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ABSTRACT. Let 6 : m(R) — PSL(2,C) be a homomorphism of the fundamental
group of an oriented, closed surface R of genus exceeding one. We will establish
the following theorem.

Necessary and sufficient for # to be the monodromy representation associated with
a complex projective stucture on R, either unbranched or with a single branch point
of order 2, is that §(m (R)) be nonelementary. A branch point is required if and
only if the representation 6 does not lift to SL(2, C).
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1. INTRODUCTION AND BACKGROUND

1.1. Introduction. The goal of this paper is to present a complete, self-contained
proof of the following result:

Theorem 1.1.1. Let R be an oriented closed surface' of genus exceeding one, and
0:m(R;0) - T c PSL(2,C)

a homomorphism of its fundamental group onto a nonelementary group I' of Mobius
transformations. Then:
(i) 0 is induced by a complex projective structure for some complex structure on R
if and only if 0 lifts to a homomorphism

6" : m(R; O) — SL(2,C).

'In this paper, all surfaces are assumed to be connected. A closed surface is one which is compact,
without boundary.
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(ii) 0 is induced by a branched complex projective structure with a single branch point
of order two for some complex structure on R if and only if 0 does not lift to a
homomorphism into SL(2, C).

The terms will be explained in §§1.2-1.4.

Theorem 1.1.1 characterizes the class of groups arising as monodromy groups of
Schwarzian differential equations or equivalently, of the projectivized monodromy
groups for the associated linear second order differential equations. Poincaré him-
self explicitly raised the question by noting (for punctured spheres) second order
equations depend on the same number of parameters as their monodromy groups
(the position of the singularities the conformal structure is allowed to change) and
from this observation boldly concluded, “On peut en général trouver une équation
du 2d ordre, sans points a apparence singuliere qui admette un groupe donné”
[Poincaré 1884, p. 218]. In our own time, the question was raised in [Gunning 1981]
and [Hejhal 1975a]; in fact Gunning conjectured Part (i) of our theorem and Tan
[Tan 1994] conjectured Part (ii).

Schwarzian equations themselves have long been an important tool in the study
of Riemann surfaces and their uniformization. Their relation with algebraic geome-
try was established by Gunning in [Gunning 1967a]: For a fixed complex structure
on R, the linear monodromy representations of the complex projective structures
correspond to flat mazimally unstable rank 2 holomorphic vector bundles over R.
A similar relation for branched structures was later studied by Mandelbaum e.g.
[Mandelbaum 1973], [Mandelbaum 1975] (see also §11).

In §11, we will present an analogue Theorem 11.3.3 of our main theorem in the
context of holomorphic vector bundles over Riemann surfaces. Namely, let S be an
oriented closed surface of genus exceeding one and p : 71 (S) — SL(2, C) a nonelemen-
tary representation. Then p is the monodromy of a holomorphic flat connection on a
mazximally unstable holomorphic vector bundle of rank two over a Riemann surface R,
where R is diffeomorphic to S via an orientation preserving diffeomorphism R — S.

Besides the fuchsian groups of uniformization, the class of monodromy groups
includes the discrete, isomorphic groups of quasifuchsian deformations (Bers slices
which model Teichmiiller spaces and their boundaries), and discrete groups such as
Schottky groups which are covered by fuchsian surface groups. See [Maskit 1987] for
a wide array of possibilities.

Theorem 1.1.1 further implies that the image in PSL(2,C) of “almost” every ho-
momorphism of the fundamental group has a geometric structure. This is quite
astonishing, especially so as the image groups are often not discrete and not even
finitely presentable.



4 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDEN

Ryszard Rubinsztein [Rubinsztein 1996] observed that if Gy C G = 7 (R) is any in-
dex two subgroup, the restriction of § to Gy can be lifted from PSL(2,C) to SL(2,C)
in 229 ways. Consequently by Theorem 1.1.1, a homomorphism whose restriction to
an index two subgroup is nonelementary is always associated with a complex projec-
tive structure for some complex structure on the corresponding two sheeted cover.
One such index two subgroup is constructed in §8.6.

Special cases of Theorem 1.1.1(i) were proved in [Hejhal 1975a] and the case of ho-
momorphisms into PSL(2, R) was investigated in [Gallo et al. 1987] and [Tan 1994].

Proofs of Theorem 1.1.1(i) have been announced before. Gallo’s research announce-
ment [Gallo 1989] proposed an innovative strategy for a proof, but the promised de-
tails have not been published or confirmed. Gallo’s strategy had been developed in
consultation with W. Goldman and W. P. Thurston, and was particularly inspired by
Thurston’s approach to the deformation of fuchsian groups by bending. Goldman’s
paper [Goldman 1987] is an exemplar of this strategy applied in the interesting special
case where 6 is an isomorphism onto a fuchsian group; it deals with the problem of
determining all complex projective structures with the prescribed monodromy. This
question is discussed further in §12.

