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Abstract

We prove that if a closed aspherical Riemannian 3-manifold M contains a
2-flat, then there exists a free Abelian subgroup of rank two in 71 (M). Under
some restrictions on topology of M we prove the existence of an immersed
incompressible flat torus in M. This generalizes results which were previously
known for manifolds of nonpositive curvature.

1 Introduction

In this paper we address the following conjecture which is a special case of Thurston’s
Geometrization Conjecture:

Conjecture 1.1. (Weak Hyperbolization Conjecture): Suppose that M is a
closed aspherical 3-manifold. Then either (M) contains Zo X Z or w1 (M) is word-
hyperbolic.

Note that according to the results [M1], [Tu], [Gal], [CJ], [Sco] and [T], Thur-
ston’s Geometrization Conjecture is satisfied for any closed irreducible 3-manifold M
whose fundamental group contains Z x Z. Such manifold is either Haken or Seifert.
On the other hand, if I' = 7, (M) is word-hyperbolic then the ideal boundary 0TI
is a 2-dimensional sphere S? (see [BM]). In the latter case, conjecturally, the ideal
boundary of I' is quasi-symmetric to the standard 2-sphere (see [Ca], [CS], [BK1],
[BK2]). If this is trues, then I' is isomorphic to a uniform lattice in SO(3,1) and
hence M is homotopy-equivalent to a closed hyperbolic manifold N. In the latter
case the manifolds M and N are homeomorphic (see [Ga3)).

It is well-known that failure of a finitely-presented group I' = 71 (M) to be word-
hyperbolic means that I' doesn’t have linear isoperimetric inequality. Moreover, ac-
cording to Gromov (|Gro2], Assertion 6.8.S), m(M) is word-hyperbolic iff there is
no nonconstant conformal least area map f : R2 — M. Stronger versions of this
statement are proven in the works of Mosher & Oertel [MO] and Kleiner [KI].

Thus, nonhyperbolicity of I implies the existence of a certain minimal surface S
in M. In this paper we will prove Conjecture 1.1 under the assumption that S is a
flat, Theorem 1.2.

Theorem 1.2. Suppose that M is a closed aspherical Riemannian 3-manifold which
contains a flat. Then m (M) contains Z*.



Interesting intermediate case between Theorem 1.2 and Conjecture 1.1 is when
the universal cover of the manifold M contains a quasi-flat. Note however that the
universal cover of any Sol-manifold does not contain quasi-flats since its asymptotic
cone is 1-dimensional [Gro3].

It would be interesting to know if the manifold M in Theorem 1.2 contains an
immersed flat incompressible torus. In Section 13 we prove that such torus exists
under the assumption that the canonical decomposition of M contains no Seifert
components, Theorem 13.1.
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2 Weak Hyperbolization Conjecture

In this section we describe several cases when the Weak Hyperbolization Conjecture
is proven. Our first example is given by 3-manifolds of nonpositive curvature.

If M is a manifold then M will always denote the universal cover of M. A k-flat
in a Riemannian manifold M is an isometric immersion f : R¥ — M so that the
lift f: R¥ — M is an isometric embedding (i.e. d(x,y) = d(f(z), f(y))). Abusing
notations we will call by k-flat the image of a k-flat as well. 2-flats will be called
flats. The image of a k-flat F' = f(RF) is totally-geodesic in M, i.e. for any points
x,y € F the minimizing geodesic connecting x and y is in F. If f 'R? > Misa
quasi-isometric embedding then the image of f is called a quasi-flat. We refer the
reader to [Hel] for basic definitions of 3-dimensional topology.

We recall the following results:

Theorem 2.1. (P. Eberlein [E]) Suppose that M is a closed n-manifold of nonpositive
curvature. Then either M contains a flat or (M) is a word-hyperbolic group.

Remark 2.2. The hyperbolicity of the fundamental group was disquised in [E] as the
“visibility” axiom. See [Gro2], [Br] for the case of general C AT (0)-metrics.

Theorem 2.3. (V. Schroeder [Sc]) Suppose that M is a n-manifold of nonpositive
curvature and finite volume which contains a codimension 1 flat. Then M contains a
compact (n — 1)-flat. (In particular m (M) contains Z"'.)

In the case of closed 3-manifolds of nonpositive curvature this theorem was first
proven by S. Buyalo [B], see also [KK2] for a generalization of this result to CAT(0)
Poincare duality groups. The present paper was motivated by the proofs of Schroeder
and Buyalo.

Corollary 2.4. Suppose that M is a closed 3-manifold of nonpositive curvature. Then
M satisfies the Weak Hyperbolization Conjecture.

Theorem 2.5. (M. Kapovich and B. Leeb [KL]) Suppose that N is a closed Haken 3-
manifold with nontrivial decomposition into geometric components and G is a torsion-
free finitely-generated group quasi-isometric to w(N). Then G is isomorphic to fun-
damental group of a Haken 3-manifold.

Corollary 2.6. Suppose that N is a manifold satisfying the Weak Hyperbolization
Conjecture and N is not a Sol-manifold. If M s a closed 3-manifold with fundamen-
tal group quasi-isometric to m(N), then M itself satisfies the Weak Hyperbolization
Conjecture.

This corollary shows that the Weak Hyperbolization Conjecture is a problem
about some large-scale geometric properties of 3-manifold groups.

The deepest result in the direction of Thurston’s Geometrization Conjecture is
due to Thurston:



Theorem 2.7. (W. Thurston [T], see also [Mor], [Mc], [O], [K]) Suppose that M is
a Haken manifold. Then either m (M) contains Z* or M is hyperbolic.

Corollary 2.8. Suppose that M is finitely covered by a Haken manifold (i.e. M is
“almost Haken”). Then either w (M) contains Z* or w (M) is word hyperbolic.

Note that in the last case M can not contain quasi-flats. Hence the assertion of
Theorem 1.2 is satisfied for all almost Haken manifolds.

Theorem 2.9. (G. Mess [M1]) Suppose that M is a closed aspherical 3-manifold
such that m (M) contains an infinite cyclic normal subgroup. Then m (M) contains
72,

Note that if the manifold M in Theorem 2.9 is irreducible then it must be a Seifert
manifold (D. Gabai [Gal], A. Casson & D. Jungreis [CJ]). If M is Haken then the
assertion was first proven by Waldhausen, see [Hel|. In our paper we will rely heavily
on Theorems 2.7 and 2.9.

3 Outline of the proof
Notation: We say that f(z) = O(x) if

0 < liminf f(x)/2 < limsup f(z)/z < co

T—00 T—00

Similarly f(z) = o(z) if
Tim f(z)/z =0

The proof of Theorem 1.2 splits in three main cases:

Case I: the universal cover X = M contains a “simple flat” F, i.e. a flat which
doesn’t intersect any other flats in the orbit I'F' (but F' can have a nontrivial stabi-
lizer).

Case II: the space X has no simple flats but contains a flat F' with “double
intersections”, i.e. for any g, h € I' we have: F'N\ gF N AhF is not a point.

Case III (the case of “triple intersections”): the space X contains neither simple
flats nor flats with double intersections.

We begin outline with the most interesting Case I1I. We first find a pair of flats
Fy, F5 whose intersection is a recurrent geodesic £. Using Theorem 2.7 we conclude
that unless I contains Z? or X contains a simple flat, the path-connected component
L of Fy in ['Fy is the whole orbit I'F} (to achieve this one may have to take a finite
covering over M). Thus we assume the latter to be the case. Using parallel transport
along flats we construct a “holonomy” representation p of I' into SO(3). If this
representation has finite image then the family of lines parallel to £ in L is invariant
under Ker(p) and the discussion is similar to the Case II. If p(I') has an invariant
line and is infinite then a 2-fold cover over M has nonzero 1-st Betty number and
the manifold M is homotopy-equivalent to an almost Haken manifold. Hence, in this
case Theorem 1.2 follows from Thurston’s Hyperbolization Theorem 2.7. Thus we
can assume that p(I") is dense in SO(3). In particular this implies that the group I'
is not amenable.



Remark 3.1. Instead of proving that first that I' is not amenable one can use a
Varopoulos’ theorem (as it is done in [KK1]) to conclude in Case III that w (M) has
polynomial growth.

We use recurrence of the geodesic ¢ to construct a family of “double simplices” D,
in X. Roughly speaking each D,, is the union of two adjacent simplices in X which
have flat faces. We prove that the inscribed radii ¢p, of D, tend to infinity at the
same rate as edges of the corresponding simplices. The area of 0D,, grows as O(L2Dn).
Since I' is not amenable the growth rate of Vol(D,) is again O(:7, ). This implies
that the largest metric ball inscribed in D, has radius ¢p, and the volume at most
O(t3, ). Hence I has polynomial growth which contradicts the fact that this group is
not amenable.

