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EISENSTEIN SERIES AND DEHN SURGERY

Michael Kapovich

1. Introduction.
l.1. In spite of its algebraic contents this pPaper was motivated by

a purely geometric question. Let N be a hyperbolic 3-manifolg of
finite volume with several cusp ends E'1 ;e E; . Consider a "Dehn
filling" (or "generalized Dehn surgery") of one of these Cusps (say
E ) which is just a compactification of E by adding a circle . 1t
was proved by W.Thurston [Thu] that for all but a finite number of
parameters of the Dehn filling the resulting manifolds possess
complete hyperbolic structures of finite volume.

Question 1. What happens with the geometry of other cusps E,
e, E; after the Dehn filling ? More restrictively, do the
conformal moduli , or rather the Teichmuller parameters, of these
cusp tori remain the same?

A positive answer for Question 1 was given as a remark in the
thesis of C.Hodgson [Ho]; however, his proof contains a fatal gap.
The answer is more complicated and depends on the topology of N. 1In
principle, the problem can be solved in terms of ideal triangulations
by formulas ([Thu, Chapter 4], [NZ]); particular manifolds can be
considered in this way. W.Neumann and A.Reid [NR] constructed
examples of arithmetic manifolds with 2 cusps for which the answer isg
positive. In the general case the answer depends on the topology of
the given manifold.

Basically there are two sources of these examples [NR]. First

let N, be a hyperbolic 3-orbifold of finite volume which has two

IR

E = T% (0, ») and suppose that there exists a rigid

cusps E1 5
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hyperbolic 2-dimensional suborbifold O c N, dividing E  from E,

Another example starts with a hyperbolic 3-orbifold M, of finite

IR

volume which has two cusps E, 01 x [0, «), E = 02 x [0, ) where
0, 1is a nonrigid Euclidean orbifold while 0, 1is rigid. In

the both cases any Dehn surgery on one cusp has no influence on

the geometry of another one. The tricky question is to find manifolgd
covers over N , N, which still have only two cusps (see [NR}).

In this paper we use the machinery of the Eisenstein series to
attack the question on the "infinitesimal level". The idea of this
approach is explained below.

1.2. Let N = W/T' , where T c PSL,(C). Let 4, , 4, , ..., 4
denote the maximal parabolic subgroups of T corresponding to the
cusps E , E, /..., E; . The hyperbolic Dehn filling of the cusp E
corresponds to the deformation of the holonomy representation
Py "1(N) — I c PSLZ(C) in the variety

R(I") = Hom(I)/ ad(PSLZ(C))
which preserves traces of elements of the groups A2 r e ey Ap . Denote
by uj the real Lie algebra of the group Uj which is the maximal
unipotent subgroup of PSLz(C) such that AJ < Uj . The tangent space
to R(4) at the point [id] is isomorphic to H’(Aj r pol, (C) ,4)=

c2.

R

1
H (u, , pot, (C),,)
The split torus IJ which normalizes the group UJ acts on

Hl(uJ ,;uwa(C)Ad) x ¢® via two characters El + €, of the weights

2
(-4) and 0 , respectively. The eigenspaces of these characters are
W1 ’ W2 . The space W2 is tangent to the deformations of AJ which
preserve traces of elements. On the infinitesimal level we have
Question 2. Let w e H'(I , poL, (C),,4) be such that the

projection W of w on W11 doesn’t vanish while w o= 0 for




every j # 1. Is sz equal to zero for each Jj=17?

Following [NR], if W, , =0 then we call the cusp EJ
infinitesimally isolated from E .

Remark 1. The deformations of [p& corresponding to Dehn
fillings of the cusp E  (while other Cusps remain to be complete)
lie in the variety R(C | E ,..., E%) =
{ p :T —> SLZ(C) : Tr(p(aj)) = Tr(po(aj)) » J=2,..., p Y/ SLZ(E).

By transversality this variety is a smooth submanifold of R(I') and
the class w above belongs to its tangent space. Thus a negative
answer to Question 2 implies a negative answer to Question 1.

The Question 2 can be treated by the following analytic tools,
extracted from [Ha 1].

Denote by E the Space mwz(C) and let Ad: Isom(X = H3) — GL(E) bhe
the adjoint representation. Define the complex of automorphic forms
AYT, X, ad) = { w e Q%(X, E) : Ad(7)eR w = w for every 7 e I },
where R, is the right action and d: AY(r, X, ad) — a™r, x, Ad)
is the exterior differential. Put T7= Ad(';)@R7 . Suppose that
the stabilizer of the point « € 6mH3 in the group I' is the
parabolic subgroup I"°° = A1 - Denote by X(1) the horosphere in K°
such that X(1)={ (x, , x, , 0) : (X, , %, )e R® }. Now let

[p] € H' (A" (x(1), r_, Ad * H(T_, Ad

r) =

r)-
® ®
Our first aim is to extend ¢ to a differential form ¢ on the
whole hyperbolic space X.
(a) Consider the vertical unit vectorfield <t(z) on X(1) > z.

Let ¢(t(z))= 0. Suppose that Ad(u)eR ¢ = ¢ for every u e U,

(b) Pick s ecC. For t e ¢ we put




t 0
A(t)= [0 £ Je SL(2, C). Then the formula

Ad(A(t))ep (z A(t)) = p(z)t 178
 Where A(t) acts on X 3 z € X(1) in the usual way, defines the
extension Pg of the form E to the hyperbolic space. However, .

is not T'-automorphic. Then the Eisenstein series

() B(pg 7 X) = E(p, 55 x)= ) (T, 0g) (x)
ye T\

is the automorphic extension of ¢. This form-valued function admits
the meromorphic continuation E(¢, s; x) to the whole com;lex plane
C > s. However, the form E(¢p, s; x) is closed only for two values

of s.

r’

®

t 0
The torus I = { [0 g1 ] tteR } acts on HI(F , Ad
+ [2+]

via the adjoint representation with the weights 0 and (-4) . The

eigenspace Ht_4)( I‘°° ’ Adlr ) 1is tangent to the "loxodromic"
o0

deformations of the group r, in PSL(2, C), i.e. the images of r.
under these deformations are semisimple subgroups of PSL(2, C)

It follows from [Ha 2] that for [¢] e Ht_4)( Fm , Ad r ) we have:
[e¢]

(1) the form-valued function s +— E(p, s; a, is holomorphic for
s = 3;

(ii) dE(¢, 3:; x)= 0;

(iii) the cohomology class [E(¢, 3; x)] is not trivial and its

restriction to U‘j/Aj is equal to

f T E(p, 3; x)du |.

