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Flat conformal structure on the manifold M (of dimension
n>2> is a maximal atlas K={ nQp.Seu‘ S.-"Q.—l_\«n s”, ie I} with
conformal transition maps G«.Qw» . There is another (more
classical) definition of flat conformal structure (FCS) as a
conformal class of conformally- euclidean riemannian metrics
on M . This definition is equivalent to former one (see [ Ku
1], [Kul] e.g.). The most well known way to construct FCS is
the so called uniformization: if a Kleinian group I' acts
freely and discontinuously on a domain Dc $” then a flat
conformal structure JJ naturally arises on the factor-manifold
M=D-T". For this structure J-. the covering p: D— is conformal
map. Such structures are called uniformizable and ' is called
uni formizating group. It should be noticed also that among
eight 3-dimensional geometries [ Sc] there are five
conformally-euclidean ones: wu. Huv Tuxﬁ y SR 5 Tu.

The following result of W.Thurston is well known

THEOREM H [ T1] ,[ Mo]. Let M be a closed atoroidal Haken
3-manifold. Then M admits a hyperbolic structure.

Hence on a manifold of this wide class a FCS may be
introduced. Also FCS exists on connected sum of
conformally-flat manifolds [ Kul]. On other hand W.Goldman [ @o]
has shown that any closed 3-manifold M, .Soamﬂma on Sol or Nil
geometry, does not admit a flat conformal structure,

The main aim of this paper is to prove the following
theorem concerning existence of FCS on more wide class of
3-manifolds than provided,by the theorems of Thurston and
Kulkarni.

THEOREM 5.1. Let M be a closed Haken 3-manifold with
unsolvable fundamental group such that the canonical
composition of M from hyperbolic and Seifert components does
not include gluing of hyperbolic manifolds with hyperbolic or
Euclidean ones. Then some finite-sheeted covering of M admits
an uniformizable flat conformal structure.

. REMARK. Euclidean manifold (in sense of [Sc]) is a
compact manifold N such that int N admits a complete
euclidean structure. There are only three Euclidean
3-manifolds with boundary, all of them are covered by

%»x%»xﬁ 0,1] Therefore, if a closed 3-manifold M is glued of
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hyperbolic and euclidean components H and E then 2-sheeted
covering of M is glued of two coples o.u. the manifold H.

The first Russian version of the theorem 5.1 was published in
[Ka 2}, where the condition on hyperbolic-euclidean gluing was
mistakenly dropped (the true russian exposition is in [ Ka 5]>.

The theorem 5.1 combined with vvm.ﬂga.m result on
conformal connected sum (see above) makes the following
conjecture be probable.

CONJECTURE. Let M be a closed 3-manifold satisfying the
Thurston‘s geometrization conjecture [T 1], ie. M ig the result of
toroidal gluing and connected sum of manifolds possessing a
geometric structure. Let us suppose also that the decomposition of
M into connected sum of prime components does not include Sol- or
Nil-manifolds. Then some fihite-sheeted covering of M admits an
uniformizable flat conformal structure.

The proof of the theorem 5.1 is organized in several stages.
In the § 2 we shall prove the theorem 5.1 for the class of Seifert
manifolds. More precisely

THEOREM 2.1 Let S(g,ed> be a total space of a circle bundle
over a closed orientable surface Mm of genus £ having euler
number ec Z such that 0{e=(g-1>-11 . Then S(g,ed admits an
uniformizable FCS.

An analogous result was independently obtained in Joint work
of M.Gromov, H.B.Lawson and W.Thurston [G L T] <(see [Ku 3] for
further discussion>. Tt should be noticed that for e= 0 flat
conformal structure on S(g. e) always exists, but. for ex 0, g= 1
the manifold S(g. e does not admit any FCS [ Gol .

Limit mets of groups H(g, e’ uniformizating SCg, € are
tame unknotted topological circles in s*? (Corollary 2.3). Such
groups are called pseudofuchsian. Pseudofuchsian groups (probably
with parabolic elementsd vn.oc.»a_m one type of bullding blocks for
proof of the theorem 5.1, they uniformizate finite-sheeted cover-
ings of Seifert components in the canonical decomposition of M

The other type of bilding blocks is a class of "hyperbolic”

groups that uniformizate Iinteriors of hyperbolic components of the |

canonical splitting of M. The main problem is to find small

deformations of constructed pseudofuchsian
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and “hyperbolic” groups such that conformal gluing of
uniformizated hyperbolic and Seifert manifolds is possible.

For this purpose we choose deformation of these groups such
that : parabolic 202 become Ze N: (generated by loxodromic and
elliptic transformations). At the same time cyclic parabolic
subgroups of pseudofuchsian groups become loxodromic ones,
which are conjugated to subgroups of corresponding Ze NJ .
Arising elliptic elements disappear after transition to
finite~index subgroups. Such deformations of pseudofuchsian
groups are considered in § 4.

In the & 3 we state some auxiliany results concerning
construction of some pseudofuchsian groups and above-
mentioned deformation problems. In the § 5 we present the
direct construction of a Kleinian group uniformizating
finite-sheeted covering of M. This construction is preceded by
two illustrating examples. The main tool here is Klein-Maskit
Combination theorems and some results of Hempel, McCullough
and Miller related to the residual finiteness property of
3-manifold groups.

These results together with some basic facts about
Kleinian groups are collected in § 1. An example of closed
orientable 3-manifcld which does DON admit any FCS but has
conformally-flat finite-sheeted covering is presented in the §
6. This manifold is obtained by gluing of two boundary
components of some Seifert manifold. This example shows that
Thurston‘s conjecture about geometric realization of smooth
actions of finite groups on geometric 3-manifolds (see [M S]>
does not valid for conformal geometry.

In conclusion 1 express acknowledgements to my former
advisors prof. S.L.Krushkal’ and N.A.Gusevskii for help and
general support and for participants of prof. S.L.Krushkal’s
seminar for fruitful discussions. I am Nﬁwrmnc_ for all those
who have sent to me their preprints and reprints. This long
list. includes prof. W.Goldman, R.Kulkarni, Y.Kamishima,

H.Lawson, M.Gromov, NKuiper and many other mathematicians.
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§ 1. Definitions and some basic facts of the theory

of Kleinian groups and related topics

1.1. Let QJ be the group of all orientation-preserving
Mobius transformations of n-sphere $' '=F" = R"Ww>. The fixed-
point set of ye M _is denoted by Fix{yd= {xe $": p(x> =x }.
For the group I'c aw: the discontinuity set R(™= { xe $" : the
point x possesses a neighbouorhood (X x) such that the inter-
section Kx) N pCxD> =0 for all but finite elements re T}

Any Mobius transformation ye 53 may be extended to the

element Wm n which has a closed invariant ball Bc $"*' with

boundary s". m.“m element » is said to be loxodromic if ﬁﬁ.XAwqu
B= {p,g>c s", p*g. The element y is said to be parabolic if
mJ.XAWuD B= {p> < %Jw and y is said to be elliptic in ether
case ( .-.meWu_J int B #@ 3. If a loxodromic element y is
conjugate in 53 to homothety ¢ :x —kx, xe R”, then » is
said to be Ayperbolic element.

Fundamental set for the Kleinian group 6 is a subset’ &
of R(G> such that the orbit 6+3% coincides with R(G) and
8(%> N % = @ for any ge G\ (x> .

For a nuowom connected hypersurface S in R the compact
component intC $5 of R™ S§ is called interior of this
hypersurface. Analogously, Ov,«nn SO= 8"\ ¢l intC $O is
called exterior of it.

Let A be a loxodromic transformation of Wu~ { be any
h-invariant. proper arc of circle £ , that pass through FixCAhD.

DEFINITION 1. The pair Ck, ¢ >=R? is called directed
loxodromic transformation . Two directed transformations J» »
?u are called conjugated if there exists a transformation fe
sw such that <1 \)-\l urn and (2> fC ﬁnuu K»/nNn n»u.

Assume that the complex plane is included in B° in the
standard way: C= { nX- > X, o>, x + XN_.. € €} . Then a
loxodromic transformation A is conjugated in Bu to an

-
element. A" preserving C , R* 12— A2, ze €, AhY € C

-
The complex number ACh) is independent of choice of A up to

conjugation &) +— AChD, we shall suppose that ImCAChd> >0.
DermniTioNn 2. The complex number ACh) is the complex
coefficient of the loxodromic transformation h .

Let CM, d> be a metric space, Xc M , Yo M . Then we put:

ansnxnv\uumdb*ns\*&nx.%u.%MKV.XMXV
Let ge 5: be an element such that gCod= w . Then the
isometric sphere of the element & 1is the set I(gd)= { xe
R", detC 8'Cx> 3> =1}, where g'Cx> is the Jacoby matrix
for 07%‘.:5“. g . Let |G be a Kleinian group such that © &

RCG> . Then the set { ) ext ICg is called isometrical
g€ G
fundamental polyhedron of the group G .

1.2. Combination theorems.

DerFmimioNn 3. Let J be a subgroup of a group 6 < M,

B be a subset of S . Then 28 is called precisely "
invariant under J in the group G if 1> JC B >= B and
(2> for any ge G\J we have g(B) Nn B= @ .

DerFiNITION 4, Let J be a cyclic loxodromic or trivial
subgroup of Gc Eu . Then compact manifold B , which is
precisely invariant under Jc 6 is called (G, - block if
B N R(GY= B N RLD

THEOREM 11 ( FiIRST MaskiT COMBINATION THEOREM ).

Let J be a cyclic loxodromic or trivial subgroup of

discrete groups D» N mn < s,wu . Assume that J= O» , J= QN

and there is a npom,w.u embedded surface W dividing s?

into two compact submanifolds B . B, . where B is a CJ,
G) - block, m=1, 2 . Let D:_ be a fundamental set for G
such that

<1 D:_D W_s is a fundamental set for action of J in -m3 B

<2 Da N W = wn N W, (3 the set D n wu has non-empty
m -m

m

interior, mn=1, 2 ,

Set D= nb— n w~u U nDN n w-u and 6= ¢ Q- B mu >

Then the following statements hold.
Gy 6= 0» *1\ QN ~free product with amalgama J . (ii> The
group G is Kleinian. (iid D is a fundamental set for G
dv) Let D§ be the union of the m:. ~translates of _..J;.mau
and let NE bee the complement of D_s . Then R(G)/G= ( .mu al
Nmm»v V\Q» U ( NN [a] Nnmnu V\ON » where these manifolds are
identified along their commong boundary (W N R(GY ) /)

Now we consider the Second Combination Theorem. We

shall assume that fe Qm 5 Lu B Lu are cyclic loxodromic
Cor triviald subgroups of a discrete group O_un gw . Two
compact manifolds w» s WN < s? are jointly j -blocked if

WS u.mn\f QOu ~block Cm= 1, 2> , f maps exterior of & onto
1

[4




interior of wN and \.k.\lu =J . If W- and WN are jointly
f —blocked, then let A4 be equal to ext( m“ U muu » \_o.u
s™6 ¢ B U B>

[ 1 2

THEOREM 12 ( SECOND MaskiT COMBINATION THEOREM ).
Let k» , ku < 60 , f€ a,ﬁw be as above. Assume that mn and WN
are jointly f “blocked compact submanifolds of %m~ and that
mo =g . Let Dn be a fundamental set for Do such that
(> Do N B is a fundamental set for action of k:._ on W! B

™
2 fC D NWI =D NW , where W = 88 .
] 1 [} 2 m ™

we set G= AQO > f> , D= Do NnCA U r\uu . Then the following
statements hold:
i >
4> 6= QO *\\

4id 6 is discrete. (iiid> D is a fundamental set for G

is the HNN-extension of mo by 1 .

{v> The set xo is precisely invariant under Qo in G . Let
Q= nTAO al Nnmnvu ; then RC(G)/G is equal to D\QO , where the
two boundary components ( <» [al .Nnmnu v\kn and ( r\n 8l Nnmuu
u\un are identified, this identification is given by f .

REMARK 1 We don’t formulate the Combination Theorems in
greatest generality, but our formulations are sufficient for
the purposes of this article. Some words on proofs of the
theorems 1.1 , 1.2,

These theorems are really due to Klein and Maskit. Our
formulations are follow [Mk 1], however we drop all essen-
tially 2-dimensional assertions of [Mk 1, Ch. VII, Th C2 ,

Th. E5S ] . The various generalizations [Iv], [ KAG], [ Ap]
of Combination Theorems to higher dimensions, repeat
Maskit‘s original arguments [ Mk 3]. So, the theorems 1.1 ,
1.2 may be proved in the same manner (rewriting proofs of
{Mk 1] > or deduced from [Iv], [KAG, p.169- 170], [ Ap, Th.
4.2, 45].

1.3. 3-manifolds.
We suppose that reader is familiar with basic concepts of
3-dimensional topology such as : incompressible surfaces,
canonical decompesition of a Haken manifold into hyperbolic
and Seifert manifolds (we shall nov.mmn_mu, them as total spaces
of fiber bundles over 2-dimensional orbifolds)>- see [He 1], []J
S], [ Sc] for references.

