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Abstract. We prove a weak hyperbolization conjecture for CAT(0) 3-dimensional
Poincaré duality groups.

1. Introduction

For a variety of classes of groups, it is a well–known open problem whether
the failure of Gromov hyperbolicity can be detected by the presence of special
subgroups, e.g. rank 2 abelian groups or Baumslag-Solitar groups. This is of
interest, for instance, for CAT (0) groups (even for the fundamental groups of fi-
nite 2-dimensional locally CAT (0) square complexes), for 1-relator groups, and 3-
dimensional Poincaré duality groups. We say that a class of groups satisfies the weak
hyperbolization conjecture if every group in the class is either Gromov hyperbolic,
or contains a copy of Z2. We recall that the weak hyperbolization conjecture for
3-manifold groups was a part of the program for proving the Geometrization Con-
jecture for closed aspherical 3-manifolds, the other ingredient in the program being
the Cannon conjecture. Although the work of Perelman has now resolved the full
Geometrization Conjecture, the weak hyperbolization conjecture for PD(3) groups
is a potential step in an approach to the following open question of C.T. Wall:

Question 1 (Wall). Is every finitely presented PD(3) group over Z isomorphic to
the fundamental group of a closed aspherical 3-manifold?

Our main result is that weak hyperbolization conjecture holds for CAT (0)
3-dimensional Poincaré duality groups over hereditary rings:

Theorem 2. Let G be a 3-dimensional Poincaré duality group over a commutative
hereditary ring R with a unit. Suppose in addition that G is a CAT (0)–group, i.e.,
a group which admits a cocompact isometric properly discontinuous action Gy X
on a locally compact CAT (0) space X.

Then either G is Gromov–hyperbolic or G contains Z2.

We note that special cases of this theorem were proven earlier by various peo-
ple: S. Buyalo [8] and V. Schroeder [18] independently have proven that this
theorem holds provided that X is the universal cover M̃ of a closed 3-manifold
M , the CAT (0)–structure on M̃ is Riemannian and G = π1(M) acts on X by
deck–transformations. L. Mosher [16] proved that Theorem 2 holds provided that
X = M̃ , G = π1(M), and the CAT (0) metric on is obtained by lifting a piecewise-
Euclidean (locally) CAT (0)–cubulation from M . M. Bridson and L. Mosher also
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have an unpublished proof of Theorem 2 under the assumption that X = M̃ has an
arbitrary G-invariant CAT (0)–structure. Unlike all these proofs, our proof takes
place on the ideal boundary of X; this allows us to treat 3-dimensional Poincaré
duality groups and relax the assumptions on the CAT (0) space.

Outline of the proof of Theorem 2. Assume that G is not Gromov hyperbolic,
i.e., that X contains a 2–flat. By the work of Bestvina [2], the ideal boundary of X
is homeomorphic to S2. Our proof exploits the geometry of flats and parallel sets
in X, and the pattern of their boundaries in the 2-sphere ∂∞X. The proof breaks
into three cases.

Case 1. X contains a 3-flat, Section 5.1. This implies that X is at finite
Hausdorff distance from the 3-flat, and we conclude that G is virtually Z3.

Case 2. X contains no 3-flat but some parallel set P ⊂ X has full ideal
boundary, i.e. ∂∞P = ∂∞X, Section 5.3. We argue that P splits isometrically
as R× Y , where ∂∞Y is a circle, and G acts as a convergence group on ∂∞Y . We
then deduce that a finite index subgroup of G is isomorphic to the fundamental
group of a 3-dimensional Seifert manifold.

Case 3. X contains no 3-flat and no parallel set with full boundary,
Section 5.4. This is the main case. We show that every parallel set P in X is
isometric to a product R× Y , where Y is Gromov hyperbolic. The ideal boundary
of P is a suspension of the boundary ∂∞Y ; when P contains a 2-flat, we identify
certain topological circles in ∂∞P which we call peripheral, and show that peripheral
circles cannot cross one another in the 2-sphere ∂∞X.

Next, we choose a flat F ⊂ X whose boundary ∂∞F ⊂ ∂∞X is a peripheral
circle, and consider its orbit {g(F )}g∈G. Because the circles {g(∂∞F )}g∈G do not
cross, we may use them to define a pretree T on which G has a natural action. Using
a Plante-type construction, we associate to T an R–tree T , which then inherits a
nontrivial small stable G-action. By applying Rips’ theory [3], we conclude that
G admits a small nontrivial action on a simplicial tree. Using the fact that G is a
PD(3) group, we deduce that the edge groups must be virtually Z2.

Acknowledgements. The first author was supported in part by NSF Grants
DMS-02-03045 and DMS-04-05180, the second author was supported in part by
NSF Grants DMS-02-24104 and DMS-05-05610. The authors are grateful to the
referee for useful suggestions.

2. Geometric preliminaries

In this section we briefly review several notions of metric geometry. We refer the
reader to [1], [6] for the detailed discussion.

A geodesic metric space is a metric space (X, d) such that any two points x, y ∈ X
in X are connected by geodesic, i.e. if D := d(x, y) then there exists an isometric
embedding

γ : [0, D] → X,

so that γ(0) = x, γ(D) = y.
2



Let X be a metric space and C ⊂ X be a subset. The r-neighborhood of C in
X is defined as

Nr(C) := {x ∈ X : d(x,C) < r},
where d(x,C) := inf{d(x, c) : c ∈ C}.