U /4
J/ J




Now we are interested in the restrictions of . E(p, 3; X) to
the cusps AJ of the group T. They are given by the operator

P
€t (v, [ TE(, 3 x)du ...y <o H'(4, , Ad|,)
j=1 j

U
J/AJ

We can consider C as the endomorphism of

HI(AJ » Ad| ) if we put ¢= (p, 0,...., 0)
J

I @ o
N @9
ool
™

j=1

Moreover, we have:

(a) j-th component C(¢)J belongs to the eigenspace H ! (4

(0) Ad)

I
for 3j= 1;
(b) C(¢) = ¢ + ¥, where y H“‘” (4, , aqd) .

Thus, the cocycle E(p, 3; x) gives the desired tangent vector
to the Dehn fillings of the cusp 4, . To answer on the Question 2

we have to decide whether the elements

(%) J'TUE(go, 3; x)du |.
UJ/AJ
of the groups HI(Aj ’ AdlA ) are nontrivial.
J
Unfortunately, the computation of this integral in the general

case is very nontrivial problem. If we restrict ourselves to torsion
free congruence subgroups I of Bianchi groups then the result can
be obtained in terms of special values of some L-functions. In spite
of the transcendental nature of the L-functions, it is easier to
prove that they do not vanish than to calculate the integral (*)
directly. Namely, in Theorem 1 we show that the natural restriction

maps




res : H' (I, Ad) — H*(Aj , Ad)

are onto. This means that for every cusp Ej we can find another

cusp EkU) # EJ such that the variation of the modulus of Ej is
nontrivial after the Dehn filling of the cusp Eku) , l.e. EJ
isn’t infinitesimally isolated form EkU) . Theorem 2 claims that

Dehn fillings of every cusp Ej give nontrivial variation of another

cusp E

ey * EJ (probably for all other cusps variation is

nontrivial too). Application of the transfer extends the statements
of Theorems 1 and 2 to all finite-index subgroups in T.

1.3. There are several other interesting problems related to
the main question of the present paper; they are concerned with the
Kleinian subgroups of PSL(2, C). For example:

Let N be a complete hyperbolic 3-manifold of finite volume
with one cusp and suppose that 6N is a totally geodesic surface s
(which can be disconnected). Consider the manifolds qu which
results from N by Dehn filling of the cusp. Then, according to
Thurston, for all but finite p/q the manifolds qu admit
complete hyperbolic structures with totally geodesic boundary. Denote
the new hyperbolic boundary surfaces by qu . The question is:

Question 3. Are the surfaces qu isometric to S ?

This question was considered by M.Fujii in [F]. He constructed
an example of N for which the variation of Teichmuller parameters
of S 1is nontrivial even on the infinitesimal level. Another example
of nontrivial variation can be found in section 5 of present paper.
Examples of trivial variaions of S are constructed in [NR].
Question 3 can also be treated via Eisenstein series. In this
context, it should be noted that the Eisenstein cohomology classes

for Kleinian subgroups of PSLZ(C) were
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considered by I.Kra [Kr] from the analytical point of view.

Conjecture. Let T c PSLz(C) be a lattice and 2 ¢ T be an
arbitrary maximal abelian subgroup. There exists a subgroup of
finite index ' «I' such that

res,: Hl(r‘0 , Ad) — HI(A n Fo , Ad)

is onto.

Theorem 1 establishes this conjecture for arithmetic groups T
when 4 is unipotent.

l.4. Except for section 5 we shall closely follow
the lines of the articles of G.Harder [Ha 1-4]. In this sense the
current paper is just a commentary to [Ha 1-4]. our problem was
to make explicit the topological meaning of the articles of G.Harder.

1.5. Acknowledgements. Author is very grateful to professors
G.Harder, W.Neumann, S.Kojima, M.Borovoi, A.Reid, M.Fujii for
interesting discussions and to Todd Drumm for correction of my
English. A considerable part of this text was written
during the author’s stay in IHES and I am endebted to Michael
Gromov and Nicolaas Kuiper for this opportunity. This work was also
supported by NSF grant numbers 8505550 and 8902619 administered

through MSRI and University of Maryland at College Park

2. Notations and formulation of main theorem.

Consider the totally imaginary number field F= @(VC;“), where
m 1is a positive square-free integer. Let 0= Om be the ring of
integers of F , @ < 0 be an integer ideal. Then the group
FEd) = {7y e GLZ(O) P ¥ =1 (mod 4 ) }) is a congruence subgroup of

the level 4. Let GO/F = GLZ/F ; BO/F be the upper-triangular Borel




’

subgroup of GLZ/F. The groups G/0, B/Q@ and so on result from G0
Bo etc. by the restriction of scalars. For any subgroup H < G put
gV = {heH: det(h)=1)}. For ring L we denote by L* its group
of units (invertible elements). For any subgroup H < G, and ring
L>@Q we put H(L)= HO(L®®F). Any parabolic subgroup Bj(ﬁ) of
'(d) has the type BJ(E) = B(Q) n bj[‘(a)b;1 where bJ belongs to
B(Q). Let Ad= Py* G0 — GL(Mb) be the adjoint representation, where
M= pgt (F). Denote by A = I'(d) n ( 2(G,) = 0* ) the center of the
group [(4).

THEOREM 1. Suppose that [I'(8)/A 1is torsion-free. Then the
natural restriction maps

res (&) : H( [(A), M) — H( B (4), M)

are epimorphisms.