Remark 3.2. It seems (however I cannot prove this statement) that more general
set-up for the above arqument is as follows. Suppose that M is a closed aspherical
3-manifold. Let X, be an asymptotic cone of X, assume that Ho(Y,Z) # 0 for
some compact Y C X, (where we consider singular homology theory). Then the
fundamental group m (M) is amenable. Indeed, in the Case III the sequence 0D,
produces an embedded simplicial 2-sphere in X,,.

Now consider the Case II. In this case we repeat the construction of flats Fi, F5
so that ¢ = F} N F; is recurrent. Again we can assume that the orbit L = ['Fy is
path-connected. Then L is foliated by lines which are “parallel” to ¢ and our goal is
to show that this I'-invariant foliation corresponds to the universal cover of a Seifert
fibration of M.

We add to L the T'-orbit of the flat F} and call the closure £. The space £ with
the induced path metric fibers over a metric space Y with the fibers parallel to £. We
pass to an index 2 subgroup in I' to guarantee that I' preserves orientation of fibers
of L. Zassenuhaus theorem implies that if G is a Lie group which fits into the exact

sequence
1= R—-G—->P—1

and A is a discrete finitely-generated subgroup of GG then either the projection of A
to P is discrete or A has an infinite normal cyclic subgroup. We generalize this fact
to the case of the fibration £ — Y. The group I' does not act discretely on Y since
the geodesic ¢ is recurrent. We conclude that the group I' has a nontrivial center.
Thus I’ contains Z? according to Geoff Mess’s Theorem 2.9.

Finally we discuss the Case I. We present two different proofs. One of them is
a straight-forward application of the Rips Machine, another is more geometric and
follows arguments of Buyalo and Schroeder.

The first proof is quite general and works for higher-dimensional manifolds as well.
Consider the closure L of the I'-orbit of a simple flat F. It projects to a lamination
on M which admits a transversal-invariant measure since each leaf is amenable ([P1],
[MO]). Thus the topological tree T" dual to L is a metric tree and the group I' acts
on T by isometries. Therefore application of the Rips Machine to 17" will produce
a simplicial I-tree R(T') where edge-stabilizers are discrete subgroups of Isom(R?).
Hence T contains Z?. (Mosher and Oertel have very similar proof for laminations
L/T of zero Euler characteristic, our proof was motivated by their approach.)



The second (geometric) proof goes as follows. We assume first that all simple
flats in X have trivial stabilizers in I'. We use Schroeder’s trick to conclude that
the dual tree T to the lamination L is a real line which implies that [' is Abelian.
Thus, there must be a simple flat F' in X with nontrivial stabilizer. We assume that
this stabilizer is a cyclic group (7). Denote by G the maximal subgroup of I'" whose
elements commute with () (apriori it could be an infinitely generated locally cyclic
group). Denote by L the closure of the G-orbit of F.. We use Schroeder’s arguments
to prove that the quotient Lp/G is compact. Still this doesn’t imply apriori that
G is finitely generated since Ly is highly disconnected. However we prove that G
has a finitely-generated subgroup Gy D () whose Cayley graph contains a quasi-flat
(Lemma 6.6). Hence this subgroup is not Z and has infinite center. Therefore it must
contain Z? by the Mess’s theorem as in the Case II.

4 Amenability

Recall that a finitely-generated group G acting cocompactly on a Riemannian mani-
fold X is amenable if X contains an exhausting Folner sequence of codimension zero
compact submanifolds ®,, with piecewise-smooth boundary. This means that

nlggo Area(0®,,)/Vol(®,) =0

Examples of amenable and nonamenable groups:
(a) Any group which contains a free nonabelian subgroup is nonamenable.
(b) Any virtually solvable group is amenable.
(c) If G is a finitely-generated amenable subgroup of a linear group then G is almost
solvable. (This follows directly from the Tits’s alternative.)
(d) The class of amenable groups is closed under the operations of taking subgroups,
direct limits, quotients and extensions.

All known examples of finitely presented amenable groups are elementary, i.e. they
are built from finite and cyclic groups via operations (d). Grigorchuk [Gri| constructed
examples of finitely generated amenable groups which are not elementary.

Lemma 4.1. Suppose that M s a closed 3-manifold with amenable fundamental
group. Then any 2-generated subgroup F of m (M) is either Abelian or has finite
index in m (M).

Proof: 1f the index of F' is infinite then M/F is a noncompact manifold. If F'is freely
decomposable then F'is not amenable. Otherwise it is either cyclic or the compact
core of M /F is a Haken manifold which implies that F contains Z «Z or Z@® Z. O

It is easy to see that all elementary amenable 3-manifold groups are almost solv-
able.

G. Mess [M2] proved that if fundamental group of a closed 3-manifold M contains
no free nonabelian subgroups then either 7 (M) is almost solvable or it contains a
simple finite-index subgroup.

Note that a particular case of Conjecture 1.1 is that any closed 3-manifold with
amenable fundamental group has almost solvable fundamental group. However it is
still unknown if a group quasi-isometric to Sol is almost solvable.



5 Geometric constraints

Let X be the universal cover of the compact Riemannian 3-manifold M, through the
whole paper we shall denote by (,) the Riemannian metric on X. Propositions in this
section follow directly from the compactness of M and we omit their proofs.

Suppose that Fiy, Fy, ], F} are flats in X so that Fy N Fy, = ¢, F{ N F) = (' are
geodesics with the dihedral angles a, o' # 0.

Proposition 5.1. There are continuous functions 0(«, '), k(«, o, t) such that:

(i) If v € £,2" € ' are points within the distance at most 6(«, ') then there is
y € (Fy UFy) N (FUF)) such that d(z,y) < k(a, o', d(x,z")).

(i) limy_o (v, o, t) = 0.

Proposition 5.2. (Cf. [Sc/, Sublemma 2.) There exists € > 0 with the following
property:

Suppose that Fy, Fy are flats in X with empty intersection, v € Fy, d(z, Fy) < e.
Let ¢ : [0,a] — X be the unit speed minimal geodesic from x to Fy so that ¢(0) = x
and N, be the unit normal vector to F' at x with the angle

Z(Ng, d(0)) < m/2

Then
Z(Ng, d(0)) < /4

and the geodesic ray emanating from x in the direction N, intersects the flat Fy at
the arc-length distance at most &, where § is the injectivity radius of M.

Proposition 5.3. There exist A > 0 and a continuous function u(zx,y) so that for
any & > 0 the following is true. Pick any complete geodesic | C X, flat F, point
z € F such that d(z,1) < X and w € [ is the nearest point to z. Connect w and z by
the shortest geodesic segment I and let v be the parallel transport along I of a unit
normal vector to F' at the point z. Let €, be the unit tangent vector to | emanating
from w. Suppose that |Z(v,€,) — /2| > &. Then the flat F intersects | in a point y
such that d(z,y) < u(A, ).

6 Some facts about dynamical systems

6.1 Recurrent points

Suppose that X is a compact topological metric space. Let G be an infinite topological
semigroup acting on X. We recall that a point € X is called recurrent if there exists
a divergent sequence g, € GG such that

lim g,(z) =«
n—oo

Lemma 6.1. Under the conditions above for any point z € X the closure of the orbit
G - z contains a recurrent point.



Proof: Consider the orbit G - z and its accumulation set Z; = A(z), which is closed
and therefore compact. If the point z is not a recurrent point itself then G - z — A(2)
is nonempty. Pick a point z; € Z; and repeat the procedure. If z; is not recurrent
then the set Zy = A(z7) is a proper subset in G - z;. By repeating this process we get
a decreasing sequence of compact sets Z; such that each Z; is contained in A(z). If
the process doesn’t terminate after a finite number of steps we take the intersection
Z, = Nj2,Z;. This intersection must be nonempty since all the sets are compact.
Continue the process. As the result we get a decreasing sequence of compact subsets
Z; where the index j runs over the ordinals. On each finite step the sets under
consideration loose at least one point, the original set has the cardinality of at most
continuum. Thus the process must terminate after at most a continuum of steps. [

Suppose that M is a closed Riemannian manifold, F'(M) is the orthonormal frame
bundle of M. We define the geodesic flow on F(M) as follows. Points of F/(M) are
pairs: (x, f) where # € M and f is an orthonormal frame in 7, (M). Choose the first
vector f; in the frame f and let y(t) = exp,(tfi) be the geodesic emanating from z
tangent to fi. Let Gy(z, f) be the parallel transport of (z, f) along the geodesic vy to
the point v(t). We call the R-action on F(M)

(¢, (z, f)) = Gi(f)

the geodesic flow on F(M). It is clear that this action is continuous.
Thus, Lemma 6.1 implies the following

Corollary 6.2. For any point z = (z, f) € F(M) the accumulation set of the orbit
Gi(z) (t € Ry) contains a recurrent point of the geodesic flow.