The Hausdorff distance between closed subsets of a metric space X is defined as

dH(C1, C2) := inf{r : C1 ⊂ Nr(C2), C2 ⊂ Nr(C1)}.
Note that this distance is allowed to take infinite values. If X has finite diameter,
the Hausdorff distance defines the Hausdorff topology on the set C(X) of closed
subsets of X. More generally, even for unbounded metric spaces X one defines the
Gromov–Hausdorff topology on C(X) as follows. We say that a sequence Cn ∈ C(X)
converges (in the Gromov–Hausdorff topology) to a closed set C ∈ C(X) if for each
closed metric ball B ⊂ X the intersections

Cn ∩B ∈ C(B)

converge to C∩B in the Hausdorff topology on C(B). Equivalently, Cn’s converge to
C if the corresponding distance functions d(·, Cn) converge to the distance function
d(·, C) uniformly on bounded subsets in X.

Given a number κ ∈ R let Mκ denote the (unique up to isometry) complete
simply-connected surface of the constant curvature κ. A geodesic metric space X is
said to be a CAT (κ) space if X is complete as a metric space and geodesic triangles
in X are “thinner” than triangles in Mκ. More precisely, consider a geodesic triangle
T = [x, y, z] ⊂ X (with the vertices x, y, z), in case when κ > 0 (and Mκ is a sphere)
we assume that the perimeter of this triangle is less than the circumference of the
great circle in Mκ. Consider a triangle T ′ = [x′, y′, z′] ⊂ Mκ whose side-lengths are
equal to the corresponding side-lengths of the triangle T . Let p be a point in the
geodesic side xy of T and let p′ ∈ x′y′ be such that

d(x′, p′) = d(x, p).

Then we require
d(x, p) ≤ d(x′, p′).

In this paper we will also need a generalization of the concept of a CAT (1) space
to metric spaces X which are not geodesic. We assume that X is a disjoint union
of geodesic metric spaces Xα, α ∈ J , where each Xα is a geodesic CAT (1) metric
space and if α 6= β the distance between any x ∈ Xα, y ∈ Xβ equals π. Then X
will be also referred to as a CAT (1) space. An example of such a space is a space
with discrete metric where distance between any pair of distinct points equals π.

If Xis a CAT (1) space, we call points x, y ∈ X antipodal if d(x, y) = π.
Suppose that X is a CAT (0) space. Then the distance function on X is convex,

i.e., its restriction to each geodesic in X is convex.
A space X is called CAT (−∞) if it is CAT (κ) for each κ ∈ R. A metric tree

is a CAT (−∞); in other words, it is a complete geodesic metric space where each
geodesic triangle is isometric to a tripod.

A group G is called a CAT (0)-group if it admits an isometric properly discon-
tinuous cocompact action on a locally compact CAT (0)-space.

Suppose that X is a CAT (0) space and F ⊂ X is a k-flat, i.e., an isometrically
embedded copy of a Euclidean space Rk. Then the parallel set PF of F in X is the
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union of all k-flats F ′ ⊂ X which are within finite distance from F . The parallel
set PF is closed, convex and is isometric to a product

F × Y

where Y is a CAT (0) space, see for instance [6, Theorem II.2.14].

Remark 3. Theorem II.2.14 in [6] is stated in the case k = 1. The general case
follows, for instance, by induction on the dimension of the flat.

We will say that a parallel set is trivial if k = 1 and Y is bounded.

Given a CAT (0) space one defines the ideal boundary of X as the collection
of equivalence classes of geodesic rays in X, where rays are equivalent if they are
within finite Hausdorff distance from each other. This boundary has two (typically
distinct) topologies:

1. The visual topology, in which case the ideal boundary is denoted ∂∞X and is
called the geometric boundary of X.

2. The Tits topology, which is defined via the Tits angular metric, in which case
the ideal boundary is denoted ∂TitsX.

The second boundary is called Tits boundary of X; this boundary is always a
CAT (1) space.

For instance, in the case when X = H2, ∂∞X is homeomorphic to S1, while
∂TitsX has discrete metric: the distance between distinct points equals π. A
CAT (0) space is called a visibility space if any pair of distinct points in ∂TitsX
are antipodal.

A subset C ⊂ Z := ∂TitsX is called convex if for any two non-antipodal points
x, y ∈ Z, the geodesic segment xy connecting x to y, is entirely contained in C.
Intersection of two convex subsets of Z is also convex. If Y ⊂ X is a convex subset
then ∂TitsY ⊂ Z is convex as well.

Let δ ∈ [0,∞) and consider a geodesic metric space X. A triangle T ⊂ X is
called δ-thin if there exists a point p ∈ X which is within distance ≤ δ from all
three sides of T . A complete geodesic metric space X is called δ-hyperbolic if each
geodesic triangle T in X is δ-thin. A space X is called Gromov–hyperbolic if it is
δ-hyperbolic for some δ. A finitely generated group G is called Gromov–hyperbolic
if its Cayley graph is Gromov–hyperbolic. One again defines the ideal boundary
∂∞X by looking at the equivalence classes of geodesic rays in X.

