consider the nearest point projection

πx,τ : V (x, st(τ )) → V (x, τ ),

cf. (5). Note that it coincides with the nearest point projection from V (x, st(τ )) to the
singular flat spanned by the sector V (x, τ ), compare Lemma 2.9 and the comment
thereafter. Then

dτmod (x, ·) = d�(x, πx,τ ( ·))

on V (x, st(τ )).
In order to relate dτmod (y, z) to dτmod (x, y) and dτmod (x, z), we observe that the

sectors V (y, τ ) and V (πx,τ (y), τ ) ⊆ V (x, τ ) are parallel and isometrically identified
by πx,τ . Moreover,

πx,τ |V (y,st(τ )) = (πx,τ |V (y,τ ))◦πy,τ .

Therefore,

dτmod (y, z) = d�(y, πy,τ (z)) = d�(πx,τ (y), πx,τ (z)).

The additivity formula follows in view of the nestedness πx,τ (z) ∈ V (πx,τ (y), τ ). ��
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Applying the lemma to τmod-Finsler geodesics yields:

Proposition 2.45 (Additivity of τmod-distance along Finsler geodesics) If c : I → X
is a τmod-Finsler geodesic, then

dτmod (c(t0), c(t1)) + dτmod (c(t1), c(t2)) = dτmod (c(t0), c(t2))

for all t0 � t1 � t2 in I .

We reformulate this as:

Proposition 2.46 (τmod-projection of Finsler geodesics) If c : [0, T ] → X is a τmod-
Finsler geodesic, then so is

cτmod
..= dτmod (c(0), c) : [0, T ] → V (0, τmod),

and

cτmod (t2) = cτmod (t1) + dτmod (c(t1), c(t2))

for all 0 � t1 � t2 � T .

Note that the equality in the last proposition implies:

d(cτmod (t1), cτmod (t2)) = ‖dτmod (c(t1), c(t2))‖. (24)

We now study the �-distance along Finsler geodesics. This is based on Proposi-
tion 2.16 which concerns the �-side lengths of triangles �(x, y, z) in X such that
the broken geodesic xyz is a Finsler geodesic. Applying this proposition to Finsler
geodesics, we obtain our main result concerning their geometry:

Theorem 2.47 (�-projection of Finsler geodesics)

(i) If c : [0, T ] → X is a τmod-Finsler geodesic, then so is

c�
..= d�(c(0), c) : [0, T ] → �.

(ii) If c is also �-regular, with � ⊂ intτmod (σmod) compact and τmod-Weyl convex,
then so is c�.Moreover, the distances between points on c and c� are comparable:

d(c�(t1), c�(t2)) � ε(�) ·d(c(t1), c(t2))

for 0 � t1 � t2 � T with a constant ε(�) > 0.

We note that d(c�(t1), c�(t2)) � d(c(t1), c(t2)), because d�(c(0), ·) is 1-Lipschitz.
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Proof (i) Applying Proposition 2.16 to the triangles �(c(0), c(t1), c(t2)), 0 � t1 �
t2 � T , yields

c�(t2) ∈ V (c�(t1),Wτmod�),

the cone being understood as a subset of Fmod, which means that c� is a τmod-Finsler
geodesic.

(ii) That c� is now �-regular, follows similarly. The comparability of distances we
deduce using our earlier discussion of τmod-distances along Finsler geodesics. We
estimate:

d(c�(t1), c�(t2)) � d(cτmod (t1), cτmod (t2))

= ‖dτmod (c(t1), c(t2))‖ � ε(�) ·d(c(t1), c(t2))

The first inequality holds, because cτmod = π�
τmod

◦c� and π�
τmod

is 1-Lipschitz. The
equality follows from (24). The last inequality comes from the lower bound for the
length of the τmod-component of �-regular segments, cf. (7). ��

3 Topological dynamics

3.1 Expansion

Let first Z be a metric space and let �� Z be a continuous action by a discrete group.
We will use the following notions of metric expansion, compare [29, Section 9]:

Definition 3.1 (Metric expansion)

• A homeomorphism h of Z is expanding at a point z ∈ Z if there exists a neigh-
borhood U of z and a constant c > 1 such that h|U is c-expanding in the sense
that

d(hz1, hz2) � c ·d(z1, z2).

for all points z1, z2 ∈ U .
• A sequence of homeomorphisms hn of Z has diverging expansion at the point

z ∈ Z if there exists a sequence of neighborhoodsUn of z and numbers cn → +∞
such that hn|Un is cn-expanding.

• The action �� Z is expanding at z ∈ Z if there exists an element γ ∈ � which
is expanding at z. The action has diverging expansion at z ∈ Z if � contains a
sequence which has diverging expansion at z.

• The action �� Z is expanding at a compact �-invariant subset E ⊂ Z if it is
expanding at all points z ∈ E .

We observe that the properties of diverging expansion depend only on the bilipschitz
class of the metric. Furthermore, if an action is expanding at an invariant compact
subset then, due to iteration, it has diverging expansion at every point of the subset.

Now let M be a Riemannian manifold and let ��M be a smooth action. There are
infinitesimal analogs of the above expansion conditions.
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We recall from (21) that, for a diffeomorphism� ofM , the expansion factor ε(�, x)
at a point x ∈ M is defined as:

ε(�, x) = inf
v∈Tx M−{0}

‖d�(v)‖
‖v‖ = ‖(d�x )

−1‖−1. (25)

Definition 3.2 (Infinitesimal expansion)

• A diffeomorphism � of M is infinitesimally expanding at a point x ∈ M if
ε(�, x) > 1.

• A sequence of diffeomorphisms �n of M has diverging infinitesimal expansion at
x if ε(�n, x) → +∞ as n → +∞.

• The action��M is infinitesimally expanding at x if there exists an element γ ∈ �

which is infinitesimally expanding at x . The action has diverging infinitesimal
expansion at x if� contains a sequencewhichhas diverging infinitesimal expansion
at x .

• The action ��M is infinitesimally expanding at a compact �-invariant subset
E ⊂ M if it is infinitesimally expanding at all points x ∈ M .

If the manifold M is compact, the properties of diverging infinitesimal expansion are
independent of theRiemannianmetric. In the general case, if an action is infinitesimally
expanding at an invariant compact subset then it has diverging infinitesimal expansion
at every point of the subset.

We note that for smooth actions on Riemannian manifolds infinitesimal and metric
expansion are equivalent.

3.2 Discontinuity and dynamical relation

Let Z be a compact metrizable space, and let �<Homeo(Z) be a countably infinite
subgroup (although in the definition of a proper action below we allow for subsemi-
groups). We consider the action �� Z .

Definition 3.3 (Discontinuous) A point z ∈ Z is called wanderingwith respect to the
�-action if the action is discontinuous at z, i.e. if z has a neighborhood U such that
U ∩ γU �= ∅ for at most finitely many γ ∈ �.

Nonwandering points are called recurrent.

Definition 3.4 (Domain of discontinuity) We call the set

�disc ⊂ Z

of wandering points thewandering set or domain of discontinuity for the action�� Z .

Note that �disc is open and �-invariant.

Definition 3.5 (Proper) The action of a subsemigroup �<Homeo(X) on an open
subset U ⊂ Z is called proper if for every compact subset K ⊂ U , K ∩ γ K �= ∅ for
at most finitely many γ ∈ �.
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If � is a subgroup of Homeo(X) acting properly discontinuously on U ⊂ X then the
action of � on U is then discontinuous, U ⊆ �disc, and therefore is called properly
discontinuous.

Definition 3.6 (Domain of proper discontinuity) If �<Homeo(X) is a subgroup, we
call a �-invariant open subset� ⊆ �disc on which � acts properly a domain of proper
discontinuity for �.

The orbit space�/� is thenHausdorff. Note that in general there is no uniquemaximal
proper domain of discontinuity.

Discontinuity and proper discontinuity can be nicely expressed using the notion of
dynamical relation. The following definition is due to Frances [8, Definition 1]:

Definition 3.7 (Dynamically related) Two points z, z′ ∈ Z are called dynamically
related with respect to a sequence (hn) in Homeo(Z),

z
(hn)∼z′

if there exists a sequence zn → z in Z such that hnzn → z′.
The points z, z′ are called dynamically related with respect to the �-action,

z
�∼z′

if there exists a sequence γn → ∞ in � such that z
(γn)∼z′.

Here, for a sequence (γn) in � we write γn → ∞ if every element of � occurs at most
finitely many times in the sequence.

One verifies (see e.g. [16, Lemma 4.22] and the preceding discussion):

(i) Dynamical relation is a closed relation in Z× Z .
(ii) Points in different �-orbits are dynamically related if and only if their orbits

cannot be separated by disjoint �-invariant open subsets.

The concept of dynamical relation is useful for our discussion of discontinuity,
because:

(i) A point is nonwandering if and only if it is dynamically related to itself.
(ii) The action is proper on an open subset U ⊂ Z if and only if no two points in U

are dynamically related.

3.3 Convergence groups

Let Z be a compact metrizable space with at least three points. A sequence (hn) in
Homeo(Z) is contracting if there exist points z± ∈ Z such that

hn|Z−{z−} → z+ (26)
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uniformly on compacts as n → +∞. Equivalently, there is no dynamical relation

z
(hn)∼z′ between points z �= z− and z′ �= z+. This condition is clearly symmetric, i.e.

(26) is equivalent to the dual condition that

h−1
n |Z−{z+} → z−

uniformly on compacts as n → +∞. The points z± are uniquely determined, since
|Z | � 3.

A sequence (hn) in Homeo(Z) is said to converge to a point z ∈ Z ,

hn → z (27)

if every subsequence contains a contracting subsequencewhich, outside its exceptional
point, converges to the constant map ≡ z.

One considers the following stronger form of convergence:

Definition 3.8 (Conical convergence) A converging sequence hn → z converges
conically,

hn
con−−→ z

if for some relatively compact sequence (̂zn) in Z − {z}, the sequence of pairs of
distinct points h−1

n (̂zn, z) is relatively compact in (Z× Z)dist.

Here, (Z× Z)dist ⊂ Z× Z denotes the complement of the diagonal.

Lemma 3.9 If hn
con−−→ z, then the condition in the definition holds for all relatively

compact sequences (̂zn) in Z − {z}.
Proof Let (̂zn) be a relatively compact sequence in Z − {z}. For every contracting
subsequence (hnk ) there exists a point ẑ ∈ Z such that

h−1
nk |Z−{z} → ẑ

uniformly on compacts. In particular, h−1
nk ẑnk → ẑ and the relative compactness of

(h−1
nk (̂znk , z)) in (Z× Z)dist becomes equivalent to the condition that the sequence

(h−1
nk z) does not accumulate at ẑ. The latter condition is independent of the sequence

(̂zn). ��
The following criterion for being a conical limit point of a subsequence is immediate:14

Lemma 3.10 A sequence (hn) inHomeo(Z) has a subsequence conically converging
to z ∈ Z iff there exists a subsequence (hnk ) and a point z− ∈ Z such that the following
conditions are satisfied:

14 Here it suffices that |Z | � 2.
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(i) h−1
nk |Z−{z} → z− uniformly on compacts.

(ii) (h−1
nk z) converges to a point different from z−.

Now we pass to group actions. A continuous action �� Z of a discrete group � is a
convergence action if every sequence (γn) of pairwise distinct elements in � contains
a subsequence converging to a point, equivalently, a contracting subsequence. The
kernel of a convergence action is finite, and we will identify � with its image in
Homeo(Z) which we will call a convergence group.

The limit set� ⊂ Z of a convergencegroup�<Homeo(Z) is the subset of all points
which occur as limits z+ as in (26), equivalently, as limits z as in (27) for sequences
γn → ∞ in �. The limit set is �-invariant and compact. A limit point λ ∈ � is conical
if it occurs as the limit of a conically converging sequence. A convergence group is
said to have conical limit set if all limits points are conical, and to be non-elementary
if |�| � 3. Tukia [30, Theorem 2S] has shown that in the non-elementary case the
limit set is perfect and the �-action on it is minimal.

If the limit set is conical, then � and its action on � are very special:

Theorem 3.11 (Bowditch [4]) Suppose that �<Homeo(Z) is a non-elementary con-
vergence group with conical limit set �. Then � is word hyperbolic and � ∼= ∂∞�

equivariantly.

The converse is easier to see:

Theorem 3.12 ([9,10,30]) The natural action of a non-virtually cyclic word hyper-
bolic group on its Gromov boundary is a minimal conical convergence action.

3.4 Expanding convergence groups

The following result connects expansion with convergence dynamics.

Lemma 3.13 If �� Z is an expanding convergence action on a perfect compact
metric space, then all points in Z are conical limit points.

Proof We start with a general remark concerning expanding actions. For every point
z ∈ Z there exist an element γ ∈ � and constants r > 0 and c > 1 such that γ is a c-
expansion on the ball B(z, r) and γ (B(z, r ′)) ⊃ B(γ z, cr ′) for all radii r ′ � r . To see
this, suppose that c is a local expansion factor for γ at z and, by contradiction, that there
exist sequences of radii rn → 0 and points zn /∈ B(z, rn) such that γ zn ∈ B(γ z, crn).
Then zn → z due to the continuity of γ −1 and, for large n, we obtain a contradiction
to the local c-expansion of γ . Since Z is compact, the constants r and c can be chosen
uniformly. It follows by iterating expanding maps that for every point z and every
neighborhood V of z there exists γ ∈ � such that γ (V ) ⊃ B(γ z, r), equivalently,
γ (Z − V ) ⊂ Z − B(γ z, r).

To verify that a point z is conical, let Vn be a shrinking sequence of neighborhoods
of z,

⋂

n

Vn = {z},
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and let γn ∈ � be elements such that γ −1
n (Z − Vn) ⊂ Z − B(γ −1

n z, r). Since Vn is
shrinking and γ −1

n (Vn) ⊃ B(γ −1
n z, r) contains balls of uniform radius r , it follows

that the γ −1
n do not subconverge uniformly on any neighborhood of z; here we use

that Z is perfect. In particular, γn → ∞. The convergence action property implies
that, after passing to a subsequence, the γ −1

n must converge locally uniformly on
Z − {z}. Moreover, we can assume that the sequence of points γ −1

n z converges. By
construction, its limit will be different (by distance� r ) from the limit of the sequence
of maps γ −1

n |Z−{z}. Hence the point z is conical. ��
Combining this with Bowditch’s dynamical characterization of hyperbolic groups, we
obtain:

Corollary 3.14 If �� Z is an expanding convergence action on a perfect compact
metric space, then � is word hyperbolic and Z ∼= ∂∞� equivariantly.

Note that, conversely, the natural action ��∂∞� of a word hyperbolic group � on
its Gromov boundary is expanding with respect to a visual metric, see e.g. [6].

4 Regularity and contraction

In this section, we discuss a class of discrete subgroups of semisimple Lie groups
which will be the framework for most of our investigations in this paper. In particular,
it contains Anosov subgroups. The class of subgroups will be distinguished by an
asymptotic regularity condition which in rank one just amounts to discreteness, but
in higher rank is strictly stronger. The condition will be formulated in two equivalent
ways. First dynamically in terms of the action on a flag manifold, then geometrically
in terms of the orbits in the symmetric space.

4.1 Contraction

Consider the action

G�Flagτmod

on the flag manifold of type τmod. Recall that for a simplex τ− of type ιτmod we denote
by C(τ−) ⊂ Flagτmod the open dense Pτ− -orbit; it consists of the simplices opposite
to τ−.