Suppose that (z, f) is a recurrent point in M, consider the geodesic v € M

v = {exp,(tf1),t € R}

The geodesic 7 as well as its lifts to the universal cover M will be also called recurrent.
Note that if M’ — M is a finite covering, then the lift of a recurrent geodesic from
M to M' is again recurrent.

6.2 Groups acting on R

Theorem 6.3. (O. Holder J. Plante, [P2]) Suppose that T is a group of homeomor-
phisms of R acting freely. Then T" is Abelian.

Proof: We recall idea of the proof. Pick a point x € R. Then the orbit ' - x is a set
with an Archimedian linear order. Since the action of I is free this linear order doesn’t
depend on choice of the point x. Therefore we get an invariant Archimedian linear

order on the group I'. Then a theorem of Holder implies that [' has a monomorphism
into R, hence I' is Abelian. O

Corollary 6.4. Suppose that L is a (topological) foliation of a compact 3-manifold
M so that its lift to the universal cover of M consists of topological planes. Assume
that M # S' x S' x S'. Then at least one leaf of L is not simply-connected.



Proof: Consider the action of I' = 7;(M) on the universal cover M. This action
preserves the foliation L of M by planes. The real line R is dual to the foliation
L, thus T acts on R by homeomorphisms. If L has only simply-connected leaves
then T is Abelian. Hence G 2 Z3 and since M is irreducible this implies that M =
St x St x St O

6.3 Quasi-isometries and proper pairs

Let (X;,d;) (j = 1,2) be a pair of metric spaces. We recall that a map f : (X;,d;) —
(X, dy) is a quasi-isometric embedding if there are two constants K > 0 and C' such
that

K di(z,y) — O < do(f(2), f(y)) £ Kdi(z,y) + C

for each =,y € X;. If (X, d;) is the Euclidean plane R? then f above (and its image)
is called a quasi-flat in X,.

Amap fi: (X1,dy) = (Xa,ds) is a quasi-isometry if there are two constants C7, Cy
and another map fy : (X3,dy) — (X1,d;) such that both fi, fo are quasi-isometric
embeddings and

di(fafi(x), ) < Ch,do(fifoly),y) < Oy

for every z € X1,y € Xy. Such spaces X;, X, are called quasi-isometric. For example,
two metric spaces which admit cocompact discrete actions by isometries of the same
group are quasi-isometric.

The Cayley graph of a finitely generated group I' with a fixed finite set of gener-
ators carries a canonical metric which is called the word metric. The quasi-isometry
class of the word metric does not depend on the generating set.

Suppose that X is the universal cover of a closed Riemannian manifold M, I is
the group of covering transformations. Suppose that £ C X, (G is a subgroup in I' so
that G(F) = E. We say that g, E accumulates to a point z € X if for some sequence
Tn € B, limy, o0 gn(x,) = 2.

We call a pair (E, G) proper if the sequence of sets {gE : g € G} is locally finite
in X. This means that for any infinite sequence {g,} C I' such that g, E accumulates
to a point x € X it follows that there exists v € I' and a subsequence {¢,,} C {gn}
so that z € ycl(F) and g, € YG. Note that if G has finite index in T, the (E, G) is
a proper pair.

Proposition 6.5. For any proper pair (E,G) the quotient cl(E)/G is compact.

Proof: Suppose that z,, € E is a sequence of points. Since M is compact there exists
a sequence g, € I' so that g,z, — 2 € X. By definition of a proper pair g,, splits as
7 © Vn, Where v, € G. Therefore
lim 7, 2., =7 'z
k—o0
This implies compactness of ¢l(E)/G. O
We suppose that E is a closed subset in X invariant under a subgroup G < I so

that the pair (F,G) is proper. Assume that E is the union of flats (which are not
necessarily disjoint).



Lemma 6.6. There exists a finitely-generated subgroup Go < G such that a Cayley
graph of Gy contains a quasi-flat. In the case when E is path-connected we can take

G:Go.

Proof: The problem is that E is not a geodesic metric space with the metric induced
from X, otherwise the assertion would follow from [Gh], Proposition 10.9. Thus we
have to thicken up the space E to a geodesic metric space. Choose sufficiently small
number o > 0 which is less than the half of the injectivity radius of M. The compact
E /G is covered by a finite number of open o-balls B; with centers at points on E/G,
denote the union of these balls by V,(E)/G. It is a manifold which has only a finite
number of connected components. Pick one of these components V. A connected
component Uy of the lift of V4 to X has the stabilizer Gy < G so that Uy/Gy = V.
The intersection Ly = Uy N E/G is closed in E/G and thus compact. Note that in
the case of connected F we get G = Gy. Introduce in Uy the path-metric dp via the
Riemannian metric on X. This metric projects to a path metric on Vj so that the
diameter of Vj is bounded. Consider the completion U, of U, with respect to this
metric. The group Gy still operates on U, by isometries and this action is properly
discontinuous. Let Bj C Uy be a lift of one of the o-balls which cover E/G. Then the
closure clBj of Bj is isometric to closure of the ball B; in M. On the other hand each
point of Uy belongs to one of the closed balls clBj which is compact. Then finiteness
of the number of balls B; implies that Up/Gy is compact with respect to the topology
defined by the path-metric dp. By construction (Up,dp) is a quasi-geodesic metric
space, thus the same is true for its completion. Hence we can apply [Gh], Proposition
10.9, to conclude that Gy is finitely generated. The compactness of Uy/G implies
that U, is quasi-isometric to a Cayley graph of G. Note however that U, must contain
one of the flats in E. This flat remains a flat in (U, dp), since dp > d where d is the
original metric on X. It implies that the Cayley graph of GGy contains a quasi-flat. [

Corollary 6.7. The group G under the conditions above is not word-hyperbolic and
s not locally cyclic.

Proof: Cayley graphs of word-hyperbolic groups do not contain quasi-flats. If G
is locally cyclic then (G is cyclic and hence word-hyperbolic. This contradicts the
existence of a quasi-flat in a Cayley graph of GG. O

7 Inscribed radius

Suppose that X is a metric space, z € X,S C X be a point and a subset. We define
the distance d(z,S) from z to S as

inf d(z, x)

z€eS

Define the inscribed radius g of S as
ts = sup{r: B,(x) C S, for some point =z € S}

where B, (x) is the metric ball of radius r with the center at . We shall denote by
Sy () the metric sphere of radius r with the center at .
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Suppose now that X = M is a simply-connected complete Riemannian 3-manifold,
O € M, II is a flat which contains O. This flat separates M into “left” and “right”
sides (otherwise H;(X,Z) # 0). Denote by II* the right side. Consider a sequence
of metric balls B,(O), r — oo. Boundary of the ball B,(O) is the metric sphere
Sr(0). Define S;f to be (II" N S, (0))U (ITN B,(O)). (The set S looks like a metric
hemisphere with a flat disc attached to the equator.)

Lemma 7.1. In the “right half” B (O) = II* N B,(O) of each ball B,(O) we can
choose a point x, such that

d(z, ,S) = O(r)
Thus 1+ (o) = O(r).

Proof: For each r consider the “metric hemisphere” 11t N S, 5(0) = ¥, . Clearly for
every x € X, we have
r>d(z, S, (0)) >r/2

Now suppose that
o(r) = max d(z, 11N B,(0)) = o(r)

The hemisphere ¥, is a singular chain in Cy(B;F(0),Z) with the boundary equal to
the circle £, with center at O and radius r/2. This circle is a nontrivial element of
the homology group H; (Il — O, Z). Triangulate this chain so that size of each simplex
is at most 1. We construct a continuous map f = f, : ¥, — II N B,.(O) as follows.
For each vertex z of the triangulation we let f(x) be the nearest-point projection of
x to IT N B,(0). Extend the map f to a piecewise-linear map of the cycle %,. Tt
is clear that [f(¢,)] = [¢;] in H (Il — O,Z). Moreover, for each x € ¥, we have:
d(z, f(x)) < 2¢(r) + 1. For sufficiently large r we have: 2¢(r) + 1 < r/4. Therefore
O doesn’t belong to the image of f. However the chain f(¥,) bounds the nontrivial
cycle f(4,) in IT — O. Contradiction. a

Remark 7.2. Our proof actually shows that x, can be chosen so that

d(z, ,SF)>r/8—1/2

8 Riemannian simplices

Suppose that N is a compact domain in a Riemannian 3-manifold X so that N has
piecewise-smooth boundary which is combinatorially equivalent to the boundary of
a Euclidean 3-simplex. We assume that N is contractible and the boundary of N
is a collection of absolutely totally-geodesic flat faces Fj, 7 = 1,...,4. Under these
conditions N will be called a Riemannian simplex. We do not assume that N is
homeomorphic to a 3-ball (it would follow from the Poincare Conjecture).