Suppose that G is a group acting isometrically, properly discontinuously and
cocompactly on a CAT (0) space X. Then the group G is Gromov–hyperbolic iff X
is a visibility space.

Let X be a Gromov-hyperbolic geodesic metric space which admits a cocompact
isometric group action. We assume that the ideal boundary of X consists of more
than 2 points; it then follows that ∂∞X has the cardinality of the continuum. The
displacement function of an isometry g : X → X is

dis(g) : x → d(x, g(x)), x ∈ X.

Lemma 4. Under the above assumptions there exists a constant D = D(X) such
that for each g ∈ Isom(X) which fixes ∂∞X pointwise, the displacement of g is
bounded from above by D.

4



Proof. Let G y X be a cocompact isometric group action; pick a metric ball
B = B(o,R) ⊂ X so that the G–orbit of B equals X. It then suffices to prove that
there exists D < ∞ such that for each isometry g of X fixing ∂∞X pointwise,

d(o, g(o)) ≤ D.

Since the ideal boundary of X contains at least 4 points, there exists a pair of geo-
desics γ1, γ2 ⊂ X which have disjoint ideal boundaries. Without loss of generality
we may assume that both γ1, γ2 pass through the ball B.

Since X is δ–hyperbolic, there exists a number r = r(δ) < ∞ such that if
geodesics α, β ⊂ X are within finite Hausdorff distance, then

dH(α, β) ≤ r,

see for instance [6]. For every isometry g as above, the geodesics

γi, g(γi)

are within finite Hausdorff distance from each other; therefore

dH(γi, g(γi)) ≤ r, i = 1, 2.

Then
d(g(o), g(γi)) ≤ R ⇒ d(g(o), γi) ≤ R + r, i = 1, 2.

However, since the geodesics γ1, γ2 have disjoint ideal boundaries, the diameter of

S := NR+r(γ1) ∩NR+r(γ2)

is finite. Therefore, if we take D := diam(S)/2, the distance between o and g(o) is
at most D. ¤
Remark 5. An analogue of Lemma 4 holds for quasi-isometries of X with uniformly
bounded quasi-isometry constants.

3. Pretrees

In what follows we will need definitions and basic facts about pretrees; the defi-
nitions which we give follow [5].

A pretree is a set T together with a ternary relation (the betweenness relation)

“y is between x and z”,

to be denoted β(xyz), satisfying the following axioms:

Axiom 1. β(xyz) implies that x 6= y 6= z.
Axiom 2. β(xyz) ⇐⇒ β(zyx).
Axiom 3. β(xyz) and β(yxz) cannot hold simultaneously.
Axiom 4. If w 6= y then β(xyz) implies that either β(xyw) or β(wyz).

Given a pretree T one can define closed, open and half-open intervals in T by

(x, z) := {y ∈ T : β(xyz)}, [x, z] := (x, z) ∪ {x, z}, etc.
Given an increasing union of intervals

[x1, y1] ⊂ [x2, y2] ⊂ ... ⊂ [xi, yi] ⊂ ...

we will also refer to the union of these intervals as a (possibly infinite) interval in
T .
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We note that β defines an order on each interval in T .
Define a “triangle” in T with vertices a, b, c to be the union of the segments

(called “sides” of the triangle) [a, b], [b, c], [c, a].

Lemma 6. Each triangle ∆ in T is 0-thin, i.e., each side of ∆ is contained in the
union of the two other sides.

Proof. Follows immediately from Axiom 4. ¤
Suppose that T is a pretree which is given a measure µ (without atoms) defined

on closed intervals in T and the σ-algebra which these intervals generate. Define a
function d(x, y) on T by d(x, y) := µ([x, y]).

Lemma 7. d is a pseudo-metric on T .

Proof. It is clear that d is symmetric and d(x, x) = 0 (since µ has no atoms). The
triangle inequality follows because for each triangle with the vertices a, b, c we have
(see Lemma 6)

[a, b] ⊂ [a, c] ∪ [b, c]. ¤
We note that if for each interval [a, b] ⊂ T , with a 6= b, µ(a, b) > 0 then d is

a metric. Moreover, it follows that (a, b) 6= ∅ for each a 6= b. If the restriction of
the metric d to each interval [x, y] is complete then [x, y] is order isomorphic to an
interval in R and moreover, ([x, y], d) is isometric to an interval in R. We thus get:

Lemma 8. Suppose that for each interval [x, y] ⊂ T , with x 6= y, µ[x, y] > 0, and
that the restriction of the metric d to each interval in T is complete. Then (T, d)
is a metric tree.

Proof. It is clear from the above discussion that T is a geodesic metric space. Since
each triangle in T is 0-thin, it follows that each triangle in T is isometric to a tripod.
Finally, let’s check completeness of T : Suppose that xi, i ≥ 0, is a Cauchy sequence
in T . Then there exists an increasing sequence of intervals Ii ⊂ T such that

lim
i

µ([x0, xi] ∩ Ii) = lim
i

d(x0, xi).