For construction of finite-sheeted coverings of 3-manifolds

we shall frequently use the following results of JHempel [ He

8

2] and D.MmCullough- AMiller [ M M].

THEOREM 13. Let I' be a finitely generated subgroup of
PSL<(2,C>. Then for all but finite primes pelN the group I
contains a normal torsion-free subgroup ﬂo of finite index
such that. intersection of _10 with any maximal! parabolic
subgroup Pcl” is by subgroup { V\v : ye P}

THEOREM 14, Let. M be a Seifert fibered space over an
orbifold O, b..mluoO be a finite-sheeted covering ¢here 9 is
an orbifeold and we consider p in sense of orbifold-theory),
nelN such that for any component. b < a0 the restriction p to
b is n-sheeted covering. Then there exist a Seifert fiber
space # with the base O and a covering N" H—M such that the
induced map of bases is p: 0—0 and the regular fiber of M
n times covers the regular fiber of M.

Proof of the theorem is not difficult [M M , Prop. 41} ).

Let. the manifold M be glued of finitely many components 1_
by identification of incompressible boundary surfaces m_c
Let us suppose that _..b are normal finite~ index subgroups of
:_H An&vtazuk“u ¢ where nh : x._lk are natural inclusions>
such that _Jh [} A.Jvtﬂ :»Mf o= _..3 n Amgv..A:».w‘l. > where mrA
mf D= ﬁ.EA m::. > .

THEOREM 15. Under the above-stated conditions there
exists a finite-index normal subgroup I'c :»I such as ' N
N=r for any ).

._—uMOO»» of this theorem is easy also [M M , Prop. 1.1].

Let S be a closed surface, D» yeurs Duw ~are pairwise
dis joint closed discs in § , & = S\( w,JND»C. ) :ibmw )
Then for any positive integer n there exists n-sheeted
ramified cyclic n0<m~.u“3w thlM such as exactly one branch
point of order n lies in every disc D« (see e.g. [ EEK])D.

DeEFNITION 5. The restriction of the covering p to the
surface = I\ b-»n HJND»C. LU :Kbuw ) is standard n-sheeted
coveritng of the surface Z.

DEFINITION 6. Let M be the product Ix s, p be the
standard n-sheeted covering of Z. Then the covering m" MM
(that is constructed by the theorem 1.4) is-standard n?

~sheeted covering of the manifold M

e R R RN L i e,



§ 2. Unifermization of Seifert manifelds

21. Let M be a Seifert manifold with zero Euler number and
hyperbolic base. Then there exists certain M°x[R- structure on M
(see [ Sc]), hence M= xR T , where I' is a torsion-free discrete
isometry group of Tnxmm . This group may be chosen so that it‘s
cyclic normal subgroup is generated by the displacement
t:(z,p)—(z,p+ 2n) , where ze TN‘ pe R . Let g: HexR— HxS' =
*AX». x_. _ JeR?: XM +K“ >0 } be a cylindrical coordinates map, the
deck-transformation group of this covering is <t> . This map
induces a homomorphism Ty’ r l.v_xon Qu . The group _Jo acts freely
and discontinuously on Hx St and the manifold H’x W»\ﬂo is
homeomorphic to xR/ I =M . So the manifold M admits a flat
conformal structure which is uniformizated by a "fuchsian” group I'.
Since the geometries E° and $°xR can be realized in R° as (R?,
jdx |*> and ®R™<0>, |dx|?/ |x|?> we have that any Seifert manifold
with zero Euler number admits an uniformizable f.c.s.

In contrast to that, any Seifert manifold with non-zero Euler
number and euclidean base-orbifold admits no any FCS (see [ do]).
The main purpose of this paragraph is to prove the following

THEOREM 2.1, Let S(g, e) be the total space of the circle bundle
over the closed orientable surface MQ of genus g which has the
Euler number eeZ such that 0O<es (g-1)711 . Then the manifold S(g,e)
admits an uniformizable flat conformal structure.

2.2. We shall need the following description of the manifold SCg,
e) . Let ¥ = S \int wuv where B*? is a closed disc, Xm.wWN. uqumx%..
t=CxIxS'c Q@Qw ,mmﬂmmnx {p) , where ﬁm%u. T=8B°xS" is the boundary of
9 . Let X =B°xS' be a solid torus, =3xSt <oy ., NHNWNX\%&O ax
We shall denote the corresponding elements of dus.v and nuAMv by
the same symbols : ¢ , 3, 7 , ¥ . The manifold S(g,e) is glued of
¥ and N1 so that the loop t is glued to 7 and the loop f3 is glued-
to -t

2.3. PROOF of the theorem 2.1. Our main purpose is to construct

a Kleinian group H=H(g, 1) such that RHI/H= MCHD is
homeomorphic to S(g, 1), where g=12 . A fundamental polyhedron §
for action of H on R(H) is homeomorphic to a solid torus and
satisfy the following properties:

AvaNOOMOMetEn?NdmOVNw.O‘.N»VVO ~NW‘O~‘
R, Q , lie on Euclidean spheres in ®® and they all are topologi-

cal annuli. Two neighbouring faces (which are successively situated
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in this chain of faces) intersect each other by Euclidean circle
all other pairs of »..Nnmw have empty intersection (see figure 1.
Faces of & are vw:.@n_ by Mobius transformations L O — O.

w ‘R lb. seres Ln Ow!.vO\Q , mm lenvkw which NODOEDPO 0_..0 group H .
rmv x Um a point of the circle QN R , x =B~ .k R : Cx J=

o 1 g 11 1 1 o
mk»‘wuuﬂu«ovm Ou) k- and so on, Xmumh B ua...omk .w-uﬁx de RnNn Q.

g’ g 1 o g 1
<b> We require X@ to be equal x, and the sum of dihedral angles
of the polyhedron & to be equal 2r . Then % is a fundamental domain
for the group :HAh ‘w o s A, mhywu —L»wu_l

9
1 > . To see this it is mﬂﬁhnnuwvr to no:r—:cm Q...w vo~<rwn~.0: ¢ to
t = .
he hyperbolic space M um.f = *AR- s X, s, X‘u. x> 0 } Ceach
sphere is continued to geodesic hyperplane > and then apply the
Poincare-Maskit theorem on fundamental polyhedra [ Mk 1].

Let Q be a simple closed curve on O which connects points
x and k o
o

x Qnuhnﬁﬁuv 5 »\»H%»O\»u (see the figure 1). By analogy we

B A (x ), curve y ¢ R no:ﬂwnvm the point }nﬁuﬁ ) with
1 71 70 1 1 ©

construct curves DN. Qm. v, u\m > e Qm , QW 5 Yo » vi@ . Their
union 7 is a simple closed curve on 3%.

(c> Let us suppose that the linking number of the curve n and the
axis of the solid torus $7\¢% is equal |e|=1. It is easy that this
condition is equivalent to the following one:

the loop » is homotopic on 8% to the loop t+ k , where t= 0 ial b
and the class [ k] generates the kernel of n Qwavl.vn (4D ACSn_mw.
appropriate cheoice of orientations on the WUO<@ Smbﬁucﬁwn loopsd.

2.4. Now we are to show that conditions (ad>-(c) are sufficient
for the group N uniformizate the manifold S5Cg,1. -~

Let T'c® be a torus which is parallel to 3%, ¥ be a component of
#\T’ lying between 8% and T'. The manifold MCHI=RCHI/H is
homeomorphic to the $§/H. Let q:¥ — M(H) be a natural pro jection,
N=qC(F> , B=g(3’D> where B’ is a loop on T’ paralel to » in 3\J¥ .
The manifold 3 is homeomorphic to T x$' and the manifold MCH> is
glued »f M and the solid torus MHOAM/ ) essentially in the same
way as in the item 2.2 (where we put |e|=1 >. Therefore we have
MCHY=SCg 1.

25. Construction of polyhedron & in the case g=12, e=i.

Let us notice that of the twisted strip P- (figure 2> the linking
number of the boundary curve » and the "middle line" A is equal to
1. On the same figure 2 the strip PN is drown so that it is

equivalent to P» and has no overlaps .

M
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Figure 1

Figure 2
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Our aim is to cover PN by spheres so that the conditions (a)>-(c)
of the item 2.3 are satisfied.

We single out two parts of the strip PN : the part hm which is
contained in the horizontal plane [’ and the part P.n. on which the
middle line A lies in the vertical plane [1”. Let ! be the
intersection I'N I and A'c 1’ be the axis of symmetry of
the substrip FM , O=lNA‘. We shall consider I and A’ as a
coordinate axises on the plane 11’.

Let O- and On be points on the plane [’ with coordinates (0,1>
and <(2,1> respectively; ~»n:, is a straight line which pass through
points O. and 0N Next we put a=n 8, £=n/24 and point O»m:. has the
coordinates (1, 1-tgCo/22).

We choose the sphere O» to be a sphere with the center O- and
radius r=tgla/2)/cos(e/2> (the same letter O_ will denote those
face of the polyhedra & that lies on this sphere). Spheres N\» , Ow
, R and Q_ arise as the result of rotation of the sphere O» around

1

2
the axis O.N_. with the angles o , 2a , 3a, 4a . By analogy, spheres

N»~ . O.»m . wwn W:n D»N Nu.»mmmﬁvvmmec:.on,r_._mdoem.vwosowo
around the axis Ow_. with the same angles (see the figure 3>, It
is easy to see that angles between the neighbouring spheres are
equal to £ and nm)a»\ou,u of Nu and 0» are lying on the axis 1l . So we
have construct the necessary ‘covering” of the strip hw

Let ,\. be the inversion in the sphere Q and o, be a symmetry in

+
the plane that passes through Olnr and the center of h“ , then we put
huﬂquf\u. Similarly, let Hu be an inversion in the sphere b» » m»
be a symmetry in the plane that passes through O”. and the center of
Q° , B =6 I .IL is easy to see that 4 (Q >=Q' , B (R >=R’' ,

1 1 8 4 1 TaTg o4 11 1
4 QN R O=R'NQ and so on.

14 1 1 1

Now we are going over to the consideration of the strip L” . Let
A“cl]” be a straight line orthogonal to ! and passing through the
point O. We shall consider 1! and A” as coordinate axises on [1” (see

the figure 3). Let O_=(2, 1D , O =(1, 0D be points on the plane IT",

3 .
O“. B O.M be straight lines passing through Ow , Ot orthogonally to
M. Then the spheres Ww ) Ow , hu yeeer Na N Ou arise as the result
of the rotation of ON around OM. with angles a , 2a , 3a ,..., 11a ,

12a . All these spheres are orthogonal to [1” and have angles of

intersection equal to & . Finally, the spheres R , Ow and Nu arise
5

NM»\Tmﬂmwcwrowrrmﬁovwrwosonm Ou NGOCJQ OM. t:\TWDm_mMDuND.

3 . The center of the sphere Nu lies on the line 1

13
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The system of spheres 00 , N“u ooy O.: , Nu» is obtained of the

»..m:.t% Onn . kwu Ow , Nu ncmOordwmv\:d:.wcuéw:r:w::m?.
An angle between any two neighbouring spheres is equal to £ . The
intersection OXRO;V N ... N ext Qm-nu is precisely those

polyhedra & that we were looking for.

Really, the sum of it‘s dihedral angles is equal to 48c =2n. The
generators LN . wu veurs h-n s _w»N may be chosen in the same way as
A and B : A =0 oJ , B =8 oI where I and J are inversions in

Y 1 v T 19 v 19 1 s v
O.f and Np , the transformations o, and & are symmetries in the

1
euclidean perpendicular bisectors of the lines joining centers of
OAr s OM and Nw ‘Nw correspondingly.

Let. x € O»D ~» be the points closest to ON . It is easy to see

that [ 4 B Je.elAd B ]Cx D =x_and the curve n on 8% (which
12 12 1 1 [} o
is constructed accordingly to the item 2.3> has a linking number 1

with respect to the axis A of the solid torus $%& . So the group
H=H(12, 1) have been constructed.

'2.6. Here we shall demonstrate that for any g and e (such that
1<|e|< (g-1>/11 ) there exists a group H(g,e) uniformizating the
manifold S(g.e) . Let H be a subgroup in the group H(12, 1D of
index j . Then we have H=H(11j +1, j> by the Lemma 35 of [Sc] and
the Riemann-Hurwitz formula. Therefore, for any given e=j > 0 we
have constructed a group H(g, @) with g=1le +1 or equivalently
e=Cg-1>/11 . So to complete the proof of the theorem 2.1 we only
have to construct the group H(g,e) for g= 1le + k for any k > 0 .

Let’s denote by IT the euclidean plane that pass through the line

~» orthogonally to I’ and let B be those component. of ®R*\I1 which

contains the sphere O»n , next. we put fi= MXow> and B= BU{(x> . The
hyperbolic transformation mkuo‘wnou o :.amhav wnu we denote by h .
The fixed point set of h is the intersection of the straight line

~n gﬂ»\ronuﬂnuwnnﬂ.t:\rno_i\Wﬁ Ou N—JQ#N&CM ulﬁthhn&h\Nv

It is easy to see that the sphere nis precisely invariant in the

group H(12, 10 with respect to <h> .

