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HOMOLOGICAL DIMENSION AND CRITICAL

EXPONENT OF KLEINIAN GROUPS

Michael Kapovich

Abstract. We prove an inequality between the relative homological di-
mension of a Kleinian group Γ ⊂ Isom(Hn) and its critical exponent. As an
application of this result we show that for a geometrically finite Kleinian
group Γ, if the topological dimension of the limit set of Γ equals its Haus-
dorff dimension, then the limit set is a round sphere.

1 Introduction

One of the frequent themes in the theory of Kleinian groups is establishing
a relation between the abstract algebraic properties of a Kleinian group
and its geometric properties, determined by its action on the hyperbolic
space. Ahlfors finiteness theorem and Mostow rigidity theorem are among
the most important examples of such a relation. In this paper we establish
a relation between two invariants of a Kleinian group: virtual homological
dimension (an algebraic invariant) and the critical exponent (a geometric
invariant). We refer the reader to section 2 for the precise definitions.

Given a Kleinian group Γ ⊂ Isom(Hn), consider the set P of its maximal
virtually abelian subgroups of virtual rank ≥ 2, i.e. the elements of P are
maximal subgroups which contain a subgroup isomorphic to Z

2. Form the
maximal subset

Π := {Πi , i ∈ I} ⊂ P
of pairwise nonconjugate elements of P. In other words, Π consists of
representatives of cusps of rank ≥ 2 in Γ.

We let vhdR(Γ,Π) and vcdR(Γ,Π) denote the virtual homological and
cohomological dimension of Γ relative to Π, where R is a commutative
ring with a unit. (Instead of working with virtual dimensions, one can use
the (co)homological dimension with respect to fields of zero characteristic,
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or, more generally, rings where the order of every finite subgroup of Γ is
invertible.) Let δ(Γ) be the critical exponent of Γ.

Our main result is

Theorem 1.1. For every virtually torsion-free Kleinian group Γ we have

vhdR(Γ,Π) − 1 ≤ δ(Γ) .

Corollary 1.2. Suppose that the pair (Γ,Π) has finite type, e.g. Γ
admits a finite K(Γ, 1) and the set Π is finite. Then

cdR(Γ,Π) − 1 ≤ δ(Γ) .

One, therefore, can regard these results as either nontrivial lower bounds
on the critical exponent, or as vanishing theorems for relative (co)homology
groups of Γ with arbitrary twisted coefficients. These results also can be
viewed as generalizing the classical inequality

dim(Z) ≤ dimH(Z)

for compact metric spaces Z, see [HuW]. Here dim(Z) is the topological
dimension and dimH(Z) is the Hausdorff dimension.

As an application of Corollary 1.2 we prove

Theorem 1.3. Suppose that Γ ⊂ Isom(Hn) is a nonelementary geomet-
rically finite group so that the Hausdorff dimension of its limit set equals
its topological dimension d. Then the limit set of Γ is a round d-sphere,
i.e. Γ preserves a d + 1-dimensional subspace H ⊂ H

n and H/Γ has finite
volume.

This theorem was first proved by Rufus Bowen [Bowe] for convex-
cocompact quasi-fuchsian subgroups of Isom(H3). Bowen’s theorem was ex-
tended by Bishop and Jones [BisJ] to subgroups of Isom(H3) with parabolic
elements. Bowen’s result was generalized by Chenbo Yue [Y] to convex-
cocompact subgroups of Isom(Hn) whose limit sets are topological spheres,
although his argument did not need the latter assumption. Note that the
arguments of Yue do not work in the presence of parabolic elements. For
cocompact discrete groups of isometries of CAT (−1) spaces, an analogue
of Theorem 1.3 was proved by Bonk and Kleiner [BoK], see also the work
of Besson, Gallot and Courtois [BCG2]. The latter paper was the inspira-
tion for our work. X. Xie [X] proved a special case of Theorem 1.3 under
the assumption that Γ is isomorphic to the fundamental group of a (possi-
bly noncompact) complete hyperbolic d + 1-dimensional manifold of finite
volume.

Conjecture 1.4. Suppose that Γ is a finitely generated Kleinian group
in Isom(Hn). Then,
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1. d = vcdR(Γ,Π) − 1 ≤ δ(Γ).
2. In the case of equality, Γ is geometrically finite and its the limit set

is a round d-sphere in Sn−1.

Another application of our main theorem is the following property of
groups with small critical exponent:

Corollary 1.5. Suppose that δ(Γ) < 1 and Γ is of type FP2, e.g. is
finitely presented. Then Γ is virtually free.

Problem 1.6 (Cf. Theorem 1.3 in [BisJ] and [H].). Is it true that every
finitely generated Kleinian group Γ with δ(Γ) < 1 is geometrically finite?
Is it true that such group is a classical Schottky-type group?

The proofs of our results are generalizations of the proofs due to Besson,
Courtois and Gallot in [BCG2]. Our main contribution in comparison to
their paper is treatment of arbitrary coefficient modules, working with rel-
ative homology groups and handling manifolds whose injectivity radius is
not bounded from below. The most nontrivial technical ingredient of our
paper is the existence of the natural maps introduced in [BCG2] and their
properties established in that paper.

In the case of a Kleinian subgroup Γ ⊂ Isom(H3), our main theorem
easily follows from the well-known facts about Γ. It suffices to consider
the case when Γ is finitely generated and torsion free. If δ(Γ) = 2, then
Theorem 1.1 states that

vhd(Γ,Π) ≤ 3 .

The latter inequality immediately follows from the fact that the hyperbolic
manifold H

3/Γ is a 3-dimensional Eilenberg–MacLane space for Γ. Assume
therefore that δ(Γ) < 2. Then it follows from the solution of the tame-
ness conjecture [A], [CG] (which, in turn, implies Ahlfors’ measure zero
conjecture) and [BisJ], that Γ is geometrically finite. Therefore either Γ
is a Schottky-type group or it contains a finitely generated quasi-fuchsian
subgroup Φ ⊂ Γ, whose limit set is a topological circle. In the latter case,

2 ≥ vhdR(Γ,Π) ≥ vhdR(Φ,Π ∩ Φ) = 2 ,

while
δ(Γ) ≥ δ(Φ) ≥ 1 .

This implies the inequality

1 = 2 − 1 = vhdR(Γ,Π) − 1 ≤ 1 ≤ δ(Γ) .

If Γ is a Schottky-type group, then

Γ ∼= Fk ∗ Π1 ∗ · · · ∗ Πm ,

where Πi ∈ Π for i = 1, . . . ,m. Therefore vhdR(Γ,Π) = 1 and Theorem 1.1
trivially follows.
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Sketch of the proof of Theorem 1.1. Let ǫ be a positive number which is
smaller than the Margulis constant µn for H

n. Let δ := δ(Γ). We assume
that Γ is torsion free. We sketch the proof under the following assumption:

There exists a thick triangulation of the hyperbolic manifoldM = H
n/Γ,

i.e. a triangulation T and a number L <∞, so that every i-simplex in T not
contained in the ǫ-thin part M(0,ǫ] of M is L-bilipschitz diffeomorphic to the
standard Euclidean i-simplex. (Existence of such triangulation was recently
proven by Bill Breslin [Br]. Breslin’s proof follows the line of arguments
sketched by Thurston in the proof of [T1, Prop. 5.11.2].)

Suppose that hdR(Γ,Π) > δ + 1. Then for some q > δ + 1, there exists
a flat bundle V over the manifold M , so that

Hq(M,M(0,ǫ]; V) 6= 0 .

Pick a chain ζ ∈ Cq(M ; V) which projects to a nonzero class [ζ] in
Hq(M,M(0,ǫ]; V). We then extend ζ to the ǫ-thin part of M , to a locally

finite absolute cycle ζ̂ of finite volume. Besson, Courtois and Gallot in
[BCG2] proved existence of a natural map F : M →M which is (properly)
homotopic to the identity and satisfies

vol
(

F#(ζ̂)
)

≤
(

δ + 1

q

)q

vol(ζ̂) .

Since q > δ + 1, the locally finite cycle ζ̂k := F k
#(ζ̂) satisfies

lim
k→∞

vol(ζ̂k) = 0 .

Then we use the deformation lemma of Federer and Fleming to deform
(for large k) the cycle ζ̂k to a locally finite cycle ξ̂k which is supported in
the q − 1-skeleton of T away from M(0,ǫ]. Therefore ξ̂k determines zero

homology class in Hq(M,M(0,ǫ]; V). Since F k is properly homotopic to the
identity (with uniform control on the length of the tracks of the homotopy)
we conclude that [ζ] is trivial as well, which is a contradiction.

Instead of relying upon Breslin’s result, we use instead a map η from M
to a simplicial complex X, which is the nerve of an appropriate cover of M .
The map η is Lκ-Lipschitz on the κ-thick part of M for every κ > 0. This
allows us to do the deformation arguments in X rather than in T . This
line of arguments is borrowed from [G, §5.32].
Acknowledgements. This work was partially supported by the NSF
grant DMS 0405180. Most of this paper was written when the author was
visiting the Max Plank Institute for Mathematics in Bonn. I am grateful
to Gérard Besson and Gilles Courtois for sharing with me an early ver-
sion of [BCG2], to Leonid Potyagailo for motivating discussions and to
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Xiangdong Xie for telling me about his preprint [X]. I am thankful to the
referee for useful suggestions and comments.

2 Preliminaries

2.1 Geometric preliminaries.

Basics of Kleinian groups. We let H
n denote the hyperbolic n-

space, Sn−1 the ideal boundary of H
n, and Isom(Hn) the isometry group

of H
n. A Kleinian group is a discrete isometry group of H

n. The limit
set of a Kleinian group Γ is denoted Λ(Γ). A Kleinian group Γ is called
elementary if its limit set contains at most 2 points. A Kleinian group is
elementary if and only if it is virtually abelian. We let

Hull(Λ(Γ)) ⊂ H
n

denote the convex hull of Λ(Γ) in H
n.

Let Γ ⊂ Isom(Hn) be a Kleinian group, x ∈ H
n be a point and ǫ be a

positive real number. Let
Γx,ǫ ⊂ Γ

denote the subgroup generated by the elements γ ∈ Γ such that

d
(

x, γ(x)
)

≤ ǫ .