3. Preliminary results for proof of theorem 1.

3.1. We shall use constructions, notations and statements from the
papers of G.Harder [Ha 2-4]. In this section we introduce the
following notations.

For nonarchimedian valuations 4 of F put K4(0)= GLz(Oq)
and Kq= Kq(a)= {7 € Glb(oq) | # =1 (mod ﬂq) }; for the infinite

place we put G_= G(R) = GL,(C)/R ; K=1U(2) + C , where C is the

center of G_; then K_ = K_(4) = | | K , K= K+ K
® £ £ y is finite % ® £
Remark 2. The group Kf(ﬂ) is normal in K. (0).
Consider the rings of adeles AF , A= AD = mm’mx mf and the groups
of ideles uF = "Fﬂmqu,f , 1= ﬂm = "@ﬂfﬂm,f for the fields F, 0.

Put G =G xQD and extend the representation P, to the




representation p : G — GL(M" = ME%DQ) which splits as

p G = | | Glb/ Q@ — GL(M) o GL(M’) = 1_® Ad o Ad_ e 1
- T T T T
o:F—Q0Q

=p @ p’.Here 10 ’ Ada are trivial and adjoint representations; o

is an embedding of F in q . It suffices to prove that
the natural restriction map
res (#) : H'( T(H)/8 , M) — H( B (4)/4 , M)

is surjective. The modulus M decomposes as {1 o ad = MeM

T T T T
where M. is isomorphic to the (da+1)-dimensional (over @) vector

’

space of homogeneous polynumials of the degree do with the action:

a b P(X Y ) P(ax Y bx dy_)-det [@ D v (o)
P : , ~— P(aX_ + cYy_ , + -de
o [c d ] ) a o o o o [c d ]
0, if o=T<T 0, if o =71
where d0= ' Vo= (sf. [Ha 4 )).
2, if o =1 -1, if o =<

3.2. Geometry of associated locally-symmetric sSpace.

Attach to TI'(8) the locally-symmetric space
Sy = G(@)\ G(A)/ K = GL,(F)\ GL,(A.) / K
which is not connected, its components are "counted" by the map

det: Sy = G(@)\ G(A)/ K — Ip ¢ F'-det (K

)]
f

f)l

where det(z_.’') are representatives of cosets uF £ / Fe det (K
4

£)

(5_ [det(m(J) O)
0

and Te £ ) 1 The connected components of the symmetric

3—
@)

$) e 3
XK Gm Te Kf/ Kme = H

Suppose that M(; is invariant under q € G(Q). Then

space = G(A)/ K are H
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(3 _
q mf Kf = mf Kf ’

individual components of Sk have the form:

J) ()]

hence q € €e” Ko (mf )7t A G(Q). Thus, the

(e'{'Ke ('] )t A G(@))\ rH(j) =T, (&) ~ [H(j)

F“)(H) = {7 e€G(Q) | ¥ =1 (mod 4)} ; the

In particular, I'(H)

subgroup A < I' (&) acts trivially on HJ) and the 1~st component

(3

of SK is homeomorphic to (I'(&)/ A)\ H.

By means of the representation p ' we define the sheaf M of local

sections of the fiber bundle over SK (with the fiber M). Then

H ((T(8)/ A)\ W, M) = B (C(8)/ A, H).

IR

3.3. Geometry of ideal boundary of SK .

such that 38 is the

Denote by S K K

K the compactification of S

collection of tori.

LEMMA 1. (i) The space &S is homotopy equivalent to

K
B(0)\G(R)/K. (ii) The components of B(D)\G(A)/K are fibers of the

map detopf :
Pe det .
B(D)\G(A)/K&Kf —_— B(Q)\G(Af)/Kf _ uF,f/ F'-det(Kf)

PROOF. See [Ha 3, Proposition 3.1] ]

CONVENTION 1. To simplify notations we shall identify Sg and

B(D)\G(IA)/K@Kf ; below we shall drop the bar sign for 6SK .
Consider the commutative diagram:
r
B(@)\G(A)/KmKf —_— B(O)\G(ﬂ\f)/Kf
ger q

B(A:)\G(A.) /K,

where g, r are the natural projections. Put alsK = (qor)'%l], then

3.S, is equal to B(Q)\ B(A)/ KEK?

B_
15k where Km— Koo N Boo ,

10




K? = Kf 2} B(mf) [Ha 3, proof of theorenm 1].

Consider the (right) action of GLZ(Of) on BSK :

[g] € B(D)\G(A)/Kme — [g- sf] , Where Sg € Glb(of)7

this action is defined correctly since Ke 1is a normal subgroup of
GLZ(Of). Certainly, this action of Glb(Of) by right translations

is eqivariant with respect to gqor :

=)
B(Q)\ G(A) / K K, —L B(Q)\ G(A)/ K _K

| awr | a-r

S
BIAONG(Ag)/ Ky —55 B(A)\e(R,)/ K,

£

Hence GLE(Of) acts by right translations on fibers of the map
s

. : . °f .
ger , 1n particular: alsK — B(tD)\GmB(Af)stf /KImKf £
B_B
B(Q)\ B, B(A.)s, /K K¢ .
REMARK 3. The decomposition of 4s on connected components

K

induces the decomposition of 8Sg . The action of Slb(Of)=G(“(0f)

preserves the determinant; hence the last decomposition is invariant

under SIE(Of).

LEMMA 2. G(R.) = B(Rp)G(0,) .

PROOF. G(A.) = B(A,)- Slb(mF,f) = B(A,)- SL,(F)+G(0.) (by the
strong approximation for SL, ). However, SL,(F) < B(Q)- SL,(0) <
B(mf)- G“)(Of) which implies the assertion of the lemma. ]

COROLLARY 1. (i) The group G(Of) acts transitively on fibers of

ger. (ii) The stabilizer of 6]SK in the group G(Of) is equal to

B(0.)« K,

PROOF. Let B(ﬂ\f)ngf = B(ﬂ\f)Kf , Where gs € G(Of). Hence

Jg = bfkf € B(ﬂ\f)-Kf fa) G(Of). However, Kf < G(Of); therefore b_ ¢

f

G(Of) and Jg € B(O K

£l Kg - .