We can choose a subgroup H of any prescribed index e in H(12, 10

Figure 3
such that H > (4 » B , A4 . B > . So the group H is the
14 11 12 12
result of Maskit combination of groups { L: B w: . Luu . w.u >
¢ and GC 11e -1, &) .
To construct a group H(1le +1 +k, &) for any k> 0 it is

sufficient. to replace the subgroup { k»» , w: B h.m . w»u > by a
free fuchsian group ﬂn,n;xv of rank 2(2+k> such that

14 15
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¢1> the circle C is invariant under the action of this group,

F
zizeky nAuer ’

(3> the ball R*\B is precisely invariant in F

@> <h> c [F

with respect
2(z+k)>
to <h> .

The groups F and G(iie -1, e) satisfy to conditions of

(2+k>k
Maskit combination theorem (Th. 1.1> with amalgamated subgroup <h>.

It is not hard to see that the group Am.u.norv ., GC1ie -1, e >

uniformizate manifold SClle -1 +2 +R, e)= SC 11e +1 +k, > which

is glued of stxx and S$'xT . For more details see & 3,
zZ+k 11@~-1
items 3.2 - 3.4
So the theorem 2.1 is proved. . QED.

2.7. It should be noticed that, for the extension WA%. &) of the
group HCg, e into the space H* , the manifold H* ﬁﬂ%.m.v is
homeomorphic to the plane bundle over hm with euler number e . This
follows from the next considerations. Let’s choose a fundamental
polyhedron & for HCg.,e> such that 8% consists of annuli lying on
euclidean spheres (c.f. the item 2.3> . The convex hull 3 of & in
H* is a fundamental polyhedron for the action of Emh.mv in H*. The
polyhedron % admits a natural R%*-fibration which is invariant under
action of wﬂﬁ. e> . This fibration projects into fibration of MC
HCg, e)> = H*u RC HCg,ed) X/ WAR.OV which restriction to @&M(C
HCg,e) D is a circle fibration over S(g.e).

So for any g and e such that 0< e <C(g-1>/11 the fibered space
Wﬁm‘. e) with the base m.m and Euler number e admits a complete
hyperbolic structure <c.f. [G L T 1, [ Ku 3} >, however we wouldn’t
go into details.

2.8. COROLLARY 2.1 . Any Seifert. fibered space with hyperbolic
base is virtually conformally-flat die. it has a finite-sheeted
covering space which admits a FCS D.

ProoF. It is sufficient to consider only orientable Seifert

manifolds M with a non-zero Euler number. There take place the

short. exact seguence
®
ullNlIvJ»mKullllvm.llu

where F is a discrete subgroup of Isom( * >. Hence the group F
contains a finite-index subgroup .rno isomorphic to a»A.Wm ) where gz
12. The group Oouﬁyunﬁn_u has the presentation

: . =[{b ., t)= . b c.rfa
<a, . b e a_ - Om Lot Hnr t}= [ , wu HQ» .u { o
b ] vt %=1 > , where o0 . If we put. ¥=t then the subgroup van
9
: . , b 1= h. E
<a B a Gm LT HQ— . UL QO Qu 7 > has a
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finite index in n_nxu and defines a covering Z.uulv M such that Ro
admits a flat conformal structure ( due to the theorem 2.1). QED.
2.9. Applicatiop to guasiconformal groups.

We remind that the group I” of homeomorphisms acting on s” is said
to be Cuniformly) quasiconformal if there exists a number K< o
such that each element yel” is K-quasiconformal map (see { Ma}>. In
papers [ Tu], [F S], [ Ma] examples were constructed which disproved
the conjecture that any quasiconformal group is conjugate to
conformal one (via a homeomorphism). Articles [F S] and [ Ma]
provide discrete examples of such groups.

Below we show how to construct an analogous example of action of
the group N:x :-Ava on §7. Let H=H(12, 1> be the group has been
constructed in the theorem 2.1. Let ¢ :MCH)— M(H) be an order n
dif feomorphism isotopic to identity ¢ it exists due to $' -action
on  MCH)= SC12, 1> > . This diffec- morphism admits a lift @ :

RCH> — RCH) of order n . The restriction of N to the compact
fundament.al domain & of the group H is smooth and, hence, is
K-quasiconformal map. For any hel we have S.NI p-h , therefore the
map N is K-quasiconformal itself. It is sufficient to repeat
considerations of BMaskit [ Mk 2] to prove that M. admits a

N
homeomorphic continuation f to the whole sphere $?. Furthermore,

considerations of L.Bers [ Bs, Lemma 2] imply that the map f is

K-quasiconformal. The group =< H, f > is isomorphic to Nsx =uamm >
and defines a K-quasiconformal action on 5% we may apply above
reasoning to construct $*-action on $? which is :lwnﬁ<.ﬂu,nv5¢ and
LCHD is fixed-point set for this S'-action. Hence LCHD is a tame
unknotted topological circle in $? and the homeomorphism f is
topologically conjugate to some euclidean rotation. Any element
of I'\<f> is "hyperbolic" (in sense of [G M]) and hence is topologi~ ¢
cally conjugate to some mobius transformation. Consequently any
olement of I is conformal up to conjugation, however the following
statement. holds

COROLLARY 2.2. The group [ is not topologically conjugate to any
subgroup of gm .

PROOF. Suppose that such a conjugation g exists, then under the

-1

action of the group G=g-I-g -nﬂuu the euclidean circle Fix(g*f*g

is invariant. But the manifold Iﬂh}l.%n- > is homeomorphic to M
and has a non-zero Euler number. However this contradicts with

existence of H xR structure on the manifold M(g-H-: ra *. QED.

17
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For another interesting example of quasiconformal group see
the item 65

COROLLARY 2.3. Let M be a closed
lic base. Let I” be a Kleinian group such that M=Q /I, where O is an

Seifert manifold with a hyperbo-

invariant component of I" , and I acts freely on Q.. Then (=R(I") and
the limit set L=5? \n is a tame unknotted topological circle.

PROOF. Proof follows from the proof of the Corollary 2.2 (see
also [ Ka 1] for the case of zero Euler number). QED.

This Corollary is answer to some question of Kuiper [ Ku 3].

2.10. Flat conformal structures on manifolds SCg , &) , ex0
provide us another interesting example of pathology -
disconnectedness of the moduli space CCM) of all FCS on the
manifold M=S(g, &)

. Definitions of topology on this sSpace may be -
found in {L}, [G C E].

Let v(e,g> be equal to [ g-1/ 11le] - the
greatest integer < (g-1>/11

THEOREM 2.2. Let M be a manifold SCg, e). Then the space CCMD
consists of at least v(e, g) connected components,

We drop here a detailed proof of this theorem since it would lead
us far away from main subject of this paper. We only indicate below
(g, e structures on M which lie in different components of CCM)

Consider the set of manifolds &= {SCn-e, &> 0 <n £ (e, gd }.
All manifolds of € admit uniformizable FCS KJ , due to the. theorem
2.1 . It is easy to see that there exists a covering p :SCg, e) —»

~

SCg, e*n D and hence the structures RJ lift to structures XK
manifold SC(g¥® o) Then the

on the
n ~.

holonomy groups of the structures R:

are groups H(g, n*e) . The groups H(g, m+e) and HCg, n*e) can not

be deformed one to other in the space of all pseudofuchsian grbups
Gf  n#m J. Therefore, results of [Ka 1], [Ka 2] imply that the

~ ~

structures K and K
n ™m

e in different components of CCMD.

& 3. Some auxiliary results and constructions

In this paragraph we shall construct some Kleinian groups playing
role of "building blocks"
3.4. Hyperbolic Dehn-Thurston surgery.

in proof of the theorem 5.1.

Let N be a compact hyperbolic manifold with toroidal boundary 8N
Hu...C...C u.r ) torsion-free discrete group 'c PSL(C2, C) uniformizates
intN and .oo“:unkvl Fc PSLC2, € is a natural representation. Let
De (I Mtoaﬁnnﬂ»\v. PSLC2, €©)/ad PSL(2, C) denotes the deformation

space of the group I' . The following result is due to W.Thurston

18

[T, Ch. 5, Th. 5.6] (see also [C 5] [N 2Z]),[Ka 4]>.

THEOREM 3.1. The space Def(I") near the point mbou is a smooth
complex manifold of complex dimension k . Furthermore, for any
collection of prime elements :.rm n»ﬂq..-.vﬂ nunZv , =1, .., K one
can find a number £> 0 such that for any 7 e [2-¢&, 2] , .ﬁnAﬂ».....
T 2 there exists a ﬂovﬂauusvmonoa P AZvlv PSLC2,L) with proper-

3\ {tr .Oﬂﬁzwv_ld and .0 depends nO:vu_.E.u:w__v~ on T, b ub

ey
Let 4_.u t = 2+cos _N:\:_ t_..mn.m a sufficiently large vom-v:ﬁ

integer n me one and the same for all i ; NCn)= Dﬁﬁ.u . Then the
group [(r) is discrete (since some finite-index subgroup of it is a
holonomy group of closed hyperbolic :-N..anomnv. Let £ (i, n) be a

common axis of the elliptic element u, n)= P, A: J and the loxodro-
mic one v, no= D AC 2, where : Au. J IA.: \«GAC > . Also we denote by
xXC ¢ i, zv )= *thI ch d(x,¢ As. :vv < ﬂ\ﬁOh o}
&i, nd

» ¥ be different points of $° and ¢ be an arc of a circle which

the cone with

the axis and the vertex angle 26 . More generally, let x

There exists a mobius transformation ¥ such
RQQ. 6>

and the vertex angle 20 .

connects x and y .
that y(x> =0 and pCy) =w . Lot be the euclidean cone
with the axis p<Z > . Then the set (¢,
8= Ylamaom«v mvv.,,tw—._ be called a cone with the axis

K€L, 8> will be denoted by K¢, 9.

{ and angle
6 . The boundary of the cone

LEMMA 3.1 For any real 8c €0, n/2) there exists a number ng
with the property: if y, €"(n) is such that v KL Cm, 2, 8N
K Cn, 1)) = ©®  then stabilizer of
the cone X(£ (n, i), 8) in the group Fnd

i=j and YJm At.sﬂ:u N Cen:uv =

PROOF. Suppose that the statement of the Lemma is not true. We
can conjugate the group 'n) in PSL(2, C) to obtain a group Tnnzv
where the element CMA:v has the fixed point set {0, o ¢an element
of the group I" <nd> conjugated to ye I'h) will be denoted by w\l >
Evidently we have lim :ﬂm:v = lim Cﬂﬁzv =1 e PSLC2, ©
YJQA W n, 33, N X L (n, 1,6) = B for infinitely
L dC ¢ i, no, v\ym

Since
we have

many n- s then (up to a subsequence) we obtain

CJj, nJ )< C for some C< o which is wanmvmsamsv of n . Hence there

exists a sequence Gim 4: mzvv -} Acym:yv such that for some point ge

\-A.F n) we have d(c YIG\QA&. nd>, g)< C+1 . Therefore the sequence

n o nlﬂ&. no no:<m_~.nmm to some limit line and !im & =1 , where

n *
e = hi?izﬂﬁnv ﬁn Y v . So for sufficiently large n the group «CJ.

J
e > is DOﬁ m_mz.@:»\m:,% and |tr C” —q i+ |trc( cr. mnuv - 2] <1 that
n Tn

contradicts to the Jorgensen inequality [ Be, Ch 5] since the group

19
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r*> is discrete. QED.
3.2. Relative Euler class.

Let ¥ be a compact orientable surface with boundary 8I= D»C:.C
D., , M=Ix $' is a trivial fiber bundle over I , O 9T —M is a
partial section of this bundle, o C‘w-v =0 < oM.

DeFiNiTiON. The Euler class of M relatively o is equal to the
ﬂtOnAqu » where ouﬁQ ) is the first obstruction for continuation
of ¢ to the section T—M , Ouﬁocm IuﬁM. ax; :nﬁWuvuu. Z <(the last
isomorphism is determined by the choice of orientation on I and
$'>. The corresponding integer number e(M, ¢ is called the Euler
number of M relatively to o .

It is not hard to see that if ¢ , o' are sections 3 — M and
e(M, = e(M, o') then there exists an automorphism f of the fiber
bundle £x $'— T such that feo= o' . In what follows recently we
shall denote o(d ¥) by o also. More geometri- cally e(M, o) may
be described in the following way. It is easy that mQ»u....: mQuH =
e(M, od-[t] , where [»] is the homology class of the loop » , ¢
is the fiber of the fiber bundle ¥x $'— I (orientations of £ and t
are supposed to be fixedd.

Let p M -+ M be a standard n -sheeted covering over M (see the

item 13>, o 85 — M be a lift of o 8 — M . It is easy that
oM, & LU F )= eCH, o L. U OO Let M, M, be a trivial
circle bundles over Mu , MN N 0\.,“ QM.«'vxe be sections, the
manifold M is glued of Z» and Rn along some boundary
components as follows. The fiber is glued to fiber (preserving the
orientation) and a section is glued to section with change of
orientation, 6c M is the set of loops remained after the gluing.
Then e(M, &)= e(M .Q»u.v e(H .oxnv .

