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‘1. Introduction

The main aim of this article is to present proofs of some
results concerning local and global nature of deformation spaces
of flat conformal structures (FCS) on closed manifolds which
have dimension n> 3. Considerable part of these results was
proved by author in 1985- 86 and announced in [8, Ch. 5].

The next definitions in principle follow [11], [6].

Let M be a closed smooth n-manifold (n2 3). By manked flat
cenfermal otructune 6n M we shall mean a pair (K, ), where
o: N— M is a diffeomorphism, K is an FCSon X. Two marked
FCS (K”, ') and (K", ) on M are called equivalent if there
exists a conformal bijection w: (M, K'J— (M, K”) such as yeop'
is isotopic to ¢” . The corresponding space of classes of
marked FCS is called defermatien onace ef flat cenfermal
otructwes (Teichmullenr opace) on M. This space will be denoted
by 7M.

Topology on J(M) is induced by C‘- topology on space of
development maps (see [11], [6]). The map '

hol: TCM)—s RCn (M)O= Hom(n (M), So(n+ 1, 1))/ SO(n+ 1, 1)
is defined in the same papers; hol(N, K, ¢ {is a holonomy
representation of (K, ) (which is unique up to conjugation).
Flat conformal structure K on N is called exceptienal if
(a) CM, ¥ is conformally equivalent to Dr-‘x R/ T, where T
is a torsion-free lattice in Isom(Dr-‘x B (i.e. K isa

Seifert structure);
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(b) Projection of T to Isom(&r-1) is not orientation-
preserving; |

(¢) The maximal normal cyclic subgroup <t> ¢ T" is contained in
kernel of the holonomy homomorphism pO:F= nicM)-» Mob(S?);

(d) The representation p_ admits a gontrivial deformation p,
such that ptcrv does not have in $ an invariant euclidean
(n-2) -sphere.

Marked FCS (K, 92> on M is called excentienal if K is
an exceptional structure.

The following theorem is a complement to results of [11],
(61, 3] :

THEOREM 1. The map hol 1is a local homeomorphism anywhere
except of exceptional points of JCM) . Near any exceptional
point the map hol 1is a 2-fold branched covering.

Consider the natural projection n: JCM)— CCMD , where C(M)
is the set of all (unmarked) flat conformal structures. The
space CCM> (provided with factor-topology) is called medwli
space of FCS on M . Let C_(M denote the subset of those FCS
which have nonsurjective development maps.

THEOREM 2. The set C_(M) s closed tn CCMD .

Let F be a normal subgroup of G= n1CMD . Denote by C(H,
F) the set of all FCS whose holonomy homomorphisms have one and
the same kernel F . Let C (M) be the set of all FCS on M
whose holonomy groups are discrete, with trivial center, convex
cocompact subgroups of Mob(S?)z Isom(&r+’) [12]. Put Cf(M, Fo=
C, (MO n CCH, F.

THEOREM 3. The space Cf(M, F) is oFen in CCM, FO .

Denote by SCg, e> total space of S -fiber bundle over a
closed genus g surface, which has the Euler number ee 2. Let
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C,(5(g, e)J) be the space of all Seifert flat conformal
structures on SCg, e) .

THEOREM 4. [f M= S(g, e, then C, (M UC (M= C (M is
an open subset of CC(MD . If e= O, then number of connected
components of CC(M> 1is not less than u(g, ed)=[( .g- 1)/1le].

REMARK. Chern-Simons functional &(K) [4] as well as the
n-invariant [2], associated with conformal class of conformally-
euclidean metrics, are locally constant on CCMD [4], [2];
hence they may be used to distinguish connected components of
CCM> . On those (g, e) components of CCM) , that are found
in the Theorem 4, the functional &: CCM)— R/Z identically
vanishes. On another hand, all these components have different
n-invariants.

Introduce the notations: universal covering of manifold N
will be denoted by p:# — M, it’s deck-transformation group is
G = n‘CMD. Development map of FCS K is denoted by d,
corresponding holonomy representation is d,:6— H , where H ¢
Mob(Sn) is the holonomy group.

2. Proof of Theorem 2.

Supposé that there exists a sequence of FCS Kn and
development maps dn: ; — S? of these structures such that iim
d =d is development map of a structure K¢ C (M), i.e. dcM

n n ~ . .
=% . Let x=d(y)e$ , ye M. Since the index of map is
constant under small C'-perturbations, then there are a
neighborhbod UCx) of the point x and a number N(xJe N such
that UCx)c dk(ﬁ) for every Kk 2 NCxD.