We introduce the following dynamical conditions for sequences and subgroups
in G:

Definition 4.1 (Contracting sequence) A sequence (gn) in G is τmod-contracting if
there exist simplices τ+ ∈ Flagτmod , τ− ∈ Flagιτmod

such that

gn|C(τ−) → τ+ (28)

uniformly on compacts as n → +∞.
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See [16, Example 2.56] for the case G = SL(n, R) and σmod-contracting sequences.

Definition 4.2 (Convergence type dynamics)A subgroup�<G is a τmod-convergence
subgroup if every sequence (γn) of distinct elements in � contains a τmod-contracting
subsequence.

Note that τmod-contracting sequences diverge to infinity and therefore τmod-
convergence subgroups are necessarily discrete.

A notion for sequences in G equivalent to τmod-contraction had been introduced
by Benoist in [3], see in particular part (5) of his Lemma 3.5.

The contraction property exhibits a symmetry:

Lemma 4.3 (Symmetry) Property (28) is equivalent to the dual property that

g−1
n |C(τ+) → τ− (29)

uniformly on compacts as n → +∞.

Proof Suppose that (28) holds but (29) fails. Equivalently, after extraction there exists
a sequence ξn → ξ �= τ− in Flagιτmod

such that gnξn → ξ ′ ∈ C(τ+). Since ξ �= τ−,
there exists τ̂− ∈ C(τ−) not opposite to ξ . (For instance, take an apartment in ∂∞X
containing τ− and ξ , and let τ̂− be the simplex opposite to τ− in this apartment.) Hence
there is a sequence τn → τ̂− in Flagτmod such that τn is not opposite to ξn for all n. (It
can be obtained e.g. by taking a sequence hn → e in G such that ξn = hnξ and putting
τn = hn τ̂−.) Since τ̂− ∈ C(τ−), condition (28) implies that gnτn → τ+. It follows
that τ+ is not opposite to ξ ′, because gnτn is not opposite to gnξn and being opposite
is an open condition. This contradicts ξ ′ ∈ C(τ+). Therefore, condition (28) implies
(29). The converse implication follows by replacing the sequence (gn) with (g−1

n ). ��
Lemma 4.4 (Uniqueness) The simplices τ± in (28) are uniquely determined.

Proof Suppose that besides (28) we also have gn|C(τ ′−) → τ ′+ with simplices
τ ′± ∈ Flag±τmod

. Since the subsets C(τ−) and C(τ ′−) are open dense in Flagτmod , their
intersection is nonempty and hence τ ′+ = τ+. Using the equivalent dual conditions
(29) we similarly obtain that τ ′− = τ−. ��

4.2 Regularity

The second set of asymptotic properties concerns the geometry of the orbits in X .
We first consider sequences in the euclidean model Weyl chamber �. Recall that
∂τmod� = V (0, ∂τmod σmod) ⊂ � is the union of faces of � which do not contain the
sector V (0, τmod). Note that ∂τmod� ∩ V (0, τmod) = ∂V (0, τmod) = V (0, ∂τmod).

Definition 4.5 A sequence (δn) in � is

• τmod-regular if it drifts away from ∂τmod�,

d(δn, ∂τmod�) → +∞.
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• τmod-pure if it is contained in a tubular neighborhood of the sector V (0, τmod) and
drifts away from its boundary,

d(δn, ∂V (0, τmod)) → +∞.

Note that (δn) is τmod-regular/pure iff (ιδn) is ιτmod-regular/pure. We extend these
notions to sequences in X and G:

Definition 4.6 (Regular and pure)

• A sequence (xn) in X is τmod-regular, respectively, τmod-pure if for some (any)
base point o ∈ X the sequence of �-distances d�(o, xn) in � has this property.

• A sequence (gn) in G is τmod-regular, respectively, τmod-pure if for some (any)
point x ∈ X the orbit sequence (gnx) in X has this property.

• A subgroup �<G is τmod-regular if all sequences of distinct elements in � have
this property.

That these properties are independent of the base point and stable under bounded
perturbation of the sequences, is due to the triangle inequality |d�(x, y)−d�(x ′, y′)| �
d(x, x ′) + d(y, y′).

Subsequences of τmod-regular/pure sequences are again τmod-regular/pure.
Clearly, τmod-pureness is a strengthening of τmod-regularity; a sequence in � is

τmod-pure iff it is τmod-regular and contained in a tubular neighborhood of V (0, τmod).
The face type of a pure sequence is uniquely determined. Moreover, a τmod-regular

sequence is τ ′
mod-regular for every face type τ ′

mod ⊂ τmod, because ∂τ ′
mod

� ⊂ ∂τmod�.

A sequence (gn) is τmod-regular/pure iff the inverse sequence (g−1
n ) is ιτmod-

regular/pure, because d�(x, g−1
n x) = d�(gnx, x) = ιd�(x, gnx).

Note that τmod-regular subgroups are in particular discrete. If rank(X) = 1, then
discreteness is equivalent to (σmod-)regularity. In higher rank, regularity can be con-
sidered as a strengthening of discreteness: A discrete subgroup �<G may not be
τmod-regular for any face type τmod; this can happen e.g. for free abelian subgroups of
transvections of rank � 2.

A property for sequences in G equivalent to regularity had appeared in [3, Lemma
3.5 (1)].

See [16, Example 2.24] for σmod-regularity in the case G = SL(n, R).

Lemma 4.7 (Pure subsequences) Every sequence, which diverges to infinity, contains
a τmod-pure subsequence for some face type τmod ⊆ σmod.

Proof In the case of sequences in �, take τmod to be a minimal face type so that a
subsequence is contained in a tubular neighborhood of V (0, τmod). ��
Note also that a sequence, which diverges to infinity, is τmod-regular iff it contains
νmod-pure subsequences only for face types νmod ⊇ τmod.

The lemma implies in particular, that every sequenceγn → ∞ in a discrete subgroup
�<G contains a subsequence which is τmod-regular, even τmod-pure, for some face
type τmod.
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Remark 4.8 Regularity has a natural Finsler geometric interpretation, cf. [15]: A
sequence in X is τmod-regular iff, in the Finsler compactification X Fins = X � ∂Fins∞ X
of X , it accumulates at the closure of the stratum Sτmod ⊂ ∂Fins∞ X at infinity.

4.3 Contraction implies regularity

In this section and the next, we relate contractivity and regularity for sequences and,
as a consequence, establish the equivalence between τmod-regularity and the τmod-
convergence property for discrete subgroups.

To relate contraction and regularity, it is useful to consider the G-action on flats.
We recall that Fτmod denotes the space of flats f ⊂ X of type τmod (see Sect. 2.4). Two
flats f± ∈ Fτmod are dynamically related with respect to a sequence (gn) in G,

f−
(gn)∼ f+,

if there exists a sequence of flats fn → f− in Fτmod such that gn fn → f+. The
action of (gn) on Fτmod is proper iff there are no dynamical relations with respect to
subsequences, cf. Sect. 3.2.

Dynamical relations between singular flats yield dynamical relations betweenmax-
imal ones:

Lemma 4.9 If f± ∈ Fτmod are flats such that f−
(gn)∼ f+, then for every maximal flat

F+ ⊇ f+ there exist a maximal flat F− ⊇ f− and a subsequence (gnk ) such that

F−
(gnk )∼F+.

Proof Let fn → f− be a sequence in Fτmod such that gn fn → f+. Then there exists
a sequence of maximal flats Fn ⊇ fn such that gnFn → F+. The sequence (Fn) is
bounded because the sequence ( fn) is, and hence (Fn) subconverges to a maximal flat
F− ⊇ f−. ��
For pure sequences there are dynamical relations between singular flats of the corre-
sponding type with respect to suitable subsequences:

Lemma 4.10 If (gn) is τmod-pure, then the action of (gn) on Fτmod is not proper.
More precisely, there exist simplices τ± ∈ Flagτmod such that for every flat f+ ∈

Fτmod asymptotic to τ+ there exist a flat f− ∈ Fτmod asymptotic to τ− and a subsequence
(gnk ) such that

f−
(gnk )∼ f+.

Proof By pureness, there exists a sequence (τn) in Flagτmod such that

sup
n

d(gnx, V (x, τn)) < +∞ (30)
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for any point x ∈ X . There exists a subsequence (gnk ) such that τnk → τ+ and
g−1
nk τnk → τ−.
Let f+ ∈ Fτmod be asymptotic to τ+. We choose x ∈ f+ and consider the sequence

of flats fk ∈ Fτmod through x asymptotic to τnk . Then fk → f+. The sequence of flats
(g−1

nk fk) is bounded as a consequence of (30). Therefore, after further extraction, we
obtain convergence g−1

nk fk → f−. The limit flat f− is asymptotic to τ− because the
fk are asymptotic to g−1

nk τnk . ��
By a diagonal argument one can also show that the subsequences (gnk ) in the two
previous lemmas can be made independent of the flats F+ respectively f+.

For contracting sequences, the possible dynamical relations between maximal flats
are restricted as follows:

Lemma 4.11 Suppose that (gn) is τmod-contractingwith (28), and that F−
(gn)∼F+ for

maximal flats F± ∈ F. Then τ± ⊂ ∂∞F±.

Proof Suppose that τ− �⊂ ∂∞F−. Then the visual boundary sphere ∂∞F− contains at
least two different simplices τ̂−, τ̂ ′− opposite to τ−, cf. Lemma 2.2.

Let Fn → F− be a sequence in F such that gnFn → F+. Due to Fn → F−,
there exist sequences of simplices τn, τ

′
n ⊂ ∂∞Fn such that τn → τ̂− and τ ′

n → τ̂ ′−. In
particular, τn �= τ ′

n for largen. After extraction,we also obtain convergence gnτn → τ̂+
and gnτ ′

n → τ̂ ′+. Moreover, since gnFn → F+, it follows that the limits τ̂+, τ̂ ′+ are
different simplices in ∂∞F+.

This is however in conflict with the contraction property (28). In view of τ̂−, τ̂ ′− ∈
C(τ−), the latter implies that gnτn → τ+ and gnτ ′

n → τ+, convergence to the same
simplex, a contradiction. Thus, τ− ⊂ ∂∞F−.

Considering the inverse sequence (g−1
n ) yields that also τ+ ⊂ ∂∞F+, cf. Lem-

ma 4.3. ��
Combining the previous lemmas, we obtain:

Lemma 4.12 If a sequence inG is τmod-contracting and νmod-pure, then τmod ⊆ νmod.

Proof We denote the sequence by (gn) and assume (28). According to Lemmas 4.10
and4.9, by νmod-purity, there exist simplices ν± ∈ Flagνmod

such that for everymaximal
flat F+ with ∂∞F+ ⊃ ν+ there exist a maximal flat F− with ∂∞F− ⊃ ν− and a
subsequence (gnk ) such that

F−
(gnk )∼F+.

By Lemma 4.11, always τ+ ⊂ ∂∞F+. Varying F+, it follows that τ+ ⊆ ν+, cf.
Lemma 2.3. ��
From these observations, we conclude:

Proposition 4.13 (Contracting implies regular) If a sequence inG is τmod-contracting,
then it is τmod-regular.
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Proof Consider a sequence in G which is not τmod-regular. Then a subsequence is
νmod-pure for some face type νmod ⊆ ∂τmod σmod, compare Lemma 4.7. The condition
on the face type is equivalent to νmod � τmod. By the last lemma, the subsequence
cannot be τmod-contracting. ��

4.4 Regularity implies contraction

We now prove a converse to Proposition 4.13. Since contractivity involves a con-
vergence condition, we can expect regular sequences to be contracting only after
extraction.

Consider a τmod-regular sequence (gn) in G. After fixing a point x ∈ X , there exist
simplices τ±

n ∈ Flag±τmod
(unique for large n) such that

g±1
n x ∈ V (x, st(τ±

n )). (31)

Note that the sequence (g−1
n ) is ιτmod-regular, compare the comment after Defini-

tion 4.6.

Lemma 4.14 If τ±
n → τ± in Flag±τmod

, then (gn) is τmod-contracting with (28).

Proof Since x ∈ gnV (x, st(τ−
n )) = V (gnx, st(gnτ−

n )), it follows togetherwith gnx ∈
V (x, st(τ+

n )) that the Weyl cones V (gnx, st(gnτ−
n )) and V (x, st(τ+

n )) lie in the same
parallel set, namely in P(gnτ−

n , τ+
n ), and face in opposite directions. In particular, the

simplices gnτ−
n and τ+

n are x-opposite, and thus gnτ−
n converges to the simplex τ̂+

which is x-opposite to τ+,

gnτ
−
n → τ̂+.

Since the sequence (g−1
n x) is ιτmod-regular, it holds that

d(g−1
n x, ∂V (x, st(τ−

n ))) → +∞.

By Lemma 2.22, for any r, R > 0, one has for n � n(r, R) the inclusion of shadows
(cf. (12))

Uτ−
n ,x,R ⊂ U

τ−
n ,g−1

n x,r .

Consequently, there exist sequences of positive numbers Rn → +∞ and rn → 0 such
that

Uτ−
n ,x,Rn

⊂ U
τ−
n ,g−1

n x,rn

for large n, equivalently
gnUτ−

n ,x,Rn
⊂ Ugnτ

−
n ,x,rn

. (32)
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Since τ−
n → τ− and Rn → +∞, the shadows Uτ−

n ,x,Rn
⊂ C(τ−

n ) ⊂ Flagτmod exhaust

C(τ−) in the sense that every compact in C(τ−) is contained inUτ−
n ,x,Rn

for large n.15

On the other hand, since gnτ−
n → τ̂+ and rn → 0, theUgnτ

−
n ,x,rn

shrink, i.e. Hausdorff

converge to the point τ+.16 Therefore, (32) implies that

gn|C(τ−) → τ+

uniformly on compacts, i.e. (gn) is τmod-contracting. ��
With the lemma, we can add the desired converse to Proposition 4.13 and obtain a
characterization of regularity in terms of contraction:

Proposition 4.15 The following properties are equivalent for sequences in G:

(i) Every subsequence contains a τmod-contracting subsequence.
(ii) The sequence is τmod-regular.

Proof This is a direct consequence of the lemma. For the implication (ii)⇒ (i) one uses
the compactness of flag manifolds. The implication (i)⇒ (ii) is obtained as follows,
compare the proof of Proposition 4.13: If a sequence is not τmod-regular, then it contains
a νmod-pure subsequence for some face type νmod � τmod. Every subsequence of this
subsequence is again νmod-pure and hence not τmod-contracting by Lemma 4.12. ��
A version of Proposition 4.15 had already been proven by Benoist in [3, Lemma 3.5].

We conclude for subgroups:

Theorem 4.16 A subgroup �<G is τmod-regular iff it is a τmod-convergence sub-
group.

Proof By definition, � is τmod-regular iff every sequence (γn) of distinct elements
in � is τmod-regular, and τmod-convergence iff every such sequence (γn) has a
τmod-contracting subsequence. According to the proposition, both conditions are
equivalent. ��

4.5 Convergence at infinity and limit sets

The discussion in the preceding two sections leads to a natural notion of convergence
at infinity for regular sequences in X and G. As regularity, it can be expressed both in
terms of orbit geometry in X and dynamics on flag manifolds.

15 Indeed, for fixed R > 0 we have Hausdorff convergence U
τ−
n ,x,R → Uτ−,x,R in Flagτmod , which

follows e.g. from the transitivity of the action Kx � Flagιτmod
of the maximal compact subgroup Kx<G

fixing x . Furthermore, the shadows Uτ−,x,R exhaust C(τ−) as R → +∞, cf. the continuity part of
Lemma 2.21.
16 Indeed, Ugnτ−

n ,x,r → Uτ̂+,x,r in Flagτmod for fixed r > 0, and Uτ̂+,x,r → τ+ as r → 0, using again

the continuity part of Lemma 2.21 and the fact that the function (11) assumes the value zero only in τ+.
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We first consider a τmod-regular sequence (gn) in G. Flexibilizing condition (31),
we choose points x, x ′ ∈ X and consider a sequence (τn) in Flagτmod such that

sup
n

d(gnx, V (x ′, st(τn))) < +∞. (33)

Note that the condition is independent of the choice of the points x and x ′.17

Lemma 4.17 The accumulation set of (τn) in Flagτmod depends only on (gn).