3.3. Relative Euler class of Kleinian groups.

Let e=1 and G(10, 1) be the group have been constructed in the
:.m.-: 2.6 (other definitions may be found there also), H= H(12, 1.
The cylinder M\ Fix(h) projects onto incompressible torus 7T under
the covering q: RCH)— S5(12, 1). Let & be an open segment of the
straight line u» (see the item 2.5 > bounded by fixed points of
the hyperbolic element h. Next we put o= @(¢o J. The torus 7T di-
vides M= S5(i2, 1) in two components Knu..%-xMN and J(10O= %»XM»O and
it is easy to see that o can be obtained as an image of a section
WM-OI&S&»OV . Evidently we have QAZ- , 29=0 and hence e(NC10), o

=1 , since e(M , ©=1 . The preimage of N(0> under projection g
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R(H)— N10> is the complement in R(H) of the orbit G(10, 1)-8 .

In this situation it is natural to call 1 be a relative Euler

number with respect to the pair ¢ m. o). More generally, let G be

a Kleinian group, ?» veees 33 -collection of non-conjugated

loxodromic elements of G such that: (1) there exist cones X = X(¢
13
».rfv. mrv which are precisely invariant in G with respect to <h >,
i

i= 1 ,.., m , 2> orbits of wxg are pairwise disjoint, (3> the
™
»
manifold . M (GO= (RCGON\ G- C wAev\Q is homeomorphic to MXW». where
=1
£ is a compact surface, (4) 3».... .ram [G,G] . Let o c K = 8%
13 1 1

be an infinite arc which is invariant under Arfv , =1
m
. . . ~ *
o={_Jo,, o is projection of o to M (G). The orientation on o is
i
1=1
given by choice of 3« -generators of their fundamental groups.

B

DeFINITION. The reletive Euler number of G with respect to o .
is the number e(G, M= e(M (G), o.

ENZP_N.A 1, We suppose that the orientation in $? is fixed.

REMARK 2. For the group G=G(10, 1) we have: m=1, R-uﬂu/ FixChD,
T»HJ. Q»H:\N. < ﬁ}»yﬂ C nB (definitions see in the item 2.6)>.
3.4. Some properties of Riemannian surfaces with boundary.
Consider a compact surface S <(with hyperbolic ametricd> which is
“pants" [ Ab, Ch. Ii}, i.e. 85 consists of 3 geodesic curves and
:»AM. 35; 2>=0 . It is known that S5 is uniquely determined <(up to
isometry> by mn . NN . hw ~lengths of it’s boundary curves Q- , o

Qu .—.‘Cn.c?wu,q:nvu,w‘n.on,g% Amn . «s . «w vm Aum...vu v—.:wn,ﬂm.xhwr
corresponding 'pants" hu.wﬁ«— N nn . hwv [ Ab, Ch. II, & 3}.

DeEFINITION, If o.»n 85 is a boundary curve then the w- collar of

P

Q» is the set {xe S5 dist(x, U< w}. If a collar is homeomorphic to
the annulus, then it is called to be regular.

Under N»l« ® the component Qun 8S is degenerated to the puncture
(which is infine distant of any finite point). Hence for any fixed

o< m~ , £, w <o there exists A >0 such that for all 0 4- <A

the nC~1<wm d < WWAN- s mn s mmv has regular w~collar.

LeMMA 32 €<a> For any finite w , { 20 there exists an integer
WOHWOAE. ¢ D> such that : there exists a compact surface MQ of
genus g and one (geodesic) boundary curve which has the length ¢
and the regular w—collar.

(b> If w=0 then NOA.E. Lo =1

ProoF. Firstable we are proving the assertion of (b)> Let S= S{
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, £, ¢ D be "pants’, o= o_»n 385 . The necessary surface of genus 1
is obtained of S via gluing of it’s boundary curves Qw » lu . A
surface of arbitrary genus can be obtained of S by consecutive
gluing along o, and Qu of 2¢ pants of the kind SC¢, ¢, {D
and after that - pairwise gluing of 2g boundary curves. So the
assertion (b) is proved.

Consider the general case: w 20 . By the remark preceding Lemma
3.2 , for some nelN there exist the pants SC&n , ¢, £ D such that
a.c asct/n , £, £ > has a regular u~collar. For this surface we
construct a covering S—SC&n , ¢, ¢{ > such that the ioop o_n is
n times covered by a component ac 8S. Then a length of d is equal
to ¢ and the loop d has a regular w-collar in 5 . Denote the

genus of S by h and the number of it's boundary components - by

m . Due to the assertion (b) of this Lemma we can glue to each
component of 85S\d a surface of genus 1 and the unique (geodesic)
boundary component of which has the same length as 3 . The

obtained surface I has the genus g = h+m-1 and precisely one

9,
o
boundary curve ao which possesses a regular w-collar.
If we exchange some glued surface of genus 1 by a surface of

gonus (g-g +1> (due to <b)> then the constructed surface I will
o 9

satisfy the assertion (ad of the Lemma. QED.
3.5. Deformations of Schottky-type_ eroups-
Hers we introduce some notations: >-IANMﬁ 2« R}, Onn .wbh

is the circle of the radius R , this circle is provided with the
counterclockwise orientation. Let us suppose that the positive
integers r22 , m , s are given. We put R= 10m+5 . Next we
construct a Schottky-type group H < amu which has r free
hyperbolic generators and s parabolic ones such that:

(1> The disk Dn is invariant under ¥ .

(2> The hyperbolic generators h are conjugate in .Eu to

i

element he G(10, 10 (see the item 3.3
(3> The Euclidean radii of the isometric spheres of ?.— and

parabolic generators 0k igr , j<s) are equal to 1/8B
-1

(4> This spheres are pairwise dis joint except of mnnu.v , Ko ">

which are tangent (=1 ,.., s> . ’
(5> There are no isometric spheres of this generators between
Ith > and HSH.V ¢i=1 ... r) (see the figure 4>.
(6> The element Rt Hnu.,:.ou.kn.:,.?» belongs to [ H,H].

r+1

¢7> The Euclidean radius of the axes >Arevn Euubn of the element

22
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Ia.. is less than 1/8 , i=1 ,., r

¢8> The Euclidean distance (dist) between any two neighbouring

<on Oiv isometric spheres (except of :n“» > and mnruu ) is less

O N

I(c!)
{JA(k,)

\E

AR
HAP\TV NcT Nmn\k
/ H:euv n»\i 1 )

Iccey)

Figure 4

" TCL))

~__ G~

The group H may be easily constructed by means of the
Klein’s Combination theorem (see §1). So the domain

5

r e

~1 -

qu Extchdu IKh D N D mxeannu.vc I

is a fundamental domain for action of H in s It is easy to see

> is precisely invariant under <h >
r+1 r+s

in H , this arc will be denoted by ¢ C(h 3. More than, the axs

r+1
ACh JcA  of the element h and all strip in A_ between A(h J
T+1 R r+1 R T

+s
and { Ch ) are precisely invariant too.

ﬂfﬁ
Let KCh d= K¢ Ch >, 8 be the cone with axis ¢ (h
1+~ N.o.h WQI

small vertex angle & that <i> 8<n/2, (iid the euclidean distance

dist( X¢h D, L Ch
red et

dist(z, hﬁr:uuu is equal to w=arch(1/ sin(8)) for any ze wmaﬁ?wvuvD

AL We shall denote the hyperbolic length of ACh yuv\;\vf@»v by ¢ .
r

It is easy to see that the elements h_ have precisely invariant
1

that one of arcs Ow/m.mxm}

) and so

)) i=s less than 14 . The hyperbolic distance

cones uﬂ.r,v with the vertex angles n/2 and the axises lying in Oz
We shall need the following result of AWeil [W]. Let G be a
Lie group and I” is it‘s subgroup generated by elements Y, s Y, r
¥ such that v\».:..v\vnu
THEOREM 3.2. Let us suppose that HO¢, Ad>=0. Let W:G"—G be the
map r\.‘mﬁn:: ij — g g Then the restriction of W to ad(

QvAN»vx:.x NaAOVAYJv iz a submersion near the point AY» sy D
n
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ReEMARK, For a semisimple Lie group G the condition :OQJ. Add=0 iw
equivalent to rrw next one: the centralizer of I in G“is finite.
COROLLARY 32. FmP G be the Lorentz group SOCN,1> with a metric
_ ’ _ N hvo H— G be a representation such that .antv has the finite
centralizer in G . Then for any sufficiently small ¢ , for any
collection AN S N Jde G which is s-distant of Ab nn D s
= An > vrm«,m Oimrm a representation P, :H—G such *\VN# H
AuvbnﬂvﬂN y =1, 5

2 p Q..so-vu o n}:- _D <h vv Pq <h V_Amamv and po Q.Jv is
conjugate with b A? 2 in G, j=1 T (@ lim &Ce> =0
E—=p O

This result will be used twice. Firstable, let G= PSL¢2, © ,
(% :H—»G be the natural inclusion. Then <(due to the Corollary>
there exists a representation pH—G such that:
<1> \vﬁﬂevl nw y UAI~.+»VH?~+» s 1=1 ., & ;
(2> the elements h and pCh > are conjugate in G
(3> the group bﬁlv& has no N:_ invariant euclidean circle;
> dist ¢ I :w“v‘ 0.¢ 174 ;
> the Precisely invariant cones (listed before) after small
D:a,.—ol_uﬂwmmu.cn:h perturbation remain to be precisely invariant in
PCH>  and thuﬁwﬂﬁggv. OIVA 8 , j=1 .., r

The group pH will be denoted later by H <Cand elements DQ.. P
by v. 2, we shall denote the isometric fundamental polyhedron of &
by % since the initial group C(that kept Dx invariant) is
unnecessary in forthcoming considerations. The domain P is bounded
by isometric spheres HA}wnv and :nw»v » IS5, JSr .

Evidently the centralizer of H in san is trivial and we can
repeat the application of the Corollary 3.2. Let a positive €, be
so small that:

if _? <), .:h_ <e, _ﬁ Am.v , € _ Ahu » then dist( mﬁn e,
Ic +Ju > and Q«MR K: amt R: 5> ) are less ».?w: & =
178 *min{ radius I(c. v. radius mm} J, QA.U D> for all Mvvmﬁmm D,
D'c 8P which are :.:e:m..r—vs &Muo:-c. J=s, iSr }. More than, we shall
suppose that the distance between the points of Fix( J Cel) is less
than 14 and dist{ FixCh Ahvv 0 )< 149, i=1, .., r. :wu,w dc , D
and distC , D are m:nrnmmb &Mowbnmm

im shall consider only those elements <, Cg) for which :n <X
ICc™ *Ceddm 2 C <, <£> is loxodromic) and <, AMV admits an ~3<mﬁ,»m:v
n:,n—m. Fpﬁhv noacmn.ﬂ:aw to On under .nnlvo. We choose a smallest arc

meﬁmv among On/w.u.p.Xﬂn (£33 and put S7¢e) be the pair mﬁeﬁhv. «,Amvv.
i i
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Such elements <. (£) are called admissible.

So due to r?m Corollary 3.2 there exists €5 An such that. for all
€ Ah and admissible elements <. (gl with 07@ n:.ovozxv\ dist( X
ﬂ«— Ahu 31740, Ow X172 a Hmvn.mmmn..ﬁmgo: .Oh..ml gu may be found
such that.:

@ p Ch O=h o, > P e d=c (o>, i=1 ,., 5 ; (& _:g .

}.ﬁhv i Ch u_ An » J=1 o

Um_.._Z_._._OZ vmwon.ivgosm b satisfying all listed UHDUGHSWW will
be called admissible.

As the result of admissible deformation we obtain the family
Inubm.:&v , O &< MN » of the rank r+s Schottky groups that have
fundamental polyhedrons »(&> bounded by the isometric spheres of
cTeed, :«.Amv + 12 i€ 5, 1S JS r . The domain PCe> has the
following uvﬁovwﬁiww.

1) distC a%Ced> , O uﬂn\N » €2> the cones X< Ch AMV. n/2> are
precisely invariant ::nmu, <h Anuvn HC(e> , where (¢ Q. C£d)) are
euclidean segments Joining H#XQJ C£3), <3> the same iz true for
cones wAQuz > and mﬂnn.«AhVV. i=1 ,., 5, {4 for all mentioned
cones X we have dist(¥ , O’.vﬂ 172 and XN P<e) is a fundamental
domain for action r.., X of it s stabilizer. In what follows we shall

denote the element )3 “ by T »Anv .
T+

The manifold M* AI = nbnt N I ACQ«An <ed v Cm«ﬁr AHVVVV\! is
1= 4 &l
homeomorphic to $*xg » where I is a compact surface with r+s+1

boundary curves and zero gonus.