By compactness of " we obtain that dk(ﬁ)= $" for any
sufficiently large k € N . This contradiction shows that CcCMD
is closed in CCMD . -
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3. Proof of theorem 3.

Consider a compact flat conformal manifold (M, KO whose
development map isn’t surjective and the holonomy group H=
d,(G) is discrete, convex cocompact group with trivial center.
Then d(M= Q is an invariant component of the discontinuity
set RCH) . Suppose that dm-» d is a sequence of development
maps of (M& R Km) such that KEerm,)a Ker(d,> . Then we have

n
a sequence of representations p : H — Mob($ ) such that

pm °d*= d

! lim Py, = td . The group H is convex cocompact,

hence the sequence of limit sets LCH = dm.(H)) converges to
© LCH) [12]. It means that any neighborhoed ¥ of LCH)
contains L(Hm) for any large me N . Let. . ¥ bea compact
fundamental domain for action of G on M, Then lim(dm§J =
d(2) and hence d () n LCH O =0 for large m . So, dm(ﬂb# R
~ and the groups H  are convex cocompact according to [12].
REMARK. The condition of H to be convex cocompact may be
. weakened. Namely we can suppose that the group H is
- geometrically finite and rank of any maximad:abelian parabolic
subgroup of H is equal to max(3, n- 1).
4. Proof of theorem 4.--

Step 1. Let K e C_(M be a FCS with the holonomy group H.
If H isn't discrete, then K is a Seiferi structure [7, 10]
and M= SCg, 0), g22. Suppose K is notiSe;fert'and H is a
discrete group. Then, arguing analogously to [S, Theorem 3] (see
also [8]) we obtain the group H to be torsion-free and
pseudofuchsian. Thus we are to show that H.  is convex
cocompact. The group H is isomorphic to a surface group
n‘(Sg) , H acts as a convergence group on-the topological
circle LCH) . Hence, due to [13], there exists a homeomorphism
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f: LCH — Sf conjugating H and‘a fuchsian group Fx> n‘(Sg) ,
Sg is a closed surface. Clearly the group F does not contain
parabolics and each point of L(F) 1is a point of approximation
[3]. The same is true for the group H and H is convex
cocompact. So CCCM)= CSCM) V) Ct(M) .

Step 2. Let <t> be the center of 6= n‘(MD . Then for all
K e C CMNC_CMD the kernel of holonomy contains <t> (according
to step 1). We have that Cc(MD\Cs(MD= Cf(M, <t>J) is open in
CCHN, <t>> . Remark that if d, is a holonomy homomorphism of K
such that Ker( d ) # <t> , then the group d,(G) has an
invariant euclidean circle. Hence in this case K € C;(MD [9].

So for any K e CCCMD there exists a neighborhood WKc
CCMON C_CM) such that: holonomy d. of any structure K'e UCKO
drops to a representation p: H — d,(G) , ped,=d, .
Furthermore, without a loss of generality we can assume that
Ker(p)=1 [12] , since H 1is convex cocompact. It follows that
C.CMONC (M) is open not only in CCM, <t>) but also in C(M
itself. Evidently C_(MNC (M) is open in CCM> ; so C (M) is
open in CCMD .

Step 3. Thus we obtained the following description of C_(M):
C M is the union of two closed sets C, (M) and C.CMD. If K
€ Cf(MD , d: ; — RCH) - its development map, which is a
covering with deck-transformation group Deck(d) , then we put
v(d)= |Deck( d): <t>] ;5 v: CICM)—A N is a continuous function.
Denote v*(n) by C?(MD . Flat conformal manifolds (M, K'Je
C;CM) are uniformizable by their holonomy groups. Manifolds
(M, K*> are not uniformizable, if n > 1 , but finitely cover
uniformizable flat conformal manifolds. Consider the case

(a) M= SCg, 00 . Then C}‘(M)# @ , hol( C;‘(M) J = hol (C}( MO
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for any n e N. If K'e C;C(M) then there exists an n- fold
conformal covering (M, K™ —a(M; K'> , where K'e CL(MD.
Consider the case

(b) M= SCg, e , e# 0. Then for all K'e C{(MD the manifold
(M, K*) is an n-fold conformal covering of the manifold
(SCg, ne), K'> , where K'e C.(M) is uniformizated by a
pseudofuchsian group H= H(g, ne) (see [8]). It is easy to
deduce from [11] that in the space of all pseudofuchsian groups
the groups H(g, ned and H(g, me) lie in different connected
components (if n # m ).

