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1 Background
Recent years have seen a great deal of progress in our understanding of “thin” subgroups, which are dis-
crete matrix groups that have infinite covolume in their Zariski closure. (The subgroups of finite covolume
are called “lattices” and, generally speaking, are much better understood.) Traditionally, thin subgroups are
required to be contained in arithmetic lattices, which is natural in the context of number-theoretic and al-
gorithmic problems but, from the geometric or dynamical viewpoint, is not necessary. Thin subgroups have
deep connections with number theory (see e.g. [7, 8, 9, 19, 23]), geometry (e.g. [1, 15, 17, 42]), and dynamics
(e.g. [4, 24, 28, 30]).

The well-known “Tits Alternative” [48] (based on the classical “ping-pong argument” of Felix Klein)
constructs free subgroups of any matrix group that is not virtually solvable. (In most cases, it is easy to
arrange that the resulting free group is thin.) Sharpening and refining this classical construction is a very
active and fruitful area of research that has settled numerous old problems. For instance, Breuillard and
Gelander [12] proved a quantitative form of the Tits Alternative, which shows that the generators of a free
subgroup can be chosen to have small word length, with respect to any generating set of the ambient group.
Kapovich, Leeb and Porti [27] provided a coarse-geometric proof of the existence of free subgroups that
are Anosov. In a somewhat different vein, Margulis and Soifer [36] proved that SL(n,Z), n ≥ 4, contains
free products of the form Z2 ? Fk (where Fk is the free group of rank k) for all k ≥ 1. (Answering a
question of Platonov and Prasad, this implies that SL(n,Z) has maximal subgroups of infinite index that are
not free groups.) Also, it has been shown that SL(n,Z) contains Coxeter groups (and, hence, right-angled
Artin groups) when n is sufficiently large. Ping-pong type constructions have also emerged as an important
technical tool in other contexts, such as for disproving the invariable generation property (by constructing a
thin subgroup that intersects every conjugacy class [20]) and for proving the expander property for Cayley
graphs of finite quotients of thin groups [23].

Conversely, there are also obstructions to the existence of thin subgroups. For example, no thin, Zariski-
dense subgroup of SL(n,Z) contains SL(3,Z) [49]. Similarly, it has been shown in certain situations that
thin, discrete, Zariski-dense subgroups cannot contain a lattice in a maximal unipotent subgroup of the ambi-
ent group [6, 39, 50].

The study of certain natural (and properly discontinuous) actions of thin groups is another important line
of research. The famous Auslander Conjecture concerns actions of thin groups on affine spaces. (Namely,
it is conjectured that if a group acts properly discontinuously and cocompactly on an affine space Rn, then
the group is virtually solvable.) Actions on more general geometric spaces (such as flag varieties) are also
important. While it seems that nothing of interest can be said about such actions in general, a great deal of
progress has been made in recent years analyzing actions of thin subgroups that satisfy further restrictions.
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The Anosov property has been of particular interest (see, for example, [24], [28], and [53]), as well as other
forms of strengthening of discreteness, e.g. regularity, which has its origin in [4], see also [28].

The following problem list collects some open problems for both lattices and thin subgroups of Lie
groups.

2 Proper actions on affine spaces
Let Γ be a finitely generated group, ρ : Γ→ GL(n,R) be the given representation, Z1(Γ, ρ) be the space of
ρ-cocycles with values in Rn, i.e. maps

u : Γ→ Rn, u(αβ) = u(α) + ρ(α)u(β), α, β ∈ Γ.

Note that Z1(Γ, ρ) is a finite-dimensional real vector space. Each cocycle u ∈ Z1(Γ, ρ) determines an affine
action ρu of Γ on V = Rn:

ρu(γ) : x 7→ ρ(γ)x + u(γ).

Let C = Cρ ⊂ Z1(Γ, ρ) denote the subset consisting of cocycles such that the action ρu of Γ on Rn is
properly discontinuous.

Question 2.1 (N. Tholozan). Is C open in Z1(Γ, ρ)? Is it convex?

Note that the answer is positive for n = 3, this follows from the results of [22].

Question 2.2 (N. Tholozan). Does Cρ depend continuously on ρ?

Here one has to be careful with the topology used on the set of subsets of Z1(Γ, ρ). For closed subsets
one uses Shabauty topology. For instance, if the subsetsC are open, their complements are closed and, hence,
one can interpret the question as of the continuity of the complement with respect to ρ.