Proof Let (τ ′
n) be another sequence in Flagτmod such that d(gnx, V (x ′, st(τ ′

n))) is
uniformly bounded. Assume that after extraction τn → τ and τ ′

n → τ ′. We must show
that τ = τ ′.

We may suppose that x ′ = x . There exist bounded sequences (bn) and (b′
n) in G

such that

gnbnx ∈ V (x, st(τn)) and gnb
′
nx ∈ V (x, st(τ ′

n))

for all n. Note that the sequences (gnbn) and (gnb′
n) in G are again τmod-regular. By

Lemma 4.14, after further extraction, they are τmod-contracting with

gnbn|C(τ−) → τ and gnb
′
n|C(τ ′−) → τ ′

uniformly on compacts for some τ−, τ ′− ∈ Flagιτmod
. Moreover, we may assume con-

vergence bn → b and b′
n → b′. Then

gn|C(bτ−) → τ and gn|C(b′τ ′−) → τ ′

uniformly on compacts. With Lemma 4.4 it follows that τ = τ ′. ��
In view of the lemma, we can define the following notion of convergence:

Definition 4.18 (Flag convergence of sequences in G) A τmod-regular sequence (gn)
in G τmod-flag converges to a simplex τ ∈ Flagτmod ,

gn → τ,

if τn → τ in Flagτmod for some sequence (τn) in Flagτmod satisfying (33).

We can now characterize contraction in terms of flag convergence. We rephrase
Lemma 4.14 and show that its converse holds as well:

Lemma 4.19 For a sequence (gn) in G and simplices τ± ∈ Flag±τmod
, the following

are equivalent:

17 Recall that the Hausdorff distance of asymptotic Weyl cones V (y, st(τ )) and V (y′, st(τ )) is bounded
by the distance d(y, y′) of their tips.
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(i) (gn) is τmod-contracting with gn|C(τ−) → τ+ uniformly on compacts.
(ii) (gn) is τmod-regular and g±1

n → τ±.

In part (ii), the sequence (g−1
n ) is ιτmod-regular and g−1

n → τ− means ιτmod-flag
convergence.

Proof The implication (ii)⇒ (i) is Lemma 4.14.
Conversely, suppose that (i) holds. Since the sequence (gn) is τmod-contracting, it

is τmod-regular by Proposition 4.13. Let (τ±
n ) be sequences satisfying (31). We must

show that τ±
n → τ±. Otherwise, after extractionwe obtain that τ±

n → τ ′± with τ ′+ �= τ+
or τ ′− �= τ−. Then also gn|C(τ ′−) → τ ′+ by Lemma 4.14, and Lemma 4.4 implies that
τ ′± = τ±, a contradiction. ��
Vice versa, we can characterize flag convergence in terms of contraction and thus give
an alternative dynamical definition of it:

Lemma 4.20 For a sequence (gn) in G, the following are equivalent:

(i) (gn) is τmod-regular and gn → τ .
(ii) There exist a bounded sequence (bn) in G and τ− ∈ Flagιτmod

such that gnbn|C(τ−)

→ τ uniformly on compacts.
(iii) There exists a bounded sequence (b′

n) in G such that b′
ng

−1
n |C(τ ) converges to a

constant map uniformly on compacts.

Proof (ii)⇒ (i): According to the previous lemma the sequence (gnbn) is τmod-regular
and τmod-flag converges, gnbn → τ . Since d(gnx, gnbnx) is uniformly bounded, this
is equivalent to (gn) being τmod-regular and gn → τ .

(i)⇒ (ii): The sequence (g−1
n ) is ιτmod-regular. There exists a bounded sequence (b′

n)

in G such that (b′
ng

−1
n ) ιτmod-flag converges, b′

ng
−1
n → τ− ∈ Flagιτmod

. We put

bn = b′
n
−1. Since also (gnbn) is τmod-regular and gnbn → τ , it follows from the

previous lemma that gnbn|C(τ−) → τ uniformly on compacts.

The equivalence (ii)⇔ (iii) with b′
n = b−1

n follows from Lemma 4.3. ��
We carry over the notion of flag convergence to sequences in X .

Consider now a τmod-regular sequence (xn) in X . We choose again a base point
x ∈ X and consider a sequence (τn) in Flagτmod such that

sup
n

d(xn, V (x, st(τn))) < +∞, (34)

analogous to (33). As before, the condition is independent of the choice of the point
x , and we obtain a version of Lemma 4.17:

Lemma 4.21 The accumulation set of (τn) in Flagτmod depends only on (xn).

Proof Let (gn) be a sequence in G such that the sequence (g−1
n xn) in X is bounded.

Then (gn) is τmod-regular and (34) becomes equivalent to (33). This reduces the claim
to Lemma 4.17. ��
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We therefore can define, analogous to Definition 4.18 above:

Definition 4.22 (Flag convergence of sequences in X ) A τmod-regular sequence (xn)
in X τmod-flag converges to a simplex τ ∈ Flagτmod ,

xn → τ,

if τn → τ in Flagτmod for some sequence (τn) in Flagτmod satisfying (34).

For any τmod-regular sequence (gn) in G and any point x ∈ X , we have gn → τ iff
gnx → τ .

Flag convergence and flag limits are stable under bounded perturbations of
sequences:

Lemma 4.23 (i) For any τmod-regular sequence (gn) and any bounded sequence (bn)
in G, the sequences (gn) and (gnbn) have the same τmod-flag accumulation sets
in Flagτmod .

(ii) If (xn) and (x ′
n) are τmod-regular sequences in X such that d(xn, x ′

n) is uni-
formly bounded, then both sequences have the same τmod-flag accumulation set
in Flagτmod .

Proof (i) The sequence (gnbn) is also τmod-regular and satisfies condition (33) iff (gn)
does. (ii) The sequence (x ′

n) satisfies condition (34) iff (x ′
n) does. ��

Remark 4.24 There is a natural topology on the bordification X � Flagτmod which
induces τmod-flag convergence. Moreover, the bordification embeds into a natural
Finsler compactification of X , compare Remark 4.8.

Flag convergence leads to a notion of limit sets in flag manifolds for subgroups:

Definition 4.25 (Flag limit set) For a subgroup �<G, the τmod-limit set

�τmod (�) ⊂ Flagτmod

is the set of possible limit simplices of τmod-flag converging τmod-regular sequences
in �, equivalently, the set of simplices τ+ as in (28) for all τmod-contracting sequences
in �.

The limit set is �-invariant and closed, as a diagonal argument shows.

Remark 4.26 Benoist introduced in [3, Section 3.6] a notion of limit set�� for Zariski
dense subgroups � of reductive algebraic groups over local fields which in the case
of real semisimple Lie groups is equivalent to (the dynamical version of) our concept
of σmod-limit set �σmod .

18 What we call the τmod-limit set �τmod for other face types
τmod � σmod is mentioned in his Remark 3.6 (3), and his work implies that, in the
Zariski dense case,�τmod is the image of�σmod under the natural projectionFlagσmod →
Flagτmod of flag manifolds.

See [16, Example 3.8] where a specific example has been worked out.

18 Benoist’s limit set�� is contained in the flag manifold Y� which in the case of real Lie groups is the full
flag manifold G/B, see the beginning of Section 3 of his paper. It consists of the limit points of sequences
contracting on G/B, cf. his Definitions 3.5 and 3.6.
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4.6 Uniform regularity

In this section we introduce stronger forms of the regularity conditions discussed in
Sect. 4.2. We first consider sequences in the euclidean model Weyl chamber �.

Definition 4.27 A sequence δn → ∞ in � is uniformly τmod-regular if it drifts away
from ∂τmod� at a linear rate with respect to its norm,

lim inf
n→+∞

d(δn, ∂τmod�)

‖δn‖ > 0.

We extend these notions to sequences in X and G, compare Definition 4.6:

Definition 4.28 (Uniformly regular)

• A sequence (xn) in X is uniformly τmod-regular if for some (any) base point o ∈ X
the sequence of �-distances d�(o, xn) in � has this property.

• A sequence (gn) in G is uniformly τmod-regular if for some (any) point x ∈ X the
orbit sequence (gnx) in X has this property.

• A subgroup �<G is uniformly τmod-regular if all sequences of distinct elements
in � have this property.

For a subgroup �<G, uniform τmod-regularity is equivalent to the visual limit set
�(�) ⊂ ∂∞X being contained in the union of the open τmod-stars.

A subgroup �<G is uniformly τmod-regular iff it is uniformly ιτmod-regular.

5 Asymptotic and coarse properties of discrete subgroups

This section is the core of the paper. In Sect. 5.2, motivated by the boundary map
part of the original Anosov notion, we study equivariant embeddings of the Gromov
boundaries of word hyperbolic subgroups into flag manifolds. We show how these
boundary embeddings can be used, especially for regular subgroups, to control the
geometry of the orbits in the symmetric space: Intrinsic19 geodesic lines in the sub-
group are uniformly close to parallel sets in the symmetric space. Moreover, in the
generic case, for instance for Zariski dense subgroups, intrinsic rays in the subgroup
are close toWeyl cones. This conicality property implies in particular that the boundary
map continuously extends the orbit maps to infinity and identifies the Gromov bound-
ary with the limit set. This leads us to notion of asymptotically embedded subgroups
discussed in Sect. 5.3. We find that asymptotic embeddedness has strong implications
for the coarse extrinsic geometry of subgroups: They are undistorted, and moreover
their intrinsic geodesics satisfy a higher rank version of the “Morse property”; they are
uniformly close to diamonds. This motivates the notion of Morse subgroups studied
in Sect. 5.4. The higher rank Morse property immediately implies that the limit set is
conical and antipodal. We call regular subgroups with the latter properties RCA and
study them in Sect. 5.5. Using Bowditch’s dynamical characterization of hyperbolic

19 I.e. with respect to the word metric.
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groups, we show that RCA subgroups are asymptotically embedded, closing part of
the circle. In Sect. 5.7, we observe that conicality implies expansive dynamics at the
limit set, which yields another equivalent property for subgroups, this time formulated
purely in terms of the dynamics on flag manifolds. In Sects. 5.8 and 5.11, we discuss
different (uniform and non-uniform) versions of our Anosov condition and show that
it is equivalent to the previous conditions as well as to the original definition of Anosov
subgroups. In Sect. 5.10 we take up the discussion of the Morse property. Leaving
the context of discrete subgroups, we study the geometry of Morse quasigeodesics in
symmetric spaces. We characterize them as bounded perturbations of Finsler quasi-
geodesics and study the behavior of the �-distance along them: we prove that via the
�-distance they project to Morse quasigeodesics in �. We also obtain another char-
acterization of Morse subgroups by the quasiconvexity property that their intrinsic
geodesics are extrinsically Morse quasigeodesics, equivalently, are uniformly close to
Finsler geodesics.

5.1 Antipodality

If X has rank one, then G acts transitively on pairs of distinct points in ∂∞X . Thus
there are only two possibilities for the relative position of two points in the visual
boundary: They can coincide or be different. In higher rank, the G-actions on the
associated flag manifolds are in general not two point transitive and there are more
possibilities for the relative position.

We recall (see Sect. 2.4) that two simplices τ, τ ′ ⊂ ∂∞X are called opposite or
antipodal if they are opposite simplices in the apartments a ⊂ ∂∞X containing them
both. Their types are then related by θ(τ ′) = ιθ(τ ). In particular, if three simplices
are pairwise opposite, their types must be equal and ι-invariant.

Definition 5.1 (Antipodal) Suppose that τmod is ι-invariant.

• A subset of Flagτmod is antipodal if it consists of pairwise opposite simplices.
• Amap into Flagτmod is antipodal if it sends different elements to opposite simplices.
• A subgroup �<G is τmod-antipodal if �τmod (�) is antipodal.

Being antipodal is an open condition for pairs of points in flag manifolds. It is the
generic relative position. Antipodal maps are in particular injective.

We note that for a τmod-antipodal τmod-convergence subgroup �<G the action

���τmod (�)

has convergence dynamics in the usual sense, see Sect. 3.3: If (γn) is a sequence in �

such that γn|C(τ−) → τ+, then τ± ∈ �τmod (�). Due to antipodality,�τmod (�)−{τ−} ⊂
C(τ−) and we obtain the desired convergence property.
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5.2 Boundary embeddings and limit sets

In this section, we study embeddings of word hyperbolic groups into semisimple Lie
groups which admit a certain kind of continuous boundary map. We will assume that
τmod is ι-invariant.

Definition 5.2 (Boundary embedded) A subgroup �<G is τmod-boundary embed-
ded if it is word hyperbolic and there exists an antipodal �-equivariant continuous
embedding

β : ∂∞� → Flagτmod

of the Gromov boundary ∂∞� of �. The map β is called a boundary embedding. If
|∂∞�| � 2, we require in addition that � is discrete in G.

Thus, τmod-boundary embedded subgroups are necessarily discrete, since � acts on
β(∂∞�) as a discrete convergence group if |∂∞�| � 3.20

Boundary embeddings are in general not unique. This is so by trivial reasons if
|∂∞�| = 2, cf. below, but it also happens if |∂∞�| � 3, see [20, Example 6.20].

In order to understand the implications of a boundary embedding, we will first use
it to obtain control on the geometry of the �-orbits in X .

We fix a word metric on �. Via the antipodal boundary embedding β one can
assign to every discrete geodesic line21 l : Z → � a parallel set in X . Namely, let
ζ± ..= l(±∞) ∈ ∂∞� denote the ideal endpoints of the line. Their image simplices
β(ζ±) ∈ Flagτmod are opposite and determine the parallel set

P(β(ζ−), β(ζ+)) ⊂ X.

We consider the images of the discrete geodesic lines l in � under the orbit map
ox : � → �x ⊂ X for a point x ∈ X (fixed throughout the discussion) and claim that
the discrete paths lx : Z → X are uniformly close to the corresponding parallel sets:22

Lemma 5.3 (Lines go close to parallel sets) The discrete path lx is contained in a
tubular neighborhood of the parallel set P(β(ζ−), β(ζ+)) with uniform radius ρ =
ρ(�, x).

Here and below, we mean by the dependence of a constant on � that it depends on �

as a subgroup of G and also on the chosen word metric on �.

Proof This can be seen by a simple compactness argument: Let

(Flagτmod ×Flagτmod )
opp ⊂ Flagτmod ×Flagτmod (35)

20 Note that boundary embedded subgroups are not required to be regular, although they frequently are,
see [16, Theorem 3.11].
21 Recall that by a discrete geodesic line, we mean an isometric embedding of Z, cf. Sect. 2.1.
22 For a map φ : N → � and a point x ∈ X we denote by φx : N → X the map sending n ∈ N to
φ(n)x ∈ X .
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denote the subspace of pairs of opposite simplices. It is the open and dense G-orbit
and in particular a homogeneous G-space. The latter implies that the function on
(Flagτmod ×Flagτmod )

opp×X assigning

(τ−, τ+, x ′) �→ d(x ′, P(τ−, τ+)) (36)

is continuous, because d(gx ′, P(hτ−, hτ+)) = d(h−1gx ′, P(τ−, τ+)) for g, h ∈ G.
Also the map

L → (Flagτmod ×Flagτmod )
opp×X

from the space L of discrete geodesic lines l : Z → �.23 sending l �→ (β(l(−∞)),
β(l(+∞)), l(0)x) is continuous. Composing both, we see that the map

l �→ d
(

l(0)x, P(β(l(−∞)), β(l(+∞)))
)

is continuous. Since it is also �-periodic, the cocompactness of the action ��L

implies that it is bounded, whence the assertion. ��
From now on, we assume that the subgroup �<G is, in addition to being τmod-
boundary embedded, also τmod-regular. This assumption will enable us to further
restrict the orbit geometry and will lead to information on the relation between the
boundary embedding and the limit set.

