
Flats in 3-manifoldsMichael KapovichAugust 13, 2003AbstractWe prove that if a closed aspherical Riemannian 3-manifold M contains a2-at, then there exists a free Abelian subgroup of rank two in �1(M). Undersome restrictions on topology of M we prove the existence of an immersedincompressible at torus in M . This generalizes results which were previouslyknown for manifolds of nonpositive curvature.1 IntroductionIn this paper we address the following conjecture which is a special case of Thurston'sGeometrization Conjecture:Conjecture 1.1. (Weak Hyperbolization Conjecture): Suppose that M is aclosed aspherical 3-manifold. Then either �1(M) contains Z� Z or �1(M) is word-hyperbolic.Note that according to the results [M1], [Tu], [Ga1], [CJ], [Sco] and [T], Thur-ston's Geometrization Conjecture is satis�ed for any closed irreducible 3-manifoldMwhose fundamental group contains Z� Z. Such manifold is either Haken or Seifert.On the other hand, if � = �1(M) is word-hyperbolic then the ideal boundary @1�is a 2-dimensional sphere S2 (see [BM]). In the latter case, conjecturally, the idealboundary of � is quasi-symmetric to the standard 2-sphere (see [Ca], [CS], [BK1],[BK2]). If this is trues, then � is isomorphic to a uniform lattice in SO(3; 1) andhence M is homotopy-equivalent to a closed hyperbolic manifold N . In the lattercase the manifolds M and N are homeomorphic (see [Ga3]).It is well-known that failure of a �nitely-presented group � = �1(M) to be word-hyperbolic means that � doesn't have linear isoperimetric inequality. Moreover, ac-cording to Gromov ([Gro2], Assertion 6.8.S), �1(M) is word-hyperbolic i� there isno nonconstant conformal least area map f : R2 ! M . Stronger versions of thisstatement are proven in the works of Mosher & Oertel [MO] and Kleiner [Kl].Thus, nonhyperbolicity of � implies the existence of a certain minimal surface Sin M . In this paper we will prove Conjecture 1.1 under the assumption that S is aat, Theorem 1.2.Theorem 1.2. Suppose that M is a closed aspherical Riemannian 3-manifold whichcontains a at. Then �1(M) contains Z2.1
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13 Closing up Euclidean planes 27Bibliography 292 Weak Hyperbolization ConjectureIn this section we describe several cases when the Weak Hyperbolization Conjectureis proven. Our �rst example is given by 3-manifolds of nonpositive curvature.If M is a manifold then ~M will always denote the universal cover of M . A k-atin a Riemannian manifold M is an isometric immersion f : Rk ! M so that thelift ~f : Rk ! ~M is an isometric embedding (i.e. d(x; y) = d( ~f(x); ~f(y))). Abusingnotations we will call by k-at the image of a k-at as well. 2-ats will be calledats. The image of a k-at F = ~f(Rk ) is totally-geodesic in ~M , i.e. for any pointsx; y 2 F the minimizing geodesic connecting x and y is in F . If ~f : R2 ! ~M is aquasi-isometric embedding then the image of ~f is called a quasi-at. We refer thereader to [He1] for basic de�nitions of 3-dimensional topology.We recall the following results:Theorem 2.1. (P. Eberlein [E]) Suppose thatM is a closed n-manifold of nonpositivecurvature. Then either M contains a at or �1(M) is a word-hyperbolic group.Remark 2.2. The hyperbolicity of the fundamental group was disguised in [E] as the\visibility" axiom. See [Gro2], [Br] for the case of general CAT (0)-metrics.Theorem 2.3. (V. Schroeder [Sc]) Suppose that M is a n-manifold of nonpositivecurvature and �nite volume which contains a codimension 1 at. Then M contains acompact (n� 1)-at. (In particular �1(M) contains Zn�1.)In the case of closed 3-manifolds of nonpositive curvature this theorem was �rstproven by S. Buyalo [B], see also [KK2] for a generalization of this result to CAT(0)Poincare duality groups. The present paper was motivated by the proofs of Schroederand Buyalo.Corollary 2.4. Suppose thatM is a closed 3-manifold of nonpositive curvature. ThenM satis�es the Weak Hyperbolization Conjecture.Theorem 2.5. (M. Kapovich and B. Leeb [KL]) Suppose that N is a closed Haken 3-manifold with nontrivial decomposition into geometric components and G is a torsion-free �nitely-generated group quasi-isometric to �1(N). Then G is isomorphic to fun-damental group of a Haken 3-manifold.Corollary 2.6. Suppose that N is a manifold satisfying the Weak HyperbolizationConjecture and N is not a Sol-manifold. If M is a closed 3-manifold with fundamen-tal group quasi-isometric to �1(N), then M itself satis�es the Weak HyperbolizationConjecture.This corollary shows that the Weak Hyperbolization Conjecture is a problemabout some large-scale geometric properties of 3-manifold groups.The deepest result in the direction of Thurston's Geometrization Conjecture isdue to Thurston: 3



Theorem 2.7. (W. Thurston [T], see also [Mor], [Mc], [O], [K]) Suppose that M isa Haken manifold. Then either �1(M) contains Z2 or M is hyperbolic.Corollary 2.8. Suppose that M is �nitely covered by a Haken manifold (i.e. M is\almost Haken"). Then either �1(M) contains Z2 or �1(M) is word hyperbolic.Note that in the last case ~M can not contain quasi-ats. Hence the assertion ofTheorem 1.2 is satis�ed for all almost Haken manifolds.Theorem 2.9. (G. Mess [M1]) Suppose that M is a closed aspherical 3-manifoldsuch that �1(M) contains an in�nite cyclic normal subgroup. Then �1(M) containsZ2.Note that if the manifoldM in Theorem 2.9 is irreducible then it must be a Seifertmanifold (D. Gabai [Ga1], A. Casson & D. Jungreis [CJ]). If M is Haken then theassertion was �rst proven by Waldhausen, see [He1]. In our paper we will rely heavilyon Theorems 2.7 and 2.9.3 Outline of the proofNotation: We say that f(x) = O(x) if0 < lim infx!1 f(x)=x � lim supx!1 f(x)=x <1Similarly f(x) = o(x) if limx!1 f(x)=x = 0The proof of Theorem 1.2 splits in three main cases:Case I: the universal cover X = ~M contains a \simple at" F , i.e. a at whichdoesn't intersect any other ats in the orbit �F (but F can have a nontrivial stabi-lizer).Case II: the space X has no simple ats but contains a at F with \doubleintersections", i.e. for any g; h 2 � we have: F \ gF \ hF is not a point.Case III (the case of \triple intersections"): the space X contains neither simpleats nor ats with double intersections.We begin outline with the most interesting Case III. We �rst �nd a pair of atsF1; F2 whose intersection is a recurrent geodesic `. Using Theorem 2.7 we concludethat unless � contains Z2 or X contains a simple at, the path-connected componentL of F1 in �F1 is the whole orbit �F1 (to achieve this one may have to take a �nitecovering over M). Thus we assume the latter to be the case. Using parallel transportalong ats we construct a \holonomy" representation � of � into SO(3). If thisrepresentation has �nite image then the family of lines parallel to ` in L is invariantunder Ker(�) and the discussion is similar to the Case II. If �(�) has an invariantline and is in�nite then a 2-fold cover over M has nonzero 1-st Betty number andthe manifoldM is homotopy-equivalent to an almost Haken manifold. Hence, in thiscase Theorem 1.2 follows from Thurston's Hyperbolization Theorem 2.7. Thus wecan assume that �(�) is dense in SO(3). In particular this implies that the group �is not amenable. 4