In the complement to vﬂnu, of distinct vo»:em P . p,E 5? we
introduce the standard conformally-euclidean Bmvznu which is
invariant under action of stabilizer of Amv s mv } in s? and has a
scalar curvature 1, This metric we ﬂomo-.wnﬁ ro any cone K=8% with
vertexes *bn » tuv .

Let & be a mobius transformation preserving % such that the
argument of the complex coefficient ACg) is not a negative number
(see § 1. Let xe N/A—ﬁ—. ﬁuv be any point and 4 be a shortest
goodesic segment joining x and g0

DeFINITION, The infinite arc vm )& is called shortest
neZ
directed arc corresponding to (K , g) . The orientation on v is

given by action of g.
The shortest directed arcs corresponding to nkﬂk_ﬁmuv B runhvv
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and (K(c (£)) , c () will be denoted by w_ﬁu and >
respectively. Because »hﬂwnmvul 1 under £—0 then W—ﬁhv is defined
correctly and depends continuously on £. The same is true for Yu.nmv
since &ﬁ}..hnuv >0 .
3.7. Some torus constructions.

Let OCP, ) be the circle with center P and radius v lying in
the plane ncR®. Let 4 n be a straight line such that dist(P, £ D
=r+ R , where r+R >0. We shall denote by T(R, > the torus
obtained from OCP, r) by rotation around the axis ¢ (see the
figure 8). Let 0: be the circle of the radius R=10m+6 (see item
3.3), line ! passes through the point O orthogonally to the disc
Dn . Let Q be any point of Ow , DCQ , 0.8) is the disc with
center Q and radius 05, that is orthogonal to 0:

The solid torus JY(m) arises of DC(Q, 05> via rotation around
the axds ¢ . Then $°\PCs> and orbits of cones WAA?.pﬁnvu, wAﬂn.‘Ahuu vT«
under H(&> lay in 3J(m) . More than, the circle On is so large b
that it is possible to arrange mutually disjoint balls mQu-‘ 8>
with centers P e0 and radii 8 , j=t,..m. S

i R+2

rmo n., U.wwvgcevwokumowﬁﬂ,ocnvNgnuom:r m.h MESG
N&n, nk is parallel to ¢ and Qﬁ.hsﬂvh B h_qu . Let us denote by

T’<(1, 1> the torus with rotation axis hg » m.“. is the perpendicular

from m.h to the line ¢, T<1, 1) is the torus, which is obtained
of T’'<1, 1> by euclidean rotation around the axs NF to the angle
n/2 . It is easy to compute that intTd,1> N Imd =0 9N...n these
solid tori form a link in %u with index 1 (see the figure 6> and
T, 1dc int B<P_ , 8).

On other -.-N_.L. consider the image of T'<1, 1> under inversion in
the unit sphere S(P , 1> (that tangents the T’'(1, 1> along the
large circle). Let .H.c_ar 1> be the image of resulting torus under
homothety with center F and coefficient 7.5 . An easy calcula-
tion shows that .Hta. 1< Wavu‘ 8) , IGMON int .H(Au. 1>=0 and these
solid torii form a link in $° with index 1 (see the figure 7>

Finally we introduce the following notations: the clockwise~-dire-
cted loop A N X(md> will be denoted by & . The directed loop
8=ap<Q, 0.5) is oriented so that the pair (3, 8> provides 83(md
with the orientation induced from ext( I(m)> (see the figure 8) . w

3.8. Hyperbolic Debn-Thurston surgery and shortest arcs.

Let N and T be hyperbolic manifold and discrete group of the

3

item 3.1 . Let B be open horoballs in [H which are precisely &
1
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invariant under A:rVOAC—vn I (see the item 3.1> , then we can
assume that N is- homeomorphic to Aiwm Ew/_‘Aw»C U wxvv\ﬂ . We

wgﬂamvovmvv~ "y the projection from Tw to N |

Suppose that B ={(x ., x_ . xJ: x> 1, x + ix € €, uz — =2+
1 1 2 3 E] 2 1

1

u. vz — N+ wo, tvmn,mlu\NANmA €uvM 172 . Let P ' = 't

bg~a small deformation of I' (see the item 3.1> such that o

T
F311% 4,1

(u =
B i
t»m:v.. Z— o z + 73 - There exist development maps Q:.‘ NeaH?

. - -1
such that lim QJ HQOH A:iv » ﬁlsvtu P 2T holonomy
n—aow
representations of corresponding incomplete hyperbolic structures,

The development maps may be chosen so that some component of

QJG.V is the cone K(i, no= KCZ Ci, n) , 8D , lim 6 = nr2, i=1,
M n Ne—p® n
»n . Let V be a loop on q.n representing element v of

the group I' , P(nd> be the component of d (V> which u..u“v.\w the
points x and CuA:uﬁva KC1, nd

"LemMma 33 Let w»(nd) be the shortest arc on KC(1, n> which
joint the points x , Cuﬁavoﬁu € K(1i, n) <(see the item 3.6>. Then
for all but finite ne N the arcs 1(n) and P(nd are homotopic

- on K(1, nd> (rel {x , C“AJVARVC .

PROOF. VWithout a loss of generality we may suppose that limit of
Vcn) is the segment [ (0,0,17, (Re wo,Imw D], x= (0, 0, 1.
Consider the line. ¢ (1, n) as the axis of cylindrical coordinates

in  H3\¢ <1, n>. Then for all but finite n the variation of angle

Pigure 7

Cof these coordinates) along arc V(n) is less than n . Now, the
assertion of Lemma follows from direct calculations in cylindrical
coordinates. QED
H\ﬁ\;y COROLLARY 33. Let u(nd) be a shortest infinite arc
corresponding to (KC{ (1, n) , n/g , C»n:vv ; let ﬁo be a
-t~ subgroup of ' constructed for a prime n due to the theorem 1.3 s
M.JVQAOV . Then (for all but finite primes ne N ) the
projection of Uﬁ:v to the manifold M(nd= AnIu/_Joﬁ:.v. «e, D Y/
_JOAEV is homotopic to a component of the lift of the loop V(D

_loﬂzum o

via a covering M(n)— int(N) .

JFleure 8 §4. Uniformizatiop of Seifert manifolds, II.

, " 4.1. In this paragraph we shall construct the groups & which
uniformizate Seifert components of Haken manifolds, The group ®
arises as Maskit combination of two types of Kleinian groups: G0,
1> which has the Euler number 1 (see the item 3.3> and subgroups of

H(e> which have zero Euler number (see items 3.5, 3.6).
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4.2. THEOREM 4.1 Let eeZ , g, m , s/2 € N be numbers such that
2g+ m- _m._ >0, aﬁwﬂbvu be a sequence of directed loxodromic
transformations indexed by the sSystem of all primes peN , 15 j<s
Let us sSuppose that %EB v“.vnbwuu . Then for all but finite p there
exists a Kleinian group C=®Ce , m , 5 , P < Sw such as:
<1> The group & contains s directed loxodromic elements Aﬂwvv
Possessing mutually dis joint. precisely invariant cones X t»m_\_..
vertex angles 3n/4 and the same axises as ¥V’ , 1< Js< .w.g.

(2> The elements <.._.vﬁﬁv and 4.._' are no...uanOOL in 50 » 15§ <s
(3> The group ® po a fund tal set & which contains the
solid torus %m/ intC¥Cmd)d . m,E.BFQH:..Ou.Ou PNX s a fundamental

i
domain for action of <¥'> on X, X A XmD =0 .
3 i i

- ® .
4> Let R (%) be the domain bﬂ@y/ﬁﬁ%m/“ﬁa U J %.>. Then the
) i

i=s
manifold M(®= R(® & is homeomorphic to $*!x R , where R is a

Gompact surface with m+1  boundary curves and genus

> £= (p-1Dg +Cp-1>Cm+ S3/2 -p +1 .
5> Let & be the directed loop from item 37, # < K = 9%. be the
J 3 J
shortest directed arcs which correspond to XK. , Y > Then the
2 3

relative Euler number ecM™c(®), B, U.U U S is equal to e ,
E

where .\wg. » & are pProjections of the corresponding loops m B 3
J

REMARK. The meaning of the condition (&) will be explained in
the item 55,
4.3. PROOF of the theorem 4.1,
Denote the number max(2, |e|> by r. Let’s choose so large prime
number Py that.;
(€25} mabovuboawa,s\ull -m72 ~or +1 wwoac. D
Here WOA » 2 is the function has been constructed in the Lemma 3.2,

I1=¢ is the length of the hyperbolic displacement h " {item 3.5
T

and w is the size of the collar computed due to the item 3.8,
p. 22, accordingly to parameters r, s, md>

44. Case 1 : < jsg positive.

Let S be a riemannian surface of g€enus o with s punctures
and r+1 geodesic geodesic boundary components {de. S is the
Nielsen’s kernel of Dz\?.o where .lo is a anorewvirvﬁm group of
the item 35> . Because S is an even number there exists a

regular p-sheeted covering w.lnvh such that § has s punctures
and each boundary curve of W. maps :Cmnvfxm;ﬁ It is easy to see

“

that the genus of S is equal to &' =l-p+sCp-1D/2 . We shall

Suppose that p> Py
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Let Aug. be components of Qw.. 1= j< (r+1)p. Next we glue the
following compact surfaces, with unique geodesic boundary

component, to § :Cad to each component of &M./Am.uc.:c mv..onv we glue

a genus 1 compact surface; (bd to the components G» PO G- we

glue genus 10 c<ompact surfaces; (cd along the component G«‘- we

glue a genus f(p> surface whose boundary has the length 1 and

possesses a regular w-collar ¢due to the condition C(es>>,

The resulting surface § has genus 9 +p >~ P tSlp -102 4+ Fipd
and £ punctures, the area of ..w.: is finite. The genus of W..& is equal
to W (see (#)). If we remove (m+1> disjoint closed discs from W_..

then we obtain a surface homeomorphic to ntR

4.5. Case_2: s is equal to zero,

We have rz2 , P=2 , therefore C(wed implies the inequality m.nhOvl
ﬁoa 2g+m-2 /2 +1 -m/2 -10r v%og. w) . Then we put Sm 5 S be the

trivial covering. Let .owbo . In the same manner as in the Case 1 we

glue surfaces of genus 10 to ﬁ.;...;da < 85 and a genus ¢’ (pd

surface (possessing a regular w- collar along unique geodesic
e

boundary component.)> is glued to b . The resulting surface &

r+d

has the same genus & as R.
Next. we put pmp in the Case 1 and pwi in the Case 2.
In the following items 4.6- 5.0 we shall construct via Maskit

Combination the necessary group ®. The combination pProcess
corresponds to the construction aof the surface w..» above.

4.6. Search_of_finite-index subgroup_in H(s >,

e EE LSt n TSIt 2RO X _Fubgroup_in_ H( P

Remind that iim —Qﬁﬁvun . Then for all but finite '] there
exist. small admissible deformattons n.h.ahvv of nL e H satisfying
the condition <d> of ¢3.5> such that the elements n'.wﬂnnun mn.._ﬂhvv.
J.ﬁhn.vu are conjugated to _I\..Hnbw. J=1,...,s. We ghall suppose that
it is so for all p> tnw F8

The fundamental set %nnnv is not well enough for the Maskit

Combination (along A:.fv > even in the Case 2. The source is
evident.- Rnrw.fnﬂvva %Ahvv is not a fundamental set for action of
<h > in this cone. Hence we are to change %Ah_uv,

r+s

Since P(e > 1s a fundamental domain ror H(z > then h Ahuum

P P r+d
:Tf Ahn D= S r+d)N (SCr+1)= Hn#»,nhn )m © .Hence the exterior of
Sr+DIUS Cr+1) is a fundamental set for the group AJ&» nhu >>. The

»:vmdmmmo»os RQQ..:-V. nr2> N Int( Hanm»aauvv/ Int(S’' (r+1D) is a
segment. VaV(r+1> which we glue to the set P(s > (mee figure 9>
3
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I, cert)

Figure 9

To save the fundamentality we have to cut out the orbit
H nhnv/ 1>¢V> from the set %Ahvv The resulting set we shall
denote by p° Ah > Properties of the group H{c > provide that
%* N P° Ah plas HASV » where JX(m)> is the solid rou,CMv of the »ﬁm:. 3.7,

Now tm are ready to construct the fundamental set. for the «vluvnmx
subgroup in xnn 2.

The surface .w is the Nielsen kernel of > 7H , hence the regular
cavering M.I-.w corresponds to a normal mcvnn.ocv H <« H of index Mv
The group Dhnlnv will be dencted later by H{p> ?

It is easy to see that the following decomposition holds
HCs 3= 1+HCpY+ ¢ (e I+HCp> + .+ Cc Ce 2P *p%s >
P 1 p 1 p P

N
Let PEC o= €, CE vvn (e e En 0L ¢ < p> be

dmvdmmm:émﬁcwm of oo:ucnmbnux nrwﬂmmm in tnh > corresponding to the
components of 8% Then each element ©.

