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Dynamics on flag manifolds:
domains of proper discontinuity and cocompactness
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For noncompact semisimple Lie groups G with finite center, we study the dynamics
of the actions of their discrete subgroups � < G on the associated partial flag
manifolds G=P . Our study is based on the observation, already made in the deep work
of Benoist, that they exhibit also in higher rank a certain form of convergence-type
dynamics. We identify geometrically domains of proper discontinuity in all partial flag
manifolds. Under certain dynamical assumptions equivalent to the Anosov subgroup
condition, we establish the cocompactness of the �–action on various domains of
proper discontinuity, in particular on domains in the full flag manifold G=B . In
the regular case (eg of B –Anosov subgroups), we prove the nonemptiness of such
domains if G has (locally) at least one noncompact simple factor not of the type
A1 , B2 or G2 by showing the nonexistence of certain ball packings of the visual
boundary.

53C35; 22E40, 37B05, 51E24

To Guiomar

1 Introduction

Let G be a noncompact semisimple Lie group with finite center. In this paper, we
study the natural actions

� Õ G=P

of discrete subgroups � < G on the (partial) flag manifolds G=P associated to G .
(Here, P < G denotes a parabolic subgroup.) We are interested in aspects of the
topological dynamics of the action of � in the higher-rank case, notably in domains of
proper discontinuity and criteria for the cocompactness of the �–action on these.

The study of such questions has a long history. Kulkarni [27] introduced several
notions of limit sets for discrete group actions on general topological spaces and proved
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proper discontinuity away from the largest of these limit sets. Guivarc’h [12] was the
first to define limit sets for discrete group actions on the flag manifolds of SL.n;R/.
Benoist’s [1] foundational work included a definition of limit sets in flag manifolds
of arbitrary reductive Lie groups and a notion of contraction dynamics equivalent
to the one used in this paper; it was of major influence on further developments in
the field and basic for our paper. The work of Karlsson [25] and Papasoglu and
Swenson [34] introduced a notion of higher-rank convergence behavior, similar to the
one used in this paper, for discrete group actions on visual boundaries in the general
setting of CAT(0) spaces. In his pioneering paper [28], Labourie introduced Anosov
subgroups and studied their dynamics on flag manifolds of SL.n;R/. Guichard and
Wienhard [11] constructed cocompact domains of proper discontinuity for Anosov
subgroups of various semisimple Lie groups acting on various flag manifolds. Cano,
Navarrete and Seade [6] extensively studied Kulkarni’s limit sets in the case of discrete
subgroups of SL.n;C/ acting on CPn�1 .

Our approach to studying the topological dynamics of � relies on the geometry of
the associated symmetric space X D G=K of noncompact type. The connection is
established by the fact that the flag manifolds occur as the G–orbits in the visual
boundary @1X , that is, the boundary at infinity of the visual compactification xX D
X t @1X of X .

If rank.X /D 1, or equivalently, if X has strictly negative sectional curvature, then the
only flag manifold is @1X itself, and the transitive action G Õ @1X has convergence
dynamics. This means that divergent sequences in G exhibit a certain attraction-
repulsion behavior, namely they subconverge on the complement of one point in @1X

locally uniformly to a constant map. More precisely, for a sequence gn!1 in G , there
exist a subsequence .gnk

/ and (not necessarily distinct) points �˙ 2 @1X such that

gnk
j@1X�f��g! �C

uniformly on compacta.

As a consequence of convergence dynamics, for a discrete subgroup � <G , there is a
clean �–invariant dynamical decomposition

@1X D�disc tƒ

into the open domain of discontinuity or wandering set �disc and the compact limit
set ƒ. The latter consists of all points occurring as limits �C as above for sequences

n!1 in � , and the �–action on �disc is even properly discontinuous. In order for
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this action to be cocompact, one needs to impose further conditions on the group. The
action � Õ�disc is cocompact if (but not only if) � is convex-cocompact.

If rank.X /� 2, then the action G Õ @1X is no longer transitive. The G–orbits are
compact and, as G–spaces, copies of flag manifolds. They are parametrized by the
spherical Weyl chamber �mod associated to G ; a G–orbit for an interior point of a face
�mod � �mod (which we will also refer to as a face type) is naturally identified with
the flag manifold Flag�mod

ŠG=P� , the conjugacy class of the parabolic subgroup P�

corresponding to the face �mod . In particular, the regular G–orbits in @1X , ie those
corresponding to interior points of �mod itself, are identified with the full flag manifold,
@FRuX Š Flag�mod

Š G=B� , the space of Weyl chambers at infinity, also called the
Furstenberg boundary; here, B� denotes a minimal parabolic subgroup of G .

Our study is based on the observation that a weak form of convergence dynamics
persists for the action G Õ @1X in higher rank (see Sections 5.2 and 6): sequences
gn!1 in G subaccumulate outside a compact exceptional subset locally uniformly
at another compact subset, meaning that there exist a subsequence .gnk

/ and compact
subsets A˙ � @1X such that

gnk
j@1X�A� accumulates at AC

uniformly on compacta. We briefly say that .gnk
/ is .A�;AC/–accumulating in this

case. There is a certain flexibility in the choice of the pair of compact subsets .A�;AC/
and a trade-off (“uncertainty relation”): if one shrinks one of the subsets A˙ , one must
enlarge the other.

For instance, one can make the following metric choice for the pair of compact subsets:
for a suitable subsequence .gnk

/, there exist points �˙ 2 @1X such that .gnk
/ is

. xB.��; ��r/; xB.�C; r//–accumulating for all radii r 2 .0; �/, where B.�; r/ denotes
a ball in @1X with respect to the Tits angle metric. This kind of convergence type
dynamical behavior had been observed, in the general setting of proper CAT(0) spaces,
by Karlsson [25, Theorem 1] and Papasoglu and Swenson [34, Theorem 4]; see also
the first version of this paper [18, Theorem 1.1 and Section 6.1].

In our setting of CAT(0) model spaces with their rich geometric structure, one can
make more flexible “combinatorial” choices for the pair of compact subsets which can
be described in terms of the (partial) Bruhat order � on the Weyl group W . These
will enable us to construct larger domains of proper discontinuity for discrete group
actions than those obtained from metric choices. To explain the combinatorial choices,
we need some preliminary considerations.
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It will be useful for us to interpret the Bruhat order geometrically, and we give a
geometric description of it and its generalization as the folding order; see Section 3.2.

Since any two Weyl chambers at infinity �; � 0 � @1X are contained in an apartment,
that is, the visual boundary @1F � @1X of a maximal flat F �X , we can define a
combinatorial relative position

pos.� 0; �/ 2W

of � 0 with respect to � ; see Section 3.3. The larger the position is with respect to �,
the more generic it is. We note that the sublevels of pos. � ; �/ in @FRuX are precisely
the Schubert cycles with respect to � , that is, the B�–orbit closures.

We define a thickening

Th�W

of the neutral element inside the Weyl group as a union of sublevels for the Bruhat order;
see Section 3.4. Each thickening Th�W gives rise to corresponding thickenings of
chambers inside the Furstenberg boundary,

ThFRu.�/ WD fpos. � ; �/ 2 Thg � @FRuX;

which can also be regarded as thickenings Th.�/� @1X inside the visual boundary
by taking the union of the chambers contained in them. The thickenings of cham-
bers in @FRuX are finite unions of Schubert cycles and hence projective subvarieties.
Thickenings ThFRu.A/� @FRuX and Th.A/� @1X of compact subsets A� @FRuX are
defined as the union of the thickenings of the individual chambers � 2 A; they are
again compact.

This discussion generalizes: There is a well-defined W�modnW –valued position pos. � ; �/
of chambers relative to a simplex � 2 Flag�mod

. Here, W�mod <W denotes the stabilizer
of the face �mod� �mod . If the thickening Th�W is W�mod–left invariant, then it yields
well-defined compact thickenings ThFRu.A/ � @FRuX and Th.A/ � @1X of compact
subsets A� Flag�mod

. Even more generally, there is a well-defined W�modnW =W�mod–
valued position pos.�; �/ of simplices � 2 Flag�mod

relative to simplices � 2 Flag�mod
,

and a W�mod–left and W�mod–right invariant thickening inside W yields thickenings of
subsets of Flag�mod

inside Flag�mod
.

For each thickening Th�W , there is the complementary thickening Thc
�W defined by

W D Thtw0 Thc ;

Geometry & Topology, Volume 22 (2018)



Dynamics on flag manifolds: domains of proper discontinuity and cocompactness 161

where w0 denotes the longest element of the Weyl group. (This partition of the Weyl
group generalizes the decomposition � D r C .� � r/ of the maximal distance in the
unit sphere; compare the metric choices above.) We call a thickening Th slim, fat or
balanced if Th � Thc , Th � Thc , or Th D Thc , respectively. Existence results for
balanced thickenings with different invariance properties are stated in Proposition 1.9
below; examples are given in Section 3.4.

Returning to the dynamics of sequences gn ! 1 in G on @1X , we show (see
Lemma 4.5 and Proposition 6.9) that there always exist a subsequence .gnk

/, a face
�mod � �mod and a pair of simplices �˙ 2 Flag˙�mod

such that

(1) gnk
jC.��/! �C

uniformly on compacta in the open Schubert cell C.��/�Flag�mod
of simplices opposite

to �� . Here ��mod WD ��mod for the canonical involution �D�w0 of �mod . This locally
uniform convergence property implies (see Corollary 6.3) that, more generally,

(2) .gnk
/ is .Thc.��/;Th.�C//–accumulating on @1X

for all W�mod–left invariant thickenings Th � W . Note that (1) is equivalent to (2)
for the slimmest nonempty choice ThD feg. We call sequences satisfying (1) �mod–
contracting; see Definition 6.1. An equivalent notion had already been introduced by
Benoist in his fundamental work [1]; see in particular part (5) of his Lemma 3.5, and
compare also Remark 1.3.

We now turn to discussing the dynamics of discrete subgroups � <G on @1X .

For a face �mod � �mod , we define the “small” �mod–limit set

ƒ�mod � Flag�mod

as the set of all simplices in Flag�mod
which occur as limits �C as in (1) for sequences


n!1 in � ; see Definition 6.4.

Remark 1.1 In his influential paper, Benoist [1, Section 3.6] introduced a notion of
limit set ƒ� for Zariski dense subgroups � of reductive algebraic groups over local
fields which, in the case of real semisimple Lie groups, is equivalent to our concept
of �mod–limit set ƒ�mod .1 What we call the �mod–limit set ƒ�mod for other face types
�mod ¨ �mod is mentioned in his Remark 3.6(3), and his work implies that, in the Zariski

1Benoist’s limit set ƒ� is contained in the flag manifold Y� , which, in the case of real Lie groups, is
the full flag manifold G=B ; see the beginning of Section 3 of his paper. It consists of the limit points of
sequences contracting on G=B ; see his Definitions 3.5 and 3.6.
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dense case, ƒ�mod is the image of ƒ�mod under the natural projection Flag�mod
!Flag�mod

of flag manifolds.

By choosing a W�mod–left invariant thickening Th �W , we obtain from these small
limit sets the “large” thickened limit sets Th.ƒ�mod/� @1X . Our main results concern
the proper discontinuity and cocompactness of the �–action on the complements

�Th WD @1X �Th.ƒ�mod/;

respectively, on their intersections with the G–orbits G� � @1X . We obtain the
strongest results for the dynamics on the Furstenberg boundary. This is reasonable
because the latter fibers with compact fiber over all partial flag manifolds, and cocompact
domains of proper discontinuity in any flag manifold pull back to such domains in @FRuX .
Our results are of the kind, in the spirit of Mumford’s geometric invariant theory,
that the �–actions become properly discontinuous when removing a sufficiently “fat”
thickening of ƒ�mod , and remain cocompact when removing a sufficiently “slim” one.
(See Example 3.30 and the discussion in Section 7.4 for a concrete connection with
configuration spaces and GIT.)

The accumulation property (2) is the key step in constructing domains of proper
discontinuity for all discrete subgroups; see Propositions 6.15 and 6.16 in Section 6.4.
We obtain the most useful results for subgroups which satisfy a certain generalization
of the convergence property (see Definition 6.5):

Definition 1.2 (weak convergence subgroup) We call a discrete subgroup � <G a
�mod–convergence subgroup with respect to a face type �mod � �mod , if every sequence

n!1 in � has a subsequence satisfying (1) with this particular face type �mod , or
equivalently, has a subsequence satisfying (2) for any choice of W�mod–left invariant
thickenings Th�W .

Remark 1.3 (convergence dynamics versus regularity) We note that the �mod–conver-
gence property of a subgroup � <G , formulated in terms of the dynamics of the action
on the visual boundary @1X , can be equivalently described in terms of the asymptotic
behavior of �–orbits in the symmetric space X . Namely, � is a �mod–convergence
subgroup if and only if it is a �mod–regular subgroup of G ; see Section 6.3. The notion
of �mod–regularity was introduced in our earlier paper [19], where also the equivalence
of the two notions was established. In the present paper, we only need (and verify) that
�mod–convergence implies �mod–regularity.
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The notions of regularity and contraction for sequences and their essential equivalence
can be found already in the fundamental work of Benoist [1, Section 3]. For the sake
of completeness, we give independent proofs in our setting of discrete subgroups of
semisimple Lie groups. Also our methods are rather different. We give a geometric
treatment and present the material in a form suitable for the further development of
our theory of discrete isometry groups acting on Riemannian symmetric spaces and
euclidean buildings, such as in our papers [16; 20].

Our main result on proper discontinuity includes (compare Theorem 6.8):

Theorem 1.4 (proper discontinuity outside fat thickenings) Let �mod � �mod be
�–invariant. If � < G is a �mod–convergence subgroup, then for any fat W�mod–left
invariant thickening Th�W , the action

� Õ @1X �Th.ƒ�mod/

is properly discontinuous.

In order to obtain cocompactness for actions of �mod–convergence subgroups, we
must impose further conditions, as it is the case for convergence actions; compare the
situation in rank one. Our main requirement is that the action � Õ Flag�mod

should
be expanding at ƒ�mod in the sense of Sullivan [37, Section 9]; see Definition 5.19.
Moreover, if �mod is �–invariant, we call the limit set ƒ�mod antipodal if the simplices
in it are pairwise opposite; see Definition 2.3(ii).

Definition 1.5 (CEA subgroup) For an �–invariant face �mod � �mod , we call a
�mod–convergence subgroup � <G a �mod–CEA subgroup (convergence, expanding,
antipodal) if ƒ�mod is antipodal and if the action � Õ Flag�mod

is expanding at ƒ�mod .

The restricted action � Õƒ�mod is then a convergence action in the traditional sense.
Such subgroups are higher-rank generalizations of convex-cocompact subgroups of
rank-one Lie groups. In fact, the CEA condition is only one of various equivalent
dynamical and (coarse) geometric conditions which can be used to characterize this
class of discrete subgroups; see our papers [15; 19; 21; 22] for a detailed study of these
conditions and their equivalence. In particular:

Remark 1.6 (CEA versus Anosov) The class of �mod–CEA subgroups coincides
with the class of P�mod–Anosov subgroups; see [19, Section 6.5]. Here, P�mod refers to
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the conjugacy class of parabolic subgroups of G corresponding to the face �mod of the
spherical Weyl chamber �mod . We recall that the notion of Anosov subgroup had first
been introduced in [28] using the language of geodesic flows, and further extended
in [11]. We gave the first flow-free definitions in [19]. We note that Labourie’s original
definition did not require �mod to be �–invariant; instead, he worked with .P�mod ;P��mod/–
Anosov subgroups. However, as already observed in [11], the general case readily
reduces to the �–invariant one.

Our main result regarding cocompactness includes the following (compare Theorem 7.7
and Corollary 7.8):

Theorem 1.7 (cocompactness outside slim thickenings) Suppose � <G is a �mod–
CEA subgroup. Then for each slim W�mod–left invariant thickening Th�W , the action

� Õ @FRuX �ThFRu.ƒ�mod/

is cocompact.

More generally, suppose that �mod � �mod is another face type and that the thickening
Th is also W�mod–right invariant. Then for any G–orbit G�� @1X corresponding to
an interior point of �mod , the action

� Õ G��Th.ƒ�mod/

is cocompact.

By combining the two theorems, we obtain the central result of this paper:

Theorem 1.8 (cocompact domains of proper discontinuity) Let � <G and the data
�mod; �mod;Th be as in the previous theorem with the additional requirement that the
thickening Th be balanced. Then the respective actions are properly discontinuous and
cocompact.

We note that topology of the quotient space .@FRuX � ThFRu.ƒ�mod//=� , in general,
depends on the balanced thickening; see Example 7.14.

Balanced thickenings do not exist for all invariance requirements, but for many, they
do. For instance, one can impose arbitrary left invariance, and as a consequence, one
has balanced thickenings of �mod–limits sets inside @FRuX for all �–invariant �mod , as
the first part of the next result shows (see Section 3.4 for more general results):
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Proposition 1.9 (existence of balanced thickenings) For every �–invariant face type
�mod , there exists a W�mod–left invariant balanced thickening Th�W .

For an arbitrary face type �mod , a W�mod–right invariant balanced thickening exists if
and only if left multiplication by w0 has no fixed point on W =W�mod . This is the case,
for instance, if w0 D� id, or equivalently, if all irreducible factors of the symmetric
space are of type A1 , Bn�2 , D2k�4 , E7;8 , F4 or G2 .

The nonemptiness of the domains found in Theorem 1.8 (and Theorem 1.4) is an
issue. For instance, uniform lattices in rank-one Lie groups have empty domains of
discontinuity at infinity (and such lattices are CEA). See also Example 7.14 for empty
domains in the reducible case. If, for a �mod–convergence subgroup � with antipodal
�mod–limit set, all domains given by Theorem 1.4 were empty, it would follow that
the visual boundary of X admits a packing by a compact family (with respect to the
visual topology) of �

2
–balls (with respect to the Tits metric); see Proposition 8.12.

However, the existence of such packings can be ruled out for most Weyl groups (see
Theorem 8.8), and we conclude (see Theorem 8.13):

Theorem 1.10 (nonemptiness of domains of proper discontinuity) Suppose that X

has at least one de Rham factor not of the type A1;B2 or G2 , and let � < G be a
�mod–convergence subgroup with antipodal limit set ƒ�mod . Then for some balanced
thickening Th �W , the domain of proper discontinuity @FRuX �ThFRu.ƒ�mod/ for the
�–action provided by Theorem 1.4 is nonempty.

Note that the theorem covers the case of CEA subgroups, but is more general.

The possible balanced thickenings can be described more precisely; see Theorem 8.13.
In the B2–case, we have partial nonemptiness results for the groups G DO.2kC1; 2/

with k � 1 (see Addendum 8.14). The G2–case is not discussed in this paper.

The above results yield the following for the dynamics of CEA subgroups on the
Furstenberg boundary:

Corollary 1.11 (dynamics on the Furstenberg boundary) Suppose that � < G is a
�mod–CEA subgroup. There exist W�mod–left invariant balanced thickenings Th�W ,
and for every such thickening, the action

� Õ @FRuX �ThFRu.ƒ�mod/

is properly discontinuous and cocompact.
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If � < G is a �mod–CEA subgroup, and if X has at least one de Rham factor not of
the type A1;B2 or G2 , then for some balanced thickening Th �W , the cocompact
domain of proper discontinuity @FRuX �ThFRu.ƒ�mod/ is nonempty.

Again, the possible thickenings occurring in the �mod–case can be described more
precisely.