For a finitely generated group Γ, let P (Γ, n) denote the subset of Hom(Γ, Aff(Rn)) consisting of rep-
resentations defining proper actions of Γ on Rn. Let PA(Γ, n) ⊂ P (Γ, n) denote the subset consisting of
actions ρu with P -Anosov linear part ρ (for some parabolic subgroup P < GL(n,R)).

Question 2.3 (G. Soifer). To which extent P (Γ, n) is open?

Note that in general P (Γ, n) is not open even for n = 3, for instance, one can take a rank 2 free group Γ
and a representation ρu ∈ P (Γ, 3) whose linear part ρ contains unipotent elements. A small perturbation of
ρu will yield a representation (with linear part in SO(2, 1)) with nondiscrete linear part, hence, a non-proper
affine action. One can also perturb a representation so that the linear part is deformed to a Zariski dense
subgroup of SL(3,R), again resulting in a non-proper action.

It is known that
PA(Γ, 3) ∩Hom(Γ, SO(2, 1) nR3)

is open in
Hom(Γ, SO(2, 1) nR3)

(this follows from the results of [22] and stability of Anosov representations).

Question 2.4 (G. Soifer). To which extent P (Γ, n) is open in general?

Conjecture 2.5 (The Auslander conjecture). If Γ < Aff(Rn) is a subgroup which acts properly discontinu-
ously and co-compactly on Rn, then Γ is virtually solvable.

Abels, Margulis and Soifer proved the Auslander conjecture for the dimensions n ≤ 6 and observed that
the following problem is important for the further progress towards the Auslander conjecture:

Conjecture 2.6 (Abels, Margulis, Soifer). Let Γ < O(4, 3) n R7 < Aff(R7) be a subgroup acting properly
discontinuously and co-compactly on R7. Then the linear part of Γ is not Zariski dense in SO(4, 3).
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Question 2.7. Does there exist a properly discontinuous cocompact group of affine transformations isomor-
phic to the fundamental group of a closed hyperbolic manifold?

Partial progress towards a negative answer to this problem was described at the talk by Suhyoung Choi
at the workshop: He proved that such an action cannot exist under certain assumptions on its linear part
(strengthening the P -Anosov condition).

Question 2.8 (G. Mostow). Suppose that M = Rn/Γ is an affine manifold, such that the linear part of Γ is
in SLn(R). Thus, Γ preserves the standard volume form on Rn and, hence, M has a canonical volume form
as well. Does V ol(M) <∞ imply that M is compact?

This question is motivated by Mostow’s theorem that lattices in solvable groups are cocompact.

Question 2.9 (G. Soifer). Study subgroups Γ < Aff(Cn) acting properly discontinuously on Cn.

More specifically:

Question 2.10 (G. Soifer). Does there exist a free nonabelian subgroup Γ < Aff(C3) acting properly discon-
tinuously on C3? For instance, consider the adjoint action of SL2(C) on C3 (identified with the Lie algebra
of SL2(C)). Consider a generic representation ρ : F2 = 〈a, b〉 → SL(2,C). Does there exist a cocycle
u ∈ Z1(F2,C3) and m > 0 such that the action on C3 of 〈am, bm〉 given by ρu is properly discontinuous?

Conjecture 2.11 (Markus Conjecture). Suppose that M is a compact n-dimensional affine manifold whose
linear holonomy is in SL(n,R). Is M complete?

This conjecture is known when the linear holonomy of M has “discompacity 1” (Y. Carriere, [14]), e.g.
when M is a flat Lorentzian manifold, and also for convex affine manifolds of dimension ≤ 5, [26].

Conjecture 2.12 (M. Kapovich). Suppose that M is a compact n-dimensional affine manifold whose linear
holonomy is contained in a rank one subgroup of SL(n,R). Is M complete?

3 Discrete subgroups of SL(3,R)
Question 3.1 (M. Kapovich). 1. Does there exist a discrete a subgroup Γ < SL(3,R) isomorphic to

Z2 ? Z and containing only regular diagonalizable elements?

2. Does there exist a discrete subgroup Γ < SL(3,Z) isomorphic to Z2 ? Z?

Note that there are known examples, [47], of discrete subgroups Γ < SL(3,R) isomorphic to Z2?Z where
Z2 is super-singular: It is generated by three singular diagonalizable matrices A,B,C satisfying ABC = 1.

Question 3.2 (K. Tsouvalas). Does there exist a discrete a subgroup Γ < SL(3,R) isomorphic to π1(S)?Z,
where S is a closed hyperbolic surface ?