We now analyze the position of the images of rays in � along the parallel sets. Let
r : N0 → � be a discrete geodesic ray with ideal endpoint ζ ..= r(+∞) ∈ ∂∞�. There
is a dichotomy for the position of the orbit path r x : N0 → X relative to theWeyl cone
V (r(0)x, st(β(ζ ))) with tip at its initial point, namely the path must either drift away
from the cone or dive deep into it:

Lemma 5.4 (Rays dive into Weyl cones or drift away) There exist constants ρ′ =
ρ′(�, x) > 0 and for all R > 0 numbers n0 = n0(�, x, R) ∈ N such that the
following holds: For all n ∈ N with n � n0, the point r(n)x either has

(i) distance � R from the Weyl cone V (r(0)x, st(β(ζ ))), or has
(ii) distance � ρ′ from this Weyl cone and distance � R from its boundary.

Proof In a word hyperbolic group, discrete geodesic rays are contained in uniformly
bounded neighborhoods of discrete geodesic lines. Thus, r is contained in a tubular
neighborhood with uniform radius c(�) of a line l : Z → � asymptotic to ζ = r(+∞)

and somêζ ∈ ∂∞� − {ζ }.
It follows from the previous lemma that the path r x is contained in a tubular neigh-

borhood of the parallel set P = P(β(̂ζ ), β(ζ )) with uniform radius ρ′′(�, x). Let
x0 ∈ P be a point with d(x0, r(0)x) � ρ′′. TheWeyl cone V (r(0)x, st(β(ζ ))) is then
ρ′′-Hausdorff close to the asymptotic Weyl cone V (x0, st(β(ζ ))) ⊂ P .

23 The spaceL of discrete geodesic lines l : Z → � is equippedwith the topology of pointwise convergence.
It is a locally compact Hausdorff space on which � acts properly discontinuously and cocompactly.
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Nowwe use that the interior of theWeyl cone V (x0, st(β(ζ ))) is open in the parallel
set P and the boundary ∂V (x0, st(β(ζ ))) of the cone disconnects the parallel set, see
Lemma 2.12. The τmod-regularity of � implies (along with the triangle inequality for
�-lengths) that the path r x drifts away from ∂V (x0, st(β(ζ ))) at a uniform rate,

d
(

r(n)x, ∂V (x0, st(β(ζ )))
)

� φ(n)

with a function φ(n) → +∞ as n → +∞ independent of the ray r . The assertion
follows. ��
For all rays in � the same of the two alternatives must occur:

Lemma 5.5 (Dichotomy) For all discrete geodesic rays r : N0 → �, either

(i) r x drifts away from the Weyl cone V (r(0)x, st(β(ζ ))), ζ = r(+∞), at a uniform
rate,

d
(

r(n)x, V (r(0)x, st(β(ζ )))
) → +∞

uniformly as n → +∞, or
(ii) r x is contained in the tubular ρ′(�, x)-neighborhood of V (r(0)x, st(β(ζ ))) and

drifts away from its boundary at a uniform rate,

d
(

r(n)x, ∂V (r(0)x, st(β(ζ )))
) → +∞

uniformly as n → +∞.

Proof We give two arguments. The first one is restricted to the nonelementary case:
As a consequence of the previous lemma, for every ray r one of the alternatives (i) and
(ii) occurs with growth rates independent of the ray.Which alternative occurs, depends
only on the asymptote class ζ = r(+∞) of the ray, and depends on it continuously,
i.e. the subsets of endpoints for either alternative are open in ∂∞�. Since they are also
�-invariant, if |∂∞�| � 3, the minimality of the action ��∂∞� implies that one of
the subsets must be empty.

The second argument works in the general case: Again we use that it depends only
on the asymptote class of the ray, which alternative occurs. We show that the same
alternative occurs for any two distinct asymptote classes ζ,̂ζ ∈ ∂∞�. After replacing
a ray r asymptotic to ζ with a subray, we may assume that we are in the situation of
the proof of the previous lemma (whose notation we adopt), i.e. that r lies in a uniform
tubular neighborhood of a line l : Z → � asymptotic tôζ and ζ . Moreover, we assume
that alternative (ii) holds for ζ and claim that it holds for̂ζ , as well.

To see this, fix R � ρ′, ρ′′ and n � n0. Let xn ∈ P = P(β(̂ζ ), β(ζ )) be a
point with d(xn, r(n)x) � ρ′′. Since (ii) holds for r , the point xn must lie deep
inside the cone V (x0, st(β(ζ ))) ⊂ P . This is equivalent to x0 lying deep inside
the cone V (xn, st(β(̂ζ ))) ⊂ P opening towards the opposite direction. This how-
ever implies that r(0)x is uniformly close (with distance � 2ρ′′ � R) to the cone
V (r(n)x, st(β(̂ζ ))). Thus alternative (ii) holds for the subray l|(−∞,n]∩Z of l, and
hence also for its ideal endpoint̂ζ . ��
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On the other hand, in the nonelementary case, the ray images always drift away (at
non-uniform rates) from “opposite” Weyl cones:

Lemma 5.6 (Drifting away from opposite cones) Suppose that |∂∞�| � 3. Then for
every discrete geodesic ray r : N0 → � and ideal point̂ζ ∈ ∂∞� − {ζ }, ζ = r(+∞),
it holds that

d
(

r(n)x, V (r(0)x, st(β(̂ζ )))
) → +∞

as n → +∞.

Proof The ray r is contained in a (non-uniform) tubular neighborhood of a line l : Z →
� asymptotic to ̂ζ and ζ . The line image lx , and therefore also the ray image r x is
contained in a tubular neighborhood of the parallel set P = P(β(̂ζ ), β(ζ )).

It follows that the accumulation set accτmod (r) ⊂ Flagτmod of r (with respect to
τmod-flag convergence, compare Sect. 4.5) consists of simplices contained in ∂∞P:
Indeed, the nearest point projections xn ∈ P of r(n)x lie in euclidean Weyl chambers
V (x0, σn) ⊂ P . Therefore, in viewofLemma4.17, accτmod(r) equals the accumulation
set of the sequence (τn) in Flagτmod consisting of the type τmod faces τn ⊆ σn ⊂ ∂∞P .

Nowwe use nonelementarity and vary the ideal point opposite to ζ . Since |∂∞�| �
3, there exists a third ideal point̂ζ ′ ∈ ∂∞� − {ζ,̂ζ }. It determines another parallel set
P ′ = P(β(̂ζ ′), β(ζ )), and the simplices in accτmod (r)must also be contained in ∂∞P ′.
In view of β(̂ζ ) �⊂ ∂∞P ′, it follows that β(̂ζ ) /∈ accτmod (r).

Since r x is contained in a tubular neighborhood of P , we also again have the
dichotomy, analogous to the previous lemma, that r x either drifts away from the
Weyl cone V (r(0)x, st(β(̂ζ ))) at a uniform rate, as claimed, or stays in a tubular
neighborhood of it and drifts away only from its boundary. However, in the latter case,
we would have (conical) flag convergence r(n) → β(̂ζ ) as n → +∞, equivalently,
accτmod (r) = {β(̂ζ )}, a contradiction. ��
If � is virtually cyclic, i.e. if |∂∞�| = 2, there is a trivial way of modifying the bound-
ary embedding. Namely, then the action ��∂∞� commutes with the transposition
t : ∂∞� → ∂∞� exchanging the points, and therefore −β ..= β ◦ t is a boundary
embedding as well. Therefore the previous lemma may fail. However, if it fails for β,
then it holds for −β, because case (ii) of the dichotomy in Lemma 5.5 arises.

From the above observations on the orbit geometry wewill now deduce information
about the limit set and its position relative to the image of the boundary embedding.
Let

ox = ox � β : � = � � ∂∞� → X � Flagτmod (37)

denote the extension of the orbit map ox : � → �x ⊂ X to the Gromov compactifi-
cation � of � by ox |∂∞�

..= β. We say that the extension ox is continuous at infinity
if for all sequences γn → ∞ in � we have flag convergence γn → β(ζ ) whenever
γn → ζ ∈ ∂∞� in �.

We obtain the following dichotomy corresponding to the one in Lemma 5.5:

Theorem 5.7 (Boundary embedding and limit set) Let �<G be a τmod-regular τmod-
boundary embedded subgroup. Then for every boundary embedding β either
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(i) β(∂∞�) ∩ �τmod (�) = ∅, and no simplex in β(∂∞�) is opposite to a simplex in
�τmod (�),24 or

(ii) β(∂∞�) = �τmod (�). Moreover, the extension ox is continuous at infinity, after
replacing β with −β in the case |∂∞�| = 2, if necessary.

Proof Assumefirst that case (ii) ofLemma5.5occurs.Consider a sequenceγn → ∞ in
�. There exist rays rn : N0 → � starting in rn(0) = e andpassing at uniformly bounded
distance of γn . We denote their ideal endpoints by ζn

..= rn(+∞). Then the orbit
points γnx lie in uniform tubular neighborhoods of the Weyl cones V (x, st(β(ζn))).
If γn → ζ ∈ ∂∞� in �, equivalently, ζn → ζ in ∂∞�, then β(ζn) → β(ζ ) in
Flagτmod , and it follows τmod-flag convergence γnx → β(ζ ). This shows that ox is
continuous at infinity and β(∂∞�) ⊆ �τmod (�). To see the opposite inclusion, suppose
that γnx → λ ∈ �τmod (�). After extraction, we get convergence γn → ζ ∈ ∂∞�

and conclude from the above that λ = β(ζ ). Thus also �τmod (�) ⊆ β(∂∞�), and
conclusion (ii) of the theorem is satisfied.

If |∂∞�| = 2 and case (ii) of Lemma 5.5 occurs for −β, we reach the same
conclusion after replacing β with −β.

Assume now that we are in case (i) of Lemma 5.5. After replacing β with−β in the
case |∂∞�| = 2, if necessary, we may also assume that the conclusion of Lemma 5.6
holds. As before, we consider a sequence γn → ∞ in � and rays rn . Suppose that
γn → ζ ∈ ∂∞� and let̂ζ ∈ ∂∞� − {ζ } be arbitrary. Since ζn → ζ , there exist for all
large n lines ln : Z → � with ideal endpoints ln(−∞) = ̂ζ and ln(+∞) = ζn . The
lines ln pass at uniformly bounded distance from e and γn , and they contain the rays
rn in uniform tubular neighborhoods. (For the rest of this argument, uniformity will
mean that bounds are independent of n.)

By Lemma 5.3, the ray images rnx lie in uniform tubular neighborhoods of the
parallel sets Pn = P(β(̂ζ ), β(ζn)) anddrift away frombothWeyl conesV (x, st(β(̂ζ )))

and V (x, st(β(ζn))). The drift is uniform in the latter case by Lemma 5.5 (i), and also
in the former case since rn(0)x = x and d(x, Pn) is bounded.

The uniformity implies that the orbit points γnx lie in uniform tubular neighbor-
hoods of Weyl cones V (x, st(τn)) for simplices τn ∈ Flagτmod with τn ⊂ ∂∞Pn but
τn �= β(̂ζ ), β(ζn). (Indeed, as in the proof of the previous lemma, γnx is uniformly
close to a euclideanWeyl chamberV (x, σn)with visual boundary chamberσn ⊂ ∂∞Pn
but σn �⊂ st(β(̂ζ ))∪st(β(ζn)), and we let τn ⊆ σn be the type τmod face.) In particular,
τn is not opposite to both β(̂ζ ) and β(ζn). The accumulation set of the sequence (τn)

in Flagτmod , which coincides with the τmod-flag accumulation set of the sequence (γn),
therefore consists of simplices which are not opposite to both β(̂ζ ) and β(ζ ), because
oppositeness is an open property. Letting ̂ζ run through ∂∞� − {ζ }, it follows that
these simplices are not opposite to any simplex in β(∂∞�).

Every limit simplex in �τmod (�) arises as the τmod-flag limit of a sequence (γn)

which converges at infinity in �. We obtain that no simplex in �τmod (�) is opposite
to a simplex in β(∂∞�). In particular, �τmod (�) ∩ β(∂∞�) = ∅. Thus, conclusion (i)
of the theorem holds. ��

24 Note that in view of the antipodality of β the second part of (i) implies the first part.
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Consequently, as soon as a boundary embedding hits the limit set, it identifies it with
the Gromov boundary of the subgroup and moreover continuously extends the orbit
maps:

Corollary 5.8 Let �<G be a τmod-regular τmod-boundary embedded subgroup with
boundary embedding β. If β(∂∞�) ∩ �τmod (�) �= ∅, then β(∂∞�) = �τmod (�).
Moreover, the extension ox is continuous at infinity, after replacing β with −β in the
case |∂∞�| = 2, if necessary.

Otherwise, if the boundary embedding avoids the limit set, the image of the boundary
embedding and the limit set must have special position:

Lemma 5.9 In case (i) of Theorem 5.7, both β(∂∞�) and �τmod (�) are not Zariski
dense in Flagτmod . In particular, � is not Zariski dense in G.

Proof Since no simplex in β(∂∞�) is opposite to a simplex in�τmod (�), it follows that
β(∂∞�) is disjoint from the union of open Schubert strataC(λ) over all limit simplices
λ ∈ �τmod (�). In other words, β(∂∞�) is contained in the intersection of the proper
subvarieties ∂C(λ) = Flagτmod −C(λ). Similarly, �τmod (�) lies in the intersection of
the ∂C(τ ) over all simplices τ ∈ β(∂∞�). In particular, both are �-invariant proper
subvarieties, which forces � to be non-Zariski dense. ��
Therefore, the first alternative in the theorem cannot occur in the Zariski dense case,
compare [12, Theorem 1.5]:

Corollary 5.10 Let �<G be a Zariski dense τmod-regular τmod-boundary embedded
subgroup. Then it admits a unique boundary embedding β, and β(∂∞�) = �τmod (�).

Proof By the lemma, for any boundary embedding β, only case (ii) in the theorem
can occur. It follows that β(∂∞�) = �τmod (�). Moreover, β is uniquely determined
because, due to the density of attractive fixed points of infinite order elements, there
are no �-equivariant self homeomorphisms of ∂∞� besides the identity. (Note that
|∂∞�| � 3 by Zariski density.) ��
It is worth noting that in the case τmod = σmod the boundary embedding can always
be modified so that it maps onto the limit set:

Theorem 5.11 Let �<G be a σmod-regular σmod-boundary embedded subgroup.
Then there exists a boundary embedding β with β(∂∞�) = �σmod (�).