Then completeness of d restricted to the union I of Ii’s implies that (xi) converges
to a point in the interval I. ¤

4. Ideal boundaries of CAT (0) Poincaré duality groups

Let G y X be a discrete cocompact action of a PD(3) group G on a CAT (0)-
space X. In this section we show that the ideal boundary of the CAT (0) space X
is homeomorphic to S2.

We refer the reader to [4], [7] for the background on the cohomology of groups.
Recall [4], that an n-dimensional Poincaré duality group over a ring R (for short,
PD(n) group over R), is an FP -group over R such that Hi(G,RG) is isomorphic
to R as an R-module when i = n and is trivial otherwise.

Let Z := ∂∞X be the ideal boundary of a locally compact CAT (0) space.
M. Bestvina in [2] proved that the compactification

X̄ := X ∪ Z

satisfies the axioms of the Z-set compactification. Instead of listing all the axioms
of the Z-set compactification we mention only several properties:
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1. If G y X is an isometric group action then this action extends to a topological
action of G on X̄.

2. There exists a natural isomorphism

H∗
c (X) → H̃∗−1

c (Z),

which is compatible with inclusions of closed convex subsets X ′ ⊂ X.
3. We state the third property as a lemma:

Lemma 9. If G is a PD(3) group acting isometrically, properly discontinuously
and cocompactly on a CAT (0) space X, then the ideal boundary Z of X is homeo-
morphic to S2.

Proof. Bestvina proves, [2, Theorem 2.8], that if G is a PD(3) group over R, then
Z is homeomorphic to S2. We note that Bestvina proves the latter theorem under
more restrictive assumptions than we are working with (although, his class of groups
G includes 3-manifold groups):

1. Bestvina assumes that the commutative ring R is a PID. However this as-
sumption is used only to apply the Universal Coefficients Theorem, which works
for hereditary rings as well, see [9].

2. Bestvina’s definition of an n-dimensional Poincaré duality group is more re-
strictive than the usual one: Instead of the FP property he assumes that a group
G acts freely, properly discontinuously, cocompactly on a contractible cell complex
Y . Note however that Bestvina in his proof uses only the fact that G y Y (i)

is cocompact on each i-skeleton of Y . Then existence of such an action for the
CAT (0)-groups follows from a general construction described in [14]. Namely, if a
group G admits a properly discontinuous cocompact action on a contractible space
X (e.g. the CAT (0)-space in our case) then it also admits a free, properly dis-
continuous action on a contractible cell complex Y (possibly of infinite dimension)
such that Y (i)/G is compact for each i.

3. Bestvina assumes that the image of the orientation character χ of the Poincaré
duality group G is finite (he then passes to a finite index subgroup in G which is
the kernel of χ). However this assumption can be omitted from his theorem using
twisting of the action G y C∗(Y ) by the character χ as it is done in [14, Section
5.1].

With the above modifications, Bestvina’s arguments apply in our case and it
follows that ∂∞X is homeomorphic to the 2-sphere. ¤

5. Proof of the main theorem

5.1. Case 1: X contains a 3-flat. The main goal of this section is to show that,
in case X contains a 3-flat, the group G contains a finite index subgroup isomorphic
to Z3.

Lemma 10. Suppose that S is a convex subset in X such that ∂∞S = ∂∞X. Then
S is within finite Hausdorff distance from X.

Proof. Pick a base-point o ∈ X. If S is not within finite Hausdorff distance from
X then there exists a sequence of isometries gi ∈ G such that d(o, giS) diverges
to infinity. Consider the functions fi := d(x, giS) − d(o, giS). Then, according
to Lemma 2.3 in [15], the sequence of functions fi subconverges to a Busemann
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function b on X. Clearly, the sublevel sets {fi ≤ 0} subconverge into the horoball
U := {b ≤ 0} in X. Since ∂∞{fi ≤ 0} = ∂∞giS = ∂∞X, it follows that ∂∞X =
∂∞U .

Let F be a 2-flat in X. Then ∂∞F ⊂ ∂∞U and convexity of horoballs in X
imply that for each x ∈ F

t = f(x) ⇒ F ⊂ {z : b(z) ≤ t}.
It follows that the restriction b|F is constant and thus F is contained in the
horosphere {x : b(x) = t} for some t ∈ R. Then Lemma 2.2 in [15] implies that
X contains a half-space H := R+ × F . Then, by taking an appropriate limit of
the half-spaces hj(H), hj ∈ G, we see that X contains the 3-flat F ′ := F × R. By
Lemma 9, ∂∞F ′ = ∂∞X. Suppose that F ′ is not within finite Hausdorff distance
from X. Then, by repeating the same argument as above with S replaced with F ′

and then F replaced with F ′, we see that X contains a 4-flat, which contradicts
Lemma 9.

Therefore X is within finite Hausdorff distance from the 3-flat F ′; in particular,
there are no horoballs in X which have the same ideal boundary as X. Contradic-
tion. ¤
Corollary 11. If X contains a 3-flat then the group G is virtually abelian, in
particular, it contains Z× Z.

Proof. If F is a 3-flat in X then, by Lemma 9, ∂∞F = ∂∞X and, by Lemma
10, F is within finite Hausdorff distance from X. It follows that the group G is
isomorphic to a lattice in Isom(R3) and hence it is virtually abelian and contains
Z3 as a subgroup of finite index. ¤
Assumption 12. From now on we will assume that X contains no 3-flats.