Remark 3.1. Instead of proving that �rst that � is not amenable one can use aVaropoulos' theorem (as it is done in [KK1]) to conclude in Case III that �1(M) haspolynomial growth.We use recurrence of the geodesic ` to construct a family of \double simplices" Dnin X. Roughly speaking each Dn is the union of two adjacent simplices in X whichhave at faces. We prove that the inscribed radii �Dn of Dn tend to in�nity at thesame rate as edges of the corresponding simplices. The area of @Dn grows as O(�2Dn).Since � is not amenable the growth rate of V ol(Dn) is again O(�2Dn). This impliesthat the largest metric ball inscribed in Dn has radius �Dn and the volume at mostO(�2Dn). Hence � has polynomial growth which contradicts the fact that this group isnot amenable.Remark 3.2. It seems (however I cannot prove this statement) that more generalset-up for the above argument is as follows. Suppose that M is a closed aspherical3-manifold. Let X! be an asymptotic cone of X, assume that H2(Y;Z) 6= 0 forsome compact Y � X! (where we consider singular homology theory). Then thefundamental group �1(M) is amenable. Indeed, in the Case III the sequence @Dnproduces an embedded simplicial 2-sphere in X!.Now consider the Case II. In this case we repeat the construction of ats F1; F2so that ` = F1 \ F2 is recurrent. Again we can assume that the orbit L = �F1 ispath-connected. Then L is foliated by lines which are \parallel" to ` and our goal isto show that this �-invariant foliation corresponds to the universal cover of a Seifert�bration of M .We add to L the �-orbit of the at F2 and call the closure L. The space L withthe induced path metric �bers over a metric space Y with the �bers parallel to `. Wepass to an index 2 subgroup in � to guarantee that � preserves orientation of �bersof L. Zassenuhaus theorem implies that if G is a Lie group which �ts into the exactsequence 1! R ! G! P ! 1and � is a discrete �nitely-generated subgroup of G then either the projection of �to P is discrete or � has an in�nite normal cyclic subgroup. We generalize this factto the case of the �bration L ! Y . The group � does not act discretely on Y sincethe geodesic ` is recurrent. We conclude that the group � has a nontrivial center.Thus � contains Z2 according to Geo� Mess's Theorem 2.9.Finally we discuss the Case I. We present two di�erent proofs. One of them isa straight-forward application of the Rips Machine, another is more geometric andfollows arguments of Buyalo and Schroeder.The �rst proof is quite general and works for higher-dimensional manifolds as well.Consider the closure �L of the �-orbit of a simple at F . It projects to a laminationon M which admits a transversal-invariant measure since each leaf is amenable ([P1],[MO]). Thus the topological tree T dual to �L is a metric tree and the group � actson T by isometries. Therefore application of the Rips Machine to T will producea simplicial �-tree R(T ) where edge-stabilizers are discrete subgroups of Isom(R2).Hence � contains Z2. (Mosher and Oertel have very similar proof for laminations�L=� of zero Euler characteristic, our proof was motivated by their approach.)5



The second (geometric) proof goes as follows. We assume �rst that all simpleats in X have trivial stabilizers in �. We use Schroeder's trick to conclude thatthe dual tree T to the lamination �L is a real line which implies that � is Abelian.Thus, there must be a simple at F in X with nontrivial stabilizer. We assume thatthis stabilizer is a cyclic group hi. Denote by G the maximal subgroup of � whoseelements commute with hi (apriori it could be an in�nitely generated locally cyclicgroup). Denote by �LF the closure of the G-orbit of F . We use Schroeder's argumentsto prove that the quotient �LF=G is compact. Still this doesn't imply apriori thatG is �nitely generated since �LF is highly disconnected. However we prove that Ghas a �nitely-generated subgroup G0 � hi whose Cayley graph contains a quasi-at(Lemma 6.6). Hence this subgroup is not Z and has in�nite center. Therefore it mustcontain Z2 by the Mess's theorem as in the Case II.4 AmenabilityRecall that a �nitely-generated group G acting cocompactly on a Riemannian mani-fold X is amenable if X contains an exhausting Folner sequence of codimension zerocompact submanifolds �n with piecewise-smooth boundary. This means thatlimn!1Area(@�n)=V ol(�n) = 0Examples of amenable and nonamenable groups:(a) Any group which contains a free nonabelian subgroup is nonamenable.(b) Any virtually solvable group is amenable.(c) If G is a �nitely-generated amenable subgroup of a linear group then G is almostsolvable. (This follows directly from the Tits's alternative.)(d) The class of amenable groups is closed under the operations of taking subgroups,direct limits, quotients and extensions.All known examples of �nitely presented amenable groups are elementary, i.e. theyare built from �nite and cyclic groups via operations (d). Grigorchuk [Gri] constructedexamples of �nitely generated amenable groups which are not elementary.Lemma 4.1. Suppose that M is a closed 3-manifold with amenable fundamentalgroup. Then any 2-generated subgroup F of �1(M) is either Abelian or has �niteindex in �1(M).Proof: If the index of F is in�nite then ~M=F is a noncompact manifold. If F is freelydecomposable then F is not amenable. Otherwise it is either cyclic or the compactcore of ~M=F is a Haken manifold which implies that F contains Z � Z or Z� Z.It is easy to see that all elementary amenable 3-manifold groups are almost solv-able.G. Mess [M2] proved that if fundamental group of a closed 3-manifoldM containsno free nonabelian subgroups then either �1(M) is almost solvable or it contains asimple �nite-index subgroup.Note that a particular case of Conjecture 1.1 is that any closed 3-manifold withamenable fundamental group has almost solvable fundamental group. However it isstill unknown if a group quasi-isometric to Sol is almost solvable.6



5 Geometric constraintsLet X be the universal cover of the compact Riemannian 3-manifoldM , through thewhole paper we shall denote by h; i the Riemannian metric on X. Propositions in thissection follow directly from the compactness of M and we omit their proofs.Suppose that F1; F2; F 01; F 02 are ats in X so that F1 \ F2 = `, F 01 \ F 02 = `0 aregeodesics with the dihedral angles �; �0 6= 0.Proposition 5.1. There are continuous functions �(�; �0); �(�; �0; t) such that:(i) If x 2 `; x0 2 `0 are points within the distance at most �(�; �0) then there isy 2 (F1 [ F2) \ (F 01 [ F 02) such that d(x; y) � �(�; �0; d(x; x0)).(ii) limt!0 �(�; �0; t) = 0.Proposition 5.2. (Cf. [Sc], Sublemma 2.) There exists � > 0 with the followingproperty:Suppose that F1; F2 are ats in X with empty intersection, x 2 F1, d(x; F2) < �.Let c : [0; a] ! X be the unit speed minimal geodesic from x to F2 so that c(0) = xand Nx be the unit normal vector to F at x with the angle\(Nx; c0(0)) < �=2Then \(Nx; c0(0)) < �=4and the geodesic ray emanating from x in the direction Nx intersects the at F2 atthe arc-length distance at most �, where � is the injectivity radius of M .Proposition 5.3. There exist � > 0 and a continuous function u(x; y) so that forany � > 0 the following is true. Pick any complete geodesic l � X, at F , pointz 2 F such that d(z; l) � � and w 2 l is the nearest point to z. Connect w and z bythe shortest geodesic segment I and let � be the parallel transport along I of a unitnormal vector to F at the point z. Let �w be the unit tangent vector to l emanatingfrom w. Suppose that j\(�; �w)� �=2j > �. Then the at F intersects l in a point ysuch that d(z; y) � u(�; �).6 Some facts about dynamical systems6.1 Recurrent pointsSuppose thatX is a compact topological metric space. LetG be an in�nite topologicalsemigroup acting on X. We recall that a point x 2 X is called recurrent if there existsa divergent sequence gn 2 G such thatlimn!1 gn(x) = xLemma 6.1. Under the conditions above for any point z 2 X the closure of the orbitG � z contains a recurrent point.
7



Proof: Consider the orbit G � z and its accumulation set Z1 = �(z), which is closedand therefore compact. If the point z is not a recurrent point itself then G � z ��(z)is nonempty. Pick a point z1 2 Z1 and repeat the procedure. If z1 is not recurrentthen the set Z2 = �(z1) is a proper subset in G � z1. By repeating this process we geta decreasing sequence of compact sets Zj such that each Zj is contained in �(z). Ifthe process doesn't terminate after a �nite number of steps we take the intersectionZ! = \1j=1Zj. This intersection must be nonempty since all the sets are compact.Continue the process. As the result we get a decreasing sequence of compact subsetsZj where the index j runs over the ordinals. On each �nite step the sets underconsideration loose at least one point, the original set has the cardinality of at mostcontinuum. Thus the process must terminate after at most a continuum of steps.Suppose thatM is a closed Riemannian manifold, F (M) is the orthonormal framebundle of M . We de�ne the geodesic ow on F (M) as follows. Points of F (M) arepairs: (x; f) where x 2M and f is an orthonormal frame in Tx(M). Choose the �rstvector f1 in the frame f and let (t) = expx(tf1) be the geodesic emanating from xtangent to f1. Let Gt(x; f) be the parallel transport of (x; f) along the geodesic  tothe point (t). We call the R-action on F (M)(t; (x; f)) 7! Gt(f)the geodesic ow on F (M). It is clear that this action is continuous.Thus, Lemma 6.1 implies the followingCorollary 6.2. For any point z = (x; f) 2 F (M) the accumulation set of the orbitGt(z) (t 2 R+) contains a recurrent point of the geodesic ow.Suppose that (x; f) is a recurrent point in M , consider the geodesic  2M = fexpx(tf1); t 2 RgThe geodesic  as well as its lifts to the universal cover ~M will be also called recurrent.Note that if M 0 ! M is a �nite covering, then the lift of a recurrent geodesic fromM to M 0 is again recurrent.6.2 Groups acting on RTheorem 6.3. (O. Holder{J. Plante, [P2]) Suppose that � is a group of homeomor-phisms of R acting freely. Then � is Abelian.Proof: We recall idea of the proof. Pick a point x 2 R. Then the orbit � � x is a setwith an Archimedian linear order. Since the action of � is free this linear order doesn'tdepend on choice of the point x. Therefore we get an invariant Archimedian linearorder on the group �. Then a theorem of Holder implies that � has a monomorphisminto R, hence � is Abelian.Corollary 6.4. Suppose that L is a (topological) foliation of a compact 3-manifoldM so that its lift to the universal cover of M consists of topological planes. Assumethat M 6= S1 � S1 � S1. Then at least one leaf of L is not simply-connected.8