Now consider a sequence of Riemannian simplices N, such that:

as r — oo the lengths of all edges of N, grow as O(r).

By triangle inequalities, for each r there exists a Euclidean 3-simplex A, in R3
so that faces of A, are isometric to the corresponding faces of N, , we choose a
homeomorphism h, = h : ON, — 0A, which is an isometry on each face. We can

11



assume that one of the vertices of A, is the origin 0 € R*. Denote the rest of the
vertices by Ay, , Ay, , Az, . Let Bj, = h™'(A;,), Bor = h'(0).

We call the sequence of simplices A, nondegenerate if for any sequence 0 < p,, <
r, and any subsequence in r,, the Gromov-Hausdorff limit of the rescaled tetrahedrons
Q, = ,,%Arn is not contained in a Euclidean plane. It is easy to see that this property
depends only on the vertex angles of A, . Namely, for any vertex A; with the planar
angles x, ,y, , 2. at this vertex we have:

lim z, +y, + 2, # 27 , lim x, +y, — 2z, #0
T—>00 r—>00

for any subsequence.

Suppose that Y, is a sequence of points on the edges [By,, Bi,] so that d(Y;, By,) =
O(p(r)) where 0 < p(r) < r is a function of r. Let Fy, = [By, , B, , Bs,] be the face
opposite to By,.

Lemma 8.1. Under the conditions above d(Y, , Fi,) = O(p(r)) as r — oc.

Proof: Suppose that the assertion is wrong, F, is a nearest point to Y, on the face
Fl and d(}/;aEr) = ()(p) Then ‘d(BOT'aET') o d(BOTa}/;)| = ()(p), d(BOTaEr) = O(p)
It implies that we can choose points Cy, € [By,, Ba], C3, € [By,, Bs,| so that E, is
contained inside of the triangle [By,, Cy,, C3,] and d(By,, Cy.) = O(p), d(Bo,, Co,) =
O(p). Similarly we get |d(Y;,C;,) — d(C,, E,)| = o(p).

The sequence of rescaled simplices p~'A, is subconvergent either to a nondegen-
erate simplex (if p = O(r)) or to an infinite tetrahedral cone with the vertex at
zero. The points p~'hCj, , p'hY, , p~'hE, are convergent to points C; Y, E on the
boundary of this cone (or simplex), j = 2, 3; so that

d(Y,C;) = d(E,C;),d(Y,0) = d(E,0)

This implies that the point Y/A actually belongs to the same plane P as the points
0, Cy, C3. On the other hand Y # 0 and belongs to an edge of

lim p A,

T—0Q

which is not on P since the sequence of simplices is not degenerate. Contradiction. [

Now we choose two sequences of Riemannian simplices N,., N,» C X so that each
sequence is nondegenerate and edges of N,., N,» are O(r'), O(r") respectively. We
denote the vertices by Bj,» and Bj,». Assume that these simplices are embedded in
X so that:

e The vertex By, is identified with By,» and subsegments of the edges [By,, Bo,],
[Boy, Boyn| and [By,r, Bsyr], [Bopr, Bayn] are glued together.

e The faces Fj,., F5.» belong to the same flat in X.

e The interiors of simplices are disjoint.
The union N,» U N,» = D is called a double simplez.

12
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Figure 1:

Theorem 8.2. If v = O(r') then the inscribed radius of D is O(r').

Proof: Pick a point Y, € [Bg,, Ba,] so that d(Y,., By) = O(r'), d(Yyr, Bop) = O(1").
Then d(Y;n',Fgru) Z O(T’), d(Y;al,Forl) == O(T’), d(Y;n',FQT') == O(r’), d(Y;n',FQTH) Z
O(r"). Tt implies that a half-ball BT of radius O(r') with center at Y, is contained
in D. Therefore according to Lemma 7.1 the inscribed radius of B* C D is at least

o(r'). O

Remark 8.3. The assertion of Theorem fails if instead of a double simplex we con-
sider an ordinary simplex. As a degenerate example of this possibility consider a
reqular Fuclidean 3-simplex X3, let P be the center of 3. Now let N be the cone with
the vertex P over the 1-dimensional skeleton X' of ¥. This is a degenerate simplex
whose faces are cones over triangles in X'. We give each face of N a path-metric iso-
metric to the metric on a reqular Euclidean triangle. Then the inscribed radius of N is
zero. Such examples appear as ultralimits of sequences of nondegenerate Riemannian
3-simplices.

9 Patterns of intersection

The proof of Theorem 1.2 splits in several cases according to the complexity of the
pattern of intersections of flats in the manifold X. We will assume that the manifold

13
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Figure 2:

M is orientable. The group I' = 71 (M) is torsion-free since M is aspherical [Hel].

Case I: “Simple flats”. There exists a flat ' in X such that for each g € I" the
intersection F'N gF is either empty or gF = F', such flat is called simple.

Case II: “Double intersections”. We assume that X contains no simple flats
but there is a flat F' so that for any elements g, h € T' the intersection F' N gF N hF
is different from a single point (i.e. the intersection is either empty or a complete
geodesic or a flat). Such flat F is called a flat with double intersections.

Case III: “Triple intersections”. We assume that the cases I, II do not occur
(the space X contains neither simple flats nor flats with double intersections). Thus
for any flat F' C X there are elements g, h € I" so that F'n gF N hF is a single point
in X.

We consider these cases in different sections.

Remark 9.1. If g1, g» are complete distance-minimizing geodesics which intersect at
two distinct points x,y, then g1 = go. This implies that in the Case II (and III)
intersection of two (resp. three) flats must be connected.

The discussion of the Cases II and III is considerably simplified by the following

Theorem 9.2. Suppose that X contains no simple flats, I' = m (M) doesn’t contain
a subgroup isomorphic to Z x Z. Let F' be a flat in X. Define Lr to be the path-
connected component of F in the orbit U'F and let I'r denote the stabilizer of Ly in
I'. Then the subgroup ' has finite index in T".

Proof: 1t’s clear that Lp is precisely-invariant under I'r in L, i.e. if gLp N Lp # 0
then g € I'p. Let Lr denote the closure of Ly in X.

Lemma 9.3. The pair (Lp,T'r) is proper.

14



Proof: Suppose that g, is a sequence so that g,F accumulates to a point z € X.
Taking if necessary a subsequence we can assume that there is a flat F' C X which
contains x so that g,F accumulates to F’. According to our assumptions X has no
simple flats. Therefore there exists a € ' so that aF" intersects F’ transversally. It
follows that there is a number ng so that for all n,m > ng, ag,F N g, F # 0. Let
Y = gn,- Hence ag,y ' € I',p and x € L,p. Then g, € 7T p. O

Remark 9.4. Note that the same arguments as above prove that either X contains
a simple flat (which is impossible) or L is path-connected.

Thus Lemma 6.6 implies that the stabilizer ['r of L is a finitely-generated group
whose Cayley graph contians a quasi-flat. Hence the group I'r is not word-hyperbolic.
If I' has infinite index in the group I" then the Scott compact core My of X/T'r is an
aspherical 3-manifold with nonempty boundary. Therefore Thurston’s Hyperboliza-
tion Theorem can be applied to M and we conclude that since 1 (M) 2 T'y contains
no Z x 7Z, the group ' is isomorphic to a convex-cocompact subgroup of PSL(2, C).
This contradicts the fact that I'r is not word-hyperbolic. O

10 Case III: triple intersections

10.1 Parallel transport along flats

Choose any flat F; € X. We denote by L the path-connected component of T'(F})
which contains the flat F;. Let I'; denote the stabilizer of L in I'. Pick a PL path
7 C L which connects points y and x. We shall denote by II, the parallel transport
T, — T, along .

Lemma 10.1. Let X\ be a closed PL loop contained in the union of flats L. Then the
parallel transport along A\ is trivial.

X2

XQ X1 X3
X4

Figure 3:

Proof: We proceed by induction on the the combinatorial length of A, i.e. the number
n of its edges. If n = 2 then the assertion is obvious. Suppose that the statement is
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proven for all k& < n. We consider 4 consecutive segments [z, 1], ..., [r3, 4] in A as
on Figures 3, 4.