5.2. Metric balls and parallel sets in X. In this section we establish certain
geometric properties of X which follow from Assumption 12.

Lemma 13. There exists r0 ∈ R such that the following holds. For each ball
B(x, r) ⊂ X, isometric to a disk of the radius r in R3, we have: r ≤ r0.

Proof. If the assertion is false then there exists a sequence of balls B(xi, ri) with
limi ri = ∞. Let gi ∈ G be such that gi(xi) is a bounded sequence in X. Then the
balls gi(B(xi, ri)) subconverge to a 3-flat in X. Contradiction. ¤
Corollary 14. The set of 2-flats F ′ ⊂ X which are parallel to a flat F is compact
in Gromov–Hausdorff topology.

Proof. If not then X contains convex subsets isometric to [0, r]×R2 for arbitrarily
large r. This contradicts the previous lemma. ¤
Lemma 15. Suppose that Y × R is a parallel set in X. Then Y is Gromov–
hyperbolic.

Proof. We repeat the arguments in [6, Theorem 9.33]. If Y is not Gromov–
hyperbolic then there exists a pair of points ξ, η ∈ ∂∞Y so that the Tits angle
between ξ, η is positive but less than π. Pick a point o ∈ Y and consider a sequence
of points yi ∈ oξ which converge to ξ and the geodesic rays yiη. We identify the rays
yiξ, yiη with geodesic rays in Y × R ⊂ X (that share common point yi). Then, by

8



applying an appropriate sequence of elements gi ∈ G (for which {gi(yi)} is bounded
in X) to Y × R and to the rays yiξ, yiη and passing to the limit of a subsequence,
we get:

1. The sets gi(Y × R) subconverge to a parallel set Y ′ × R.
2. Y ′ contains two geodesic rays yξ′, yη′ (limits of the sequences of rays gi(yiξ),

gi(yiη)) which bound a flat sector in Y ′.
This contradicts Lemma 13. ¤

5.3. Case 2: X contains a parallel set with the full boundary. In this section
we prove the main theorem under the assumption that X contains a parallel set P
whose ideal boundary is the entire ∂∞X.

Proposition 16. Suppose that there is a convex product subset P = R × Y such
that ∂∞S = ∂∞X. Then G is commensurable to the fundamental group of a 3-
dimensional Seifert manifold. In particular, G contains Z2.

Proof. We will assume that P is a maximal convex product subset in X. Since
Y is Gromov–hyperbolic, it follows that the Tits boundary of S is the suspension
of a discrete metric space which is the ideal boundary of Y . Therefore, since
∂∞P = ∂∞X, the group G preserves the ideal boundary of the geodesic l = R×{y}.
Hence for each g ∈ G the geodesic g(l) is parallel to l, which (by the maximality
assumption) implies that g(P ) = P .

We have an induced isometric action ρ : G y Y . Since the suspension of ∂∞Y
is homeomorphic to the 2-sphere ∂∞X, the ideal boundary of Y is homeomorphic
to S1. Thus the cocompact isometric action ρ : G y Y extends to a uniform
(topological) convergence action G y ∂∞Y = S1. Therefore, according to [10, 12,
13, 19], the action G y S1 is topologically conjugate to a Moebius action ρ′.

Let K denote the kernel of ρ′.

Lemma 17. K contains an infinite cyclic subgroup of finite index.

Proof. Let D = D(Y ) denote the constant given by Lemma 4. Pick a point y ∈ Y .
Then for each g ∈ K,

d(y, g(y)) ≤ D.

Therefore the K–orbit of y is contained in the metric ball B(y,D). Thus for every
x ∈ X, the K–orbit of x is contained in a D–neighborhood of the geodesic l =
{y} × R (passing through x). Therefore K is quasi–isometric to Z and hence is
virtually Z. ¤

Lemma 18. The action G y S1 is topologically conjugate to an action of a uniform
lattice in Isom(H2).

Proof. The action ρ′(G) y H2 is cocompact, therefore we have the following pos-
sibilities:

(a) ρ′(G) is a cocompact discrete subgroup in Isom(H2).
(b) ρ′(G) is a solvable subgroup in Isom(H2), which fixes a point in S1. Then

ρ′(G) is not virtually abelian which contradicts the fact that G is a CAT(0) group.
(c) ρ′(G) is dense in PSL(2,R). Then, the group ρ′(G) contains a nontrivial

elliptic element ĝ and it also contains a sequence of elements ĥi which converge
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to 1 ∈ PSL(2,R). Let g, hi ∈ G be elements which map (via ρ′) to ĝ and ĥi

respectively. Clearly, ρ(g) ∈ Isom(Y ) is elliptic as well, let y ∈ Y be its fixed point.
By taking conjugates gi := high−1

i , we get an infinite collection of distinct elements
{gi : i ∈ N} of G such that for each n ∈ Z, gi(y × R) is contained in NR(y × R)
where R ∈ R+ is independent of i. We note that since all gi are pairwise conjugate,
there exists C < ∞ such that d(x, gi(x)) < C for each x ∈ y × R and i ∈ N. This
contradicts discreteness of the action of G on X. ¤

The above two lemmas imply that the kernel of ρ is commensurable to Z and
the quotient ρ(G) is commensurable to the fundamental group of a 2-dimensional
hyperbolic surface. Thus, after passing to a finite index subgroup in G we obtain a
short exact sequence

(19) 1 → K → G → Q → 1

where Q is the fundamental group of a closed oriented surface.