Proof: Consider the action of � = �1(M) on the universal cover ~M . This actionpreserves the foliation ~L of ~M by planes. The real line R is dual to the foliation~L, thus � acts on R by homeomorphisms. If L has only simply-connected leavesthen � is Abelian. Hence G �= Z3 and since ~M is irreducible this implies that M =S1 � S1 � S1.6.3 Quasi-isometries and proper pairsLet (Xj; dj) (j = 1; 2) be a pair of metric spaces. We recall that a map f : (X1; d1)!(X2; d2) is a quasi-isometric embedding if there are two constants K > 0 and C suchthat K�1d1(x; y)� C � d2(f(x); f(y)) � Kd1(x; y) + Cfor each x; y 2 X1. If (X1; d1) is the Euclidean plane R2 then f above (and its image)is called a quasi-at in X2.A map f1 : (X1; d1)! (X2; d2) is a quasi-isometry if there are two constants C1; C2and another map f2 : (X2; d2) ! (X1; d1) such that both f1; f2 are quasi-isometricembeddings and d1(f2f1(x); x) � C1; d2(f1f2(y); y) � C2for every x 2 X1; y 2 X2. Such spaces X1; X2 are called quasi-isometric. For example,two metric spaces which admit cocompact discrete actions by isometries of the samegroup are quasi-isometric.The Cayley graph of a �nitely generated group � with a �xed �nite set of gener-ators carries a canonical metric which is called the word metric. The quasi-isometryclass of the word metric does not depend on the generating set.Suppose that X is the universal cover of a closed Riemannian manifold M , � isthe group of covering transformations. Suppose that E � X, G is a subgroup in � sothat G(E) = E. We say that gnE accumulates to a point x 2 X if for some sequencexn 2 E, limn!1 gn(xn) = x.We call a pair (E;G) proper if the sequence of sets fgE : g 2 Gg is locally �nitein X. This means that for any in�nite sequence fgng � � such that gnE accumulatesto a point x 2 X it follows that there exists  2 � and a subsequence fgnkg � fgngso that x 2 cl(E) and gnk 2 G. Note that if G has �nite index in �, the (E;G) isa proper pair.Proposition 6.5. For any proper pair (E;G) the quotient cl(E)=G is compact.Proof: Suppose that xn 2 E is a sequence of points. Since M is compact there existsa sequence gn 2 � so that gnxn ! x 2 X. By de�nition of a proper pair gnk splits as � nk where nk 2 G. Thereforelimk!1 nkxnk = �1xThis implies compactness of cl(E)=G.We suppose that E is a closed subset in X invariant under a subgroup G < � sothat the pair (E;G) is proper. Assume that E is the union of ats (which are notnecessarily disjoint). 9



Lemma 6.6. There exists a �nitely-generated subgroup G0 < G such that a Cayleygraph of G0 contains a quasi-at. In the case when E is path-connected we can takeG = G0.Proof: The problem is that E is not a geodesic metric space with the metric inducedfrom X, otherwise the assertion would follow from [Gh], Proposition 10.9. Thus wehave to thicken up the space E to a geodesic metric space. Choose su�ciently smallnumber � > 0 which is less than the half of the injectivity radius of M . The compactE=G is covered by a �nite number of open �-balls Bj with centers at points on E=G,denote the union of these balls by V�(E)=G. It is a manifold which has only a �nitenumber of connected components. Pick one of these components V0. A connectedcomponent U0 of the lift of V0 to X has the stabilizer G0 < G so that U0=G0 = V0.The intersection L0 = U0 \ E=G is closed in E=G and thus compact. Note that inthe case of connected E we get G = G0. Introduce in U0 the path-metric dP via theRiemannian metric on X. This metric projects to a path metric on V0 so that thediameter of V0 is bounded. Consider the completion �U0 of U0 with respect to thismetric. The group G0 still operates on �U0 by isometries and this action is properlydiscontinuous. Let ~Bj � U0 be a lift of one of the �-balls which cover E=G. Then theclosure cl ~Bj of ~Bj is isometric to closure of the ball Bj inM . On the other hand eachpoint of �U0 belongs to one of the closed balls cl ~Bj which is compact. Then �nitenessof the number of balls Bj implies that �U0=G0 is compact with respect to the topologyde�ned by the path-metric dP . By construction (U0; dP ) is a quasi-geodesic metricspace, thus the same is true for its completion. Hence we can apply [Gh], Proposition10.9, to conclude that G0 is �nitely generated. The compactness of �U0=G0 impliesthat �U0 is quasi-isometric to a Cayley graph ofG0. Note however that U0 must containone of the ats in E. This at remains a at in (U0; dP ), since dP � d where d is theoriginal metric on X. It implies that the Cayley graph of G0 contains a quasi-at.Corollary 6.7. The group G under the conditions above is not word-hyperbolic andis not locally cyclic.Proof: Cayley graphs of word-hyperbolic groups do not contain quasi-ats. If Gis locally cyclic then G0 is cyclic and hence word-hyperbolic. This contradicts theexistence of a quasi-at in a Cayley graph of G0.7 Inscribed radiusSuppose that X is a metric space, z 2 X;S � X be a point and a subset. We de�nethe distance d(z; S) from z to S as infx2S d(z; x)De�ne the inscribed radius �S of S as�S = supfr : Br(x) � S; for some point x 2 Sgwhere Br(x) is the metric ball of radius r with the center at x. We shall denote bySr(x) the metric sphere of radius r with the center at x.10



Suppose now thatX = ~M is a simply-connected complete Riemannian 3-manifold,O 2 ~M , � is a at which contains O. This at separates ~M into \left" and \right"sides (otherwise H1(X;Z) 6= 0). Denote by �+ the right side. Consider a sequenceof metric balls Br(O), r ! 1. Boundary of the ball Br(O) is the metric sphereSr(O). De�ne S+r to be (�+ \ Sr(O))[ (�\Br(O)). (The set S+r looks like a metrichemisphere with a at disc attached to the equator.)Lemma 7.1. In the \right half" B+r (O) = �+ \ Br(O) of each ball Br(O) we canchoose a point xr such that d(xr ; S+r ) = O(r)Thus �B+r (O) = O(r).Proof: For each r consider the \metric hemisphere" �+ \ Sr=2(O) = �r . Clearly forevery x 2 �r we have r � d(x; Sr(O)) � r=2Now suppose that �(r) = maxx2�r d(x;� \ Br(O)) = o(r)The hemisphere �r is a singular chain in C2(B+r (O);Z) with the boundary equal tothe circle `r with center at O and radius r=2. This circle is a nontrivial element ofthe homology group H1(��O;Z). Triangulate this chain so that size of each simplexis at most 1. We construct a continuous map f = fr : �r ! � \ Br(O) as follows.For each vertex x of the triangulation we let f(x) be the nearest-point projection ofx to � \ Br(O). Extend the map f to a piecewise-linear map of the cycle �r. Itis clear that [f(`r)] = [`r] in H1(� � O;Z). Moreover, for each x 2 �r we have:d(x; f(x)) � 2�(r) + 1. For su�ciently large r we have: 2�(r) + 1 � r=4. ThereforeO doesn't belong to the image of f . However the chain f(�r) bounds the nontrivialcycle f(`r) in �� O. Contradiction.Remark 7.2. Our proof actually shows that xr can be chosen so thatd(xr ; S+r ) � r=8� 1=28 Riemannian simplicesSuppose that N is a compact domain in a Riemannian 3-manifold X so that N haspiecewise-smooth boundary which is combinatorially equivalent to the boundary ofa Euclidean 3-simplex. We assume that N is contractible and the boundary of Nis a collection of absolutely totally-geodesic at faces Fj, j = 1; :::; 4. Under theseconditions N will be called a Riemannian simplex. We do not assume that N ishomeomorphic to a 3-ball (it would follow from the Poincare Conjecture).Now consider a sequence of Riemannian simplices Nr such that:as r!1 the lengths of all edges of Nr grow as O(r).By triangle inequalities, for each r there exists a Euclidean 3-simplex �r in R3so that faces of �r are isometric to the corresponding faces of Nr , we choose ahomeomorphism hr = h : @Nr ! @�r which is an isometry on each face. We can11