11




3.4. Geometry of alsK

3.4.1. Consider the fiber bundle

p: B(O)\ B(A)/ KOKS — T(O)\ T(B)/ K.K. , where Ki= K_n T
T

Kf= Kf N T(Af), T is the group of diagonal matrices. The fiber of

’

is the 2-torus T2 = U(Q)\U(A)/ Kg = Ty\ U, , where Iy = U(Q) n KU

oo (e .

lattice on the complex plane Uz C . In particular, nl(F2)= Z o Z =

] : A€ 0, A= 0 (mod A) } is the

nl(component of alsK), hence every component of

T =T@@)\ T(A)/ KTK¥ is contractible.
3.4.2. Continue the sheaf M to the ideal boundary 4.S

17K
A O P P8 Pt Pt Pt Pt o8

Define the sheaf Hi(vz, ﬁ) of local sections of bundle over I

with the fiber HI(TZ, M) , associated with the action of T(Q) on

H' (1%, M). Then H‘(alsK , M) = B°(x , H'(T?, M)) (cf. [Ha 4, 2.3 ]).

3.4.3. HY(T?, M) as T-modulus.

Notice that H'(T?, M) = H'(u , M) = @ x O , where u is the Lie

R

algebra of the group U(Q) [Ha 4]. Then decompose Hl(u , M ) as the

direct sum of the eigenspaces for the action of the torus T(@)

Hi(u , M) =H(u, H)(x) oW, H)@x) =0, oa

1 2
and the direct calculation [Ha 4] of the characters x l gives:
T (@)
t, o d(t)+v(t)+1l v(t)-1 (- Yd(T) (- = v(T) 2 2
xlz 0 tz — t °t1 . t1 -ltltz = t2t1

12
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t1 0] v(t) d(t) (- v(;)—l - d(;)+v(;)+1
Xyt O' t2 tltz .tl ) t1 ) tz =

- - t 0
. _ . (1) _ .
[t1/t1]'[tz/t2J’ xj— xlj(tl) xzj(tz). If T '= {[O t'I]‘ te F }

= t7%e? X, , = 1 (cf. the item 1.2).

1,Tu) T 2 (G)

REMARK 4. The characters. X, = A;:, x,= A;; are balanced and

-4

then y t ’ xz

w(x1)= -4 (in sense of G.Harder [Ha 4)]).

3.4.4. Fix any isomorphisms Dx ® @ . Notice that uU(Aa) =
J

Ker(p) is a normal subgroup in B(A); hence B(Af) acts on T(A) via
right translations and U(AR) 1lies in the kernel of this action.
Therefore, it is possible to identify the action of B(A) on T(A)
with the action of T(R) on itself, which drops on

I = T(Q)\ T(A)/ KT .

Now, following [Ha 4] we describe in convenient terms the

J

cohomology HO(T(Q)\ T(A)/ KEKT ’ E% ). Consider the set of Hecke
characters £={ ¢ : T(Q)\ T(A)/ K* — 0 : ¢ = ¢ - be 1 8= (x)7),

[+ ¢ ] [+ ]

in other words, ¢ ¢ ZJ has the type X, at infinity. If ¢ e ZJ

then ¢f X. . The space

T(@) ~ % -
H(T(@)\ T(A)/ K.K: , 0 )

X

is isomorphic to the space of locally constant sections
e : T(R)/ KT — @ such that: e(qt)= xj(q)-e(t) for every q e T(Q).

_ T
Put T = T(B)\T(A)/K; .

ASSERTION 1. Every section e(t) as above can be described as

1

a linear combination of e¢(t)= ¢f(t) , ¢ = (x; , ¢f) € Zj

PROOF. The space of sections is isomorphic to the space of

@-valued functions D[If]# on the finite abelian group I The

f

13




space O[If]# is spanned by the set of @-valued characters of the
group If . This implies the assertion. ]

3.4.5. The items 3.4.3 and 3.4.4 imply that

, M) =0 Qe. o o Qe (3.4.5)
¢z ¢ pex ¢

2

- 1
Hp () = H' (9,5,

1

REMARK 5. The group B“)(Af) acts transitively on If .

Now we can define the action of the group B(Af) on Hl(asK , M.

Namely, the action of B(mf) on I induces the following action on

B , 8 (13, 1)) : R(bgley(t) = e (t by) = de(bele,(t).

So the decomposition (3.4.5) is invariant under the action of B(Af)

and the restrictions of the action to l-dimensional subspaces ®e¢

are defined by the characters ¢f:B(Af) —c , Where ¢f u(n,) = 1
f

(8Sg M) as B(A.)-module.

Define IndB(mf),Kf Hé(ﬁ) = { Y 1G(AL) — H;(ﬁ) @ Y(begck,) =
R(bf)w(gf), for every bf € B(Af), J¢ € G(Af), kf € Kf } .

G(0,) .- G(Rg)

. . . 1 ,=~
LEMMA 3, IndB(O ), K HB(M) 1s 1somorphic to IndB(m ), K HB(M).
f f f f
PROOF. Consider the linear restriction map
o) () a8 L), o=y
6: Ind H_ (M) — 1In " H ’ =
B(A;) K, B B(0g) ,K, B G(0,)

(a) Show that 6 1is surijective. Recall that G(Af)=

G(A,)
£ 1, ~ - . =
B(mf)G(Of). Then for ¥y e IndB(mf),Kf HB(M) we put W(gf— bf of)—
R(bf)w(of), where Og€ G(Of). Check that this definition is
correct. Let'gf= bfof = agng , where ace Bf » Ng € G(Of). Then Ce=
14




-1 -1
af bf= fgf € G(of) N B(Af) = B(Of); nf= cfof . Now R(af)w(nf)=

R(af)R(cf)W(of)=R(afcf)w(of)= R(bf)w(of). Hence J doesn’t depend

on the decomposition and our definition is correct.