Lemma 20. Suppose that for a group H we have a short exact sequence

1 → Z/nZ→ H → Q → 1.

Then H contains a finite index surface subgroup.

Proof. Let t denote the generator of Z/nZ. Let ai, bi, i = 1, ..., n denote the lifts to
H of the standard generators of Q. It suffices to consider the case when

[a1, b1] · · · [an, bn] = t

and t belongs to the center of H. Consider the finite Heisenberg group

Hn := 〈a, b, t : [a, b] = t, an = bn = tn = 1, [a, t] = 1, [b, t] = 1〉.
Define the homomorphism φ : H → Hn by

φ(a1) = a, φ(b1) = b, φ(ai) = φ(bi) = 1,∀i ≥ 2.

Then the kernel H ′ of φ is a torsion-free subgroup of finite index in H. It follows
that the map H → Q sends H ′ injectively to a finite index subgroup in Q. Therefore
H ′ is a surface group. ¤

We now return to the exact sequence (19). As in the above lemma we let ai, bi, i =
1, ..., n denote the lifts to G of the standard generators of Q. Let H ⊂ G denote
the subgroup generated by these elements. If

t := [a1, b1] · · · [an, bn]

is an infinite order element of K then H is isomorphic to the fundamental group
of a Seifert manifold (whose base is a surface with the fundamental group Q). It is
clear that H has finite index in G.

It t has finite order then, according to Lemma 20, after passing to a finite index
subgroup in Q) we can assume that t = 1. Pick an infinite order element k ∈ K
which belongs to the center of G. Then the subgroups H and 〈k〉 generate the
product

Z×Q ⊂ G.

Again, clearly, this subgroup has finite index in G. Thus, in the both cases, G is
commensurable to the fundamental group of a 3-dimensional Seifert manifold. ¤

Thus, the conclusion of Theorem 2 holds provided that X contains a parallel set
with the full boundary.
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Assumption 21. From now on we will assume that the ideal boundary of each
parallel set of X is a proper subset of ∂∞X.

5.4. Case 3: The ideal boundary of every parallel set in X is a proper
subset of ∂∞X. In this section we show that the peripheral circles of the ideal
boundaries of nontrivial parallel sets in X can be used to construct a small stable
nontrivial isometric action of G on an R-tree. Then, by Rips theory, G admits
a nontrivial splitting as an amalgam with virtually abelian edge groups. This, in
turn, implies that the edge groups are virtually Z2.

According to Eberlein’s theorem (see [11] in the smooth case and [6, Theorem
9.33] in general), the CAT (0) space X is either a visibility space or it contains a
2-flat F . Since in the former case, G is Gromov–hyperbolic, we assume that X
contains a 2-flat F . In particular, X contains nontrivial parallel sets.

Lemma 22. Suppose that P = Y ×R is a nontrivial parallel set in X. Then ∂∞P
contains a topological circle S which is geodesic in the Tits metric so that S bounds
a disk in ∂∞X \ ∂∞P .

Proof. Let ξ, η ∈ ∂∞P be the ideal points of a geodesic y × R ⊂ Y × R = P .
Then the Tits boundary ∂TitsP is the metric join S0 ? ∂TitsY , which is the union
of geodesic segments Lµ of length π connecting η and ξ and passing through µ ∈
∂TitsY ⊂ ∂TitsX. Clearly, if µ 6= µ′ then S := Lµ∪Lµ′ is a topological circle which
is geodesic in the Tits metric.

Let D be a component of ∂∞X \ ∂∞P . Then there is a point ζ ∈ ∂D which
belongs to Lµ \ {ξ, η} for some µ ∈ ∂TitsY . Clearly, ∂D is not contained in Lµ,
therefore there exists a point ζ ′ ∈ ∂D which belongs to Lµ′ \ {ξ, η} for some µ′ ∈
∂TitsY \ {µ}. The reader will verify that the circle S = Lµ ∪ Lµ′ bounds D. ¤

We will refer to these circles S as in Lemma 22, as peripheral circles of ∂∞P . A
flat in X whose boundary is a peripheral circle will be called a peripheral flat.

It follows from the properties of the Tits metric (discussed in section 2) that if
F, F ′ ⊂ X are 2-flats then the intersection ∂TitsF ∩∂TitsF

′ ⊂ ∂TitsX is convex and
either consists of two antipodal points or is a circular arc in ∂TitsF of the length
≤ π.

Definition 23. We say that totally-geodesic circles S, S′ ⊂ Z cross if S contains
points from each component of Z \ S′ (in the visual topology). Note that crossing
is a symmetric relation. We will say that the ideal boundaries of two parallel sets
P, P ′ cross if at least one circle in ∂TitsP crosses a circle in ∂TitsP

′.