assume that one of the vertices of �r is the origin 0 2 R3 . Denote the rest of thevertices by A1r ; A2r ; A3r . Let Bjr = h�1(Ajr), B0r = h�1(0).We call the sequence of simplices �rn nondegenerate if for any sequence 0 < �n <rn and any subsequence in rn, the Gromov-Hausdor� limit of the rescaled tetrahedronsQrn = 1�n�rn is not contained in a Euclidean plane. It is easy to see that this propertydepends only on the vertex angles of �r . Namely, for any vertex Aj with the planarangles xr ; yr ; zr at this vertex we have:limr!1xr + yr + zr 6= 2� ; limr!1xr + yr � zr 6= 0for any subsequence.Suppose that Yr is a sequence of points on the edges [B0r; B1r] so that d(Yr; B0r) =O(�(r)) where 0 < �(r) < r is a function of r. Let F1r = [B0r ; B2r ; B3r] be the faceopposite to B1r.Lemma 8.1. Under the conditions above d(Yr ; F1r) = O(�(r)) as r!1.Proof: Suppose that the assertion is wrong, Er is a nearest point to Yr on the faceF1 and d(Yr; Er) = o(�). Then jd(B0r; Er) � d(B0r; Yr)j = o(�), d(B0r; Er) = O(�).It implies that we can choose points C2r 2 [B0r; B2r]; C3r 2 [B0r; B3r] so that Er iscontained inside of the triangle [B0r; C2r; C3r] and d(B0r; C2r) = O(�), d(B0r; C2r) =O(�). Similarly we get jd(Yr; Cjr)� d(Cr; Er)j = o(�).The sequence of rescaled simplices ��1�r is subconvergent either to a nondegen-erate simplex (if � = O(r)) or to an in�nite tetrahedral cone with the vertex atzero. The points ��1hCjr ; ��1hYr ; ��1hEr are convergent to points Ĉj ; Ŷ ; Ê on theboundary of this cone (or simplex), j = 2; 3; so thatd(Ŷ ; Ĉj) = d(Ê; Ĉj); d(Ŷ ; 0) = d(Ê; 0)This implies that the point Ŷ actually belongs to the same plane P as the points0; Ĉ2; Ĉ3. On the other hand Ŷ 6= 0 and belongs to an edge oflimr!1 ��1�rwhich is not on P since the sequence of simplices is not degenerate. Contradiction.Now we choose two sequences of Riemannian simplices Nr0 ; Nr00 � X so that eachsequence is nondegenerate and edges of Nr0 ; Nr00 are O(r0); O(r00) respectively. Wedenote the vertices by Bjr0 and Bjr00. Assume that these simplices are embedded inX so that:� The vertex B0r0 is identi�ed with B0r00 and subsegments of the edges [B0r0; B2r0 ],[B0r00 ; B2r00 ] and [B0r0 ; B3r0], [B0r00 ; B3r00] are glued together.� The faces F3r0; F3r00 belong to the same at in X.� The interiors of simplices are disjoint.The union Nr0 [Nr00 = D is called a double simplex.12
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Figure 1:Theorem 8.2. If r00 = O(r0) then the inscribed radius of D is O(r0).Proof: Pick a point Yr0 2 [B0r0; B2r0 ] so that d(Yr0; B0r0) = O(r0); d(Yr0; B2r0) = O(r0).Then d(Yr0; F0r00) � O(r0), d(Yr0; F0r0) = O(r0), d(Yr0; F2r0) = O(r0), d(Yr0; F2r00) �O(r0). It implies that a half-ball B+ of radius O(r0) with center at Yr0 is containedin D. Therefore according to Lemma 7.1 the inscribed radius of B+ � D is at leastO(r0).Remark 8.3. The assertion of Theorem fails if instead of a double simplex we con-sider an ordinary simplex. As a degenerate example of this possibility consider aregular Euclidean 3-simplex �, let P be the center of �. Now let N be the cone withthe vertex P over the 1-dimensional skeleton �1 of �. This is a degenerate simplexwhose faces are cones over triangles in �1. We give each face of N a path-metric iso-metric to the metric on a regular Euclidean triangle. Then the inscribed radius of N iszero. Such examples appear as ultralimits of sequences of nondegenerate Riemannian3-simplices.9 Patterns of intersectionThe proof of Theorem 1.2 splits in several cases according to the complexity of thepattern of intersections of ats in the manifold X. We will assume that the manifold13
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Figure 2:M is orientable. The group � = �1(M) is torsion-free since M is aspherical [He1].Case I: \Simple ats". There exists a at F in X such that for each g 2 � theintersection F \ gF is either empty or gF = F , such at is called simple.Case II: \Double intersections". We assume that X contains no simple atsbut there is a at F so that for any elements g; h 2 � the intersection F \ gF \ hFis di�erent from a single point (i.e. the intersection is either empty or a completegeodesic or a at). Such at F is called a at with double intersections.Case III: \Triple intersections". We assume that the cases I, II do not occur(the space X contains neither simple ats nor ats with double intersections). Thusfor any at F � X there are elements g; h 2 � so that F \ gF \ hF is a single pointin X.We consider these cases in di�erent sections.Remark 9.1. If g1; g2 are complete distance-minimizing geodesics which intersect attwo distinct points x; y, then g1 = g2. This implies that in the Case II (and III)intersection of two (resp. three) ats must be connected.The discussion of the Cases II and III is considerably simpli�ed by the followingTheorem 9.2. Suppose that X contains no simple ats, � = �1(M) doesn't containa subgroup isomorphic to Z � Z. Let F be a at in X. De�ne LF to be the path-connected component of F in the orbit �F and let �F denote the stabilizer of LF in�. Then the subgroup �F has �nite index in �.Proof: It's clear that LF is precisely-invariant under �F in L, i.e. if gLF \ LF 6= ;then g 2 �F . Let �LF denote the closure of LF in X.Lemma 9.3. The pair (LF ;�F ) is proper.14



Proof: Suppose that gn is a sequence so that gnF accumulates to a point x 2 X.Taking if necessary a subsequence we can assume that there is a at F 0 � X whichcontains x so that gnF accumulates to F 0. According to our assumptions X has nosimple ats. Therefore there exists � 2 � so that �F 0 intersects F 0 transversally. Itfollows that there is a number n0 so that for all n;m � n0, �gnF \ gmF 6= ;. Let = gn0 . Hence �gn�1 2 �F and x 2 �LF . Then gn 2 �F .Remark 9.4. Note that the same arguments as above prove that either X containsa simple at (which is impossible) or �L is path-connected.Thus Lemma 6.6 implies that the stabilizer �F of LF is a �nitely-generated groupwhose Cayley graph contians a quasi-at. Hence the group �F is not word-hyperbolic.If �F has in�nite index in the group � then the Scott compact core MF of X=�F is anaspherical 3-manifold with nonempty boundary. Therefore Thurston's Hyperboliza-tion Theorem can be applied toMF and we conclude that since �1(MF ) �= �F containsno Z�Z, the group �F is isomorphic to a convex-cocompact subgroup of PSL(2; C ).This contradicts the fact that �F is not word-hyperbolic.10 Case III: triple intersections10.1 Parallel transport along atsChoose any at F1 � X. We denote by L the path-connected component of �(F1)which contains the at F1. Let �1 denote the stabilizer of L in �. Pick a PL path � L which connects points y and x. We shall denote by � the parallel transportTy ! Tx along .Lemma 10.1. Let � be a closed PL loop contained in the union of ats L. Then theparallel transport along � is trivial.
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Figure 3:Proof: We proceed by induction on the the combinatorial length of �, i.e. the numbern of its edges. If n = 2 then the assertion is obvious. Suppose that the statement is15



