Flat in 3-manifolds

Michael Kapovich

August 13, 2003

Abstract

Abstact We prove that if a closed aspherical Riemannian 3-manifold M contains a 2-flat, then there exists a free Abelian subgroup of rank two in $\pi_{1}(M)$. Under some restrictions on topology of M we prove the existence of an immersed incompressible flat torus in M. This generalies results which were previously known for manifolds of nonpositive curvature.

1 Introduction

In this paper we address the following conjecture which is a special case of Thurston's Geometrization Conjecture:

Conjecture 1.1. (Weak Hyperbolization Conjecture): Suppose that M is a closed aspherical 3-manifold. Then either $\pi_{1}(M)$ contains $\mathbb{Z} \times \mathbb{Z}$ or $\pi_{1}(M)$ is wordhyperbolic.

Note that according to the results [M1], [Tu], [Ga1], [CJ], [Sco] and [T], Thurston's Geometrization Conjecture is satisfied for any closed irreducible 3-manifold M whose fundamental group contains $\mathbb{Z} \times \mathbb{Z}$. Such manifold is either Haken or Seifert. On the other hand, if $\Gamma=\pi_{1}(M)$ is word-hyperbolic then the ideal boundary $\partial_{\infty} \Gamma$ is a 2-dimensional sphere \mathbb{S}^{2} (see [BM]). In the latter case, conjecturally, the ideal boundary of Γ is quasi-symmetric to the standard 2-sphere (see [Ca], [CS], [BK1], [BK2]). If this is trues, then Γ is isomorphic to a uniform lattice in $S O(3,1)$ and hence M is homotopy-equivalent to a closed hyperbolic manifold N. In the latter case the manifolds M and N are homeomorphic (see [Ga3]).

It is well-known that failure of a finitely-presented group $\Gamma=\pi_{1}(M)$ to be wordhyperbolic means that Γ doesn't have linear isoperimetric inequality. Moreover, according to Gromov ([Gro2], Assertion 6.8.S), $\pi_{1}(M)$ is word-hyperbolic iff there is no nonconstant conformal least area map $f: \mathbb{R}^{2} \rightarrow M$. Stronger versions of this statement are proven in the works of Mosher \& Oertel [MO] and Kleiner [Kl].

Thus, nonhyperbolicity of Γ implies the existence of a certain minimal surface S in M. In this paper we will prove Conjecture 1.1 under the assumption that S is a flat, Theorem 1.2.

Theorem 1.2. Suppose that M is a closed aspherical Riemannian 3-manifold which contains a flat. Then $\pi_{1}(M)$ contains \mathbb{Z}^{2}.

Interesting intermediate case between Theorem 1.2 and Conjecture 1.1 is when the universal cover of the manifold M contains a quasi-flat. Note however that the universal cover of any Sol-manifold does not contain quasi-flats since its asymptotic cone is 1-dimensional [Gro3].

It would be interesting to know if the manifold M in Theorem 1.2 contains an immersed flat incompressible torus. In Section 13 we prove that such torus exists under the assumption that the canonical decomposition of M contains no Seifert components, Theorem 13.1.

Acknowledgements. I am grateful to David Gabai, Bruce Kleiner, Geoff Mess and Lee Mosher for interesting discussions. This research was partially supported by NSF grants DMS-99-71404 and DMS-02-03045.

Contents

1 Introduction 1
2 Weak Hyperbolization Conjecture 3
3 Outline of the proof 4
4 Amenability 6
5 Geometric constraints 7
6 Some facts about dynamical systems 7
6.1 Recurrent points 7
6.2 Groups acting on \mathbb{R} 8
6.3 Quasi-isometries and proper pairs 9
7 Inscribed radius 10
8 Riemannian simplices 11
9 Patterns of intersection 13
10 Case III: triple intersections 15
10.1 Parallel transport along flats 15
10.2 Holonomy representation 17
10.3 Construction of a recurrent pair 18
10.4 Cases (a) and (b) of amenable holonomy 19
10.5 Generation of simplices: Case (c) 19
11 Case II: double intersections 22
12 Case I: simple flats 25
12.1 Proof via the Rips Theory 25
12.2 Geometric proof 26
Bibliography

2 Weak Hyperbolization Conjecture

In this section we describe several cases when the Weak Hyperbolization Conjecture is proven. Our first example is given by 3 -manifolds of nonpositive curvature.

If M is a manifold then \tilde{M} will always denote the universal cover of M. A k-flat in a Riemannian manifold M is an isometric immersion $f: \mathbb{R}^{k} \rightarrow M$ so that the lift $\tilde{f}: \mathbb{R}^{k} \rightarrow \tilde{M}$ is an isometric embedding (i.e. $d(x, y)=d(\tilde{f}(x), \tilde{f}(y))$). Abusing notations we will call by k-flat the image of a k-flat as well. 2-flats will be called flats. The image of a k-flat $F=\tilde{f}\left(\mathbb{R}^{k}\right)$ is totally-geodesic in \tilde{M}, i.e. for any points $x, y \in F$ the minimizing geodesic connecting x and y is in F. If $\tilde{f}: \mathbb{R}^{2} \rightarrow \tilde{M}$ is a quasi-isometric embedding then the image of \tilde{f} is called a quasi-flat. We refer the reader to [He1] for basic definitions of 3-dimensional topology.

We recall the following results:
Theorem 2.1. (P. Eberlein [E]) Suppose that M is a closed n-manifold of nonpositive curvature. Then either M contains a flat or $\pi_{1}(M)$ is a word-hyperbolic group.

Remark 2.2. The hyperbolicity of the fundamental group was disguised in [E] as the "visibility" axiom. See [Gro2], [Br] for the case of general CAT(0)-metrics.

Theorem 2.3. (V. Schroeder [Sc]) Suppose that M is a n-manifold of nonpositive curvature and finite volume which contains a codimension 1 flat. Then M contains a compact ($n-1$)-flat. (In particular $\pi_{1}(M)$ contains \mathbb{Z}^{n-1}.)

In the case of closed 3-manifolds of nonpositive curvature this theorem was first proven by S. Buyalo [B], see also [KK2] for a generalization of this result to CAT(0) Poincare duality groups. The present paper was motivated by the proofs of Schroeder and Buyalo.

Corollary 2.4. Suppose that M is a closed 3-manifold of nonpositive curvature. Then M satisfies the Weak Hyperbolization Conjecture.

Theorem 2.5. (M. Kapovich and B. Leeb [KL]) Suppose that N is a closed Haken 3manifold with nontrivial decomposition into geometric components and G is a torsionfree finitely-generated group quasi-isometric to $\pi_{1}(N)$. Then G is isomorphic to fundamental group of a Haken 3-manifold.

Corollary 2.6. Suppose that N is a manifold satisfying the Weak Hyperbolization Conjecture and N is not a Sol-manifold. If M is a closed 3-manifold with fundamental group quasi-isometric to $\pi_{1}(N)$, then M itself satisfies the Weak Hyperbolization Conjecture.

This corollary shows that the Weak Hyperbolization Conjecture is a problem about some large-scale geometric properties of 3-manifold groups.

The deepest result in the direction of Thurston's Geometrization Conjecture is due to Thurston:

Theorem 2.7. (W. Thurston [T], see also [Mor], [Mc], [O], [K]) Suppose that M is a Haken manifold. Then either $\pi_{1}(M)$ contains \mathbb{Z}^{2} or M is hyperbolic.

Corollary 2.8. Suppose that M is finitely covered by a Haken manifold (i.e. M is "almost Haken"). Then either $\pi_{1}(M)$ contains \mathbb{Z}^{2} or $\pi_{1}(M)$ is word hyperbolic.

Note that in the last case \tilde{M} can not contain quasi-flats. Hence the assertion of Theorem 1.2 is satisfied for all almost Haken manifolds.

Theorem 2.9. (G. Mess [M1]) Suppose that M is a closed aspherical 3-manifold such that $\pi_{1}(M)$ contains an infinite cyclic normal subgroup. Then $\pi_{1}(M)$ contains \mathbb{Z}^{2}.

Note that if the manifold M in Theorem 2.9 is irreducible then it must be a Seifert manifold (D. Gabai [Ga1], A. Casson \& D. Jungreis [CJ]). If M is Haken then the assertion was first proven by Waldhausen, see [He1]. In our paper we will rely heavily on Theorems 2.7 and 2.9.

3 Outline of the proof

Notation: We say that $f(x)=O(x)$ if

$$
0<\liminf _{x \rightarrow \infty} f(x) / x \leq \limsup _{x \rightarrow \infty} f(x) / x<\infty
$$

Similarly $f(x)=o(x)$ if

$$
\lim _{x \rightarrow \infty} f(x) / x=0
$$

The proof of Theorem 1.2 splits in three main cases:
Case I: the universal cover $X=\tilde{M}$ contains a "simple flat" F, i.e. a flat which doesn't intersect any other flats in the orbit ΓF (but F can have a nontrivial stabilizer).

Case II: the space X has no simple flats but contains a flat F with "double intersections", i.e. for any $g, h \in \Gamma$ we have: $F \cap g F \cap h F$ is not a point.

Case III (the case of "triple intersections"): the space X contains neither simple flats nor flats with double intersections.

We begin outline with the most interesting Case III. We first find a pair of flats F_{1}, F_{2} whose intersection is a recurrent geodesic ℓ. Using Theorem 2.7 we conclude that unless Γ contains \mathbb{Z}^{2} or X contains a simple flat, the path-connected component L of F_{1} in ΓF_{1} is the whole orbit ΓF_{1} (to achieve this one may have to take a finite covering over M). Thus we assume the latter to be the case. Using parallel transport along flats we construct a "holonomy" representation ρ of Γ into $S O(3)$. If this representation has finite image then the family of lines parallel to ℓ in L is invariant under $\operatorname{Ker}(\rho)$ and the discussion is similar to the Case II. If $\rho(\Gamma)$ has an invariant line and is infinite then a 2 -fold cover over M has nonzero 1-st Betty number and the manifold M is homotopy-equivalent to an almost Haken manifold. Hence, in this case Theorem 1.2 follows from Thurston's Hyperbolization Theorem 2.7. Thus we can assume that $\rho(\Gamma)$ is dense in $S O(3)$. In particular this implies that the group Γ is not amenable.

Remark 3.1. Instead of proving that first that Γ is not amenable one can use a Varopoulos' theorem (as it is done in [KK1]) to conclude in Case III that $\pi_{1}(M)$ has polynomial growth.

We use recurrence of the geodesic ℓ to construct a family of "double simplices" D_{n} in X. Roughly speaking each D_{n} is the union of two adjacent simplices in X which have flat faces. We prove that the inscribed radii $\iota_{D_{n}}$ of D_{n} tend to infinity at the same rate as edges of the corresponding simplices. The area of ∂D_{n} grows as $O\left(\iota_{D_{n}}^{2}\right)$. Since Γ is not amenable the growth rate of $\operatorname{Vol}\left(D_{n}\right)$ is again $O\left(\iota_{D_{n}}^{2}\right)$. This implies that the largest metric ball inscribed in D_{n} has radius $\iota_{D_{n}}$ and the volume at most $O\left(\iota_{D_{n}}^{2}\right)$. Hence Γ has polynomial growth which contradicts the fact that this group is not amenable.

Remark 3.2. It seems (however I cannot prove this statement) that more general set-up for the above argument is as follows. Suppose that M is a closed aspherical 3-manifold. Let X_{ω} be an asymptotic cone of X, assume that $H_{2}(Y, \mathbb{Z}) \neq 0$ for some compact $Y \subset X_{\omega}$ (where we consider singular homology theory). Then the fundamental group $\pi_{1}(M)$ is amenable. Indeed, in the Case III the sequence ∂D_{n} produces an embedded simplicial 2-sphere in X_{ω}.

Now consider the Case II. In this case we repeat the construction of flats F_{1}, F_{2} so that $\ell=F_{1} \cap F_{2}$ is recurrent. Again we can assume that the orbit $L=\Gamma F_{1}$ is path-connected. Then L is foliated by lines which are "parallel" to ℓ and our goal is to show that this Γ-invariant foliation corresponds to the universal cover of a Seifert fibration of M.

We add to L the Γ-orbit of the flat F_{2} and call the closure \mathcal{L}. The space \mathcal{L} with the induced path metric fibers over a metric space Y with the fibers parallel to ℓ. We pass to an index 2 subgroup in Γ to guarantee that Γ preserves orientation of fibers of L. Zassenuhaus theorem implies that if G is a Lie group which fits into the exact sequence

$$
1 \rightarrow \mathbb{R} \rightarrow G \rightarrow P \rightarrow 1
$$

and Δ is a discrete finitely-generated subgroup of G then either the projection of Δ to P is discrete or Δ has an infinite normal cyclic subgroup. We generalize this fact to the case of the fibration $\mathcal{L} \rightarrow Y$. The group Γ does not act discretely on Y since the geodesic ℓ is recurrent. We conclude that the group Γ has a nontrivial center. Thus Γ contains \mathbb{Z}^{2} according to Geoff Mess's Theorem 2.9.

Finally we discuss the Case I. We present two different proofs. One of them is a straight-forward application of the Rips Machine, another is more geometric and follows arguments of Buyalo and Schroeder.