Note that it is impossible to find an Anosov subgroup Γ < SL(3,R) isomorphic to π1(S) ? Z with this
property, since every Anosov subgroup of SL(3,R) is either virtually free or a virtually surface group. Note,
furthermore, that SL(4,Z) contains subgroups isomorphic to Z2 ? Z and π1(S) ? Z.

4 Subgroups of SL(n,Z), n ≥ 3

While many “exotic” finitely generated groups embed in SL(n,Z) for large n, very few subgroups of
SL(3,Z) are known: All currently known finitely generated thin subgroups of SL(3,Z) are either virtu-
ally free or are virtually isomorphic to surface groups.

Problem 4.1. Construct thin subgroups of SL(3,Z) which are neither virtually free nor are virtually iso-
morphic to surface groups.

For the next questions, we will need some group-theoretic definitions:
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Definition 4.1. A group Γ is called coherent if every finitely generated subgroup of Γ is finitely presented. A
group Γ is said to have the Howson property if the intersection of any two finitely generated subgroup of Γ is
again finitely generated.

It is known that SL(2,Z) is coherent (and, moreover, every discrete subgroup of SL(2,C) is coherent),
while SL(4,Z) is non-coherent. Every discrete subgroup of SL(2,C) which is not a lattice has the Howson
property. However, there are (even arithmetic) lattices in SL(2,C) which do not have the Howson property.
The reason for this is the existence of finitely generated geometrically infinite subgroups of such lattices.

Question 4.2 (J.-P. Serre). Is SL(3,Z) coherent?

The answer would be positive if every finitely generated thin subgroup of SL(3,Z) were virtually iso-
morphic to either a free group or a surface group. While groups such as Z2 ? Z and π1(S) ? Z (where S
is a surface) are coherent, the existence of embeddings of such groups in SL(3,Z) might help us to find
embeddings of more complicated subgroups and, hopefully, address the coherence problem.

Problem 4.3 (J.-P. Serre). Is there a profinitely dense non-free subgroup in SL(3,Z)?

Question 4.4 (A. Detinko). Does SL(3,Z) have the Howson property?

Question 4.5 (M. Kapovich). Suppose that Γ1,Γ2 are Anosov subgroups of SL(3,Z). Is Γ1 ∩ Γ2 finitely
generated?

Problem 4.6 (T. Gelander, C. Meiri). An element g ∈ SL(3,Z) is called complex if for every m ≥ 1 the
matrix gm has a non-real eigenvalue. Is it possible for a thin subgroup of SL(3,Z) to contain a complex
element?

5 Algorithmic problems
Question 5.1 (A. Detinko). Is freeness decidable for finitely generated subgroups of arithmetic groups (e.g.
of SL(n,Z), n ≥ 3)?

Note that freeness is undecidable for subsemigroups. Freeness is decidable for subgroups of SL(2,Z). It
is also decidable for some special classes of subgroups of arithmetic groups:

(a) Anosov subgroups.
(b) Subgroups which admit finitely-sided Dirichlet domains in associated symmetric spaces.
Freeness is likely to be, at least effectively, undecidable. The reason is the existence of badly distorted

finitely generated free subgroups of SL(n,Z) for large n: These are free subgroups whose distortion function
is comparable to the k-th Ackerman function (for any k), see [16, 11] for the description of embeddings of
such free groups in free-by-cyclic groups and [25, 52] for embeddings to SL(n,Z).

Question 5.2 (A. Detinko). Is arithmeticity decidable? More precisely, is there an algorithm that decides if
a finitely generated Zariski dense subgroup Λ of an irreducible arithmetic group Γ (say, SL(n,Z), n ≥ 3)
has finite index in Γ?

Note that this problem is semidecidable: There is an algorithm which will terminate if Λ < Γ has finite
index. The problem is known to be decidable for subgroups of SL(2,Z) and undecidable for subgroups of
SL(2,Z)× SL(2,Z).

Question 5.3 (M. Kapovich). Is the membership problem in finitely generated subgroups of SL(3,Z) decid-
able?

Note that all known finitely generated subgroups of SL(3,Z) have at most exponential distortion, hence,
have decidable membership problem. In contrast, the membership problem is undecidable for finitely gen-
erated subgroups of SL(4,Z). The reason is that that group contains SL(2,Z) × SL(2,Z), which, in turn,
contains a direct product of two free groups of large ranks. The latter admits finitely generated normal
subgroups with undecidable membership problem (Mikhailova subgroups, [37]). However, in this case, the
ambient lattice is reducible.
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Fact 5.4. There exist irreducible arithmetic groups Γ such that for Zariski dense subgroups in Γ the mem-
bership problem is undecidable.