Let F; denote a flat in X which contains the segment [z, z;41], let [; = F;_1 N F;
be a line through x;. We first assume that the lines l5, I3 are not parallel and intersect
in a point x € FyNFy,NF; (Figure 3). Substitute the PL path [z, 25| U[x9, 23]U[x3, 24]
in A by [z, ] U [z, 24] to construct a new PL loop A'. The move p: A — N decreases
the combinatorial length of the loop A.

X2

X0 X1 X3
X4

Figure 4:

Now we suppose that all three lines Iy, 3,14 are parallel (otherwise we can apply
the move u). By the “triple intersection” assumption there exists a flat F' C L which
is transversal to [y at the point z. Therefore it intersects [y, l3 at points z,y (see
Figure 4). Hence we can substitute the PL path [z, 2] U ... U [z3,24] by the path
[zo, 2| U [z,y] U [y, x4]. Denote the new PL curve by X'. The move v : A — A again
decreases the combinatorial length of the path A by 1. The parallel transport along
A is trivial by the induction hypothesis.

Let us consider now only the case of the move v, the other case is similar. All what
we have to prove is that the parallel transport along the loop [z4, y] U [y, z] U [z, 2] U
[xg, 1] U ... U [x3, 4] is trivial. Using triviality of the parallel transport in the planes
Fy, F; we reduce the problem to the curve [z3,y] U [y, 2] U [z, 1] U [x1, 29] U [z, x3].
Then we transform this loop to [z, 2] U [z, y] U [y, z] U [z, 2] U [z, 25] keeping the same
parallel transport. The parallel transport along the last loop is obviously trivial. [

Corollary 10.2. If v,~" are two PL paths in L with the same initial point x and the
final point y, then 11, = 11.

Suppose that F', F" are flats in L, x € F' and y € F". There are planes P’ C
T,(X),P" C T,(X) such that exp, P’ = F', exp, P" = F". We call the flats F’, F"
“parallel” if for some (any) PL path v C L connecting z € F' and y € F" we have:

I,P' = P"
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Lemma 10.3. If F'. F" are two nonparallel flats in L then they have nonempty
intersection.

Proof: Given two flats F, F' € L we define the “chain distance” (F' : F’) between
them to be the minimal number n such that there exists a chain of flats in L:

Fl :F,FQ,...,FH :F,

so that F; N F;4; # 0. We will prove Lemma by induction on the chain distance
n=(F":F"). For 2= (F" : F') the assertion is obvious. Suppose that 3 = (F" : F").
Consider the chain

F,=F F, F3=F"

If the line F, N F3 = Iy is not parallel to [y = F, N F; then F" Ny # () and we are
done. Suppose that [; is parallel to [,. By the assumption that we are in the Case
IIT there exists another flat F C L such that Fy N F' = [} is a line in F’ which is
not parallel to [;. It follows that F) N F, is a line which is not parallel to [;. Thus
it must intersect [y and (F, Fj, F3) is another chain of flats. Again, if I}, = F) N F;
is not parallel to /] then we are done. Otherwise F3 contains two nonparallel lines
lo, I, which are parallel to the flat F} via parallel transport in L. It implies that F”
is parallel to F’ which contradicts our assumptions.

Now suppose that the assertion of Lemma is proven for all £ < n and n = (F" :
F") > 3. Consider a chain

F1 - F,,FQ,...,Fn - F”

If F5 is not parallel to F), then by induction they must intersect which implies that
n = 3 in which case the assertion is already proven. So we assume that F" is parallel
to F». Again as in the case n = 3 there exists a flat F so that F), N F} is a line [}
which is not parallel to I; = F, N Fy. The intersection F3 N Fj is nonempty since
otherwise F3 N F; # () and (F' : F") < n. Thus

F\,F) .. F,=F"

is again a chain of flats. Now F” can’t be parallel to F; which implies that F"NE" # ().
This means that n < 3. ]

10.2 Holonomy representation

Pick a base-point & € £ C F;. We define a representation p : I'y — SO(T,X) = SO(3)
as follows. Let g € 'y, y = g(z). Choose a PL path v C L which connects y and .
Denote by II, the parallel transport T, — T, along . The derivative of g is a map
Dg, : T, — T,. Thus we let p(g) =11, 0 Dg, : T, = T, p(g) € SO(3). Corollary
10.2 implies that the map p is well-defined. We call p a holonomy representation of
the group I'.

Lemma 10.4. The map p is a homomorphism.
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Proof: Take two elements g, h € '}, choose a PL. curve o« C L connecting gz to x, PL
curve § C L connecting hz to z and a PL curve v C L connecting hg(z) to gz. We
need to check that

II, o H'y © Dgw(h) © Da:(g) = HB © Da:(h) oll, 0 Dm(g)
However according to Corollary 10.2
Hgl oll, oIl = Ilj,
Since h is an isometry it commutes with the parallel translation which implies

a0 Dyy(h) = Dy(h) o 11,

10.3 Construction of a recurrent pair

Let F;,7 = 1,2,3,4 be flats in X so that each three of them intersect transversally
in a point and these four points of triple intersection are distinct. Since 7 (X) = 0,
the points of triple intersection span a 3-simplex A in X whose faces are contained
in the flats F;. In this case we shall say that the flats Fj-s generate the simplex A.

Suppose that FV, F¥ € T'(F) are flats in X = M which intersect along a geodesic
¢°. Corollary 6.2 implies that there exists a sequence of elements g, € T' = 7,(M)
such that £ = lim,,_, g,(¢°) is a recurrent geodesic. This geodesic is the intersection
of the flats F; = lim,,_, gnF]Q. (Here the convergence is understood in the Chabity
topology.) The pair of flats (Fy, Fy) is a recurrent pair.

Since we consider the Case III, there exists an element g € I' such that gF;
intersects ¢ transversally (i = 1,2).

For the flat | we construct the connected components L, and the linear repre-
sentation p of the stabilizer I'; as in Sections 10.1, 10.2.

There are three cases to consider now:
(a) p(I'7) is a finite subgroup of SO(3).
(b) p is an infinite reducible representation.
(c) p(T'y) dense in SO(3).

Lemma 10.5. In the case (c¢) it follows that the group T is not amenable.

Proof: The homomorphic image of any amenable group is again amenable. Thus if '
is amenable then so is p(I';). However it follows from the classification of amenable
linear groups that the amenable group p(I';) C SO(3) must be almost Abelian. Hence
in this case p is a finite or reducible representation which contradicts the property
(c). O

By Theorem 9.2 we can assume that the group I'y has finite index in I". Since it
is enough to prove Theorem 1.2 for a finite-index subgroup we let I' := I'; so that the
orbit ['F} is path-connected.
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10.4 Cases (a) and (b) of amenable holonomy

First we consider the Case (a). Denote by I} the kernel of p, which is a subgroup of
finite index in ['y. In this case I'| preserves the foliation of L by lines parallel to ¢
and the discussion reduces to the Case II.

Consider the Case (b): the representation p is infinite and reducible. It implies
that a subgroup I" of index 2 in I' admits an infinite representation in U(1) and
hence H;(I",R) # 0. Thus the 2-fold covering X/I" of the manifold M is homotopy-
equivalent to a Haken manifold and we can apply Theorem 2.7 to conclude that
[' D Z2. This finishes the proof in the Case (b).

10.5 Generation of simplices: Case (c)

In what follows we shall consider the Case (c): the group p(I') is dense in SO(3).
Note that according to a theorem of Bass [Ba] the group p(T") either splits as an
amalgamated free product, or HNN extension or (after conjugation in SO(3)) entries
of the matrices in p(I") belong to a ring of algebraic integers. First two cases imply that
the manifold M is Haken which would finish the proof. Examples of representations
such that entries of p(I') belong to a ring of algebraic integers can be constructed
using arithmetic subgroups of PSL(2,C). In this case we do not see any algebraic
arguments which can simplify our proof. Hence we will use geometry.

Proposition 10.6. The orbits T'(Fy),'(Fy) contain three flats F3, Fy, F5 so that the
flats F1, ..., F5 generate two distinct simplices T',T" which form a double simplex in
the sense of Section 8. These simplices have the properties:

e Their intersection is a triangle which is contained in the flat F};

e Both flats Fy, Fy participate in generation of the simplices T', T" (see Figure 5).

Proof: Choose any flat F3 which is transversal to ¢ and denote by x the point of
intersection £N F3. For the convenience we introduce in 7, X a metric ((, )) where the
lines of intersection Fy N Fy = Span(es), Fy N Fy = Span(ey), F3 N Fy = Span(ey) are
orthogonal. Since the group p(I'y) is dense in SO(3) there are elements g4, g5 in ['y
so that normal vectors ny , ns (with respect to ((,))) of the planes pgs(F1), pgs(F})
have the properties:

(1) (Gngyen)) > 0, j = 4,5

(2) the points Py = ({{ns, 1)), ((ns, ex))), B = ({(ns, 1)), {(n5.€2))) € R, do
not lie on coordinate lines and belong to two different but adjacent open coordinate
quadrants in R2.