Step 4. Now we are ready to present [(. .g - 1)/11e]
connected components of CCM> . Let M= S(g, e) , & 0 . Then
for any n=1, ... , [(C .g - 1rslle] the manifold SCg , end
admits an uniformizable flat conformal structures Ln [8].
Consider the cyclic covering pni S(gn, e) — S(g . ne) and
lift L via ptoa FCS L e C (M. Then L lie in
different connected components wWn) of C(M) , n= i, ...,

[C .g-1)/14¢e] . This fact follows from the above considerations,
however we shall deduce it from computations of n-invariant,
presented below.

Introduce conformally-euclidean metrics g compatible with
the structures &n on the Fanifold Y = SCg , ey . Consider
the extension .Hn c Isom (H ) of the holonomy greup Hn of the
structure L_ . Then the compact manifold X = (H U R(Hn))/Hn
has the boundary 7_ . Clearly the metric g may be extended
from 8X toa conformally-euclidean metric g; on the
manifold X . So the n-invariant 0¥, g;) is equal to
m-{ p (g} - Sign(X) [2].

n
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The pontrjagin form p‘(g;) identically vanishes since g; is
conformally-flat. The manifold X is diffeomorphic to a disc
bundle over closed surface Sg (of genus g) with euler number
equal to e . Hence Sign (Xn) =1 and n(Yn » 9y =-1. For
Chern-Simons invariant we have the formula: 2(¥ ., g,)=
1/2°Sign(Xn)- 3/2'7)()’n , gn) (mod & [2]; thus

Q(Yn , gn)s 0 (mod 2.

Next lift the metric g  to a metric g, on ;n= Cg
e),compatible with the structure L_ . Then &(Y_, g ) = nay,
,» g.2=0 (mod 2. So, the different connected components wWno
of CCM) can not be dlstlngu1shed via Chern-Slmons functional.

Now we are to compute n(Yn ' gn) Let X be total space
of disc bundle over Sg with the Euler number e , axn Yn
Then the covey&ng p, may be extended to a branched cyclic
covering pi:qxn — X, whose branch set is the zero section of
the bundle - X . Therefore formulas of [1, 2] imply that:

n-i

nH L §) =-1- ) e/sinC newn )

mes1
It is easy to verify that oM, ) > n(K, g if n<k.
So the p-invariant has distinct values on different components

wun) of CCM) . Theorem 4 is proved. =
5. Proof of Theorem 1. '

Due to [6] the map hol: JCM)— Hom(G, Mob($"))/ ad(Mob( N
may be lifted to a local homeomorphism hol’: J'(M)— Hom(G,
Mob($")) , which is Mob(3™)- equivariant C(here J'(M) is a
space of pointed marked flat conformal structures).

REMARK., It follows that the map hol is locally injective
near any structure (K,p> such that:
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(1) the orbit ad(Mob(S )(d,(6)) is closed in Mob(§), and
(2) the orbit ad(Mob(SF))(d*) has principle type with respect
Lo action ad(Mob(S')) mear (d,) in Hom(G, Mob(S ).

Remark that if the limit set LCH> of the holonomy group H=
d,(G) has more than one point, then the condition (1) is
satisfied. The exceptional cases are reduced to euclidean
structure K , and claim of Theorem 1 easy follows.

So we are to consider only those structures K , such that
LCH) is contained in some euclidean sphere Syc SF (1<v< n-2l.
Then. K has a nonsurjective development map d:;;» S?\LCH) [9]

(a) Suppose SF\L(H) to be simply connected. Then d is a
homeomorphism and the group H is a convex cocompact Kleinian
group. Hence some neighborhood U of K is contained in CCCMJ
n CfCMD and any K’e U is uniformizable by it’s holonomy group
isomorphic to. G . Thus, nearly (K,p) the space JCHD  is
isomorphic to a neighborhood of [d,]e Hom(G,
Mob(S?))/ad(Mob(S?)) and theorem's proof is finished here.