The first proof is quite general and works for higher-dimensional manifolds as well. Consider the closure \bar{L} of the Γ-orbit of a simple flat F. It projects to a lamination on M which admits a transversal-invariant measure since each leaf is amenable ([P1], [MO]). Thus the topological tree T dual to \bar{L} is a metric tree and the group Γ acts on T by isometries. Therefore application of the Rips Machine to T will produce a simplicial Γ-tree $R(T)$ where edge-stabilizers are discrete subgroups of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$. Hence Γ contains \mathbb{Z}^{2}. (Mosher and Oertel have very similar proof for laminations \bar{L} / Γ of zero Euler characteristic, our proof was motivated by their approach.)

The second (geometric) proof goes as follows. We assume first that all simple flats in X have trivial stabilizers in Γ. We use Schroeder's trick to conclude that the dual tree T to the lamination \bar{L} is a real line which implies that Γ is Abelian. Thus, there must be a simple flat F in X with nontrivial stabilizer. We assume that this stabilizer is a cyclic group $\langle\gamma\rangle$. Denote by G the maximal subgroup of Γ whose elements commute with $\langle\gamma\rangle$ (apriori it could be an infinitely generated locally cyclic group). Denote by \bar{L}_{F} the closure of the G-orbit of F. We use Schroeder's arguments to prove that the quotient \bar{L}_{F} / G is compact. Still this doesn't imply apriori that G is finitely generated since \bar{L}_{F} is highly disconnected. However we prove that G has a finitely-generated subgroup $G_{0} \supset\langle\gamma\rangle$ whose Cayley graph contains a quasi-flat (Lemma 6.6). Hence this subgroup is not \mathbb{Z} and has infinite center. Therefore it must contain \mathbb{Z}^{2} by the Mess's theorem as in the Case II.

4 Amenability

Recall that a finitely-generated group G acting cocompactly on a Riemannian manifold X is amenable if X contains an exhausting Folner sequence of codimension zero compact submanifolds Φ_{n} with piecewise-smooth boundary. This means that

$$
\lim _{n \rightarrow \infty} \operatorname{Area}\left(\partial \Phi_{n}\right) / \operatorname{Vol}\left(\Phi_{n}\right)=0
$$

Examples of amenable and nonamenable groups:

(a) Any group which contains a free nonabelian subgroup is nonamenable.
(b) Any virtually solvable group is amenable.
(c) If G is a finitely-generated amenable subgroup of a linear group then G is almost solvable. (This follows directly from the Tits's alternative.)
(d) The class of amenable groups is closed under the operations of taking subgroups, direct limits, quotients and extensions.

All known examples of finitely presented amenable groups are elementary, i.e. they are built from finite and cyclic groups via operations (d). Grigorchuk [Gri] constructed examples of finitely generated amenable groups which are not elementary.

Lemma 4.1. Suppose that M is a closed 3-manifold with amenable fundamental group. Then any 2-generated subgroup F of $\pi_{1}(M)$ is either Abelian or has finite index in $\pi_{1}(M)$.

Proof: If the index of F is infinite then \tilde{M} / F is a noncompact manifold. If F is freely decomposable then F is not amenable. Otherwise it is either cyclic or the compact core of \tilde{M} / F is a Haken manifold which implies that F contains $\mathbb{Z} * \mathbb{Z}$ or $\mathbb{Z} \oplus \mathbb{Z}$.

It is easy to see that all elementary amenable 3 -manifold groups are almost solvable.
G. Mess [M2] proved that if fundamental group of a closed 3-manifold M contains no free nonabelian subgroups then either $\pi_{1}(M)$ is almost solvable or it contains a simple finite-index subgroup.

Note that a particular case of Conjecture 1.1 is that any closed 3-manifold with amenable fundamental group has almost solvable fundamental group. However it is still unknown if a group quasi-isometric to Sol is almost solvable.

5 Geometric constraints

Let X be the universal cover of the compact Riemannian 3-manifold M, through the whole paper we shall denote by \langle,$\rangle the Riemannian metric on X$. Propositions in this section follow directly from the compactness of M and we omit their proofs.

Suppose that $F_{1}, F_{2}, F_{1}^{\prime}, F_{2}^{\prime}$ are flats in X so that $F_{1} \cap F_{2}=\ell, F_{1}^{\prime} \cap F_{2}^{\prime}=\ell^{\prime}$ are geodesics with the dihedral angles $\alpha, \alpha^{\prime} \neq 0$.

Proposition 5.1. There are continuous functions $\theta\left(\alpha, \alpha^{\prime}\right), \kappa\left(\alpha, \alpha^{\prime}, t\right)$ such that:
(i) If $x \in \ell, x^{\prime} \in \ell^{\prime}$ are points within the distance at most $\theta\left(\alpha, \alpha^{\prime}\right)$ then there is $y \in\left(F_{1} \cup F_{2}\right) \cap\left(F_{1}^{\prime} \cup F_{2}^{\prime}\right)$ such that $d(x, y) \leq \kappa\left(\alpha, \alpha^{\prime}, d\left(x, x^{\prime}\right)\right)$.
(ii) $\lim _{t \rightarrow 0} \kappa\left(\alpha, \alpha^{\prime}, t\right)=0$.

Proposition 5.2. (Cf. [Sc], Sublemma 2.) There exists $\epsilon>0$ with the following property:

Suppose that F_{1}, F_{2} are flats in X with empty intersection, $x \in F_{1}, d\left(x, F_{2}\right)<\epsilon$. Let $c:[0, a] \rightarrow X$ be the unit speed minimal geodesic from x to F_{2} so that $c(0)=x$ and N_{x} be the unit normal vector to F at x with the angle

$$
\angle\left(N_{x}, c^{\prime}(0)\right)<\pi / 2
$$

Then

$$
\angle\left(N_{x}, c^{\prime}(0)\right)<\pi / 4
$$

and the geodesic ray emanating from x in the direction N_{x} intersects the flat F_{2} at the arc-length distance at most δ, where δ is the injectivity radius of M.

Proposition 5.3. There exist $\lambda>0$ and a continuous function $u(x, y)$ so that for any $\xi>0$ the following is true. Pick any complete geodesic $l \subset X$, flat F, point $z \in F$ such that $d(z, l) \leq \lambda$ and $w \in l$ is the nearest point to z. Connect w and z by the shortest geodesic segment I and let ν be the parallel transport along I of a unit normal vector to F at the point z. Let ϵ_{w} be the unit tangent vector to l emanating from w. Suppose that $\left|\angle\left(\nu, \epsilon_{w}\right)-\pi / 2\right|>\xi$. Then the flat F intersects l in a point y such that $d(z, y) \leq u(\lambda, \xi)$.

6 Some facts about dynamical systems

6.1 Recurrent points

Suppose that X is a compact topological metric space. Let G be an infinite topological semigroup acting on X. We recall that a point $x \in X$ is called recurrent if there exists a divergent sequence $g_{n} \in G$ such that

$$
\lim _{n \rightarrow \infty} g_{n}(x)=x
$$

Lemma 6.1. Under the conditions above for any point $z \in X$ the closure of the orbit $G \cdot z$ contains a recurrent point.

Proof: Consider the orbit $G \cdot z$ and its accumulation set $Z_{1}=\Lambda(z)$, which is closed and therefore compact. If the point z is not a recurrent point itself then $G \cdot z-\Lambda(z)$ is nonempty. Pick a point $z_{1} \in Z_{1}$ and repeat the procedure. If z_{1} is not recurrent then the set $Z_{2}=\Lambda\left(z_{1}\right)$ is a proper subset in $G \cdot z_{1}$. By repeating this process we get a decreasing sequence of compact sets Z_{j} such that each Z_{j} is contained in $\Lambda(z)$. If the process doesn't terminate after a finite number of steps we take the intersection $Z_{\omega}=\cap_{j=1}^{\infty} Z_{j}$. This intersection must be nonempty since all the sets are compact. Continue the process. As the result we get a decreasing sequence of compact subsets Z_{j} where the index j runs over the ordinals. On each finite step the sets under consideration loose at least one point, the original set has the cardinality of at most continuum. Thus the process must terminate after at most a continuum of steps.

Suppose that M is a closed Riemannian manifold, $F(M)$ is the orthonormal frame bundle of M. We define the geodesic flow on $F(M)$ as follows. Points of $F(M)$ are pairs: (x, f) where $x \in M$ and f is an orthonormal frame in $T_{x}(M)$. Choose the first vector f_{1} in the frame f and let $\gamma(t)=\exp _{x}\left(t f_{1}\right)$ be the geodesic emanating from x tangent to f_{1}. Let $G_{t}(x, f)$ be the parallel transport of (x, f) along the geodesic γ to the point $\gamma(t)$. We call the \mathbb{R}-action on $F(M)$

$$
(t,(x, f)) \mapsto G_{t}(f)
$$

the geodesic flow on $F(M)$. It is clear that this action is continuous.
Thus, Lemma 6.1 implies the following
Corollary 6.2. For any point $z=(x, f) \in F(M)$ the accumulation set of the orbit $G_{t}(z) \quad\left(t \in \mathbb{R}_{+}\right)$contains a recurrent point of the geodesic flow.

Suppose that (x, f) is a recurrent point in M, consider the geodesic $\gamma \in M$

$$
\gamma=\left\{\exp _{x}\left(t f_{1}\right), t \in \mathbb{R}\right\}
$$

The geodesic γ as well as its lifts to the universal cover \tilde{M} will be also called recurrent. Note that if $M^{\prime} \rightarrow M$ is a finite covering, then the lift of a recurrent geodesic from M to M^{\prime} is again recurrent.

6.2 Groups acting on \mathbb{R}

Theorem 6.3. (O. HolderJ. Plante, [P2]) Suppose that Γ is a group of homeomorphisms of \mathbb{R} acting freely. Then Γ is Abelian.

Proof: We recall idea of the proof. Pick a point $x \in \mathbb{R}$. Then the orbit $\Gamma \cdot x$ is a set with an Archimedian linear order. Since the action of Γ is free this linear order doesn't depend on choice of the point x. Therefore we get an invariant Archimedian linear order on the group Γ. Then a theorem of Holder implies that Γ has a monomorphism into \mathbb{R}, hence Γ is Abelian.

Corollary 6.4. Suppose that L is a (topological) foliation of a compact 3-manifold M so that its lift to the universal cover of M consists of topological planes. Assume that $M \neq S^{1} \times S^{1} \times S^{1}$. Then at least one leaf of L is not simply-connected.

Proof: Consider the action of $\Gamma=\pi_{1}(M)$ on the universal cover \tilde{M}. This action preserves the foliation \tilde{L} of \tilde{M} by planes. The real line \mathbb{R} is dual to the foliation \tilde{L}, thus Γ acts on \mathbb{R} by homeomorphisms. If L has only simply-connected leaves then Γ is Abelian. Hence $G \cong \mathbb{Z}^{3}$ and since \tilde{M} is irreducible this implies that $M=$ $S^{1} \times S^{1} \times S^{1}$.

6.3 Quasi-isometries and proper pairs

Let $\left(X_{j}, d_{j}\right)(j=1,2)$ be a pair of metric spaces. We recall that a map $f:\left(X_{1}, d_{1}\right) \rightarrow$ $\left(X_{2}, d_{2}\right)$ is a quasi-isometric embedding if there are two constants $K>0$ and C such that

$$
K^{-1} d_{1}(x, y)-C \leq d_{2}(f(x), f(y)) \leq K d_{1}(x, y)+C
$$

for each $x, y \in X_{1}$. If $\left(X_{1}, d_{1}\right)$ is the Euclidean plane \mathbb{R}^{2} then f above (and its image) is called a quasi-flat in X_{2}.

A map $f_{1}:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ is a quasi-isometry if there are two constants C_{1}, C_{2} and another map $f_{2}:\left(X_{2}, d_{2}\right) \rightarrow\left(X_{1}, d_{1}\right)$ such that both f_{1}, f_{2} are quasi-isometric embeddings and

$$
d_{1}\left(f_{2} f_{1}(x), x\right) \leq C_{1}, d_{2}\left(f_{1} f_{2}(y), y\right) \leq C_{2}
$$

for every $x \in X_{1}, y \in X_{2}$. Such spaces X_{1}, X_{2} are called quasi-isometric. For example, two metric spaces which admit cocompact discrete actions by isometries of the same group are quasi-isometric.

The Cayley graph of a finitely generated group Γ with a fixed finite set of generators carries a canonical metric which is called the word metric. The quasi-isometry class of the word metric does not depend on the generating set.

Suppose that X is the universal cover of a closed Riemannian manifold M, Γ is the group of covering transformations. Suppose that $E \subset X, G$ is a subgroup in Γ so that $G(E)=E$. We say that $g_{n} E$ accumulates to a point $x \in X$ if for some sequence $x_{n} \in E, \lim _{n \rightarrow \infty} g_{n}\left(x_{n}\right)=x$.