proven for all k < n. We consider 4 consecutive segments [x0; x1]; :::; [x3; x4] in � ason Figures 3, 4.Let Fj denote a at in X which contains the segment [xj; xj+1], let lj = Fj�1 \Fjbe a line through xj. We �rst assume that the lines l2, l3 are not parallel and intersectin a point x 2 F1\F2\F3 (Figure 3). Substitute the PL path [x1; x2][[x2; x3][[x3; x4]in � by [x1; x][ [x; x4] to construct a new PL loop �0. The move � : �! �0 decreasesthe combinatorial length of the loop �.
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yFigure 4:Now we suppose that all three lines l2; l3; l4 are parallel (otherwise we can applythe move �). By the \triple intersection" assumption there exists a at F � L whichis transversal to l2 at the point z. Therefore it intersects l1; l3 at points x; y (seeFigure 4). Hence we can substitute the PL path [x0; x1] [ ::: [ [x3; x4] by the path[x0; x] [ [x; y] [ [y; x4]. Denote the new PL curve by �0. The move � : � ! �0 againdecreases the combinatorial length of the path � by 1. The parallel transport along�0 is trivial by the induction hypothesis.Let us consider now only the case of the move �, the other case is similar. All whatwe have to prove is that the parallel transport along the loop [x4; y][ [y; x][ [x; x0][[x0; x1] [ ::: [ [x3; x4] is trivial. Using triviality of the parallel transport in the planesF1; F4 we reduce the problem to the curve [x3; y] [ [y; x] [ [x; x1] [ [x1; x2] [ [x2; x3].Then we transform this loop to [x2; z][ [z; y][ [y; x][ [x; z][ [z; x2] keeping the sameparallel transport. The parallel transport along the last loop is obviously trivial.Corollary 10.2. If ; 0 are two PL paths in L with the same initial point x and the�nal point y, then � = �0 .Suppose that F 0; F 00 are ats in L, x 2 F 0 and y 2 F 00. There are planes P 0 �Tx(X); P 00 � Ty(X) such that expx P 0 = F 0, expx P 00 = F 00. We call the ats F 0; F 00\parallel" if for some (any) PL path  � L connecting x 2 F 0 and y 2 F 00 we have:�P 0 = P 0016



Lemma 10.3. If F 0; F 00 are two nonparallel ats in L then they have nonemptyintersection.Proof: Given two ats F; F 0 2 L we de�ne the \chain distance" (F : F 0) betweenthem to be the minimal number n such that there exists a chain of ats in L:F1 = F; F2; :::; Fn = F 0so that Fi \ Fi+1 6= ;. We will prove Lemma by induction on the chain distancen = (F 00 : F 0). For 2 = (F 00 : F 0) the assertion is obvious. Suppose that 3 = (F 00 : F 0).Consider the chain F1 = F 0; F2; F3 = F 00If the line F2 \ F3 = l2 is not parallel to l1 = F2 \ F1 then F 00 \ l1 6= ; and we aredone. Suppose that l1 is parallel to l2. By the assumption that we are in the CaseIII there exists another at F 02 � L such that F 02 \ F 0 = l01 is a line in F 0 which isnot parallel to l1. It follows that F 02 \ F2 is a line which is not parallel to l1. Thusit must intersect l2 and (F1; F 02; F3) is another chain of ats. Again, if l02 = F 02 \ F3is not parallel to l01 then we are done. Otherwise F3 contains two nonparallel linesl2; l02 which are parallel to the at F1 via parallel transport in L. It implies that F 00is parallel to F 0 which contradicts our assumptions.Now suppose that the assertion of Lemma is proven for all k < n and n = (F 0 :F 00) > 3. Consider a chain F1 = F 0; F2; :::; Fn = F 00If F2 is not parallel to Fn then by induction they must intersect which implies thatn = 3 in which case the assertion is already proven. So we assume that F 00 is parallelto F2. Again as in the case n = 3 there exists a at F 02 so that F 02 \ F1 is a line l01which is not parallel to l1 = F2 \ F1. The intersection F3 \ F 02 is nonempty sinceotherwise F3 \ F1 6= ; and (F 0 : F 00) < n. ThusF1; F 02; :::; Fn = F 00is again a chain of ats. Now F 00 can't be parallel to F 02 which implies that F 00\F 0 6= ;.This means that n � 3.10.2 Holonomy representationPick a base-point x 2 ` � F1. We de�ne a representation � : �1 ! SO(TxX) �= SO(3)as follows. Let g 2 �1, y = g(x). Choose a PL path  � L which connects y and x.Denote by � the parallel transport Ty ! Tx along . The derivative of g is a mapDgx : Tx ! Ty. Thus we let �(g) = � � Dgx : Tx ! Tx, �(g) 2 SO(3). Corollary10.2 implies that the map � is well-de�ned. We call � a holonomy representation ofthe group �.Lemma 10.4. The map � is a homomorphism.
17



Proof: Take two elements g; h 2 �1, choose a PL curve � � L connecting gx to x, PLcurve � � L connecting hx to x and a PL curve  � L connecting hg(x) to gx. Weneed to check that�� � � �Dgx(h) �Dx(g) = �� �Dx(h) � �� �Dx(g)However according to Corollary 10.2��1� � �� � � = �h�Since h is an isometry it commutes with the parallel translation which implies�h� �Dgx(h) = Dx(h) � ��10.3 Construction of a recurrent pairLet Fj; j = 1; 2; 3; 4 be ats in X so that each three of them intersect transversallyin a point and these four points of triple intersection are distinct. Since �2(X) = 0,the points of triple intersection span a 3-simplex � in X whose faces are containedin the ats Fj. In this case we shall say that the ats Fj-s generate the simplex �.Suppose that F 01 ; F 02 2 �(F ) are ats in X = ~M which intersect along a geodesic`0. Corollary 6.2 implies that there exists a sequence of elements gn 2 � = �1(M)such that ` = limn!1 gn(`0) is a recurrent geodesic. This geodesic is the intersectionof the ats Fj = limn!1 gnF 0j . (Here the convergence is understood in the Chabitytopology.) The pair of ats (F1; F2) is a recurrent pair.Since we consider the Case III, there exists an element g 2 � such that gFiintersects ` transversally (i = 1; 2).For the at F1 we construct the connected components L1 and the linear repre-sentation � of the stabilizer �1 as in Sections 10.1, 10.2.There are three cases to consider now:(a) �(�1) is a �nite subgroup of SO(3).(b) � is an in�nite reducible representation.(c) �(�1) dense in SO(3).Lemma 10.5. In the case (c) it follows that the group � is not amenable.Proof: The homomorphic image of any amenable group is again amenable. Thus if �is amenable then so is �(�1). However it follows from the classi�cation of amenablelinear groups that the amenable group �(�1) � SO(3) must be almost Abelian. Hencein this case � is a �nite or reducible representation which contradicts the property(c).By Theorem 9.2 we can assume that the group �1 has �nite index in �. Since itis enough to prove Theorem 1.2 for a �nite-index subgroup we let � := �1 so that theorbit �F1 is path-connected.
18



10.4 Cases (a) and (b) of amenable holonomyFirst we consider the Case (a). Denote by �01 the kernel of �, which is a subgroup of�nite index in �1. In this case �01 preserves the foliation of L by lines parallel to `and the discussion reduces to the Case II.Consider the Case (b): the representation � is in�nite and reducible. It impliesthat a subgroup �0 of index 2 in � admits an in�nite representation in U(1) andhence H1(�0;R) 6= 0. Thus the 2-fold covering X=�0 of the manifold M is homotopy-equivalent to a Haken manifold and we can apply Theorem 2.7 to conclude that� � Z2. This �nishes the proof in the Case (b).10.5 Generation of simplices: Case (c)In what follows we shall consider the Case (c): the group �(�) is dense in SO(3).Note that according to a theorem of Bass [Ba] the group �(�) either splits as anamalgamated free product, or HNN extension or (after conjugation in SO(3)) entriesof the matrices in �(�) belong to a ring of algebraic integers. First two cases imply thatthe manifold M is Haken which would �nish the proof. Examples of representationssuch that entries of �(�) belong to a ring of algebraic integers can be constructedusing arithmetic subgroups of PSL(2; C ). In this case we do not see any algebraicarguments which can simplify our proof. Hence we will use geometry.Proposition 10.6. The orbits �(F1);�(F2) contain three ats F3; F4; F5 so that theats F1; :::; F5 generate two distinct simplices T 0; T 00 which form a double simplex inthe sense of Section 8. These simplices have the properties:� Their intersection is a triangle which is contained in the at F1;� Both ats F1; F2 participate in generation of the simplices T 0; T 00 (see Figure 5).Proof: Choose any at F3 which is transversal to ` and denote by x the point ofintersection `\F3. For the convenience we introduce in TxX a metric hh; ii where thelines of intersection F1 \ F2 = Span(e3); F2 \ F3 = Span(e1); F3 \ F1 = Span(e2) areorthogonal. Since the group �(�1) is dense in SO(3) there are elements g4; g5 in �1so that normal vectors n4 , n5 (with respect to hh; ii) of the planes �g4(F1), �g5(F1)have the properties:(1) hhnj; e3ii > 0, j = 4; 5;(2) the points P4 = (hhn4; e1ii; hhn4; e2ii); P5 = (hhn5; e1ii; hhn5; e2ii) 2 R2 , donot lie on coordinate lines and belong to two di�erent but adjacent open coordinatequadrants in R2 .Since the geodesic ` is recurrent, there exists a sequence gn 2 � such thatlimn!1 �(gn) = 1limn!1 gn(`) = `Thus for large n the ats gng4(F1); gng5(F1) will intersect the line ` in points z; ywhich are not separated by the point x and the properties (1), (2) are still satis�edby the normal vectors to these ats. 19
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Figure 5:It follows that F1; F2; F3; gng4(F1) = F4; gng5(F1) = F5 form a con�guration satis-fying the assertions of Proposition 10.6.The arguments below are based on the following fact of Euclidean geometry. Sup-pose that T is a tetrahedron in R3 where we know dihedral angles at two vertices.Then we can �nd all dihedral angles at two other vertices as continuous functions ofthe known angles. Indeed, suppose T has vertices A;B;C;D and we know all theangles at A;B. Then we know dihedral angles at two edges emanating from C. Theplanar angle ACB between these two edges is � � \CBA � \BAC. Then we �ndthe last dihedral angle at C from two known dihedral angles and ACB by the cosineformula of the spherical trigonometry. The same argument works for the vertex D.Since the geodesic ` = F1 \ F2 is recurrent, there exist a sequence of elementsgn 2 � so that gn(`) is convergent to ` in the Chabity topology. Let 1 = g0. Now we�x the ats F1; F2; F3 and apply the sequence of covering transformations fgng to theats F4; F5. Let Fj;n = gn(Fj); j = 4; 5. Since �(gn) ! 1 the ats Fj;n intersect theline ` in F1; F2 by the angles �1;j;n, �2;j;n which approximate the angles �1;j;0, �2;j;0.20