Remark 1.12 (dynamics on Finsler compactifications) Our results regarding do-
mains of proper discontinuity and cocompactness for discrete group actions on flag
manifolds have analogs for the actions of the same classes of subgroups on a Finsler
compactification xX Fins of X . This is done in our paper [16]. The compactification
xX Fins is obtained from X geometrically by applying the horoboundary construction to

suitable G–invariant regular polyhedral Finsler metrics on X rather than to G–invariant
Riemannian metrics (which yields the visual compactification xX DX t @1X ), and
it coincides with the maximal Satake compactification from algebraic group theory;
see also Parreau [35]. Note that the Furstenberg boundary @FRuX naturally embeds into
xX Fins as a G–orbit, namely as the only compact one. Some of the results become easier

in the Finsler setting; for instance, the nonemptiness of domains of proper discontinuity
at infinity is no longer an issue. Each �mod–convergence subgroup with antipodal
limit set ƒ�mod has a nonempty domain of proper discontinuity in the Finsler ideal
boundary (defined using an arbitrary W�mod–left invariant balanced thickening), once
rank.X /� 2; see [16, Lemma 9.19].

Remark 1.13 There is overlap of our results with [11]. There, cocompact domains of
proper discontinuity are constructed for Anosov subgroups of various semisimple Lie
groups acting on various partial flag manifolds. However, in the general case of arbitrary
semisimple Lie groups G , such domains are constructed only in G–homogeneous
spaces fibering over @FRuX ŠG=B with compact fiber [11, Theorem 1.9]. Nonemptiness
of these domains is proven for P–Anosov subgroups of small cohomological dimension
[11, Theorems 1.11, 1.12 and 9.10], while our nonemptiness results apply to �mod–
convergence subgroups with antipodal �mod–limit set (this class of subgroups includes
B–Anosov subgroups), without restriction on the cohomological dimension.

Observe also that our treatment is intrinsic, while in [11], a theory for Anosov sub-
groups of Lie groups of the type Aut.F / is first developed (where the F ’s are certain
bilinear and hermitian forms), and then generalized to other semisimple Lie groups
by embedding these into the groups of type Aut.F /. The intrinsic approach is more
uniform and seems to provide better control; eg it allows us to get the domains, for
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general semisimple Lie groups, in flag manifolds instead of only in bundles over these
as in [11]. While in some low-rank cases the outcomes of the two constructions of
thickened limit sets are the same, our construction appears to be more general.

The earlier version [18] of this paper written in 2013 covered only the �mod–regular case.
Some of the material of [18], dealing with equivalent characterizations of �mod–CEA
actions, was later moved to our paper [19]. Most of the rest of the material of [18] was
generalized and moved into this paper.
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2 Geometric preliminaries

In this section, we collect some standard material on Coxeter complexes, the geometry of
nonpositively curved symmetric spaces and associated spherical Tits buildings; we refer
the reader to [26; 29] for more detailed discussion of symmetric spaces and buildings.

2.1 General notation

We will use the notation B.a; r/ and xB.a; r/ for the open and closed r–balls, respec-
tively, centered at a in a metric space Z . We will denote the nearest point distance of
a point z 2Z to a subset A�Z by d.z;A/ WD inf d.z; � /jA . The Hausdorff distance
between two subsets A;B �Z will be denoted by dH .A;B/. A geodesic in a metric
space is an isometric embedding from a (possibly infinite) interval I �R.

2.2 Coxeter complexes

A spherical Coxeter complex amod is a pair .S;W / consisting of a unit sphere S in a
euclidean vector space V and a finite group W which acts isometrically on S and is
generated by reflections at hyperplanes. A Coxeter complex is reducible if W splits

Geometry & Topology, Volume 22 (2018)



168 Michael Kapovich, Bernhard Leeb and Joan Porti

as a (nontrivial) direct product W1 �W2 and V admits a W –invariant (nontrivial)
orthogonal direct sum decomposition V DV1˚V2 such that Wi fixes V3�i for iD1; 2.
In this case, we obtain two induced Coxeter complexes .Si ;Wi/ on the unit spheres
Si � Vi . A Coxeter complex which is not reducible is called irreducible.

We will use the notation † for the angular metric on S . Throughout the paper, we
assume that W does not fix a point in S and is associated with a root system R.
Spherical Coxeter complexes will occur as model apartments of spherical buildings,
mostly of Tits boundaries of symmetric spaces, and will in this context usually be
denoted by amod .

A wall m� in S is the fixed point set of a hyperplane reflection � in W . A half-
apartment in S is a closed hemisphere bounded by a wall. A point � 2 S is called
singular if it belongs to a wall and regular otherwise.

The action W Õ S determines on S a structure as a simplicial complex whose facets,
called chambers, are the closures of the connected components of

S �
[
�

m�;

where the union is taken over all reflections � in W . We will refer to the simplices
in this complex as faces. (If one allows fixed points for W on S , then S carries
only a structure as a cell complex.) Codimension-one faces of this complex are called
panels. The interior int.�/ of a face � is the complement in � to the union of walls not
containing � . The interiors int.�/ are called open simplices. A geodesic sphere in S

is called singular if it is simplicial, equivalently, if it equals an intersection of walls.

Each chamber is a fundamental domain for the action W Õ S . We define the spherical
model Weyl chamber as the quotient �modDS=W . The natural projection � W S! �mod

restricts to an isometry on every chamber. An important elementary property of the
chamber �mod is that its diameter (with respect to the spherical metric) is � �

2
.

For a face �mod of �mod , we define the subgroup W�mod �W as the stabilizer of �mod

in W . Accordingly, for a point x� 2 �mod , we define Wx� �W as the stabilizer of x�
in W . Then Wx� D W�mod , where �mod is the face of �mod spanned by x� , ie which
contains x� as an interior point. Note that W�mod D 1 and Wx� D 1 for x� 2 int.�mod/.

It is convenient, and we will frequently do so, to identify �mod with a chamber � � S

(traditionally called the positive chamber). Such an identification determines a gener-
ating set of W , namely the reflections at the walls bounding �mod , and hence a word
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metric on W ; the longest element with respect to this metric is denoted by w0 . This
element sends �mod to the opposite chamber in S . We say that two points �; y� 2 S are
Weyl antipodes if y� D w0� . We define the standard or opposition involution

�D �S W S ! S

as the composition �w0 . This involution preserves �mod and equals the identity if and
only if � idS 2W , because then w0 D� idS .

A point � in S is called a root if the hemisphere centered at � is simplicial, equivalently,
is bounded by a wall. If .S;W / is associated with a root system R, then � 2 S is a
root if and only if it has the direction of a coroot. Note that irreducible root systems
correspond to irreducible Coxeter complexes and vice versa.

Remark 2.1 We will be assuming in what follows that .S;W / is associated with a
root system R which spans V � . Equivalently, W is isomorphic to the linear part of an
affine crystallographic Coxeter group, ie one acting cocompactly on the affine space
underlying the vector space V . The root system R in this situation can be assumed to
be reduced; ie if roots ˛ , ˇ have the same kernel, then ˛ D˙ˇ . In what follows, we
will be assuming that R is reduced.

Note that each root type x� 2 �mod is �–invariant, since the reflection w 2 W corre-
sponding to the root x� sends x� to �x� .

Each irreducible root system R has one or two distinct root types; ie W acts on R

with one or two orbits. Geometrically speaking, this means that W acts on the set of
walls with one or two orbits. We refer the reader to [4] for details.

Suppose that S is identified with the sphere at infinity of a euclidean space F , that
is, S Š @1F , where @1F is equipped with the angular metric. For a closed subset
A� S and a point x 2 F , we define V .x;A/� F as the complete cone over A with
tip x , that is, as the union of rays emanating from x and asymptotic to A. If � � S

is a face, we call the cone V .x; �/ a Weyl sector, and if � � S is a chamber, we call
V .x; �/ a euclidean Weyl chamber.

After fixing an origin o 2 F , the group W lifts to a group of isometries of F fixing o.
The euclidean Weyl chambers V .o; �/ are then fundamental domains for the action of
W Õ F .
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We define the euclidean model Weyl chamber as the quotient Vmod D F=W ; we will
also denote it by � or �euc . It is canonically isometric to the complete euclidean cone
over �mod . The natural projection

projW F ! Vmod D�euc D�

restricts to an isometry on every euclidean Weyl chamber V .o; �/.

For a closed subset xA� �mod , we define V .0; xA/� Vmod as the complete cone over xA
with tip 0. In particular, a face �mod of �mod corresponds to a face V .0; �mod/ of Vmod .

We define the �–valued distance function or �–distance d� on F by

d�.x;y/D proj.y �x/ 2�:

Note the symmetry property

(3) d�.x;y/D �d�.y;x/:

The Weyl group is precisely the group of isometries for the �–valued distance on Fmod

which fix the origin.

Lemma 2.2 Suppose that the Coxeter complex .S;W / is irreducible. Then �D id if
and only if the root system of .S;W / is of type A1;B`;C` , D2k ;E7;8 , F4 or G2 . If
�¤ id, then �mod contains exactly one root which, therefore, is �–invariant.

Proof The proof is by examination of the irreducible root systems (see eg [4]):
w0 D� id if and only if the root system is of type A1;B`;C` , D2k ;E7;8 , F4 or G2 .
All the remaining irreducible root systems are simply laced; equivalently, W acts
transitively on roots.

2.3 Hadamard manifolds

In this section only, X denotes a Hadamard manifold, ie a simply connected complete
Riemannian manifold with nonpositive sectional curvature. We will use the notation
Isom.X / for the full isometry group of X .

Any two points in X are connected by a unique geodesic segment. We will use the
notation xy for the oriented geodesic segment connecting x to y . We will often regard
geodesic segments, geodesic rays and complete geodesics as parametrized with unit
speed and treat them as isometric maps of intervals to X .
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We will denote by †x.y; z/ the angle between the geodesic segments xy and xz at
the point x . For x 2X , we let †xX denote the space of directions of X at x , ie the
unit sphere in the tangent space TxX , equipped with the angle metric.

The ideal or visual boundary of X , denoted by @1X , is the set of asymptote classes
of geodesic rays in X , where two rays are asymptotic if and only if they have finite
Hausdorff distance. Points in @1X are called ideal points. For � 2@1X and x2X , we
denote by x� the geodesic ray emanating from x and asymptotic to � , ie representing
the ideal point � . For x 2X , we have a natural map

logx W @1X !†xX

sending � 2 @1X to the velocity vector at x of the geodesic ray x� . The cone
or visual topology on @1X is characterized by the property that all the maps logx

are homeomorphisms; with respect to this topology, @1X is homeomorphic to the
sphere of dimension dim.X /� 1. The visual topology extends to xX D X [ @1X

as follows: a sequence .xn/ converges to an ideal point � 2 @1X if the sequence
of geodesic segments xxn emanating from some (any) base point x converges to
the ray x� pointwise (equivalently, uniformly on compacta in R). This topology
makes xX into a closed ball. We define the visual boundary of a subset A�X as the
set @1AD xA\ @1X of its accumulation points at infinity.

The visual boundary @1X carries the natural Tits (angle) metric †Tits , defined as

†Tits.�; �/D sup
x2X

†x.�; �/;

where †x.�; �/ is the angle between the geodesic rays x� and x�. The Tits boundary
@TitsX is the metric space .@1X;†Tits/. The Tits metric is lower semicontinuous
with respect to the visual topology, and accordingly, the Tits topology induced by
the Tits metric is finer than the visual topology. It is discrete if there is an upper
negative curvature bound, and becomes nontrivial if flat directions occur. For instance,
the Tits boundary of flat r–space is the unit .r�1/–sphere, @TitsRr Š Sr�1.1/. An
isometric embedding X ! Y of Hadamard spaces induces an isometric embedding
@TitsX ! @TitsY of Tits boundaries.

A subset A of @TitsX is called convex if for any two points �; �2A with †Tits.�; �/<� ,
the (unique) geodesic �� connecting � and � in @TitsX is entirely contained in A.

2.4 Symmetric spaces of noncompact type

The standard references for this and the following section are [8; 13]. Our treatment of
this standard material is more geometric than the one presented in these books.
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A symmetric space, denoted by X throughout this paper, is said to be of noncompact
type if it is nonpositively curved, simply connected and has no euclidean factor. In
particular, it is a Hadamard manifold. We will identify X with the quotient G=K where
G is a semisimple Lie group with finite center acting isometrically and transitively
on X , and K is a maximal compact subgroup of G . We will assume that G is
commensurable with the isometry group Isom.X / in the sense that we allow compact
kernel and finite cokernel for the natural map G! Isom.X /. In particular, the image
of G in Isom.X / contains the identity component Isom.X /o . The Lie group G carries
a natural structure as a real algebraic group.

A point reflection (also known as a Cartan involution) at a point x2X is an isometry �x

which fixes x and has differential � idTxX in x . In a symmetric space, point reflections
exist in all points (by definition). A transvection of X is an isometry which is the
product �x�x0 of two point reflections; it preserves the oriented geodesic through x

and x0 and the parallel vector fields along it. The transvections preserving a unit speed
geodesic c.t/ form a one parameter subgroup .T c

t / of Isom.X /o where T c
t denotes

the transvection mapping c.s/ 7! c.sC t/. A nontrivial isometry � of X is called axial
if it preserves a geodesic l and shifts along it. (It does not have to be a transvection.)
The geodesic l is called an axis of � . Axes are in general not unique. They are parallel
to each other.

A flat in X is a totally geodesic flat submanifold, equivalently, a convex subset isometric
to a euclidean space. A maximal flat in X is a flat which is not contained in any larger
flat; we will use the notation F for maximal flats. The group Isom.X /o acts transitively
on the set of maximal flats; the common dimension of maximal flats is called the rank
of X. The space X has rank one if and only if it has strictly negative sectional curvature.

A maximal flat F is preserved by all transvections along geodesic lines contained in it.
In general, there exist nontrivial isometries of X fixing F pointwise. The subgroup of
isometries of F which are induced by elements of G is isomorphic to a semidirect
product Rr Ì W , where r is the rank of X . The subgroup Rr acts simply transitively
on F by translations. The linear part W is a finite reflection group, called the Weyl
group of G and X . Since maximal flats are equivalent modulo G , the action W Õ F

is well defined up to isometric conjugacy.

We will think of the Weyl group as acting on a model flat Fmod Š Rr and on its
visual boundary sphere at infinity, the model apartment amod D @TitsFmod Š Sr�1. The
pair .amod;W / is the spherical Coxeter complex associated with X . We identify the
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spherical model Weyl chamber �mod with a (fundamental) chamber in the model apart-
ment, �mod � amod . Accordingly, we identify the euclidean model Weyl chamber Vmod

with the sector in Fmod with tip in the origin and visual boundary �mod , so Vmod�Fmod .

The �–valued distance naturally extends from Fmod to X because every pair of points
lies in a maximal flat. In order to define the �–distance d�.x;y/ of two points
x;y 2X , one chooses a maximal flat F containing x;y and identifies it isometrically
with Fmod so that the Weyl group actions correspond. The resulting quantity d�.x;y/

is independent of the choices. We refer the reader to [17] for the detailed discussion of
metric properties of d� .

For every maximal flat F � X , we have a Tits isometric embedding @1F � @1X

of its visual boundary sphere. There is an identification @1F Š amod with the model
apartment, unique up to composition with elements in W . The Coxeter complex
structure on amod induces a simplicial structure on @1F . The visual boundaries of
maximal flats cover @1X because every geodesic ray in X is contained in a maximal
flat. Moreover, their intersections are simplicial. One thus obtains a G–invariant
piecewise spherical simplicial structure on @1X which makes @1X into a spherical
building and, also taking into account the visual topology, into a topological spherical
building. It is called the spherical or Tits building associated to X . The Tits metric is
the path metric with respect to the piecewise spherical structure. We will refer to the
simplices as faces.

The visual boundaries @1F � @1X of the maximal flats F � X are precisely the
apartments with respect to the spherical building structure at infinity, which in turn
are precisely the convex subsets isometric to the unit .r�1/–sphere with respect to the
Tits metric. Any two points in @1X lie in a common apartment.

The action G Õ @1X on ideal points is not transitive if X has rank � 2. Every
G–orbit meets every chamber exactly once. The quotient can be identified with the
spherical model chamber, @1X=G Š �mod . We call the projection

� W @1X ! @1X=G Š �mod

the type map. It restricts to an isometry on every chamber � � @1X . We call the
inverse �� D .� j� /�1W �mod! � the (chamber) chart for � . Consequently, � restricts
to an isometry on every face � � @1X . We call �.�/ � �mod the type of the face �
and �� D .� j� /�1W �.�/! � its chart. We define the type of an ideal point � 2 @1X

as its image �.�/ 2 �mod . A point � 2 @1X is called regular if its type is an interior
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point of �mod , and singular otherwise. We denote by @reg
1X � @1X the set of regular

ideal boundary points. A point � 2 @TitsX is said to be of root type if �.�/ is a root in
�mod�S . Equivalently, the closed �

2
–ball centered at � (with respect to the Tits metric)

is simplicial, ie is a simplicial subcomplex of @TitsX . If a� @1X is an apartment, we
call a type preserving isometry �aW amod! a an apartment chart for a.

A geodesic segment xy in X is called regular if x ¤ y and for the unique geodesic
ray x� extending xy , the point � 2 @TitsX is regular. Equivalently, the vector d�.x;y/

belongs to the interior of Vmod .

Definition 2.3 (antipodal) (i) Two ideal points �; � 2 @1X are called antipodal if
†Tits.�; �/D � . A subset of @1X is called antipodal if the points in it are pairwise
antipodal.

(ii) Two simplices �1; �2 � @1X are opposite (or antipodal) with respect to a point
x 2 X if �2 D �x�1 , where �x denotes the reflection at the point x . Two simplices
�1; �2�@1X are opposite (or antipodal) if they are opposite simplices in the apartments
containing both of them.

Note that the last property holds if and only if some (every) interior point of �1 has an
antipode in the interior of �2 , equivalently, if and only if �1 and �2 are opposite with
respect to some point x 2 X . Their types are then related by �.�2/D �.�.�1//. We
will frequently use the notation �; y� and �C; �� for pairs of antipodal simplices.

A pair of opposite chambers �C; ��� @1X is contained in a unique apartment, which
we will denote by a.�C; ��/; the apartment a.�C; ��/ is the visual boundary of a
unique maximal flat F.�C; ��/ in X .

For a point x 2X and a simplex � � @1X , define the (Weyl) sector V DV .x; �/�X

as the union of rays x� for all ideal points � 2 � . Weyl sectors are contained in flats.
They are isometric images of faces V .0; �mod/ � Vmod of the euclidean model Weyl
chamber under isometric embeddings Fmod!X which are type preserving at infinity.
More generally, for a point x 2X and a closed subset A� @1X , we define the Weyl
cone V .x;A/ as the union of all rays x� for � 2A. Weyl cones are in general not flat.

The stabilizers B� � G of the chambers � � @1X are the minimal parabolic sub-
groups of G . After choosing a reference chamber �0 � @1X , we call B D B�0

the positive minimal parabolic subgroup. The group G acts transitively on the set
of chambers in @1X, which we will then identify with G=B , the full flag manifold
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of G . The minimal parabolic subgroups are algebraic subgroups of G , and G=B is
a real projective variety. The set @FRuX Š G=B of chambers in @1X is called the
Furstenberg boundary of X ; we will equip it with the visual topology (as opposed to
the Zariski topology coming from G=B ) which coincides with its manifold topology as
a compact homogeneous G–space. Every regular G–orbit G� � @1X, for � 2 int.�0/,
is G–equivariantly and homeomorphically identified with @FRuX by assigning to the
(regular) ideal point g� the unique chamber g�0 containing it.