We call a pair (E, G) proper if the sequence of sets $\{g E: g \in G\}$ is locally finite in X. This means that for any infinite sequence $\left\{g_{n}\right\} \subset \Gamma$ such that $g_{n} E$ accumulates to a point $x \in X$ it follows that there exists $\gamma \in \Gamma$ and a subsequence $\left\{g_{n_{k}}\right\} \subset\left\{g_{n}\right\}$ so that $x \in \gamma \operatorname{cl}(E)$ and $g_{n_{k}} \in \gamma G$. Note that if G has finite index in Γ, the (E, G) is a proper pair.

Proposition 6.5. For any proper pair (E, G) the quotient $c l(E) / G$ is compact.

Proof: Suppose that $x_{n} \in E$ is a sequence of points. Since M is compact there exists a sequence $g_{n} \in \Gamma$ so that $g_{n} x_{n} \rightarrow x \in X$. By definition of a proper pair $g_{n_{k}}$ splits as $\gamma \circ \gamma_{n_{k}}$ where $\gamma_{n_{k}} \in G$. Therefore

$$
\lim _{k \rightarrow \infty} \gamma_{n_{k}} x_{n_{k}}=\gamma^{-1} x
$$

This implies compactness of $c l(E) / G$.
We suppose that E is a closed subset in X invariant under a subgroup $G<\Gamma$ so that the pair (E, G) is proper. Assume that E is the union of flats (which are not necessarily disjoint).

Lemma 6.6. There exists a finitely-generated subgroup $G_{0}<G$ such that a Cayley graph of G_{0} contains a quasi-flat. In the case when E is path-connected we can take $G=G_{0}$.

Proof: The problem is that E is not a geodesic metric space with the metric induced from X, otherwise the assertion would follow from [Gh], Proposition 10.9. Thus we have to thicken up the space E to a geodesic metric space. Choose sufficiently small number $\sigma>0$ which is less than the half of the injectivity radius of M. The compact E / G is covered by a finite number of open σ-balls B_{j} with centers at points on E / G, denote the union of these balls by $V_{\sigma}(E) / G$. It is a manifold which has only a finite number of connected components. Pick one of these components V_{0}. A connected component U_{0} of the lift of V_{0} to X has the stabilizer $G_{0}<G$ so that $U_{0} / G_{0}=V_{0}$. The intersection $L_{0}=U_{0} \cap E / G$ is closed in E / G and thus compact. Note that in the case of connected E we get $G=G_{0}$. Introduce in U_{0} the path-metric d_{P} via the Riemannian metric on X. This metric projects to a path metric on V_{0} so that the diameter of V_{0} is bounded. Consider the completion \bar{U}_{0} of U_{0} with respect to this metric. The group G_{0} still operates on \bar{U}_{0} by isometries and this action is properly discontinuous. Let $\tilde{B}_{j} \subset U_{0}$ be a lift of one of the σ-balls which cover E / G. Then the closure $c l \tilde{B}_{j}$ of \tilde{B}_{j} is isometric to closure of the ball B_{j} in M. On the other hand each point of \bar{U}_{0} belongs to one of the closed balls $\mathrm{cl} \tilde{B}_{j}$ which is compact. Then finiteness of the number of balls B_{j} implies that \bar{U}_{0} / G_{0} is compact with respect to the topology defined by the path-metric d_{P}. By construction $\left(U_{0}, d_{P}\right)$ is a quasi-geodesic metric space, thus the same is true for its completion. Hence we can apply [Gh], Proposition 10.9 , to conclude that G_{0} is finitely generated. The compactness of \bar{U}_{0} / G_{0} implies that \bar{U}_{0} is quasi-isometric to a Cayley graph of G_{0}. Note however that U_{0} must contain one of the flats in E. This flat remains a flat in $\left(U_{0}, d_{P}\right)$, since $d_{P} \geq d$ where d is the original metric on X. It implies that the Cayley graph of G_{0} contains a quasi-flat.

Corollary 6.7. The group G under the conditions above is not word-hyperbolic and is not locally cyclic.

Proof: Cayley graphs of word-hyperbolic groups do not contain quasi-flats. If G is locally cyclic then G_{0} is cyclic and hence word-hyperbolic. This contradicts the existence of a quasi-flat in a Cayley graph of G_{0}.

7 Inscribed radius

Suppose that X is a metric space, $z \in X, S \subset X$ be a point and a subset. We define the distance $d(z, S)$ from z to S as

$$
\inf _{x \in S} d(z, x)
$$

Define the inscribed radius ι_{S} of S as

$$
\iota_{S}=\sup \left\{r: B_{r}(x) \subset S, \text { for some point } \quad x \in S\right\}
$$

where $B_{r}(x)$ is the metric ball of radius r with the center at x. We shall denote by $S_{r}(x)$ the metric sphere of radius r with the center at x.

Suppose now that $X=\tilde{M}$ is a simply-connected complete Riemannian 3-manifold, $O \in \tilde{M}, \Pi$ is a flat which contains O. This flat separates \tilde{M} into "left" and "right" sides (otherwise $\left.H_{1}(X, \mathbb{Z}) \neq 0\right)$. Denote by Π^{+}the right side. Consider a sequence of metric balls $B_{r}(O), r \rightarrow \infty$. Boundary of the ball $B_{r}(O)$ is the metric sphere $S_{r}(O)$. Define S_{r}^{+}to be $\left(\Pi^{+} \cap S_{r}(O)\right) \cup\left(\Pi \cap B_{r}(O)\right)$. (The set S_{r}^{+}looks like a metric hemisphere with a flat disc attached to the equator.)

Lemma 7.1. In the "right half" $B_{r}^{+}(O)=\Pi^{+} \cap B_{r}(O)$ of each ball $B_{r}(O)$ we can choose a point x_{r} such that

$$
d\left(x_{r}, S_{r}^{+}\right)=O(r)
$$

Thus $\iota_{B_{r}^{+}(O)}=O(r)$.
Proof: For each r consider the "metric hemisphere" $\Pi^{+} \cap S_{r / 2}(O)=\Sigma_{r}$. Clearly for every $x \in \Sigma_{r}$ we have

$$
r \geq d\left(x, S_{r}(O)\right) \geq r / 2
$$

Now suppose that

$$
\phi(r)=\max _{x \in \Sigma_{r}} d\left(x, \Pi \cap B_{r}(O)\right)=o(r)
$$

The hemisphere Σ_{r} is a singular chain in $C_{2}\left(B_{r}^{+}(O), \mathbb{Z}\right)$ with the boundary equal to the circle ℓ_{r} with center at O and radius $r / 2$. This circle is a nontrivial element of the homology group $H_{1}(\Pi-O, \mathbb{Z})$. Triangulate this chain so that size of each simplex is at most 1 . We construct a continuous map $f=f_{r}: \Sigma_{r} \rightarrow \Pi \cap B_{r}(O)$ as follows. For each vertex x of the triangulation we let $f(x)$ be the nearest-point projection of x to $\Pi \cap B_{r}(O)$. Extend the map f to a piecewise-linear map of the cycle Σ_{r}. It is clear that $\left[f\left(\ell_{r}\right)\right]=\left[\ell_{r}\right]$ in $H_{1}(\Pi-O, \mathbb{Z})$. Moreover, for each $x \in \Sigma_{r}$ we have: $d(x, f(x)) \leq 2 \phi(r)+1$. For sufficiently large r we have: $2 \phi(r)+1 \leq r / 4$. Therefore O doesn't belong to the image of f. However the chain $f\left(\Sigma_{r}\right)$ bounds the nontrivial cycle $f\left(\ell_{r}\right)$ in $\Pi-O$. Contradiction.

Remark 7.2. Our proof actually shows that x_{r} can be chosen so that

$$
d\left(x_{r}, S_{r}^{+}\right) \geq r / 8-1 / 2
$$

8 Riemannian simplices

Suppose that N is a compact domain in a Riemannian 3-manifold X so that N has piecewise-smooth boundary which is combinatorially equivalent to the boundary of a Euclidean 3 -simplex. We assume that N is contractible and the boundary of N is a collection of absolutely totally-geodesic flat faces $F_{j}, j=1, \ldots, 4$. Under these conditions N will be called a Riemannian simplex. We do not assume that N is homeomorphic to a 3 -ball (it would follow from the Poincare Conjecture).

Now consider a sequence of Riemannian simplices N_{r} such that:
as $r \rightarrow \infty$ the lengths of all edges of N_{r} grow as $O(r)$.
By triangle inequalities, for each r there exists a Euclidean 3-simplex Δ_{r} in \mathbb{R}^{3} so that faces of Δ_{r} are isometric to the corresponding faces of N_{r}, we choose a homeomorphism $h_{r}=h: \partial N_{r} \rightarrow \partial \Delta_{r}$ which is an isometry on each face. We can
assume that one of the vertices of Δ_{r} is the origin $0 \in \mathbb{R}^{3}$. Denote the rest of the vertices by $A_{1 r}, A_{2 r}, A_{3 r}$. Let $B_{j r}=h^{-1}\left(A_{j r}\right), B_{0 r}=h^{-1}(0)$.

We call the sequence of simplices $\Delta_{r_{n}}$ nondegenerate if for any sequence $0<\rho_{n}<$ r_{n} and any subsequence in r_{n}, the Gromov-Hausdorff limit of the rescaled tetrahedrons $Q_{r_{n}}=\frac{1}{\rho_{n}} \Delta_{r_{n}}$ is not contained in a Euclidean plane. It is easy to see that this property depends only on the vertex angles of Δ_{r}. Namely, for any vertex A_{j} with the planar angles x_{r}, y_{r}, z_{r} at this vertex we have:

$$
\lim _{r \rightarrow \infty} x_{r}+y_{r}+z_{r} \neq 2 \pi, \lim _{r \rightarrow \infty} x_{r}+y_{r}-z_{r} \neq 0
$$

for any subsequence.
Suppose that Y_{r} is a sequence of points on the edges $\left[B_{0 r}, B_{1 r}\right]$ so that $d\left(Y_{r}, B_{0 r}\right)=$ $O(\rho(r))$ where $0<\rho(r)<r$ is a function of r. Let $F_{1 r}=\left[B_{0 r}, B_{2 r}, B_{3 r}\right]$ be the face opposite to $B_{1 r}$.

Lemma 8.1. Under the conditions above $d\left(Y_{r}, F_{1 r}\right)=O(\rho(r))$ as $r \rightarrow \infty$.

Proof: Suppose that the assertion is wrong, E_{r} is a nearest point to Y_{r} on the face F_{1} and $d\left(Y_{r}, E_{r}\right)=o(\rho)$. Then $\left|d\left(B_{0 r}, E_{r}\right)-d\left(B_{0 r}, Y_{r}\right)\right|=o(\rho), d\left(B_{0 r}, E_{r}\right)=O(\rho)$. It implies that we can choose points $C_{2 r} \in\left[B_{0 r}, B_{2 r}\right], C_{3 r} \in\left[B_{0 r}, B_{3 r}\right]$ so that E_{r} is contained inside of the triangle $\left[B_{0 r}, C_{2 r}, C_{3 r}\right]$ and $d\left(B_{0 r}, C_{2 r}\right)=O(\rho), d\left(B_{0 r}, C_{2 r}\right)=$ $O(\rho)$. Similarly we get $\left|d\left(Y_{r}, C_{j r}\right)-d\left(C_{r}, E_{r}\right)\right|=o(\rho)$.

The sequence of rescaled simplices $\rho^{-1} \Delta_{r}$ is subconvergent either to a nondegenerate simplex (if $\rho=O(r)$) or to an infinite tetrahedral cone with the vertex at zero. The points $\rho^{-1} h C_{j r}, \rho^{-1} h Y_{r}, \rho^{-1} h E_{r}$ are convergent to points $\hat{C}_{j}, \hat{Y}, \hat{E}$ on the boundary of this cone (or simplex), $j=2,3$; so that

$$
d\left(\hat{Y}, \hat{C}_{j}\right)=d\left(\hat{E}, \hat{C}_{j}\right), d(\hat{Y}, 0)=d(\hat{E}, 0)
$$

This implies that the point \hat{Y} actually belongs to the same plane P as the points $0, \hat{C}_{2}, \hat{C}_{3}$. On the other hand $\hat{Y} \neq 0$ and belongs to an edge of

$$
\lim _{r \rightarrow \infty} \rho^{-1} \Delta_{r}
$$

which is not on P since the sequence of simplices is not degenerate. Contradiction.
Now we choose two sequences of Riemannian simplices $N_{r^{\prime}}, N_{r^{\prime \prime}} \subset X$ so that each sequence is nondegenerate and edges of $N_{r^{\prime}}, N_{r^{\prime \prime}}$ are $O\left(r^{\prime}\right), O\left(r^{\prime \prime}\right)$ respectively. We denote the vertices by $B_{j r^{\prime}}$ and $B_{j r^{\prime \prime}}$. Assume that these simplices are embedded in X so that:

- The vertex $B_{0 r^{\prime}}$ is identified with $B_{0 r^{\prime \prime}}$ and subsegments of the edges [$B_{0 r^{\prime}}, B_{2 r^{\prime}}$], [$\left.B_{0 r^{\prime \prime}}, B_{2 r^{\prime \prime}}\right]$ and $\left[B_{0 r^{\prime}}, B_{3 r^{\prime}}\right],\left[B_{0 r^{\prime \prime}}, B_{3 r^{\prime \prime}}\right]$ are glued together.
- The faces $F_{3 r^{\prime}}, F_{3 r^{\prime \prime}}$ belong to the same flat in X.
- The interiors of simplices are disjoint.