Since the geodesic ¢ is recurrent, there exists a sequence g, € ' such that

lim p(gn) =1
n— 00
lim g, (¢) = ¢

n—0o0

Thus for large n the flats g,94(F1), g,95(F1) will intersect the line ¢ in points z,y
which are not separated by the point x and the properties (1), (2) are still satisfied
by the normal vectors to these flats.
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Figure 5:

It follows that Fy, Fy, F3, g,94(F1) = Fy, g,95(F1) = F5 form a configuration satis-
fying the assertions of Proposition 10.6. O

The arguments below are based on the following fact of Euclidean geometry. Sup-
pose that T is a tetrahedron in R® where we know dihedral angles at two vertices.
Then we can find all dihedral angles at two other vertices as continuous functions of
the known angles. Indeed, suppose T has vertices A, B,C, D and we know all the
angles at A, B. Then we know dihedral angles at two edges emanating from C. The
planar angle AC'B between these two edges is m — Z/CBA — ZBAC. Then we find
the last dihedral angle at C' from two known dihedral angles and AC'B by the cosine
formula of the spherical trigonometry. The same argument works for the vertex D.

Since the geodesic ¢ = F; N F; is recurrent, there exist a sequence of elements
gn € T so that g, () is convergent to ¢ in the Chabity topology. Let 1 = go. Now we
fix the flats Fy, Fy, F3 and apply the sequence of covering transformations {g,} to the
flats Fy, F5. Let F,, = g,(F;),j = 4,5. Since p(g,) — 1 the flats Fj, intersect the
line ¢ in Fi, F, by the angles oy jn, oo, which approximate the angles « jo, 0.
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Therefore the flats Fy, Fy, Fy, F},, generate simplices T}, in X. These simplices have
flat faces and the angles at vertices of these simplices, which are continuous functions
of the angles a1 j,, s, , approximate the angles of the initial simplex T},. The
dihedral angles at the vertex Fy N Fy N F3 of T}, are fixed. Thus similarity classes of
Euclidean models of the simplices Tj,, do not degenerate as n — oo.

Denote Ty, by 7, and 15, by 7). We let O, A}, B,,C, be the vertices of 7T}
and O, A” B! C! be the vertices of 7)) . It is clear that the simplices 7,7 form
a double simplex D,, . Denote by 7, the distance d(B,,,O) and by r, the distance
d(O,B)). Clearly ] — oo and r,, — oo. In Lemma 10.7 we will show that this
convergence to infinity has the same rate.

Lemma 10.7. r,, = O(r})

n

Proof: By taking n sufficiently large we can guarantee that d(g,(B’),¢) < A and
d(gn(B"),¢) < X where X is given by Proposition 5.3. Connect g,(B') to ¢ by the
shortest segment I, = [g,(B'), w,]. Take the unit normal vector vz to Fy at the point
B" and the unit tangent vector egr to £ at B"”. Then |Z(egn,vgn) — w/2| > & > 0.
Similarly if vp is a unit normal vector to Fy at B’ then |Z(eg,vp) — /2] > & > 0.
Let & = min(&;, &).

Since g, are isometries we get: (vp,ep) = (Dg(vp), Dg(ep)). On the other
hand, the geodesics g,¢ are convergent to ¢ thus there exists a number ny such that
for all n > ny we have:

L(ew, 11 Dg(ep)) < €/2
where €, is the unit tangent vector to £ at the point w,, obtained from ez by parallel
transport along ¢. Thus

Z(€w,, 11 Dg(vp)) —m/2] = £/2

It follows from Lemma 5.3 that the point of intersection z, := ¢ N g,Fy is at the
distance at most u(\,&/2) from g,(B’) for all n > ny. Similarly we can find n; so
that for each n > n; the point of intersection ¢ N g, F5 is at the distance at most
u(, €/2) from g,(B") for all n > n,. However d(g,(B'), g.(B")) = d(B', B"). Thus

d(gnFs Nl g, Fyn ) <2u(X E/2) + d(B", B')
for all n > max(ng, nq). O

Lemma 10.8. The group I' has polynomial growth. (Actually the growth is at most
quadratic. )

Proof: According to Lemma 10.7, r)) = O(r},), so we let r,, := r!,. Thus by Theorem
8.2 we get a sequence of double simplices D,, = T, U T, such that their inscribed
radius ¢, is O(r,). The area of each dD,, is at most Area(9T)) + Area(dT.) = O(r?)
since these simplices have Euclidean boundary. However the group I' = 7y (M) is not
amenable which implies that

Vol(D,) = O(r?)

n

Let B,, be a sequence of metric balls of the radius ¢, inscribed in D,,. Then

Vol(B,,) < Vol(D,) = 0(r2) = O(:2)

n n
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Remark 10.9. Formally speaking the group U has polynomial growth if for any se-
quence of balls B, of radius n in X the volume of B,, grows slower than a polynomial
function. However, a version of Gromou’s theorem on groups of polynomial growth
[VW] implies that it is enough to check the growth condition for a sequence of radii
which tend to infinity.

All the groups of polynomial growth are almost nilpotent [Grol], [VW]. Thus
Lemma 10.8 contradicts Corollary 10.5. It proves that the Case (c¢) actually can’t
occur which finishes the proof of Theorem 1.2 in the Case III. O

11 Case II: double intersections

Suppose that F'is a flat in the space X which has only double intersections. We
define L = L to be the connected component of F' in I'(F') and let I'r denote the
stabilizer of Ly in I'. Let Ly = L be the closure of L. Again, each point of L is
contained in a flat and intersection of any three flats from L is always different from
a single point. The same arguments as in the Case III imply that F' = Fj can be
chosen so that it contains a recurrent geodesic ¢ such that ¢ = F; N F,, where F, is
another flat in X. By Theorem 9.2 we may assume that ['z is a finite-index subgroup
in [, so we let ' := I'j. Let L% = T'(F, U Fy). It’s clear that this is a path-connected
set and its closure £° = L is also path-connected since X contains no simple flats
(see Theorem 9.2 and Remark 9.4).

Foliate each flat in £ by geodesics parallel to £. This foliation is preserved under
the action of I'. By taking an index 2 subgroup in [' we can guarantee that I" preserves
orientation on the fibers of the foliation. Denote by Y the quotient of £ along this
foliation and let f : £ — Y be the projection. We define a path-metric dy (y;,ys) as

inf{dg(z1,29) 1 € f (1), 22 € f ' (2)}

where d is the path metric on £. Each element g € T" projects to an isometry f.(g) of
the space Y via f. Note that Isom(L) contains a normal subgroup H which consists
of uniform vertical translations along fibers, thus f.(H) = {1}.

Let yo = f(¢). We will identify the geodesic ¢ with the real line R. Define
¢ : L — £ to be the nearest-point projection with respect to the path-metric dz. We
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define a function v : I' x £ — R by

v(g,z) = p(gz) — p(z)

Clearly this function depends only on the pair (g, f(z)). The function v roughly
speaking measures the “vertical displacement” of the isometry g.

Note that the space (Y,dy) is NOT locally compact. Nevertheless we have the
following

Lemma 11.1. Suppose that q, € I is a sequence and y; € Y 1is a point such that
Y1) is the intersection £y of two flats in L. Assume that dy (f.q,(y1), yo) < const.
Then (f.qn(y1)) contains a convergent subsequence.

Proof: The assumption that the distance dy (f.q,(y1), %) is bounded implies that the
sequence g,¢; is subconvergent in the Chabity topology in X to a geodesic {,. Let
ty = F'nF" and ly, = F! NFY. Fix apoint x € (. Denote by z,, € ¢,,(¢1) the nearest
point to z. Let a be the angle between F', F". Then for large n, d(z, ¢,(¢1)) < 8(«a, «)
(see Proposition 5.1).

This implies that one of the flats ¢, (F"), ¢, (F") intersects F. UF at the distance
at most k(a, a, d(z, x,)) from the both z,,x (by Proposition 5.1). See Figure 7.

an(F")

Figure 7:

This implies that dz(z,,z) — 0 as n — oc. O

In particular Lemma 11.1 can be applied to the sequence ¢, = g,, and the geodesic
¢y = L. Thus (fg,(¢)) is convergent in Y to f(¢) since { = {,. However apriori it is
possible that the sequence f,.(g,) is not convergent to identity uniformly on compacts
in Y. To deal with this problem choose any finite subset K C Y. Then d(yo, g, K)
remains bounded as n — oo. Therefore there exists a function m = m(n) > n so that
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the elements h,, = g,'g, have the property: the sequence f,(h,) is convergent to the
identity on K.