The stabilizers P� �G of simplices � � @1X are the parabolic subgroups of G . The
group G acts transitively on simplices of the same type. The set Flag�mod

ŠG=P�mod

of the simplices � of type �.�/D �mod � �mod is called the partial flag manifold of
type �mod . In particular, Flag�mod

D @FRuX . Again, we equip the flag manifolds with
the visual topology; it agrees with their topology as compact homogeneous G–spaces.
Every G–orbit G� � @1X of type �.�/2 int.�mod/ is G–equivariantly homeomorphic
to Flag�mod

.

For a flag manifold Flag�mod
and a simplex y� of type ��mod , we define the open Schubert

stratum C.y�/ � Flag�mod
as the subset of simplices opposite to y� in the sense of

Definition 2.3. It follows from semicontinuity of the Tits distance that the subset
C.y�/� Flag�mod

is indeed open. Furthermore, this subset is also dense in Flag�mod
. We

note that for rank-1 symmetric spaces, the only flag manifold associated to G is @1X

and the open Schubert strata are the complements of points.

If �mod is �–invariant, we say as in Definition 2.3 that a subset of Flag�mod
is antipodal

if the simplices in it are pairwise opposite.

3 Geometry of visual boundaries

In this section, we introduce definitions and prove some properties of symmetric spaces
of noncompact type and their visual boundaries of more specific nature which are
needed for our study of discrete group actions at infinity.

3.1 Stars at infinity and regular points

For a simplex � � @1X , the star st.�/ � @1X is the union of all closed chambers
� � � . It is proven in [19, Proposition 2.14] that for each face � � @1X , the Weyl
cone V .x; st.�// is a closed convex subset of X .
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For a face type �mod � �mod , we define the open star

ost.�mod/� �mod

as the union of all open faces of �mod whose closure contains �mod . Its complement

@ st.�mod/ WD �mod� ost.�mod/

is the union of all (closed) faces of �mod which do not contain �mod .

For a simplex � � @1X , we define the open star

ost.�/� st.�/� @1X

as the union of all open simplices in @1X whose closure contains � . Then

@ st.�/ WD st.�/� ost.�/

is the union of all (closed) simplices in st.�/ which do not contain � ,

Definition 3.1 An ideal point � 2 @1X is said to be �mod–regular if �.�/2 ost.�mod/,
and �mod–singular if �.�/ 2 @ st.�mod/.

We will call �mod–regular points simply regular. Note that ost.�mod/D int.�mod/, and
the regular points in @1X are precisely the interior points of chambers.

Note that ost.�/ is the subset of �.�/–regular points in st.�/ and @ st.�/ is subset of
�.�/–singular points. The �mod–regular part

@
�mod�reg
1 X D ��1.ost.�mod//� @1X

of the visual boundary contains all open chambers and is in particular dense in @1X

(also with respect to the Tits topology). For a �mod–regular point � 2 @1X , there is a
unique closest (with respect to the Tits metric) simplex � � @1X of type �mod , namely
the one with � 2 ost.�/.

The notion of regularity extends to oriented geodesic segments, rays and lines in X :
A geodesic ray x��X is �mod–regular if its ideal endpoint � 2 @1X is. An oriented
geodesic segment xy �X is �mod–regular if the geodesic ray x� extending it is.

The geometric significance of �mod–regularity of geodesic segments comes from the
fact that a geodesic segment (or ray) in X is �mod–regular if and only if it is contained
in a unique maximal flat.
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3.2 Folding order

In this section, we discuss natural partial orders on Weyl orbits in the model apartment
and give different equivalent geometric definitions for them.

By a folding map amod ! amod , we mean a type preserving continuous map which
sends chambers isometrically onto chambers.

We will be working with folding maps which fix some reference face and think of them
as moving points “closer” towards this face. For instance, for a simplicial hemisphere
h� amod (containing the reference face) there is the folding map fixing h and reflecting
the complementary hemisphere onto it, see the discussion of special foldings below.

Definition 3.2 (folding order) For a face type �mod � �mod , we define the �mod–
folding order ��mod on amod as follows: for distinct points x�1; x�2 2 amod , we say
that x�1 ��mod

x�2 if and only if there exists a folding map f W amod! amod such that
f j�mod D id�mod and f .x�2/D x�1 .

We will use the notation � for ��mod .

The relations ��mod are transitive since compositions of folding maps are folding maps.

Remark 3.3 (o) Our folding order inequalities are nonstrict, ie allowing equality.

(i) The relation ��mod is closed. It compares only points which lie in the same Weyl
orbit; ie if x�1 ��mod

x�2 then W x�1 DW x�2 .

(ii) The relation ��mod on singular Weyl orbits is the closure of the relation ��mod on
regular ones: it holds that x�1 ��mod

x�2 if and only if there exist sequences of regular
points x�n

i !
x�i with x�n

1
��mod

x�n
2

.

(iii) Any isometry of amod preserving �mod as a set preserves the relation ��mod .

(iv) The relations ��mod and � are closely related. Clearly, � is stronger than ��mod ;
ie if x�1 � x�2 then x�1 ��mod

x�2 . More precisely, note that a folding map f fixing �mod

is the composition w ıf 0 of a folding map f 0 fixing �mod with an element w 2W�mod .
Thus x�1 ��mod

x�2 if and only if there exist x� 0i 2W�mod
x�i such that x� 0

1
� x� 0

2
.

(v) If x�1 ��mod
x�2 then w1

x�1 ��mod w2
x�2 for all w1; w2 2W�mod , because w1f w

�1
2

is again a folding map fixing �mod . Hence ��mod descends to a relation on the quotient
W�modnamod , which we also denote by ��mod .
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There is a metric estimate for the folding order, because folding maps are 1–Lipschitz:

Lemma 3.4 If x# 2 �mod , then we have the implication

W�mod
x�1 ��mod W�mod

x�2 D) †Tits.x�1; x#/�†Tits.x�2; x#/:

Also, if x# 2 int.�mod/, equality holds on the right-hand side only if W�mod
x�1 DW�mod

x�2 .

Proof Suppose W�mod
x�1 ��mod W�mod

x�2 . Then there exists a folding map amod! amod

fixing �mod with f .x�2/D x�1 . It maps the geodesic segment x#x�2 to a broken geodesic
segment ˇ from x# to x�1 of the same length, whence the implication of inequalities.

Suppose now in addition that x# 2 int.�mod/ and W�mod
x�1 ¤ W�mod

x�2 . The initial
segments of ˇ and x#x�2 have the same type. Therefore, there exists w 2Wx# DW�mod

such that wˇ and x#x�2 have a common initial segment. Since wx�1 ¤ x�2 , the broken
geodesic segment ˇ cannot be a true geodesic segment, and we obtain the strict metric
inequality †Tits.x�1; x#/ <†Tits.x�2; x#/.

As a consequence, we can justify our terminology of “partial order”:

Corollary 3.5 The relation ��mod is a partial order on W�modnamod .

Proof We must verify antisymmetry. Suppose W�mod
x�1 ��mod W�mod

x�2 ��mod W�mod
x�1 .

By Lemma 3.4, we have †Tits.x�1; x#/D†Tits.x�2; x#/ for all x# 2 �mod . The equality part
implies that W�mod

x�1 DW�mod
x�2 .

We discuss next the structure of folding maps and decompositions into simple ones.

Each wall m splits amod into two hemispheres, the inner hemisphere hC contain-
ing �mod and the outer hemisphere h� . This decomposition gives rise to the folding
map which fixes hC and reflects h� onto it. We call a composition of such folding
maps at walls mi a special folding. The intersection

T
i hCi of inner hemispheres is

fixed by the special folding. In particular, special foldings fix the model chamber �mod .

In general, there are folding maps fixing �mod which are not special. However, this
makes no difference for the folding order �:

Lemma 3.6 (compare [24, page 441, Theorem 4.9]) If for points x�1; x�2 2 amod there
exists a folding map fixing �mod and mapping x�2 7! x�1 , then there exists a special
folding with this property.
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Proof We may assume that x�1 and x�2 are regular and different. We connect a point x�
in the interior of �mod to x�2 by a geodesic segment x
 which avoids faces of codimension
at least two. Let f be a folding map fixing �mod with f .x�2/D x�1 . Then x̌ D f ı x

is a broken geodesic path which connects x� to x�1 and has the same length and initial
direction as x
 . Its bending points are interior points of panels and x̌ is locally “reflected”
at the walls containing these panels. The assertion follows if we can replace x̌ by a
broken geodesic path from x� to x�1 , which is the image of x
 under a special folding.

Let x�1 denote the first bending point of x̌ starting from x�. It lies in a wall m1 . If x̌

crosses m1 again in some point x�2 , then we replace the subpath x�1x�2 by its reflection
at m1 . The modified broken path x̌0 has again reflection folds, the same initial direction
and the same endpoint. Moreover, its initial segment is strictly longer. After finitely
many such modifications, we may assume that x̌0 stays inside hC

1
. (The wall m1 has

changed in the process.) We then can obtain x̌0 as the image of another broken path x̌00

under the special folding s1 at m1 , ie x̌0 D s1 ı
x̌00, such that x̌00 has a strictly longer

initial segment than x̌0 .

Thus, we can replace x̌ by another broken path x̌00 with reflection bends, with the
same length and initial direction as x
 , with a strictly longer initial segment than x̌,
and such that some special folding s1 maps the endpoint of x̌00 to the endpoint of x̌.
It follows by induction that x̌ can be replaced by another broken path with the same
endpoint and which is the image of x
 under a special folding.

Corollary 3.7 (alternative definition of �mod–folding order) We have x�1 � x�2 if and
only if there exists a special folding which maps x�2 7! x�1 .

We note that the partial order � was defined exactly in this way by Littelmann; see
[30, page 509].

The folding orders on the Weyl orbits in the model apartment correspond to orders on
the Weyl group and its (double) coset spaces, as we explain now.

We can regard the regular Weyl orbits as copies of W by identifying the orbit point in
the chamber w�mod with the element w 2W . Under this identification, it holds that

w1 � w2

for elements w1; w2 2 W if and only if there exists a folding map amod ! amod

fixing �mod and mapping w2�mod 7! w1�mod , and

w1 ��mod w2
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if and only if there exists such a folding map fixing only �mod . Again, ��mod descends
to an order on W�modnW , also denoted by ��mod .

Remark 3.8 (Bruhat order) The corollary shows that the folding order � on W

coincides with the Bruhat order; see [14, Chapter 5.9] or [2, Chapter 2] for a definition.
Hence, the folding order gives a geometric interpretation of the Bruhat order. To
verify this, one observes that if the chambers w�mod and w0�mod are symmetric with
respect to a wall and if w�mod lies in the inner hemisphere, then we have the inequality
l.w/ < l.w0/ for word lengths. Here the word length on W is defined using as
generators the reflections at the walls of �mod .

More generally, if x� is an interior point of the face �mod � �mod , ie x� 2 int.�mod/, then
Wx� DW�mod and W x� ŠW =W�mod . Under this identification, the order ��mod on the
Weyl orbit quotient W�modnW

x� �W�modnamod becomes a partial order on the double
quotient W�modnW =W�mod ; compare Remark 3.3(v). It holds that

W�modw1W�mod ��mod W�modw2W�mod

if and only if there exist w0i 2W�modwiW�mod such that w0
1
�w0

2
; see [32] for a slightly

different description of this order.

We next describe the effect of the longest element w0 2W on the folding order. Recall
that w0 is the involution sending �mod to the opposite chamber y�mod in amod .

Lemma 3.9 Left multiplication with w0 reverses the �mod–folding order.

Proof Suppose that the special folding sm at the wall m maps x�2 to x�1 ; ie sm
x�2D x�1 .

When applying w0 , the inner hemisphere bounded by m becomes the outer hemisphere
bounded by w0m and vice versa: w0h˙m D h

�
w0m . Hence sw0mw0

x�1 D w0
x�2 . The

assertion follows by applying Corollary 3.7 and induction.

Regarding the analogous fact for the orders ��mod , note that w0W�modw
�1
0
DWw0�mod D

W��mod , and w0 maps W�mod–orbits to W��mod–orbits. The action of w0 therefore induces
a natural map

(4) W�modnamod
w0
��!W��modnamod; W�mod

x� 7! w0W�mod
x� DW��modw0

x�;

and correspondingly,

(5) W�modnW =W�mod

w0
��!W��modnW =W�mod ;

W�modwW�mod 7�!w0W�modwW�mod DW��modw0wW�mod :
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The lemma implies that these maps are order reversing:

(6) W�mod
x�1 ��mod W�mod

x�2 () W��modw0
x�1 ���mod W��modw0

x�2;

and, respectively,

W�modwW�mod��mod W�modw
0W�mod () W��modw0wW�mod���mod W��modw0w

0W�mod :

3.3 Relative position at infinity

Let �0; � � @1X be chambers. There exists an (in general nonunique) apartment
a � @1X containing these chambers, ie �0; � � a, and a unique apartment chart
˛W amod! a such that �0D ˛.�mod/. We define the position of � relative to �0 as the
chamber

pos.�; �0/ WD ˛
�1.�/� amod:

Abusing notation, it can be regarded algebraically as the unique element

pos.�; �0/ 2W

such that
� D ˛.pos.�; �0/�mod/:

The relative position does not depend on the choice of the apartment a. To see
this, choose regular points �0 2 int.�0/ and � 2 int.�/ which are not antipodal, ie
†Tits.�; �0/ < � . Then the segment �0� is contained in a by convexity, and its image
˛�1.�0�/ in amod is independent of the chart ˛ because its initial portion ˛�1.�0�\�0/

in �mod is.

More generally, we define the position of a chamber � relative to an arbitrary simplex �0

of type �mod as follows. Let again a� @1X be an apartment containing �0 and � , and
let ˛W amod! a be a chart such that �0 D ˛.�mod/. It is unique up to precomposition
with an element in W�mod . We define the position of � relative to �0 as the W�mod–orbit
of the chamber ˛�1.�/� amod . It can be interpreted algebraically as a coset

pos.�; �0/ 2W�modnW:

Even more generally, we define the position of a simplex � � @1X relative �0 . Let
a� @1X be an apartment containing �0 and � , and let ˛W amod! a be a chart such
that �0 D ˛.�mod/. We define the position of � relative to �0 as the W�mod–orbit of the
simplex ˛�1.�/� amod . It can be interpreted algebraically as a double coset

pos.�; �0/ 2W�modnW =W�mod ;
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where �mod D �.�/ is the type of � . Finally, we define the position of an ideal point
� 2 @1X relative �0 as the relative position of the simplex �� � @1X spanned by �
(ie containing � as an interior point):

pos.�; �0/ WD pos.�� ; �0/ 2W�modnW =W�mod ;

where �mod D �.��/. In particular, pos.�; �0/ 2W�modnW if � is regular.

Lemma 3.10 Two ideal points �1; �2 in the same G–orbit G� � @1X have the same
position relative to a simplex � � @1X if and only if they lie in the same orbit of the
parabolic subgroup P� <G :

pos.�1; �/D pos.�2; �/ () P��1 D P��2:

Proof The implication “(” is clear. For “)”, let ai � @1X be apartments con-
taining � and �i . There exists p 2 P� such that a1 D pa2 . Then pos.�1; �/ D
pos.�2; �/D pos.p�2; �/ if and only if �1 and p�2 span the same simplex in a1 . In
view of �.�1/D �.�2/, the latter is equivalent to �1 D �2 .

The positions relative to � thus correspond to the orbits of P� , and we have the
identification

P�nG� Š P�nFlag�mod
Š P�nG=P�� ŠW�modnW =W�mod

with �mod D �.�/ and �mod D �.��/.

In particular, for regular orbits, which are copies of the Furstenberg boundary, we
obtain the identification

P�n@FRuX ŠW�modnW:

The positions relative to a chamber � correspond to the orbits of the minimal parabolic
subgroup B� , and we have

B�nG� Š B�nFlag�mod
Š B�nG=P�� ŠW =W�mod and B�n@FRuX ŠW:

The G–orbits G� , respectively, the flag manifolds Flag�mod
thus decompose into finitely

many P�–orbits which we call Schubert strata relative � or �–Schubert strata, and
their closures (generalized) Schubert cycles. (We will see below that the cycles are
unions of strata.) The level sets of pos. � ; �/, ie the B�–orbits, are called Schubert
cells relative � .

Note that the Schubert cycles in the flag manifolds are projective subvarieties.
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We will use the following notation. For a simplex �� 2 Flag��mod
, we denote by

C�mod.��/ WD f� W � opposite to ��
	
� Flag�mod

the open Schubert stratum associated with �� in Flag�mod
,

We can now use the folding order to compare the positions of points in a G–orbit
G� � @1X , respectively, a flag manifold Flag�mod

relative to simplices � of a fixed
type �mod .

We begin by proving a useful monotonicity property for the folding order under folding
maps. It is a direct consequence of the definition of the folding order that folding maps
amod!amod decrease the relative positions of pairs of simplices. We will need the same
fact for folding maps amod! @1X and @1X ! @1X by which we mean, as before,
type preserving continuous maps sending chambers isometrically onto chambers.

Lemma 3.11 (monotonicity) (i) For a folding map f W @1X ! @1X and sim-
plices �; � � @1X , it holds that

pos.f .�/; f .�//��.�/ pos.�; �/:

(ii) For a folding map ˛W amod! @1X , a face type �mod and a simplex x� � amod ,
it holds that

pos.˛.x�/; ˛.�mod//��mod pos.x�; �mod/:

Proof Part (i) reduces to part (ii) by choosing an apartment a � � [ � and a chart
�W amod ! a with �.�mod/ D � for the face type �mod D �.�/. Then apply (ii) to
˛ D f ı � and x� D ��1.�/.

To verify (ii), consider the composition

amod
˛
�! @1X ! @1X=B˛.�mod/ Š amod;

where the second map is the natural projection. It is a folding map x̨W amod! amod

fixing �mod , and therefore

pos.x̨.x�/; �mod/��mod pos.x�; �mod/:

Since the B˛.�mod/–action on @1X preserves positions relative to faces of ˛.�mod/,
we also have

pos.˛.x�/; ˛.�mod//D pos.x̨.x�/; �mod/:

The assertion follows.
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Lemma 3.12 (semicontinuity of relative position) If �n ! � in G� � @1X , and
�n! � in Flag�mod

are sequences such that the sequence of relative positions pos.�n; �n/

is constant, ie pos.�n; �n/D p 2W�modnW =W�.��/ for all n, then pos.�; �/��mod p .

In particular, the sublevels of pos. � ; �/ in G� are closed.

Proof There are apartment charts ˛nW amod!@1X with ˛nj�modD��n
and ˛n.x�/D �n.

The charts subconverge to a folding map ˛ with ˛j�modD�� and ˛.x�/D� . The assertion
follows from monotonicity; see Lemma 3.11(ii).

It follows that the suplevels fpos. � ; �/��mod pg in G� are open, because their comple-
ments are finite unions of sublevels fpos. � ; �/��mod p0g.

We show now that the folding order coincides with the inclusion order on Schubert
cycles.

We start with the chamber case, where the relation between closures and the Bruhat
order is well known. In the case of complex Lie groups, it goes back to the work
of Chevalley in the 1950s [7]; for the proofs in the general case (including reductive
groups over local fields), see [3] and [31]. (We are grateful to James Humphreys and
Shrawan Kumar for the references.)

Proposition 3.13 For a chamber ��@1X and ideal points �1; �2 in the same G–orbit
G� � @1X , we have

pos.�1; �/� pos.�2; �/ () B��1 � B��2:

Proof We denote by x�i 2 amod the point of type �.�/ with pos.x�i ; �mod/D pos.�i ; �/.