Observe that if S and S′ cross, the intersection S ∩ S′ consists of a pair of
antipodal points.

Lemma 24. Suppose that P = l× Y ⊂ X is a parallel set for which ∂∞Y consists
of at least 3 points (i.e., P is not within finite Hausdorff distance from a flat) and
F ⊂ X is a 2-flat which is not contained in P . Then ∂∞P and S = ∂∞F do not
cross.

Proof. Suppose to the contrary that ∂∞P and S = ∂∞F do cross. Recall that
∂∞P is the metric join of {η,−η} = ∂∞l and ∂∞Y . If S were to pass through η
then, by convexity, S passes through −η as well and hence F would be contained in

11
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the parallel set P . Therefore, S does not pass through ∂∞l and the configuration
{∂∞P, S} has to look like the one in Figure 1, where x, y, z denote the distances
from η to the points of intersection between ∂∞P and S. It follows that x + y = π,
y + z = π, x + z = π and thus

x = y = z = π/2.

This implies that the circle S is contained in ∂∞Y , thus Y cannot be Gromov–
hyperbolic. This contradicts Lemma 15. ¤

We observe that, since G y X is properly discontinuous, the stabilizer of each
flat F ⊂ X in the group G is virtually abelian. We assume that this stabilizer is
virtually cyclic (possibly finite)–otherwise G contains Z2.

Suppose that we have three flats F, F ′, F ′′ ⊂ X with pairwise distinct ideal
boundaries. We will say that F ′ separates F from F ′′ if the following holds:

∂∞F ⊂ D, ∂∞F ′′ ⊂ D
′′
,

where D t D′′ = Z \ ∂∞F ′. We set the ternary relation β by: β(FF ′F ′′) if F ′

separates F from F ′′.
We leave it to the reader to verify that with this ternary relation the set P of all

peripheral flats in X satisfies the axioms of a pretree.

Lemma 25. If U0 is a horoball in X then W := ∂∞U0 does not separate ∂∞X.

Proof. Let ξ ∈ ∂∞X and consider the horoballs Ut = {bξ(x) ≤ t}, t ∈ R, where
bξ is the appropriately normalized Busemann function at ξ. Clearly ∂∞Ut = W
for each t. Property (2) of the Z-set compactification applied to the pairs (Ut, W )
means that we have natural isomorphisms

(26) Hi
c(Ut) → H̃i−1(W ).

12



Suppose that [ζ] ∈ Hi
c(Ut). Then there exists s < t such that Us is disjoint from

the support set of the cocycle ζ. Therefore [ζ] maps trivially to Hi
c(Us) and hence,

by naturality of (26), it maps trivially to H̃i−1(W ). We conclude that H̃∗(W ) =
0. Therefore, by the Alexander duality on ∂∞X, the subset W = ∂∞U0 cannot
separate ∂∞X. ¤
Proposition 27. Let F, F ′′ be flats in X. Then the set S(F, F ′′) of flats F ′ sepa-
rating F from F ′′ is compact with respect to the Gromov–Hausdorff topology.

Proof. If ∂∞F = ∂∞F ′′ then for each flat F ′ separating F and F ′′ we have: ∂∞F ′ =
∂∞F . Therefore, S(F, F ′′) is compact by Corollary 14.

Whence we can assume that ∂∞F ′ 6= ∂∞F ′′. Suppose that Fi is a sequence of
2-flats in X which diverge to infinity, i.e.

lim
i

d(o, Fi) = ∞
where o ∈ X is a base-point. Then, as in the proof of Lemma 10, the limit of the
distance functions to Fi (normalized at o) subconverge to a Busemann function bξ

in X. Let U be the horoball {x : bξ(x) ≤ 0}.
If, say, ∂∞F ⊂ ∂∞U then the flat F is contained in the sublevel set of the

Busemann function bξ and therefore X would contain a flat half-space R3
+, which

contradicts Lemma 13. Thus both complements

∂∞F \ ∂∞U, ∂∞F ′′ \ ∂∞U

are nonempty.

Lemma 28. 1. In the Hausdorff topology on the set of closed subsets of X ∪∂∞X,
the sets Fi ∪ ∂∞Fi subconverge into ∂∞U .

2. ∂∞F ∩ ∂∞F ′′ ⊂ ∂∞U .

Proof. 1. Suppose that the assertion is false. Then there exists a sequence of points
xi ∈ ∂∞Fi such that

η = lim
i

xi /∈ ∂∞U.

Clearly, η ∈ ∂∞X. Consider a parametrization ρ(t), t ∈ R+ of the geodesic ray oη.
Then, since η /∈ ∂∞U , there exists T ≥ 0 such that

(29) bξ(ρ(t)) ≥ 1, ∀t ≥ T.

The Busemann function bξ is the limit of the normalized distance functions

di(x) = d(x, Fi)− d(o, Fi).

Then di(o) = 0, di(xi) ≤ 0 for all i and hence, by convexity,

di(yi) ≤ 0, ∀yi ∈ oxi.

This, together with the inequality (29), contradicts the assumption that the geo-
desics oxi converge to the geodesic ray oη.