Then, according to Kazhdan–Margulis lemma, for every n there is a
constant µn > 0, called the Margulis constant, such that Γx,µn is elementary,
for every Kleinian subgroup Γ ⊂ Isom(Hn) and every point x ∈ H

n.

Thick-thin decomposition of hyperbolic manifolds. For a point
x in a Riemannian manifold M (possibly with convex boundary) define

InRadM (x)

to be the injectivity radius of M at x. Then the function InRadM is 1-
Lipschitz, i.e. it satisfies

∣

∣InRadM (x) − InRadM (x′)
∣

∣ ≤ d(x, x′) . (1)

Suppose that M is a metrically complete connected hyperbolic manifold
with convex boundary. Let M̃ denote the universal cover of M . For 0 <
ǫ < µn consider the thick-thin decomposition

M = M(0,ǫ] ∪M[ǫ,∞) .

Here thin part K = M(0,ǫ] of M is the closure of the set of points x ∈ M ,
such that there exists a homotopically nontrivial loop γx based at x, whose
length is < ǫ.

Let Ki, i ∈ J ⊂ N, denote the connected components of K.

Lemma 2.1. Each Ki is covered by a contractible submanifold K̃i in H
n.
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Proof. We identify π1(Ki) with an elementary subgroup Πi ⊂ Γ. Then
K̃i = K̃i(ǫ) is the union

K̃i(ǫ) =
⋃

γ∈Πi\{1}

K̃ǫ(γ) ,

where
K̃ǫ(γ) =

{

z ∈ M̃ : d(z, γ(z)) ≤ ǫ
}

.

Each K̃ǫ(γ) is convex, since the displacement function of γ is convex. Of
course, the union of convex sets need not be convex andKi is, in general, not
convex. We first consider the case when Πi is a cyclic hyperbolic subgroup.
Let A = Ai denote the common axis of the nontrivial elements of Πi. Then
A is contained in each K̃ǫ(γ). It follows that K̃i := K̃i(ǫ) is star like with
respect to every point of A. Therefore K̃i is contractible.

If Πi is parabolic, this argument of course does not apply. Let ξ = ξi de-
note the fixed point of Πi. Then K̃i is star like with respect to ξ. Therefore,
every map f : Sk → K̃i(ǫ) can be homotoped to a map fκ : Sk → K̃i(κ)
along the geodesics asymptotic to ξ, where κ and

d(κ) := diam
(

fκ(Sk)
)

can be chosen arbitrarily small. Then fκ(Sk) bounds a ball fκ(Bk+1) within
d(κ) from the image of fκ. Thus

fκ(Bk+1) ⊂ K̃i

(

κ+ 2d(κ)
)

.

By choosing κ so that κ + 2d(κ) < ǫ, we conclude that πk(K̃i) = 0 for
all k. �

Therefore each Ki = K(Πi, 1) is an Eilenberg–MacLane space for its
fundamental group Πi.

Critical exponent of a Kleinian group. Let Γ ⊂ Isom(Hn) be a
Kleinian group. Consider the Poincaré series

fs =
∑

γ∈Γ

e−sd(γ(o),o),

where o ∈ H
n is a base-point and d is the hyperbolic metric on H

n. Then
the critical exponent of Γ is

δ(Γ) = inf{s : fs <∞} .
Critical exponent has several alternative descriptions. Define

N(R) := #
{

x ∈ Γ · o : d(x, o) ≤ R
}

.

Then δ(Γ) is the rate of exponential growth of N(R), i.e.

δ(Γ) = lim sup
R→∞

log(N(R))

R
,

see [N]. Lastly, the critical exponent can be interpreted in terms of the
geometry of the limit set of Γ:
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Theorem 2.2 (See [BisJ], [N], [Su], [Tu].). For every nonelementary
Kleinian group Γ ⊂ Isom(Hn), we have

1. δ(Γ) = dimH

(

Λc(Γ)
)

.
In particular, if Γ is geometrically finite, Λ(Γ) \ Λc(Γ) is at most
countable and we obtain

δΓ = dimH

(

Λc(Γ)
)

.

2. If Γ is geometrically finite then either Λ(Γ) = Sn−1 or δ(Γ) < n− 1.

Here dimH is the Hausdorff dimension and Λc(Γ) ⊂ Sn−1 is the conical

limit set of Γ.

Thus the critical exponent of a Kleinian group is easy to estimate from
above:

δ(Γ) ≤ n− 1 .

Estimates from below, however, are nontrivial; our main theorem provides
such a lower bound.

2.2 Algebraic preliminaries. In this section we collect various defini-
tions and results of homological algebra. We refer the reader to [Bi], [BiE]
and [Bro] for the detailed discussion. For the rest of the paper, we let R
be a commutative ring with a unit denoted 1. We note that although [BiE]
and [Bro] restrict their discussion to R = Z, the definitions and facts that
we will need directly generalize to the general commutative rings.

Suggestion to the reader. For most of the paper, the reader uncom-
fortable with homological algebra can think of (co)homology of Γ with triv-
ial coefficients and of existence of a finite K(Γ, 1) instead of the finite type
condition for Γ. However, in the proofs of Theorem 1.3 and Corollary 1.5,
we need (co)homology with twisted coefficients as well as the general notion
of finite type.

A group Γ is said to be of finite type, or FP (over R), if there exists a
resolution by finitely generated projective RΓ-modules

0 → Pk → Pk−1 → · · · → P0 → R→ 0 .

For instance, if there exists a finite cell complex K = K(Γ, 1), then
Γ has finite type for every ring R. Every group of finite type is finitely
generated, although it does not have to be finitely presented, see [BeB].

More generally, a group Γ is said to be of type FPk (over R), if there
exists a partial resolution by finitely generated projective RΓ-modules

Pk → Pk−1 → · · · → P0 → R→ 0 .
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A group Γ is said to have cohomological dimension k if k is the least
integer such that there exists a resolution by projective RΓ-modules

0 → Pk → Pk−1 → · · · → P0 → R→ 0 .

Lemma 2.3. Suppose that Γ is of type FPk and cd(Γ) ≤ k. Then Γ is of
type FP .

Proof. See discussion following the proof of Proposition 6.1 in [Bro,
Ch.VIII]. �

A group Γ is said to have homological (or weak) dimension k over R, if
k is the least integer such that there exists a resolution by flat RΓ-modules

0 → Fk → Fk−1 → · · · → F0 → R→ 0 .

Thus the (co)homological dimension of Γ equals the (projective) flat
dimension of the Γ-module RΓ. The cohomological and homological di-
mensions of Γ are denoted by cdR(Γ) and hdR(Γ) respectively. One can
restate the definition of (co)homological dimension in terms of vanishing of
(co)homologies of Γ:

Theorem 2.4 (See [Bi].).

cdR(Γ) = sup
{

n : ∃ an RΓ-module V so that Hn(Γ;V ) 6= 0
}

,

hdR(Γ) = sup
{

n : ∃ an RΓ-module V so that Hn(Γ;V ) 6= 0
}

.

Theorem 2.5. Let Γ be a torsion-free group such that cdR(Γ) ≤ 1. Then
Γ is free.

This theorem was originally proven by Stallings [S] for finitely generated
groups and R = Z; his proof was extended by Swan [Sw] to arbitrary
groups. Finally, Dunwoody [D] proved this theorem for arbitrary rings.

Remark 2.6. One can weaken the torsion-free assumption, by restricting
to groups with torsion of bounded order, see [D].

We will need a generalization of these definitions to the relative case.
In what follows we let Γ be a group and Π be a nonempty collection of
subgroups

Π := {Πi, i ∈ I} .
Given an RΓ-module V , one defines the relative (co)homology groups

H∗(Γ,Π;V ), H∗(Γ,Π;V ) .

Instead of the algebraic definition of (co)homologies with coefficients in
an RΓ-module V , we will be using the topological interpretation, following
[BiE, §1.5]. Let K := K(Γ, 1) be an Eilenberg–MacLane space for Γ. Let
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Ci := K(Πi, 1), i ∈ I. We assume that the complexes Ci are embedded in
K, so that Ci ∩Cj = ∅ for i 6= j. Set

C :=
⋃

i∈I

Ci .

Then we will be computing the (co)homologies of the pair (Γ,Π) using
the relative (co)homologies of (K,C). Namely, let X denote the universal
cover of K. Let VR be the module V , regarded as an R-module. We obtain
the trivial (product) sheaf Ṽ over X with fibers VR. We will think of
this sheaf as the sheaf of local (horizontal) sections of the product bundle
E := X × VR → X. By abusing the notation we will identify bundles and
sheaves of their sections. The group Γ acts on this sheaf diagonally:

γ · (x, v) =
(

γ(x), γ · v
)

, γ ∈ Γ .

The bundle E (and the sheaf Ṽ) project to the space K, to a bundle
V → K and its sheaf V of local horizontal sections. Then we have natural
isomorphisms

H∗(Γ,Π;V ) ∼= H∗(K,C; V) , H∗(Γ,Π;V ) ∼= H∗(K,C; V) .

We will mostly work with the relative homology groups H∗(K,C; V),
which we will think of as the (relative) singular homology of K (rel. C) with
coefficients in V. We refer the reader to [JM] for the precise definition.

The most important example (for us) of this computation of relative
homologies will be when Γ is a Kleinian group, the complex K is the hy-
perbolic manifold M = H

n/Γ, and the subcomplex C is a disjoint union
of Margulis tubes and cusps in M . More generally, we will consider the
case when K is a metrically complete connected hyperbolic manifold with
convex boundary.

We now return to the general case of group pairs (Γ,Π).

Definition 2.7. The relative (co)homological dimension of Γ (rel. Π) is
defined as

cdR(Γ,Π) = sup
{

n : ∃ an RΓ-module V so that Hn(Γ,Π;V ) 6= 0
}

,
hdR(Γ,Π) = sup

{

n : ∃ an RΓ-module V so that Hn(Γ,Π;V ) 6= 0
}

.