Suppose first that �1 2 B��2 . Then there exists a sequence .bn/ in B� such that
bn�2! �1 . Let an be apartments containing � and bn�2 , and let ˛nW amod! an be
the apartment charts which restrict to the chamber chart of � , ie ˛nj�modD�� W �mod!� .
Then ˛n.x�2/D bn�2 . The Tits isometric embeddings ˛n subconverge (with respect
to the visual topology) to a limit map ˛W amod ! @1X . The map ˛ is, in general,
not an isometric embedding (chart), but only a folding map extending �� . It satis-
fies ˛.x�2/D �1 . Monotonicity yields pos.�1; �/ � pos.x�2; �mod/ D pos.�2; �/; see
Lemma 3.11(ii).

Vice versa, suppose now that x�1� x�2 . By definition of the partial order � there exists a
folding map of amod fixing �mod and carrying x�2 7! x�1 . Furthermore there is an isomet-
ric embedding amod! @1X which extends the chamber chart �� and maps x�1 7! �1 .
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By composition we obtain a folding map ˛W amod! @1X which extends �� and maps
˛.x�2/D �1 . We want to find a sequence of isometric embeddings ˛nW amod! @1X

extending �� such that ˛n.x�2/! ˛.x�2/D �1 . This will then imply that �1 2 B��2 .
(Note that in general folding maps are not limits of isometric embeddings.)

We may assume that the relative positions x�i are regular. (Otherwise, we may perturb
them keeping the inequality x�1�x�2 and perturb the �i accordingly.) We choose in amod

a geodesic x
 of length � starting in an interior point x�0 of �mod and passing through x�2
while avoiding simplices of codimension � 2. It crosses successively a sequence
(gallery) of chambers x�0 D �mod; x�1; : : : ; x�k D y�mod and intersects the intermediate
panels x�i D x�i \ x�i�1 transversally in interior points x�i . When applying the folding
map ˛ , it may happen that successive chambers of the folded gallery coincide, ie that
˛.x�i/D ˛.x�i�1/ for some i . (This happens if and only if ˛ is not an isometric embed-
ding.) One can arbitrarily well approximate (in the visual topology) the folded gallery by
an embedded gallery with the same initial chamber � . To obtain such approximations
it is convenient to use the G–action as follows. If ˛.x�i/D ˛.x�i�1/ then one may pick
an element g 2G close to the identity, which fixes ˛.x�i/ and moves ˛.x�i/D ˛.x�i�1/

away from itself, and apply it to the “tail” ˛.x�i/; : : : ; ˛.x�k/ of the gallery. Doing this
inductively along the gallery, one obtains an arbitrarily good approximation of the
folded gallery ˛.x�0/D �; : : : ; ˛.x�k/ by an embedded gallery �0D �; : : : ; �k , that is a
sequence of chambers such that �i\�i�1 is precisely a panel for all i . This yields at the
same time an approximation of the broken geodesic ˛.x
 / in @1X by a true geodesic 

such that 
 \�i and x
 \x�i are corresponding subsegments of the same type. Now we
use the path x
 as a “guiding line” to extend the correspondence x�i 7! �i of galleries
to an isometric embedding ˛0W amod ! @1X extending �� : Since 
 connects two
antipodal regular points there exists a unique such ˛0 extending the isometry x
!
 and
hence mapping x�i to �i . By construction, ˛0.x�2/ approximates ˛.x�2/D �1 arbitrarily
well. So we find a sequence of apartment charts ˛n with the desired properties.

The proposition readily generalizes to the simplex case (in the case when G is a
complex semisimple Lie group, a proof of the following proposition can be found in
[32, Propage 3.13]):

Proposition 3.14 For simplices � � @1X and ideal points �1; �2 in the same G–orbit
G� � @1X , we have

pos.�1; �/��.�/ pos.�2; �/ () P��1 � P��2:
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Proof Let � � � be a chamber. Since the quotient space P�=B� is compact (it is the
space of chambers containing � as a face), the condition �1 2P��2 is equivalent to the
existence of an element p 2 P� such that p�1 �B��2 . According to Proposition 3.13,
this is equivalent to the existence of p 2P� such that pos.p�1; �/� pos.�2; �/. Since
P� acts transitively on chambers containing � , we have that

S
p2P�

pos.p�1; �/ D
W�.�/ pos.�1; �/D pos.�1; �/. This completes the proof.

In other words, the proposition says that the �–Schubert cycles in G=P� correspond to
the sublevels of the folding order ��mod on W�modnW =W�mod , where �mod D �.�/ and
�mod D �.�/.

Recall that the simplices opposite to simplices of type �mod have type ��mod , and that
the action of w0 induces the natural maps

W�modnamod
w0
��!W��modnamod;

and hence the maps

W�modnW =W�mod

w0
��!W��modnW =W�mod

of relative positions; compare (4) and (5).

Definition 3.15 (complementary position) We define the complementary position by

c-pos WD w0 pos :

This terminology is justified by the following result. (See Definition 2.3(ii) for the
notion of antipodality.)

Lemma 3.16 Let �; y�; � � @1X be simplices contained in an apartment a, and
suppose that � and y� are antipodal. Then pos.�; y�/D c-pos.�; �/.

Proof Let ˛W amod ! a be a chart such that ˛j�mod D �� . Then y� D ˛.y�mod/ D

.˛ ıw0/.��mod/ with the simplex y�mod D w0��mod � amod opposite to �mod . Using the
reparametrized chart ˛ ıw0 , we obtain pos.�; y�/ D .˛ ıw0/

�1.�/ D w0˛
�1.�/ D

w0 pos.�; �/.

The relation of “complementarity” is clearly symmetric: c-c-pos D pos. Passing to
complementary relative position reverses the partial order (see Lemma 3.9):

(7) pos.�1; �/��.�/ pos.�2; �/ () c-pos.�1; �/���.�/ c-pos.�2; �/:
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Points with smaller position relative to a simplex are closer to it in a metric sense.
Namely, according to Lemma 3.4, we have the inequality of Tits distances:

(8) pos.�1; �/��.�/ pos.�2; �/ D) †Tits.�1; � /j� �†Tits.�2; � /j� ;

and respectively, for simplices �1 and �2 of the same type �mod ,

(9) pos.�1; �1/��mod pos.�2; �2/ D) †Tits.�1; � / ı ��1
�†Tits.�2; � / ı ��2

:

If �1 and �2 are simplices of opposite types, �.�1/D ��.�2/, and if the relative positions
pos.�1; �1/ and pos.�2; �2/ are complementary, then

(10) †Tits.�1; � / ı ��1
C†Tits.�2; � / ı ��2

ı �� �

on �.�1/ D ��.�2/. To see this, note that the formula reduces to the case when the
simplices �1 and �2 are opposite to each other, and �1 D �2 lies in an apartment
containing them.

The following triangle inequality extends Lemma 3.16:

Lemma 3.17 Let �; y� � @1X be a pair of antipodal simplices and let � � @1X be
an arbitrary simplex. Then

pos.�; y�/���.�/ c-pos.�; �/;

with equality if and only if � , y� and � are contained in an apartment.2

Proof Let a� @1X be an apartment containing �; y� , and let

@1X
r
�! a

be a folding retraction, ie a folding map such that r ja D ida . Such a retraction is
given eg by the natural projection @1X ! @1X=B� Š a for a chamber � � a. By
monotonicity (see Lemma 3.11(i)), we have

pos.�; �/��.�/ pos.r�; �/
and

pos.�; y�/���.�/ pos.r�; y�/D c-pos.r�; �/I

see Lemma 3.16. Since complementing position reverses the folding order (see (7)),
we obtain the desired inequality.

2Equivalently, � lies in the spherical sub-building B.�; y�/ � @1X consisting of all apartments
containing �; y� .
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Suppose that equality holds, pos.�; y�/D c-pos.�; �/. Let � , y� , � be interior points of
� , y� , � such that � , y� are antipodal. Then (see Lemma 3.16 again)

†Tits.�; �/C†Tits.�; y�/D � I

ie � lies on a geodesic segment �y� . It follows that there exists an apartment containing
� , y� , � and hence also the simplices spanned by these points.

3.4 Thickenings

3.4.1 Thickenings in the Weyl group A thickening (of the neutral element) in W

is a subset
Th�W

which is a union of sublevels for the folding order, ie which contains with every
element w also every element w0 satisfying w0 � w . In the theory of posets, such
subsets are called ideals.

Unions and intersections of thickenings are again thickenings, and removing a maximal
element from a thickening yields a thickening. Furthermore, note that

Thc
WD w0.W �Th/DW � w0Th

is again a thickening, because left multiplication with w0 reverses the folding order;
see Lemma 3.9. It holds that

W D Thtw0Thc ;

and we therefore call Thc the thickening complementary to Th.

Definition 3.18 (fat and slim) The thickening Th�W is called fat if Th[w0ThDW ,
equivalently, Th� Thc. It is called slim if Th\w0ThD∅, equivalently, Th� Thc. It
is called balanced if it is both fat and slim, equivalently, ThD Thc .

For types x#0; x# 2 �mod and a radius r 2 Œ0; ��, we define the metric thickening

(11) Thx#0;x#;r
WD fw 2W W d.wx#; x#0/� rg;

using the natural W –invariant spherical metric d on amod . It is indeed a thickening by
Lemma 3.4.

Recall that for a face type �mod � �mod , we denote by W�mod its stabilizer in W .
Furthermore, �D �w0W �mod! �mod denotes the canonical involution of the model
spherical Weyl chamber.
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Lemma 3.19 (i) If x#0 2 �mod , then Thx#0;x#;r
is W�mod–left invariant, that is,

W�mod Thx#0;x#;r
D Thx#0;x#;r

.

(ii) If also �x#0 D
x#0 , then Thx#0;x#;r

is fat for r � �
2

and slim for r < �
2

.

(iii) If, in addition, d.wx#; x#0/¤
�
2

for all w 2W , then Thx#0;x#;�=2
is balanced.

Proof (i) For w0 2W�mod , we have that w0x#0 D
x#0 , and hence

d.w0wx#; x#0/D d.wx#;w0
�1x#0„ ƒ‚ …
x#0

/:

(ii) Since w0
x#0 D��x#0 D�

x#0 , we have

d.w0wx#;�x#0/D d.wx#;�w0
x#0„ ƒ‚ …

x#0

/

and
d.w0wx#; x#0/D � � d.wx#; x#0/:

Hence
Thc
x#0;x#;r

DW �w0Thx#0;x#;r
WD fw 2W W d.wx#; x#0/ < � � rg;

which yields the assertion.

(iii) Slimness holds because Thx#0;x#;�=2
D Thx#0;x#;r

for radii r slightly below �
2

.

The metric examples provide balanced thickenings with arbitrary left invariance:

Corollary 3.20 (existence of balanced thickenings, I) For every �–invariant face
type �mod , there exists a W�mod–left invariant balanced thickening Th�W .

Proof Since ��mod D �mod , there exists x#0 2 �mod such that �x#0 D
x#0 . Moreover, the

set of types x# 2 �mod such that d.�x#; x#0/ ¤
�
2

on W is the complement of a finite
union of great spheres in amod , and hence open and dense.

In order to obtain balanced thickenings with additional right invariance, we modify the
metric thickenings (11) at their “boundaries”. The rigidity part of Lemma 3.4 implies
that the elements of

@Thx#0;x#;r
WD fw 2W W d.wx#; x#0/D rg

are pairwise �–incomparable and maximal in Thx#0;x#;r
. Thus every subset Th�W with

fw 2W W d.wx#; x#0/ < rg � Th� Thx#0;x#;r

is a thickening.
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Using these modified metric thickenings, we can generalize our last existence result:

Proposition 3.21 (existence of balanced thickenings, II) Let �mod; �mod � �mod be
face types and suppose that �mod is �–invariant. Then a W�mod–left invariant and
W�mod–right invariant balanced thickening Th�W exists if and only if (left multipli-
cation by) w0 has no fixed point on W�modnW =W�mod ; see (5).

Proof If a balanced thickening exists, then w0 cannot have a fixed point as a conse-
quence of the definition of balancedness.

Vice versa, let us assume that w0 has no fixed point. We choose x#02�mod with �x#0D
x#0

and x� 2 �mod . Then the fat thickening Thx#0;x�;�=2
is W�mod–left and W�mod–right

invariant, and so is the “great sphere” @Thx#0;x�;�=2
. The latter is moreover preserved by

the involution w0 while the “hemispheres bounded by it”, Thx#0;x�;�=2
�@Thx#0;x�;�=2

and W �Thx#0;x�;�=2
, are exchanged; see the proof of Lemma 3.19(ii). Since w0 has no

fixed point, @Thx#0;x�;�=2
decomposes as a union of pairs of double cosets W�modwW�mod

which are swapped by w0 . By removing from Thx#0;x�;�=2
one double coset of each

pair, we therefore obtain a balanced thickening as desired.

Corollary 3.22 If w0 D � idamod , then a W�mod–right invariant balanced thickening
exists for every face type �mod .

Proof We equivariantly identify the coset space W =W�mod with an orbit W x� � amod

for some x� 2 int.�mod/. By assumption, w0 has no fixed point on amod , and hence
none on W =W�mod .

Remark 3.23 (i) Note that w0 D� idamod if and only if all irreducible factors of W

are of type A1 , Bn�2 , D2k�4 , E7;8 , F4 or G2 ; see [4].

(ii) W�mod–left and W�mod–right invariant balanced thickenings do not always exist.
For instance, in the B2–case there are no W�mod–biinvariant thickenings for �mod a
vertex type.

In rank two, the balanced thickenings are easy to describe:

Example 3.24 (balanced thickenings in rank 2) (i) If W DWA2
, then �mod is an

arc of length �
3

. There is a unique balanced thickening Th � W described by the
property that Th ��mod � amod is the �

2
–ball centered at the midpoint of �mod .
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(ii) If W DWB2
or WG2

, then �mod is an arc of length �
4

or �
6

. In these cases, there
are two balanced thickenings. Namely, for each vertex x� of �mod we have the Wx�–left
invariant thickening Th�W for which Th ��mod D xB

�
x�; �

2

�
.

Below, we give two examples in higher rank. First we address the irreducible case:

Example 3.25 (some balanced thickenings of type An ) The spherical Coxeter com-
plex amod can be modeled as the unit sphere in the hyperplane

x0C � � �Cxn D 0

in RnC1 . The Weyl group W Š SnC1 acts by permuting the coordinates, and we
choose the fundamental chamber �mod�amod as given by the inequalities x0�� � ��xn .
It holds that

.x0; : : : ;xn/ 7
w0D��
�����! .xn; : : : ;x0/:

There are the �–invariant edge midpoints x#k 2 �mod for 1 � k � 1
2
n represented by

the vectors
.1; : : : ; 1„ ƒ‚ …

k

; 0; : : : ; 0;�1; : : : ;�1„ ƒ‚ …
k

/

and the unique �–invariant vertex x#.nC1/=2 2 �mod if n is odd. The type x#1 is the
unique root type.

In incidence geometric terms, the Coxeter complex amod is the spherical building
associated to the finite projective n–space Pn

mod D fe0; : : : ; eng consisting of nC 1

points. Every subset is a projective subspace (of dimension one less than the number
of points in it) and corresponds to a vertex of amod . Vertices are adjacent if and only
if the corresponding subspaces are incident, ie one contains the other. The element
w� 2W corresponding to the permutation � 2 SnC1 acts by ei 7

w�
��! e�.i/ . We let the

fundamental chamber �mod � amod correspond to the full flag

fe0g � � � � � fe0; : : : ; eig � � � � � fe0; : : : ; en�1g:

The edge spanned by x#k then has the vertices fe0; : : : ; ek�1g and fe0; : : : ; en�kg.

We determine the metric thickenings Thx#1;x#;�=2
for regular types x# 2 int.�mod/: The

type x# is represented by a vector .ti/ with t0 > � � � > tn . The element w� 2 W

carries .ti/ to the vector .t��1.i//. Thus, †Tits.w� x#; x#1/ <
�
2

if and only if t��1.0/ >

t��1.n/ if and only if ��1.0/ < ��1.n/, and we obtain the balanced thickening

(12) Thx#1;x#;�=2
D fw� 2W W ��1.0/ < ��1.n/g:
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Similarly, one can describe the thickenings Thx#k ;x#;�=2
for k � 2. They depend on the

type x# and are balanced for a dense open set of values.

To give an incidence geometric description of the thickening (12), note that ��1.i/ is
the dimension of the smallest subspace in the flag w��mod which contains ei . Hence
w� 2 Thx#1;x#;�=2

if and only if to the flag w��mod belongs a subspace U which
contains e0 but not en , equivalently,

(13) fe0g � U � fe0; : : : ; en�1g:

Another interesting example is the Wx#m
–biinvariant thickening Thx#m;x#m;�=2

for nD

2m�1. Observe that †Tits.w� x#m; x#m/�
�
2

if and only if

(14)
ˇ̌
w�fe0; : : : ; em�1g\ fe0; : : : ; em�1g

ˇ̌
�

1
2
m;

with the equality cases corresponding to each other. Equality cannot occur if m is odd,
and in this case the thickening Thx#m;x#m;�=2

is balanced.

Remark 3.26 With a bit more work one can classify all balanced thickenings in the
A3 case: There are 10 balanced thickenings. Two of them are Wx#2

–left invariant for
the unique �–invariant vertex x#2 2 �mod , and one is W�mod–left invariant for the unique
�–invariant edge �mod � �mod .

The next example concerns the reducible case:

Example 3.27 (some balanced thickenings of type An
1

) The spherical Coxeter com-
plex amod can be modeled as the unit sphere in Rn . The Weyl group W ŠZn

2
Šf˙1gn

acts by changing the signs of the coordinates xi ; ie its canonical generators act by reflec-
tions at the coordinate hyperplanes. We choose the fundamental chamber �mod � amod

as given by the inequalities x1; : : : ;xn � 0.

The longest element w0D .�1; : : : ;�1/ acts as� id. The Bruhat order on W is given by

w� � w�0 () �i � �
0
i for all i ;

where we denote the elements in W by w� with � D .�i/.

The .k�1/–simplices of the spherical Coxeter complex amod correspond to the f˙1g–
valued maps defined on subsets of f1; : : : ; ng of cardinality k . In particular, the
chambers can be interpreted as the ordered n–point configurations on f˙1g.
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Let x� 2 �mod be the central type represented by the vector .1; : : : ; 1/. We determine
the metric thickenings of the form Thx�;x#;�=2 for the regular types x# 2 int.�mod/: The
type x# is represented by a vector t D .ti/ with ti > 0. The element w� 2W carries t to
the vector .�i ti/. Thus †Tits.w�x#; x�/<

�
2

if and only if � �t D �1t1C� � �C�ntn> 0, and

Tht D fw� 2W W � � t > 0g; Tht D fw� 2W W � � t � 0g

are metric thickenings. The thickening Tht is slim, while Tht is fat. We have that
Tht D Tht is balanced if and only if � � t ¤ 0 for all sign choices � , which is the case
for “generic” values of t .

To phrase it in terms of configurations, we consider weighted n–point configurations
on f˙1g with weights ti . Then the thickenings Tht and Tht correspond to the sets
of configurations with at least, respectively, strictly more than half of the total mass
placed on C1.