The union $N_{r^{\prime}} \cup N_{r^{\prime \prime}}=D$ is called a double simplex.

Figure 1:
Theorem 8.2. If $r^{\prime \prime}=O\left(r^{\prime}\right)$ then the inscribed radius of D is $O\left(r^{\prime}\right)$.
Proof: Pick a point $Y_{r^{\prime}} \in\left[B_{0 r^{\prime}}, B_{2 r^{\prime}}\right]$ so that $d\left(Y_{r^{\prime}}, B_{0 r^{\prime}}\right)=O\left(r^{\prime}\right), d\left(Y_{r^{\prime}}, B_{2 r^{\prime}}\right)=O\left(r^{\prime}\right)$. Then $d\left(Y_{r^{\prime}}, F_{0 r^{\prime \prime}}\right) \geq O\left(r^{\prime}\right), d\left(Y_{r^{\prime}}, F_{0 r^{\prime}}\right)=O\left(r^{\prime}\right), d\left(Y_{r^{\prime}}, F_{2 r^{\prime}}\right)=O\left(r^{\prime}\right), d\left(Y_{r^{\prime}}, F_{2 r^{\prime \prime}}\right) \geq$ $O\left(r^{\prime}\right)$. It implies that a half-ball B^{+}of radius $O\left(r^{\prime}\right)$ with center at $Y_{r^{\prime}}$ is contained in D. Therefore according to Lemma 7.1 the inscribed radius of $B^{+} \subset D$ is at least $O\left(r^{\prime}\right)$.

Remark 8.3. The assertion of Theorem fails if instead of a double simplex we consider an ordinary simplex. As a degenerate example of this possibility consider a regular Euclidean 3-simplex Σ, let P be the center of Σ. Now let N be the cone with the vertex P over the 1-dimensional skeleton Σ^{1} of Σ. This is a degenerate simplex whose faces are cones over triangles in Σ^{1}. We give each face of N a path-metric isometric to the metric on a regular Euclidean triangle. Then the inscribed radius of N is zero. Such examples appear as ultralimits of sequences of nondegenerate Riemannian 3-simplices.

9 Patterns of intersection

The proof of Theorem 1.2 splits in several cases according to the complexity of the pattern of intersections of flats in the manifold X. We will assume that the manifold

Figure 2:
M is orientable. The group $\Gamma=\pi_{1}(M)$ is torsion-free since M is aspherical [He1].
Case I: "Simple flats". There exists a flat F in X such that for each $g \in \Gamma$ the intersection $F \cap g F$ is either empty or $g F=F$, such flat is called simple.

Case II: "Double intersections". We assume that X contains no simple flats but there is a flat F so that for any elements $g, h \in \Gamma$ the intersection $F \cap g F \cap h F$ is different from a single point (i.e. the intersection is either empty or a complete geodesic or a flat). Such flat F is called a flat with double intersections.

Case III: "Triple intersections". We assume that the cases I, II do not occur (the space X contains neither simple flats nor flats with double intersections). Thus for any flat $F \subset X$ there are elements $g, h \in \Gamma$ so that $F \cap g F \cap h F$ is a single point in X.

We consider these cases in different sections.
Remark 9.1. If g_{1}, g_{2} are complete distance-minimizing geodesics which intersect at two distinct points x, y, then $g_{1}=g_{2}$. This implies that in the Case II (and III) intersection of two (resp. three) flats must be connected.

The discussion of the Cases II and III is considerably simplified by the following
Theorem 9.2. Suppose that X contains no simple flats, $\Gamma=\pi_{1}(M)$ doesn't contain a subgroup isomorphic to $\mathbb{Z} \times \mathbb{Z}$. Let F be a flat in X. Define L_{F} to be the pathconnected component of F in the orbit ΓF and let Γ_{F} denote the stabilizer of L_{F} in Γ. Then the subgroup Γ_{F} has finite index in Γ.

Proof: It's clear that L_{F} is precisely-invariant under Γ_{F} in L, i.e. if $g L_{F} \cap L_{F} \neq \emptyset$ then $g \in \Gamma_{F}$. Let \bar{L}_{F} denote the closure of L_{F} in X.

Lemma 9.3. The pair $\left(L_{F}, \Gamma_{F}\right)$ is proper.

Proof: Suppose that g_{n} is a sequence so that $g_{n} F$ accumulates to a point $x \in X$. Taking if necessary a subsequence we can assume that there is a flat $F^{\prime} \subset X$ which contains x so that $g_{n} F$ accumulates to F^{\prime}. According to our assumptions X has no simple flats. Therefore there exists $\alpha \in \Gamma$ so that αF^{\prime} intersects F^{\prime} transversally. It follows that there is a number n_{0} so that for all $n, m \geq n_{0}, \alpha g_{n} F \cap g_{m} F \neq \emptyset$. Let $\gamma=g_{n_{0}}$. Hence $\alpha g_{n} \gamma^{-1} \in \Gamma_{\gamma F}$ and $x \in \bar{L}_{\gamma F}$. Then $g_{n} \in \gamma \Gamma_{F}$.

Remark 9.4. Note that the same arguments as above prove that either X contains a simple flat (which is impossible) or \bar{L} is path-connected.

Thus Lemma 6.6 implies that the stabilizer Γ_{F} of L_{F} is a finitely-generated group whose Cayley graph contians a quasi-flat. Hence the group Γ_{F} is not word-hyperbolic. If Γ_{F} has infinite index in the group Γ then the Scott compact core M_{F} of X / Γ_{F} is an aspherical 3-manifold with nonempty boundary. Therefore Thurston's Hyperbolization Theorem can be applied to M_{F} and we conclude that since $\pi_{1}\left(M_{F}\right) \cong \Gamma_{F}$ contains no $\mathbb{Z} \times \mathbb{Z}$, the group Γ_{F} is isomorphic to a convex-cocompact subgroup of $\operatorname{PSL}(2, \mathbb{C})$. This contradicts the fact that Γ_{F} is not word-hyperbolic.

10 Case III: triple intersections

10.1 Parallel transport along flats

Choose any flat $F_{1} \subset X$. We denote by L the path-connected component of $\Gamma\left(F_{1}\right)$ which contains the flat F_{1}. Let Γ_{1} denote the stabilizer of L in Γ. Pick a PL path $\gamma \subset L$ which connects points y and x. We shall denote by Π_{γ} the parallel transport $T_{y} \rightarrow T_{x}$ along γ.
Lemma 10.1. Let λ be a closed PL loop contained in the union of flats L. Then the parallel transport along λ is trivial.

Figure 3:
Proof: We proceed by induction on the the combinatorial length of λ, i.e. the number n of its edges. If $n=2$ then the assertion is obvious. Suppose that the statement is
proven for all $k<n$. We consider 4 consecutive segments $\left[x_{0}, x_{1}\right], \ldots,\left[x_{3}, x_{4}\right]$ in λ as on Figures 3, 4.

Let F_{j} denote a flat in X which contains the segment $\left[x_{j}, x_{j+1}\right]$, let $l_{j}=F_{j-1} \cap F_{j}$ be a line through x_{j}. We first assume that the lines l_{2}, l_{3} are not parallel and intersect in a point $x \in F_{1} \cap F_{2} \cap F_{3}$ (Figure 3). Substitute the PL path $\left[x_{1}, x_{2}\right] \cup\left[x_{2}, x_{3}\right] \cup\left[x_{3}, x_{4}\right]$ in λ by $\left[x_{1}, x\right] \cup\left[x, x_{4}\right]$ to construct a new PL loop λ^{\prime}. The move $\mu: \lambda \rightarrow \lambda^{\prime}$ decreases the combinatorial length of the loop λ.

Figure 4:
Now we suppose that all three lines l_{2}, l_{3}, l_{4} are parallel (otherwise we can apply the move μ). By the "triple intersection" assumption there exists a flat $F \subset L$ which is transversal to l_{2} at the point z. Therefore it intersects l_{1}, l_{3} at points x, y (see Figure 4). Hence we can substitute the PL path $\left[x_{0}, x_{1}\right] \cup \ldots \cup\left[x_{3}, x_{4}\right]$ by the path $\left[x_{0}, x\right] \cup[x, y] \cup\left[y, x_{4}\right]$. Denote the new PL curve by λ^{\prime}. The move $\nu: \lambda \rightarrow \lambda^{\prime}$ again decreases the combinatorial length of the path λ by 1 . The parallel transport along λ^{\prime} is trivial by the induction hypothesis.

Let us consider now only the case of the move ν, the other case is similar. All what we have to prove is that the parallel transport along the loop $\left[x_{4}, y\right] \cup[y, x] \cup\left[x, x_{0}\right] \cup$ $\left[x_{0}, x_{1}\right] \cup \ldots \cup\left[x_{3}, x_{4}\right]$ is trivial. Using triviality of the parallel transport in the planes F_{1}, F_{4} we reduce the problem to the curve $\left[x_{3}, y\right] \cup[y, x] \cup\left[x, x_{1}\right] \cup\left[x_{1}, x_{2}\right] \cup\left[x_{2}, x_{3}\right]$. Then we transform this loop to $\left[x_{2}, z\right] \cup[z, y] \cup[y, x] \cup[x, z] \cup\left[z, x_{2}\right]$ keeping the same parallel transport. The parallel transport along the last loop is obviously trivial.

Corollary 10.2. If γ, γ^{\prime} are two $P L$ paths in L with the same initial point x and the final point y, then $\Pi_{\gamma}=\Pi_{\gamma^{\prime}}$.

Suppose that $F^{\prime}, F^{\prime \prime}$ are flats in $L, x \in F^{\prime}$ and $y \in F^{\prime \prime}$. There are planes $P^{\prime} \subset$ $T_{x}(X), P^{\prime \prime} \subset T_{y}(X)$ such that $\exp _{x} P^{\prime}=F^{\prime}, \exp _{x} P^{\prime \prime}=F^{\prime \prime}$. We call the flats $F^{\prime}, F^{\prime \prime}$ "parallel" if for some (any) PL path $\gamma \subset L$ connecting $x \in F^{\prime}$ and $y \in F^{\prime \prime}$ we have:

$$
\Pi_{\gamma} P^{\prime}=P^{\prime \prime}
$$

Lemma 10.3. If $F^{\prime}, F^{\prime \prime}$ are two nonparallel flats in L then they have nonempty intersection.

Proof: Given two flats $F, F^{\prime} \in L$ we define the "chain distance" $\left(F: F^{\prime}\right)$ between them to be the minimal number n such that there exists a chain of flats in L :

$$
F_{1}=F, F_{2}, \ldots, F_{n}=F^{\prime}
$$

so that $F_{i} \cap F_{i+1} \neq \emptyset$. We will prove Lemma by induction on the chain distance $n=\left(F^{\prime \prime}: F^{\prime}\right)$. For $2=\left(F^{\prime \prime}: F^{\prime}\right)$ the assertion is obvious. Suppose that $3=\left(F^{\prime \prime}: F^{\prime}\right)$. Consider the chain

$$
F_{1}=F^{\prime}, F_{2}, F_{3}=F^{\prime \prime}
$$

If the line $F_{2} \cap F_{3}=l_{2}$ is not parallel to $l_{1}=F_{2} \cap F_{1}$ then $F^{\prime \prime} \cap l_{1} \neq \emptyset$ and we are done. Suppose that l_{1} is parallel to l_{2}. By the assumption that we are in the Case III there exists another flat $F_{2}^{\prime} \subset L$ such that $F_{2}^{\prime} \cap F^{\prime}=l_{1}^{\prime}$ is a line in F^{\prime} which is not parallel to l_{1}. It follows that $F_{2}^{\prime} \cap F_{2}$ is a line which is not parallel to l_{1}. Thus it must intersect l_{2} and $\left(F_{1}, F_{2}^{\prime}, F_{3}\right)$ is another chain of flats. Again, if $l_{2}^{\prime}=F_{2}^{\prime} \cap F_{3}$ is not parallel to l_{1}^{\prime} then we are done. Otherwise F_{3} contains two nonparallel lines l_{2}, l_{2}^{\prime} which are parallel to the flat F_{1} via parallel transport in L. It implies that $F^{\prime \prime}$ is parallel to F^{\prime} which contradicts our assumptions.

Now suppose that the assertion of Lemma is proven for all $k<n$ and $n=\left(F^{\prime}\right.$: $\left.F^{\prime \prime}\right)>3$. Consider a chain

$$
F_{1}=F^{\prime}, F_{2}, \ldots, F_{n}=F^{\prime \prime}
$$

If F_{2} is not parallel to F_{n} then by induction they must intersect which implies that $n=3$ in which case the assertion is already proven. So we assume that $F^{\prime \prime}$ is parallel to F_{2}. Again as in the case $n=3$ there exists a flat F_{2}^{\prime} so that $F_{2}^{\prime} \cap F_{1}$ is a line l_{1}^{\prime} which is not parallel to $l_{1}=F_{2} \cap F_{1}$. The intersection $F_{3} \cap F_{2}^{\prime}$ is nonempty since otherwise $F_{3} \cap F_{1} \neq \emptyset$ and $\left(F^{\prime}: F^{\prime \prime}\right)<n$. Thus

$$
F_{1}, F_{2}^{\prime}, \ldots, F_{n}=F^{\prime \prime}
$$

is again a chain of flats. Now $F^{\prime \prime}$ can't be parallel to F_{2}^{\prime} which implies that $F^{\prime \prime} \cap F^{\prime} \neq \emptyset$. This means that $n \leq 3$.