In the case of R = Z, we will omit the subscript from the notation for
the (co)homological dimension. We note that for every Γ of finite (relative)
homological dimension there exists a finitely generated subgroup Γ′ ⊂ Γ so
that

hdR(Γ,Π) = hdR(Γ′,Π ∩ Γ′) ,

cf. Corollary 4.10 in [Bi].
Set

RΓ/Π := ⊕i∈IRΓ/Πi .
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We have the augmentation ǫ : RΓ/Π → R, given by ǫ(gΠi) := 1 for all
cosets gΠi and all i. Following [BiE, §1.1], we set

∆ := ∆Γ/Π := Ker(ǫ) .

Then (see [BiE, §1.1])
Hk(Γ,Π;V ) ∼= Hk−1

(

Γ;Hom(∆, V )
)

,

Hk(Γ,Π;V ) ∼= Hk−1(Γ;∆ ⊗ V ) .

The cohomological and homological dimensions of (Γ,Π) can be inter-
preted as flat and projective dimensions of ∆ = ∆Γ/Π respectively:

hdR(Γ,Π) − 1 = flat dim(∆) , cdR(Γ,Π) − 1 = proj dim(∆) , (2)

see [BiE, §4.1]. For most of the paper this interpretation of (co)homological
dimension will be unnecessary; the only exceptions are Lemmata 2.8 and
2.9 below:

Lemma 2.8.

hdR(Γ,Π) ≤ cdR(Γ,Π) ≤ hdR(Γ,Π) + 1 .

Proof. The absolute case was proved in [Bi]; the relative case follows from
the same arguments as in Bieri’s book using the equation (2). �

A pair (Γ,Π) is said to have finite type (over R) if

1. Γ and each Πi has type FP .
2. The set I is finite.

This condition is stronger than the one considered in [BiE, §4.1]. How-
ever it will suffice for our purposes as we are interested in the case where
each Πi is a finitely generated virtually abelian group. Such groups Πi

necessarily have finite type.
Note that there is a free finitely generated Kleinian group Γ ⊂ Isom(H4),

so that Γ contains infinitely many Γ-conjugacy classes of maximal parabolic
subgroups, [KP]. It is unknown if every Kleinian group Γ of finite type con-
tains only finitely many conjugacy classes of maximal parabolic subgroups
of rank ≥ 2.

If Γ ⊂ Isom(Hn) is a geometrically finite Kleinian group, then it contains
only finitely many conjugacy classes of maximal parabolic subgroups, see
[Bow]. Moreover, Γ has finite type since its admits a finite K(Γ, 1), which
is the complement to cusps in the convex core of H

n/Γ. Therefore in this
case (Γ,Π) has finite type.

Lemma 2.9. If (Γ,Π) is of finite type, then

1. cdR(Γ,Π) = hdR(Γ,Π).
2. cdR(Γ,Π) = sup{n : Hn(Γ,Π;RΓ) 6= 0}.
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Proof. This theorem was proved in [Bi] (see also [Bro, Ch.VIII, Prop. 6.7])
in the case when Π = ∅. The same arguments go through in the relative
case. �

Suppose that Γ is virtually torsion free, i.e. it contains a finite-index
subgroup Γ′ ⊂ Γ which is torsion free. Let Π′ denote the collection of
subgroups of Γ′ obtained by intersecting Γ′ with the elements of Π. One
defines the virtual relative (co)homological dimension of Γ as

vcdR(Γ,Π) = cdR(Γ′,Π′) ,
vhdR(Γ,Π) = hdR(Γ′,Π′) .

One can easily show that vcd and hcd are independent of the choice of Γ′:
The absolute case immediately follows from [Bi, Cor. 5.10], the relative case
is completely analogous.

Recall that every finitely generated Kleinian group is virtually torsion
free by Selberg’s lemma; hence it has finite (co)homological dimension.

3 Volumes of Relative Cycles

Let X be either a simplicial complex or a Riemannian manifold, possibly
with convex boundary. In the case when X is a simplicial complex, we
metrize X by identifying each i-simplex in X with the standard Euclidean
i-simplex in R

i+1. Let Y ⊂ X be either a subcomplex or a closed subman-
ifold with piecewise-smooth boundary. Let ω̂q be the q-volume form on X
induced by piecewise-Euclidean or Riemannian metric on X. Let χ be the
characteristic function of X \Y ; we define the relative q-volume form ωq by

ωq := χ · ω̂q .

Let W → X be a flat bundle whose fibers are copies of an R-module
VR. We define the relative volume Vol(ζ, Y ) for piecewise-smooth singular
q-chains ζ in Cq(X,W) as follows. Consider first the case when ζ = w⊗ σ,
where σ : ∆q → X is a singular q-simplex and w is a (horizontal) section
of W over the support of σ. Then set

Vol(ζ, Y ) =

∫

∆q

σ∗(ωq) .

For a general chain

ζ =

s
∑

i=1

wi ⊗ σi ,

set

Vol(ζ, Y ) :=

s
∑

i=1

Vol(wi ⊗ σi) .
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We set Vol(ζ) := Vol(ζ, ∅). Clearly, the relative volume descends to a
function on Zq(X,Y ; W). For a relative homology class ξ ∈ Hq(X,Y ; W),
we define the relative volume by

Vol(ξ, Y ) := inf
{

Vol(ζ, Y ) : ξ = [ζ]
}

.

Note that our definition of relative volume does not take the coefficients
into account. Suppose that R is a normed ring with a norm | · | and V is a
normed RΓ-module, i.e. it admits a norm | · | such that

|rγ · v| = |r| · |v| , ∀r ∈ R , γ ∈ Γ ,

where |r| is the norm of r ∈ R. For instance, take V = RΓ or V = R,
the trivial RΓ-module. If R is a normed ring, then the normed modules
suffice for calculation of the cohomological dimension of Γ over R, see [Bro,
Ch.VIII, Prop. 2.3].

Then one can define another volume function, which is sensitive to the
coefficients:

vol(w ⊗ σ, Y ) =

∫

∆q

|w|σ∗(ωq) .

However, as the rings discussed in this paper are general (for instance, we
allow finite rings R), we cannot use this definition.

Problem 3.1. Is it true that for every group Γ,

cdR(Γ) = sup
{

q : ∃ a Banach RΓ-module V so that Hq(Γ, V ) 6= 0
}

?

Here a Banach RΓ-module is a normed RΓ-module which is complete as a
normed vector space. Note that the answer is unclear even for groups Γ of
finite type, since RΓ is not a Banach space.

4 Coning Off Singular Chains

Let M be a metrically complete hyperbolic n-manifold with convex bound-
ary and V → M be a flat bundle whose fibers are isomorphic to the R-
module VR. Pick 0 < ǫ ≤ µn. For a singular chain

σ ∈ Cq(M ; V) ,

we define its ǫ-excision

Excǫ(σ) = σ ∩M[ǫ,∞) ∈ Cq(M[ǫ,∞); V)

by excising the open submanifoldM(0,ǫ) ⊂M . The main goal of this section
is to define and examine a converse to this procedure.

Let
M(0,ǫ] = P ∪Q = P1 ∪ · · · ∪ Ps ∪Q1 ∪ · · · ∪Ql ,

where Q is the union of compact components (tubes) Qi of M(0,ǫ] and P is
the union of noncompact components (cusps) Pj .
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4.1 Extension to the tubes. Suppose that K = Qi ⊂ M(0,ǫ] is a
component which retracts to a closed geodesic c ⊂ K. Given a singular
simplex

σ : ∆q → K,

we define the extension ext(σ) of σ to ∆q × [0, 1] as follows. For x ∈ ∆q,
t ∈ [0, 1], let x′ := σ(x) and x′′ ∈ c be the point nearest to x′. Choose the
point

a = ext σ(x, t)

on the geodesic segment x′x′′, so that

d
(

σ(x), a
)

= td(x′, x′′) .

We triangulate ∆q× [0, 1] so that ext(σ) is a singular chain. Finally, extend
linearly the operator ext to the entire C∗(K; V).

Suppose that
ζ ∈ Cq+1(M ; V)

is a chain which projects to a relative cycle in Zq+1(M,M(0,ǫ]; V). For each
tube Qi we consider the extension

ζ ′i := extQi
(∂ζ ∩Qi) .

Since each Qi retracts to a closed geodesic contained in Qi, we obtain

Lemma 4.1. For each q ≥ 1, the extension

ζ ′ := ζ +
l

∑

i=1

ζ ′i

projects to a relative cycle in Zq+1(M,Q; V).

4.2 Extension to the cusps. Recall that P ⊂M is the union of cusps.
Given a chain

ζ ∈ Cq+1(M ; V)

which projects to a relative cycle in

Zq+1(M,P ; V) ,

we will define a locally finite absolute cycle ζ̂, which is an extension of ζ to
the cusps.

Let ∆m be the standard m-simplex [e0, . . . , em] and ∆m−1 be its face
[e1, . . . , em]. We parameterize the punctured simplex

∆m
◦ := ∆m \ {e0}

as follows. Given a point z ∈ ∆m
◦ , consider the line segment e0x ⊂ ∆m

containing z, where x ∈ ∆m−1. Then

z = tx+ (1 − t)e0 , 0 ≤ t ≤ 1 .

Therefore we give the point z the coordinates (x, t), x ∈ ∆m−1, t ∈ [0, 1].
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Fix a point ξ ∈ ∂H
n and consider a piecewise-smooth singular simplex

σ : ∆m−1 → H
n.

We define the extension

extξ(σ) : ∆m
◦ → H

n

of σ as follows. For the point y = σ(x) consider the geodesic ray

ρ = ρy,ξ : [0,∞) → H
n

emanating from y and asymptotic to ξ. We parameterize ρ with the unit
speed and set

extξ(σ)(x, t) := ρ
(

− log(t)
)

.

Then extξ(σ) is a piecewise-smooth proper map. Given a singular chain
which is a linear combination

σ :=
∑

i

wi ⊗ σi , wi ∈ VR ,

we set
extξ(σ) :=

∑

i

wi ⊗ extξ(σi) .

This extension satisfies

∂ extξ(σ) = extξ(∂σ) .