Proof In the case τmod = σmod, the parallel sets considered above are maximal flats
and the Weyl cones are euclidean Weyl chambers. What makes it possible to push
the argument further, is the fact that the walls in a maximal flat through a fixed point
disconnect the flat into euclidean Weyl chambers. Therefore, the above discussion
now yields more precise information about the position of the paths r x :

Since the r x are uniformly close to maximal flats (provided by a boundary embed-
ding β ′ for �, cf. Lemma 5.3), σmod-regularity forces them to dive into (uniform
tubular neighborhoods of) Weyl chambers inside these flats. It follows that the paths
r x are contained in uniform tubular neighborhoods of euclidean Weyl chambers with
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tips at the initial points r(0)x . Again by regularity, the asymptote class of the Weyl
chamber depends only on the asymptote class of the ray r . We therefore obtain a new
boundary map β : ∂∞� → Flagσmod such that r x is contained in the tubular ρ′(�, x)-
neighborhood of the euclidean Weyl chamber V (r(0)x, β(ζ )) for ζ = r(+∞).
Clearly, β(∂∞�) ⊆ �σmod (�) and β is �-equivariant. An argument as in the last
part of the proof of Lemma 5.5 shows that β is antipodal.

To verify that β is continuous, suppose that ζn → ζ in ∂∞� and β(ζn) → σ

in Flagσmod . We must show that σ = β(ζ ). Let rn, r : N0 → � be rays starting in
e and asymptotic to ζn, ζ . We note that for any sequence mn → +∞ in N0, we
have σmod-flag convergence rn(mn) → σ , because rn(mn)x lies in a uniform tubular
neighborhood of V (x, st(β(ζn))). On the other hand, if mn grows sufficiently slowly,
then the sequence (rn(mn)) in� is contained in a tubular neighborhood of r , and hence
rn(mn) → β(ζ ). This shows that σ = β(ζ ), as desired.

Thus, β is a boundary embedding. Since also β(∂∞�) ⊆ �σmod (�), we conclude
using Theorem 5.7 that β(∂∞�) = �σmod (�). ��

5.3 Asymptotic embeddings and coarse extrinsic geometry

The discussion in the previous section, notably part (ii) of the conclusion of
Theorem 5.7, motivates the following strengthening of the notion of boundary embed-
dedness:

Definition 5.12 (Asymptotically embedded)A subgroup�<G is τmod-asymptotically
embedded if it is τmod-regular, τmod-antipodal, word hyperbolic and there is a �-
equivariant homeomorphism

α : ∂∞�
∼=−→ �τmod (�) ⊂ Flagτmod

from its Gromov boundary onto its τmod-limit set.

The definition can also be phrased purely dynamically in terms of the �-action on
Flagτmod , by replacing τmod-regularity with the τmod-convergence condition.

Note that τmod-asymptotically embedded subgroups are necessarily discrete by
τmod-regularity. We also keep assuming that τmod is ι-invariant; this is implicit in
τmod-antipodality.

We observe that the boundary map α is antipodal, because it is injective with
antipodal image. It is therefore a boundary embedding for �, i.e. τmod-asymptotically
embedded implies τmod-boundary embedded. According to Corollary 5.8, the exten-
sion

ox = ox � α : � = � � ∂∞� → X � Flagτmod (38)

cf. (37), is continuous, after replacing α with −α in the case |∂∞�| = 2, if necessary.
We will refer to α then as the asymptotic embedding for �.

We rephrase the criteria for asymptotic embeddedness obtained in the previous
section (cf. Corollaries 5.8, 5.10 and Theorem 5.11):
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Theorem 5.13 Let �<G be a τmod-regular τmod-boundary embedded subgroup with
boundary embedding β. If β(∂∞�) ∩ �τmod (�) �= ∅, then � is τmod-asymptotically
embedded, and β is the asymptotic embedding, after replacing it with −β in the case
|∂∞�| = 2, if necessary.

Theorem 5.14 Zariski dense τmod-regular τmod-boundary embedded subgroups are
τmod-asymptotically embedded and admit no other boundary embedding besides their
asymptotic embedding.

Theorem 5.15 σmod-Regularσmod-boundary embedded subgroupsareσmod-asympto-
tically embedded. (But they may admit boundary embeddings different from the
asymptotic embedding.)

We also summarize what the discussion in the previous section yields for the orbit
geometry of asymptotically embedded subgroups. In addition to the continuity at
infinity (38) of the orbit maps ox , x ∈ X , we obtained (cf. Lemmas 5.3 and 5.5):

Proposition 5.16 (Orbit geometry of asymptotically embedded subgroups)Let�<G
be a τmod-asymptotically embedded subgroup with asymptotic embedding α. Then:

(i) For every discrete geodesic line l : Z → �, the path lx is contained in a tubular
neighborhood of uniform radius ρ(�, x) of the parallel set P(α(ζ−), α(ζ+)),
where ζ± ..= l(±∞) ∈ ∂∞�.

(ii) For every discrete geodesic ray r : N0 → �, the path rx is contained in a tubular
neighborhood of uniform radius ρ′(�, x) of the Weyl cone V (r(0)x, st(α(ζ ))),
where ζ ..= r(+∞) ∈ ∂∞�, and drifts away from its boundary at a uniform rate,

d
(

r(n)x, ∂V (r(0)x, st(α(ζ )))
) → +∞ (39)

uniformly as n → +∞.

These properties motivate the Morse property to be introduced and discussed below.
Let us first draw some further immediate consequences for the coarse extrinsic geome-
try of subgroups and see how property (ii) leads to undistortion and uniform regularity.

We consider the orbit path r x for a discrete ray r . According to property (ii), the
path r x must stay uniformly close to the Weyl cone V (r(0)x, st(α(ζ ))) predicted by
the boundary map and drift away from the boundary of the cone at a uniform rate.
Since the same applies to all subrays of r , it follows that the cones V (r(n)x, st(α(ζ )))

must, up to bounded perturbation, be uniformly nested. This forces the orbit path r x to
have a linear drift away from the boundary of the Weyl cone and in particular towards
infinity, i.e. r x is uniformly τmod-regular and undistorted.We combine these properties
in the following notion:

Definition 5.17 (URU) A finitely generated subgroup �<G is τmod-URU, if it is

• uniformly τmod-regular, and
• undistorted, i.e. the inclusion � ⊂ G, equivalently, the orbit maps � → �x ⊂ X ,
are quasiisometric embeddings with respect to a word metric on �.
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Note that URU subgroups cannot contain parabolic elements.
The above discussion before the definition thus leads to:

Theorem 5.18 τmod-asymptotically embedded subgroups �<G are τmod-URU.

Proof We add some details to the discussion above: Let xn ∈ V (r(0)x, st(α(ζ ))) be
the nearest point projections of the points r(n)x , n ∈ N0. Then d(r(n)x, xn) � ρ′ =
ρ′(�, x) by part (ii) of the proposition. We consider the sequence of Weyl cones
V (xn, st(α(ζ ))) ⊂ V (r(0)x, st(α(ζ ))). Note that the cones V (r(n)x, st(α(ζ )))

and V (xn, st(α(ζ ))) are asymptotic to each other and have Hausdorff distance
� d(r(n)x, xn) � ρ′, as do their boundaries. Applying (ii) to the subrays of r , it
follows that the pathsm �→ r(n+m)x are contained in uniform neighborhoods of the
cones V (xn, st(α(ζ ))) and drift away from their boundaries at uniform rates. Thus,
for every d0 > 0 there exists a number m0 = m0(�, x, d0) ∈ N such that

xn+m ∈ V (xn, st(α(ζ )))

and

d(xn+m, ∂V (xn, st(α(ζ )))) � d0

for all n � 0 andm � m0. The latter inequality implies that the boundaries of theWeyl
cones V (xn, st(α(ζ ))) and V (xn+m, st(α(ζ ))) have (nearest point) distance � d0, cf.
Proposition 2.20 (ii). From the uniform nestedness of the cones V (xkm0 , st(α(ζ )))

for k ∈ N0, it follows that the drift (39) away from the boundary of the Weyl cone
is uniformly linear. Consequently, the ray images r x are uniformly undistorted and
uniformly τmod-regular. Since any pair of elements in � lies in a uniform tubular
neighborhood of some discrete geodesic ray, our assertion follows. ��
Remark 5.19 (i) That, conversely, URU implies asymptotic embeddedness is proven

in [21]. In particular, URU subgroups are necessarily word hyperbolic.
(ii) In [15] we prove that URU subgroups �<G satisfy the even stronger coarse

geometric property of being coarse Lipschitz retracts of G.

Similarly, we also derive a version of Proposition 5.16 for discrete geodesic seg-
ments in �:

Consider a line l : Z → � and denote ζ± = l(±∞). Let xn ∈ P(α(ζ−), α(ζ+))

be the nearest point projections of the points l(n)x , n ∈ Z. As in the proof of the
previous theorem, we see using Proposition 5.16 (i)–(ii), that for any d0 > 0 there
exists m′

0 = m′
0(�, x, d0) ∈ N such that

xn±m ∈ V (xn, st(α(ζ±)))

and

d(xn±m, ∂V (xn, st(α(ζ±)))) � d0
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for all n and m � m′
0. It follows that, for n± ∈ Z with n+ − n− � m′

0, the diamond

♦τmod (xn− , xn+) = V (xn− , st(α(ζ+))) ∩ V (xn+ , st(α(ζ−))) ⊂ P(α(ζ−), α(ζ+))

is defined and, using Proposition 5.16 (ii), contains the finite subpath l|[n−,n+]∩Zx in
a uniform tubular neighborhood.

Our discussion yields the following complement to, respectively, strengthening
of Proposition 5.16, saying that the images of discrete geodesic segments in � are
contained in uniform neighborhoods of diamonds with tips at uniform distance from
the endpoints:

Proposition 5.20 (Segments go close to diamonds)Let�<G bea τmod-asymptotically
embedded subgroup. Then for every discrete geodesic segment s : [n−, n+]∩Z → �,
the path sx is contained in a tubular neighborhood of uniform radius ρ′′ = ρ′′(�, x)
of a diamond ♦τmod (x−, x+) with d(x±, s(n±)x) � ρ′′.

Proof This is a consequence of the above discussion, because every discrete geodesic
segment in � lies in a uniform neighborhood of a discrete geodesic line. ��

5.4 Morse property

TheMorse Lemma for Gromov hyperbolic spaces asserts that quasigeodesic segments
are uniformly close to geodesic segments with the same endpoints. Proposition 5.20
alongwith Proposition 5.16 in the previous section can be interpreted as saying that, for
asymptotically embedded subgroups�<G, the images of discrete geodesic segments,
rays and lines in � under the orbit maps into X satisfy a higher rank version of the
Morse Lemma, with geodesic segments replaced by diamonds.

This motivates the following notion (we keep assuming that τmod is ι-invariant):

Definition 5.21 (Morse) A subgroup �<G is τmod-Morse if it is τmod-regular, word
hyperbolic and satisfies the following property:

For every discrete geodesic segment s : [n−, n+] ∩ Z → �, the path sx is con-
tained in a tubular neighborhood of uniform radius ρ′′ = ρ′′(�, x) of a diamond
♦τmod (x−, x+) with tips at distance d(x±, s(n±)x) � ρ′′ from the endpoints.

Note that the definition does not a priori assume the existence of a boundary map,
neither does it assume undistortion. These will be consequences.

As we saw, asymptotically embedded subgroups areMorse.Wewill now show that,
conversely, asymptotic embeddedness follows from the Morse property, in fact from
an a priori weaker version of it for rays in � (instead of segments):

Theorem 5.22 For a subgroup �<G the following properties are equivalent:

(i) � is τmod-asymptotically embedded.
(ii) � is τmod-Morse.
(iii) � is τmod-regular, word hyperbolic and satisfies the following property: For

every discrete geodesic ray r : N0 → �, the path rx is contained in a tubular
neighborhood of uniform radius ρ′′′ = ρ′′′(�, x) of a τmod-Weyl cone with tip at
the initial point r(0)x.
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The τmod-Weyl cone in (iii) is then the cone V (r(0)x, α(r(+∞))) where α is the
asymptotic embedding for �.

Proof The implication (i)⇒ (ii) is Proposition 5.20. The implication (ii)⇒ (iii) is
immediate by a limiting argument. It remains to show that (iii)⇒ (i).

We first observe that the τmod-Weyl cone V (r(0)x, st(τ )) containing the path r x
in a tubular neighborhood is uniquely determined. This follows from the τmod-flag
convergence r(n) → τ . Moreover, τ depends only on the asymptote class r(+∞) of
the ray r . Hence there is a well-defined map at infinity

α̌ : ∂∞� → Flagτmod

such that for every ray r the path r x is contained in a uniform tubular neighborhood of
the Weyl cone V (r(0)x, st(α̌(r(+∞)))). Our goal is to show that α̌ is an asymptotic
embedding.

Lemma 5.23 α̌ is continuous and continuously extends the orbit maps ox at infinity.

Proof We proceed as in the proof of Theorem 5.11 (continuity of β). Consider a
converging sequence ζn → ζ in ∂∞�. Let rn, r : N0 → � be rays starting in e
and asymptotic to ζn, ζ . We note that for any sequence mn → +∞ in N0, the flag
accumulation set of the sequence (rn(mn)) in Flagτmod equals the accumulation set of
the sequence (α̌(ζn)) in Flagτmod , and in particular does not depend on the sequence
(mn). On the other hand, if (mn) grows sufficiently slowly, then the sequence (rn(mn))

in � is contained in a tubular neighborhood of r , and hence flag converges to α̌(ζ ). It
follows that α̌(ζn) → α̌(ζ ). This shows that α̌ is continuous.

Proceeding as in the first part of the proof of Theorem 5.7, we then see that, for a
sequence γn → ∞ in �, convergence γn → ζ ∈ ∂∞� in � implies flag convergence
γn → α̌(ζ ), i.e. α̌ continuously extends ox at infinity. �

The continuous extension part of the lemma implies

Corollary 5.24 α̌(∂∞�) = �τmod (�).

In order to see that �τmod (�) is antipodal and α̌ is an asymptotic embedding for �, it
remains to verify:

Lemma 5.25 The map α̌ is antipodal.

Proof Let ζ± ∈ ∂∞� be distinct, and let l : Z → � be a line with l(±∞) = ζ±.
Applying property (iii) to the subrays l|[−n,+∞) for large n ∈ N, we get that the
point l(0)x is uniformly close to the cones V (l(−n)x, st(α̌(ζ+))), equivalently, there
exists a bounded sequence of points yn ∈ V (l(−n)x, st(α̌(ζ+))). By τmod-regularity,
d(yn, ∂V (l(−n)x, st(α̌(ζ+)))) → +∞ as n → +∞.We denote by τ−

n ∈ Flagτmod the
simplex l(−n)x-opposite to yn .25 Then l(−n)x ∈ V (yn, st(τ−

n )), and hence l(−n)x is
uniformly close to V (l(0)x, st(τ−

n )). In view of the flag convergence l(−n) → α̌(ζ−),

25 I.e. l(−n)x ∈ V (yn , st(τ−
n )). Then l(−n)x, yn ∈ P(τ−

n , α̌(ζ+)).
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it follows that τ−
n → α̌(ζ−) in Flagτmod . Since the parallel sets P(τ−

n , α̌(ζ+)) lie at
bounded distance from l(0)x , as they contain the points yn , the sequence (τ−

n ) is
relatively compact in the open Schubert stratumC(α̌(ζ+)). Hence α̌(ζ−) ∈ C(α̌(ζ+)),
i.e. α̌(ζ−) is opposite to α̌(ζ+). �

This concludes the proof of the theorem. ��
Note that the theorem implies in particular that τmod-Morse subgroups are τmod-URU,
because asymptotically embedded subgroups are URU by Theorem 5.18.

Remark 5.26 We restricted our definition of the Morse property to word hyperbolic
subgroups because, as shown in [21], URU subgroups are always word hyperbolic.
This had been unknown at the time of writing the first version of [20].