10.2 Holonomy representation

Pick a base-point $x \in \ell \subset F_{1}$. We define a representation $\rho: \Gamma_{1} \rightarrow S O\left(T_{x} X\right) \cong S O(3)$ as follows. Let $g \in \Gamma_{1}, y=g(x)$. Choose a PL path $\gamma \subset L$ which connects y and x. Denote by Π_{γ} the parallel transport $T_{y} \rightarrow T_{x}$ along γ. The derivative of g is a map $D g_{x}: T_{x} \rightarrow T_{y}$. Thus we let $\rho(g)=\Pi_{\gamma} \circ D g_{x}: T_{x} \rightarrow T_{x}, \rho(g) \in S O(3)$. Corollary 10.2 implies that the map ρ is well-defined. We call ρ a holonomy representation of the group Γ.

Lemma 10.4. The map ρ is a homomorphism.

Proof: Take two elements $g, h \in \Gamma_{1}$, choose a PL curve $\alpha \subset L$ connecting $g x$ to x, PL curve $\beta \subset L$ connecting $h x$ to x and a PL curve $\gamma \subset L$ connecting $h g(x)$ to $g x$. We need to check that

$$
\Pi_{\alpha} \circ \Pi_{\gamma} \circ D_{g x}(h) \circ D_{x}(g)=\Pi_{\beta} \circ D_{x}(h) \circ \Pi_{\alpha} \circ D_{x}(g)
$$

However according to Corollary 10.2

$$
\Pi_{\beta}^{-1} \circ \Pi_{\alpha} \circ \Pi_{\gamma}=\Pi_{h \alpha}
$$

Since h is an isometry it commutes with the parallel translation which implies

$$
\Pi_{h \alpha} \circ D_{g x}(h)=D_{x}(h) \circ \Pi_{\alpha}
$$

10.3 Construction of a recurrent pair

Let $F_{j}, j=1,2,3,4$ be flats in X so that each three of them intersect transversally in a point and these four points of triple intersection are distinct. Since $\pi_{2}(X)=0$, the points of triple intersection span a 3 -simplex Δ in X whose faces are contained in the flats F_{j}. In this case we shall say that the flats F_{j}-s generate the simplex Δ.

Suppose that $F_{1}^{0}, F_{2}^{0} \in \Gamma(F)$ are flats in $X=\tilde{M}$ which intersect along a geodesic ℓ^{0}. Corollary 6.2 implies that there exists a sequence of elements $g_{n} \in \Gamma=\pi_{1}(M)$ such that $\ell=\lim _{n \rightarrow \infty} g_{n}\left(\ell^{0}\right)$ is a recurrent geodesic. This geodesic is the intersection of the flats $F_{j}=\lim _{n \rightarrow \infty} g_{n} F_{j}^{0}$. (Here the convergence is understood in the Chabity topology.) The pair of flats $\left(F_{1}, F_{2}\right)$ is a recurrent pair.

Since we consider the Case III, there exists an element $g \in \Gamma$ such that $g F_{i}$ intersects ℓ transversally $(i=1,2)$.

For the flat F_{1} we construct the connected components L_{1} and the linear representation ρ of the stabilizer Γ_{1} as in Sections 10.1, 10.2.

There are three cases to consider now:
(a) $\rho\left(\Gamma_{1}\right)$ is a finite subgroup of $S O(3)$.
(b) ρ is an infinite reducible representation.
(c) $\rho\left(\Gamma_{1}\right)$ dense in $S O(3)$.

Lemma 10.5. In the case (c) it follows that the group Γ is not amenable.

Proof: The homomorphic image of any amenable group is again amenable. Thus if Γ is amenable then so is $\rho\left(\Gamma_{1}\right)$. However it follows from the classification of amenable linear groups that the amenable group $\rho\left(\Gamma_{1}\right) \subset S O(3)$ must be almost Abelian. Hence in this case ρ is a finite or reducible representation which contradicts the property (c).

By Theorem 9.2 we can assume that the group Γ_{1} has finite index in Γ. Since it is enough to prove Theorem 1.2 for a finite-index subgroup we let $\Gamma:=\Gamma_{1}$ so that the orbit ΓF_{1} is path-connected.

10.4 Cases (a) and (b) of amenable holonomy

First we consider the Case (a). Denote by Γ_{1}^{\prime} the kernel of ρ, which is a subgroup of finite index in Γ_{1}. In this case Γ_{1}^{\prime} preserves the foliation of L by lines parallel to ℓ and the discussion reduces to the Case II.

Consider the Case (b): the representation ρ is infinite and reducible. It implies that a subgroup Γ^{\prime} of index 2 in Γ admits an infinite representation in $U(1)$ and hence $H_{1}\left(\Gamma^{\prime}, \mathbb{R}\right) \neq 0$. Thus the 2 -fold covering X / Γ^{\prime} of the manifold M is homotopyequivalent to a Haken manifold and we can apply Theorem 2.7 to conclude that $\Gamma \supset \mathbb{Z}^{2}$. This finishes the proof in the Case (b).

10.5 Generation of simplices: Case (c)

In what follows we shall consider the Case (c): the group $\rho(\Gamma)$ is dense in $S O(3)$. Note that according to a theorem of Bass [Ba] the group $\rho(\Gamma)$ either splits as an amalgamated free product, or HNN extension or (after conjugation in $S O(3)$) entries of the matrices in $\rho(\Gamma)$ belong to a ring of algebraic integers. First two cases imply that the manifold M is Haken which would finish the proof. Examples of representations such that entries of $\rho(\Gamma)$ belong to a ring of algebraic integers can be constructed using arithmetic subgroups of $\operatorname{PSL}(2, \mathbb{C})$. In this case we do not see any algebraic arguments which can simplify our proof. Hence we will use geometry.

Proposition 10.6. The orbits $\Gamma\left(F_{1}\right), \Gamma\left(F_{2}\right)$ contain three flats F_{3}, F_{4}, F_{5} so that the flats F_{1}, \ldots, F_{5} generate two distinct simplices $T^{\prime}, T^{\prime \prime}$ which form a double simplex in the sense of Section 8. These simplices have the properties:

- Their intersection is a triangle which is contained in the flat F_{1};
- Both flats F_{1}, F_{2} participate in generation of the simplices $T^{\prime}, T^{\prime \prime}$ (see Figure 5).

Proof: Choose any flat F_{3} which is transversal to ℓ and denote by x the point of intersection $\ell \cap F_{3}$. For the convenience we introduce in $T_{x} X$ a metric $\langle\langle\rangle$,$\rangle where the$ lines of intersection $F_{1} \cap F_{2}=\operatorname{Span}\left(e_{3}\right), F_{2} \cap F_{3}=\operatorname{Span}\left(e_{1}\right), F_{3} \cap F_{1}=\operatorname{Span}\left(e_{2}\right)$ are orthogonal. Since the group $\rho\left(\Gamma_{1}\right)$ is dense in $S O(3)$ there are elements g_{4}, g_{5} in Γ_{1} so that normal vectors n_{4}, n_{5} (with respect to $\langle\langle\rangle$,$\rangle) of the planes \rho g_{4}\left(F_{1}\right), \rho g_{5}\left(F_{1}\right)$ have the properties:
(1) $\left\langle\left\langle n_{j}, e_{3}\right\rangle\right\rangle>0, j=4,5$;
(2) the points $P_{4}=\left(\left\langle\left\langle n_{4}, e_{1}\right\rangle\right\rangle,\left\langle\left\langle n_{4}, e_{2}\right\rangle\right\rangle\right), P_{5}=\left(\left\langle\left\langle n_{5}, e_{1}\right\rangle\right\rangle,\left\langle\left\langle n_{5}, e_{2}\right\rangle\right\rangle\right) \in \mathbb{R}^{2}$, do not lie on coordinate lines and belong to two different but adjacent open coordinate quadrants in \mathbb{R}^{2}.

Since the geodesic ℓ is recurrent, there exists a sequence $g_{n} \in \Gamma$ such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \rho\left(g_{n}\right)=1 \\
& \lim _{n \rightarrow \infty} g_{n}(\ell)=\ell
\end{aligned}
$$

Thus for large n the flats $g_{n} g_{4}\left(F_{1}\right), g_{n} g_{5}\left(F_{1}\right)$ will intersect the line ℓ in points z, y which are not separated by the point x and the properties (1), (2) are still satisfied by the normal vectors to these flats.

Figure 5:

It follows that $F_{1}, F_{2}, F_{3}, g_{n} g_{4}\left(F_{1}\right)=F_{4}, g_{n} g_{5}\left(F_{1}\right)=F_{5}$ form a configuration satisfying the assertions of Proposition 10.6.

The arguments below are based on the following fact of Euclidean geometry. Suppose that T is a tetrahedron in \mathbb{R}^{3} where we know dihedral angles at two vertices. Then we can find all dihedral angles at two other vertices as continuous functions of the known angles. Indeed, suppose T has vertices A, B, C, D and we know all the angles at A, B. Then we know dihedral angles at two edges emanating from C. The planar angle $A C B$ between these two edges is $\pi-\angle C B A-\angle B A C$. Then we find the last dihedral angle at C from two known dihedral angles and $A C B$ by the cosine formula of the spherical trigonometry. The same argument works for the vertex D.

Since the geodesic $\ell=F_{1} \cap F_{2}$ is recurrent, there exist a sequence of elements $g_{n} \in \Gamma$ so that $g_{n}(\ell)$ is convergent to ℓ in the Chabity topology. Let $1=g_{0}$. Now we fix the flats F_{1}, F_{2}, F_{3} and apply the sequence of covering transformations $\left\{g_{n}\right\}$ to the flats F_{4}, F_{5}. Let $F_{j, n}=g_{n}\left(F_{j}\right), j=4,5$. Since $\rho\left(g_{n}\right) \rightarrow 1$ the flats $F_{j, n}$ intersect the line ℓ in F_{1}, F_{2} by the angles $\alpha_{1, j, n}, \alpha_{2, j, n}$ which approximate the angles $\alpha_{1, j, 0}, \alpha_{2, j, 0}$.

Therefore the flats $F_{1}, F_{2}, F_{3}, F_{j, n}$ generate simplices $T_{j, n}$ in X. These simplices have flat faces and the angles at vertices of these simplices, which are continuous functions of the angles $\alpha_{1, j, n}, \alpha_{2, j, n}$, approximate the angles of the initial simplex $T_{j, 0}$. The dihedral angles at the vertex $F_{1} \cap F_{2} \cap F_{3}$ of $T_{j, n}$ are fixed. Thus similarity classes of Euclidean models of the simplices $T_{j, n}$ do not degenerate as $n \rightarrow \infty$.

Denote $T_{4, n}$ by T_{n}^{\prime} and $T_{5, n}$ by $T_{n}^{\prime \prime}$. We let $O, A_{n}^{\prime}, B_{n}^{\prime}, C_{n}^{\prime}$ be the vertices of T_{n}^{\prime} and $O, A_{n}^{\prime \prime}, B_{n}^{\prime \prime}, C_{n}^{\prime \prime}$ be the vertices of $T_{n}^{\prime \prime}$. It is clear that the simplices $T_{n}^{\prime}, T_{n}^{\prime \prime}$ form a double simplex D_{n}. Denote by r_{n}^{\prime} the distance $d\left(B_{n}^{\prime}, O\right)$ and by $r_{n}^{\prime \prime}$ the distance $d\left(O, B_{n}^{\prime \prime}\right)$. Clearly $r_{n}^{\prime \prime} \rightarrow \infty$ and $r_{n}^{\prime} \rightarrow \infty$. In Lemma 10.7 we will show that this convergence to infinity has the same rate.
Lemma 10.7. $r_{n}^{\prime}=O\left(r_{n}^{\prime \prime}\right)$
Proof: By taking n sufficiently large we can guarantee that $d\left(g_{n}\left(B^{\prime}\right), \ell\right) \leq \lambda$ and $d\left(g_{n}\left(B^{\prime \prime}\right), \ell\right) \leq \lambda$ where λ is given by Proposition 5.3. Connect $g_{n}\left(B^{\prime}\right)$ to ℓ by the shortest segment $I_{n}=\left[g_{n}\left(B^{\prime}\right), w_{n}\right]$. Take the unit normal vector $\nu_{B^{\prime \prime}}$ to F_{5} at the point $B^{\prime \prime}$ and the unit tangent vector $\epsilon_{B^{\prime \prime}}$ to ℓ at $B^{\prime \prime}$. Then $\left|\angle\left(\epsilon_{B^{\prime \prime}}, \nu_{B^{\prime \prime}}\right)-\pi / 2\right| \geq \xi_{1}>0$. Similarly if $\nu_{B^{\prime}}$ is a unit normal vector to F_{4} at B^{\prime} then $\left|\angle\left(\epsilon_{B^{\prime}}, \nu_{B^{\prime}}\right)-\pi / 2\right| \geq \xi_{2}>0$. Let $\xi=\min \left(\xi_{1}, \xi_{2}\right)$.