G(A.)

— 1 M =
(b) Show that Ker(8)= 0 . Let Y e IndB(mf),Kf HB(M), /] G(Of)' 0.
Then W(gf= bfof)= R(bf)W(of)= 0 implies that W(of)= 0. .
Thus we obtained the decomposition:
1 o o 3 o o - . —
(3.4.6) H (85, , M) = ® { ¥: G(R.) — Qey= @ : y(bog k)=

¢e ZIUZZ
¢(bf)W(gf), for every bfe B(Af), kfe Kf }.
A decomposition of such kind is given in [Ha 4, Theorem 1] after
transition to the inverse 1limit by Ke ©
CONVENTION 2. By the symbol e¢ we shall denote the element of

Hl(asK , M) which is zero outside B(Af)Kf and whose restriction to

B(Ll\f)Kf is equal to e¢ .

4. Description of boundary homomorphism after Harder

and proof of main theorem

4.1. Let ¢ € Zl Pow, o= [O 1] € G(D) , ad(wo) is a nontrivial
-1 0

element of Weil group. Define the character |a|: B(A) — c as
t u
||z o ¢, — |t1/t2|= [ . | "(t1/t2)q"q (where ¢4 runs through

all valuations of F). Obviously we have

(4.1) =1

ll |8 () nk

since the matrix elements of Kq n T(A)q are units of 0

15




w w
||+¢ © , where ¢ °(t)= ¢(wotw‘;); therefore

Put m%-¢
W

¢ [o]

-1
¢ (1) :

“(m) T (B)

T

Notice that: (a) m%-¢ is a Hecke character. Really, “%-¢ T(D)E 1

follows from IaIIT(Q)E 1l (see [Lg, p.85-86]). Next, (4.1) implies

that |a|| p = 1. (b) w-¢ has the type X, at infinity because:
K

t O
_ — 1] 1 2,

1. ¢=¢ T Xy [O t ] — (tl/tz) d

[+ 2

rtl 0 ) t, o
2. Ad(wo) 0 t =lo ¢t |7

\ 2) 1

(t 0) - -

. 1

3. |a|co o t2 —_ t1t1/(t2t2L

\ J

-1 wo tl o 2 - — -1 tl (o]
So |0£|w‘(X1 ) O t = (t1/tz) t1t1/(t2t2)= xz O t
2 2

and LA ¢ e 21 > wb-¢ € 22 . The same arguments show that:
LA 9 € 22 — u%-¢ € 21 .

4.2. The results of (4.1) and (3.4.6) give us the isomorphism:

H'(as, , M) Ing. g 0 Ing. of) o
, & o n e, © In e | =
K (9w oy | B (R K % B(A,) K, " -9
deX

Now decompose V , vV in local factors. We have ¢_(b_.)
¢f W@ N

| I ¢q(bq) ' bq € B(Fq) . Put Bq = B(Fq)' Gq = GLz(Fg) ; K

y is finite ¢

is the projection of Kf in Gq , i1.e.

16




K = { T € Glb(Fg) ! 7 =1 (mod Hq) } . Furthermore: v, =

Y 3 ¢4
: G Q : b k )= b
ViGy 0 WbgK)= 0, (B )U(G,), for every be B, , ke x, }
ASSERTION 2. The space V¢ is isomorphic to ® v, .
f 4 is finite ¢g

PROOF. For ¢ e V¢f we put Eq(w) = ¢q= Yl

2
= € ® V, . We h : =
£(Y) | | wq é e have Gq Bqu for all

4 is finite 4 is finite y

but finite places; hence the product €(¥) 1is convergent.

The map £ 1is surjective and has zero kernel. ]

4.3. Local intertwining operators Tq : V¢ —_ Vw-¢ .

Y o'y
4.3.1. Suppose that the quasicharacter ¢'''= B,/ K, is ramified
over y, i.e. ¢ . is not trivial. Then put:
T (0F)
4
4.3.1 T = f wu du ,
( ) q(lllq) (gq) !llg( o 494) y

U(F,)

W e v ; U(F is isomorphic to F and du is th
her wg € ¢q ( q) P q Q, s e
natural measure on U(Fq) induced by this isomorphism i.e.:

(1) duq is invariant under translations;

(2) I duq =1; (3) mes("z"q'Eq)= "z"q-mes(Eg) for every ze F,
u(o,)

and measurable E c F .
Y Y

To show that the integral in (4.3.1) is finite we reproduce

some calculations from [Ha 2]. Let gq € G(Oq).

Tu(wv)(gq)= J Wq(“%quq)duq = J Wq(woquq)duq +
U(F,) u(o, )
v Y
® . 1 Xq‘ﬂq—N
E:::: ”nq "q ) Ix wq(wo 0 L gq)dxq , Where ordq(nq)=1.
N=1 0
4
17




The first summand is finite since 04 is compact and wq is

continuous. Then consider the infinite sum. Notice that:

0 11(1 x -t " 0 1

[ ][ ’ ‘*]=[ ]=

-1 o]lo 1 -1 -x .x N
y Ty

-1 _N

-X T 1 1 0
Y4 Y4

0 S x oV 1

4 4 4 Y

-1 N _ . ,
hence xq-ny = 0 (mod ﬂq) for all N = N° (since Hq 1s a power of

1 0
(m,) in O, ). Therefore, for N = N the matrix [ J= k
4 4 o -1 __N y
X “em 1
4 4
belongs to Kq . Hence
© -N
1 x 'm
> I, - [ ¥ g ax, -
4 'Y < 4 ° 0 1 4 Y
N=N 0
o 4
-]
(1) N (1)
- X )dx =0 =0 L .
) eI, wyep ([ e opax, - o) = o (e
N=N )
o 4
4.3.2. Suppose that the quasicharacter ¢“)= 1, / u, € ZJ is

unramified over y, i.e. ¢| . is trivial. Decompose ¢q as
(07)
4

t. O
1
¢q: [O tz] ! ) ulq(tl) .uzq(tz) .