The extension is invariant under the action of Isom(Hn) in the sense that

γ∗
(

extξ(σ)
)

= extγ(ξ)

(

γ∗(σ)
)

, ∀γ ∈ Isom(Hn) .

For a chain
σ =

∑

i

wi ⊗ σi ,

we define volume of the “punctured” chain extξ(σ) by

Vol
(

extξ(σ)
)

:=
∑

i

Vol
(

extξ(σi)
)

.

Lemma 4.2. For every q-chain σ, q ≥ 1, we have

Vol
(

extξ(σ)
)

≤ q · Vol(σ) .

Proof. It suffices to prove the inequality in the case of a singular simplex σ.
We will work in the upper half-space model of H

n, so that ξ = ∞. By
subdividing the chain σ appropriately we can assume that σ(x) = (x, f(x)),
is the graph of a continuous map

f : Ω → (0,∞) ,

where Ω is a bounded domain in R
q ⊂ R

n−1 ⊂ ∂H
n, and f is smooth on

the interior of Ω. Then

Vol(σ) =

∫

Ω

√

1 + |∇f |2
f(x)q

dx ≥
∫

Ω

dx

f(x)q
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and

Vol
(

extξ(σ)
)

=

∫

Ω

∫ ∞

f(x)

dt

tq+1
dx =

∫

Ω

qdx

f(x)q
.

Therefore
Vol

(

extξ(σ)
)

≤ q · Vol(σ) . �

Suppose now that ζ ∈ Cq+1(M ; V),

∂ζ =

s
∑

j=1

ζj , ζj ∈ Cq(Pj ; V) , i = 1, . . . , s .

For every singular chain

σ = ζj =
∑

i

wi ⊗ σi ∈ Cq(Pj ,V) ,

we define a locally finite singular chain

ext(σ) ∈ C lf
q+1(Pj ,V)

as follows. Lift each σi to a chain

σ̃ =
∑

i

vi ⊗ σ̃i ∈ Cq(P̃j , VR), vi ∈ VR ,

where P̃j ⊂ H
n is a component of the preimage of Pj ; let Πj be the stabilizer

of P̃j in Γ. Let ξ = ξj be a point fixed by Πj .

Remark 4.3. Our construction does not depend on whether Πj is parabolic
or hyperbolic. In parabolic case we, of course, have unique fixed point.

If Πj is hyperbolic, then the extension chain ext(σ) below is not going
to be locally finite in M , as it “spins towards” a closed geodesic.

Now extend σ̃ to a punctured chain extξ(σ̃). Finally, project the latter
to a punctured chain ext(σ) via the universal cover H

n →M . Triangulate
∆q+1

◦ , so that ext(σ) is a locally-finite singular chain. Since P̃j is star like
with respect to ξ, it follows that

ext(σ) ∈ C lf
q+1(Pj ,V) .

Invariance of the extension extξ under Isom(Hn), ensures that ext(σ) does
not depend on the choice of the lifts σ̃i. We also have

∂ ext(σ) = ext(∂σ) .

Lemma 4.2 implies

Corollary 4.4 (Cf. [T2].). Vol(ext(σ)) ≤ q · V ol(σ).

Lastly, set

ζ̂ := ζ +

s
∑

j=1

ext(ζj)
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The excision operation obviously extends to the locally-finite chains
ext(σ) and we obtain

Excκ(ζ̂) ∈ Zq+1

(

M,M(0,κ]); V
)

for every 0 < κ ≤ ǫ. It is clear that
[

Excκ(ζ̂)
]

= [ζ̂] ∈ Hq

(

M,M(0,ǫ]; V
)

.

Therefore we obtain

Proposition 4.5. Let 0 < ǫ ≤ µn, and P ⊂ M(0,ǫ] be the union of cusps.
Then for every chain ζ ∈ Cq+1(M ; V), which projects to a relative homology
class in Hq(M,P ; V), there exists a locally finite cycle

ζ̂ ∈ Z lf
q+1(M ; V) ,

so that

1. Vol(ζ̂) ≤ qVol(∂ζ) + Vol(ζ).
2. [Excκ(ζ̂)] = [ζ̂] ∈ Hq(M,M(0,ǫ]; V) for every 0 < κ ≤ ǫ.

5 Cuspidal Homology

Let M be a metrically complete hyperbolic n-manifold with convex bound-
ary. Let π1(M) ∼= Γ ⊂ Isom(Hn) and Π be the collection of cusps in Γ, i.e.
Π consists of representatives of Γ-conjugacy classes of maximal parabolic
subgroups of Γ. Note that here we allow parabolic subgroups of rank 1.
Let V be a flat bundle over M associated with an RΓ-module V . The
elements Πi of Π correspond to the components Pi of P ⊂ M(0,µn]. Given
0 < ǫ ≤ µn, consider the thick-thin decomposition

M = M(0,ǫ] ∪M[ǫ,∞)

and let
Pǫ := P ∩M(0,ǫ] .

We then have the direct system

(M,Pǫ) → (M,Pǫ′) , 0 < ǫ ≤ ǫ′ ≤ µn .

These maps induce isomorphisms

H∗(M,Pǫ; V) → H∗(M,Pǫ′ ; V) .

We therefore identify

lim
ǫ
H∗(M,Pǫ; V) ∼= H∗(M,Pµn ; V) ∼= H∗(Γ,Π;V ) .

We will refer to this direct limit as the cuspidal homology of M ,

Hcusp
∗ (M ; V) .

We have an obvious homomorphism

Exc : H lf
∗ (M ; V) → Hcusp

∗ (M ; V)
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given by the excision. The advantage of working with the above direct limit
is the following:

Suppose that f : M →M is a proper L-Lipschitz map. Then f induces
a self-map

f :
{

(M,Pǫ)
}

→
{

(M,Pǫ)
}

of the direct system; the latter clearly induces an isomorphism

f∗ : Hcusp
∗ (M ; V) → Hcusp

∗ (M ; V) .

If f induces the identity automorphism of Γ, then f∗ = Id.

6 Partition of Unity and a Map to the Nerve for a

Hyperbolic n-Manifold

Fix a number ǫ > 0. Suppose that M is a complete hyperbolic n-manifold.
(In this section we do not allow M to have boundary.) Given a covering
U of M by contractible open sets with contractible intersections, M is
homotopy-equivalent to the nerve of U . The goal of this section is to get
a homotopy-equivalence with controlled Lipschitz constant. The Lipschitz
constant will be bounded on the thick part of M . This construction is
standard (cf. [G, §5.32]), we include it for the sake of completeness.

Our first goal is to find an appropriate covering U by convex metric balls
Bǫj

(xj) in M , whose radii ǫj are multiples of the injectivity radii of xj.
Choose 0 < α < 1 and define the function

τ(x) := αmin
(

InRadM (x), ǫ
2

)

.

Note that τ is a continuous function which is constant on M[ǫ,∞). Recall
that Br(x) denotes the open r-ball centered at x.

Lemma 6.1. Suppose that x, y ∈M are such that

Bτ(x)(x) ∩Bτ(y)(y) 6= ∅ .
Then

τ(x)

τ(y)
≤ 1 + α

1 − α
.

Proof. If x, y ∈ M[ǫ,∞) then τ(x) = τ(y) = αǫ/2 and we are done. We
consider the case

τ(x) ≥ τ(y) = α · InRadM (y) .

Then the inequality (1) implies that

α−1(τ(x) − τ(y)) ≤ InRadM (x) − InRadM (y) ≤ d(x, y) ≤ τ(x) + τ(y) .

Therefore
τ(x)

τ(y)
≤ 1 + α

1 − α
. �
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Lemma 6.2. Let β > 0 be such that

0 <
β

1
2 − β

<
1 − α

1 + α
.

Then there exists a covering D of the manifold M by the open balls

Di := Bτ(xi)/2(xi) , i ∈ I ,

so that
Bβτ(xj)(xj) ∩Bβτ(xi)(xi) = ∅ , ∀xi 6= xj . (3)

Proof. We construct the set E of centers xi, i ∈ I, of the above balls as
follows. Choose a maximal set

E = {xi , i ∈ I} ⊂M ,

satisfying (3). Suppose that D := {Dj , j ∈ I} is not a covering of M . Then
there exists

x ∈M so that d(x, xi) ≥ τ(xi)/2 , ∀i ∈ I .

Suppose that there exists i ∈ I so that

Bβτ(x)(x) ∩Bβτ(xi)(xi) 6= ∅ .
Then

τ(y)

2
≤ d(x, y) < β

(

τ(x) + τ(y)
)

for y := xi. By Lemma 6.1,
τ(x)

τ(y)
≤ 1 + α

1 − α
and, by combining these inequalities, we get

β
1
2 − β

≥ 1 − α

1 + α
.

This contradicts out choice of β. Therefore

Bβτ(x)(x) ∩Bβτ(xi) = ∅ , ∀i ∈ I ,

which contradicts maximality of E. Hence

D =
{

Bτ(xi)/2(xi) , xi ∈ E
}

is the required covering of M . �

We leave it to the reader to verify that if 0 < α ≤ 1/8, 0 < β, and

0 <
β

1
2 − β

<
1 − α

1 + α
,

then
1 + β ≤ 1 − α

α(1 + α)
. (4)

We let vol(r) denote the volume of a hyperbolic r-ball in H
n. Let ωn

denote the volume of the Euclidean n-ball of the unit radius. Then

vol(r) ≥ ωnr
n. (5)
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Moreover, whenever r ≤ 1, we have

vol(r) ≤ ωn · 2n−1rn. (6)

Given a choice of α and β as above, define the covering

U :=
{

Bi = Bτ(xi)(xi) : i ∈ I
}

of the manifold M , where E = {xi, i ∈ I} is as in Lemma 6.2.

Lemma 6.3. Assume that 0 < α ≤ 1/8, 0 < β and

0 <
β

1
2 − β

<
1 − α

1 + α
.

Then the covering U has multiplicity at most

22n−1

βn
.

Proof. Suppose that
y ∈

⋂

j∈J

Bj ,

for some J ⊂ I of cardinality m. Let ν := max{τ(xj), j ∈ J}. Then for
every j ∈ J ,

Bβτ(xj)(xj) ⊂ B(1+β)ν(y) .