Since g_{n} are isometries we get: $\left\langle\nu_{B^{\prime}}, \epsilon_{B^{\prime}}\right\rangle=\left\langle D g\left(\nu_{B^{\prime}}\right), D g\left(\epsilon_{B^{\prime}}\right)\right\rangle$. On the other hand, the geodesics $g_{n} \ell$ are convergent to ℓ thus there exists a number n_{0} such that for all $n>n_{0}$ we have:

$$
\angle\left(\epsilon_{w_{n}}, \Pi_{I} D g\left(\epsilon_{B^{\prime}}\right)\right) \leq \xi / 2
$$

where $\epsilon_{w_{n}}$ is the unit tangent vector to ℓ at the point w_{n} obtained from $\epsilon_{B^{\prime}}$ by parallel transport along ℓ. Thus

$$
\left|\angle\left(\epsilon_{w_{n}}, \Pi_{I} D g\left(\nu_{B^{\prime}}\right)\right)-\pi / 2\right| \geq \xi / 2
$$

It follows from Lemma 5.3 that the point of intersection $x_{n}:=\ell \cap g_{n} F_{4}$ is at the distance at most $u(\lambda, \xi / 2)$ from $g_{n}\left(B^{\prime}\right)$ for all $n \geq n_{0}$. Similarly we can find n_{1} so that for each $n \geq n_{1}$ the point of intersection $\ell \cap g_{n} F_{5}$ is at the distance at most $u(\lambda, \xi / 2)$ from $g_{n}\left(B^{\prime \prime}\right)$ for all $n \geq n_{1}$. However $d\left(g_{n}\left(B^{\prime}\right), g_{n}\left(B^{\prime \prime}\right)\right)=d\left(B^{\prime}, B^{\prime \prime}\right)$. Thus

$$
d\left(g_{n} F_{5} \cap \ell, g_{n} F_{4} \cap \ell\right) \leq 2 u(\lambda, \xi / 2)+d\left(B^{\prime \prime}, B^{\prime}\right)
$$

for all $n \geq \max \left(n_{0}, n_{1}\right)$.
Lemma 10.8. The group Γ has polynomial growth. (Actually the growth is at most quadratic.)

Proof: According to Lemma 10.7, $r_{n}^{\prime \prime}=O\left(r_{n}^{\prime}\right)$, so we let $r_{n}:=r_{n}^{\prime}$. Thus by Theorem 8.2 we get a sequence of double simplices $D_{n}=T_{n}^{\prime} \cup T_{n}^{\prime \prime}$ such that their inscribed radius ι_{n} is $O\left(r_{n}\right)$. The area of each ∂D_{n} is at most $\operatorname{Area}\left(\partial T_{n}^{\prime \prime}\right)+\operatorname{Area}\left(\partial T_{n}^{\prime}\right)=O\left(r_{n}^{2}\right)$ since these simplices have Euclidean boundary. However the group $\Gamma=\pi_{1}(M)$ is not amenable which implies that

$$
\operatorname{Vol}\left(D_{n}\right)=O\left(r_{n}^{2}\right)
$$

Let $B_{\iota_{n}}$ be a sequence of metric balls of the radius ι_{n} inscribed in D_{n}. Then

$$
\operatorname{Vol}\left(B_{\iota_{n}}\right) \leq \operatorname{Vol}\left(D_{n}\right)=O\left(r_{n}^{2}\right)=O\left(\iota_{n}^{2}\right)
$$

Figure 6:

Remark 10.9. Formally speaking the group Γ has polynomial growth if for any sequence of balls B_{n} of radius n in X the volume of B_{n} grows slower than a polynomial function. However, a version of Gromov's theorem on groups of polynomial growth [VW] implies that it is enough to check the growth condition for a sequence of radii which tend to infinity.

All the groups of polynomial growth are almost nilpotent [Gro1], [VW]. Thus Lemma 10.8 contradicts Corollary 10.5. It proves that the Case (c) actually can't occur which finishes the proof of Theorem 1.2 in the Case III.

11 Case II: double intersections

Suppose that F is a flat in the space X which has only double intersections. We define $L=L_{F}$ to be the connected component of F in $\Gamma(F)$ and let Γ_{F} denote the stabilizer of L_{F} in Γ. Let $\bar{L}_{F}=\bar{L}$ be the closure of L. Again, each point of \bar{L} is contained in a flat and intersection of any three flats from \bar{L} is always different from a single point. The same arguments as in the Case III imply that $F=F_{1}$ can be chosen so that it contains a recurrent geodesic ℓ such that $\ell=F_{1} \cap F_{2}$, where F_{2} is another flat in X. By Theorem 9.2 we may assume that Γ_{F} is a finite-index subgroup in Γ, so we let $\Gamma:=\Gamma_{F}$. Let $\mathcal{L}^{0}=\Gamma\left(F_{1} \cup F_{2}\right)$. It's clear that this is a path-connected set and its closure $\overline{\mathcal{L}}^{0}=\mathcal{L}$ is also path-connected since X contains no simple flats (see Theorem 9.2 and Remark 9.4).

Foliate each flat in \mathcal{L} by geodesics parallel to ℓ. This foliation is preserved under the action of Γ. By taking an index 2 subgroup in Γ we can guarantee that Γ preserves orientation on the fibers of the foliation. Denote by Y the quotient of \mathcal{L} along this foliation and let $f: \mathcal{L} \rightarrow Y$ be the projection. We define a path-metric $d_{Y}\left(y_{1}, y_{2}\right)$ as

$$
\inf \left\{d_{\mathcal{L}}\left(x_{1}, x_{2}\right): x_{1} \in f^{-1}\left(y_{1}\right), x_{2} \in f^{-1}\left(y_{2}\right)\right\}
$$

where $d_{\mathcal{L}}$ is the path metric on \mathcal{L}. Each element $g \in \Gamma$ projects to an isometry $f_{*}(g)$ of the space Y via f. Note that $\operatorname{Isom}(\mathcal{L})$ contains a normal subgroup H which consists of uniform vertical translations along fibers, thus $f_{*}(H)=\{1\}$.

Let $y_{0}=f(\ell)$. We will identify the geodesic ℓ with the real line \mathbb{R}. Define $\varphi: \mathcal{L} \rightarrow \ell$ to be the nearest-point projection with respect to the path-metric $d_{\mathcal{L}}$. We
define a function $v: \Gamma \times \mathcal{L} \rightarrow \mathbb{R}$ by

$$
v(g, x)=\varphi(g x)-\varphi(x)
$$

Clearly this function depends only on the pair $(g, f(x))$. The function v roughly speaking measures the "vertical displacement" of the isometry g.

Note that the space $\left(Y, d_{Y}\right)$ is NOT locally compact. Nevertheless we have the following

Lemma 11.1. Suppose that $q_{n} \in \Gamma$ is a sequence and $y_{1} \in Y$ is a point such that $f^{-1}\left(y_{1}\right)$ is the intersection ℓ_{1} of two flats in \mathcal{L}. Assume that $d_{Y}\left(f_{*} q_{n}\left(y_{1}\right), y_{0}\right) \leq$ const. Then $\left(f_{*} q_{n}\left(y_{1}\right)\right)$ contains a convergent subsequence.

Proof: The assumption that the distance $d_{Y}\left(f_{*} q_{n}\left(y_{1}\right), y_{0}\right)$ is bounded implies that the sequence $q_{n} \ell_{1}$ is subconvergent in the Chabity topology in X to a geodesic ℓ_{∞}. Let $\ell_{1}=F^{\prime} \cap F^{\prime \prime}$ and $\ell_{\infty}=F_{\infty}^{\prime} \cap F_{\infty}^{\prime \prime}$. Fix a point $x \in \ell_{\infty}$. Denote by $x_{n} \in q_{n}\left(\ell_{1}\right)$ the nearest point to x. Let α be the angle between $F^{\prime}, F^{\prime \prime}$. Then for large $n, d\left(x, q_{n}\left(\ell_{1}\right)\right) \leq \theta(\alpha, \alpha)$ (see Proposition 5.1).

This implies that one of the flats $q_{n}\left(F^{\prime}\right), q_{n}\left(F^{\prime \prime}\right)$ intersects $F_{\infty}^{\prime} \cup F_{\infty}^{\prime \prime}$ at the distance at most $\kappa\left(\alpha, \alpha, d\left(x, x_{n}\right)\right)$ from the both x_{n}, x (by Proposition 5.1). See Figure 7.

Figure 7:

This implies that $d_{\mathcal{L}}\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.
In particular Lemma 11.1 can be applied to the sequence $q_{n}=g_{n}$ and the geodesic $\ell_{1}=\ell$. Thus $\left(f g_{n}(\ell)\right)$ is convergent in Y to $f(\ell)$ since $\ell=\ell_{\infty}$. However apriori it is possible that the sequence $f_{*}\left(g_{n}\right)$ is not convergent to identity uniformly on compacts in Y. To deal with this problem choose any finite subset $K \subset Y$. Then $d\left(y_{0}, g_{n} K\right)$ remains bounded as $n \rightarrow \infty$. Therefore there exists a function $m=m(n)>n$ so that
the elements $h_{n}=g_{m}^{-1} g_{n}$ have the property: the sequence $f_{*}\left(h_{n}\right)$ is convergent to the identity on K.

We choose the finite set K as follows. Denote by $\gamma_{1}, \ldots, \gamma_{r}$ the set of generators of the group Γ. Let y_{1} be a point of $f\left(F_{1}\right)$ which is different from $f(\ell)=y_{0}$ and $f^{-1}\left(y_{1}\right)$ is the intersection of two flats in \mathcal{L}. We take

$$
K=\left\{\gamma_{1}\left(y_{0}\right), \gamma_{1}\left(y_{1}\right), \ldots, \gamma_{r}\left(y_{0}\right), \gamma_{r}\left(y_{1}\right)\right\}
$$

Suppose that n is sufficiently large and for any $y \in K$ we have $d\left(y, f_{*} h_{n}(y)\right) \leq \zeta$. Direct calculation show that $d\left(y_{j}, f_{*}\left[\gamma_{i}, h_{n}\right]\left(y_{j}\right)\right) \leq 2 \zeta$ for each $i=1, \ldots, r ; j=0,1$ and $n \in \mathbb{Z}$, where $[a, b]=a^{-1} b^{-1} a b$.

Theorem 11.2. Suppose that h_{n} is a sequence as above, $\gamma=\gamma_{j}$ is one of the generators of Γ. Then there is a finite collection of elements $w_{i} \in \Gamma$ such that for sufficiently large $n,\left[h_{n}, \gamma\right] \in\left\{w_{1}, \ldots, w_{l}\right\}$ and all the elements w_{i} have trivial projection to Y.

Proof: Choose elements t_{n} and $s \in H$ with the vertical displacement the same as $v\left(h_{n}, f(\ell)\right)$ and $v(\gamma, f(\ell))$ respectively. Let $\hat{h}_{n}=t_{n}^{-1} h_{n}, \hat{\gamma}=s^{-1} \gamma$. Clearly $\left[\hat{\gamma}, \hat{h}_{n}\right]=$ $\left[\gamma, h_{n}\right]$. For each compact $J \subset Y$ we have

$$
|v(\hat{\gamma}, y)|,\left|v\left(\hat{h}_{n}, y\right)\right| \leq c(J)<\infty
$$

where $y \in J$ and the constant $c(J)$ depends only on J and not on n. Therefore

$$
\left|v\left(\left[\hat{h}_{n}, \hat{\gamma}\right], y\right)\right| \leq c\left(J^{\prime}\right)
$$

where $y \in J$ and $J^{\prime} \supset J \ni y_{0}$ is a compact which contains

$$
\begin{gathered}
(\gamma(J)) \cup \cup_{n} h_{n}(\gamma(J)) \cup \cup_{n} \gamma^{-1} h_{n} \gamma(J) \cup \\
\cup_{n} h_{n}^{-1}\left(J \cup \gamma(J) \cup \cup_{n} h_{n}(\gamma(J)) \cup \cup_{n} \gamma^{-1} h_{n} \gamma(J)\right)
\end{gathered}
$$

On the other hand, the sequence $f_{*}\left(\left[\gamma, h_{n}\right]\right)$ is convergent to the identity on $\left\{y_{0}, y_{1}\right\}$. By discreteness of Γ we conclude that for large n all the elements $f_{*}\left[h_{n}, \gamma\right]$ act trivially on $f\left(F_{1}\right)$ and the commutators [h_{n}, γ] belong to some fixed finite set $\left\{w_{1}, \ldots, w_{l}\right\} \subset \Gamma$. Since the group Γ preserves the orientation on X the elements $f_{*}\left[h_{n}, \gamma\right]$ act trivially on Y. Therefore $\left\{w_{1}, \ldots, w_{l}\right\} \subset H \cap \Gamma$.