Therefore the ats F1; F2; F3; Fj;n generate simplices Tj;n in X. These simplices haveat faces and the angles at vertices of these simplices, which are continuous functionsof the angles �1;j;n, �2;j;n , approximate the angles of the initial simplex Tj;0. Thedihedral angles at the vertex F1 \ F2 \ F3 of Tj;n are �xed. Thus similarity classes ofEuclidean models of the simplices Tj;n do not degenerate as n!1.Denote T4;n by T 0n and T5;n by T 00n . We let O;A0n; B0n; C 0n be the vertices of T 0nand O;A00n ; B00n ; C 00n be the vertices of T 00n . It is clear that the simplices T 0n; T 00n forma double simplex Dn . Denote by r0n the distance d(B0n; O) and by r00n the distanced(O;B00n). Clearly r00n ! 1 and r0n ! 1. In Lemma 10.7 we will show that thisconvergence to in�nity has the same rate.Lemma 10.7. r0n = O(r00n)Proof: By taking n su�ciently large we can guarantee that d(gn(B0); `) � � andd(gn(B00); `) � � where � is given by Proposition 5.3. Connect gn(B0) to ` by theshortest segment In = [gn(B0); wn]. Take the unit normal vector �B00 to F5 at the pointB00 and the unit tangent vector �B00 to ` at B00. Then j\(�B00 ; �B00) � �=2j � �1 > 0.Similarly if �B0 is a unit normal vector to F4 at B0 then j\(�B0 ; �B0)� �=2j � �2 > 0.Let � = min(�1; �2).Since gn are isometries we get: h�B0 ; �B0i = hDg(�B0); Dg(�B0)i. On the otherhand, the geodesics gn` are convergent to ` thus there exists a number n0 such thatfor all n > n0 we have: \(�wn ;�IDg(�B0)) � �=2where �wn is the unit tangent vector to ` at the point wn obtained from �B0 by paralleltransport along `. Thus j\(�wn;�IDg(�B0))� �=2j � �=2It follows from Lemma 5.3 that the point of intersection xn := ` \ gnF4 is at thedistance at most u(�; �=2) from gn(B0) for all n � n0. Similarly we can �nd n1 sothat for each n � n1 the point of intersection ` \ gnF5 is at the distance at mostu(�; �=2) from gn(B00) for all n � n1. However d(gn(B0); gn(B00)) = d(B0; B00). Thusd(gnF5 \ `; gnF4 \ `) � 2u(�; �=2) + d(B00; B0)for all n � max(n0; n1).Lemma 10.8. The group � has polynomial growth. (Actually the growth is at mostquadratic.)Proof: According to Lemma 10.7, r00n = O(r0n), so we let rn := r0n. Thus by Theorem8.2 we get a sequence of double simplices Dn = T 0n [ T 00n such that their inscribedradius �n is O(rn). The area of each @Dn is at most Area(@T 00n )+Area(@T 0n) = O(r2n)since these simplices have Euclidean boundary. However the group � = �1(M) is notamenable which implies that V ol(Dn) = O(r2n)Let B�n be a sequence of metric balls of the radius �n inscribed in Dn. ThenV ol(B�n) � V ol(Dn) = O(r2n) = O(�2n)21
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Figure 6:Remark 10.9. Formally speaking the group � has polynomial growth if for any se-quence of balls Bn of radius n in X the volume of Bn grows slower than a polynomialfunction. However, a version of Gromov's theorem on groups of polynomial growth[VW] implies that it is enough to check the growth condition for a sequence of radiiwhich tend to in�nity.All the groups of polynomial growth are almost nilpotent [Gro1], [VW]. ThusLemma 10.8 contradicts Corollary 10.5. It proves that the Case (c) actually can'toccur which �nishes the proof of Theorem 1.2 in the Case III.11 Case II: double intersectionsSuppose that F is a at in the space X which has only double intersections. Wede�ne L = LF to be the connected component of F in �(F ) and let �F denote thestabilizer of LF in �. Let �LF = �L be the closure of L. Again, each point of �L iscontained in a at and intersection of any three ats from �L is always di�erent froma single point. The same arguments as in the Case III imply that F = F1 can bechosen so that it contains a recurrent geodesic ` such that ` = F1 \ F2, where F2 isanother at in X. By Theorem 9.2 we may assume that �F is a �nite-index subgroupin �, so we let � := �F . Let L0 = �(F1 [ F2). It's clear that this is a path-connectedset and its closure �L0 = L is also path-connected since X contains no simple ats(see Theorem 9.2 and Remark 9.4).Foliate each at in L by geodesics parallel to `. This foliation is preserved underthe action of �. By taking an index 2 subgroup in � we can guarantee that � preservesorientation on the �bers of the foliation. Denote by Y the quotient of L along thisfoliation and let f : L ! Y be the projection. We de�ne a path-metric dY (y1; y2) asinffdL(x1; x2) : x1 2 f�1(y1); x2 2 f�1(y2)gwhere dL is the path metric on L. Each element g 2 � projects to an isometry f�(g) ofthe space Y via f . Note that Isom(L) contains a normal subgroup H which consistsof uniform vertical translations along �bers, thus f�(H) = f1g.Let y0 = f(`). We will identify the geodesic ` with the real line R. De�ne' : L ! ` to be the nearest-point projection with respect to the path-metric dL. We22



de�ne a function v : �� L ! R byv(g; x) = '(gx)� '(x)Clearly this function depends only on the pair (g; f(x)). The function v roughlyspeaking measures the \vertical displacement" of the isometry g.Note that the space (Y; dY ) is NOT locally compact. Nevertheless we have thefollowingLemma 11.1. Suppose that qn 2 � is a sequence and y1 2 Y is a point such thatf�1(y1) is the intersection `1 of two ats in L. Assume that dY (f�qn(y1); y0) � const.Then (f�qn(y1)) contains a convergent subsequence.Proof: The assumption that the distance dY (f�qn(y1); y0) is bounded implies that thesequence qn`1 is subconvergent in the Chabity topology in X to a geodesic `1. Let`1 = F 0\F 00 and `1 = F 01\F 001. Fix a point x 2 `1. Denote by xn 2 qn(`1) the nearestpoint to x. Let � be the angle between F 0; F 00. Then for large n, d(x; qn(`1)) � �(�; �)(see Proposition 5.1).This implies that one of the ats qn(F 0); qn(F 00) intersects F 01[F 001 at the distanceat most �(�; �; d(x; xn)) from the both xn; x (by Proposition 5.1). See Figure 7.
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Figure 7:This implies that dL(xn; x)! 0 as n!1.In particular Lemma 11.1 can be applied to the sequence qn = gn and the geodesic`1 = `. Thus (fgn(`)) is convergent in Y to f(`) since ` = `1. However apriori it ispossible that the sequence f�(gn) is not convergent to identity uniformly on compactsin Y . To deal with this problem choose any �nite subset K � Y . Then d(y0; gnK)remains bounded as n!1. Therefore there exists a function m = m(n) > n so that23