5.5 Conicality

The condition for discrete subgroups which we study in this section concerns the
asymptotic geometry of their orbits, i.e. how they approach infinity. To state it, we
first need to elaborate on our discussion of convergence at infinity for sequences from
Sect. 4.5.

For arbitrary τmod, consider a τmod-flag converging sequence (xn) in X ,

xn → τ ∈ Flagτmod .

The following notion of going “straight” to the limit simplex generalizes conical or
radial convergence at infinity in rank one symmetric spaces where one requires the
sequence to stay in a tubular neighborhood of a geodesic ray. Working with rays also
in higher rank turns out to be too restrictive,26 and we replace the rays with Weyl
cones, compare [1, Definition 5.2]:

Definition 5.27 (Conical convergence) A τmod-flag converging sequence xn → τ ∈
Flagτmod converges τmod-conically,

xn
con−−→ τ,

if it is contained in a tubular neighborhood of a Weyl cone V (x, st(τ )) for some
point x ∈ X . Accordingly, τmod-flag converging sequences in G are said to converge
τmod-conically if their orbit sequences in X do.

Note that the Weyl cones V (x, st(τ )) for different points x ∈ X are Hausdorff close
to each other, and the conical convergence condition is therefore independent of the
choice of x .

The next result describes a situation for sequences close to parallel sets where flag
convergence already implies the stronger form of conical convergence:

26 From our construction of Anosov–Schottky subgroups, see [20], it immediately follows that in higher
rank they are generically not ray conical, for instance never in the Zariski dense case. This implies further-
more that Zariski dense Anosov subgroups are never ray conical.
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Lemma 5.28 Suppose that a sequence (xn) in X τmod-flag converges, xn → τ ∈
Flagτmod .

(i) If (xn) is contained in a tubular neighborhood of a parallel set P (̂τ , τ ) for some
τ̂ ∈ C(τ ), or

(ii) if, more generally, there exists a relatively compact sequence (̂τn) in C(τ ) such
that

sup
n

d(xn, P (̂τn, τ )) < +∞,

then xn
con−−→ τ .

Proof Suppose first that the stronger condition (i) holds and that xn
con
� τ . Let

x ∈ P (̂τ , τ ). As in the proof of Lemma 5.4, it follows from the openness of the cone
V (x, st(τ )) in the parallel set P (̂τ , τ ) that, after extraction, the sequence (xn) drifts
away from V (x, st(τ )). As in the proof of Theorem 5.7, the points xn are then con-
tained in uniform neighborhoods of cones V (x, st(τn)) with simplices τn ∈ Flagτmod

satisfying τn ⊂ ∂∞P (̂τ , τ ) but τn �= τ . Since τ is the only simplex in C (̂τ ) which
lies in P (̂τ , τ ), see (4) and the discussion preceding Lemma 2.8, the sequence (τn)

is contained in the closed set Flagτmod − C (̂τ ), and hence so is its accumulation set.
In particular, τ does not belong to the accumulation set of (τn) in Flagτmod . Since the
latter set equals the flag accumulation set of the sequence (xn) in Flagτmod , it follows
in particular that xn � τ , a contradiction.

Suppose now that the weaker condition (ii) holds. Since C(τ ) is a homogeneous
Pτ -space, there exist τ̂ ∈ C(τ ) and a bounded sequence (bn) in Pτ such that τ̂n = bn τ̂ .
The sequence (b−1

n xn) is then contained in a tubular neighborhood of P (̂τ , τ ), i.e. it
satisfies condition (i). Moreover, we also have flag convergence b−1

n xn → τ .27 Hence,

by the above, it follows that b−1
n xn

con−−→ τ . By the definition of conical convergence,
this means that the sequence (b−1

n xn) lies in a tubular neighborhood of the cone
V (x, st(τ )) for some point x ∈ X , equivalently, that

sup
n

d(xn, V (bnx, st(τ ))) < +∞.

Now the cones V (bnx, st(τ )) are asymptotic to V (x, st(τ )) and have finite Hausdorff
distance � d(x, bnx) from it. This Hausdorff distance is uniformly bounded and it
also follows that the sequence (xn) lies in a tubular neighborhood of V (x, st(τ )), i.e.
xn

con−−→ τ . ��
As we did with regularity and flag convergence, we will now also rephrase conical
convergence for sequences in G in terms of their dynamics on flag manifolds.

For a flag convergent sequence, conical convergence is reflected as follows by the
dynamics on the space of parallel sets, equivalently, on the space of pairs of opposite
simplices, cf. (35):

27 Because the bn are bounded and fix τ on Flagτmod .
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Lemma 5.29 Suppose that a sequence (gn) in G τmod-flag converges, gn → τ ∈
Flagτmod . Then for a relatively compact sequence (̂τn) in C(τ ), the following are
equivalent:

(i) gn
con−−→ τ .

(ii) The parallel sets g−1
n P(τ̂n, τ ) all intersect a fixed bounded subset in X.

(iii) The sequenceof pairs g−1
n (τ̂n, τ ) is relatively compact in (Flagιτmod

×Flagτmod )
opp.

Proof We first note that conditions (ii) and (ii′) are equivalent as a consequence of:

Sublemma 5.30 A subset A ⊂ (Flagιτmod
×Flagτmod )

opp is relatively compact iff the
corresponding parallel sets P(τ−, τ+) for (τ−, τ+) ∈ A all intersect a fixed bounded
subset of X, i.e.

sup
(τ−,τ+)∈A

d(x, P(τ−, τ+)) < +∞

for a base point x ∈ X.

Proof The forward direction follows from the continuity of the function (36).28

For the converse direction we note that for a pair

(τ−, τ+) ∈ (Flagιτmod
×Flagτmod )

opp

the intersection of parabolic subgroups Pτ− ∩ Pτ+ preserves the parallel set P(τ−, τ+)

and acts transitively on it. Consequently, the set of triples

(τ−, τ+, x ′) ∈ (Flagιτmod
×Flagτmod )

opp×X

such that x ′ ∈ P(τ−, τ+) is still a homogeneous G-space. Let us fix in it a reference
triple (τ−

0 , τ+
0 , x). Then the parallel sets P(τ−, τ+) intersecting a closed ball B(x, R)

are of the form gP(τ−
0 , τ+

0 ) with g ∈ G such that d(x, gx) � R. It follows that the
set of these pairs (τ−, τ+) = g(τ−

0 , τ+
0 ) is compact. �

Continuing with the proof of the lemma, let x ∈ X be a base point. In view of

d(x, g−1
n P (̂τn, τ )) = d(gnx, P (̂τn, τ ))

condition (ii) is equivalent to

sup
n

d(gnx, P (̂τn, τ )) < +∞. (40)

The implication (ii)⇒ (i) thus follows from the previous lemma. The reverse impli-
cation (i)⇒ (ii) is easy: Since supn d(x, P (̂τn, τ )) < +∞, compare the sublemma,

28 Since here τmod is not required to be ι-invariant, we consider the function on
(Flagιτmod

×Flagτmod )opp×X .
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the cone V (x, st(τ )) is contained in uniform tubular neighborhoods of all parallel sets
P (̂τn, τ ), and conical convergence implies the same for the sequence (gnx), i.e. (40)
is satisfied. ��
Combining the lemmawith our earlier dynamical characterization of flag convergence,
see Lemma 4.20, we obtain:

Proposition 5.31 (Dynamical characterization of conical convergence) A sequence

(gn) in G is τmod-regular and gn
con−−→ τ ∈ Flagτmod iff there exists a bounded sequence

(bn) in G and a simplex τ− ∈ Flagιτmod
such that the following conditions are satisfied:

(i) bng−1
n |C(τ ) → τ− uniformly on compacts.

(ii) The accumulation set of the sequence (bng−1
n τ) in Flagτmod is contained in C(τ−).

Proof Suppose first that (gn) is τmod-regular and gn
con−−→ τ ∈ Flagτmod . Then we have

in particular flag convergence gn → τ , and Lemma 4.20 yields (bn) and τ− with (i).
The conical convergence gn

con−−→ τ is equivalent to gnb−1
n

con−−→ τ , and so the previous
lemma implies for any τ̂ ∈ C(τ ) that the sequence bng−1

n (̂τ , τ ) is relatively compact in
(Flagιτmod

×Flagτmod )
opp. Since bng−1

n τ̂ → τ− by (i), the sequence (bng−1
n τ) therefore

cannot accumulate at points outside C(τ−).
Suppose now vice versa that (bn) and τ− with (i)–(ii) are given. By Lemma 4.20, (i)

implies that (gn) is τmod-regular and gn → τ , and the same follows for the sequence
(gnb−1

n ). Furthermore, (i)–(ii) imply that for any τ̂ ∈ C(τ ) the sequence bng−1
n (̂τ , τ )

is relatively compact in (Flagιτmod
×Flagτmod )

opp. Thus gnb−1
n

con−−→ τ by the previous

lemma, and hence gn
con−−→ τ . ��

We deduce the following criterion for being a conical limit simplex of a subsequence:

Corollary 5.32 A sequence (gn) in G has a τmod-regular subsequence τmod-conically
converging to τ ∈ Flagτmod iff there exists a subsequence (gnk ) and a simplex τ− ∈
Flagιτmod

such that the following conditions are satisfied:

(i) g−1
nk |C(τ ) → τ− uniformly on compacts.

(ii) (g−1
nk τ) converges to a simplex in C(τ−).

Proof Suppose that there is a τmod-regular subsequence (gnk ) with gnk
con−−→ τ . The

proposition yields a bounded sequence (bk) and τ− such that properties (i)–(ii) in
the proposition are satisfied for the sequence (bkg−1

nk ). After extraction, we obtain
convergence bk → b in G and bkg−1

nk τ → τ̂− ∈ C(τ−) in Flagτmod . The asserted
properties (i)–(ii) then result from replacing τ− with b−1τ−. The converse is immediate
in view of the proposition. ��
Now we turn to subgroups.

Definition 5.33 (Conical limit set) For a subgroup �<G, a limit simplex λ ∈
�τmod (�) is τmod-conical if there exists a τmod-regular sequence (γn) in � such that

γn
con−−→ λ. The conical τmod-limit set �con

τmod
(�) ⊆ �τmod (�) is the subset of conical

limit simplices. The subgroup � has conical τmod-limit set or is τmod-conical if all
limit simplices are conical, �con

τmod
(�) = �τmod (�).

123



Anosov subgroups: dynamical and geometric characterizations

We restrict ourselves to τmod-antipodal τmod-regular subgroups and assume in partic-
ular that τmod is ι-invariant. Recall that then the action

���τmod (�)

is a convergence action, see Sect. 5.1. This raises the question how the τmod-conicality
of limit simplices compares to their intrinsic conicalitywith respect to this convergence
action, cf. Sect. 3.3. We show that these properties are equivalent:

Proposition 5.34 (Conical vs. intrinsically conical limit simplex) Let �<G be a
τmod-antipodal τmod-regular subgroup with |�τmod (�)| � 3. Then a limit sim-
plex in �τmod (�) is conical iff it is intrinsically conical for the convergence action
���τmod (�).

Proof That conicality implies intrinsic conicality is, in view of the corollary, an imme-
diate consequence of antipodality and Lemma 3.10.

Suppose that, conversely, λ ∈ �τmod (�) is intrinsically conical. Again invoking
Lemma 3.10, this means that there exist a sequence (γn) in � and a limit simplex
λ− ∈ �τmod (�) such that γ −1

n |�τmod (�)−{λ} → λ− uniformly on compacts and γ −1
n λ →

̂λ− ∈ �τmod (�) − {λ−} ⊂ C(λ−). On the other hand, since � is a τmod-convergence
subgroup, after extraction, the sequence (γ −1

n ) becomes τmod-contracting and there are
limit simplices λ′, λ′− ∈ �τmod (�) such that γ −1

n |C(λ′) → λ′− uniformly on compacts.
In view of antipodality, C(λ′) contains �τmod (�) − {λ′}. Since |�τmod(�)| � 3, it
follows that C(λ′) intersects �τmod (�) − {λ} and therefore λ′− = λ−. Moreover, from
γ −1
n λ →̂λ− �= λ− it follows that λ /∈ C(λ′) and hence also λ′ = λ. We conclude that

γ −1
n |C(λ) → λ− uniformly on compacts and γ −1

n λ → ̂λ− ∈ C(λ−). Corollary 5.32
now yields that the limit simplex λ is τmod-conical. ��
Corollary 5.35 (Conical vs. intrinsically conical subgroup) Let �<G be a τmod-
antipodal τmod-regular subgroup with |�τmod(�)| � 3. Then � is τmod-conical
iff all simplices in �τmod (�) are conical limit points for the convergence action
���τmod (�).

We introduce the following asymptotic condition on the orbit geometry of subgroups:

Definition 5.36 (RCA) A subgroup �<G is τmod-RCA if it is τmod-regular, τmod-
conical and τmod-antipodal.

From the corollary we deduce, using the dynamical characterization of word hyper-
bolic groups and their boundary actions, the following equivalence:

Theorem 5.37 For a subgroup �<G with |�τmod (�)| � 3 the following properties
are equivalent:

(i) τmod-RCA.
(ii) τmod-asymptotically embedded.

The implication (ii)⇒ (i) holds without restriction on the size of the limit set.
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Proof Since this is part of both conditions, we assume that � is τmod-regular and
τmod-antipodal.

The implication (ii)⇒ (i) follows, without restriction on the size of�τmod (�), from
the implication (i)⇒ (iii) of Theorem 5.22.

Suppose now that |�τmod (�)| � 3. According to the previous corollary, the
subgroup� is τmod-RCA if and only if the convergence action���τmod (�) is (intrin-
sically) conical. In view of Theorems 3.11 and 3.12 this is equivalent to � being word
hyperbolic and�τmod (�) being�-equivariantly homeomorphic to ∂∞�, i.e. to� being
τmod-asymptotically embedded. ��

5.6 Subgroups with two-point limit sets

For antipodal regular subgroups with two-point limit sets, some of our conditions are
automatically satisfied:

Lemma 5.38 Suppose that �<G is τmod-antipodal τmod-regular with |�τmod(�)| =
2. Then:

(i) � is τmod-RCA.
(ii) � is virtually cyclic.
(iii) The orbit maps ox : � → �x ⊂ X extend continuously to infinity by an asymp-

totic embedding. In particular, � is τmod-asymptotically embedded.

Proof (i) By antipodality, �τmod(�) consists of a pair of opposite simplices λ± ∈
Flagτmod . The subgroup � therefore preserves the parallel set P(λ−, λ+). The limit
simplices λ± must be conical by Lemma 5.28. Hence � is τmod-RCA.

(ii) Pick a point x ∈ P(λ−, λ+). By conicality, there exists an element γ0 ∈ � which
fixes λ± and so that γ0x lies in the interior of the Weyl cone V = V (x, st(λ+)) ⊂
P(λ−, λ+). We consider the biinfinite nested sequence of Weyl cones γ n

0 V for n ∈ Z.
The cones γ n

0 V cover P(λ−, λ+), cf. Proposition 2.20. Moreover, γ n+1
0 V is contained

in the interior of γ n
0 V and has finite Hausdorff distance from it. By regularity, the

difference of cones V − γ0V can only contain finitely many points of the orbit �x .
The corresponding elements in � form a set of representatives for the cosets of the
infinite cyclic subgroup �0 generated by γ0 in �. Hence � is virtually cyclic.