Very likely, the subgroups Γ can be found in SO(p, q) for suitable p, q. The existence of Γ is an appli-
cation of the Rips construction of small cancellation groups with non-recursively distorted normal subgroups
[46], combined with with the Cubulation Theorem of Dani Wise [51] and the embedability of cubulated
groups in RACGs (Right-Angled Coxeter groups), see [52], which, in turn, admit Zariski dense representa-
tions in O(p, q) ∩GL(p+ q,Z), see [5].

Note that the membership problem is decidable for subgroups with recursive distortion function, e.g. for
quasiisometrically embedded subgroups, such as Anosov subgroups.

6 Maximal subgroups
Recall that a subgroup M of a group Γ is said to be maximal if there is no proper subgroup Λ < Γ containing
M.

According to [35], every Zariski dense subgroup Γ in a semisimple Lie group G (of positive dimension)
admits maximal subgroups of infinite index. However, very little is known about maximal subgroups in this
setting. The construction of maximal subgroups in [35] is a two-step process: First, construct an infinite rank
free profinitely dense subgroup Λ < Γ (this step is essentially constructive) and then, use Zorn’s Lemma to
get a maximal subgroup M:

Λ < M < Γ.

The second step is completely nonconstructive.

Question 6.1 (G. Margulis, G. Soifer). Suppose that Γ < G is as above.

1. Is it true that for every maximal subgroup M < Γ is not finitely generated?

2. Is it true that Γ contains a free maximal subgroup?

Note that Aka, Gelander and Soifer [2] proved that there exists a finitely generated profinitely dense
subgroup Γ of SLn(Z) such that the number of generators of Γ does not depend on n.

Question 6.2 (G. Soifer). Does there exist a profinitely dense subgroup of SLn(Z) generated by two ele-
ments?

7 Other problems on thin subgroups
Definition 7.1. For a finitely generated group Γ with a finite generating subset S the Kazhdan constant
κ(Γ, S) is defined as

κ(Γ, S) = inf
π,v

max
g∈S
‖v − πgv‖,

where the infimum is taken over all unitary representations (Hπ, π) of Γ without fixed unit vectors, and all
unit vectors v ∈ Hπ . Then Γ is said to have Property T iff κ(Γ, S) > 0 for some/every finite generating
subset S. A group Γ is said to have uniform Property T, if infS κ(Γ, S) > 0 where the infimum is taken over
all finite generating subsets S.

The following question goes back to [32]:

Question 7.1 (A. Lubotzky). Does SL(n,Z), n ≥ 3, have the uniform Property T?

Note that Lubotzky was asking the more general question whether Property T implies uniform Property T,
which was answered in the negative independently by Gelander & Zuk [21], and Osin [40]. The problem is
open for all n. In the case of many classes of higher rank uniform lattices, the answer is known to be negative.

Question 7.2 (Bekka, de la Harpe, Valette). Are there thin subgroups of SL(n,Z), n ≥ 3, satisfying Prop-
erty T?
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The difficulty is that the known examples of (infinite discrete) groups satisfying Property T tend to be:
(a) super-rigid arithmetic groups, or (b) some combinatorially defined groups for which all real-linear repre-
sentations are nondiscrete or nonfaithful.

One can attempt to combine super-rigid lattices, but such combinations tend to destroy Property T. Al-
ternatively, one can attempt to use polygons of groups where vertex groups have Property T, with suitable
spectral conditions on links of vertices, but such constructions tend to produce relatively compact subgroups
of SL(n,R).

Note that the property τ (with respect to the family of finite index normal subgroups which are kernels of
homomorphisms to SL(n,Z/qZ)) holds for thin subgroups of SL(n,Z), n ≥ 3, see [10].

For the next question, recall that standard proofs of the Tits Alternative yield Zariski dense free subgroups
of the given semisimple Lie group G.

Definition 7.2. A free subgroup Γ < G is hereditarily Zariski dense (or strongly dense, see [13]) if every
noncyclic subgroup of Γ is Zariski dense in G.

The following problem is raised in [13]:

Question 7.3 (Breuillard, Green, Guralnick, Tao). Is it true that every Zariski dense subgroup of a real
semisimple Lie group G contains a hereditarily Zariski dense free subgroup? If so, is there a quantitative
version of this result?

It appears that the only case when the affirmative answer is known is when G is 3-dimensional (in which
case it is an immediate corollary of the Tits Alternative).