= B *GL_(O t:
For GU 3 gq bqkq € (Fg) 2( U) we pu

U) (J)

= W b k)= b det (k
(g )= ( ) ¢q( q)ulq( ( q))
W;;) is a “spherlcal" functlon. Show that this definition
i . S that b =b k . Th 1 =
1s correct uppose tha qku qkq en (1) udq(e) uzq(e)

18




kK k
for every e € 0 ; (2) k= k'k o= | 103 b = ‘
Y € y (2) Y ” where kq [O kz ' bg b k

Hence th(det(k;))= “1q(k1)' uzg(kz); ¢q(bq)“dq(det(kq))=

¢q(bq)udq(k1)° “zq(kz)“u;(detkq)= ¢q(bq)urq(det(kq))' Therefore the

value of V¥ )
0,4

does not depend on the decomposition of gq . Notice

(1)

y are unramified

that Ialq is unramified, hence wo°¢(;) and ¢

simultaneously. Now put:

(1) (2)
T : ¥ €V, — V¥ e V
4 © oy 9, 0.y AN

This operator extends linearly to an isomorphism between the Bg-

modules V¢q and Vw6'¢q [Ha 3, 4]. Put
Tq('/lq) (gq)= (LU(O)/Lq(-l)) . J‘WU(Woquq)dug ’
U(F,)
where L (s) = L,(s, ¢‘;’)= (1-— ¢(;)(nq)/N((nq))-s)-l and for s e

s s -5
Z we have N((m = (number of element £ 0 = '
+ We have N((m ))"= ( elements of 0/(m)%)= |m,|,

valuation ¢ is determined by the prime ideal (nq) . The function

Lq(s, ¢“)) admits a meromorphic continuation to the whole complex

(1)
. 1 =
plane. Calculate the value Tq(wq me )(gu) for

(1)
G 0 )= SL (0 ).
9, € 67 (0,)= sL,(0,)

Consider the function

s/2.

g (1) -
vy =9 (b k) (Ialq

s/2
Y To,y,s Oy 9,(0,)) Idet(kq)lq uy, (det(k ))

which is a spherical function with respect to the character

- s/2,
¢,= Ialy ACHE

S

According to (4.3.1) we have:
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I ‘Po.(;:s(wouugu)duu =[ j Yy (Wou,g,)du, = l] ¥
U(Fq) "(04)

s (1) N -N s (1) - 1_ _
IR AT RRERR I £ oy xpax, )= 1= I, |, )-
N=1

(2- 0 (i L) (2= 0%y I ,) "2

(1)

_ (1)
L, (s-1, ¢q )/L, (s, ¢,

).

Remark 6. Apriori this infinite sum is divergent for - s= 0 however
it is convergent for sufficiently large Re(s) ; we can use a

regularization by a meromorphic continuation to the whole complex

(1)

(1)
V2 P S )

In fact, as we shall see later, this series is convergent.

plane to obfain the desired value Lq(s-l, ¢

_ (1) _ (2) _
So .Tq(wq— qu )(gqe SLE(OQ))_ 1l . On other hand, qu (gq)—l for

(1) . .
e G 0 )= SL (0 ). Direct calculations show that T b =
9, (0,)= SL,(0,) W (V) (2,9)

v%-¢q(bq)Tq(wq)(g4) and quR(gq)= R(gq)qu . This implies that

(1))= ¥ ) and we really obtained the desired extension.

T v
q'( 0,4 0,4

4.4. The formula for a global intertwining operator is

T = ® (T, :+ Vv — V. )
¢f 4 is finite ¢4 ¢q Yo ¢q

(1, _ (1)
Let LF(S, ¢ )= I | Lq(S, ¢ y ) '

4 is finite
(1)

¢ is unramified
4

where the local factors

(1)
4

(1)

L,(s, ¢ y

)= [1- @ (m,) /N () ™)

were introduced in 4.3.2.

20




Then the function LF(s, ¢(”) admits a meromorphic continuation to

the whole complex plane. Introduce the "constant"

(;)L/L(O, ¢‘;’) € C v {w}.

THEOREM H (Harder [Ha 4]) . Let

c¢= L(-1, ¢

1 ~ 1 ~
res : H (SK s M) — H (6SK , M)
be the restriction homomorphism. Then:

(1) Im(res) = @ Im(res¢) c V¢

e V H
peZ w

) £ o'¢f

(2) In(resy)= { (0, apre, T, 1) | v e Vo }

where xp € C* is a constant.
PROOF. The field F 1is a totally imaginary quadratic extensiop

of © and ¢°° = A (see the items 3.4.2, 3.4.3). Then the

o1
character ¢ is "balanced" (in the sense of Harder). Therefore we
can apply the theorem 2 from [Ha 4].

QED.

For the completeness we repeat here briefly the arguments of

[Ha 4, proof of theorem 2; Ha 2, Ha 3]. Put w(g, ¢, y) =

o (B, . 9p), 9, ¥ )= ba (0,0 (5p) [ady (KLep, (K D)e, | . where o

o

is the orthogonal complement to the Lie algebra of K in g%(@),

€y € Hom(p,  , M) has the weight ¢'; with respect to the adjoint

o«

representation of T(R). Let

E(g, %, ¥)= > w(a-g)
aeB (D) \G(Q)

Consider the "constant term"

(*) E'(g, %6, w)= [ E(ug, ", y)du
U()\U(A)
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where du is the Tamagawa measure on U(A). Then the restriction of
E(g, ¢, ¥) to U(Q)\U(A) is a closed 1-form which is cohomologious
to the restriction of Eo(g, ¢, ¥). The computation of the integral
(*) is relatively simple in our case since we have of the Bruhat

decomposition G(@)= B(Q) + B(Q)wa(Q). Then

: E(ug, *¢, y)du=
U(@)\u(a)

‘. > w(arug)du = w(g) + I w(wou-g)
U(@INU(R) aep (@) \c(a) U@ANT(R) 4y ()

= w(g)+ I w(wbu-g)du sirnze Vol(U(Q)\U(A))= 1.