(b) It remains the case : LCH= S ., M is a Seifert
fibered space and Ke CSCM) is a Seifert structure. Denote by
<t> the maximal normal cyclic subgroup of n’(M) .Due to the
Remark abbve, we are to consider only Ke C_(M) n CCM, <t>)
such as: ‘
the representation d_ :G— Mob(SF) is not isolated in Hom(G,
Mob(S™)) N hol’(Cs(M)) , else hol is injective near (K,pJ .
Without a loss of generality we can suppose that L=L(H> 1is an
extended euclidean (n-2J)-plane in E? . There are two
opportunities:

1. Action of H on L is not sense-preserving (i.e. K is

an exceptional structurel;

260



2. Action of H on L 1is sense-preserving.

Consider the most difficult first case. Let Tt be euclidean
rotation to the angle n around the plane L . Then ad(t)ed =
d,. Let r H-+ Mob(S") be a sequence of representations such as
limC r} )= idy and limit sets of H=r (H) are not euclidean
(n-2)-spheres in $" . The group H is convex cocompact and
hence stable [11]. So for m is sufficiently large, there are
diffeomorphisms f :RCHO— RCHD  such that fh= ry(hof, (for
any he H) and the sequence Cfm) converges in C' on compacts
to identity.

Consider the sequence of development maps d*- fned and
structures K lifted to M— &F' xR by d . Without a loss of
generality we can suppose that the structure (K, p2 is marked
by identity diffeomorphism, which is lifted to id: f— M . Then
we have CK+ , id) converges in J(M> to (K, td) , where k;f
p(K J .

REMARK. Considerations analogous to presented in the proof
of Theorem 3 show that any sequence convergent to K, o
arises in this way.

Put r = ad(t)er, ; evidently 1imC r7 )= idy . The same
considerations as above imply that r; are induced by
diffeomorphisms f_ convergent to idy and the sequence (K_ ,
id) converges to (K, id in J(M . Also we have
hol(K-, id)= hol(K+ ,id) in Hom(G, Mob($"))7ad(Mob(S™)) .
Flnally we are to show that the marked structures (K ,Ld) and
CKm, id) are not equivalent. Let xm (M Kn)-» CM Ki) be a
conformal diffeomorphism such that kmr = rkm for any Y€
n, (M=G . Then X projects to a mobius transformation A
such that ad(A JCh)= ad(t)Ch) for any he (H.= d  (H)). Hence
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A, =T . However any lift of adCtd:H'— Ho  to 7,0 6— 6 is
outer automorphism of G. This contradiction implies that the
structures CK;.,id) and (K; ,1d) are not equivalent. So the
map hol is 2g-fold branched covering near the point (K, pJ.
It remains to ﬁotice that the centralizer of the group H in
Mob(S") is equal to <t>>Z ; hence ¢=1 and hol is @2-fold
branched covering near (K,p).

Consider the second case, when action of H on L is sense-
preserving. Let C; R C; be structures near K such that their
holonomy representations 6;' ., 6, are related by a mobius
transformation 7 _ , ad(t_Je6' = 6., . We have (lim 7 de Hx UC1),

where UC1) is the group of euclidean rotations around L .
The group H preserve orientationon L, hence any lift ?o of
T, € H x UC1) to M induces internal automorphism of the group
G. Therefore marked structures ch i, (G ,1dD) are equiv-
alent and the map hol is injective near the structure (K, td.

Theorem 1 is proved. -

REMARK. Theorem 1 shows that the conclusion of [6, Corollary
of Deformation Theorem] about local injectivity of hol was too
optimistic. It would be interesting to understand local nature
of this map in cases of geometric structures other than flat
conformal.

6. _Some_conjectures_and._speculalicns.

Let M be a closed 3-manifold. Consider the map n: C(M)— R
given By n-invariant of Atiyah-Patodi-Singer.

CONJECTURE 1. The set n*(x) is connected for any xe R

Consider a flat conformal manifold (N, K with holonomy
representation ry:n (M— S04, 1). Associate with ry a flat

so(4, 1) ~connection Ar . Then we consider the p-invariant
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n(Ar)E n(rK).

CONJECTURE 2. There exists a finite-to-one function ¢:R—
R such that ¢on(K)= n(rK).

REMARK. If Conjecture 2 is true then n(C(M)) consists only
of finitely many points.

CONJECTURE 3. The space C(M) consists only of finitely
many connected components.

REMARK. (Conj. 1) & (Conj. 2) # (Conj. 3J.

REMARK. May be more easy way to handle out the Conjecture
3 is to find a "natural" compactification for the space CCM.
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