Corollary 11.3. The group Γ has infinite center.
Proof: Let $\gamma_{1}, \ldots, \gamma_{r}$ be the set of generators of Γ as before. There are two possible cases. First we suppose that for some $\gamma_{i}=\gamma$ in Theorem 11.2 the element $w=$ $\left[h_{n}, \gamma\right] \in H$ is nontrivial. Then w belongs to the center of Γ. Otherwise we assume that all the elements $\left[h_{n}, \gamma_{i}\right]=1$ for sufficiently large n. Hence $\left\langle h_{n}\right\rangle$ is in the center of Γ.

Finally we apply Geoff Mess's theorem [M1] to conclude that Γ contains \mathbb{Z}^{2}. This finishes our proof in the Case II.

12 Case I: simple flats

We start with a construction, which (in general case) is due to Morgan and Shalen [MS2]. Suppose that $L \subset X$ is a closed Γ-invariant subset which is the union of disjoint 2-flats. The set L is called a lamination on X, flats in L are leaves of this lamination. We shall assume that none of the leaves F of L has stabilizer in Γ which acts cocompactly on F. It's clear then that L has uncountably many leaves. We eliminate from L all leaves which are boundary flats for more 2 components of $X-L$.

Construct a dual tree T to L as follows. If $D \subset X-L$ is a component with the closure \bar{D}, collapse \bar{D} to a single point $q(\bar{D}) \in T$. If F is a 2-flat in L which is not a boundary flat for any component $D \subset X-L$, then collapse to a single point $q(F) \in T$. As the set T is the quotient of X described above. Let $F \subset L$ be a leaf. Pick a point $x \in F_{z}$. Then there is a sufficiently small number $\epsilon_{0}>0$ (which depends only on geometry of M) such that: if $\left[x^{\prime}, x^{\prime \prime}\right] \subset X$ is a geodesic segment orthogonal to F_{z} at $x, d\left(x, x^{\prime}\right)=d\left(x, x^{\prime \prime}\right)=\epsilon_{0}$, then each leaf $F \subset L$ and each connected component $D \subset X-L$ intersects $[x, y]$ by a convex subset. Let $z \in T$ be a point such that $q^{-1}(z)$ is a single leaf of L. Define N_{z} as an above segment $\left[x^{\prime}, x^{\prime \prime}\right]$ for some choice of $x \in F$, let $\tilde{z}=x$ in this case. Suppose that $z \in T$ is such that $q^{-1}(z)$ is the closure of a component $D \subset X-L$. For each boundary flat F_{x} of D we pick a point $x \in F_{x}$ and an orthogonal segment $\left[x^{\prime}, x\right]$ disjoint from D which has the length ϵ. Let N_{z} be the union of such segments over all boundary flats of D and \tilde{z} be the collection of all their end-points x.

Then we define open neighborhoods of $z \in T$ to be subsets $E \subset T$ such that $q^{-1}(E) \cap N_{z}$ is an open neighborhood of the set \tilde{z} in N_{z}. It is easy to see that the topological space T is Hausdorff and the group Γ acts on T by homeomorphisms. If none of the complementary regions D of L has more than 2 boundary flats, then T is a 1 -dimensional manifold which is clearly a real line. In general the space T is a topological tree, i.e. any two points are connected by a embedded topological arc and this arc is unique. It L has a transversal invariant measure, then T is a metric tree and Γ acts on T by isometries.

12.1 Proof via the Rips Theory

Theorem 12.1. Suppose that N is a closed aspherical manifold of dimension n. Then $\pi_{1}(N)$ is neither a nontrivial amalgamated free product nor HNN extension with the amalgamation over \mathbb{Z}^{k} for any $k<n-1$.

Proof: We consider only the case of amalgamated free products, the case of HNN extensions is similar. Suppose that $\pi_{1}(N)=A *_{C} B$ where $C \cong \mathbb{Z}^{k}$. Since this decomposition is nontrivial we conclude that both groups A, B have infinite index in $\pi_{1}(N)$. This implies that $H_{n}(A, \mathbb{Z} / 2) \cong H_{n}(X / A, \mathbb{Z} / 2)=0, H_{n}(B, \mathbb{Z} / 2) \cong H_{n}(X / B, \mathbb{Z} / 2)=$ 0 where X is the universal cover of N. Since $H_{n}(C, \mathbb{Z} / 2)=H_{n-1}(C, \mathbb{Z} / 2)=0$ we apply the Mayer-Vietoris sequence to the amalgamated free product $\pi_{1}(N)=A *_{C} B$ and conclude that $0=H_{n}\left(\pi_{1}(N), \mathbb{Z} / 2\right)=H_{n}(N, \mathbb{Z} / 2)$. This contradict the assumption that the dimension of N is equal to n.

The following proof of Theorem 1.2 in the case of simple flats was motivated by discussion with Lee Mosher, who explained to me how to prove Conjecture 1.1 under
assumption that the universal cover X contains a simple least area surface conformal to \mathbb{R}^{2}.

The closure \bar{L} of the Γ-orbit of a simple flat F is foliated by flats. It projects to a lamination Λ on M which admits a transversal-invariant measure since each leaf of Λ is amenable [P1]. Thus the topological tree T dual to \bar{L} is an metric tree and the group Γ acts on T by isometries. Therefore application of the Rips Theory [R], [BF] (or of a theorem of Morgan and Shalen [MS1]) to T will produce a nontrivial simplicial Γ-tree $R(T)$ where edge-stabilizers are discrete subgroups of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$. This means that the group Γ admits a nontrivial splitting as amalgamated free product of HNN extension where amalgamated subgroups are discrete subgroups of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$. The group Γ is torsion-free and the manifold M is aspherical. Thus none of the amalgamated subgroups can be $\{1\}$ or \mathbb{Z} (Theorem 12.1). This implies that Γ must contain $\mathbb{Z} \times \mathbb{Z}$.

12.2 Geometric proof

Our arguments here are very similar to the Schroeder's proof in [Sc]. Suppose that F is a simple flat in X. We will assume that Γ contains no \mathbb{Z}^{2}.

Theorem 12.2. The space X contains a simple flat with nontrivial stabilizer.

Proof: Consider the closure \bar{L} of the Γ-orbit of the simple flat F. It is foliated by flats. Thus we get a Γ-invariant lamination of X by flats. Denote by T the dual tree to this lamination. Our goal is to prove that either T is homeomorphic to \mathbb{R} or there is a leaf of \bar{L} with nontrivial stabilizer in Γ. If $\bar{L}=X$ then \bar{L} is actually a foliation and $T \cong \mathbb{R}$. Suppose now that the complement $X-\bar{L}$ is nonempty. Choose a component W of this complement and let F_{1} be a boundary flat of this component. This flat is still simple. Assume that F_{1} has trivial stabilizer in Γ, let $F:=F_{1}$ and define

$$
Q:=\left\{x \in W: d(x, F)<d\left(x, F^{\prime}\right) \text { for all other boundary flats } F^{\prime} \text { of } W\right\}
$$

Then $\gamma Q \cap Q=\emptyset$ for each $\gamma \in \Gamma-\{1\}$. Pick a base-point $q \in F$. For $x \in F$ we define

$$
\phi(x)=\inf \left\{d\left(x, F^{\prime}\right): F^{\prime} \neq F \text { is a boundary flat of } W\right\}
$$

Lemma 12.3. The function $\phi(x)$ tends to zero as $d(x, q) \rightarrow \infty$.
Proof: Suppose that there exists a sequence $x_{n} \in F$ so that $d\left(x_{n}, q\right) \rightarrow \infty$ and $\phi\left(x_{n}\right) \geq \sigma$ for some positive σ. We assume that $d\left(x_{n+1}, q\right)>d\left(x_{n}, q\right)+1$. Then for $\theta<\sigma / 2$ the intersection $B_{n}^{+}=B_{\delta}\left(x_{n}\right) \cap W$ has volume at least $\theta^{3} / 2$ and the Γ-orbits of these balls are disjoint since all B_{n}^{+}are contained in Q. This implies that the manifold M has infinite volume which is impossible.

Thus there exists $R>0$ so that for all $x \in F-B_{R}(q)$ we have $\phi(x)<\epsilon$ where ϵ is given by Proposition 5.2. The set $F-B_{R}(q)$ is connected. The normal geodesic $l=l_{x}$ emanating from x intersects the nearest flat F^{\prime} at the distance at most $\delta=$ the injectivity radius of of M. Hence the geodesic segment of l between x and F^{\prime} is disjoint from any other flat in ∂W. Indeed, if it intersects one of these flats $F^{\prime \prime}$ before meeting F^{\prime} at the time t_{0} then to intersect F^{\prime} at the time $t_{1}>t_{0}$, the geodesic must
first intersect $F^{\prime \prime}$ again at some time $t_{2} \in\left(t_{0}, t_{1}\right)$. This contradicts the assumption that $F^{\prime \prime}$ is a flat (since l is distance minimizing for all $t<t_{1}$).

As in [Sc] we conclude that the nearest flat $F^{\prime}=F_{x} \subset \partial W$ doesn't vary as we vary x in $F-B_{R}(q)$. In particular $d\left(x, F^{\prime}\right)<\epsilon$ for all $x \in F-B_{R}(q)$. Denote by E the part of X contained between F, F^{\prime}. Since F, F^{\prime} are Hausdorff-close, there is no other flats in E. Therefore $W=E$ has only two boundary components: F, F^{\prime} and the same is valid for all components W of $X-\bar{L}$. This implies that the tree T dual to the lamination \bar{L} is a real line.

Hence we get an action of Γ on \mathbb{R} by homeomorphisms. It follows that either Γ is Abelian or one of leaves of \bar{L} has nontrivial stabilizer (Theorem 6.3). This concludes the proof of Theorem 12.2.

Remark 12.4. Alternatively in the last argument one can appeal to Theorem of Imanishi [I].

Now suppose that F is a simple flat in X with the nontrivial stabilizer Γ_{o}. This must be an Abelian group acting discretely and isometrically on \mathbb{R}^{2}. Since Γ contains no \mathbb{Z}^{2} it implies that Γ_{o} is an infinite cyclic group acting by translations in F. Denote by $\ell \subset F$ an invariant line for $\Gamma_{o}=\langle\gamma\rangle$. Let G denote the centralizer of Γ_{o} in Γ. Since for each $g \in G$ the elements g, γ commute, the flat $g F$ is also γ-invariant. The displacement number of γ in $g F$ is the same as in F. Consider the orbit L_{F} of F under G and denote by \bar{L}_{F} its closure in X.

Lemma 12.5. The pair $\left(\bar{L}_{F}, G\right)$ is proper.

Proof: Suppose that the pair is not proper and $x \in X$ is an accumulation point for $g_{n} F, g_{n} \in \Gamma$. Since F is simple $g_{n} F$ accumulates also to a flat F^{\prime} which contains x. Denote by $x_{n} \in F$ a sequence such that $g_{n} x_{n} \rightarrow x$. The displacement of γ in F equals C, thus $d\left(\gamma x_{n}, x_{n}\right)=C<\infty$. Hence the displacements of $g_{n} \gamma g_{n}^{-1}$ are also bounded by C at $g_{n} x_{n}$. This implies that elements $g_{n} \gamma g_{n}^{-1}$ have displacement at x bounded by $C+1$ for large n. Since Γ is a discrete group we (taking a subsequence if necessary) can assume that $g_{n} \gamma g_{n}^{-1}=g_{m} \gamma g_{m}^{-1}$ for all n, m. This means that all the elements $h_{n m}=g_{n}^{-1} g_{m}$ commute with γ. Thus all $h_{n m}$ belong to the subgroup G and (\bar{L}, G) is a proper pair.

Corollary 6.7 implies that G contains a finitely generated infinite noncyclic subgroup G_{0} with nontrivial center $\langle\gamma\rangle$. Thus according to Mess's theorem [M1], G_{0} contains \mathbb{Z}^{2}. This finishes the proof of Theorem 1.2.

13 Closing up Euclidean planes

In this Section we will prove that under some topological restrictions the existence of a flat in a 3 -manifold M implies the existence of an immersed incompressible flat torus in M.

Suppose that M is a closed aspherical orientable Riemannian manifold which contains a flat. Then by Theorem 1.2 there exists a subgroup isomorphic to \mathbb{Z}^{2} in M. Apriori the manifold M is not irreducible, however it can be represented as a connected sum $N \# \Sigma$ where Σ is a homotopy sphere [He1] and N is either

Haken or Seifert manifold. In any case N has a canonical (Jaco-Shalen-Johannson) decomposition into hyperbolic and Seifert components. We assume that N has no Seifert components at all, thus it is obtained by gluing hyperbolic manifolds along boundary tori and Klein bottles. These boundary surfaces separate N; since N is orientable they must be tori.

Theorem 13.1. Under the conditions above M contains an immersed incompressible flat torus.

Proof: Any flat F in \tilde{M} is a quasi-flat in \tilde{N}. In the paper [KL] we classify quasi-flats in universal covers of Haken manifolds. Provided that M has no Seifert components, [KL] implies that there exists an i ncompressible torus T embedded in M and a number $r<\infty$ so that F is contained in an r-neighborhood of the universal cover $\tilde{T} \subset X=\tilde{M}$.