The balls Bβτ(xj)(xj), j ∈ J , are pairwise disjoint by the definition of U .
Therefore

∑

j∈J

Vol
(

Bβτ(xj)(xj)
)

≤ Vol
(

B(1+β)ν(y)
)

.

Recall that
τ(y)

α
≤ InRadM (y) .

By combining this with the inequality

ν = τ(xj) ≤
1 + α

1 − α
τ(y)

(for some j ∈ J) and the inequality (4), we obtain

(1 + β)ν ≤ InRadM (y) .

Therefore the ball B(1+β)ν(y) is contained in a normal ball and thus has
the volume

vol
(

(1 + β)ν
)

.

By Lemma 6.1,

τ(xi) ≥ ν
1 − α

1 + α
, ∀i ∈ J .

Hence

m·vol
(

βν
1−α
1+α

)

≤
∑

i∈J

Vol
(

Bβτ(xi)(xi)
)

≤ Vol
(

B(1+β)ν(y)
)

= vol
(

(1+β)ν
)

.
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Combining this with the inequalities (5) and (6), we obtain

m ≤ 2n−1

[

(1 + β)(1 + α)

β(1 − α)

]n

.

Since α ≤ 1/8 and β < 1/2, it follows that

m ≤ 22n−1

βn
. �

We now fix α > 0 and β > 0 such that

α ≤ 1

8
and

0 <
β

1
2 − β

<
1 − α

1 + α
.

For instance, take α = β = 1/8. We then obtain

Proposition 6.4. There exists a function m(n, ǫ) : N× (0,∞) → N, with
the following property. For every complete hyperbolic n-manifold M , there
exits a countable subset E = {xi, i ∈ I} ⊂ M and a collection of positive
numbers {ρi, i ∈ I}, so that

1. Set D := {Di = Bρi/2(xi) : xi ∈ E} and U := {Bi = Bρi
(xi) : xi ∈ E}.

Then D (and therefore U) covers M .
2. For every xi ∈M[ǫ,∞),

ρi =
ǫ

16
.

3. For every xi ∈M(0,ǫ),

InRadM (xi)

8
= ρi ≤

ǫ

16
. (7)

4. The multiplicity of the covering U is at most m(n, ǫ).

Proof. Set ρi := τ(xi). The rest follows from Lemmata 6.2 and 6.3. �

Corollary 6.5. Suppose that

x ∈
⋂

j∈J

Bj ,

where J ⊂ I. Then part 3 of Proposition 6.4 in conjunction with the
inequality (1), implies that the union

⋃

j∈J

Bj

is contained in a normal neighborhood Nx of x.

We now associate a partition of unity {ηi, i ∈ I} to the covering U as
in Proposition 6.4. For the metric r-ball Br(o) ⊂ H

n we define a bump-

function br(x) on H
n supported in Br(o), so that
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1. 0 ≤ br(x) ≤ 1, ∀x ∈ H
n.

2. br(x) = 1 for all x ∈ Br/2(o).

3. ‖∇br(x)‖ ≤ ψ(r−1), ∀x ∈ H
n, where ψ(r) is a continuous function on

[0,∞), which vanishes at 0.

Lemma 6.6. There exists a smooth partition of unity {ηi, i ∈ N} subor-
dinate to the covering U , so that every function ηi is li-Lipschitz, with

Lκ := sup
{

li : xi ∈M[κ,∞)

}

<∞
for every κ > 0.

Proof. For every i ∈ I consider the bump-function bi on the ball Bi,
which equals to bρi

after the isometric identification of Bi with the ball
Bρi

(o) ⊂ H
n. Note that the radii of the balls Bi are at least

min
( κ

16
,
ǫ

16

)

for all
xi ∈M[κ,∞) .

Therefore, for every xi ∈M[κ,∞), we have

∥

∥∇bi(x)
∥

∥ ≤ λ(κ) = max

(

ψ

(

16

κ

)

, ψ

(

16

ǫ

))

for all x ∈M . Define the smooth partition of unity {ηi, i ∈ N} subordinate
to the covering U , using the bump-functions bi: Set

c(x) :=
∑

j∈I

bj(x) ,

and

ηi(x) :=
bi(x)

c(x)
.

Then parts 1 and 4 of Proposition 6.4 imply that for every x,

1 ≤ c(x) ≤ m(n, ǫ) .

Suppose that xi ∈M[κ,∞) and Bi ∩Bj 6= ∅. Then, by Lemma 6.1,

xj ∈M[κ′,∞)

where κ′ = κ
2 · 1−α

1+α . In particular, if x ∈ M is covered by the balls
Bi1 , . . . , Bim , so that xi1 = xi ∈M[κ,∞), then

‖∇c(x)‖ ≤ mλ(κ′) ≤ m(n, ǫ)λ(κ′) .

It follows that for each x ∈M and xi ∈M[κ,∞) we have
∥

∥∇ηi(x)
∥

∥ ≤
∣

∣∇bi(x)
∣

∣ +
∣

∣bi(x)
∣

∣ ·
∥

∥∇c(x)
∥

∥ ≤
(

m(n, ǫ) + 1
)

λ(κ′) = Lκ . �

Let {ηi, i ∈ I} be a partition of unity for M as above, subordinate to
the covering U of multiplicity m ≤ m(n, ρ0). We identify I with a subset
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of N. Let X denote the m-dimensional simplicial complex which is the
nerve of the covering U . Collections of balls {Bj , j ∈ J} such that

⋂

j∈J

Bj 6= ∅

correspond to simplices ∆J ⊂ X.
We now use the above partition of unity to define a map η from M

to X . Set

∆∞ :=

{

z ∈ R
∞ :

∞
∑

i=1

zi = 1 , zi ≥ 0 , i ∈ N

}

,

where
R

∞ =
⊕

i∈N

R .

Then X embeds naturally in ∆∞. We define the map

η : M → ∆∞

by
η(x) =

(

η1(x), . . . , ηk(x), . . .
)

.

Since{(Ui, ηi)} is a partition of unity, it is clear that the map η is well
defined. Moreover, the image of η is contained in X ⊂ ∆∞. Lemma 6.6
implies

Corollary 6.7. The map η : M → X is piecewise smooth and

η|M[κ,∞)

is
√
mLκ-Lipschitz for every κ > 0.

Since U is a covering by convex sets, the map η : M → X is a homotopy-
equivalence. Our goal is to construct its homotopy-inverse η̄ with uniform
control on the length of the tracks of the homotopy.

Let ∆J = [ej0 , . . . , ejk
] be a k-simplex in X, J = {j0, . . . , jk} ⊂ I. Recall

that the vertices ej, j ∈ J correspond to the balls Bj = Bρj
(xj) ∈ U . We

define the map
η̄ : ∆J →M

by sending the vertices ej to the corresponding centers xj ∈ Bj . The union
of the balls

⋃

j∈J

Bj

is contained in a normal neighborhood Nx in M (see Corollary 6.5). Con-
sider the convex hull

HullJ = Hull
(

{xj , j ∈ J}
)

⊂ Nx .

SinceNx is a normal neighborhood, we can regard Nx as a subset of H
n. We

use the projective model for HullJ . Then there exists a canonical projective
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map
η̄ : ∆J → HullJ

which extends the map defined on the vertices of ∆. Namely, the projec-
tivization P : R

n+1 \ {0} → RPn, identifies H
n with the hyperboloid

Hn :=
{

(t0, . . . , tn) ∈ R
n+1 : t0 > 0 , −t20 + t21 + · · · + tn = −1

}

.

The points xj are projections of the points x̂j ∈ Hn. Now, there exists a
unique linear map

∆J → R
n+1

which sends each ej to x̂j , j ∈ J . Let η̄ be the composition of this map
with the projection P .

Remark 6.8. This is the only place in our argument where we used the
fact that M has constant curvature. One can avoid using the canonical
projective map by appealing to convexity of the balls Bj and defining the
map η̄ (noncanonically) by the induction on skeleta of X.

We now estimate the displacement for the composition η̄ ◦ η. Set κ :=
ǫ/8.

Lemma 6.9. 1. If x ∈M and z ∈ Star(η(x)), then d(x, η̄(z)) ≤ κ.
2. There exists a homotopy H between η̄ ◦ η and Id, whose tracks have

length ≤ κ.

Proof. 1. Let ∆J ⊂ X be the smallest simplex containing η(x). If
z ∈ Star(η(x)), then z ∈ ∆J ′ , where J ′ ⊂ I is a subset containing J , so
that

⋂

i∈J ′

Bi 6= ∅ .

Let y := η̄(z). Then
y ∈

⋃

j∈J ′

Bj.

It follows that
d(x, y) ≤ 2(ρi + ρj)

for some j ∈ J , i ∈ J ′. Since ρk ≤ ǫ/16 for all k ∈ I, the first assertion of
lemma follows.

2. Part 1 clearly implies that

d(η̄ ◦ η, Id) ≤ κ = ǫ/8 .

Moreover, for x ∈M ,
y = η̄ ◦ η(x) ∈

⋃

j∈J

Bj ,

where J ⊂ I is defined as above. Therefore the points x and y belong to the
convex hull HullJ ⊂ Nx. Therefore we can take the homotopy H between
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η̄ ◦ η and Id to be the geodesic homotopy along geodesics contained in the
convex sets HullJ , J ⊂ N are such that ∆J ⊂ X. The length of the tracks
of this homotopy clearly does not exceed κ. �

Define the subcomplex Y = Yǫ ⊂ X to be the star of η(M(0,ǫ]) in X.
Hence we have the map of pairs

η : (M,M(0,ǫ]) → (X,Yǫ) .

Note that, because of the lack of convexity of the components of M(0,ǫ],
it is unclear if η is a homotopy equivalence of pairs. Nevertheless, η :
M → X is a homotopy equivalence, hence it induces an isomorphism of the
fundamental groups

Γ = π1(M) → π1(X) .