We choose the finite set K as follows. Denote by v1, ..., 7, the set of generators of
the group I'. Let y; be a point of f(F}) which is different from f(¢) = yo and f~!(y)
is the intersection of two flats in £. We take

K ={m(yo),1W1), -7 (v0), 1 (y1)}

Suppose that n is sufficiently large and for any y € K we have d(y, f.hn(y)) < C.
Direct calculation show that d(y;, fi[vi, hnl(y;)) < 2¢ for each i = 1,...,r; j = 0,1
and n € Z, where [a,b] = a”'b"ab.

Theorem 11.2. Suppose that h, is a sequence as above, v = y; is one of the genera-
tors of I'. Then there is a finite collection of elements w; € I such that for sufficiently
large n, [hy,y] € {w1,...,w;} and all the elements w; have trivial projection to Y.

Proof: Choose elements t, and s € H with the vertical displacement the same as
v(hy, f(£)) and v(vy, f(¢)) respectively. Let h, =t 'h,, ¥ = s 'v. Clearly [y, h,]| =
[7, hn]. For each compact J C Y we have

(3. 9)]: [0(ha, y)| < e(J) < o0

where y € J and the constant ¢(.J) depends only on .J and not on n. Therefore

o([hn, 3 9)] < (')

where y € J and J' D .J 3 yp is a compact which contains
(V()) U Unha(4(1) U Uy~ iy (T)U

Unlty (T UA(T) U Ul ((1)) U Uy ()

On the other hand, the sequence f.([v,h,]) is convergent to the identity on
{y0,71}. By discreteness of I' we conclude that for large n all the elements f,|h,, 7]
act trivially on f(F;) and the commutators [h,, 7] belong to some fixed finite set
{wy,...,w;} C T. Since the group I' preserves the orientation on X the elements
felhn, ] act trivially on Y. Therefore {wy,...,w;} € HNT. O

Corollary 11.3. The group I' has infinite center.

Proof: Let v1,...,7, be the set of generators of I as before. There are two possible
cases. First we suppose that for some 7; = = in Theorem 11.2 the element w =
[hn,y] € H is nontrivial. Then w belongs to the center of I'. Otherwise we assume
that all the elements [h,, ;] = 1 for sufficiently large n. Hence (h,) is in the center
of I. O

Finally we apply Geoff Mess’s theorem [M1] to conclude that I’ contains Z?. This
finishes our proof in the Case II.
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12 Case I: simple flats

We start with a construction, which (in general case) is due to Morgan and Shalen
[MS2]. Suppose that L C X is a closed I'-invariant subset which is the union of
disjoint 2-flats. The set L is called a lamination on X, flats in L are leaves of this
lamination. We shall assume that none of the leaves F' of L has stabilizer in I" which
acts cocompactly on F'. It’s clear then that L has uncountably many leaves. We
eliminate from L all leaves which are boundary flats for more 2 components of X — L.

Construct a dual tree T to L as follows. If D C X — L is a component with
the closure D, collapse D to a single point ¢(D) € T. If F is a 2-flat in L which is
not a boundary flat for any component D C X — L, then collapse to a single point
q(F) € T. As the set T is the quotient of X described above. Let F' C L be a leaf.
Pick a point x € F,. Then there is a sufficiently small number ¢; > 0 (which depends
only on geometry of M) such that: if [z, 2"] C X is a geodesic segment orthogonal to
F, at z, d(z,2") = d(z,2") = €, then each leaf F' C L and each connected component
D C X — L intersects [z, y] by a convex subset. Let z € T be a point such that ¢~'(2)
is a single leaf of L. Define N, as an above segment [z, "] for some choice of x € F,
let Z = z in this case. Suppose that z € T is such that ¢ !(z) is the closure of a
component D C X — L. For each boundary flat F, of D we pick a point z € F, and
an orthogonal segment [2', x] disjoint from D which has the length e. Let N, be the
union of such segments over all boundary flats of D and z be the collection of all their
end-points x.

Then we define open neighborhoods of z € T to be subsets £ C T such that
¢ '(E) N N, is an open neighborhood of the set Z in N,. It is easy to see that the
topological space T is Hausdorff and the group I' acts on 7" by homeomorphisms. If
none of the complementary regions D of L has more than 2 boundary flats, then T’
is a 1-dimensional manifold which is clearly a real line. In general the space T is a
topological tree, i.e. any two points are connected by a embedded topological arc and
this arc is unique. It L has a transversal invariant measure, then 7' is a metric tree
and [" acts on T by isometries.

12.1 Proof via the Rips Theory

Theorem 12.1. Suppose that N is a closed aspherical manifold of dimensionn. Then
m1(N) is neither a nontrivial amalgamated free product nor HNN extension with the
amalgamation over Z* for any k < n — 1.

Proof: We consider only the case of amalgamated free products, the case of HNN
extensions is similar. Suppose that 7 (N) = A*¢ B where C' =2 Z*. Since this decom-
position is nontrivial we conclude that both groups A, B have infinite index in 7 (V).
This implies that H,(A,Z/2) = H,(X/A,Z/2) = 0,H,(B,Z/2) = H,(X/B,7Z/2) =
0 where X is the universal cover of N. Since H,,(C,Z/2) = H, 1(C,Z/2) = 0 we ap-
ply the Mayer-Vietoris sequence to the amalgamated free product m;(N) = Ax¢ B and
conclude that 0 = H, (m(N),Z/2) = H,(N,Z/2). This contradict the assumption
that the dimension of N is equal to n. O

The following proof of Theorem 1.2 in the case of simple flats was motivated by
discussion with Lee Mosher, who explained to me how to prove Conjecture 1.1 under
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assumption that the universal cover X contains a simple least area surface conformal
to R2.

The closure L of the T'-orbit of a simple flat F is foliated by flats. It projects
to a lamination A on M which admits a transversal-invariant measure since each
leaf of A is amenable [P1]. Thus the topological tree T dual to L is an metric
tree and the group I' acts on T by isometries. Therefore application of the Rips
Theory [R], [BF] (or of a theorem of Morgan and Shalen [MS1]) to 7" will produce
a nontrivial simplicial I'-tree R(T) where edge-stabilizers are discrete subgroups of
I'som(R?). This means that the group I' admits a nontrivial splitting as amalgamated
free product of HNN extension where amalgamated subgroups are discrete subgroups
of Isom(R?). The group T is torsion-free and the manifold M is aspherical. Thus
none of the amalgamated subgroups can be {1} or Z (Theorem 12.1). This implies
that I' must contain Z x Z. O

12.2 Geometric proof

Our arguments here are very similar to the Schroeder’s proof in [Sc|. Suppose that
F is a simple flat in X. We will assume that I contains no Z?2.

Theorem 12.2. The space X contains a simple flat with nontrivial stabilizer.

Proof: Consider the closure L of the '-orbit of the simple flat F. It is foliated by flats.
Thus we get a ['-invariant lamination of X by flats. Denote by T the dual tree to
this lamination. Our goal is to prove that either 7" is homeomorphic to R or there is
a leaf of L with nontrivial stabilizer in I'. If L = X then L is actually a foliation and
T = R. Suppose now that the complement X — L is nonempty. Choose a component
W of this complement and let F; be a boundary flat of this component. This flat is
still simple. Assume that F; has trivial stabilizer in I", let F' := F} and define

Q:={xeW:d(z,F) <d(z,F') forall other boundary flats F' of W}
Then vyQ NQ = () for each v € T — {1}. Pick a base-point ¢ € F. For z € F we define
¢(x) = inf{d(z, F') : F' # F is a boundary flat of W}

Lemma 12.3. The function ¢(x) tends to zero as d(x,q) — oc.

Proof: Suppose that there exists a sequence z, € F so that d(z,,q) — oo and
¢(x,) > o for some positive 0. We assume that d(x,41,q) > d(x,,q) + 1. Then for
0 < /2 the intersection B,” = Bs(x,) N W has volume at least §°/2 and the I'-orbits
of these balls are disjoint since all B are contained in ). This implies that the
manifold M has infinite volume which is impossible. O

Thus there exists R > 0 so that for all x € F' — Bg(q) we have ¢(x) < ¢ where ¢
is given by Proposition 5.2. The set F' — Bg(q) is connected. The normal geodesic
[ = I, emanating from z intersects the nearest flat F’ at the distance at most § =
the injectivity radius of of M. Hence the geodesic segment of [ between x and F” is
disjoint from any other flat in OW . Indeed, if it intersects one of these flats F” before
meeting F’ at the time ¢y then to intersect F' at the time t; > #3, the geodesic must
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first intersect F” again at some time ¢y € (tg,t1). This contradicts the assumption
that F" is a flat (since [ is distance minimizing for all ¢ < ¢;).