J
invariant cone w«a% d=m (eCe v.vnﬂwaﬁﬁ 23, 1£2J° Sr. For all values

vommmmmmm a precisely

J'=r+1*j we choose a vw.mn»mm;. »chubdﬁ cone Xp > which has the
J
vertex angle n/2 and the common axis with An Ce .vvnawaﬁﬁ 2> . Al

these cones lie :. $\F An > and, hence, the noivsimvﬁ ﬁo the set

_u, rein 2 -
P e, >up® >N ¢ L K> v ) ¢ ¢ e Py

j=1 L=1 P
of the solid torus Xmd teo.

is situated inside

.3 mmmmmm.mmmmm-mmmm-mmm-mmmmmm-msv and_H{p>.
Let j7'< r+1. Then we put WAS vimXNQAﬁ 25N @XuﬁuﬂQA»vu be the
tsometric fundamental domain, muAG >= Omh VAATAS >3, HS the same
manner, for Jj'ar+1 we put WAS vl ext AMD.;».V C S'¢r+1)>, and for
J=FHQr+1> et w«s >z e (e vDa w«s > .
The fundamental mmﬁ r° nh v has moBm defect- the intersection

fad Cn v) xC nah 2 2 is not a fundamental set for action of

»
Ahpﬁhnv 2> in this cone, 25! <& For this reason we need the
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_vo@ >
~ \/
P< Ahvvv >= C 0 e vﬁmaﬂn ﬁh > P° Ah »
q=1
It is easy to wee that this set is a fundamental domain for

following surgery on . We put

action of the group < <, nh >® > in m«An An . ﬂ:ﬂvrovio_am. the set

- v:,f:

P(pd= vanu U C P e, Yo Y P<p>
l=g iz
is a fundamental set for the group H(p)

In what follows we shall denote the manifold
(RYCHCpII= RCHCPIN HCp>: U %ce ) sHCp>
3
by Z&Atﬁbvv. Also let us denote a shortest infinite arc
corresponding to Aknﬁ.v. .wv by v‘w
roups corresponding to

4.8. noaévﬂnomo.ﬂ of K-O:u

~

mmﬁm.mmwmﬁwmwnmw-mmaoh.

Let n be equal to log( _&ﬁ%v -1} 3, where AC > is the complex
nOOWﬂnnnnsv Ir 3 < IsomdH> »\70: n is the "length" of this
hyperbolic &mv—bnc:.o:v

Consider firstable the generic case : _m._N 2, ie. |e|=r. For the
elements Q. < J> r+1 ) we choose a riemannian surface SC(j> of
gonus 1 f.mor unique geodesic boundary curve of the length « (conf.
the item 4.5). If j=r+1 then we choose a surface of genus NAUV or
I’¢(p> (due to the Case 1 or Case 2 of the item 4.5). Let FCj> be a
Schottky subgroup of Isom{H’= R>c MW, such that SCj isometric to
t.he Nielsen’s kernel of En\ﬂﬂ.uv . Let $ € F(j> be an element
corresponding to HODOHNPO% of n < w.wﬁ.‘v J. Furthermore we put
>A$ dc RCFCjd) Uu a nO:..H-Q:—OSOP— segment. in o to ﬁskﬁﬁ 2, wanﬁ >
be P-..Q cone 2—6—.. the axis >A.u > and the vertex angle Ql:\w dn »\?m
case jJ#r+1) and a=mn-& (in the nWMO J=r+1d.,

When Jj=r+1 the intersection WAAGN n Eu iz contained in the
complement to the Nielsen’s convex hill NCF> of FCjd ; if j= r+t
then w?ﬁ.u. INNCj) lies in the w~collar of ONCJ). In any case the cone
mAASw.v is vﬂonuwohx invariant under Aﬁ.‘vn FCj. N

Surfaces of genus 10 (which have been glued to S D correspond to
r copies of the group G(10, 1>= F(j> , that have been constructed
in the item 3.3 , 1< j< r . We shall use r copies of the ball Bc s?
as precisely invariant cones waaﬁw >, where S = he GC10, 1) (see
item 3.3>, j=1,..r

In the exceptional cases e=0, |e|=1 we replace r-|e| copies of
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the group G(10, 1> by a fuchsian Schottky groups F(j). These groups
uniformizate a genus 10 surface in the same manner as F(i), i>r+1
(see the generic case). The vertex angles o in these cases are
equal to n/2 .

4.9. Construction of fundamental sets P(J) for groups F(Jj>.

By the choice of vertex angles for the cones mAABuv there exist
mobius transformations mu. which map QanAA.owu onto m:nwanﬁuv .
These transformations may be chosen with the additional property:
n.m maps NPPu,Dn»La.m fixed points of B to attractive fixed points
of ﬂ , 1€ j< 3A7+uu . Hence we have ( n‘ n.o = ﬁ.v m~ b Iﬁu . The
noaﬂns - QvAB >o= VAt.v i{s fundamental n,on, A.nuv . Then we put
PN maﬁﬁ J= uv;\aJVD QAA% J . Furthermore, let. us choose an arbitrary
».E..amﬁ:m:ew.— set P(jiOn ﬂ% /wﬂ% J)> for action of the group F(j) on
52 /ﬁﬁ&Vnwﬂﬂ J). So we obtain Prm fundamental set

PC = QvAﬁ >N RA% D U P s\ mxﬁ.ew.vuv
for action of the group F(J) on s® . This fundamental set is well
enough for Maskit Combination along A% >

Denote the manifold (RCFCFIIN FCH- Rﬁﬁ )/ FCj> by Z CFCj>

4.10. Construction of the group ®.

Let p be a prime number greater than L We shall combine the
following list of groups :

HCp) nuﬁuﬂtum F¥Cid o j=1 ay Cretdp .

The group H(p) has the fundamental set P(p) <(see the item 4.7).
The groups *.th have the fundamental sets P (j)= TC PG D
such that: Qu CiXNext ﬂuaﬂﬁ b)lal Qv CpINint KCp .vv is a n.gnwawﬂvmw
domain for action of the nﬂo:v 46% > . :m:nm the conditions of the
1-st. Combination Theorem are satisfied and the group &= ( H(p),
ﬂﬁ,u.vt, 1= j< A#.ruvm > is a Kleinian group and the set#

(r+15p (retyp
8= (PCpON {UJ xCp ) v LJ (PTCDON oxt (KCp )

is a fundamental set _Hnnvn», this ndocv.»m<mnm:ﬁ<. $7\% is contained
inside of the solid torus JI(m>

Next. we put ﬁ...vi Iuvﬂh v and wA_m X nhﬁhvvv . From construction
of the set & and :\mz_ A.‘w it follows that for the set ¢ the
assertion (4> of the theorem 4.1 iz valid. Next we are to verify
the property (5>. Due to the Combination Theorem we have: the
manifold M (® is glued of the manifolds M CHCp)> and M CFCHD, 1<
Js WA3+~V‘ All these manifolds are trivial Seifert fibered spaces.

The gluing homeomorphisms are lifted to the maps [ of the cones
3
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Kﬂﬁu . RAB ) . Hence, the fibers of these bundles are glued one to
Ov?.wn. At:.-.— preserving of orientation). Therefore, the manifold

Z (@ is a trivial circle bundle too. By the construction of & and
the items 4.4, 4.5, the base of this bundle is homeomorphic to the
surface R (see the item 4.1>. Here m+i boundary curves of R
correspond to the cones Nmuﬂv , 15 j< s and the torus IFICmD .

Now we are to compute the relative Euler number for the group &

We remind that in the item 3.6 the "infinite shortest arcs" V\un

NA? Ce v.v and m < NA< ) where introduced and we have

~

mcﬁm D BuLL mc xc UF d=0

ES T+
q
When we pass to the ﬁ..:.-nox subgroup in :Ah > the arcs ¢ ﬁn 3>

3\ v& , 0< g< p-1 , become shortest arcs nondmmvon—nuvﬂ to %u
i j

We vcv Wn m.w [ERR) W . Therefore the Euler number e( H(pD,
1 s -
i t Al are arcs of

\WC N U, NP:-V ) is equal to zero |u~\~c

mcnrnwg circles in S° , hence e(FC(D, m_ <y vv =0 for any j >
Je| ¢since F(j is a fuchsian group for such uv. If j< |e] then
e(FCp, L7y, )= +1 because F(= GC10, 1> (see the item 3.6

<

So e(®, = _O_ due to the item 3.2.

REMARK. The orientation of fibers of the manifold M¥@®> is induc-
ed by the orientation of the loop Be XM (see the item 3.7 It
is easy to see that this orientation is consistent with the orient-
ation of fiber Om.,,vrm manifold <10) (see the items 3.2, 3.3).

However we need groups & with negative Euler numbers too. For
this reason, let us consider the reflection J in the plane T
(see the item 25> Then J-h= h-J , J(B)=B and the group
G(10,-1>= J+G<10, 1>+J has the Euler number e( G(10, -1> , o
equal to (~1> , if the orientation of fiber is given by the map m_u
KCp d)— M= _Rnﬂ >, J=1 _0_ Then the group &= Q?Tw_v =
Atﬂwuv. ﬁﬁ&u _m_ <j Aaﬂ.&vb > UL *cG (10, -1, 1si sje|> vowmwmmmm
all properties of the group QA_Q_V but it’s relative Euler number
e(®, 3 is equal to -|e|> . 5

So, for all ee?2 we have obtained the group & such that e(®, d=e.
The relative Euler :E.:UQH e(S\Xm>, &> is equal to zero (if we
consider & AT m> Nm a trivial circle bundle with an ordinary fiber
8>. Then we have: oM™ «®, D»C.:C _\qu 6)=e. All properties 1>-(6>
are verified for the group ®.

The Theorem 4.1 is proved. QED

35




& 5. Conformal sewing of hyperbelic and Seifert manifolds
In this section we prove the main theorem of this Dwémnl_w.lnlull
THEOREM 5.1 Let M be a closed Haken 3-manifold with unsolvable

fundamental group such that in the canonical composition of M

from Seifert and hyperbolic parts there are no gluings of

hyperbolic components with hyperbelic or euclidean ones. Then some
finite~sheeted covering of M admits an uniformizable flat
conformal structure.
5.1. Two examples.
Before the proof of this theorem we produce two examples which
explain forthcoming constructions and illustrate arising
difficulties.

mummm-me|m. Let NgnM_x%u~ i= 1, 2 , where M.— are surfaces of

genus N.ekc and have connected boundary. The decomposition of Z
into direct product introduces in :»AwNeu a “"natural basis" (see '
the item 5.3). Let us suppose that the manifold M is glued of Z
via N.oroz.moiou.vzm:.. %WN»I.' WNN which is defined ¢ in natural '
bases) by a matrix J4e GLC(Z, 2> with QN»“» . If the numbers g
are sufficiently large with respect to _ﬂ.:_ then there exist ».?em
groups H(g, _QnLv ) Heg,, _Q:_u (theorem 2.1 ). These groups

uniformizate the manifolds
.Wﬂmnn. _Dnu_v. WANN , _Qnu_P Next we

dispose the constructed groups in Wu in such way that the

complements of their fundamental domains (that look like twisted

unknotted solid torid define a link of index 1 in- $°. It is not

hard to see that the group G= Hg, , la_|> * Heg , Ja,. |>

) ] 22 2 11
uniformizates the manifold M . However it is impossible to avoid
the condition fa

n»_ﬂﬂ (for the circumscribed construction of the

group G ). Our aim is to find a finite~sheeted covering over M

such that the corresponding coefficients a are equal to 1
21 )
Example_2. Let Q» be a torsion-free discrete subgroup of PSL(2,

. 3 3 s
>, pr H—s H \O»H Samuu is the universal covering, the manifold

EAQ»V is compact and contains a simple closed geodesic y . Let us
suppose that some component p < ﬁ-»AWv has hyperbolic stabilizer
<g> in Q» - Then » bhas an open e-neighbourhood QNAWV which is

precisely invariant under <g> . It isn’t hard to notice that the
. o ~
manifold 91 = SAan/bthava iz hyperbolic [ Koj]. We shall denocte

by € the euclidean circle that contains the arc wn .
Let Qw be a rank 2r Schottky subgroup of gw such that:

C1> the circle € is invariant under G_, (2> ge [G_, G ] 3> the
z z 2
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domain %w/n:thWuv is precisely invariant under (g> c QN . Then
the group G= AQu y QNV uniformizates a manifold M which is glued
of 3.. and Ix S* along the boundary tori. Here I is a compact
genus r surface with connected boundary. However only few sewings
may be realized in such way and the hyperbolicity of g is very
restrictive condition. Both reasons force us to waive of utilizing
Schottky groups with invariant circles. Instead of them we shall
use groups & that have been constructed in the theorem 4.1.
PROOF OF THE THEOREM 5.1

5.2. Suppose that the manifold M is glued of the oriented

Seifert components M , .. , M and hyperbolic ones M

i 3 343
xwtv . Because Mg (SoDuU (Nil> and the theorem 2.1 is proved, now

rer

we may suppose that M isn’t a Seifert manifold and there are no
components of type [0, 1] x T2 among Kelw. Let us agree to denote
i~th component of wzu U%. mgz._ and rrm.mmt:un homeomorphism- by
Al 1M —> 3 , whore Q_ﬂmv&uamwu and £, changes the

induced orientation of boundary (the manifold M is oriented. If

i< 3 , then those components of mxp which are glued to hyperbolic
manifolds will be called hyperbolic, and other components of sz

will be called Seifert. Any manifold a.:snzrv , 1> 3, is

uniformizated by a discrete group —Hn PSLC2, ©, int(C K,vu _Iw\ﬂ._. B

2 L2 3 30}

where M 2

5.3. Let © be the base-orbifold of Z.r , i%3 . This orbifold
i

is realized as umwm ?x“, x

has the boundary components mv: yor s Un.e . Let us consider the
orbifold OH obtained of 0P via n_cu._.un. with discs U.? {which
have one singular point of prime order p>1 > along each T‘:

The orbifold OM js finitely covered by an orientable surface MM N
the Eﬁrwvmn:\% of this covering is chosen to be even number.
After removing Uu;@wgﬂ.wm of - Ub..« from £ to‘ovvﬂw: a surface Mp
with even number of boundary curves, this surface finitely covers
the orbifold O.e .