We obtain a flat bundle W over X, associated with the RΓ-module V .
We will see that the map

ηǫ,∗ : H∗(M,M(0,ǫ],V) → H∗(X,Yǫ; W)

induced by η, is an approximate monomorphism, in the following sense:

Proposition 6.10. The kernel of ηǫ,∗ is contained in the kernel of

H∗(M,M(0,ǫ],V) → H∗(M,M(0,2κ+ǫ],V) .

Proof. Let α ∈ Cq(M,W) be such that

[α] ∈ Ker(ηǫ,q) ⊂ Hq(M,M(0,ǫ],V) .

Let β ∈ Cq+1(X,Y ; W) be a chain so that

η#(α) − ∂β ∈ Cq(Y ; W) .

Set
α′ := (η̄ ◦ η)#(α) .

Then
α′ − ∂η̄#(β) ∈ Cq(η̄(Y ); V) .

Since η̄(Y ) is contained in the κ-neighborhood of M(0,ǫ], it follows that

η̄(Y ) ⊂M(0,ǫ+2κ] .

Therefore
α′ ∈ Bq(M,M(0,ǫ+2κ]; V) .

On the other hand, since the tracks of the homotopy H have length ≤ κ,
it gives us a chain

β′ ∈ Cq+1(M,M(0,ǫ+2κ]; V) ,

so that
α− α′ − ∂β′ ∈ C∗(M(0,ǫ+2κ]; V) .

Thus
α ∈ Bq(M,M(0,ǫ+2κ]; V) . �

Remark 6.11. One can also prove that ηǫ,∗ is an approximate epimorphism
(see [KK] for the definition), but we will not need this.
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7 Vanishing of Relative Homology Classes of Small Volume

The main goal of this section is to prove the following (cf. [G, Th. 5.38]):

Theorem 7.1. There exists a function θ = θn(ǫ) with the following
property. Let 0 < ǫ < µn/4. Let M be a complete (connected) hyperbolic
n-manifold with the fundamental group Γ and the thick-thin decomposition

M = M(0,ǫ] ∪M[ǫ,∞) ,

where µ = µn is the Margulis constant. Let V → M be the flat bundle
associated with a RΓ-module V . Then every relative homology class

[ζ] ∈ Hq(M,M(0,ǫ]; V) , q > 0 ,

whose (relative) volume is less than θn(ǫ), is trivial.

Proof. Let η : M → X be the homotopy-equivalence from M to the nerve
of an appropriate cover, constructed in the previous section. Let m denote
the dimension of X. As η defines an isomorphism

π1(M) → π1(X) ,

we obtain the flat bundle W over X, associated with the RΓ-module V .
The map η induces an approximate isomorphism

η∗ : Hq(M,M(0,ǫ]; V) → Hq(X,Yǫ; W) ,

where Y := Yǫ = Star(η(M(0,ǫ])), see Proposition 6.10.
In what follows we metrize X so that every k-simplex in X is isometric

to the standard Euclidean k-simplex; we then will refer to X as being
piecewise Euclidean. Our strategy is to prove an analogue of the vanishing
Theorem 7.1 first for (X,Y ), and then use Proposition 6.10 to derive the
desired conclusion for (M,M(0,ǫ]).

Proposition 7.2. There exists a constant ν = νm with the follow-
ing property. Let X be an m-dimensional piecewise-Euclidean simplicial
complex, W → X be a flat bundle over X and Y ⊂ X be a subcom-
plex. Let [ζ] ∈ Hq(X,Y ; W) be a relative class of dimension q ≥ 1 so that
Vol([ζ], Y ) < ν. Then [ζ] = 0.

Proof. The idea is to retract ζ inductively to the q-dimensional skeleton
of X (away from Y ) without increasing the volume too much. The resulting
cycle ζ ′ will have relative volume which is less than the volume of the
Euclidean q-simplex, therefore ζ ′ will miss a point in every q-simplex in
X \ Y . Then we retract ζ ′ to the q − 1-dimensional skeleton of X away
from Y , thereby proving vanishing of [ζ].

Lemma 7.3. Suppose that ∆ ⊂ X \ Y is a k-simplex, k ≥ 1. There exists
a constant D = D(k) such that for every i < k the following holds.
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Let τ ∈ Ci(∆,W). Then there exists a point x ∈ ∆ which avoids the
support of τ and a retraction r : ∆ \ {x} → ∂∆ so that

Vol(r(τ)) ≤ D · Vol(τ) . (8)

Proof. This lemma (called the deformation lemma) was proved in [F] in the
case of the trivial R-bundle W over ∆. Since our bundle W is trivial over ∆,
the map r defined in [F], extends to the restriction W|∆ by the identity
along the fibers. Since the volume of a chain is defined independently of
the coefficients, it follows that the inequality (8) holds for the general flat
bundles. �

We set
D := max

{

D(i) , q + 1 ≤ i ≤ m
}

.

Lemma 7.4. Let τ ∈ Ci(X; W) be a chain. Then there exists another
chain τ ′ ∈ Ci(X,W) so that

1. The support of τ ′ away from Y is contained in the i-skeleton of X.
2. Vol(τ ′) ≤ Dm−i Vol(τ).
3. If τ ∈ Zi(X,Y ; W), then

[τ ] = [τ ′] ∈ Hi(X,Y ; W) .

Proof. We apply Lemma 8 inductively. Start with the m-skeleton of X.
For each m-simplex ∆ which is not contained in Y , we apply the retraction

r : ∆ \ {x} → ∂∆

adapted to the i-chain τ ∩ ∆ obtained from τ by excising X \ ∆. We
do nothing for the simplices which are contained in Y . The result is an
i-chain τ1 such that, away from Y , the support of τ1 is contained in the
m− 1-skeleton of X. By Lemma 8,

Vol(τ1) ≤ D · Vol(τ) .

We now repeat the above procedure with respect to the m− 1-skeleton of
X and continue inductively m− i times. �

Let vq denote the volume of the standard Euclidean q-simplex. Set

ν = ν(q) := vq ·Dq−m.

Let [ζ] ∈ Hq(X,Y ; W) be such that Vol(ζ, Y ) < ν. We claim that
[ζ] = 0. Indeed, by applying Lemma 7.4, we construct a relative cycle
ζ ′ ∈ Zq(X,Y ; W) which is homologous to ζ and such that

Vol(ζ ′) ≤ Dm−q Vol(ζ) < ν .

Therefore, the support of τ away from Y is contained in the q-skeleton
of X. Moreover, for every q-simplex ∆ ⊂ X \ Y ,

Vol(ζ ′ ∩ ∆) ≤ Vol(ζ ′) < vq = Vol(∆) .



GAFA HOMOLOGICAL DIMENSION AND CRITICAL EXPONENT 27

Therefore ζ ′ misses a point x∆ in the interior of every q-simplex ∆ ⊂ X \ Y .
For every such q-simplex ∆ we apply the retraction

ρ∆ : ∆ \ {x∆} → ∂∆

to the relative cycle ζ ′. The result is a new relative cycle ζ ′′ which is
homologous to ζ ′ and whose support away from Y is contained in the q−1-
skeleton of X. Since

Hq

(

X(q−1), Y (q−1); W
)

= 0 ,

it follows that
[ζ] = [ζ ′] = [ζ ′′] = 0 ∈ Hq(X,Y ; W) .

Lastly, set νm := max{ν(q) : 0 < q ≤ m}. Proposition 7.2 follows. �

We are now ready to prove Theorem 7.1. Choose κ > 0 so that

ǫ+ 2κ < µn ,

e.g., take κ = ǫ. By Proposition 6.4, there exists a covering U = {Bi, i ∈ I}
of the manifold M by ρi-balls Bi, where

ǫ

16
= sup

i∈I
ρi ,

I ⊂ N. We obtain a piecewise-smooth map

η : M → X ,

to the nerve of this covering. The restriction of η to M[ǫ,∞) is L-Lipschitz,
where L =

√
mLǫ, see Corollary 6.7. Set

θ :=
ν

Lq
,

where ν = νm is given by the Proposition 7.2.

Consider a cycle ζ ∈ Zq(M,M(0,ǫ]; V). Then

η#(ζ ∩M(0,ǫ]) ⊂ Y .

Therefore

Vol
(

η#(ζ), Y
)

≤ Vol
(

η#(ζ ∩M[ǫ,∞), Y
)

≤ Lq Vol(ζ) .

Hence

Vol(ζ, Y ) < θ ⇒ Vol
(

η#(ζ), Y
)

< ν ⇒
[

η#(ζ)
]

= 0 ∈ Hq(X,Yǫ; W) ,

by Proposition 7.2. Proposition 6.10 implies that

[ζ] = 0 ∈ Hq(M,M(0,ǫ+2κ]; V) ⇒ [ζ] = 0 ∈ Hq(M,M(0,µn]; V) ,

since ǫ+ 2κ < µn. Since the map (induced by the inclusion of pairs)

Hq(M,M(0,ǫ]; V) → Hq(M,M(0,µn]; V)

is an isomorphism, it follows that

[ζ] = 0 ∈ Hq(M,M(0,ǫ]; V) . �
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Corollary 7.5. Let M be a complete (connected) hyperbolic n-manifold
as above. Let V →M be the flat bundle associated with a RΓ-module V .
Then every relative homology class

[ζ] ∈ Hq(M,M(0,ǫ]; V) , q > 0 ,

of zero relative volume, is trivial.

Corollary 7.6. Let ζ ∈ Z lf
p (M ; V) be such that Vol(Excǫ(ζ)) < θ(n, ǫ)

for some 0 < ǫ ≤ µn/4. Then ζ projects to 0 in Hcusp
p (M ; V).

8 Proof of Theorem 1.1

Let Γ ⊂ Isom(Hn) be a Kleinian group and Π ⊂ Γ a collection of parabolic
subgroups as in the Introduction. Without loss of generality, we may as-
sume that Γ is torsion free. Then the quotient M = H

n/Γ is a hyperbolic
manifold. Set δ := δ(Γ). Consider an arbitrary RΓ-module V and the
relative homology group

Hq(Γ,Π;V ) ,

for q > δ + 1. Note that q ≥ 2. Set

λ :=

(

δ + 1

q

)q

. (9)

Since q > δ + 1, it follows that λ < 1.
As explained in section 2, we can use the manifold M = H

n/Γ in order
to compute the relative homology of Γ. Let 0 < ǫ < µn/4, where µn is the
Margulis constant for H

n. Consider the ǫ-thick-thin decomposition of the
manifold M :

M = M(0,ǫ] ∪M[ǫ,∞)

and let K := M(0,ǫ]. Let P denote the union of components of K whose
fundamental group is virtually abelian of rank ≥ 2. Then (see section 2)

H∗(M,P ; V) ∼= H∗(Γ,Π;V ) .