U(R)
The form w decomposes as w, ® ® '/} and the integral
4 1s finite M
I w(wau-g)du is equal to
U(R)
dF- | | J wq(wbuq-gq)duq X j ww(v%uw~g)dum p
Y is finite

U(F,) U(F,)

where the nonzero number dF is coming from the Tamagawa measure

Direct calculations [Ha 4] show that the last multiple (for g=1)

is equal to B¢CW"¢ where B¢ e C is a scalar depending only
o] -]

on the character ¢m . Then o= dF=B¢ .

According to 4.3.1, 4.3.2 for any finite ¢4 we have:

. (1)
Tq(wq)(gq), if ¢

y is ramified

J Yy (Wou, g, )du, =

(1)
U(Fq) (Lq( 1, ¢

Y
This calculation proves the theorem.

(1)
)/Lq(o, ¢ y ))'Tq(wq)(gg), else
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4.5. Lemma 4. c¢ g {0, =),

Proof, First we notice that c¢ * o , L(O, ¢(”) g {0, o)
which follows from [(Ha 4, proof of theorem 2, p.82]. So we only
have to show that L(-1, ¢(“) # 0. Denote ¢“) by mn. For
L(s, m) we put [Lg]:

A(s, m)= ((2m)2a)5/2.r(s_s2)-L(s, n)
where dne D', the complex number s will be defined later and
the function A(s, 7) satisfies the functional equation:
IA(s, m)l= IA(TI-s, m)].
Hence [A(-1, 1) € c' o IA(2, m)] e c".

Assertion 3., L(2, 7) € c .

Proof. The function A(s, 7) is holomorphic and L’ (s)/L(s) is
bounded for Re(s)> 1+1/2 [Lg]. Hence L(2, M) * 0, © . =

Therefore we have |L(-1, 7)| = IT(2,/ 2)T((~1) / 2)I*-const,
where const ¢ {0, »). Consider F(sm/Z), s € {2, -1). The map
S s is constructed via the character N,(2)= zq, ZeC in
the following way.

-4 -4 2 -
We decompose n (2)= 2z as z''= (z/1z])"|z|%°= " |z

m/2+c ,~.c~m/2

z (z) (see [Lg]) . Then m= m=-4, s/ 2= s + Im|/2 (since

IF: Ql= 2 ), s=5s + 2; 2m/2= 4, (-l)m/2= 1. However

F(4)-F(1)de Q. Therefore |L(-1, 7)]= 0. Lemma is proved. =
G(0,)

1 ~. 1 ~
4.6. Recall that H (aSK ;, M)z IndB(Of)KfH (alsK , M). We

have to single out the different components of asK in this induced

modulus. The group G(Of) acts transitively on the decomposition aS

= alsK v 625K V... . This decomposition corresponds to G(Of)=

(2 (D2 1) . The restriction of

B((Df)Kf + B(Of)ngf +... (where Ie

ff(asK , M) on 955k 1s equivalent to the restriction of the
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function y: G(mf) — Hé(ﬁ) on Bfg £ Then the image of

Hl(alsK , M) in H’(asK , M) corresponds to

{w t G(0g) — Hy(M) : Supp(¥)= BLK. , Y(bgko)= R(b )y (1) }

Respectively, Hl(ajs ' ﬁ) c Hl(as ﬁ) corresponds to

K K’

{¢ : G(Of) — Hé(ﬁ): Supp (y) = Bfogéj), W(bfgéj)kf)= R(bf)W(géj)) }.

G(R,)
B(Ag) K

out the space H;(ﬁ) as the space of functions with support at

In the same way, on the level of Ind H;(ﬁ) we can single

v (3)
B(ll\f,gf Kf .

4.7. Assertion 4. If for every Jj the map
1 d
res : H (SK ' R’ M)

K M) — H( Tij , M) is onto for every

M) — H;(as
is onto then res : HI(S

2
boundary torus Tij c aSK .

Proof. H;(as M)= M) .

K’ i iy

The space Hé(ﬁ) and hence ﬁ;(ﬁ) is the direct sum of two subspaces
where B(A) acts by two (quasi)characters which are different at
the infinite place. Denote these subspaces by V; ' V; (where 1, 2

i

correspond to X, 0 X, values at infinity), V= o Vj .
J

4.8. Principal lemma.
Lemma 5. V§ < Im( resy: HI(SK , M) — H:l.’(asK , M) ) for every j=1.

Proof. Let ¢ € 21 ’ ¢f= “1f°“2f , where M g are defined on 1 H

f
(1) _
¢f - ulf(tf)/uzf(tf)l th ﬂf

4.8.1. Let Y e ﬁ;(ﬁ) \ {0) be an eigenfunction of B(mf)

corresponding to the quasicharacter ¢. Then

T, Y +—> D'ew

¢
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Our aim is to show that T¢ (¥) (g # 0. If it is done
f

Bege K

thea Span(T (¥) ) = Span( e )= v2
(D g .
sz % Boag 'K, gex Yo'l Bgk. I
24
4.8.2. Thus, take ye V¢ , Supp(y)= Bfo . The space M of such
£ ¢

functions is 1-dimensional (over @) then we can choose Y in

the following way:

(1)

(a) If there exists a place 4 where ¢ £ is ramified then we

(1)

take wq = e¢ for all such places; for other places 4 (where ¢ £

Y

is unramified) we take wq = W%?; (see the Convention from 3.4.6).

(b) If ¢(1) is unramified at every place, then we pick a prime

. 4 —1 3 (1)

n e OF and put: wq e¢g (for gy (r)) and wq W(Lz (for every
3 *y).