In this situation the theorem 1.4 is applicable and there exists
the induced covering M.ex st K« . By virtue of the theorems 1.3,
1.5 we construct a finite-sheeted covering space of M , in
canonical splitting of which all Seifert components have the type
2 x mw»\ where £ is an orientable surface with an even number of
v”uc:an.< nr:.<.wm.,. If some K,p i< 3> is lifted to ._.uxH 0, 1] via
this covering, then this Tx {0, 1} borders with some Seifert
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component- Mux s' and we shall unite them.

The constructed covering manifold also will be denoted by M and
it s components - by z.e > we preserve the introduced notations for
sewing homeomorphisms and numbers of hyperbolic and Seifert
components too. We shall denote the number of boundary components
of M.rx%» by owl @.p,;u.p > where 3 is the number of Seifert

boundary components and Gp is :«.5 number of hyperbolic ones, all
these numbers are even. The genus of Mp will be denoted by g,
Without. a loss of gonerality we may suppose that for regular fiber
u,.< .wrx_. the loop \“_.WA:EV is not isotopic in RM to a regular
fiber :C. < m.ezg. C k, i€ 3 ) . Else, the manifold 3~ V] 3‘_. may
be exchanged by one Seifert manifold.

For a given number i3 we shall orient all fiber loops u < oM

3] i
consistently. If .wrx_. is glued with .w.vx. C I 3< j > then we put
i
u WA\JVAlF dc @M , where the directed loop <~u. > is
kl i} ij k1 i}
obtained of :.& via change of orientation. By the same symbol

:.C rvonou,ﬂwuvo:&:ﬂmhu.:o:oo% :nnz&.v will be. denoted too.

Let us consider a parabolic element :r~M.....~ which maps to u, €

nuaxrv under the isomorphism —n_.u“ n AZ_.u . By virtue of a

1

con jugation of ﬁp in Isom H® we can choose the element :5

POU@DRHNEM—NQOS :rrnu szt , ze T =3 umw . The second

gonerator of the group .:E.uﬂuﬂ ka—u is a parabolic element
Crﬁuu —z + €£. . Without a loss of generality we may suppose that

=172 < Re ¢ €r~vM 12 . By the same symbol v, we shall denote

the corresponding slement of J»Cﬂ.v as well as directed simple

i Tkl

loop on Wm.zu. and the corresponding element of :»A Rg.v
5.4. Construction of the uniformizable covering, I.

loop on sz_. . Analogously, C.f ACE.V denotes the directed

In this item we construct a covering space over M for which any
sewing map of Seifert components has the type of Example 1
Denote by QE > J=1 , .., b oriented components of the image

3
of QMh under the section Mg.lvM&x st If a component @px‘ of
J

wxu is Seifert then the loop Q.C. will be also denoted by C:.
DEFmNITION. The introduced pairs of directed loops Az.:. » Q.:v <
wku. €J< 3> and n:.f_. » C&v < WK&. (> 3> define the natural bases
for d-ampz.wvm Ze2 . .
The sewing map f= \h__.
to isotopyd by the matrix ACk, D= Aﬂvncf 1> e 6L 2, 2>,

*
\iﬁcﬁ » Cr_.vl Alk, D A:E. » in .

in these bases is determined uniquely Cup
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REMARK. For definiteness we put here j< U If I> 3 , then
a Ck, D= -1, Qn Ck, =0 and the matrix ACk, I> has the type
11 £

-1 a (k, D
12
o 1 )
(the necessary sign of a may be obtained via exchange w -

w ). So, for any 1i> wh, Mﬂ.@ loop CS. projects injectively to
the base I as well as for i< w_ and a relative Euler number of
Rk. with Hwhvﬂnr to C: -s can be calculated.

Now we are to find a covering space of M for which Qnqu , D=

1 for any kS 3 . Let us nm:ormwla.uu. fixed 1 , j, k, 1) the
sewing map \\” by fF . Then we put : Q,C = QN»A». 124 QC 2 O =
Qn»a? D on " m_ma_w:m.u of :Inam.exg.v ‘e:»nmrkvv . Therefore, we
have f,Cu wﬁ = Ak, DY <u o, 5 >, where

<k, 1> a (k, D
Ak, o= Hn:c”. pooa, raﬂwx._wv w

If 9 M is a hyperbolic component of mk._ then we put o = o
L |

¢ 1= j =3> . Further we construct a finite~sheeted covering 6_”
W.I.v ¥  such that the defining subgroups for restriction of Uh to
! . ! are Am.: > € 78> . The induced covering of Seifert
-:Wn..»m.oru.m will be ﬂ.w x id mu.ﬂ .Mc._x st M_x s, For hyperbolic
manifolds 3~ wo v,p,uv Wn_.m z_«l.v zd. be the trivial coverings.

I t—._ B W,:. < mpzh then no:..vo:w.:vw MH their vn.m.maﬁaam under
this covering will be denoted by :,& s Q: . Then by virtue of the
theorem 1.5 we construct a finite-sheeted covering space over M
which is glued of components of type m_ . The gluing
homeomorphisms AW« _”wv of Seifert components of ¥ emu.m an_mm.:.mn by
the matrices Nnm‘ J2 in the indicated natural bases A:: R QCv

So, we have constructed the covering space with necessary matrices

of gluing maps. For simplification of notations we shall drop all

~

signs ''~ " , preserving them only for matrices AC , ). We shall

preserve notations 3, b .. for numbers of components. .
5.5. Construction of the uniformizable covering, II.

In this item we construct the necessary finite covering M _ - M
(such that the manifold zo Nn«i»\m.g uniformizable FCSD.

Let us consider some Seifert component Zf of M.

Case_A. Let us suppose that the number me of Seifert. boundary
components of wzr is positive. Then, without a loss of

generality, we can suppose that v =0 <z wev , since a section

J I
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defined on hyperbolic components of 4% may be continued to all
B

M.i ||. L 3
N GUC»\ mel QNNA? 1 +..+ QNNAf m_.v‘

Case_B. If mpno then we put ez e( M , v U. U C«u )-
T 1 in 1
f

obstruction to the section of the Case A.

Notice that if for standard mvnlm_awm;\m& coverings M — M, i<p,
3 1

, ~
we construct a covering M-—s M <(due to the theorems 1.3, 1.5),
then the numbers Sr , h.f . M— > associated with canonical

queﬁm:ﬂouxxvu.m:.Wm:M»\rwmgmwm3.h .0.:Otm<m&rrm
:. p _. -
genus of Mp tends to infinity if p-sw . So, without a loss of
generality we may suppose that g+ m72- max( le | ,2 ) >0
i i 13
Next we choose a prime number ) such that
o

(a> For all 1> 3, n2 p and groups _AHAZV the conclusion of

o
the Lemma 3.1 holds.
<b> For all primes p2 P, s for numbers e , g , m , s (see
1 i i i
above) and for the sequence o (pl)d = AC”rﬁﬁu, ~AC”~uv (see the
i i

item 3.1> there exists a Kleinian group ®=Ke, m , s , pd) from
L i i

v
the Theorem 4.1 , Here C(k , 1D are irdexes of those components

Wrz_..n .wzr <1 > 3> which are glued to aM (i< 3.
~ P
REMARK. The genus g of the surface R (see the Theorem 4.1> is
i

~

equal to the genus of the standard p-sheeted covering % over X .
i

v

5.6. Construction of groups Qx uniformizating hyperbolic

manifolds M .

sesases x

By choice of the number © (see above), for any Pz p_ , kK= 3,

. ° =]
there exists a representation bv“ ﬁx.lvﬁrabvﬂ PSL<(2, €> such that
buﬁzﬁvu :xﬁhﬁv are elliptic elements of order p and tr_.ﬁﬁuu
P
(for all k> 3 > we pass to a normal subgroups _)Wn 1r with the
s o

properties : r:T < = P P

_ T _ © , and _JrD A:E , CE.V A:E . Civ .
(see the theorem 1.3>. The groups qu =) Q..Mv are those that we

P

are looking for.

=3 Acﬁu are loxodromic transformations {conjugated to X.& >. Then

5.7. Construction of the covering 30 over M .

Let. zel er st xeﬂMpx s' be the standard p- sheeted

covering, where p= e, (see above), 1 <3 . If k > 3 , then we
introduce the coverings mxl.v xx ,» determined by the inclusions

o . 2
7xA ﬂ.x > int zx.h H \1r . Further, by virtue of the Theorem 1.5 , we
~
construct a finite-sheeted covering n ..zol M . The manifold M
o
is those that we need. This manifold is glued of hyperbolic and

Seifert components homeomorphic to M and Zr , 1€ 4iS 3< k< 3+b
i
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the restrictions of m to these components are equivalent to the

described coverings .,»ww.lv M and Rxlv xr .
A3

Let us denote Seifert components of xo by k» PR kw and
hyperbolic - by kwﬁ PR k@«@ . We shall denote the sewing

maps by W“u“ Wuh\l wryxy , and preserve notation © for number
i

i

of boundary components of the manifold vxf . Any manifold k,.
covers some component z.‘ of M . Next we associate to each
manifold vmf a copy 0.« of the group Qr. (see aboved). If 1 >3,

then elements of Q_ corresponding to q_v.rﬁbvv will be denoted by
Wﬂ— and we put AV.:vﬁ\vm t.:ﬁbv . If i< 3 , then we shall vao»..m by
v_.,. the element corresponding to C\._..(.vv € G.e. ; also we put
Qv.:v»\v = vm._. . Fundamental sets m.e for such groups were
constructed in &4 . Now we are to find "good" fundamental sets for
the groups Q— <Cl>3

Let" uaﬁ be the cone with vertex angle n/4 and the same axis
as W”d. . These cones are precisely invariant under AerVA Q~ and
their orbits under G are pairwize disjoint (due to the Lemma

3.1> . Firstable we MTMC choose a fundamental domains for action
of AUrﬁv in mxr_. . The boundary torus wrkd. is glued to the
boundary torus mg.k.f of some Seifert component of Zo . Then, by
construction of the group Qwu G.—. , there exists a mobius
transformation tmﬂ ‘con jugating ﬂmﬂav-\v and Amvl“.ev»\v. This
transformation maps the cone m&i to the cone «clC anmm_v . The
intersection mm.eD 0,« is a fundamental ao:ﬁ&:ﬁwov action of Avupv
in mﬁ‘: . Therefore we put: mwﬂ_ Aerm|§§vl t.?QA%D mev . Here

and below we suppose that t?l ntn”u * .| Next we can extend me)
xﬁ to a fundamental domain a_.D maﬁ for action of Acﬁv in wax_.
Finally we extend 0_.3 C NﬁC e U Rﬂ.— ) to a fundamental set

of G in (TN G (KU .Y Rozv

5.8. Realization of sewing maps via mobius transformations.

We have constructed above the mobius transformations IM”“ kil

K _ for i< 3s 1l . These maps shall realize sewirig homeomorphism
s
‘I_pﬁ between hyperbolic and Seifert manifolds. Let i< 2 , R =

i

10m +6 , m= 3 . Then we repeat the disposition of balls wnv: »
1 T 1 .