3.4.2 Thickenings at infinity From thickenings in the Weyl group, we derive thick-
enings at infinity as follows.

Given a W�mod–left invariant thickening Th�W , the induced thickening of a simplex
� 2 Flag�mod

inside the Furstenberg boundary

ThFRu.�/ WD fpos. � ; �/ 2W�modnThg � @FRuX

is well defined. Furthermore, we define the thickening of � inside the visual boundary
as the union of the corresponding (closed) chambers

(15) Th.�/ WD
[

�2ThFRu.�/

� � @1X:

Due to the semicontinuity of relative position (see Lemma 3.12), the thickenings
ThFRu.�/ and Th.�/ are compact. The intersections Th.�/ \G� with the G–orbits
G� � @1X are finite unions of Schubert cycles and hence projective subvarieties. For
regular G–orbits G� , the intersection Th.�/\G� is naturally identified with ThFRu.�/.

Note that if the thickening Th�W is W�mod–right invariant for a face type �mod��mod ,
then the thickenings of simplices are unions of stars of simplices of type �mod .

For a subset A� Flag�mod
, we define the induced thickenings

ThFRu.A/D
[
�2A

ThFRu.�/ and Th.A/D
[
�2A

Th.�/:

If A is compact, then its thickenings are compact as well.
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Below are several examples of thickenings, based on the examples in the previous
section.

Example 3.28 (rank 2) We continue with Example 3.24.

(i) If W DWA2
, then chambers in the visual boundary are arcs of Tits length �

3
. For

the unique balanced thickening Th�W , the associated thickening Th.�/� @1X of
a chamber � � @1X with midpoint � is the ball xB

�
�; �

2

�
. In incidence geometric

terms, regarding @TitsX as the spherical building associated to a projective plane …,
the chamber � corresponds to a flag .l;p/ consisting of a line l �… and a point p 2 l .
The thickening ThFRu.�/� @FRuX inside the Furstenberg boundary consists of all flags
.l 0;p0/ such that l 0 D l or p0 D p .

(ii) If W D WB2
or WG2

, then chambers have length �
4

or �
6

. For a vertex type
x� 2 �mod and the unique Wx�–left invariant balanced thickening Th�W , the associated
thickening of a vertex � 2 @1X of type �.�/D x� inside @1X is given by Th.�/D
xB
�
�; �

2

�
. The thickening of a chamber � � @1X equals Th.�/ D xB

�
�� ;

�
2

�
where

�� is the vertex of � with type x� .

For instance, if GDO.n; 2/ with n� 2 and hence X has type B2 , then @TitsX can be
regarded from the incidence geometry perspective as the spherical building arising from
isotropic flags in Rn;2DRn˚R2 . A chamber corresponds to a flag .L;P / consisting
of an isotropic plane P �Rn;2 and a(n isotropic) line L� P . If x� is the vertex type
corresponding to isotropic lines, then the thickening ThFRu.L/� @FRuX of an isotropic
line L 2 Flagx� consists of all flags .L0;P 0/ such that P 0 �L. On the other hand, if x�
is the vertex type corresponding to isotropic planes, then the thickening ThFRu.P / of an
isotropic plane P 2 Flagx� consists of all flags .L0;P 0/ 2 @FRuX such that L0 � P .

Example 3.29 (type An ) We continue with Example 3.25.

Let G D SL.nC 1;F/. We regard @TitsX as the spherical building associated to the
projective n–space FPn.

Let �mod.x#1/��mod denote the edge type with midpoint x#1 . Then Flag�mod.x#1/DF1;n ,
the manifold of 2–flags .L;H / consisting of a hyperplane H � FnC1 and a line
L�H . For the W�mod.x#1/–left invariant balanced thickening Thx#1;x#;�=2 �W given
by (12), the thickening ThFRu

x#1;x#;�=2
..L;H // of the flag .L;H / 2 F1;n in the full flag

manifold @FRuX consists of all flags U1 � � � � � Ui � � � � � Un in FnC1 such that
(compare (13))

L� Ui �H for some i :
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If n D 4l C 1, then Flagx#2lC1
D F2lC1 is the middle Grassmannian of .2lC2/–

dimensional linear subspaces of FnC1 . The balanced Wx#2lC1
–biinvariant thickening

ThFRu
x#2lC1;x#2lC1;�=2

.U / of a subspace U 2F2lC1 , inside F2lC1 , consists of all subspaces
U 0 2 F2lC1 such that (compare (14))

dim.U 0\U /� l C 1:

Example 3.30 (type An
1

, configuration spaces and stability in the sense of geometric
invariant theory) We continue with Example 3.27.

Let X D Y n be the n–fold product of a rank-one symmetric space Y , eg Y D H2.
Then @FRuX Š .@1Y /n, and we will view chambers as ordered n–point configurations
� D .�i/ on @1Y . The relative position of two configurations �; � 0 2 @FRuX is given by

pos.� 0; �/D w� with �i DC1 () �0i D �i :

Thus, it records the entries i where the configurations agree.

We fix a regular vector t D .ti/ 2 int.�/ŠRn
C and assign the weight ti > 0 to the i th

point of a configuration. Then a chamber � , regarded now as a weighted configuration
on @1Y , defines the finite measure

�� D t1ı�1
C � � �C tnı�n

on @1Y , where ı�i
denotes the Dirac measure concentrated in the point �i . (Masses

add when points �i “collide”). The total mass j�� j of �� equals

M D t1C � � �C tn:

In the language of geometric invariant theory, the finite measure �� (and the corre-
sponding weighted configuration � ) is called stable if ��.�/ < 1

2
M for all points

� 2 @1Y , and semistable if ��.�/� 1
2
M for all �.

Let .�/ WD .�; : : : ; �/ denote the configuration concentrated in the point �. According
to Example 3.27, the thickenings .Tht /FRu..�// and .Tht /FRu..�// of .�/ consist of the
weighted configurations where at least, respectively, strictly more than half of the total
mass is concentrated in the point �.

Choose now A� @FRuX as the “diagonal”, that is, as the compact antipodal subset of
all configurations .�/ concentrated in one point. Then the thickenings .Tht /FRu.A/ and
.Tht /FRu.A/ of A inside @FRuX equal the subsets of weighted configurations which are
not semistable, respectively, not stable. In the case when Tht is balanced, both notions
agree: “stable=semistable”.
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The sets of stable and semistable configurations depend on the weights t . For instance, if
ti >

1
2
M for some i , then there are no semistable weighted configurations, equivalently,

.Tht /FRu.A/D @FRuX:

For instance, for nD 2 and any t1 ¤ t2 , there are no semistable configurations.

In contrast, if n� 3 and ti <
1
2
M for all i , then there are always stable configurations,

for instance, the configurations where no two point coincide. Equivalently, in this case,

.Tht /FRu.A/¤ @FRuX:

We return to the general discussion of thickenings in @1X . Our motivation for
introducing the notion of slimness is the following observation:

Lemma 3.31 (disjointness of slim thickenings) (i) Let �mod��mod be an �–invariant
face type, and let Th�W be a slim W�mod–left invariant thickening. Then for any two
antipodal simplices �; y� 2 Flag�mod

, it holds that

ThFRu.�/\ThFRu.y�/D∅:

(ii) More generally, suppose that �mod � �mod is another face type and that the slim
thickening Th is also W�mod–right invariant. Then for any G–orbit G� � @1X of type
x� D �.�/ 2 int.�mod/ and any two antipodal simplices �; y� 2 Flag�mod

, it holds that

Th.�/\Th.y�/\G� D∅:

Proof Part (i) follows from Lemma 3.17 and the definition of slimness. Indeed,
suppose that ThFRu.�/\ ThFRu.y�/ contains a chamber � . Then pos.�; �/; pos.�; y�/ 2
W�modnTh. By Lemma 3.17, pos.�; y�/ ��mod c-pos.�; �/. Hence also c-pos.�; �/ 2
W�modnTh, equivalently, pos.�; �/ 2 W�modnw0Th. It follows that Th\w0Th ¤ ∅,
contradicting slimness.

Part (ii) follows because the thickenings are unions of stars of simplices of type �mod .
Indeed, by (i), the intersection Th.�/\Th.y�/ contains no chamber, and hence it cannot
contain the star of a simplex of type �mod .

4 Asymptotic geometric notions in symmetric spaces

4.1 Shadows at infinity and strong asymptoticity of Weyl cones

For a simplex �� � @1X of type ��mod and a point x 2X , we consider the function

(16) � 7! d.x;P .��; �//
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on the open Schubert stratum C.��/�Flag�mod
. We denote by �C 2C.��/ the chamber

x–opposite to �� .

Lemma 4.1 The function (16) is continuous and proper.

Proof This follows from the fact that C.��/ and X are homogeneous spaces for the
parabolic subgroup P�� . Indeed, continuity follows from the continuity of the function

g 7! d.x;P .��;g�C//D d.g�1x;P .��; �C//

on P�� which factors through the orbit map P��! C.��/, g 7! g�C .

Regarding properness, note that a simplex � 2 C.��/ is determined by any point y

contained in the parallel set P .��; �/, namely as the simplex y–opposite to �� . Thus,
if P .��; �/\B.x;R/¤∅ for some fixed R> 0, then there exists g 2 P�� such that
� D g�C and d.x;gx/ <R. In particular, g is bounded. This implies properness.

Moreover, the function (16) has a unique minimum zero in �C .

We define the following open subsets of C.��/ which can be regarded as shadows of
balls in X with respect to �� . For x 2X and r > 0, we put

U��;x;r WD f� 2 C.��/ W d.x;P .��; �// < rg:

The next fact expresses the uniform strong asymptoticity of asymptotic Weyl cones.

Lemma 4.2 For r;R> 0, there exists d D d.r;R/ > 0 such that if y 2 V .x; st.��//
with d.y; @V .x; st.��///� d.r;R/, then U��;x;R � U��;y;r .

Proof If U��;x;R 6�U��;y;r there exists x02B.x;R/ such that d.y;V .x0;st.��///�r.
Thus, if the assertion is wrong, there exist a sequence xn ! x1 in xB.x;R/ and
a sequence yn ! 1 in V .x; st.��// such that d.yn; @V .x; st.��/// ! C1 and
d.yn;V .xn; st.��///� r .

Let �W Œ0;C1/! V .x; ��/ be a geodesic ray with initial point x and asymptotic
to an interior point of �� . Then the sequence .yn/ eventually enters every Weyl
cone V .�.t/; st.��//. Since the distance function d. � ;V .xn; st.��/// is convex and
bounded, and hence nonincreasing along rays asymptotic to st.��/, we have that

R � d.x;V .xn; st.��/// � d.�.t/;V .xn; st.��/// � d.yn;V .xn; st.��/// � r
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for n� n.t/. It follows that, for all t ,

R � d.�.t/;V .x1; st.��/// � r:

However, the ray � is strongly asymptotic to V .x1; st.��//, a contradiction.

4.2 Asymptotic properties of sequences and subgroups

We first consider sequences in the model euclidean Weyl chamber �.

Definition 4.3 We say that a sequence .ın/ in � is

(i) �mod–pure if it is contained in a tubular neighborhood of the sector V .0; �mod/ and
drifts away from its boundary @V .0; �mod/D V .0; @�mod/, ie

d.ın;V .0; @�mod//!C1I

(ii) �mod–regular if
d.ın;V .0; @ st.�mod///!C1:

These properties are stable under bounded perturbation of the sequence, due to the
triangle inequality jd�.x;y/ � d�.x

0;y0/j � d.x;x0/ C d.y;y0/. Therefore, the
following definitions for sequences in X and G are sensible:

Definition 4.4 (pure and weakly regular) (i) We say that a sequence .xn/ in X

is �mod–pure, respectively, �mod–regular if for some (any) base point o 2X the
sequence of �–distances d�.o;xn/ has this property.

(ii) We say that a sequence .gn/ in G is �mod–pure, respectively, �mod–regular if
for some (any) point x 2X the orbit sequence .gnx/ in X has this property.

(iii) We say that a subgroup � < G is �mod–regular if all sequences of pairwise
distinct elements in � have this property.

The face type of a pure sequence is uniquely determined. Moreover, a �mod–regular se-
quence is � 0mod–regular for every face type � 0mod � �mod , because ost.� 0mod/� ost.�mod/.

Note that �mod–regular subgroups are in particular discrete. If rank.X / D 1, then
discreteness is equivalent to (�mod–)regularity. In higher rank, regularity can be con-
sidered as a strengthening of discreteness: A discrete subgroup � < G may not be
�mod–regular for any face type �mod ; this can happen eg for free abelian subgroups of
transvections of rank � 2.
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Lemma 4.5 (i) �mod–pure sequences are �mod–regular.

(ii) Every sequence which diverges to infinity contains a �mod–pure subsequence for
some face type �mod � �mod .

Proof Assertion (i) is a direct consequence of the definitions, and (ii) follows by
induction on face types.

Note also that a sequence which diverges to infinity is �mod–regular if and only if it
contains �mod–pure subsequences only for face types �mod � �mod . (We will not use
this fact.)

Remark 4.6 (relation to Finsler compactifications) There is a close relation between
the regularity of sequences and the asymptotic geometry of certain G–invariant Finsler
metrics on X ; see [16, Section 8.1.2]. For instance, a sequence in X is (�mod–)regular
if and only if it accumulates at the Furstenberg boundary inside the regular Finsler
compactification.

5 Some topological dynamics

5.1 (Proper) discontinuity and dynamical relation

Let Z be a compact metrizable space, and let � � Homeo.Z/ be a countably infinite
subgroup. We consider the action � Õ Z .

Definition 5.1 (discontinuous) A point z 2Z is called wandering with respect to
the �–action if the action is discontinuous at z , ie if z has a neighborhood U such
that U \ 
U ¤∅ for at most finitely many 
 2 � .

Nonwandering points are called recurrent.

Definition 5.2 (domain of discontinuity) We call the set

�disc �Z

of wandering points the wandering set or domain of discontinuity for the action � Õ Z .

Note that �disc is open and �–invariant.

Definition 5.3 (proper) The action of � on an open subset U �Z is called proper
if for every compact subset K � U , it holds that K \ 
K ¤ ∅ for at most finitely
many 
 2 � .
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In particular, the action of � on U is then discontinuous, ie U ��disc , and is therefore
called properly discontinuous.

Definition 5.4 (domain of proper discontinuity) If � is a group, we call a �–invariant
open subset ���disc on which � acts properly a domain of proper discontinuity for �.

The orbit space �=� is then Hausdorff. Note that in general there is no unique maximal
proper domain of discontinuity.

Example 5.5 (nonunique maximal domain of proper discontinuity) Consider the
infinite cyclic group � ŠZ acting projectively on Z DRP2 , so that a generator 
 of
� acts as the projectivization of a diagonal matrix with distinct positive eigenvalues
�1 > �2 > �3 . Let e1; e2; e3 2 Z be the three fixed points of 
 (eigenspaces for
�1; �2; �3 , respectively). Let Eij � Z denote the projective lines spanned by ei

and ej for i < j . Then �discDZ�fe1; e2; e3g, and both sets U1DZ�.E23[fe1g/

and U3 DZ� .E12[fe3g/ are maximal domains of proper discontinuity for � . (The
maximality follows from the fact that the points on E12 are dynamically related to the
points on E23 .) Observe also that in this example both U1=� and U3=� are compact.

Discontinuity and proper discontinuity can be nicely expressed using the notion of
dynamical relation. The following definition is due to Frances [10, Definition 1]:

Definition 5.6 (dynamically related) Two points z; z0 2 Z are called dynamically
related with respect to a sequence .hn/ in Homeo.Z/, written

z
.hn/
� z0;

if there exists a sequence zn! z in Z such that hnzn! z0 .

The points z; z0 are called dynamically related with respect to the �–action, written

z
�
� z0;

if there exists a sequence 
n!1 in � such that z
.
n/
� z0 .

Here, for a sequence .
n/ in � , we write 
n!1 if every element of � occurs at
most finitely many times in the sequence.

One verifies (see eg [15]) that

(i) dynamical relation is a closed relation in Z �Z ,

(ii) points in different �–orbits are dynamically related if and only if their orbits
cannot be separated by disjoint �–invariant open subsets.
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The concept of dynamical relation is useful for our discussion of discontinuity because

(i) a point is nonwandering if and only if it is dynamically related to itself,

(ii) the action is proper on an open subset U �Z if and only if no two points in U

are dynamically related.

5.2 Accumulation and proper discontinuity

In this paper, we derive proper discontinuity of actions from a certain accumulation
behavior which is a relaxation of convergence dynamics.

Let Z and � be as above. Let .Yn/ be a sequence of subsets of Z . We denote
by Acc..Yn// � Z the closed subset consisting of the accumulation points of all
sequences .yn/ of points yn 2 Yn .

Definition 5.7 (accumulation) We say that the sequence of subsets Yn �Z accumu-
lates at a subset S �Z , written

Yn acc S;

if Acc..Yn//� S .

If S � Z is closed, then the sequence .Yn/ accumulates at S if and only if every
neighborhood U of S contains all but finitely many of the subsets Yn .

We first consider the dynamics of a sequence .hn/ in Homeo.Z/.

Definition 5.8 (accumulating sequence) For compact subsets A˙ �Z , we say that
the sequence .hn/ accumulates at AC outside A� , briefly, .A�;AC/–accumulates, if

(17) hnK acc AC

for all compacta K disjoint from A� .

Property (17) is a statement about the locally uniform accumulation of the .hn/–orbits
initiating outside the exceptional subset A� and can be rephrased in terms of dynamical
relations between points in Z with respect to the .hn/–action. Namely, equivalently,
for all points z; z0 2Z it holds that

(18) z
.hnk

/
� z0 for some subsequence .hnk

/ D) z 2A� or z0 2AC:
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Note that the dynamical relation condition z
.hnk

/
� z0 and the dual condition z0

.h�1
nk
/

� z

are equivalent, and consequently we have the symmetry

.hn/ is .A�;AC/–accumulating () .h�1
n / is .AC;A�/–accumulating:

Note that if A˙�A0
˙

, then .A�;AC/–accumulation implies .A0�;A
0
C/–accumulation.

Now we consider the action � Õ Z .

Definition 5.9 (accumulating action, I) We say that the action � Õ Z is .A�;AC/–
accumulating if every sequence 
n!1 in � has an .A�;AC/–accumulating subse-
quence.

According to (18), we obtain for dynamical relations:

Lemma 5.10 (dynamical relations, I) If the action � Õ Z is .A�;AC/–accumulat-
ing, then for any two points z; z0 2Z , it holds that

(19) z
�
� z0 D) z 2A� or z0 2AC:

Proof This is a direct consequence of (18).

We conclude:

Proposition 5.11 (proper discontinuity, I) If the subsets A˙ are �–invariant and if
the action � Õ Z is .A�;AC/–accumulating, then the action

� Õ Z � .A�[AC/

is properly discontinuous.

Proof By Lemma 5.10, there are no dynamical relations between points outside
A�[AC .

Suppose that A˙ are �–invariant compact (with respect to the Hausdorff topology)
families of compact subsets A˙ �Z .

Definition 5.12 (limit family) The forward limit family of � with respect to .A�;AC/
is the family LC � AC consisting of all subsets AC 2 AC for which there exists a
sequence 
n!1 in � which is .A�;AC/–accumulating for some subset A� 2A� .
Similarly, we define the backward limit family L� �A� .

Geometry & Topology, Volume 22 (2018)



Dynamics on flag manifolds: domains of proper discontinuity and cocompactness 203

The limit families L˙ are �–invariant. Due to the compactness of the families A˙ ,
they are closed and hence compact themselves:

Lemma 5.13 L˙ is closed.