As in [Sc|] we conclude that the nearest flat ' = F, C OW doesn’t vary as we
vary x in F' — Bg(q). In particular d(z, F') < € for all z € F' — Bg(q). Denote by E
the part of X contained between F, F’. Since F,F’ are Hausdorff-close, there is no
other flats in £. Therefore W = F has only two boundary components: F, F' and
the same is valid for all components W of X — L. This implies that the tree 7 dual
to the lamination L is a real line.

Hence we get an action of I' on R by homeomorphisms. It follows that either I is
Abelian or one of leaves of L has nontrivial stabilizer (Theorem 6.3). This concludes
the proof of Theorem 12.2. [

Remark 12.4. Alternatively in the last argument one can appeal to Theorem of
Imanishi [1].

Now suppose that F'is a simple flat in X with the nontrivial stabilizer I',. This
must be an Abelian group acting discretely and isometrically on R?. Since I' contains
no Z? it implies that I, is an infinite cyclic group acting by translations in F'. Denote
by ¢ C F an invariant line for T', = (). Let G denote the centralizer of I, in T.
Since for each g € G the elements g,y commute, the flat gF is also y-invariant. The
displacement number of v in gF is the same as in F. Consider the orbit Lg of F'
under G and denote by Ly its closure in X.

Lemma 12.5. The pair (Lp,G) is proper.

Proof: Suppose that the pair is not proper and z € X is an accumulation point for
gnF', g, € T'. Since F' is simple ¢, F accumulates also to a flat F’ which contains x.
Denote by x,, € F' a sequence such that g,z,, — x. The displacement of 7 in F' equals
C, thus d(yz,,,) = C < oc. Hence the displacements of g,vg, ' are also bounded
by C at g,r,. This implies that elements g,vg, ' have displacement at z bounded by
C + 1 for large n. Since T is a discrete group we (taking a subsequence if necessary)
can assume that ¢g,vg,' = gm79,, for all n,m. This means that all the elements
Prm = G ' gm commute with . Thus all h,,, belong to the subgroup G and (L, G) is
a proper pair. U

Corollary 6.7 implies that G contains a finitely generated infinite noncyclic sub-
group GGy with nontrivial center (). Thus according to Mess’s theorem [M1], Gy
contains Z?. This finishes the proof of Theorem 1.2. O

13 Closing up Euclidean planes

In this Section we will prove that under some topological restrictions the existence
of a flat in a 3-manifold M implies the existence of an immersed incompressible flat
torus in M.

Suppose that M is a closed aspherical orientable Riemannian manifold which
contains a flat. Then by Theorem 1.2 there exists a subgroup isomorphic to Z?2
in M. Apriori the manifold M is not irreducible, however it can be represented
as a connected sum N#Y where Y is a homotopy sphere [Hel] and N is either
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Haken or Seifert manifold. In any case N has a canonical (Jaco-Shalen-Johannson)
decomposition into hyperbolic and Seifert components. We assume that N has no
Seifert components at all, thus it is obtained by gluing hyperbolic manifolds along
boundary tori and Klein bottles. These boundary surfaces separate N; since N is
orientable they must be tori.

Theorem 13.1. Under the conditions above M contains an immersed incompressible
flat torus.

Proof: Any flat F in M is a quasi-flat in N. In the paper [KL] we classify quasi-flats
in universal covers of Haken manifolds. Provided that M has no Seifert components,
[KL] implies that there exists an i ncompressible torus 7' embedded in M and a
number r < oo so that F' is contained in an r-neighborhood of the universal cover
TCcX=M.

Remark 13.2. If M is a hyperbolic 3-manifold with nonempty boundary of zero Euler
characteristic, then the existence of such torus T was first proven by R. Schwarzt in

[Sch).

Denote by A the fundamental group of T' operating on T' = S. This group is a
maximal Abelian subgroup of T'.

The Hausdorff distance dy (¢F, S) is bounded from above independently on g € A.
We let L denote closure of the orbit A(F). The quotient L/A is compact in M.

Lemma 13.3. There exists a subgroup I of finite index in I' which contains A so
that L is precisely invariant under A in 1",

Proof: Recall that T' is residually finite [He2]. There is at most a finite number of
elements gy, ..., g € ' — A such that g; LNL # () and A is a maximal Abelian subgroup
of I'. Thus by applying [L] we conclude that ' contains a finite-index subgroup I’
which contains A and doesn’t intersect {g1, ..., gk }- a

We let I := I'" and retain the notation M for X/T". Now we will apply our analysis
of flats in 3-manifolds to the flat F'.

First we suppose that F'is a simple flat. Let F’ be one of the flats in L which is
the most distant from S in the Hausdorff metric. There are at most two such flats
since all the flats in L are disjoint. Hence F’ is invariant under an index 2 subgroup
in A which implies Theorem 13.1.

Suppose now that any flat in L has “triple intersections”. By compactness of L/A
we can assume that F' = F| intersects a flat F, C L along a recurrent geodesic. The
group 'y (as in Section 10) is contained in A by Lemma 13.3. Then we have three
possible cases (a), (b), (¢) according to the holonomy representation p : I'y — SO(3).
In the Cases (b), (¢) we get: I' = I'; which is impossible. Hence either we have the
Case IIl-a or the Case II (flats with double intersections). Note that I'; is either
infinite cyclic or is isomorphic to Z x Z. However the quotient ¢l (I'y(F; U F)) /Ty is
compact. Thus I'y is not cyclic and it must have a finite index in A. In the both
cases III-a and II we have a finite-index subgroup A" C A which preserves a parallel
family of Euclidean geodesics on the orbit L' = A’(F;). From now on we consider
the only the subgroup A’ and the orbit L' so that the Cases Ill-a and II become
indistinguishable.
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Each flat F} in L' separates X into two components, we let F;’ denote the “right
side” and F;~ denote the “left side” of F;. We let S* denote the union of the right
sides and S~ the union of left sides. Their complements C*,C~ are disjoint open
convex subsets of X whose boundaries BT are foliated by parallel lines ¢,. Both B*
are Hausdorff close to the surface S and invariant under A’, so the quotients B*/A’
are tori. Each flat in L' separates C* from C~. Now let a,b be generators of the
group A and I be a shortest geodesic segment in X connecting BT and B~. Hence
each F' C L' intersects I and this intersection consists of a single point. We identify
I with an interval [—h,h] C R (here h > 0) so that £h correspond to points on
B*. The surface B is identified with the plane R? which is foliated by vertical lines
l,,x € R If one of the lines ¢, is invariant under an element g € A" — {1} then ¢
leaves invariant any flat in L' which contains £, (otherwise B* is not g-invariant).
We pick a generator a of A" which doesn’t keep (any) line £, invariant. Therefore a
acts on B* =~ R? as a translation (x,y) — (z + a, y+ 3), we shall assume that o > 0.
Identify 0 on the z-axis with the projection of the point I N B™. Now we pick a flat
F C L' which intersects B* along a line (or a strip) whose projection to the z-axis is
positive. For each n > 0 we let {h,} = a™(F) N I. Denote by 7 the projection of B*
to the z-axis along the lines /,.

Lemma 13.4. The sequence h, € [—h, h] is monotone.

Proof: For n > 0 we let [z, , 2] denote the projection of the intersection a™(F) N B*
to the z-axis; these intervals belong to the positive ray Rt. If n > m > 0 then
zt >zt > 0. Thus 7' (z) C a™(F)" (see Figure 8). Note that [h,,, h] also lies in
a™(F)*. On the other hand, z} separates 0 from z!. Suppose now that h, < hy,.
Then flat a”(F) intersects a™(F') in a non-connected set which is impossible. O

Therefore there exists a limit I 3 ho, = lim,, o, h,,. The points a(h,) are conver-
gent to a point a(hy). Let Fi be the union of flats of accumulation for the sequence
a"(F).

Each flat in F,, must pass through the points hy, a(hs ). Recall however that any
pair of flats in X intersect by a connected set, thus Fj, consist of a single flat which
must be invariant under the element a. Suppose that F is not b-invariant. Then we
repeat the same argument as above by applying the sequence 0" to F,. The limiting
flat ® must be invariant under the both generators a,b. Hence ®/A’ is a torus. This
finishes the proof of Theorem 13.1. O
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