In any case, the function y = ® Y belongs to M¢

y is finite ¥
_ (1)
4.8.3, If W@ =¥, then T¢ (wq)(gq)= 0 for every gq . So,

our problem is reduced to the calculation of the term

const-T w (g(J’ f ] (wbqu‘é)) y in the case wq = e¢q.
U(F )

Remark 7. If necessary we use here the reqularization (4.3.2) of
the integral above.
Fix the Bruhat decomposition: G(Fb)= B(Fq) + U(Fq)w%B(Fg). The

element g(li)

() 1 u’ 0 1 b1 b3
gq =g4;= 0 bz and we have:

0 1 -1 0

belongs to the second summand since j#*1. Then:
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F o4y 4
U
( q)
I 1 uq+u’ 0 1 b1 b3
Y (w Jdu =

O(F ) ¥ %o 1 -1 o J|° b, Y

Y

(1 0)( b b

[ v ol p lau, =
oeryy  lgyret 2) Y

1’4

(b, b )(1-b,z -biz
J wu( o b . L )duq , where z = (uq+u’)b}il.
2 z z+

U(F ) \ \ 3

Y

b, b )(1-b,z —biz
Recall that Supp(wq)= BqKq , then wg( 0 b
2 -4 b3z+ 1,
a, a, 1~b3z -bzz N,
vanishes unless 0 a =1 (mod m ) for some
2 zZ baz+ 1 4

a a
[ 01 a3] € B(Fq). However this is equivalent to
2

N N
_ - 0 - , -1 0
as=a = 1 (mod nq ), a_= (uq+u )b1bz 0 (mod nq ) and
-1 o -1
(uq+u )b1bz € nq Oq . Hence, uq runs through the set bzb1
N°+l X No
O + u’ = Z. Notice that mes(Z) = |bb = - (1- £ 0
. o, () = b’ w0, (1= || ,)
and
b b 1-b_2z -b3z 0
U 1 3 3 3 )= ¢ 1 .
Y 0 bz z baz+ 1 41 © 2
(3 b1 0
Therefore, quq(gli)= const-¢u 0 b2 mes(Z) # 0. So, Lemma is
proved. (]
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4.9. COROLLARY 2. Vf < Im(res ) for every ij= 1, 2,...

PROOF. The group G(0.) acts on Sk + 8Sy (and on Hl(sK , M,
If(aSK ’ M) ) and this action commutates with the restriction maps.
However, this action is transitive on ﬁ?SK , J= 1, 2,04},

Therefore, the corollary follows from Lemma 5. ]
4.10. COROLLARY 3. VI < Im(res ).

PROOF. Let y e H:(Fr) NV, . then Supp(y) = B(A )K. and
£

(¥, c,T y ) = (¥, const- w( b k d
¢ B(Rg) Ky Y 1is finite U{F ) : y :

= (Y, conste.const’. e ) € Im(res¢)| .

W ¢ l
o "f|BcK BeKe

Remark. The scalar const’ vanishes iff ¢“) is ramified

over some place as it follows from (4.3.1).

However, according to Corollary 1, every vector (0, o)

belongs to Im(res¢), ; therefore
f f
{(w, 0) : ¥ e H (M) nv } < Im(res,) for every Hecke
! & %" B K
£t
character ¢ e Z1 . This proves the corollary. "

4.11. Now we apply the action of the group G(Of) in the
same manner as in the section 4.9 to obtain:
COROLLARY 4. vj < Im(res ) for every j=1, 2,...

This corollary finishes the proof of Theorem 1. N

4.12. Proof of theorem 2.

Below we use notations introduced in 1.2.

27




Theorem 2. Let T° ¢ 3S, . Then for every w €
nj K nj,1

H( "1(“,2,,)' M= pgl, (C)) there exists a class w e H'( I'= I'(&) , M)
such that:

(1) projection of w to wnJI is equal to wnjl H
2

(11) wkh1=0 for every torus Fm

=r':‘|]‘2 ;

n}
(iii) for every k#j there exists 1= 1(k) such that the
projection w , , doesn’t vanish.

Proof. Using the isomorphism M, = M and preserving notations
for sub (upper)scripts we identify classes the Wl p with
elements of Hl( I' , M) ; the eigenvectors of the character E1
correspond to elements of V' under the isomorphism

Hl(asK , M) = vie V2 . Applying the action of SL_(0

F,f) we can
suppose that j= 1.
IIJ
Then V, = o L (under our convention on notations above).
s=1 '
Put T = o T . For w =Y e V! let w e Hl( ' , pg¢ (C)) be
p ¢f ni,1 1 2
£

a class corresponding to (¥, TyY) € Im(res). Notice that the
operator ¢ € V; — (Tgo)k € Vi is injective (4.8), therefore
the class w has the desired properties. [

Thus, after infinitesimal deformation of the group I = I'(H)
corresponding to a Dehn surgery on vi , We have nontrivial
infinitesimal variation of Euclidean structure on some other cusp

tori of a connected component of S containing F;

K
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5. Example.

5.1. Example., Let M be the complete hyperbolic manifold
homeomorphic to the complement of-the "Figure 8" knot. Then
(according to C.Maclachlan (M]) M contains an immersed closed
totally geodesic surface . Let

R(n&M) = Ham(n&M, SLZ(C))/SLZ(C)

ASSERTION 5.1, Under deformations of holonomy representation of mN
the group nlz varies nontrivially. So, under small deformations of
id= P, :THM — SLZ(C) the image of pOUHZ) becomes quasifuchsian.

PROOF. As it was shown by R.Riley [Ri] (see also [KK]) in the
space R(nJﬂ there is an irreducible complex curve o, which
contains [pJ and some solvable representation [pJ. Hence there
exists an element 7y € nlz such that ps(7)= 1 while po(w) # 1.
This means that po(w) varies nontrivially under the deformation of
P, along o. ]

Let ¥ — M be a finite -sheeted covering such that s 1ifts
in the embedded closed totally geodesic surface § in M. Then the
assertion above means that after a Dehn filling of M with
sufficiently large parameter the surface £ deforms to non-totally
geodesic incompressible surface. In general case the surface ¥§
doesn’t split M. Let N be the hyperbolic manifold with totally
geodesic boundary which is the éompactification of M\ S . Then the
the Mostow’s rigidity theorem implies that the answer to Question 3

(see Introduction) is negative for the manifold N.
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