(iii) Since γ ±n
0 → λ± as n → +∞, the restrictions of the orbit maps to �0 extend

continuously to ∂∞�0 ∼= ∂∞� by an asymptotic embedding α. Since �0 has finite
index in �, the map α is a continuous extension also of the orbit maps of � itself.
Moreover, it is �-equivariant. ��

5.7 Expansion

We define another purely dynamical condition for subgroups, inspired by Sullivan’s
notion of expanding actions [29], namely that their action on the appropriate flag
manifold is expanding at the limit set in the sense of Definition 3.1. As before, we
equip the flag manifolds with auxiliary Riemannian metrics.
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Definition 5.39 (CEA) A subgroup �<G is τmod-CEA (convergence, expanding,
antipodal) if it is τmod-convergence, τmod-antipodal and the action ��Flagτmod is
expanding at �τmod (�).

The next result relates conicality to infinitesimal expansion, cf. Definition 3.2. For
smooth actions on Riemannian manifolds, metric and infinitesimal expansion are
equivalent.

Lemma 5.40 (Expansion at conical limit simplices) Let (gn) be a τmod-regular

sequence in G such that gn
con−−→ τ ∈ Flagτmod . Then the inverse sequence (g−1

n )

has diverging infinitesimal expansion on Flagτmod at τ , i.e.

ε(g−1
n , τ ) → +∞.

Proof This follows from the expansion estimate in Theorem 2.41. ��
Applied to subgroups, the lemma yields:

Proposition 5.41 (Conical implies expansive) Let �<G be a subgroup. If
λ ∈ �con

τmod
(�), then the action ��Flagτmod has diverging infinitesimal expansion

at λ. In particular, if � is τmod-conical, then ��Flagτmod is expanding at �τmod (�).

Proof This is a direct consequence of the lemma, together with the fact that infinites-
imal expansion implies metric expansion. ��
We obtain the equivalence of conditions:

Theorem 5.42 For a subgroup �<G with |�τmod (�)| � 2, the following properties
are equivalent:

(i) τmod-RCA.
(ii) τmod-CEA.

The implication (i)⇒(ii) holds without restriction on the size of the limit set.

Proof Werecall that τmod-regularity is equivalent to the τmod-convergence property, cf.
Theorem4.16. Thus either condition implies that� is τmod-regular and τmod-antipodal.

The implication (i)⇒ (ii) is the previous proposition. (We do not need that
|�τmod(�)| � 2.)

For the direction (ii)⇒ (i) we first assume that |�τmod (�)| � 3 and consider the con-
vergence action���τmod (�). Since�τmod (�) contains at least three points, it must be
perfect29 (see [30, Theorem 2S]). By assumption, the action ���τmod (�) is expand-
ing. Therefore all points λ ∈ �τmod (�) are intrinsically conical, cf. Lemma 3.13, and
hence conical, i.e. � is τmod-conical, cf. Corollary 5.35.

In the case |�τmod(�)| = 2, the assertion follows from Lemma 5.38. ��

29 I.e. has no isolated points.
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5.8 Anosov property

TheAnosov condition combines boundary embeddedness with an infinitesimal expan-
sion condition at the image of the boundary embedding:

Definition 5.43 (Anosov) A subgroup �<G is τmod-Anosov if:

• � is τmod-boundary embedded with boundary embedding β.
• For every ideal point ζ ∈ ∂∞� and every normalized (by r(0) = e ∈ �) discrete
geodesic ray r : N → � asymptotic to ζ , the action ��Flagτmod satisfies

ε(r(n)−1, β(ζ )) � AeCn

for n � 0 with constants A,C > 0 independent of r .

We recall that boundary embedded subgroups are discrete.
Our notion of τmod-Anosov is equivalent to the notion of P-Anosov in [12] where

P < G is a parabolic subgroup in the conjugacy class corresponding to τmod, see
Sect. 5.11.We note also that the study of (P+, P−)-Anosov subgroups quickly reduces
to the case of P-Anosov subgroups by intersecting parabolic subgroups, cf. [12,
Lemma 3.18].

In both our and the original definition uniform exponential expansion rates are
required. We will see that the conditions can be relaxed without altering the class
of subgroups. Uniformity can be dropped, and instead of exponential divergence the
mere unboundedness of the expansion rate suffices.

Definition 5.44 (Non-uniformly Anosov) A subgroup �<G is non-uniformly τmod-
Anosov if:

• � is τmod-boundary embedded with boundary embedding β.
• For every ideal point ζ ∈ ∂∞� and every normalized30 discrete geodesic ray
r : N0 → � asymptotic to ζ , the action ��Flagτmod satisfies

sup
n∈N

ε(r(n)−1, β(ζ )) = +∞. (41)

In other words, we require that for every ideal point ζ ∈ ∂∞� the expansion rate
ε(γ −1

n , β(ζ )) non-uniformly diverges along some sequence (γn) in� which converges
to ζ conically.

We relate theAnosov to theMorse property, building on our discussion of the coarse
extrinsic geometry of subgroups in Sects. 5.3 and 5.4.

Theorem 5.45 (Non-uniformly Anosov implies Morse) Each non-uniformly τmod-
Anosov subgroup � < G is τmod-Morse. Moreover, the boundary embedding β of �

sends ∂∞� homeomorphically onto �τmod (�).

30 Here, the normalization can be dropped because no uniform growth is required.
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Proof Let �<G be non-uniformly τmod-Anosov. Since non-uniformly Anosov sub-
groups are boundary embedded by definition, discrete geodesic lines in � are mapped
into uniform neighborhoods of τmod-parallel sets prescribed by the boundary embed-
ding, see Lemma 5.3. The same follows for discrete geodesic rays in � because
they lie in uniform neighborhoods of lines, compare the proof of Lemma 5.4: For
every ray r : N0 → � asymptotic to ζ = r(+∞) there exists an ideal point
̂ζ ∈ ∂∞� −{ζ } such that the path r x lies in the ρ′′(�, x)-neighborhood of the parallel
set P = P(β(̂ζ ), β(ζ )). Here, as usual, x ∈ X is some fixed base point.

The expansion condition (41) further restricts the position of the path r x along the
parallel set: Let xn ∈ P denote points at distance � ρ′′ from the points r(n)x , e.g.
their nearest point projections to P . For a strictly increasing sequence nk → +∞with
diverging expansion rate

ε(r(nk)
−1, β(ζ )) → +∞

we have in view of Proposition 2.42 and Theorem 2.41 that xnk ∈ V (x0, st(β(ζ ))) for
large k and

d(xnk , ∂V (x0, st(β(ζ )))) → +∞

(non-uniformly) as k → +∞. Fix a constant d � ρ′′. It follows that there exists
a smallest “entry time” T = T (r) ∈ N such that the point r(T )x lies in the open
3ρ′′-neighborhood of the cone V (r(0)x, st(β(ζ ))) and has distance > d from its
boundary.

We observe next that T (r ′) � T (r) for rays r ′ sufficiently close to r , because ζ

varies continuously with r , and rays sufficiently close to r agree with r up to time
T (r). Thus, T is locally bounded above as a function of r . Since � acts cocompactly
on rays, equivalently, since the space of rays with fixed initial point is compact, we
conclude that T is bounded above globally, i.e. there exists a number T0 = T0(�, x, d)

such that T (r) � T0 for all rays r .
As a consequence, for every ray r the above sequence of natural numbers (nk) can

be chosen with bounded increase nk+1 − nk � T0 and so that

xnk+1 ∈ V (xnk , st(β(ζ )))

and

d(xnk+1, ∂V (xnk , st(β(ζ )))) >
d

2

for all k, i.e. the sequence (nk) increases uniformly linearly and the Weyl cones
V (xnk , st(β(ζ ))) are uniformly nested, compare the proof of Theorem 5.18.

It follows that the paths r x are uniformly τmod-regular and undistorted, and are
contained in uniform neighborhoods of the cones V (r(0), st(β(r(+∞)))). In partic-
ular, � satisfies property (iii) of Theorem 5.22, and therefore is τmod-Morse. It also
follows that β(∂∞�) ⊆ �τmod (�). The equality β(∂∞�) = �τmod (�) follows from
Theorem 5.7. ��
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A converse readily follows from our earlier results:

Theorem 5.46 τmod-Morse subgroups �<G are τmod-Anosov.

Proof Let �<G be τmod-Morse. By Theorems 5.22 and 5.18, � is then also τmod-
asymptotically embedded and uniformly τmod-regular. Furthermore, denoting the
asymptotic embedding by α and fixing a point x ∈ X , we know that for every ray
r : N0 → � the path r x is contained in a uniform neighborhood of the Weyl cone
V (r(0)x, α(r(+∞))) and drifts away from its boundary at a uniform linear rate. With
Theorem 2.41 it follows that the infinitesimal expansion factor ε(r(n)−1, α(r(+∞)))

for the action ��Flagτmod grows at a uniform exponential rate. Thus, � is τmod-
Anosov. ��

5.9 Equivalence of conditions

Combining our results comparing the various geometric and dynamical conditions for
discrete subgroups, we obtain our main theorem (cf. Theorem 1.1):

Theorem 5.47 (Equivalence) The following properties for subgroups �<G are
equivalent in the nonelementary31 case:

(i) τmod-asymptotically embedded,
(ii) τmod-CEA,
(iii) τmod-Anosov,
(iv) non-uniformly τmod-Anosov,
(v) τmod-RCA,
(vi) τmod-Morse.

These properties imply τmod-URU. Moreover, the boundary maps in (i), (iii) and (iv)
coincide.

Proof By Theorem 5.22, (i) and (vi) are equivalent. By Theorems 5.45 and 5.46,
conditions (iii), (iv) and (vi) are equivalent. The fact that the boundary maps in (i),
(iii) and (iv) coincide follows from the second part of Theorem 5.45.

By Theorem 5.18, (i) implies τmod-URU. By Theorem 5.37, (i) and (v) are equiva-
lent. By Theorem 5.42, (ii) and (v) are equivalent. ��
Remark 5.48 (i) The equivalence of the conditions (i), (iii), (iv) and (vi), the fact

that they imply τmod-URU, and the implications (i)⇒ (v)⇒ (ii) hold without
restriction on the size of the limit set.

(ii) It is shown in [21] that, conversely, τmod-URU implies τmod-Morse.

For subgroups with small limit sets we have the following additional information,
see Lemma 5.38:

Addendum 5.49 For a τmod-antipodal τmod-regular subgroup �<G with
|�τmod(�)| = 2, properties (i)–(vi) and τmod-URU are always satisfied.

31 Meaning that |�τmod (�)| � 3 in (i), (ii), (v), (vi) and that � is word hyperbolic with |∂∞�| � 3 in (iii),
(iv).
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We are unaware of examples of τmod-RCAor τmod-CEAsubgroupswith one limit point
in higher rank. Note that such subgroups cannot be τmod-asymptotically embedded.

5.10 Morse quasigeodesics

When studying the coarse geometry of Anosov subgroups in Sects. 5.3 and 5.4, we
were lead to the Morse and URU properties. We also saw that Morse implies URU.
(The converse is true as well, but harder to prove, see [21].)

Thus, for Morse subgroups �<G, the images of the discrete geodesics in � under
an orbit map are uniform quasigeodesics in X which are uniformly regular and satisfy a
Morse type property involving closeness of subpaths to diamonds. Leaving the group-
theoretic context, we will now make this class of quasigeodesics precise and study
some of its geometric properties. (See also [20] for further discussion.) We will build
in the uniform regularity into the Morse property by replacing the diamonds with
smaller “uniformly regular” �-diamonds.

In the following, � ⊂ intτmod (σmod) denotes an ι-invariant τmod-Weyl convex com-
pact subset which is used to quantify uniform regularity. We work with discrete paths;
I ⊆ R denotes an interval and n± integers.

Definition 5.50 (Morse quasigeodesic) A quasigeodesic q : I ∩ Z → X is (�, ρ)-
Morse if for every subinterval [n−, n+] ⊆ I the subpath q|[n−,n+]∩Z is contained in
the ρ-neighborhood of a diamond♦�(x−, x+)with tips at distance d(x±, q(n±)) � ρ

from the endpoints.
We say that an infinite quasigeodesic is �-Morse if it is (�, ρ)-Morse for some ρ,

and we say that it is τmod-Morse if it is �-Morse for some �.

The�-Morse property for quasigeodesics is clearly stable under boundedperturbation.
We say that some paths are uniform τmod-Morse quasigeodesics if they are uniform

quasigeodesics32 and (�, ρ)-Morse with the same �,ρ.
We can now interpret the Morse subgroup property in terms of Morse quasi-

geodesics:

Proposition 5.51 A word hyperbolic subgroup � < G is τmod-Morse if and only
if an orbit map ox : � → �x ⊂ X sends uniform quasigeodesics in � to uniform
τmod-Morse quasigeodesics in X.

Proof Suppose that � is τmod-Morse. We fix a word metric on �. In view of the Morse
Lemma for word hyperbolic groups (Gromov hyperbolic spaces) it suffices to prove
that ox sends discrete geodesics in � to uniform τmod-Morse quasigeodesics in X .

First of all, sinceMorse subgroups are URU,we know that� is undistorted inG, i.e.
ox is a quasiisometric embedding. Equivalently, the ox -images of discrete geodesics in
� are uniform quasigeodesics. We need to show that they are uniformly τmod-Morse.

Consider a discrete geodesic segment s : [n−, n+] ∩ Z → �. According to the
Morse subgroup property of �, the image path sx = ox ◦s is contained in a tubular
neighborhood of uniform radius ρ′′ = ρ′′(�, x) of a diamond ♦τmod (x−, x+) with

32 I.e. quasigeodesics with the same quasiisometry constants.
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d(x±, s(n±)x) � ρ′′. It will be enough to verify that sx is also contained in a uniform
tubular neighborhood of the smaller�-diamond♦�(x−, x+) for some� independent
of s.

For n− � n � n+, let pn ∈ ♦τmod(x−, x+) denote the nearest point projection of
s(n)x . In view of the uniform upper bound ρ′′ for the distances d(x±, s(n±)x) and
d(pn, s(n)x), the uniform regularity of � implies: If n − n−, n+ − n � C0 (with a
uniform constant C0), then

d�(x±, pn) ∈ V (0,�)

with a compact � ⊂ intτmod (σmod) independent of s. Moreover, after enlarging �, we
may assume that it is ι-invariant and τmod-Weyl convex. It follows that the diamond
♦�(x−, x+) is defined and pn ∈ ♦�(x−, x+). Hence, sx is contained in a uniform
tubular neighborhood of ♦�(x−, x+).

Conversely, suppose that ox sends discrete geodesics in � to uniform τmod-Morse
quasigeodesics in X . Then� is undistorted and thegeodesic segmentswith endpoints in
the orbit �x are uniformly close to �-regular segments, equivalently, the �-distances
d�(x, γ x) between orbit points are contained in a tubular neighborhood of the cone
V (0,�). It follows that � is (uniformly) τmod-regular, and hence τmod-Morse. ��
Next, we briefly discuss the asymptotics of infinite Morse quasigeodesics. There is
much freedom for the asymptotic behavior of arbitrary quasigeodesics in euclidean
spaces, and therefore also in symmetric spaces of higher rank.However, the asymptotic
behavior of Morse quasigeodesics is as restricted as for quasigeodesics in rank one
symmetric spaces.

Morse quasirays satisfy a version of the defining property for Morse quasigeodesic
segments,with diamonds replacedby cones.As a consequence, althoughMorse quasir-
ays in general do not converge at infinity in the visual compactification, they flag
converge:

Lemma 5.52 (Conicality of Morse quasirays) A (�, ρ)-Morse quasiray q : N0 → X
is contained in the ρ-neighborhood of a �-cone V (x, st�(τ)) with d(x, q(0)) � ρ

for a unique simplex τ ∈ Flagτmod . Furthermore, q(n) → τ conically.