8 Characterization of higher rank lattices
Definition 8.1 (Prasad–Raghunathan rank). Let Γ be a group. Let Ai denote the subset of Γ that consists of
those elements whose centralizer contains a free abelian group of rank at most i as a subgroup of finite index.
Thus, A0 ⊂ A1 ⊂ . . . . The Prasad–Raghunathan rank, prank(Γ), of Γ is the minimal number i such that
Γ = γ1Ai ∪ · · · ∪ γmAi for some γ1, . . . , γm ∈ Γ.

For instance, if Γ is a lattice in a semisimple Lie group of rank n, then prank(Γ) = n. If M is a compact
Riemannian manifold of nonpositive curvature with Γ = π1(M), then prank(Γ) equals the geometric rank
of M , i.e. the largest n such that every geodesic in M is contained in an immersed n-dimensional flat.

Definition 8.2 (BGP, Bounded Generation Property). A group Γ is said to have BGP if there exist elements
γ1, ..., γk such that every γ ∈ Γ can be written as a product

γ = γn1
1 γn2

2 · · · γ
nk

k

for some n1, ..., nk ∈ Z. (Note that a power of each γi appears only once.)

Question 8.1 (G. Prasad). Does there exist a discrete Zariski dense subgroup Γ < G (with G a simple real
algebraic group) such that Γ is not a lattice but prank(Γ) = rankR(G)?

Question 8.2 (M. Kapovich). What algebraic properties distinguish higher rank (irreducible uniform) lat-
tices?

One such characterization was given by Lubotzky and Venkataramana [34], in terms of profinite comple-
tions.

Alternatively, notice that higher rank lattices Γ have Prasad–Raghunathan rank, prank(Γ) ≥ 2. Are
there discrete linear groups Γ which are not virtually nontrivial direct products and are not lattices, satisfying
prank(Γ) ≥ 2? In the case of groups Γ of integer points of split semisimple algebraic groups over Z, a
defining feature are the Serre relators. However, Serre relators are for unipotent elements, which do not
exist in uniform lattices. Uniform higher rank lattices satisfy approximate Serre relators. Do these determine
whether a discrete linear group is a higher rank lattice?

Notice that there are some indirect signs that an algebraic characterization of lattices is possible:
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1. Higher rank lattices are quasiisometrically rigid (Kleiner & Leeb [29], Eskin [18]).

2. Higher rank lattices are rigid in the sense of the 1st order logic (Avni, Lubotzky, Mieri [3]).

3. Appearance of Serre relators in profinite completions, (Prasad, Rapinchuk [43]).

The situation is not entirely clear even for nonuniform lattices. Many classes of higher rank nonuniform
lattices satisfy the BGP. Nonlinear groups that satisfy the BGP were constructed by A. Muranov [38].

Question 8.3 (M. Kapovich). Suppose that Γ is an abstract (infinite) R-linear group satisfying the BGP. Is it
isomorphic to a lattice in a Lie group?

Problem 8.4 (M. Mj). Does SL(3,Z) have the bounded generation property with respect to semisimple
elements? I.e., is there a collection of k semisimple elements g1, ..., gk ∈ SL(3,Z) such that every element
of SL(3,Z) has the form

g = gn1
1 ..., gnk

k ?

Conjecturally, the answer is negative (for dynamical reasons related to ping-pong arguments) which
should pave the way to prove that uniform lattices do not have bounded generation property.

9 Why are higher rank lattices super-rigid?
One way to say that an abstract group Γ is super-rigid is to require that for every field F and n ∈ N, there
are only finitely many conjugacy classes of representations Γ → GL(n, F ). Of course, some groups do not
admit any nontrivial linear representations, so it makes sense to restrict the discussion to finitely generated
linear groups Γ.

Loosely speaking, such a group is (super) rigid if it satisfies some peculiar relators. There are many
proofs of rigidity and super-rigidity of (higher rank irreducible) lattices, but none of these proofs (in the
setting of uniform lattices) use relators satisfied by lattices, likely because such relators are simply unknown
(see previous section). In contrast, there are known proofs of super-rigidity of some classes of higher rank
non-uniform lattices (see [45] and references therein).

Question 9.1 (M. Kapovich). What are group-theoretic reasons that make higher rank uniform lattices
(super)-rigid? Are the approximate Serre relators responsible for this? Or high Prasad-Raghunathan rank?

One known result in this direction is that the BGP implies super-rigidity, see [41]. Another group-theoretic
property implying super-rigidity is given by Lubotzky in [33].
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