Remark 13.2. If M is a hyperbolic 3-manifold with nonempty boundary of zero Euler characteristic, then the existence of such torus T was first proven by R. Schwarzt in [Sch].

Denote by A the fundamental group of T operating on $\tilde{T}=S$. This group is a maximal Abelian subgroup of Γ.

The Hausdorff distance $d_{H}(g F, S)$ is bounded from above independently on $g \in A$. We let \bar{L} denote closure of the orbit $A(F)$. The quotient \bar{L} / A is compact in M.

Lemma 13.3. There exists a subgroup Γ^{\prime} of finite index in Γ which contains A so that \bar{L} is precisely invariant under A in Γ^{\prime}.

Proof: Recall that Γ is residually finite $[\mathrm{He} 2]$. There is at most a finite number of elements $g_{1}, \ldots, g_{k} \in \Gamma-A$ such that $g_{j} \bar{L} \cap \bar{L} \neq \emptyset$ and A is a maximal Abelian subgroup of Γ. Thus by applying [L] we conclude that Γ contains a finite-index subgroup Γ^{\prime} which contains A and doesn't intersect $\left\{g_{1}, \ldots, g_{k}\right\}$.

We let $\Gamma:=\Gamma^{\prime}$ and retain the notation M for X / Γ^{\prime}. Now we will apply our analysis of flats in 3-manifolds to the flat F.

First we suppose that F is a simple flat. Let F^{\prime} be one of the flats in \bar{L} which is the most distant from S in the Hausdorff metric. There are at most two such flats since all the flats in \bar{L} are disjoint. Hence F^{\prime} is invariant under an index 2 subgroup in A which implies Theorem 13.1.

Suppose now that any flat in \bar{L} has "triple intersections". By compactness of \bar{L} / A we can assume that $F=F_{1}$ intersects a flat $F_{2} \subset \bar{L}$ along a recurrent geodesic. The group Γ_{1} (as in Section 10) is contained in A by Lemma 13.3. Then we have three possible cases (a), (b), (c) according to the holonomy representation $\rho: \Gamma_{1} \rightarrow S O(3)$. In the Cases (b), (c) we get: $\Gamma=\Gamma_{1}$ which is impossible. Hence either we have the Case III-a or the Case II (flats with double intersections). Note that Γ_{1} is either infinite cyclic or is isomorphic to $\mathbb{Z} \times \mathbb{Z}$. However the quotient $\operatorname{cl}\left(\Gamma_{1}\left(F_{1} \cup F_{2}\right)\right) / \Gamma_{1}$ is compact. Thus Γ_{1} is not cyclic and it must have a finite index in A. In the both cases III-a and II we have a finite-index subgroup $A^{\prime} \subset A$ which preserves a parallel family of Euclidean geodesics on the orbit $L^{\prime}=A^{\prime}\left(F_{1}\right)$. From now on we consider the only the subgroup A^{\prime} and the orbit L^{\prime} so that the Cases III-a and II become indistinguishable.

Each flat F_{j} in \bar{L}^{\prime} separates X into two components, we let F_{j}^{+}denote the "right side" and F_{j}^{-}denote the "left side" of F_{j}. We let S^{+}denote the union of the right sides and S^{-}the union of left sides. Their complements C^{+}, C^{-}are disjoint open convex subsets of X whose boundaries $B^{ \pm}$are foliated by parallel lines ℓ_{x}. Both $B^{ \pm}$ are Hausdorff close to the surface S and invariant under A^{\prime}, so the quotients $B^{ \pm} / A^{\prime}$ are tori. Each flat in L^{\prime} separates C^{+}from C^{-}. Now let a, b be generators of the group A and I be a shortest geodesic segment in X connecting B^{+}and B^{-}. Hence each $F \subset \bar{L}^{\prime}$ intersects I and this intersection consists of a single point. We identify I with an interval $[-h, h] \subset \mathbb{R}$ (here $h \geq 0$) so that $\pm h$ correspond to points on $B^{ \pm}$. The surface B^{+}is identified with the plane \mathbb{R}^{2} which is foliated by vertical lines $\ell_{x}, x \in \mathbb{R}$. If one of the lines ℓ_{x} is invariant under an element $g \in A^{\prime}-\{1\}$ then g leaves invariant any flat in \bar{L}^{\prime} which contains ℓ_{x} (otherwise B^{+}is not g-invariant). We pick a generator a of A^{\prime} which doesn't keep (any) line ℓ_{x} invariant. Therefore a acts on $\mathbb{B}^{ \pm} \cong \mathbb{R}^{2}$ as a translation $(x, y) \mapsto(x+\alpha, y+\beta)$, we shall assume that $\alpha>0$. Identify 0 on the x-axis with the projection of the point $I \cap B^{+}$. Now we pick a flat $F \subset \bar{L}^{\prime}$ which intersects B^{+}along a line (or a strip) whose projection to the x-axis is positive. For each $n>0$ we let $\left\{h_{n}\right\}=a^{n}(F) \cap I$. Denote by π the projection of B^{+} to the x-axis along the lines ℓ_{x}.
Lemma 13.4. The sequence $h_{n} \in[-h, h]$ is monotone.
Proof: For $n \geq 0$ we let $\left[z_{n}^{-}, z_{n}^{+}\right]$denote the projection of the intersection $a^{n}(F) \cap B^{+}$ to the x-axis; these intervals belong to the positive ray \mathbb{R}^{+}. If $n>m \geq 0$ then $z_{n}^{+}>z_{m}^{+}>0$. Thus $\pi^{-1}\left(z_{n}^{+}\right) \subset a^{m}(F)^{+}$(see Figure 8). Note that $\left[h_{m}, h\right]$ also lies in $a^{m}(F)^{+}$. On the other hand, z_{m}^{+}separates 0 from z_{n}^{+}. Suppose now that $h_{n}<h_{m}$. Then flat $a^{n}(F)$ intersects $a^{m}(F)$ in a non-connected set which is impossible.

Therefore there exists a limit $I \ni h_{\infty}=\lim _{n \rightarrow \infty} h_{n}$. The points $a\left(h_{n}\right)$ are convergent to a point $a\left(h_{\infty}\right)$. Let F_{∞} be the union of flats of accumulation for the sequence $a^{n}(F)$.

Each flat in F_{∞} must pass through the points $h_{\infty}, a\left(h_{\infty}\right)$. Recall however that any pair of flats in X intersect by a connected set, thus F_{∞} consist of a single flat which must be invariant under the element a. Suppose that F_{∞} is not b-invariant. Then we repeat the same argument as above by applying the sequence b^{n} to F_{∞}. The limiting flat Φ must be invariant under the both generators a, b. Hence Φ / A^{\prime} is a torus. This finishes the proof of Theorem 13.1.

References

[Ba] H. Bass, Finitely generated subgroups of $G L_{2}$, In: "Smith Conjecture", Acad. Press, 1984; p. 127- 136.
[BF] M. Bestvina, M. Feighn, Stable actions of groups on real trees, Inv. Math., 121 (1995) F. 2, 287- 322.
[BM] M. Bestvina, G. Mess, The boundary of negatively curved groups, Journal of AMS, 4 (1991), N 3, p. 469- 481.
[BK1] M. Bonk and B. Kleiner, Rigidity for quasi-Mbius group actions, J. Differential Geom. vol. 61 (2002), no. 1, 81-106.

Figure 8:
[BK2] M. Bonk and B. Kleiner, Quasisymmetric parametrizations of twodimensional metric spheres, Invent. Math. 150 (2002), no. 1, 127-183
[Br] M. Bridson, On the existence of flat planes in spaces of nonpositive curvature, Preprint, 1992.
[B] S. Buyalo, Euclidean planes in 3-dimensional manifolds of nonpositive curvature, Mat. Zametki, 43 (1988), p. 103- 114.
[CJ] A. Casson, D. Jungreis, Convergence groups and Seifert fibered 3-manifolds, Inventiones Math., 118 (1994) F. 3, 441-456.
[Ca] J. Cannon, The combinatorial Riemann mapping theorem, Acta Mathematica, 173 (1994), p. 155- 234.
[CS] J. Cannon, E. Swensen, Recognizing constant curvature discrete groups in dimension 3, Trans. Amer. Math. Soc., 350, (1998) p. 809-849.
[E] P. Eberlein, Geodesic flow on certain manifolds without conjugate points, Transaction of AMS, 167 (1972) p. 151-170.
[Ga1] D. Gabai, Convergence groups are Fuchsian groups, Annals of Mathematics, 136 (1992), p. 447-510.
[Ga3] D. Gabai, A geometric and topological rigidity of hyperbolic 3-manifolds, Journ. of AMS, 10 (1997) p 37-74.
[Gh] E. Ghys, P. de la Harpe, Infinite groups as geometric objects (after Gromov), In: "Ergodic Theory, Dynamics and Hyperbolic Groups", Oxford Sci. Publ., 1991; p. 299- 314.
[Gri] R. Grigorchuk, Growth degrees of p-groups and torsion-free groups, Math. USSR, Sb., 54 (1985), p. 185- 205.
[Gro1] M. Gromov, Groups of polynomial growth and expanding maps, Publ. of IHES, 53 (1981) p. 53- 73.
[Gro2] M. Gromov, Hyperbolic groups, In: "Essays in Group Theory", Publications of MSRI, Vol. 8 (1987), p. 75- 264.
[Gro3] M. Gromov, Asymptotic invariants of infinite groups, in "Geometric Group Theory", Vol. 2; London Math. Society Lecture Notes, 182 (1993), Cambridge Univ. Press.
[He1] J. Hempel, "3-manifolds", Annals of Math. Studies, Vol. 86, Princeton Univ. Press, 1976.
[He2] J. Hempel, Residual finiteness for 3-manifolds. In: Annals of Math. Studies, Vol. 111, Princeton Univ. Press, 1987, p. 373- 396.
[I] H. Imanishi, On the theorem of Denjoy-Sacksteder for codimension one foliations without holonomy, J. Math. Kyoto Univ., 14 (1974) 607 - 634.
[K] M. Kapovich, "Hyperbolic Manifolds and Discrete Groups", Birkhäuser, 2001.
[KK1] M. Kapovich, B. Kleiner, Coarse fibrations and a generalization of the Seifert fibered space conjecture, Preprint 2003.
[KK2] M. Kapovich, B. Kleiner, Weak hyperbolization conjecture for 3-dimensional CAT(0) groups, Preprint 2003.
[KL] M. Kapovich, B. Leeb, Quasi-isometries preserve the geometric decomposition of Haken manifolds, Inventiones Math, vol. 128, (1997) 393-416.
[Kl] B. Kleiner, in preparation.
[L] D. Long, Immersions and embeddings of totally geodesic surfaces, Bull. London Math. Soc., 19 (1987) p. 481- 484.
[Mc] C. McMullen, Iterations on Teichmuller space, Inventiones Math., 99 (1989), N 2, 425-454
[M1] G. Mess, The Seifert conjecture and groups which are coarse quasi- isometric to planes, Preprint, 1990.
[M2] G. Mess, in preparation.
[Mor] J. Morgan, On Thurston's Uniformization Theorem for Three-Dimensional Manifolds, In: "Smith Conjecture", Acad. Press, 1984; p. 37-136.
[MS1] J. Morgan, P. Shalen, Degenerations of hyperbolic structures, III: Actions of 3-manifold groups on trees and Thurston's compactness theorem, Ann. of Math., 127 (1988) 457-519.
[MS2] J. Morgan, P. Shalen, Free actions of surface groups on \mathbb{R}-trees, Topology, vol. 30 (1991), no. 2, 143-154.
[MO] L. Mosher, U. Oertel, Spaces which are not negatively curved, Communications in Geometric Analysis, Communications in Analysis and Geometry, vol. 6, (1998) p. 67-140.
[O] J.-P. Otal, Le theoreme d'hyperbolisation pour les varietes fibrees de dimension trois, Astérisque, vol. 235, 1996.
[P1] J. Plante, Foliations with measure preserving holonomy, Annals of Math., 102 (1975) N 2, p. 327-361.
[P2] J. Plante, Solvable groups acting on the real line, Transactions of AMS, 278 (1983), N 1.
[R] E. Rips, Group actions on \mathbb{R}-trees, in preparation.
[Sc] V. Schroeder, Codimension one tori in manifolds of nonpositive curvature, Geom. Dedicata, 33 (1990) p. 251-265.
[Sch] R. Schwartz, The quasi-isometry classification of hyperbolic lattices, Math. Publ. of IHES, Vol. 82 (1995) 133-168.
[Sco] P. Scott, A new proof of the annulus and torus theorems, Amer. Journal of Math., 102 (1980), p. 241-277.
[T] W. Thurston, Hyperbolic structures on 3-manifolds, I, Annals of Math., 124 (1986), p. 203-246.
[Tu] P. Tukia, Homeomorphic conjugates of fuchsian groups, J. Reine Angew. Math. 391 (1988), 1-54.
[VW] L. Van den Dries, A. J. Wilkie, On Gromov's theorem concerning groups of polynomial growth and elementary logic, Journ. of Algebra, Vol. 89 (1984), p. 349-374.

Michael Kapovich: Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA ; kapovich@math.utah.edu