2. Observe that ∂∞F ∩ ∂∞F ′′ ⊂ ∂∞Fi for each i. Thus (2) follows from (1). ¤
We continue the proof of Proposition 27. Pick points

η ∈ ∂∞F \ ∂∞U, η′′ ∈ ∂∞F ′′ \ ∂∞U.

Previous lemma implies that

η, η′′ /∈ ∂∞F ∩ ∂∞F ′′
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and that (since ∂∞U does not separate ∂∞X) for large i the points η, η′′ belong to
the same connected component of ∂∞X \ ∂∞Fi. This contradicts the assumption
that Fi is between F, F ′′ for all i. ¤

Now, let’s pick a peripheral 2-flat F0 ∈ P, consider the set {gF0, g ∈ G} and
its closure F in the Gromov–Hausdorff topology. The elements of F are peripheral
2-flats in X and the group G acts naturally on F . We note that since no flat in F
has cocompact stabilizer, F contains no isolated points. After passing to a smaller
G-invariant subset in F we may assume that the action G y F is minimal. The
union

L̃ := ∪F∈FF

equipped with the Gromov–Hausdorff topology becomes a locally compact 2-dimen-
sional lamination, the topological action G y L̃ is properly discontinuous and
cocompact. The lamination L̃ has a continuous G-invariant leafwise flat metric.
Therefore, since each leaf of L̃ is amenable, Plante’s construction (see [17]) implies
existence of a transversal G-invariant measure µ on L̃; minimality of G y F implies
that this measure has full support.

Lemma 30. Suppose that F ∈ F , gn ∈ G is a sequence such that limn→∞ gnF =
F∞ ∈ F . Then there exist x−, x+ ∈ F such that for all sufficiently large n, gnF ∈
[x−, x+] and F∞ ∈ [x−, x+].

Proof. Since limn→∞ gnF = F∞, the circles ∂Tits(gnF ) converge to the circle
∂TitsF∞ in the Chabauty topology (we again are using here the visual topology
on Z). The circles in the collection

{∂Tits(gnF ), ∂TitsF∞, n ∈ N}
are all peripheral and hence do not cross each other (by Lemma 24). This implies
that for all large n,m either ∂Tits(gnF ) separates ∂Tits(gmF ) from ∂TitsF∞ or
∂TitsF∞ separates ∂Tits(gnF ) from ∂Tits(gmF ). ¤

The above lemma implies that the natural projection p : L̃ → F is continuous,
where we give F the order topology, whose basis consists of the open intervals (a, b).
It is also clear that p is a proper map in the sense that for each interval [a, b] the
inverse image p−1([a, b]) consists of leaves of L̃ which intersect a certain compact
subset in X: If a sequence of flats Fj leaves every compact subset in X then this
sequence subconverges to a point in ∂∞X, but a point cannot separate one circle
in ∂TitsX from another.

The measure µ on the pretree F has no atoms and (since the measure µ transver-
sal to L̃ has full support) for each pair of distinct points x, x′ ∈ F , µ([x, x′]) = 0
iff the corresponding flats F, F ′ in X are not separated by any flat in F . We let T
be the quotient of F by the equivalence relation: Points x, x′ ∈ F are equivalent iff
µ([x, x′]) = 0. The G-action, the pretree structure, and the measure µ project to T
(we retain the notation µ for the projection of the measure). As it was explained
in section 3, the measure µ yields a metric d on T . Local compactness of L̃ implies
that the restriction of d to each interval in T is a complete metric. It is clear that
the group G acts isometrically on T .

Remark 31. The map F → T has at most countable multiplicity. Moreover, all but
countably many points in T have a unique preimage in F .
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Lemma 32. 1. T is an uncountable metric tree.
2. Stabilizers of nondegenerate arcs in T are virtually cyclic and the action

Gy T is stable.
3. G does not have a global fixed point in T .

Proof. 1. Follows from Lemma 8.
2. By our hypothesis, for each point F ∈ F its G-stabilizer is virtually cyclic.

Since F is prefect, it is uncountable; hence, by Remark 31, uncountably many points
in each nondegenerate arc [x, y] ⊂ T have a virtually cyclic stabilizer. Thus the
action G y T is small. Since G is a CAT (0) group, each virtually cyclic subgroup
of G is contained in a maximal virtually cyclic subgroup. Therefore, if I1 ⊃ I2 ⊃ ...
is a descending chain of arcs in T , then the sequence of their stabilizers in the group
G

GI1 ⊂ GI2 ⊂ ...

is eventually constant. Thus the action G y T is stable.
3. The action G y F is minimal, hence the action G y T is minimal as well.

Since T is not a point it follows that G cannot fix a point in T . ¤

Since G acts properly discontinuously and cocompactly on the contractible space
X, this group is finitely-presented. Therefore, by Lemma 32, we can apply [3] to
conclude that the group G splits as an amalgam with a virtually solvable edge
subgroup A. Since G is a CAT (0) group, the subgroup A is virtually abelian and
finitely generated; let A′ ⊂ A be a finite index free abelian subgroup. Since G splits
over A, the pair (G,A) has at least two ends, and hence the same is true for the
pair (G,A′). Since G is a 3-dimensional Poincaré duality group over R this implies
that A′ has rank at least 2. This proves the main theorem. ¤
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