the elements hn = g�1m gn have the property: the sequence f�(hn) is convergent to theidentity on K.We choose the �nite set K as follows. Denote by 1; :::; r the set of generators ofthe group �. Let y1 be a point of f(F1) which is di�erent from f(`) = y0 and f�1(y1)is the intersection of two ats in L. We takeK = f1(y0); 1(y1); :::; r(y0); r(y1)gSuppose that n is su�ciently large and for any y 2 K we have d(y; f�hn(y)) � �.Direct calculation show that d(yj; f�[i; hn](yj)) � 2� for each i = 1; :::; r; j = 0; 1and n 2 Z, where [a; b] = a�1b�1ab.Theorem 11.2. Suppose that hn is a sequence as above,  = j is one of the genera-tors of �. Then there is a �nite collection of elements wi 2 � such that for su�cientlylarge n, [hn; ] 2 fw1; :::; wlg and all the elements wi have trivial projection to Y .Proof: Choose elements tn and s 2 H with the vertical displacement the same asv(hn; f(`)) and v(; f(`)) respectively. Let ĥn = t�1n hn, ̂ = s�1. Clearly [̂; ĥn] =[; hn]. For each compact J � Y we havejv(̂; y)j; jv(ĥn; y)j � c(J) <1where y 2 J and the constant c(J) depends only on J and not on n. Thereforejv([ĥn; ̂]; y)j � c(J 0)where y 2 J and J 0 � J 3 y0 is a compact which contains((J)) [ [nhn((J)) [ [n�1hn(J)[[nh�1n (J [ (J) [ [nhn((J)) [ [n�1hn(J))On the other hand, the sequence f�([; hn]) is convergent to the identity onfy0; y1g. By discreteness of � we conclude that for large n all the elements f�[hn; ]act trivially on f(F1) and the commutators [hn; ] belong to some �xed �nite setfw1; :::; wlg � �. Since the group � preserves the orientation on X the elementsf�[hn; ] act trivially on Y . Therefore fw1; :::; wlg � H \ �.Corollary 11.3. The group � has in�nite center.Proof: Let 1; :::; r be the set of generators of � as before. There are two possiblecases. First we suppose that for some i =  in Theorem 11.2 the element w =[hn; ] 2 H is nontrivial. Then w belongs to the center of �. Otherwise we assumethat all the elements [hn; i] = 1 for su�ciently large n. Hence hhni is in the centerof �.Finally we apply Geo� Mess's theorem [M1] to conclude that � contains Z2. This�nishes our proof in the Case II. 24



12 Case I: simple atsWe start with a construction, which (in general case) is due to Morgan and Shalen[MS2]. Suppose that L � X is a closed �-invariant subset which is the union ofdisjoint 2-ats. The set L is called a lamination on X, ats in L are leaves of thislamination. We shall assume that none of the leaves F of L has stabilizer in � whichacts cocompactly on F . It's clear then that L has uncountably many leaves. Weeliminate from L all leaves which are boundary ats for more 2 components of X�L.Construct a dual tree T to L as follows. If D � X � L is a component withthe closure �D, collapse �D to a single point q( �D) 2 T . If F is a 2-at in L which isnot a boundary at for any component D � X � L, then collapse to a single pointq(F ) 2 T . As the set T is the quotient of X described above. Let F � L be a leaf.Pick a point x 2 Fz. Then there is a su�ciently small number �0 > 0 (which dependsonly on geometry of M) such that: if [x0; x00] � X is a geodesic segment orthogonal toFz at x, d(x; x0) = d(x; x00) = �0, then each leaf F � L and each connected componentD � X�L intersects [x; y] by a convex subset. Let z 2 T be a point such that q�1(z)is a single leaf of L. De�ne Nz as an above segment [x0; x00] for some choice of x 2 F ,let ~z = x in this case. Suppose that z 2 T is such that q�1(z) is the closure of acomponent D � X � L. For each boundary at Fx of D we pick a point x 2 Fx andan orthogonal segment [x0; x] disjoint from D which has the length �. Let Nz be theunion of such segments over all boundary ats of D and ~z be the collection of all theirend-points x.Then we de�ne open neighborhoods of z 2 T to be subsets E � T such thatq�1(E) \ Nz is an open neighborhood of the set ~z in Nz. It is easy to see that thetopological space T is Hausdor� and the group � acts on T by homeomorphisms. Ifnone of the complementary regions D of L has more than 2 boundary ats, then Tis a 1-dimensional manifold which is clearly a real line. In general the space T is atopological tree, i.e. any two points are connected by a embedded topological arc andthis arc is unique. It L has a transversal invariant measure, then T is a metric treeand � acts on T by isometries.12.1 Proof via the Rips TheoryTheorem 12.1. Suppose that N is a closed aspherical manifold of dimension n. Then�1(N) is neither a nontrivial amalgamated free product nor HNN extension with theamalgamation over Zk for any k < n� 1.Proof: We consider only the case of amalgamated free products, the case of HNNextensions is similar. Suppose that �1(N) = A�CB where C �= Zk. Since this decom-position is nontrivial we conclude that both groups A;B have in�nite index in �1(N).This implies that Hn(A;Z=2) �= Hn(X=A;Z=2) = 0; Hn(B;Z=2) �= Hn(X=B;Z=2) =0 where X is the universal cover of N . Since Hn(C;Z=2) = Hn�1(C;Z=2) = 0 we ap-ply the Mayer-Vietoris sequence to the amalgamated free product �1(N) = A�CB andconclude that 0 = Hn(�1(N);Z=2) = Hn(N;Z=2). This contradict the assumptionthat the dimension of N is equal to n.The following proof of Theorem 1.2 in the case of simple ats was motivated bydiscussion with Lee Mosher, who explained to me how to prove Conjecture 1.1 under25



assumption that the universal cover X contains a simple least area surface conformalto R2 .The closure �L of the �-orbit of a simple at F is foliated by ats. It projectsto a lamination � on M which admits a transversal-invariant measure since eachleaf of � is amenable [P1]. Thus the topological tree T dual to �L is an metrictree and the group � acts on T by isometries. Therefore application of the RipsTheory [R], [BF] (or of a theorem of Morgan and Shalen [MS1]) to T will producea nontrivial simplicial �-tree R(T ) where edge-stabilizers are discrete subgroups ofIsom(R2). This means that the group � admits a nontrivial splitting as amalgamatedfree product of HNN extension where amalgamated subgroups are discrete subgroupsof Isom(R2). The group � is torsion-free and the manifold M is aspherical. Thusnone of the amalgamated subgroups can be f1g or Z (Theorem 12.1). This impliesthat � must contain Z� Z.12.2 Geometric proofOur arguments here are very similar to the Schroeder's proof in [Sc]. Suppose thatF is a simple at in X. We will assume that � contains no Z2.Theorem 12.2. The space X contains a simple at with nontrivial stabilizer.Proof: Consider the closure �L of the �-orbit of the simple at F . It is foliated by ats.Thus we get a �-invariant lamination of X by ats. Denote by T the dual tree tothis lamination. Our goal is to prove that either T is homeomorphic to R or there isa leaf of �L with nontrivial stabilizer in �. If �L = X then �L is actually a foliation andT �= R. Suppose now that the complement X � �L is nonempty. Choose a componentW of this complement and let F1 be a boundary at of this component. This at isstill simple. Assume that F1 has trivial stabilizer in �, let F := F1 and de�neQ := fx 2 W : d(x; F ) < d(x; F 0) for all other boundary ats F 0 of WgThen Q\Q = ; for each  2 ��f1g. Pick a base-point q 2 F . For x 2 F we de�ne�(x) = inffd(x; F 0) : F 0 6= F is a boundary at of WgLemma 12.3. The function �(x) tends to zero as d(x; q)!1.Proof: Suppose that there exists a sequence xn 2 F so that d(xn; q) ! 1 and�(xn) � � for some positive �. We assume that d(xn+1; q) > d(xn; q) + 1. Then for� < �=2 the intersection B+n = B�(xn)\W has volume at least �3=2 and the �-orbitsof these balls are disjoint since all B+n are contained in Q. This implies that themanifold M has in�nite volume which is impossible.Thus there exists R > 0 so that for all x 2 F � BR(q) we have �(x) < � where �is given by Proposition 5.2. The set F � BR(q) is connected. The normal geodesicl = lx emanating from x intersects the nearest at F 0 at the distance at most � =the injectivity radius of of M . Hence the geodesic segment of l between x and F 0 isdisjoint from any other at in @W . Indeed, if it intersects one of these ats F 00 beforemeeting F 0 at the time t0 then to intersect F 0 at the time t1 > t0, the geodesic must26