8> on 0“~ from the item 3.7 . These balls shall be filled by

i
tori of kind T(1, 1) or .H.ﬁA»\ 1> as follows. We provide N?  with

the lexicographic order. If i, 1 < 3 , (1 , B > (i, jO and Q_M\r

M




is glued with wx\rxﬁ then the ball WGVE. > B> is filled by T, 1)
and the ball wm—u > 8  is filled by H 1, 1> (details see in
the item 3.7 >. ,_.Tm_Mm tori will be denoted by w. and T

i

correspondingly. Let us denote by ] the QOEW:J
ot
™
L

m.,/ﬁcaimﬁucc:;axuw
=1 i=1 /
For any i the manifold 0 N3¢ m > is homeomorphic to $%x N N
where me is a surface of nm:c.m 0 with 3 +1 boundary n:~.<0m~
also we have a¢ 0 /HQ: = u.ﬁi Ju u. U oL 4. . - We choose

m i

simple directed loops .J < .~. which are vm.thmw to the directed

loop mr < Q.Q: > in the :5.2».0.—& st m (the loop w was

introduced in »\_..m item 3.7>. Further we vcr x = u:_..fD Dz. be simple

loops with with the clockwise orientation. The nou.n.mm_uoe:&nuﬂ ele-

ments of n-nu.:u will be denoted by the same symbols .J:r s xv.» .
By construction of the tori T An\ 1, TA, 1, if w\r\ is

glued with .wx\<~ I, i 3> , then there exists a mobius

transformation = treu wnn u.r~|v ext q.e . We choose u such that
3

>: =
ttﬁ.ﬁ = x.: » ttﬁva 4:
Next. we introduce a shortest directed infinite arcs Nﬁ
corresponding to (K, S > 1 >3 . These arcs may be chosen

kL kil
so that y ANE.vn \w:m &: . For i< 3 let m < R be a simple
directed loop homotopic to 6 in S\ O . un, k Vm and @ X is
. Ji

i

r_.

glued with m \r\ > then we put m n t A -6 > , where the sign
i

“minus"” means ngnm of ozm:vaD:. rmﬂ us remind that. for i< 3

we have m.ﬁm_‘&:c‘4.CRu—vu®p
i
Mhlmwmﬁm-wm.mmwm- of matrixes of mobius se ing maps.

Let X e n<T > be equal to & Cj» DT +u_ , where o <J,
Ju 1 o 22 n n 22
i) is coefficient of the matrix A for the gluing FOEQDSOH_U_&ME

\Hu 8X— 0,X . Then direct calculations show that ("> S

~ it *
7.=vﬂ Q:A.u. [ 5] 1

B
L , where D:A,u. = -a, Qa. Dy

mC.S mC; [P1R BN

kil
a,J. = a Ck, D= a,a,, *1. So the maps o..:u and CLJ
are given by ﬁum Same matrixes in the bases T, 2D and <(u.

n B i
5 C%v - Here and below, A:e » o> is lift of the natural base
3 B
on mkh. to mxﬂm 08X . Next we prove an analogous fact about
J
maps of cones K...‘ Let i< 3, &\r be a Seifert manifold; first we
J

suppose that 0= m= 3 - number of Seifert components of WM\.F

42 .

Then we drop arcs x to the loops M_.en @M\, via the covering

it )
G+ 3 — X . As we have seen above, for these loops the equality
i i i

.. M L t W. be projection of
QA. v\w . N».eC C R¢ . v mw VOEMFm i proj}
v

i . U J= e then C(up
mu:— < N: to m\w\p . Since e( \4« > C:. v CG.e N

to automorphism of the fiber bundie k.f — MF > we have Am% s Ntv
= AU: , Uu.» d> .
p N
Essentially the same holds in the case m >0 . Then the relative

euler number eC X , U»v seany UO . D) is equal to 0 , since e(

T 9 .

1

M, ,v ., U.U Vg e > =0 <(see the item 54) . On other hand,
% 1 Y

1

X X x x >=0 due to

mﬁ\ax.r.»m.(_:.CNFCvzwfanCvfwrF s

construction of the loops 7 and since

Py Y e = M o (i, s. +k > .
e Qe . R:C e U va,-wv e, a,, :

So we can suppose that Am.ﬁ » N.? > =C E‘: ) C: Li "
u Iy i< i< < k.
=y, oy 0, is s, g

Now consider hyperbolic components kr of xo . Then N?u C:

Cup to homotopy) due to the Corollary 2.3 and since N# is

1/p
projection of a shortest arc with respect to QA: N AO_.rv bl
Further, we have W = m Cup to homotopy) because the Dehn

K n ]
surgery on \/\.f » which annihilates H:uL > J Mve >, gives us the
manifold _:u\m.,
Let K., i > 3, and \Ar— , £ 3 , be a cones are paired by
* KL _
transformation u= t: . Then u< N:v =X, > 1714 mb_v = mx_. (see
%l
the item 5.8>. So, projection of t._,, “w%\n\rl mrvw of
~ Kkl
tm— is isotopic to the gluing homeomorphism (€2
i

>

i
5.10. Combination of Kleinian groups Q_

Now we are ready to combine (by induction)> the Kleinian groups

G to obtain the Janmmmwu,% group G uniformizating Z
i

- -
with the group Q UQ UG » restricted fundamental set ao mm- N
subset €= { id } ¢ Ew N:Q m5v¢< subset n.wn..s
Step_of_induction. Next let us suppose S.—Nv the groups O > -

6" are combined to the group Q > accordingly to subset @ of

" o .
mobius gluing maps of the item m.m~ S= *tr_. i, 1 £ n, je subset
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of (1, ...»Ov.kmmgmmvo_.a».

i
that we have constructed a set

» Or > } . Suppose also

of mobius transformations .- ,

- » »* . -y v
V,A Q( o= Qr. vol g o CFWCF » and some restricted fundamental
-
set ao . Let tn” 2 & be a moblus sewing map such that 12 nc 1t
Then = o N
1 we put trl t_, t_r ) Q.r = CnAQ.r > . The torus t_.n q.rr ow C.r <

n._r vn:, ﬂ..Nva,ovvrmnovm _\._.A kr_. @ v (K, ) CIFf 1 < 3
) - i Jt
i > will be denoted by r\r— - It is precisely invariant in Q! and
- ]
Qr under subgroup Y ¢ or cyclic loxodromic group C.”A <b > D=
- kL
Av_:,v in the cone case >. Morethan, we have m_.m v (& D c
) » » L3 Lot
int «\5 . On the other hand, mo = AFl; 03 < ext r\r_. . So, the
- min+1

. ”
domain clC int r\xrv is a ﬁQo . Avrﬂv ) =block Un the sense of §

1 > and the domain cl¢ ext _\n% is a @™, <b > > -block. The
P
- -
Intersection 2 n & s equal to & n W'mw ¥ A L . Now it is
i o kt i kL

easy to see that for the groups QM and Qw the conditions of 1st
i

Combination Theorem are fulfilled, where the Jjoint subgroup ia (1>
» »
or Avﬁv‘ The amalgamated free product ¢ Q.F N Qo > will be denoted

”Taiﬁc?:.om T VR
Arguing analogously we consider the case 1, l£ n , when there

takes place an HNN- extension of the group Q“ by means of C,._\M»

(the 2-nd Combination Theorem>. The group < Q“ N vro_\l > t:.npvm

1
denoted then by QM

* i
by Qo WﬂNE;.@i@CAtr

We shall repeat the above combination process until all mobius

Jt

L will be used. The arising group Q“ is denoted

by G . Applying the i-st and 2-nd Maskit Combination Theorems we
: »

obtain that. the set eo i fundamental for action of the group G

u:r7m~3<wn,~m:0 no_.:uo:m:o bo < RCG> which contains the infinity.

The properties aof transformations tn__.. (see the item 5.9 imply

that NG\Q is homeomorphic to Ko. The theorem 5.1 is proved. QED.

gluing maps H

Let © be the orbifold supported by sty [o, 1} and possessing
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one singular cone point of order 2 . Then we choose a Seifert

fibration N— © over @ , such that H= :-AKVR La, &b, ¢, t 2=

t , abc= 1, [a, t]= [b, t1= 1 > The manifold N has two boundary

tort .H» and u.n , let ~.~ : q.~|e N be inclusions, ! =1 |, 2. The
fundamental groups of \H» and u.n are generated by *Q» B uh } and
*Ow N un -}, where pp!ﬁnu R n_vn Ca, t> and -*ﬂ0~ ' »nv - (b, t.

There exists an orientation reversing homeomorphism  f: u.h — u.n
such as \;an»vusu N \iﬂu»uu Un. Let M be the manirold N/ (x=
fCx3> It is easy to mee that M obeys the conditions of the
theorem 5.1 (since there are no hyperbolic and E*- components in
canonical splitting of M > Then a finite-sheeted covering Kof& M
exists, such that Ko possesses a FCS

6.2. THEOREM 61 The manifold M does not admit a FCS.

ProorF. Let us suppose thaf a FCS X on the manifold M exists;
Q..u d»mzu — .Sw, is its holonomy representation. If ge Gm upnxv ,
then we put g = Q*Amuv . The group &G 1is an HNN- extension of H ,
Gx< H, o ;plap=t, ogto=06>

LEMMA 61 For the group G"a d,(G> one of the following
assertions hold:

Cad Q... is almost abelian, b Q.- has a two-point invariant set
in s°
S0<4)>, > Q: has an invariant euclidean circle L and point in £

» (c) the m.n.o.cv 6" is conjugate in q:w to some subgroup ot

(e Q» has an invariant euclidean sphere £ and point in 57
6.3. ProoOF of the Lemma 6.1.
- »

{1> First let us suppose that t =1 . Then a"m b= ¥= and

Q_.. = < B.- > and the assertion (a) holds.
€2’> Let 1= s... be an elliptic transformation. If a; has no
meavouzvmwb %w. r:m:v:mmxvm:ﬂ@:om ~s POTA

>
fixed point g there. The condition [ D:v w»_ = (b, uiw =1 implies
:‘.b». Qthvl UinOvl QN.‘.&AQV»M»SA\NH.»N:»\CUQWG T.... .Vlw:nm

s...lh..ﬁ*l a' , then ﬁxnavl q and the assertion () is true.

3

has unique

(2'") So we have Fix(t™>= N_, is a circle in 5 This circle we

shall identify with Lm {(x, 0, 03¢ R*: xe R }. The half-plane R =
?.X» P, 00 x € ®, x,Z0 p{w} will be denoted by 0 . Since
a”, b"  are conjugate with t* , then FinCa'd=l , Fixcb™> =t

a
» * »* - .
are euclidean circles. The commutation [« , ¢t ]J= [& , ¢t ]=1 implies

that. the following alternative holds
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> one of the circles 1 , N_. coincides with NN
a N

ai> N‘u and ~v are orthogonal to I and their centers lie on L.

y OI

Consider 4>, If N.un Npur then ﬁanhvl L, an Svﬁpul L and,
»*
hence, G (L) =L . So, Q* isg N~|mx¢m:mno: of an abellan group and
the assertion (ad holds.

LS

Consider di>. Then IT is invariant under the group < Q*. b D
- L R
Hence, (¢ = (g b > anv =1 and Q.._ﬂ ntnvm:v =1 . Therefore, we

»
have t w1 (this case has been considered above).

" .
(3> Let t be a loxodromic transformation, Wmentvn {0, o } = R
L2

»
Then the elements a » & are loxodromic too and ﬂmeQ_..vn m.,mXaG‘un
{0, @ } (due to commutativity of <a, t>, <b, t> . Theretfore,

»
© ({0, @ })= {0, ® } and the assertion (bd> holds.
(4> Now we have the last case- ~‘ is parabolic, winavl @™,

¢4’> First we suppose that ¢ (xX7°> = UZ + € . where Ue SO

1> is a rotation around the axis L Then there holds: Q»le =

O»va =) Q»ASV - 0...A8v = |, Qi and v; are translations with
rotation around L . Hence, %nahv wl and $tn8v =x , S0 the
assertion <d> holds.

¢4'> It. remains the possibility- t"¢x’> = X7+ MH . Then &" and
5*  are translations on vectors a”’ and 5> correspondingly.
The condition t'm c¢a*b*>"2 implies that M.»vl -2a’- 25 Hence, the
element " can not be elliptic or parabolic (else _Mw_n Mt_u _m.'_.

which is impossible >,

So, the transformation 6.._ is loxodromic. The group .c.., has an
invariant straight Hne L df &” and 5’ are linearly dependent> or
a plane P f these vectors are independent>. This llne <(or planed
may be chosen invariant under 6_._A These two cases correspond to the
assertions (d> and (e>. The lemma ix proved. ]

6-4. Now we return to the proof of the theorem &.

Consider <ad. Then :»nzv is almost abelan [Ku 2}, that is
impossible, since M & A_va.

Consider (b>. Then the image of the development map d- H— 57 1g
equal to R™NOr and Ma (R\0))/ G* (see [Ka 115>, This contradicts
to asphericity of M

Consider <(c>. Then M is the elliptic manifold <Ccr. [{G K]> and
:»akv is finite, which isn’t true. '

The case (d> is impossible due to [Ka 1, Th. 3].
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There remains the possibility (e>. Let us consider the set a7tee>
c M , where ﬁ.‘wm —M is the universal covering. Then Sw= t.QLAMv
consists of incompressible surfaces [Ka 3] . For any component K»
of M\S we have the restriction of d to a component of
ﬁuuﬂn:ﬁuv iz an equivariant homeomorphiam onto cllint IN{p} or
onto clfint £O\(p» [Ka 3). The last contradicts with compactness of
M . This contradiction completes the proof of theorem 6.1. QED.

»o‘m, ReMARK. Recently N.Isachenko [Is] showed that any
representation of the group G into Su has a solvable image. Due
to this fact he has constructed an example of discrete
quasiconformal group I' acting on Wm. which isn’t isomorphic to any
subgroup of Qm . The group ' 1is a finite extension of the

Kleinian group Qo uniformizating finite covering xo over M.
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