Proof The existence of the cone V (x, st�(τ)) follows from the definition of Morse
quasigeodesics by a limiting argument. Obviously, we have conical τmod-flag conver-
gence q(n) → τ , which also implies the uniqueness of τ . ��
Nowwe give a Finsler geometric characterization of Morse quasigeodesics. We show
that they are the coarsification of (uniformly regular) Finsler geodesics (cf. Defini-
tion 2.43). Even though this is true in general, we will give the proof only in the
infinite case (of rays and lines), since it is simpler and suffices for the purposes of this
paper:

Theorem 5.53 (Morse quasigeodesics are uniformly close to Finsler geodesics)Uni-
form τmod-Morse quasigeodesic rays and lines are uniformly Hausdorff close to
uniformly τmod-regular τmod-Finsler geodesic rays and lines.
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Proof It suffices to treat the ray case. The line case follows by a limiting argument.
Let q : N0 → X be a (�, ρ)-Morse quasigeodesic ray. According to Lemma 5.52, q

is contained in a uniform tubular neighborhood of aWeyl coneV = V (q(0), st(τ )). As
in the proof that asymptotically embedded implies URU (Theorem 5.18), we consider
the sequence of nearest point projections xn ∈ V of the points q(n), n ∈ N0. Again
by Lemma 5.52, the point xn+m lies in a uniform tubular neighborhood of the �-cone
V (xn, st�(τ)) ⊂ V for all n,m � 0.

We slightly enlarge � to �′, such that � ⊂ int(�′) as subsets of intτmod (σmod).
Then there exists m0 ∈ N depending on �,�′, ρ and the quasiisometry constants of
q, such that

xn+m ∈ V (xn, st�′(τ ))

for all n � 0 and m � m0. The piecewise geodesic path

x0xm0 x2m0 x3m0 . . .

is then a �′-regular τmod-Finsler geodesic ray uniformly Hausdorff close to q. ��
We use the approximation of Morse quasigeodesics by Finsler geodesics to coarsify
Theorem 2.47 and deduce an analogous result on the �-distance along Morse quasi-
geodesics. Again, we restrict ourselves to the infinite case of rays:

Theorem 5.54 (�-projection of Morse quasirays) If q : N0 → X is a τmod-Morse
quasiray, then so is

q� = d�(q(0), q) : N0 → �.

Moreover, uniform τmod-Morse quasirays q yield uniform τmod-Morse quasirays q�.

Proof Suppose that q is a (�, ρ)-Morse quasiray. We enlarge � to �′ such that
� ⊂ int(�′). According to the proof of Theorem 5.53, there exists a �′-regular
τmod-Finsler geodesic ray c : [0,+∞) → X which is uniformly close to q in terms
of the data �,�′, ρ and the quasiisometry constants, i.e. d(c(n), q(n)) is uniformly
bounded. In particular, c is also a uniform quasiray.

For the �-projections c� = d�(c(0), c) and q�, the pointwise distance
d(c�(n), q�(n)) is also uniformly bounded. According to Theorem 2.47, c� is again
a �′-regular τmod-Finsler geodesic ray and a uniform quasiray. It follows that q� is a
(�′, ρ′)-Morse quasiray with uniform ρ′ and uniform quasiisometry constants. ��

5.11 Appendix: The original Anosov definition

A notion of Anosov representations of surface groups into PSL(n, R) was introduced
by Labourie in [25], and generalized to a notion of (P+, P−)-Anosov representations
� → G of word hyperbolic groups into semisimple Lie groups by Guichard and
Wienhard in [12]. The goal of this section is to review this definition of Anosov
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representations � → G using the language of expanding and contracting flows and
then present a closely related and equivalent definition which avoids the language of
flows.

Let � be a non-elementary (i.e. not virtually cyclic) word hyperbolic group with a
fixed word metric d� and Cayley graph C� . Consider a geodesic flow ̂� of �; such a
flowwas originally constructed by Gromov [10] and then improved by Champetier [5]
and Mineyev [27], resulting in definitions with different properties. We note that
the exponential convergence of asymptotic geodesic rays will not be used in our
discussion; as we will see, it is also irrelevant whether the trajectories of the geodesic
flow are geodesics or uniform quasigeodesics in ̂�. In particular, it will be irrelevant
for us which definition of ̂� is used. Only the following properties of ̂� will be used
in the sequel:

• ̂� is a proper metric space.
• There exists a properly discontinuous isometric action ��̂�.
• There exists a �-equivariant quasi-isometry π : ̂� → �; in particular, the fibers
of π are relatively compact.

• There exists a continuous action R�̂�, denoted φt and called the geodesic flow,
whose trajectories are uniform quasigeodesics in ̂�, i.e. for each m̂ ∈ ̂� the flow
line

t → m̂t
..= φt (m̂)

is a uniform quasi-isometric embedding R → ̂�.
• The flow φt commutes with the action of �.
• Each m̂ ∈ ̂� defines a uniform quasigeodesic m : t �→ mt in � by the formula:

mt = π(m̂t ).

Following the notation in Sect. 3.3, we let (∂∞�×∂∞�)dist denote the subset of
∂∞�×∂∞� consisting of pairs of distinct points. The natural map

e = (e−, e+) : ̂� → (∂∞�×∂∞�)dist

assigning to m̂ the pair of ideal endpoints (m−∞,m+∞) of m is continuous and
surjective. In particular, every uniform quasigeodesic in̂� is uniformly Hausdorff
close to a flow line.

The reader can think of the elements of ̂� as parameterized geodesics in C� , so that
φt acts on geodesics via reparameterization. This was Gromov’s original viewpoint,
although not the one in [27].

We say that m̂ ∈ ̂� is normalized if π(m̂) = 1 ∈ �. Similarly, maps q : Z → �,
and q : N → � will be called normalized if q(0) = 1. It is clear that every m̂ ∈ ̂� can
be sent to a normalized element of ̂� via the action of m−1

0 ∈ �.
Since trajectories of φt are uniform quasigeodesics, for each normalized m̂ ∈ ̂� we

have
C−1
1 t − C2 � d�(1,mt ) � C1t + C2 (42)

123



Anosov subgroups: dynamical and geometric characterizations

for some positive constants C1,C2.
Let F± = Flag±τmod

be a pair of opposite partial flagmanifolds associated to the Lie
group G, i.e. they are quotient manifolds of the form F± = G/P±τmod , see Sect. 2.4.
As usual, we will regard elements of F± as simplices of type τmod, ιτmod in the Tits
boundary of X .

Define the trivial bundles

E± = ̂�×F± → ̂�.

For every representation ρ : � → G, the group � acts on both bundles via its natural
action on̂� and via the representation ρ on F±. Put a�-invariant background Rieman-
nian metric on the fibers of theses bundles, which varies continuously with respect to
m̂ ∈ ̂�. We will use the notation F±

m̂ for the fiber above the point m̂ equipped with
this Riemannian metric. Since the subspace of ̂� consisting of normalized elements
is compact, it follows that for normalized m̂, m̂′ the identity map

F±
m̂ → F±

m̂′

is uniformly bilipschitz (with bilipschitz constant independent of m̂, m̂′). We will
identify �-equivariant (continuous) sections of the bundles E± with equivariant maps
s± : ̂� → F±. These sections are said to be parallel along flow lines if

s±(m̂) = s±(m̂t )

for all t ∈ R and m̂ ∈ ̂�.

Definition 5.55 Parallel sections s± are called strongly parallel along flow lines if for
any two flow lines m̂, m̂′ with the same ideal endpoints, we have s±(m̂) = s±(m̂′).

Note that this property is automatic for the geodesic flows constructed by Champetier
andMineyev since (for their flows) any two flow lines which are at finite distance from
each other are actually equal. Strongly parallel sections define�-equivariant boundary
maps

β± : ∂∞� → F±

from the Gromov boundary ∂∞� of the word hyperbolic group � by:

β±◦e± = s±. (43)

Lemma 5.56 The maps β± are continuous.

Proof Let (ξn−, ξn+) → (ξ−, ξ+) be a converging sequence in (∂∞�×∂∞�)dist. There
exists a bounded sequence (m̂n) in ̂� such that e±(m̂n) = ξn±. After extraction, the
sequence (m̂n) converges to some m̂ ∈ ̂�. Continuity of s± implies that β±(ξn±) =
s±(m̂n) → s±(m̂) = β±(ξ±). This shows that no subsequence of (β±(ξn±)) can have
a limit �= β±(ξ±), and the assertion follows from compactness of F±. ��
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Conversely, equivariant continuousmaps β± define�-equivariant sections s± strongly
parallel along flow lines, by the formula (43).

Consider the identity maps

�m̂,t : F±
m̂ → F±

φt m̂
.

These maps distort the Riemannian metric on the fibers. Using (25), we define the
infinitesimal expansion factor of the flow φ(t) on the fiber F±

m̂ at the point s±(m̂) as:

ε±(m̂, t) ..= ε(�m̂,t , s±(m̂)).

Definition 5.57 The geodesic flow φt is said to be uniformly exponentially expanding
on the bundles E± with respect to the sections s± if there exist constants a, c > 0
such that

ε±(m̂,±t) � aect

for all m̂ ∈ ̂� and t � 0.

Our next goal is to give an alternative interpretation for the uniform expansion in this
definition. First of all, since themetrics on the fibers are�-invariant, it suffices to verify
uniform exponential expansion only for normalized elements of ̂�. For a normalized
element m̂ ∈ ̂� and t ∈ R consider the composition

m−1
t ◦�m̂,t : F±

m̂ → F±
m−1
t m̂t

.

Note that π(m−1
t m̂t ) = m−1

t mt = 1, i.e. both m̂ and m−1
t m̂t are normalized. Since

the group � acts isometrically on the fibers of the bundles E±, the metric distortion
of the above compositions is exactly the same as the distortion of �m̂,t . Furthermore,
since, as we noted above, the metrics on F±

m̂ and F±
m−1
t m̂t

are uniformly bilipschitz to

each other (via the “identity” map), the rate of expansion for the above composition
(up to a uniform multiplicative error) is the same as the expansion rate for the map

ρ(m−1
t ) : F± → F±.

(Here we are using fixed background Riemannian metrics on F±.) Thus, we get the
estimate

C−1
3 ε(ρ(m−1

t ), β±(m±∞)) � ε±(m̂, t) � C3ε(ρ(m−1
t ), β±(m±∞))

for some uniform constant C3 > 1. By taking into account the Eq. (42), we obtain the
following equivalent reformulation of Definition 5.57:

Lemma 5.58 The geodesic flow is uniformly exponentially expanding with respect to
the sections s± if and only if for every normalized uniform quasigeodesic q : Z → �,
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which is asymptotic to points ξ± = q(±∞) ∈ ∂∞�, the elements ρ(q(±n))−1 act on
Tβ±(ξ±)F± with uniform exponential expansion rate, i.e.

ε(ρ(q(±n))−1, β±(ξ±)) � AeCn

for all m̂ ∈ ̂� and n � 0 with some fixed constants A,C > 0.

Proof There exists a normalizedflow line m̂ uniformly close toq, i.e.q(n) is uniformly
close to mtn with n �→ tn being a uniform orientation-preserving quasiisometry Z →
Z. Then m±∞ = ξ±, and ε(ρ(q(±n))−1, β±(ξ±)) equals ε(ρ(m−1

t±n
), β±(m±∞)) up

to a uniform multiplicative error, and hence also ε±(m̂, t±n). ��
Since every uniform quasigeodesic ray in � extends to a uniform quasigeodesic line,
and in view of Morse lemma for hyperbolic groups, in the above definition it suffices
to consider only normalized discrete geodesic rays r : N → �.

We can now give the original and an alternative definition of Anosov representa-
tions.

Definition 5.59 A pair of continuous maps β± : ∂∞� → F± is said to be antipodal
if it satisfies the following conditions (called compatibility in [12]):

• For every pair of distinct ideal points ζ, ζ ′ ∈ ∂∞�, the simplices β+(ζ ), β−(ζ ′)
in the Tits boundary of X are antipodal, equivalently, the corresponding parabolic
subgroups of G are opposite. (In [12] this property is called transversality.)

• For every ζ ∈ ∂∞�, the simplices β+(ζ ), β−(ζ ) belong to the same spherical
Weyl chamber, i.e. the intersection of the corresponding parabolic subgroups of
G contains a minimal parabolic subgroup.

Note that, as a consequence, themaps β± are embeddings, because antipodal simplices
cannot be faces of the same chamber.

Definition 5.60 [12] A representation ρ : � → G is said to be (P+τmod , P−τmod )-
Anosov if there exists an antipodal pair of continuousρ-equivariantmapsβ± : ∂∞� →
F± such that the geodesic flow on the associated bundles E± satisfies the uniform
expansion property with respect to the sections s± associated to the maps β±.

The pair of maps (β+, β−) in this definition is called compatible with the Anosov
representation ρ. Note that a (P+τmod , P−τmod )-Anosov representation admits a unique
compatible pair of maps. Indeed, the fixed points of infinite order elements γ ∈ � are
dense in ∂∞�. The maps β± send the attractive and repulsive fixed points of γ to fixed
points of ρ(γ )with contracting and expanding differentials, and these fixed points are
unique. In particular, if P+τmod is conjugate to P−τmod (equivalently, ιτmod = τmod)
then β− = β+.

We note that Guichard and Wienhard in [12] use in their definition the uniform
contraction property of the reverse flow φ−t instead of the expansion property used
above, but the two are clearly equivalent. Note also that in the definition, it suffices to
verify the uniform exponential expansion property only for the bundle E+. We thus
obtain, as a corollary of Lemma 5.58, the following alternative definition of Anosov
representations:
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Proposition 5.61 (Alternative definition of Anosov representations) A representation
ρ : � → G is (P+τmod , P−τmod )-Anosov if and only if there exists a pair of antipodal
continuous ρ-equivariant maps β± : ∂∞� → F± such that for every normalized
discrete geodesic ray r : N → � asymptotic to ξ ∈ ∂∞�, the elements ρ(r(n))−1 act
on Tβ+(ξ)F+ with uniform exponential expansion rate, i.e.

ε(ρ(r(n))−1, β+(ξ)) � AeCn

for n � 0 with constants A,C > 0 which are independent of r .

We now restrict to the case that the parabolic subgroups P±τmod are conjugate to each
other, i.e. the simplices ιτmod = τmod. The (P+τmod , P−τmod )-Anosov representations
will in this case be called simply Pτmod -Anosov, where Pτmod = P+τmod , or simply
τmod -Anosov. Note that the study of general (P+τmod , P−τmod )-Anosov representations
quickly reduces to the case of P-Anosov representations by intersecting parabolic
subgroups, cf. [12, Lemma 3.18]. Now,

F± = F = G/Pτmod = Flagτmod

and

β± = β : ∂∞� → F

is a single continuous embedding. The compatibility condition reduces to the antipo-
dality condition: For any two distinct ideal points ξ, ξ ′ ∈ ∂∞� the simplices β(ξ) and
β(ξ ′) are antipodal to each other. In other words, β is a boundary embedding in the
sense of Definition 5.2.

We thus arrive to our definition, compare Definition 5.43:

Definition 5.62 (Anosov representation) Let τmod be an ι-invariant face of σmod. We
call a representation ρ : � → G Pτmod -Anosov or τmod-Anosov if it is τmod-boundary
embedded with boundary embedding β : ∂∞� → F = Flagτmod such that for every
normalized discrete geodesic ray r : N → � asymptotic to ζ ∈ ∂∞�, the elements
ρ(r(n))−1 act on Tβ(ζ )F with uniform exponential expansion rate, i.e.

ε(ρ(r(n))−1, β(ζ )) � AeCn

for n � 0 with constants A,C > 0 independent of r .
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