Proof Suppose, for instance, that .Ak
C/ is a sequence in LC such that Ak

C!AC2AC .
There exist sequences 
 k

n !1 in � which .Ak
�;A

k
C/–accumulate for some Ak

� 2A�
(in fact 2 L� ). After passing to a subsequence, we may assume that Ak

�!A� 2A� .
A diagonal argument yields an .A�;AC/–accumulating sequence .
 k .m/

n.m/ /m in � .
Hence AC 2 LC and LC is closed.

As a consequence of the lemma, the �–invariant subsets

T˙ WD
[

A˙2L˙

A˙ �Z

are compact.

Definition 5.14 (accumulating action, II) We say that the action �ÕZ is .A�;AC/–
accumulating if every sequence 
n!1 in � has a subsequence which is .A�;AC/–
accumulating for some subsets A˙ 2A˙ .

For such accumulating actions, the limit families are closely related to their dynamics:

Lemma 5.15 (dynamical relations, II) If the action � Õ Z is .A�;AC/–accumulat-
ing, then for any two points z; z0 2Z , it holds that

z
�
� z0 D) z 2 T� or z0 2 TC:

Proof If two points are dynamically related with respect to the �–action, then they are
dynamically related with respect to an .A�;AC/–accumulating sequence in � with
A˙ 2 L˙ and, hence, A˙ � T˙ . The assertion therefore follows from (18).

We conclude as before:

Proposition 5.16 (proper discontinuity, II) If the action � Õ Z is .A�;AC/–
accumulating, then the action

� Õ Z � .T�[TC/

is properly discontinuous.
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Remark 5.17 (convergence actions) The action � Õ Z is a convergence action (see
eg [5]) if and only if it is .A�;AC/–accumulating with A˙ the family of one point
subsets. The limit families L˙ then become the limit set ƒ �Z of the action. The
action on its complement is properly discontinuous, compare Proposition 5.16. We
recover the dynamical decomposition

Z D�disc tƒ

and that the action on the domain of discontinuity is proper. Hence, for convergence
actions there exists a unique maximal domain of proper discontinuity.

The main example of convergence actions comes from the following fact: Every discrete
group � of isometries of a proper Gromov hyperbolic geodesic metric space Y acts as
a convergence group on the visual compactification xY D Y [ @1Y , and in particular
on the Gromov boundary @1Y of Y .

Remark 5.18 (accumulation phenomena in nonpositive curvature) Convergence type
behavior in the sense of accumulation has been studied by Karlsson, Papasoglu and
Swenson in the general context of nonpositive curvature. They showed that for proper
isometric actions � Õ Y on CAT(0) spaces the induced action � Õ @1Y on the visual
boundary is .B.�/;B.���//–accumulating for 0<� <� , where B.�/ is the family of
closed balls of Tits radius � in @1Y ; see [25, Theorem 1] and [34, Theorem 4]. Some of
our results can be viewed as combinatorial versions of this (Tits) metric result for actions
on CAT(0) model spaces of higher rank; see eg Corollary 6.3 and Lemma 6.14 below.

5.3 Expansion and cocompactness

In this section, let .Z; d/ be a compact metric space and let � Õ Z be a continuous
action of a discrete group.

The following notion is due to Sullivan [37, Section 9]:

Definition 5.19 (expanding action) We say that the action � Õ Z is expanding at
the point z 2Z if there exists an element 
 2 � which is uniformly expanding on a
neighborhood U of z ; ie for some constant c > 1 and all points z1; z2 2 U we have

d.
 z1; 
 z2/� c � d.z1; z2/:

We say that the action of � is expanding at a compact �–invariant subset E �Z if it
is expanding at all points z 2E .
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Remark 5.20 If the action � Õ Z is expanding at E , then it is arbitrarily strongly
expanding there, ie for every point z 2E exist a sequence .
n/ in � and a sequence of
(shrinking) neighborhoods Un of z such that the 
njUn

are uniformly expanding with
expansion factors cn!C1. This follows directly from the definition by iterating
locally expanding elements. Note that, as a consequence, the action is expanding at E

also with respect to any bilipschitz equivalent metric on Z .

We will need the following more general notion of partial expansion. We suppose that
the action � Õ Z has the following structure: There is a �–invariant compact subset
E �Z and a continuous map � W E!ƒ onto a compact topological space ƒ (eg a
fiber bundle), such that the restricted action � Õ E is fiber preserving, ie it descends
to a continuous action � Õƒ. We set E� WD �

�1.�/.

Definition 5.21 (transversely expanding action, I) We say that the action � Õ Z

is expanding transversely to � at the fiber E� if there exist an element 
 2 � and a
neighborhood U �Z of E� such that for some constant c > 1 we have

(20) d.
 z;E
�0/� c � d.z;E�0/

for all points z 2 U and fibers E�0 � U .

We say that the action � Õ Z is expanding at E transversely to � if it is expanding
at all fibers E� .

The action � Õ Z is expanding at E if and only if it is expanding at E transversely
to idE .

The concept of expansion is important to us due to the following observation:

Proposition 5.22 (transversely expanding implies cocompact on the complement, I)
If the action � Õ Z is expanding at E transversely to � , then the action � Õ Z �E

is cocompact.

Proof We claim that for some constant c > 1,

(21) sup d. � ;E/j�z > c � d.z;E/

for all z 2 Z �E sufficiently close to E . Otherwise, there would exist a sequence
.zn/ in Z �E accumulating at E and a sequence of constants cn! 1 such that

d.
 zn;E/� cn � d.zn;E/
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for all n 2 N and 
 2 � . Since E is compact, we may assume, after passing to a
subsequence, that .zn/ accumulates at a fiber, zn!E� . Due to expansion, there exists
an element 
� 2 � which satisfies the expansion property (20) on a neighborhood
U� �Z of E� with some expansion factor c� > 1. Let E
��n

be the fiber closest to

�zn , d.
�zn;E
��n

/D d.
�zn;E/. Then �n! �. Since zn 2 U� and E�n
� U�

for large n, it follows that

c� � d.zn;E/� c� � d.zn;E�n
/� d.
�zn;E
��n

/D d.
�zn;E/� cn � d.zn;E/;

a contradiction confirming our claim.

Let U �Z be an open tubular neighborhood of E where (21) holds. Thus, no �–orbit
is entirely contained in U �E and, therefore, every �–orbit in Z �E meets the
compact subset Z �U �Z �E .

The above argument (from [18, Section 2.2]) leads actually to a more general result.

Let us suppose, more generally, that the action �ÕZ has the following structure: There
is a �–invariant compact subset E �Z which is represented as the (not necessarily
disjoint) union of a �–invariant collection E D fE� W � 2 ƒg of compact subsets
E� �Z parametrized by some set ƒ.

Definition 5.23 (transversely expanding action, II) We say that the action � Õ Z is
expanding transversely to E at a point z if there exist an element 
 2� , a neighborhood
U �Z of z and a constant c > 1 such that we have

(22) d.
u; 
E�/� c � d.u;E�/

for all points u 2 U �E and all E� which have nonempty intersection with U . We
say that the action � Õ Z is expanding transversely to E if it is expanding at all points
z 2E .

Proposition 5.24 (transversely expanding implies cocompact on the complement, II)
If the action � Õ Z is expanding transversely to E , then the action � Õ Z �E is
cocompact.

Proof We claim that for some constant c > 1,

(23) sup d. � ;E/j�u > c � d.u;E/
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for all u 2 Z �E sufficiently close to E . Otherwise, there would exist a sequence
.un/ in Z �E accumulating at E and a sequence of constants cn! 1 such that

d.
un;E/� cn � d.un;E/

for all n 2 N and 
 2 � . Since E is compact, we may assume, after passing to a
subsequence, that .un/ converges to some point z 2 E� for some � 2 ƒ. Due to
expansion, there exists an element 
z 2 � which satisfies the expansion property (22)
on a neighborhood U �Z of z with some expansion factor c > 1. Let 
zE�n

2 E be
the set in the collection E closest to 
zun :

d.
zun;E/D d.
zun; 
zE�n
/D d.
zun; 
zzn/

with zn2E�n
. Then zn!z because 
zun!
zz2E , which implies that E�n

\U ¤∅
for all sufficiently large n. It follows that (for large n),

c � d.un;E/� c � d.un;E�n
/� d.
zun; 
zE�n

/D d.
zun;E/� cn � d.un;E/;

a contradiction confirming our claim.

Let U �Z be an open tubular neighborhood of E where (23) holds. Thus, no �–orbit
is entirely contained in U �E and, therefore, every �–orbit in Z �E meets the
compact subset Z �U �Z �E .

6 Accumulation dynamics on flag manifolds and proper dis-
continuity

We now study the dynamics of G and its discrete subgroups � <G on its associated
flag manifolds, equivalently, on (the G–orbits in) the visual boundary @1X . In this
section, we will discuss a certain dynamical behavior, which is a relaxed version of
convergence dynamics, and use it to construct domains of proper discontinuity for
discrete subgroups.

6.1 Weakly contracting sequences

Let .gn/ be a sequence in G , and let �mod � �mod be a face type.

We consider the following contraction property for the dynamics of .gn/ on Flag�mod
.

An equivalent notion had been studied by Benoist in his foundational work [1]; see
Section 3.5 there.
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Definition 6.1 (�mod–contracting sequence) We say that the sequence .gn/ is �mod–
contracting if there exist simplices �˙ of type ˙�mod such that

(24) gnjC.��/! �C

uniformly on compacta as n!C1.

We recall that C.��/ is a dense open subset of Flag�mod
.

Property (24) means .gn/ is .Flag�mod
�C.��/; �C/–accumulating; see Definition 5.8.

It can be rephrased in terms of dynamical relations between points in Flag�mod
with

respect to the .gn/–action. Namely, equivalently, for all simplices �; � 0 2 Flag�mod
, it

holds (see (18)) that

(25) �
.gnk

/
� � 0 for some subsequence .gnk

/ D) � 62 C.��/ or � 0 D �C:

The conclusion of the last implication can be expressed in terms of relative positions:

pos.�; ��/ maximal D) pos.� 0; �C/ minimal:

We observe that the last implication follows from the combinatorial inequality

(26) pos.� 0; �C/� c-pos.�; ��/:

The next result shows that this inequality holds for dynamically related points on all
flag manifolds, thought of as G–orbits in @1X . It is the key step in our study of proper
discontinuity.

Proposition 6.2 (dynamical relation inequality) The following are equivalent:

(i) property (24);

(ii) for any two points �; � 0 2 @1X , it holds that

(27) �
.gnk

/
� � 0 for some subsequence .gnk

/ D) pos.� 0; �C/� c-pos.�; ��/:

Proof Suppose first that property (24) holds and that �
.gn/
� � 0 . Then � and � 0 lie

in the same G–orbit, ie G� D G� 0 , and there exists a sequence .�n/ in this G–orbit
such that �n! � and gn�n! � 0 . Let a� @1X be an apartment containing �� and � .
Nearby apartments an containing �n can be obtained by using isometries hn! e in G

with �n D hn� and putting an D hna. Let y�� � a be the simplex opposite to �� ,

Geometry & Topology, Volume 22 (2018)



Dynamics on flag manifolds: domains of proper discontinuity and cocompactness 209

and let �n D hny�� � an . Then �n ! y�� . Since y�� 2 C.��/, the locally uniform
convergence (24) implies that gn�n! �C . We obtain

pos.� 0; �C/� pos.gn�n;gn�n/

D pos.�n; �n/D pos.hn�; hny��/

D pos.�; y��/D c-pos.�; ��/;

where the inequality follows from the semicontinuity of relative position; see Lemma
3.12.

Conversely, suppose that (ii) holds. Since inequality (26) is a special case of the
inequality in the implication of (27), it follows that (25), and thus (24), holds.

We observe a symmetry: condition (27) is equivalent to the dual condition

(28) � 0
.g�1

nk
/

� � for some subsequence .g�1
nk
/ of .g�1

n /

D) pos.�; ��/� c-pos.� 0; �C/;

because both dynamical relation hypotheses are equivalent, as are the combinatorial
inequality conclusions. Therefore, the proposition implies that (24) is equivalent to the
dual property on Flag��mod

that

g�1
n jC.�C/! ��

uniformly on compacta as n!C1.

Note that the simplices �˙ in (24) are well defined, because this is clear for �C and
follows for �� by symmetry.

Inequality (27) can be (re)converted into a statement about the asymptotic behavior of
arbitrary .gn/–orbits in @1X . We can in general not expect that these orbits converge,
but we obtain information where they accumulate. For individual orbits, it follows that
for a point � 2 @1X the orbit .gn�/ accumulates in G� � @1X at the Schubert cycle

fpos. � ; �C/� c-pos.�; ��/g:

A locally uniform statement can be conveniently formulated using the language of
thickenings:

Corollary 6.3 (orbit accumulation) If property (24) holds, and if Th�W is a W�mod–
left invariant thickening, then the sequence .gn/ is .Thc.��/;Th.�C//–accumulating
(see Definition 5.8).
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Proof Otherwise, there is a dynamical relation �
.gnk

/
� � 0 with � 62 Thc.��/ and

� 0 62 Th.�C/; compare (18). That is, pos.�; ��/ 62 Thc and pos.� 0; �C/ 62 Th. Moreover,
(24) implies (27), and hence the inequality pos.� 0; �C/� c-pos.�; ��/. It follows that

pos.� 0; �C/� c-pos.�; ��/D w0 pos.�; ��/ 2 Th;

and hence pos.� 0; �C/ 2 Th, a contradiction.

6.2 Weak convergence subgroups

Let � <G be a discrete subgroup.

Definition 6.4 (�mod–limit set) We define the forward/backward �mod–limit set of �
as the set

ƒ˙�mod
Dƒ˙�mod

.�/� Flag˙�mod

of all simplices �˙ as in (24) for all �mod–contracting sequences 
n!1 in � .

An equivalent notion had already been introduced by Benoist in his profound work;
see [1, Section 3.6].

Note that passing to a finite index subgroup does not change the limit sets.

The limit sets ƒ˙�mod
are �–invariant and compact; see Lemma 5.13. Moreover, one

has the symmetry
ƒ˙��mod

.�/Dƒ��mod
.�/:

In particular, if �mod is �–invariant we can define the �mod–limit set

ƒ�mod.�/ WDƒ
˙
�mod

.�/:

To any W�mod–left invariant thickening Th�W , we associate the �–invariant compact
families of compact subsets

A��mod;Th WD fThc.��/ W �� 2ƒ
�
�mod
g and AC�mod;Th WD fTh.�C/ W �C 2ƒC�mod

g:

The structure of the dynamics of the action � Õ @1X is closely related to the limit
sets if it enjoys contraction behavior in the following sense:

Definition 6.5 (�mod–convergence action) The action � Õ @1X is called a �mod–
convergence action if every sequence 
n!1 in � has a �mod–contracting subsequence.
The subgroup � <G is then called a �mod–convergence subgroup.
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Remark 6.6 (rank one) If rank.X /D 1, this property is equivalent to being a conver-
gence action and is satisfied for all discrete subgroups � <G , compare Remark 5.17.

Corollary 6.3 implies:

Proposition 6.7 (weak contraction implies accumulation) If � <G is a �mod–con-
vergence subgroup and if Th�W is a W�mod–left invariant thickening, then the action
� Õ @1X is .A��mod;Th;A

C
�mod;Th/–accumulating.

We obtain our main result for proper discontinuity:

Theorem 6.8 (domains of proper discontinuity for �mod–convergence subgroups) If
� <G is a �mod–convergence subgroup, then for any W�mod–left invariant thickening
Th�W , the action

� Õ @1X � .Thc.ƒ��mod
/[Th.ƒC�mod

//

is properly discontinuous. In particular, if �mod is �–invariant and Th is fat, the action

� Õ @1X �Th.ƒ�mod/

is properly discontinuous.

Proof The first assertion follows from the last proposition by applying Proposition 5.16
with L˙DA˙�mod;Th . The second assertion follows because Thc

� Th due to fatness.

Note that the thickenings of limit sets Th.ƒ˙�mod
.�// are �–invariant and compact.

For examples of thickenings, we refer to Section 3.4.2.

6.3 Weakly regular subgroups

The properties of contraction, defined via the dynamics at infinity (see Definition 6.1),
and regularity, defined via the asymptotics of orbits in X (see Definition 4.3), are
equivalent in a suitable sense; compare the discussion in [19, Section 5.2]. The most
relevant aspect for the purposes of this paper is that regularity implies contraction in a
suitable sense.

We first consider sequences of isometries:

Proposition 6.9 Every �mod–regular sequence in G contains a �mod–contracting sub-
sequence.
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Proof Compare the proof of [19, Proposition 5.14].

Suppose that the sequence .gn/ in G is �mod–regular. Let x 2X . There exist simplices
�˙n 2 Flag˙�mod

(unique for large n) such that

g˙1
n x 2 V .x; st.�˙n //:

After passing to a subsequence, we may assume convergence

�˙n ! �˙

in Flag˙�mod
, because the flag manifolds are compact.

Since x 2 gnV .x; st.��n // D V .gnx; st.gn�
�
n // and gnx 2 V .x; st.�Cn //, it follows

that the Weyl cones V .gnx; st.gn�
�
n // and V .x; st.�Cn // lie in the same parallel set,

namely in P .gn�
�
n ; �

C
n /, and face in opposite directions. In particular, the simplices

gn�
�
n and �Cn are x–opposite, and thus gn�

�
n converges to the simplex y�C which is

x–opposite to �C :
gn�
�
n ! y�C:

Since the sequence .gnx/ is �mod–regular, it holds that

d.g�1
n xn; @V .x; st.��n ///!C1:

According to Lemma 4.2, for any r;R> 0, the inclusion of shadows

U��n ;x;R � U��n ;g�1
n x;r

holds for n� n.r;R/. Therefore, there exist positive numbers Rn!C1 and rn! 0

such that
U��n ;x;Rn

� U��n ;g�1
n x;rn

for large n, equivalently,

(29) gnU��n ;x;Rn
� Ugn�

�
n ;x;rn

:

Since ��n ! �� and Rn ! C1, the sequence of shadows U��n ;x;Rn
� C.��n / �

Flag�mod
exhausts C.��/ in the sense that every compactum in C.��/ is contained

in U��n ;x;Rn
for large n. Indeed, for fixed R > 0 we have Hausdorff convergence

U��n ;x;R ! U��;x;R in Flag�mod
, which immediately follows eg using symmetry, ie

from the transitivity of the action Kx Õ Flag��mod
of the maximal compact stabilizer

Kx <G of x . Furthermore, the shadows U��;x;R exhaust C.��/ as R!C1; see
the continuity part of Lemma 4.1.
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On the other hand, since gn�
�
n ! y�C and rn ! 0, the shadows Ugn�

�
n ;x;rn

shrink,
ie Hausdorff converge to the point �C . Indeed, Ugn�

�
n ;x;r ! Uy�C;x;r in Flag�mod

for
fixed r > 0, and Uy�C;x;r! �C as r! 0, using again the continuity part of Lemma 4.1
and the fact that the function (16) assumes the value zero only in �C .

Together with these observations on exhaustion and shrinking of shadows, (29) shows

gnjC.��/! �C

uniformly on compacta; ie the (sub)sequence .gn/ is �mod–contracting.

Remark 6.10 The converse, that �mod–contracting sequences in G are �mod–regular,
was shown in [19, Theorem 5.23].

We conclude for groups of isometries:

Corollary 6.11 �mod–regular subgroups are �mod–convergence subgroups.

Remark 6.12 For �mod–regular subgroups, the notion of �mod–limit set introduced in
Definition 6.4 is equivalent to the notion of �mod–limit set introduced in Definition 5.32
of [19]; see Proposition 5.29 of [19].