Lemma 8.1. Suppose that d ≥ 2 is such that Hq(M,K; V) = 0 for all
q ≥ d. Then Hq(M,P ; V) = 0 for all q ≥ d.

Proof. Set Q := K \P . Then every component of Q has cyclic fundamental
group. Since hdR(Z) = 1 for every ring R, it follows that

Hi(Q; V) = 0 , i ≥ 2 .
Therefore for every q ≥ 2 we have the following map of exact sequences:

· · · 0 → Hq(K) → Hq(M ; V) → Hq(M, K; V) = 0 −→ Hq−1(K; V) → · · ·

αq ↑ ↑ βq ↑ ↑ αq−1

· · · → Hq(P ) → Hq(M ; V) → Hq(M, P ;V)
δq

−→ Hq−1(P ; V) → · · ·
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The maps αq are isomorphisms for q ≥ 2 and are injective for all q. Thus

Hq(M,P ; V) ∼= Hq(M,K; V)

for q ≥ 3. Therefore Hq(M,P ; V) = 0 for all q ≥ max(3, d). It remains to
consider the case q = d = 2. Since βq = 0 and αq−1 is injective, it follows
that βq = 0. Hence δq = 0 and, therefore,

Hq(M,P ; V) ∼= Hq(M ; V)/Hq(P ; V) ∼= Hq(M ; V)/Hq(K; V) = 0 . �

Consider a chain ζ ∈ Cq(M ; V) which projects to the relative homology
class

[ζ] ∈ Hq(M,K; V) .

Our goal is to show vanishing of the relative volume of [ζ]:

Vol
[

ζ],K
)

= 0 ,

i.e. that the projection of ζ to Zq(M,K; V) is homologous to relative cycles
of arbitrarily small volume. Then Theorem 7.1 will imply that [ζ] = 0,
thereby establishing that

0 = Hq(M,P ; V) ∼= Hq(M,K; V) ∼= Hq(Γ,Π;V ) ,

for all q > δ + 1.
Let Q′ ⊂ Q be the union of compact components and P ′ := K \Q′. We

start by extending the chain ζ ∈ Cq(M ; V) to the tubes in K, to a chain ζ ′,
which projects to a relative homology class

[ζ ′] = [ζ] ∈ Hq(M,P ′; V) ,

see section 4.1. We then extend ζ ′ to the cusps, to a locally finite cycle

ζ̂ ∈ Zq(M ; V) ,

so that
v = Vol(ζ̂) ≤ Vol(ζ ′) + (q − 1)Vol(∂ζ ′) .

Moreover,
[

Excκ(ζ̂)
]

= [ζ ′] = [ζ] ∈ Hq(M,P ′; V)

for every 0 < κ ≤ ǫ. See section 4.2. We will need

Theorem 8.2 (Besson, Courtois, Gallot, [BCG1,2]). There exists a smooth
map F̃ : H

n → H
n so that

F̃ ◦ γ = γ ◦ F̃ , ∀γ ∈ Γ . (10)

∣

∣Jacr(F̃ (x))
∣

∣ ≤
(

δ + 1

r

)r

, ∀x ∈ H
n, ∀r ≥ 1 , (11)

F̃
(

Hull(Λ(Γ))
)

⊂ Hull(Λ(Γ)) . (12)

The map F̃ in this theorem is called a natural map. The r-Jacobian
|Jacr(F̃ (x))| at x ∈ H

n is defined as

max
{

Vol(Dx(F̃ )(ξ1), . . . ,Dx(F̃ )(ξr))
}
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where the maximum is taken over all orthonormal r-frames (ξ1, . . . , ξr) in
TxH

n. Therefore the map F̃ projects to a smooth map F : M → M
whose r-Jacobian again satisfies (11) and which is homotopic to the identity.
Hence

Vol
(

F#(ζ)
)

≤ λVol(ζ) ,

see equation (9). Since λ < 1, it follows that

lim
k→∞

Vol
(

F k
#(ζ)

)

= 0 .

Observe that the inequality (11) applied to r = 1, implies that the map F
is (δ + 1)-Lipschitz.

Let θ = θn(ǫ) > 0 be as in Theorem 7.1. Since λ < 1, there exists k ∈ N

such that
λkv < θ .

Set f := F k. Then for every κ ≤ ǫ,

Vol
(

f#(Excκ(ζ̂))
)

≤ Vol
(

f#(ζ̂)
)

≤ λkv < θ .

Choose κ := ǫ/(1 + δ)k and set

ζ ′′ := f#

(

Excκ(ζ̂)
)

.

Proposition 8.3. [ζ ′′] = [ζ]

in Hq(M,M(0,ǫ]; V).

Proof. 1. First, we have to check that

ζ ′′ ∈ Zq(M,M(0,ǫ]; V) .

Since f is (δ+1)k-Lipschitz, it sends the κ-thin part of M to the (δ+1)kκ-
thin part of M . Therefore

∂ζ ′′ ∈ Cq(M(0,ǫ]; V) ,

which implies our assertion.

2. Since f is homotopic to the identity and the cusps Pi are pairwise
disjoint, we see that

f(Pi ∩M(0,κ]) ⊂ Pi

for every component Pi ⊂ P ′.

We define the straight-line homotopy ht : f ∼= Id by projecting the
straight-line homotopy

f̃ := F̃ k ∼= Id

in H
n. The equality

[ζ ′′] = [ζ]

would follow from
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Lemma 8.4. For every x ∈ Pi ∩M(0,κ], the geodesic

ht(x) = xf(x)

is contained in Pi.

Proof. Let Πi ⊂ Γ be the fundamental group of Pi, i.e. Πi is the stabilizer
in Γ of a component P̃i of the lift of Pi to H

n. Recall that Pi ∩M(0,κ] is the
projection to M of the union

⋃

γ∈Πi\{1}

Kκ(γ) ,

see section 2. Since f̃ = F̃ k is (1 + δ)k-Lipschitz and commutes with Γ, we
obtain

f
(

Kκ(γ)
)

⊂ K(1+δ)kκ(γ) ⊂ Kǫ(γ) ,

for all γ ∈ Πi \ {1}. Since Kǫ(γ) is convex, for every x̃ ∈ Kκ(γ),

x̃f̃(z) ⊂ Kǫ(γ) .

The above geodesic segment projects to the track xf(x) of the homotopy
ht connecting x = p(x̃) to f(x). On the other hand, Kǫ(γ) projects to Pi.
Therefore

xf(x) ⊂ Pi . �

This concludes the proof of Proposition 8.3. �

We now can finish the proof of Theorem 1.1. Since

Vol(ζ ′′) < θ = θn(ǫ)

and 0 < ǫ ≤ µn/4, Theorem 7.1 implies that [ζ ′′] = 0 in

Hq(M,M(0,ǫ]; V) .

By combining this with Proposition 8.3, we obtain

[ζ] = [ζ ′′] = 0 ∈ Hq(M,M(0,ǫ]; V) .

Therefore, for every p > δ + 1,

0 = Hq(M,P ; V) ∼= Hq(Γ,Π;V ) .

Hence
vhdR(Γ) ≤ δ(Γ) + 1 .

This concludes the proof of Theorem 1.1. �

Proof of Corollary 1.2. Since (Γ,Π) has finite type, it follows that

cdR(Γ,Π) = hdR(Γ,Π) = vhdR(Γ,Π) ≤ δ(Γ) + 1 . �

Proof of Corollary 1.5. Since Γ is of type FP2, it is finitely generated,
hence Γ is virtually torsion free by Selberg’s lemma. Therefore, without
loss of generality we may assume that Γ is torsion free. Since δ(Z2) = 1, it
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follows that Γ contains no free abelian subgroups of rank ≥ 2. Thus Π = ∅.
By Theorem 1.1, we have the inequalities

cdR(Γ) ≤ 1 + hdR(Γ) ≤ δ(Γ) + 2 < 3 .

The above inequality implies that cdR(Γ) ≤ 2. Applying Lemma 2.3 to the
group Γ, we conclude that Γ is of type FP and hence

cdR(Γ) = hdR(Γ) ,

see Lemma 2.9. Applying Theorem 1.1 again, we obtain the inequality

cdR(Γ) = hdR(Γ) ≤ δ(Γ) + 1 < 2 .

Therefore cdR(Γ) = 1 and hence Γ is free by Theorem 2.5. �

Remark 8.5. If one could replace vhd with vcd in Theorem 1.1, then one
can weaken the assumption in Corollary 1.5 to finite generation of Γ.

9 Application to Geometrically Finite Groups

The main goal of this section is to prove Theorem 1.3 in the introduction.
In what follows, let Γ ⊂ Isom(Hn) be a nonelementary geometrically fi-
nite Kleinian group. Without loss of generality we may assume that Γ is
torsion free. Recall that Π is a maximal collection of maximal parabolic
subgroups of Γ (of virtual rank ≥ 2) which are pairwise nonconjugate and
such that every maximal parabolic subgroup of Γ is conjugate to one of the
subgroups Πi.

We enlarge Π to the set

Π′ = {Πi , i ∈ I} ,
which consists of representatives of conjugacy classes of all maximal parabolic
subgroups in Γ. Note that

hdR(Γ,Π) = hdR(Γ,Π′) ,

provided that hdR(Γ,Π) ≥ 2, see the proof of Lemma 8.1.
We will need the following:

Proposition 9.1. Let Γ ⊂ Isom(Hn) be a discrete subgroup and F̃ :
H

n → H
n be the natural map associated with Γ. Suppose that there exists

x̃ ∈ H
n such that |Jacq(F̃ (x̃))| = 1. Then there exists a q-dimensional

subspace H ⊂ H
n through x, so that Hull(Λ(Γ)) is contained in H.