�rst intersect F 00 again at some time t2 2 (t0; t1). This contradicts the assumptionthat F 00 is a at (since l is distance minimizing for all t < t1).As in [Sc] we conclude that the nearest at F 0 = Fx � @W doesn't vary as wevary x in F � BR(q). In particular d(x; F 0) < � for all x 2 F � BR(q). Denote by Ethe part of X contained between F; F 0. Since F; F 0 are Hausdor�-close, there is noother ats in E. Therefore W = E has only two boundary components: F; F 0 andthe same is valid for all components W of X � �L. This implies that the tree T dualto the lamination �L is a real line.Hence we get an action of � on R by homeomorphisms. It follows that either � isAbelian or one of leaves of �L has nontrivial stabilizer (Theorem 6.3). This concludesthe proof of Theorem 12.2.Remark 12.4. Alternatively in the last argument one can appeal to Theorem ofImanishi [I].Now suppose that F is a simple at in X with the nontrivial stabilizer �o. Thismust be an Abelian group acting discretely and isometrically on R2 . Since � containsno Z2 it implies that �o is an in�nite cyclic group acting by translations in F . Denoteby ` � F an invariant line for �o = hi. Let G denote the centralizer of �o in �.Since for each g 2 G the elements g;  commute, the at gF is also -invariant. Thedisplacement number of  in gF is the same as in F . Consider the orbit LF of Funder G and denote by �LF its closure in X.Lemma 12.5. The pair (�LF ; G) is proper.Proof: Suppose that the pair is not proper and x 2 X is an accumulation point forgnF; gn 2 �. Since F is simple gnF accumulates also to a at F 0 which contains x.Denote by xn 2 F a sequence such that gnxn ! x. The displacement of  in F equalsC, thus d(xn; xn) = C < 1. Hence the displacements of gng�1n are also boundedby C at gnxn. This implies that elements gng�1n have displacement at x bounded byC + 1 for large n. Since � is a discrete group we (taking a subsequence if necessary)can assume that gng�1n = gmg�1m for all n;m. This means that all the elementshnm = g�1n gm commute with . Thus all hnm belong to the subgroup G and (�L;G) isa proper pair.Corollary 6.7 implies that G contains a �nitely generated in�nite noncyclic sub-group G0 with nontrivial center hi. Thus according to Mess's theorem [M1], G0contains Z2. This �nishes the proof of Theorem 1.2.13 Closing up Euclidean planesIn this Section we will prove that under some topological restrictions the existenceof a at in a 3-manifold M implies the existence of an immersed incompressible attorus in M .Suppose that M is a closed aspherical orientable Riemannian manifold whichcontains a at. Then by Theorem 1.2 there exists a subgroup isomorphic to Z2in M . Apriori the manifold M is not irreducible, however it can be representedas a connected sum N#� where � is a homotopy sphere [He1] and N is either27



Haken or Seifert manifold. In any case N has a canonical (Jaco-Shalen-Johannson)decomposition into hyperbolic and Seifert components. We assume that N has noSeifert components at all, thus it is obtained by gluing hyperbolic manifolds alongboundary tori and Klein bottles. These boundary surfaces separate N ; since N isorientable they must be tori.Theorem 13.1. Under the conditions above M contains an immersed incompressibleat torus.Proof: Any at F in ~M is a quasi-at in ~N . In the paper [KL] we classify quasi-atsin universal covers of Haken manifolds. Provided that M has no Seifert components,[KL] implies that there exists an i ncompressible torus T embedded in M and anumber r < 1 so that F is contained in an r-neighborhood of the universal cover~T � X = ~M .Remark 13.2. IfM is a hyperbolic 3-manifold with nonempty boundary of zero Eulercharacteristic, then the existence of such torus T was �rst proven by R. Schwarzt in[Sch].Denote by A the fundamental group of T operating on ~T = S. This group is amaximal Abelian subgroup of �.The Hausdor� distance dH(gF; S) is bounded from above independently on g 2 A.We let �L denote closure of the orbit A(F ). The quotient �L=A is compact in M .Lemma 13.3. There exists a subgroup �0 of �nite index in � which contains A sothat �L is precisely invariant under A in �0.Proof: Recall that � is residually �nite [He2]. There is at most a �nite number ofelements g1; :::; gk 2 ��A such that gj �L\ �L 6= ; and A is a maximal Abelian subgroupof �. Thus by applying [L] we conclude that � contains a �nite-index subgroup �0which contains A and doesn't intersect fg1; :::; gkg.We let � := �0 and retain the notationM forX=�0. Now we will apply our analysisof ats in 3-manifolds to the at F .First we suppose that F is a simple at. Let F 0 be one of the ats in �L which isthe most distant from S in the Hausdor� metric. There are at most two such atssince all the ats in �L are disjoint. Hence F 0 is invariant under an index 2 subgroupin A which implies Theorem 13.1.Suppose now that any at in �L has \triple intersections". By compactness of �L=Awe can assume that F = F1 intersects a at F2 � �L along a recurrent geodesic. Thegroup �1 (as in Section 10) is contained in A by Lemma 13.3. Then we have threepossible cases (a), (b), (c) according to the holonomy representation � : �1 ! SO(3).In the Cases (b), (c) we get: � = �1 which is impossible. Hence either we have theCase III-a or the Case II (ats with double intersections). Note that �1 is eitherin�nite cyclic or is isomorphic to Z� Z. However the quotient cl(�1(F1 [ F2))=�1 iscompact. Thus �1 is not cyclic and it must have a �nite index in A. In the bothcases III-a and II we have a �nite-index subgroup A0 � A which preserves a parallelfamily of Euclidean geodesics on the orbit L0 = A0(F1). From now on we considerthe only the subgroup A0 and the orbit L0 so that the Cases III-a and II becomeindistinguishable. 28



Each at Fj in �L0 separates X into two components, we let F+j denote the \rightside" and F�j denote the \left side" of Fj. We let S+ denote the union of the rightsides and S� the union of left sides. Their complements C+; C� are disjoint openconvex subsets of X whose boundaries B� are foliated by parallel lines `x. Both B�are Hausdor� close to the surface S and invariant under A0, so the quotients B�=A0are tori. Each at in L0 separates C+ from C�. Now let a; b be generators of thegroup A and I be a shortest geodesic segment in X connecting B+ and B�. Henceeach F � �L0 intersects I and this intersection consists of a single point. We identifyI with an interval [�h; h] � R (here h � 0) so that �h correspond to points onB�. The surface B+ is identi�ed with the plane R2 which is foliated by vertical lines`x; x 2 R. If one of the lines `x is invariant under an element g 2 A0 � f1g then gleaves invariant any at in �L0 which contains `x (otherwise B+ is not g-invariant).We pick a generator a of A0 which doesn't keep (any) line `x invariant. Therefore aacts on B� �= R2 as a translation (x; y) 7! (x+�; y+�), we shall assume that � > 0.Identify 0 on the x-axis with the projection of the point I \ B+. Now we pick a atF � �L0 which intersects B+ along a line (or a strip) whose projection to the x-axis ispositive. For each n > 0 we let fhng = an(F ) \ I. Denote by � the projection of B+to the x-axis along the lines `x.Lemma 13.4. The sequence hn 2 [�h; h] is monotone.Proof: For n � 0 we let [z�n ; z+n ] denote the projection of the intersection an(F )\B+to the x-axis; these intervals belong to the positive ray R+ . If n > m � 0 thenz+n > z+m > 0. Thus ��1(z+n ) � am(F )+ (see Figure 8). Note that [hm; h] also lies inam(F )+. On the other hand, z+m separates 0 from z+n . Suppose now that hn < hm.Then at an(F ) intersects am(F ) in a non-connected set which is impossible.Therefore there exists a limit I 3 h1 = limn!1 hn. The points a(hn) are conver-gent to a point a(h1). Let F1 be the union of ats of accumulation for the sequencean(F ).Each at in F1 must pass through the points h1; a(h1). Recall however that anypair of ats in X intersect by a connected set, thus F1 consist of a single at whichmust be invariant under the element a. Suppose that F1 is not b-invariant. Then werepeat the same argument as above by applying the sequence bn to F1. The limitingat � must be invariant under the both generators a; b. Hence �=A0 is a torus. This�nishes the proof of Theorem 13.1.References[Ba] H. Bass, Finitely generated subgroups of GL2 , In: \Smith Conjecture", Acad.Press, 1984; p. 127{ 136.[BF] M. Bestvina, M. Feighn, Stable actions of groups on real trees, Inv. Math.,121 (1995) F. 2, 287{ 322.[BM] M. Bestvina, G. Mess, The boundary of negatively curved groups, Journal ofAMS, 4 (1991), N 3, p. 469{ 481.[BK1] M. Bonk and B. Kleiner, Rigidity for quasi-Mbius group actions, J. Di�eren-tial Geom. vol. 61 (2002), no. 1, 81{106.29
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