Based on the corollary, we can translate our proper discontinuity result for convergence
subgroups (Theorem 6.8) into one for regular subgroups:

Theorem 6.13 (domains of proper discontinuity for �mod–regular subgroups) Let
�mod � �mod be an arbitrary face type. If � <G is a �mod–regular subgroup, then for
every W�mod–left invariant thickening Th�W , the action

� Õ @1X � .Thc.ƒ��mod
/[Th.ƒC�mod

//

is properly discontinuous. In particular, if �mod is �–invariant and Th is fat, the action

� Õ @1X �Th.ƒ�mod/

is properly discontinuous.

6.4 Discrete subgroups

The general construction of domains of proper discontinuity in Section 5.2 applies
equally to arbitrary discrete subgroups � <G . There are several ways to proceed. The
most immediate possibility is the following.
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Choose for every face type �mod � �mod a W�mod–left invariant thickening Th�mod , and
define the �–invariant compact families

A˙ WD
[

�mod��mod

A˙�mod;Th�mod
:

Lemma 6.14 The action � Õ @1X is .A�;AC/–accumulating.

Proof According to Lemma 4.5, every sequence 
n!1 in � contains a �mod–regular
(even �mod–pure) subsequence, and hence a �mod–contracting subsequence for some
face type �mod . The assertion follows therefore from Corollary 6.3.

Thus Proposition 5.16 yields in this case:

Proposition 6.15 (domains of proper discontinuity for discrete subgroups, I) If
� <G is a discrete subgroup, then the action

(30) � Õ @1X �
[
�mod

.Thc
�mod

.ƒ��mod
/[Th�mod.ƒ

C
�mod

//

is properly discontinuous.

In general, this domain of proper discontinuity can be further enlarged by only removing
the thickenings of the limit simplices arising from pure sequences in the group: define
the pure forward/backward �mod–limit set

ƒ
pure;˙
�mod �ƒ˙�mod

as the closure of the set of all simplices �˙ as in (24) for all �mod–pure �mod–contracting
sequences .
n/ in � . As above, we conclude:

Proposition 6.16 (domains of proper discontinuity for discrete subgroups, II) If
� <G is a discrete subgroup, then the action

(31) � Õ @1X �
[
�mod

.Thc
�mod

.ƒ
pure;�
�mod /[Th�mod.ƒ

pure;C
�mod //

is properly discontinuous.

Since the domain in (30) is in general smaller than the domain in (31), one cannot
expect the �–action on it to be cocompact.

On the other hand, if � is �mod–regular, then it contains �mod–pure sequences only for
the face types �mod � �mod , and hence only these limit sets ƒ˙�mod

can be nonempty.
Since W�mod �W�mod , we may choose Th�mod D Th�mod for these face types, and then
the domain in (31) coincides with the domain in Theorem 6.13.
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7 Cocompactness

7.1 Nearby simplex thickenings

For incident faces � � � � @1X , the parabolic subgroups fixing them are contained
in each other, P� � P� . Correspondingly, for incident face types �mod � �mod � �mod

there is the natural forgetful map

��mod�mod W Flag�mod
! Flag�mod

assigning to a face � of type �mod its face � of type �mod . It is a G–equivariant smooth
fibration with compact base and fiber.

We fix auxiliary Riemannian metrics on all partial flag manifolds Flag�mod
. Thereby

also the G–orbits G� � @1X are equipped with Riemannian metrics by equivariantly
identifying them with the appropriate flag manifolds.

The fibrations ��mod�mod are then Lipschitz continuous by compactness. Vice versa,
we have:

Lemma 7.1 (controlled lifts) Let � and � 0 be simplices of types �mod and �mod with
�mod � �mod , and let � � � be the face of type �mod . Then there exists a simplex
� 0 � � 0 of type �mod such that

d.� 0; �/� C0 � d.�
0; �/

with a uniform constant C0 � 1 only depending on the chosen Riemannian metrics.

Proof The Riemannian metrics on Flag�mod
and Flag�mod

can be chosen so that
��mod�mod becomes a Riemannian submersion. With respect to these metrics, there
exists � 0 such that d.�; � 0/Dd.�; � 0/. For other choices of the metrics, a multiplicative
constant enters.

The lemma generalizes (by induction along galleries) to:

Lemma 7.2 Let �; � 0 be simplices of type �mod and let z� be a simplex of type z�mod .
Then there exists another simplex z� 0 of type z�mod with relative position pos.z� 0; � 0/D
pos.z�; �/ such that

d.z� 0; z�/� C1 � d.�
0; �/

with a uniform constant C1 � 1 only depending on the chosen Riemannian metrics.
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Let now G� � @1X be a G–orbit at infinity, which we think of as identified with the
appropriate flag manifold. We fix a W�mod–left invariant thickening Th � W . Then
the distance between simplices � in Flag�mod

and the Hausdorff distance between their
thickenings Th.�/\G� in G� control each other, and through an ideal point in G�

outside a simplex thickening exists a simplex thickening at controlled distance:

Lemma 7.3 (nearby simplex thickenings) The following assertions hold with a
uniform constant C � 1 only depending on the chosen Riemannian metrics:

(i) The Hausdorff distance between the thickenings of any two simplices � 0; � 2
Flag�mod

is controlled by

dH .Th.� 0/\G�;Th.�/\G�/� C � d.� 0; �/:

(ii) For a point � 02G� and a simplex � 2Flag�mod
, there exists a simplex � 02Flag�mod

such that � 0 2 Th.� 0/ and

d.� 0; �/� C � d.� 0;Th.�/\G�/:

Proof (i) If �2Th.�/\G� is arbitrary, then applying Lemma 7.2 (to the flag manifold
identified with G� ) yields a point �0 2G� with pos.�0; � 0/D pos.�; �/ 2 Th.�mod/, ie
�0 2 Th.� 0/, and controlled distance d.�0; �/� C � d.�; � 0/.

(ii) Suppose that � 2 Th.�/ \ G� is the point closest to � 0 , that is, d.� 0; �/ D

d.� 0;Th.�/ \ G�/. Lemma 7.2 yields a simplex � 0 2 Flag�mod
with pos.� 0; � 0/ D

pos.�; �/ 2 Th and controlled distance d.� 0; �/ � C � d.� 0; �/, whence the second
inequality.

7.2 From expansion to transverse expansion

Let �mod � �mod be a face type, and let Th�W be a W�mod–left invariant thickening.
In this section, we work on a fixed but arbitrary G–orbit G�� @1X .

We start with an observation concerning the topology of thickenings in flag manifolds.

Lemma 7.4 (fibration of thickenings) Let A � Flag�mod
be compact, and suppose

that the thickenings Th.�/\G� of the simplices � 2A are pairwise disjoint. Then the
natural map

Th.A/\G�
�
�!A

is a continuous fibration with compact fiber.
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Proof Suppose that �n! � in Th.A/\G� and �n! � in A with �n 2 Th.�n/. Then
� 2 Th.�/ by semicontinuity of relative position; see Lemma 3.12. The assumption on
the disjointness of fibers implies that �.�/D � . Thus, � is continuous.

In order to show that � is a fiber bundle, we need to construct local trivializations.
Fix �0 2 A. There exists a compact subset S � G which is mapped by s 7! s�0

homeomorphically onto a compact neighborhood of �0 in A. (Such a subset can be
found in a slice through e transverse to P�0

.) Restricting the action G Õ @1X , we
obtain a topological embedding

S � .Th.�0/\G�/! Th.A/\G�

and a local trivialization of � over a neighborhood of �0 in A.

Now we turn to dynamics.

Let .gn/ be a sequence of isometries in G which preserve A, ie gnADA. We consider
the action of .gn/ on G� and derive transverse expansion from expansion on Flag�mod

:

Lemma 7.5 (expansion implies transverse expansion) Suppose .gn/ is on Flag�mod

arbitrarily expanding at �C 2A; ie there exist neighborhoods Vn of �C in Flag�mod
and

constants cn!C1 such that gnjVn
is expanding with expansion factor cn .

Then there exist neighborhoods Wn of Th.�C/\G� and constants Cn!C1 such that

(32) d.gn�;gn Th.�/\G�/� Cn � d.�;Th.�/\G�/

for all � 2Wn and � 2A with Th.�/\G��Wn ; compare inequality (20).

Proof To simplify notation, we write (only in this proof) Th. � / instead of Th. � /\G�.

Let Wn be some (small) neighborhood of the compact subset Th.�C/, and let �; � be
as in inequality (32). We work near Th.gn�C/. According to Lemma 7.3(ii), we can
choose gn�

0 2 Flag�mod
such that gn� 2 Th.gn�

0/, and gn�
0 has controlled distance

from gn� :
d.gn�

0;gn�/� C � d.gn�;Th.gn�//

with a uniform constant.

After shrinking the neighborhood gnWn of Th.gn�C/, we may assume that gn� is
close to gn�C , using that Th.A/ fibers over A; see Lemma 7.4. Moreover, that gn� is
close to Th.gn�/. Thus, after shrinking Wn sufficiently, we may assume that � 0; � 2Vn .
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Then
d.gn�

0;gn�/� cn � d.�
0; �/:

Since we also have uniform control, ie

d.�;Th.�//� dH .Th.� 0/;Th.�//� C � d.� 0; �/;

by Lemma 7.3(ii), it follows that

d.gn�;Th.gn�//� C�2cn � d.�;Th.�//;

that is, our assertion with Cn D C�2cn .

We apply the above discussion to discrete group actions on flag manifolds.

Proposition 7.6 (transverse expansion at slim thickenings) Let � <G be a discrete
subgroup, and suppose that

(i) the action � Õ Flag�mod
is expanding at ƒC�mod

,

(ii) the thickenings Th.�/\G� of the simplices � 2ƒC�mod
are pairwise disjoint.

Then the action � Õ G� is expanding at Th.ƒC�mod
/\G� transversely to the natural

fibration Th.ƒC�mod
/\G�!ƒC�mod

given by Lemma 7.4.

Proof Since the action � Õ Flag�mod
is expanding at ƒC�mod

, it is arbitrarily strongly
expanding there; see Remark 5.20. That is, for every limit simplex �C 2ƒC�mod

there
exists a sequence .
n/ in � and a sequence of neighborhoods Vn of �C such that
the 
njVn

are uniformly expanding with expansion factors cn !C1. Lemma 7.5
then implies that the action � Õ G� is (arbitrarily) expanding at Th.ƒC�mod

/ \ G�

transversely to � .

Using that transverse expansion implies cocompactness on the complement (see
Proposition 5.22), we derive our main cocompactness result:

Theorem 7.7 (cocompact domains) Let � and Th be as in the previous proposition.
Then the action

� Õ G��Th.ƒC�mod
/

is cocompact.

The following is a special case of the theorem. Here, for �–invariant �mod , a sub-
set of Flag�mod

is called antipodal if the simplices in it are pairwise opposite; see
Definition 2.3(ii).
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Corollary 7.8 (cocompactness outside slim thickenings) Let �mod � �mod be an
�–invariant face type. Suppose that � < G is a discrete subgroup such that ƒ�mod is
antipodal and the action � Õ Flag�mod

is expanding at ƒ�mod .

(i) Then for any slim W�mod–left invariant thickening Th�W , the action

� Õ @FRuX �ThFRu.ƒ�mod/

is cocompact.

(ii) More generally, suppose that �mod � �mod is another face type and that the
thickening Th is also W�mod–right invariant. Then for any G–orbit G�� @1X

of type x�D �.�/ 2 int.�mod/, the action

� Õ G��Th.ƒ�mod/

is cocompact.

Proof We have that ƒ˙�mod
Dƒ�mod , because �mod is �–invariant. Since Th is slim and

the simplices � in ƒ�mod are pairwise antipodal, their thickenings ThFRu.�/ in @FRuX are
pairwise disjoint; see Lemma 3.31. Thus, the hypotheses of the theorem are satisfied.

Remark 7.9 (rank one) If rank.X / D 1, this follows from part of a basic result
for Kleinian groups characterizing convex-cocompactness. Namely, the following
properties are equivalent for a discrete subgroup � <G :

(i) � is convex-cocompact.

(ii) The action � Õ xX , equivalently, the action � Õ @1X , is expanding at ƒ.

(iii) The (properly discontinuous) action � Õ xX �ƒ is cocompact.

In particular, the action � Õ @1X �ƒ is then cocompact.

7.3 Cocompact domains of proper discontinuity

We consider the following class of discrete subgroups (see Definition 1.5 in the intro-
duction):

Definition 7.10 (CEA subgroup) For a �–invariant face type �mod � �mod , we call a
�mod–convergence subgroup � <G a �mod–CEA subgroup (convergence, expanding,
antipodal) if ƒ�mod is antipodal and if the action � Õ Flag�mod

is expanding at ƒ�mod .
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Remark 7.11 (CEA versus Anosov) The class of �mod–CEA subgroups coincides
with the class of P�mod–Anosov subgroups, see [19, Section 6.5]. Here, P�mod refers to
the conjugacy class of parabolic subgroups of G corresponding to the face �mod of the
spherical Weyl chamber �mod .

Combining our main results on proper discontinuity (see Theorem 6.8) and cocompact-
ness (see Corollary 7.8), we obtain:

Theorem 7.12 (cocompact domains of proper discontinuity) Suppose that � <G is
a �mod–CEA subgroup.

(i) Then for any balanced W�mod–left invariant thickening Th�W , the action

� Õ @FRuX �ThFRu.ƒ�mod/

is properly discontinuous and cocompact.

(ii) More generally, suppose that �mod � �mod is another face type and that the
thickening Th is also W�mod–right invariant. Then for every G–orbit G�� @1X

of type x�D �.�/ 2 int.�mod/, the action

� Õ G��Th.ƒ�mod/

is properly discontinuous and cocompact.

Remark 7.13 According to Corollary 3.20, balanced W�mod–left invariant thickenings
always exist, and Theorem 7.12 therefore provides cocompact domains of discontinuity
at least in the Furstenberg boundary @FRuX .

The question whether these domains are nonempty will be addressed in Section 8.

7.4 A relation with Mumford’s geometric invariant theory

We continue the discussion in Example 3.30, now looking at actions (of Lie subgroups)
on configuration spaces. (See [23; 17] for a more detailed discussion of geometric
invariant theory in the context of weighted configurations.)

Let H D Isomo.Y /. We consider the diagonal action H Õ @FRuX on configurations.
As we discussed in Example 3.30, the choice of a regular vector t D .ti/ 2 int.�/
determines subsets

.@FRuX /st;t D @FRuX � .Tht /FRu.A/ and .@FRuX /sst;t D @FRuX � .Tht /FRu.A/
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of stable, respectively, semistable weighted configurations in @1Y . Mumford’s GIT [33]
defines the Mumford quotient

@FRuX �t H D .@FRuX /sst;t � H

by suitably extended orbit equivalence. In the case when the thickening Tht is balanced,
all semistable points are even stable, and one has

@FRuX �t H D .@FRuX /sst;t � H D .@FRuX /st;t=H;

the latter being a quotient in the usual sense.

A nice exercise is to prove directly that the space @FRuX �t H is compact and Hausdorff
in this case. For instance, if H D PSL.2;R/, Y DH2 , nD 3 and t D .1; 1; 1/, then
@FRuX �t H consists of exactly two points represented by configurations of three distinct
points on the circle with different cyclic orders. Continuing with Y DH2 and letting
nD 4, one verifies that for t D .2; 1; 1; 1/, the Mumford quotient is homeomorphic
to S1 , while for t D .5; 4; 3; 1/ the Mumford quotient is homeomorphic to the disjoint
union of two circles. Taking nD 5, one obtains that for t D .1; 1; 1; 1; 1/ the Mumford
quotient is the genus-4 oriented surface, while for t D .5; 4; 1; 1; 1/ the quotient is the
disjoint union of two 2–spheres. Thus, we see that quotients are not homeomorphic for
distinct choices of t .

More generally, one can describe dependence of the topology of the Mumford quotient
@FRuX �t H on the parameter t as follows.

The hyperplanes
P

i2I ti D
P

j…I tj (also called interior walls), where I runs over
subsets of f1; : : : ; ng, partition the chamber

�D f.t1; : : : ; tn/ W ti > 0g

into open convex subsets, also called chambers. The topology of @FRuX �t H does not
change as long as t varies in a single chamber; permuting the chambers does not change
the topology either; however, crossing through a wall amounts to a certain Morse surgery
on the manifold. This can be seen by identifying the quotients @FRuX �t H with certain
moduli spaces of polygons with fixed side-length: In the case when H D PSL.2;R/,
these are polygons in the euclidean plane; see [23].

It was conjectured by Kevin Walker that if t; t 0 belong to chambers in distinct Sn–orbits
then the Mumford quotients are not homeomorphic. This conjecture was proven 20
years later in most cases by Farber, Hausmann and Schütz [9] and in full generality by
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Schütz [36]. Similar results hold when the circle is replaced by a k–sphere. In fact,
different quotients are distinguished by their cohomology rings.

We will now see how the dependence of the topology of @FRuX �t H on the parameter t

described above leads to the change of the topology of quotients by discrete group
actions.

Example 7.14 We continue with the notation of Example 3.30. For concreteness, we
assume that Y DH2 and H D PSL.2;R/, and that � <H is a torsion-free uniform
lattice (a closed hyperbolic surface subgroup). The embedding H <G DH � � � � �H

is diagonal, and we view � as a subgroup of G . Then � preserves the diagonally
embedded totally geodesic hyperbolic plane H2�X and acts cocompactly on it. Thus,
ƒ�mod D @1H2� @FRuX is the diagonally embedded circle, and ƒD @1H2� @1X is
the visual limit set. The ideal boundary points in @1H2 � @1X are contained in the
central regular G–orbit ��1.x�/� @1X of type x� 2 int.�mod/ represented by the vector
.1; : : : ; 1/ 2 int.�/. It follows that the subgroup � < G is uniformly �mod–regular
(see [19] for the precise definition). More precisely, it is fx�g–regular. Moreover, the
group � is obviously quasi-isometrically embedded in H , and hence also in G . We con-
clude that � <G is a �mod–CEA subgroup (eg as a consequence of [20, Theorem 1.5]).

Given a balanced metric thickening ThD Tht �W , we have that the domain �Th D

@FRuX �ThFRu.ƒ�mod/ considered in Theorem 7.12(i) equals the set .@FRuX /st;t of stable
weighted n–point configurations on @1Y Š S1 (stability being defined with respect
to the weights t ). The group H acts on .@FRuX /st;t freely, and we have a principal
H–bundle

H ! .@FRuX /st;t ! .@FRuX /st;t=H D @FRuX �t H:

Dividing .@FRuX /st;t by � instead of H , we obtain a fiber bundle

H=�! .@FRuX /st;t=�! .@FRuX /st;t=H:

In particular, by taking nonhomeomorphic Mumford quotients, we obtain nonhomeo-
morphic quotients �Th=� . For instance, for nD 4 we obtain three distinct topological
types of quotients: The empty quotient, a connected nonempty quotient (a bundle over
the circle with the fiber H=� ) and a disconnected quotient which is the disjoint union
of two copies of an H=�–bundle over S1 .
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8 Nonemptiness

8.1 Thickenings and packings

We will use the following notion of ball packing for the visual boundary (using its
structure as a topological spherical building).

Definition 8.1 (packing) A packing of @1X by �
2

–balls is a family B of disjoint
open �

2
–balls (with respect to the Tits metric) the union of whose closures equals @1X .

We call the packing compact if the set of centers of these balls is compact with respect
to the visual topology.