Proof. This proposition was proved in [BCG2, Prop. 5.1] in the case q =
n− 1. It is clear from their proof however that it works for arbitrary q. �

We will assume in what follows that Γ is nonelementary and does not
preserve any proper subspace in H

n (otherwise we pass to the smallest



GAFA HOMOLOGICAL DIMENSION AND CRITICAL EXPONENT 33

Γ-invariant subspace). Then the convex hull Hull(Λ(Γ)) of Λ(Γ) is n-
dimensional.

Corollary 9.2. If there exists x ∈ M such that |Jacq(F (x))| = 1, then
q = n.

The key technical result of this section is the following strengthening of
Theorem 1.1:

Proposition 9.3. Suppose that Γ ⊂ Isom(Hn) is a geometrically finite
group such that δ(Γ) + 1 = cdR(Γ,Π′) = q. Then q = n and Λ(Γ) = Sn−1.

Proof. Set δ := δ(Γ). Let N = Hull(Λ(Γ))/Γ denote the convex core of M ;
then N is n-dimensional. Let F̃ : H

n → H
n be the natural map associated

with Γ. Our goal is to find a point x̃ ∈ H
n such that |Jacq(F̃ (x̃))| = 1.

Once we found such a point, it will follow from Corollary 9.2 that q = n
and hence

δ = q − 1 = n− 1 .

Then, since Γ is geometrically finite, it will follow that Λ(Γ) = Sn−1, see
Theorem 2.2, part 2.

Note that the projection F : M →M of the map F̃ satisfies

F (N) ⊂ N .

Moreover, since δ(Γ) + 1 = q, the inequality (6) implies that F does not

increase the volume of chains in C lf
q (M ; V). Since F is (1 + δ)-Lipschitz,

the restriction F |N is a proper map.

Since N = K(Γ, 1), we can use the thick part of this manifold in order
to compute the (relative) homology of Γ: We choose 0 < ǫ < µn/4 such
that

N(0,ǫ] = Pǫ ,

is the disjoint union of cusps. Since Γ is geometrically finite, it follows that
N[ǫ,∞) is compact. Since q = cd(Γ,Π′) and the pair (Γ,Π′) has finite type,

q = cdR(Γ,Π′) = hdR(Γ,Π′) .

Remark 9.4. Without loss of generality we can assume that hdR(Γ,Π) ≥ 2,
since, otherwise, δ(Γ) = 0 and, hence, Γ is elementary. Thus,

hdR(Γ,Π) = hdR(Γ,Π′) = cdR(Γ,Π′) .

Hence there exists an RΓ-module V and a nonzero relative homology
class

[ζ] ∈ Hq(N,Pǫ; V) ∼= Hq(Γ,Π
′;V ) .

Let
ζ̂ := ext(ζ) ∈ Z lf

q (N ; V)
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be a finite volume extension of the relative cycle ζ. Since Vol(ζ̂) <∞, there
exists 0 < κ < ǫ such that the chain ζ ′′ := ζ̂ ∩ Pκ satisfies

Vol(ζ ′′) < t := θn(ǫ)/2 ,

where θn(ǫ) is the function introduced in Theorem 7.1. Therefore

Vol
(

F k(ζ ′′)
)

< t ,

for all k ≥ 0. Set ζ ′ := Excκ(ζ̂) = ζ̂ ∩N[κ,∞).
For k ∈ N define the chains

ζ ′k := F k(ζ ′) , ζ+
k := ζ ′k ∩N[ǫ,∞) , ζ−k := ζ ′k ∩N(0,ǫ] .

We will consider two cases, in the first case we find a point y ∈ N such
that |Jacq(F (y))| = 1, the second case will be ruled out as it will lead to
the contradiction with nonvanishing of [ζ].

Case 1. Let χ denote the characteristic function of N[ǫ,∞). Suppose
that there exists a sequence xj ∈ Supp(ζ ′) and kj ∈ N, such that for
yj := F kj(xj) we have

lim
j
χ(yj) ·

∣

∣Jacq(F (yj))
∣

∣ = 1 .

Then the sequence (yj) belongs to the compact N[ǫ,∞) and hence subcon-
verges to a point y so that

∣

∣Jacq(F (y))
∣

∣ = 1 .

Thus we are done by Corollary 9.2.

Case 2. Otherwise, there exists 0 < λ < 1 so that for all k ∈ N,

Supp(ζ+
k ) ⊂ Eλ :=

{

x ∈M : |Jacq(F (x))| ≤ λ
}

. (13)

Lemma 9.5. There exists k ∈ N such that Vol(ζ ′k, Pǫ) < t = θn(ǫ)/2.

Proof. Suppose not. Then for every k we have

Vol(ζ+
k ) ≥ t

and hence
Vol(ζ+

k )

Vol(ζ ′k)
≥ t

v
,

where
v := Vol(ζ ′) ≥ Vol(ζ ′k) .

Moreover, by (13), we get

Vol(ζ ′k+1) = Vol
(

F (ζ ′k)
)

≤ λVol(ζ+
k ) + Vol(ζ−k ) ≤

[

(λ− 1) t
v + 1

]

Vol(ζ ′k) .

Note that, since λ < 1, we have

0 <
[

(λ− 1) t
v + 1

]

< 1 .

Therefore
lim

k→∞
Vol(ζ ′k, Pǫ) ≤ lim

k→∞
Vol(ζ ′k) = 0 .
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This contradicts the assumption that Vol(ζ ′k, Pǫ) ≥ t > 0 for all k. Contra-
diction. �

We now can finish the proof of the proposition. We first estimate
Vol(F k(ζ̂), Pǫ) for the number k guaranteed by the above lemma:

Vol
(

F k(ζ̂), Pǫ

)

≤ Vol
(

F k(ζ ′), Pǫ

)

+ Vol
(

F k(ζ ′′)
)

≤ t+ t = θn(ǫ) ,

since Vol(F k(ζ ′′)) ≤ t.
Hence, by Corollary 7.6, the locally finite cycle F k(ζ̂) projects to zero

class [

Excǫ(F
k(ζ̂))

]

∈ Hcusp
q (M ; V) .

Since F k : N → N is Lipschitz and commutes with Γ, it is properly homo-
topic to the identity. Therefore

[ζ̂] = F k([ζ̂]) ∈ H lf
q (M ; V) .

Thus
[ζ] =

[

Excǫ(ζ̂)
]

= 0 ∈ Hq(M,Pǫ; V) .

This contradicts the assumption that [ζ] is a nonzero class inHq(M,Pǫ;V). �

In order to relate the above proposition to the limit set of Γ we will
need the following proposition, which is a relative version of a theorem by
Bestvina and Mess in [BeM]:

Proposition 9.6. cd(Γ,Π′) = dim(Λ(Γ))+1, where dim is the topological
dimension.

Proof. Without loss of generality we may assume that Γ is torsion free. Let
H := Hull(Λ) denote the convex hull of the limit set Λ of the group Γ. The
set H is obviously contractible. Moreover, the union

H ∪ Λ

satisfies the axioms of the Z-set compactification of H and therefore

H∗
c (H) ∼= Ȟ∗−1(Λ) ,

see [BeM] and [Be]. Since Γ is geometrically finite, the pair (Γ,Π′) has
finite type; hence

cd(Γ,Π′) = sup
{

q : Hq(Γ,Π′; ZΓ) 6= 0
}

,

see Lemma 2.9.
Since Γ is geometrically finite, for every i ∈ I we can choose a closed

horoball Bi, centered at the fixed point of Πi, so that

γ(Bi) ∩Bj = ∅
unless i = j and γ ∈ Πi, in which case γ(Bi) = Bj. See for instance [Bow].

Therefore the set
H ′ := H \ Γ ·

⋃

i∈I

int(Bi)

projects to a compact submanifold with boundary N ′ in N = H/Γ.
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For every i ∈ I, set

Ci := Bi ∩H ,

C := Γ ·
⋃

i∈I

Ci ,

and

C ′
i := Bi ∩H ′,

C ′ := Γ ·
⋃

i∈I

C ′
i.

Then convexity of H and of every Bi implies that H ′ and each C ′
i is

contractible. Therefore N ′ = H ′/Γ is a compact K(Γ, 1) and C ′
i/Πi is a

compact K(Πi, 1), for every i ∈ I.

Lemma 9.7. H∗
c (C) = 0.

Proof. Since each Bi is a horoball centered at a limit point of Γ and H is
convex, it follows that

C ∼= [0, 1) × C ′.

Therefore vanishing of H∗
c ([0, 1)) implies vanishing of H∗

c (C). �

Hence, by the long exact sequence of the pair (H,C), we have

H∗
c (H) ∼= H∗

c (H,C) .

We claim that

H∗(Γ,Π′; ZΓ) ∼= H∗
c (H ′, C ′) ∼= H∗

c (H,C) ∼= H∗
c (H) ∼= Ȟ∗−1(Λ) .

The first isomorphism in this sequence is established in [Bro, Ch.VIII,
Prop. 7.5] in the case Π = ∅ and Γ of finite type with H ′ being the universal
cover of a compact K(Γ, 1); the general case follows from the long exact
sequences of the pairs (Γ,Π), (H ′, C ′). The rest of the isomorphisms were
established above. Hence cd(Γ,Π′) = dim(Λ(Γ)) + 1 and Proposition 9.6
follows. �

Remark 9.8. The proof of Proposition 9.6 generalizes without much dif-
ficulty to the case when Γ is a relatively hyperbolic group with respect to
a family Π′ of virtually nilpotent subgroups. The limit set in this case is
replaced by the Bowditch boundary of Γ.

We are now ready to prove Theorem 1.3. By the assumption,

dimH Λ(Γ) = dimΛ(Γ) .

Since, by Theorem 2.2, for nonelementary geometrically finite Kleinian
groups Γ we have

dimH Λ(Γ) = δ(Γ) ,
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Proposition 9.6 implies

δ(Γ) = dimH Λ(Γ) = dim Λ(Γ) = cd(Γ,Π′) − 1 .
Lastly, Proposition 9.3 implies that Γ is a lattice. �
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