Note that the set of centers of the balls is necessarily antipodal, see Definition 2.3(i).
Hence the centers must have the same �–invariant type. We call it the type of the packing.
We call the packing simplicial if the balls are simplicial subcomplexes of @1X . The
simplicial �

2
–balls are precisely the �

2
–balls centered at points of root type, and hence

a packing is simplicial if and only if it is of root type.

We will show that compact packings often do not exist.

Definition 8.2 (nonpacking type) We say that the symmetric space X is of

(i) nonpacking type if @1X admits no compact packing by �
2

–balls,

(ii) non-x#–packing type for an �–invariant type x# 2�mod if @1X admits no compact
packing by �

2
–balls of type x# ,

(iii) non-root-packing type if it is of non-x#–packing type for some root type x# 2 �mod .

Our motivation for proving the nonexistence of packings is that it implies via the
nonfullness of thickenings, as is made precise by the next result, the nonemptiness of
domains of proper discontinuity, see Proposition 8.12 below.

Let �mod � �mod be an �–invariant face type. Suppose that

A� Flag�mod

is an antipodal compact subset. It determines for every �–invariant type x#0 2 �mod the
antipodal compact subset C � @1X consisting of the points �

�;x#0
D � \ ��1.x#0/ of

type x#0 in the simplices � 2A, and hence the family of disjoint open �
2

–balls

B.A; x#0/D
˚
B
�
�
�;x#0

; �
2

�
W � 2A

	
:

Note that the union of the closed balls is a compact subset of @1X .
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Proposition 8.3 (full thickenings yield packings) Let �mod and x#0 2 �mod be �–
invariant, and let A� Flag�mod

be an antipodal compact subset. Suppose that

ThFRu.A/D @FRuX

for all balanced W�mod–left invariant thickenings Th�W of the form ThD Thx#0;x#;�=2

(as defined by (11)). Then the family of balls B.A; x#0/ is a packing of @1X .

Proof Suppose that B.A; x#0/ is not a packing. The union of the corresponding closed
balls is compact in @1X (with respect to the visual topology), and its complement
therefore open. Let � be a point in the complement, and let �.�/D x# . After perturb-
ing � , we may assume that � is regular and that the (always fat) W�mod–left invariant
metric thickening Thx#0;x#;�=2

� W is balanced; see Lemma 3.19 and the proof of
Corollary 3.20. By the construction of metric thickenings (see (11) and (15)),

Thx#0;x#;�=2
.�/\G� D xB

�
�
�;x#0

; �
2

�
\G�

for � 2A. It follows that � 62Thx#0;x#;�=2
.A/ and hence .Thx#0;x#;�=2

/FRu.A/¤ @FRuX .

Remark 8.4 (full thickenings yield fibrations) Note that the hypothesis of the propo-
sition implies in particular the existence of the following kind of fibrations of the
Furstenberg boundary: In view of Lemma 7.4, it follows from ThFRu.A/D @FRuX that
there is a fiber bundle

@FRuX !A

whose fibers are finite unions of Schubert cycles (namely the thickenings Th.�/ for
� 2A). Any two fibers are equivalent modulo the G–action on @FRuX . If ADƒ�mod

for a subgroup � <G , then the fibration is �–equivariant.

8.2 Nonexistence of packings

We show in this section that compact packings of the visual boundary by �
2

–balls do
not exist for most Weyl groups. Note that the discussion applies more generally to
packings of compact topological spherical buildings.

8.2.1 Type A2 Suppose that the symmetric space X has type A2 . The spherical
model chamber �mod is then an arc x�x� of length �

3
, with x�; x� 2 �mod the two vertex

types. The involution � of �mod is the reflection at the midpoint x� , which is therefore
the only �–invariant type. We denote by

Flag�mod

�x�
�! Flagx� D �

�1.x�/ and Flag�mod

�x�
��! Flagx� D �

�1.x�/
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the canonical projections from the full flag manifold (of chambers) to the partial flag
manifolds (of vertices of fixed type).

A packing B of @1X by �
2

–balls is necessarily of type x� and hence simplicial. A
�
2

–ball in @1X with center of type x� consists of a central chamber and all chambers
adjacent to it; ie it is the �

3
–neighborhood of its central chamber. Thus, the packing

corresponds to a set C � Flag�mod
of pairwise opposite chambers such that every other

chamber is adjacent to a chamber in C .

We denote by Cx� D �x�.C / and Cx� D �x�.C / the sets of vertices of the chambers in C ,
and by Ox� D Flagx� �Cx� and Ox� D Flagx� �Cx� their complements. The complement
of the union of the chambers in C is the union of the open �

3
–balls centered at the

points in Ox� [Ox� ; ie the chambers not in C are the chambers with a vertex in Ox�
or Ox� . We therefore have the disjoint decomposition

Flag�mod
D C t��1

x�
.Ox�/t�

�1
x� .Ox�/:

We observe that, if a chamber has a vertex in Ox� , then its other vertex lies in Cx� . Vice
versa, every vertex in Cx� belongs to a chamber whose other vertex lies in Ox� . This
means that

(33) Cx� D �x�.�
�1
x�
.Ox�//:

So far, our discussion applies to packings of arbitrary spherical buildings of type A2 .
Now we take into account the visual topology.

Theorem 8.5 If X has type A2 , then it is of nonpacking type.

Proof We keep the notation from the previous discussion. Suppose that B is a compact
packing of @1X ; ie C is compact and therefore also its images Cx� and Cx� under
the projections �x� and �x� . Then Ox� is open. Since the projection �x� is open, (33)
implies that Cx� is also open; ie it is clopen. Since it is a nonempty proper subset, it
follows that Flagx� is disconnected, and consequently also Flag�mod

. This is absurd,
because Flag�mod

is a homogeneous space of Isomo.X / and therefore connected.

8.2.2 Irreducible case of rank � 3 For most irreducible Weyl groups, the question
of the nonexistence of simplicial packings can be reduced to the A2–case.

Theorem 8.6 (nonexistence of simplicial packings in rank � 3) If X is irreducible
of rank.X /� 3, then it is of non-root-packing type.
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Proof We make use of the spherical building geometry of @TitsX , see [26] for a
detailed discussion. The question of nonexistence can be reduced to lower rank by
observing that packings of spherical buildings by �

2
–balls induce such packings of

their spaces of directions.

The space of directions †�@TitsX of a point � 2 @1X carries again a natural spherical
building structure. We will use the notation .S� ;W�/ for the associated Coxeter
complex. More precisely, †�@TitsX is naturally identified with the Tits building of the
symmetric subspace X 0 �X , which appears in the decomposition P .l/DX 0 � l of
the parallel set of a geodesic l �X asymptotic to � .

Furthermore, the spaces of directions of closed �
2

–balls xB
�
�; �

2

�
at boundary points

� 2 @ xB
�
�; �

2

�
are again �

2
–balls:

†� xB
�
�; �

2

�
D xB

��!
��; �

2

�
:

This follows from the first variation formula in S2 , because for any point � sufficiently
close to � the three points �; �; � are the vertices of an embedded spherical triangle.
If two open balls B

�
�i ;

�
2

�
are disjoint and if � is a point in the intersection of their

boundaries, then the spaces of directions †� xB
�
�i ;

�
2

�
have disjoint interiors.

Let now B be a compact packing of @1X by �
2

–balls. Then B induces packings B�
by �

2
–balls of the spaces of directions †�@TitsX for all boundary points � of the

packing balls; the family B� consists of the balls B
��!
��; �

2

�
for which B

�
�; �

2

�
2 B

and � 2 @B
�
�; �

2

�
. If the packing B is simplicial, then so are the packings B� .

To see that the compactness of B implies the compactness of the induced families B� ,
consider a convergent sequence �n ! � of centers of packing balls in B such that
†Tits.�; �n/D

�
2

for all n. Then †Tits.�; �/�
�
2

by the semicontinuity of Tits distance.
However, strict inequality is impossible, because then � would be an interior point of
the packing ball B

�
�; �

2

�
, which is absurd. Thus also †Tits.�; �/D

�
2

and it follows
that

��!

��n!
�!

�� . Hence the centers
��!

��n of packing balls in B� converge to the center of
such a ball. Thus the families B� are compact.

Let us now focus on simplicial packings. Suppose that @1X admits compact sim-
plicial packings by �

2
–balls for all (at most two) root types. Consider for all such

packings of @1X the induced simplicial packings by �
2

–balls of the spaces of directions
†�@TitsX for all vertices � in the boundaries of packing balls. Then for these, the type
�.�/2 �mod runs through all possible vertex types, and for every fixed vertex type �.�/,
the type of the packing B� runs through all possible root types. (The vertex type �.�/
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and the root type of the packing B� uniquely determine the root type of the packing B
which has to be used.)

The type �.�/ of a vertex � corresponds to a wall of the fundamental Weyl chamber,
and the Dynkin diagram for the link †�@TitsX is obtained from the Dynkin diagram
for @TitsX by removing the corresponding node. By examining Dynkin diagrams of
irreducible root systems, we note that every irreducible root system of rank � 3 has a
simple edge and can hence be reduced to the A2 root system by successively removing
nodes without disconnecting it. Thus, if rank.X / � 3, it follows that there exists a
symmetric space X 0 of type A2 whose visual boundary admits a compact packing by
�
2

–balls. This contradicts Theorem 8.5.

Note that root types are �–invariant.

Regarding the irreducible case, Theorems 8.5 and 8.6 leave open the cases of type B2

and G2 in rank 2. We will prove some partial results for the B2–case in Section 8.2.4.

8.2.3 Reducible case We reduce to the irreducible case using the observation:

Lemma 8.7 Suppose that X decomposes as the product X DX1 �X2 of symmetric
spaces. If X1 is of non-root-packing type, then so is X .

Proof The model chamber �mod of X splits as the spherical join

�mod D �
1
mod ı �

2
mod

of the model chambers of the factors. The same applies to the visual boundaries:

@1X D @1X1 ı @1X2:

A root type x#1 2 �
1
mod remains a root type in �mod under the inclusion �1

mod � �mod ,
and a �

2
–ball xB@1X

�
�1;

�
2

�
� @1X centered at a point �1 2 @1X1� @1X of type x#1

splits as the spherical join

xB@1X
�
�1;

�
2

�
D xB@1X1

�
�1;

�
2

�
ı @1X2

of the ball xB@1X1
�
�1;

�
2

�
� @1X1 with the full visual boundary @1X2 . Hence, @1X

admits a compact packing by �
2

–balls of type x#1 if and only if @1X1 does. The
assertion follows.

Combining Theorems 8.5 and 8.6 with Lemma 8.7, we obtain:

Theorem 8.8 (nonexistence of simplicial packings) If X has at least one de Rham
factor not of the type A1;B2 or G2 , then it is of non-root-packing type.
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Proof The assumptions imply that X has a de Rham factor either of type A2 or with
rank � 3.

8.2.4 Type B2 Suppose now that the symmetric space X has type B2 . We obtain
only partial results on the nonexistence of packings.

The model spherical chamber �mod is an arc x�x� of length �
4

, and x�; x� 2 �mod are the
two vertex types. Moreover, �D id�mod and all types in �mod are �–invariant. We again
denote by

Flag�mod

�x�
�! Flagx� D �

�1.x�/ and Flag�mod

�x�
��! Flagx� D �

�1.x�/

the canonical projections from the full flag manifold (of chambers) to the partial flag
manifolds (of vertices of fixed type).

Simplicial �
2

–balls in @TitsX are centered at vertices, and hence simplicial packings by
�
2

–balls are of vertex type.

A packing Bx#0
of regular type x#0 2 int.�mod/ gives rise to a continuous family of

packings Bx# with x# 2 �mod by simultaneously “sliding” its centers along the chambers
containing them. Namely, we choose as the centers of Bx# the points of type x# in
those chambers which contain the centers of Bx#0

. A regular packing thus gives rise to
singular packings of both vertex types.

Consider now a packing B of @1X by �
2

–balls of type x� with set of centers Cx� �Flagx� .
Note that Flagx� is partitioned by the �

4
–spheres around the points in Cx� , and the map

��1
x�

Cx�
�x�
��! Flagx�

is bijective. If Cx� is compact, then this map is a homeomorphism, and its inverse is
a section of �x� whose image is �x�–saturated, ie is a union of �x�–fibers. Conversely,
each section of �x� whose image is �x�–saturated yields a compact packing of @1X

by �
2

–balls of type x� .

Question 8.9 For which groups G of type B2 the projection �x� (resp. �x� ) admits a
section whose image is �x�–saturated (resp. �x�–saturated)?

Example 8.10 Let G D SO.n; 2/ with n� 2. The partial flag manifolds in this case
are the Grassmannian L of isotropic lines L and the Grassmannian P of isotropic
planes P , and the full flag manifold is the manifold F of isotropic flags .L;P /.

Fix an orthogonal splitting Rn;2 DRn˚R2 so that the quadratic form

q D x2
1 C � � �Cx2

n �x2
nC1�x2

nC2

Geometry & Topology, Volume 22 (2018)



Dynamics on flag manifolds: domains of proper discontinuity and cocompactness 229

is definite on each factor. Then the isotropic planes in Rn;2 are the graphs of isometries
ˆW .R2;�qjR2/! .Rn; qjRn/. The isotropic lines in Rn;2 are the graphs of isometries
�W .l;�qjl/! .Rn; qjRn/ defined on lines l �R2 . A full isotropic flag corresponds
to a pair .ˆ; l/, its isotropic line corresponding to the restriction ˆjl . Thus, we have
the product splitting F Š P �RP1 .

The projection �P W F ! P is the projection to the first factor. It admits “constant”
sections sl by fixing l . Their images are �L–saturated, namely sl.P/D��1

L Ll , where
Ll denotes the set of isotropic lines contained in the hyperplane Rn˚ l ŠRn;1�Rn;2 .
The subset Ll � L is compact and antipodal, and hence constitutes the set of centers
of a packing of @1X by �

2
–balls. In incidence geometric terms, the antipodality

corresponds to the fact that the hyperplane Rn˚ l contains no isotropic plane, and the
packing to the (equivalent) fact that every isotropic plane intersects Rn˚ l in a line.
The hyperplane Rn˚ l is the orthogonal complement, in Rn;2 , of the line l? �R2

orthogonal to l . Accordingly, Ll �L is the orbit of a subgroup of SO.n; 2/ isomorphic
to SO.n; 1/, namely of the one which fixes l? .

The projection �LW F! L is given by .ˆ; l/ 7!ˆjl . Let L1 � L denote the subset of
isotropic lines which project to l1 DRe1 �R2 , ie for which the isometry � is defined
on l1 . A section of �L over L1 would associate with each unit vector �.e1/ in Rn a
unit vector orthogonal to it, namely ˆ.e2/ for the extension ˆ of � determined by the
section. It would thus yield a unit vector field on Sn�1 �Rn . Such a vector field does
not exist if n is odd.

On the other hand, if n is even, then we can use the standard identification Rn;2 Š

Cn=2;1 and consider the subset Pc � P of isotropic planes which are invariant under
the complex structure, ie which are complex lines. Every isotropic line is contained in
a unique such isotropic plane by complexification, which means that

��1
P Pc

�L
��! L

is a homeomorphism and, accordingly, Pc is the set of centers of a packing. It is the
orbit of the subgroup SU

�
1
2
n; 1

�
� SO.n; 2/.

Our discussion and the example imply:

Theorem 8.11 (i) If GDO.2kC1; 2/ with k � 1, then @1X admits no compact
packing by �

2
–balls of regular type, neither of the singular type corresponding to

isotropic planes.
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(ii) If G DO.2k; 2/ with k � 1, then @1X admits a compact packing by �
2

–balls
of the singular type corresponding to isotropic planes whose set of centers is an
orbit of U.k; 1/ <G .

(iii) If G DO.n; 2/ with n� 2, then @1X admits a compact packing by �
2

–balls of
the singular type corresponding to isotropic lines whose set of centers is an orbit
of O.n; 1/ <G .

Proof (i) According to our above discussion, a packing of regular type gives rise to
packings of both singular types. We assume therefore that there exists a packing of the
singular type corresponding to isotropic planes, ie with centers in P � @1X . It yields
a section of the fiber bundle �LW F ! L. However, such a section does not exist (see
the previous example), contradiction.

(ii)–(iii) See the previous example.

The theorem leaves open the question whether packings of regular type exist if n is even.

8.3 Nonemptiness of domains of proper discontinuity

We now apply our results on packings to discrete subgroups. Proposition 8.3 yields:

Proposition 8.12 (empty domains yield packings) Let �mod and x#0 2 �mod be �–
invariant. Suppose that � <G is a discrete subgroup such that ƒ�mod is antipodal, and

ThFRu.ƒ�mod/D @FRuX

for all balanced W�mod–left invariant thickenings Th�W of the form ThD Thx#0;x#;�=2

(as defined by (11)). Then the family of balls B.ƒ�mod ;
x#0/ is a packing of @1X .

Applying our nonexistence results for packings (see Theorem 8.8), we conclude that
some of the domains of proper discontinuity constructed earlier (see Theorem 6.8) are
nonempty. For instance, in the regular case �mod D �mod , we obtain:

Theorem 8.13 (nonemptiness of domains of proper discontinuity) Suppose that X

has at least one de Rham factor not of the type A1;B2 or G2 , and let � < G be a
�mod–convergence subgroup with antipodal limit set ƒ�mod . Then for some balanced
thickening Th �W , the domain of proper discontinuity @FRuX �ThFRu.ƒ�mod/ for the
�–action (provided by Theorem 6.8) is nonempty. Moreover, the thickening can be
chosen of the form ThD Thx#0;x#;�=2

(as defined by (11)) with x#0 2 �mod a root type.
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Proof Otherwise, by the proposition, @1X admits compact packings by �
2

–balls for
all (of the at most two) root types. However, this contradicts Theorem 8.5, respectively,
Theorem 8.6. (Note that root types are �–invariant.)

In the B2 case, we can only treat a family of examples:

Addendum 8.14 (nonemptiness of domains of proper discontinuity, B2 case) Sup-
pose that GDO.2kC1; 2/ with k�1, and let �<G be a �mod–convergence subgroup
with antipodal limit set ƒ�mod for the vertex type �mod2�mod corresponding to isotropic
planes. Then for the balanced W�mod–left invariant thickening Th �W DWB2

, the
domain of proper discontinuity @FRuX � ThFRu.ƒ�mod/ for the �–action (provided by
Theorem 6.8) is nonempty.

Proof Otherwise, the proposition yields a compact packing of @1X by �
2

–balls of
type �mod , contradicting Theorem 8.11(i).

This leaves open the question whether, in the case of GDO.2k; 2/ for k � 2, there are
�mod–convergence subgroups with antipodal limit sets, which have empty domains of
proper discontinuity for arbitrary balanced thickenings Th. We note that Example 7.14
provides examples of �mod–CEA subgroups with empty domains of proper discontinuity
in @FRuX for some choices of balanced thickenings.

Remark 8.15 Theorem 8.13 is both weaker and stronger than the nonemptiness results
in [11, Theorems 1.11, 1.12 and 9.10]. It is stronger in the sense that it applies to
hyperbolic groups � without assumptions on their cohomological dimension, unlike
the results in [11] which require small cohomological dimension; furthermore, it
applies to domains of discontinuity in various partial flag manifolds (always including
G=B D @FRuX ), unlike the results in [11] which work (in general) only for domains of
discontinuity in G=AN (which is a certain fiber bundle over G=B ). On the other hand,
it is weaker in the sense that it addresses only the regular case (�mod D �mod ). We also
note that some examples of Anosov subgroups for which some discontinuity domains
are empty are given in [11, Remark 8.5].
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