The recent paper [Kapovich 1995] proposed a proof confirming Theorem 1.1.1(i).
Although the argument presented is incomplete (Lemmas 1 is incorrect and a condi-
tion is omitted in Lemma 4, they are corrected in the present paper, and some details
are missing in the proofs of Propositions 1 and 2), the paper contains new ideas and
directly motivated a fresh examination of the whole issue.

The present work was begun by Marden with the goal of settling the validity
of the claims. In a general sense, Gallo’s and Kapovich’s strategy is followed, al-
though the details, especially in Part B, are quite different from those suggested in
[Gallo 1989] or [Kapovich 1995]. In the latter phase of the investigation, a collabo-
ration with Kapovich began. Almost immediately this produced a breakthrough in
understanding the connection between a certain construction invariant and the lifting
obstruction (§§9-10). Instead of using the difficult continuity arguments proposed in
[Kapovich 1995], we use branched structures. Motivated by Tan’s work [Tan 1994] on
real branched structures, we found a technique for constructing branched projective
structures complementing that developed earlier for joining pants. This approach ex-
hibits clearly the connection. It also clarifies the role of the second Stiefel-Whitney
class and degree of instability of holomorphic bundles which is discussed by Kapovich
in §11. In fact, one of our discoveries is that it is easier to prove Theorem 1.1.1 simul-
taneously for branched and unbranched structures than to establish the unbranched
case by itself.
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Part C of our paper brings together additional results that fill out the picture
presented by our main theorem. These are developed in the context of holomorphic
bundles over Riemann surfaces. For example, in some respects Theorem 1.1.1 is
more clearly seen in the context of a more general existence theorem for branched
complex projective structures with a prescribed branching divisor and monodromy
representation. This refinement, Theorem 11.2.4, is expressed in terms of the second
Stiefel-Whitney class. In addition, we present the full proof of the divergence theo-
rem briefly outlined in [Kapovich 1995]. This Theorem 11.4.1 deals with sequences
of monodromy homomorphisms 6, : m(R) — PSL(2,C) associated with divergent
Schwarzian equations on a fized Riemann surface. Such a sequence of homomor-
phisms cannot converge algebraically to a homomorphism, either nonelementary or
elementary. In terminology of Teichmiiller theory, the extension of a Bers slice to the
full representation variety is properly embedded. In §12 we list and briefly discuss a
number of open problems arising from our work.

We three authors decided to join together to pool the fruits of a decade of our
individual and collaborative research relating to the main result. By doing so we
have arrived at a rather larger understanding of the fundamental existence problem
for the monodromy of projective structures.

Our topic falls under the ancient and revered subject heading of linear ordinary
differential equations on Riemann surfaces, a subject introduced by Poincaré. The
problem we consider fits comfortably with those associated with “the Riemann-
Hilbert Problem” (Hilbert’s 21st problem) for first-order fuchsian systems and n-
th order fuchsian equations. Yet our approach is quite different than that associ-
ated with this theory [A-B 1994], [Iwasaki et al. 1991], [Sibuya 1990], [Yoshida 1987],
[Hejhal 1975b]. For one thing, our approach is special to second order equations.
Then we work primarily with projectivized monodromy in PSL(2,C). This turns
the problem into one largely involving the geometry of surfaces and Mobius groups.
Another difference is that here we are mainly dealing with equations without sin-
gularities. Finally we do not prescribe the complex structure in advance, rather it
is determined as part of the solution: the number of parameters in the equations
matches the number in the representations. The need to introduce a branch point
to handle part (ii) of our Theorem is however reminiscent of the need for “apparent
singularities” in that theory.

Except for a particular case, we have left aside the general existence problem for
surfaces with punctures and branch points. However, we believe that the foundation
laid here will stimulate (further) exploration of these and other important aspects of
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the subject, including a characterization of the nonuniqueness, that are not now well
understood.

Acknowledgments. Marden would like to thank the Mathematics Institute of the
University of Warwick, the Forschungsinstitut fiir Mathematik at ETH, Ziirich, and
the Mathematical Sciences Research Institute in Berkeley, for the privilege of partic-
ipating in their programs while his research was carried out. In addition he thanks
David Epstein, Dennis Hejhal, Yasutaka Sibuya, and Kurt Strebel for helpful discus-
sions. David in particular provided insightful suggestions for some of the proofs.

This research additionally received support from the NSF grants DMS-9306140
and DMS-96-26633 (Kapovich) and DMS-9022140 at MSRI (Kapovich and Marden).

All us authors thank Silvio Levy for providing invaluable editorial and ETEX as-
sistance and the referee for many helpful comments and suggestions.

1.2. Mobius transformations. Mdobius transformations correspond to elements of
PSL(2, C) according to

b
a(z):ZZZj__d <y i(i 2) with ad — bc = 1.

They extend from their action on the extended plane CUoo to upper half-three-space
or, via stereographic projection, from the 2-sphere S2 to the 3-ball. The extensions
form the group of orientation-preserving isometries of hyperbolic three-space, which
we denote by H? (in either the ball model or the upper half-space model) with OH?
denoting the “sphere at infinity”, that is, the extended plane or S%, depending on the
model. Throughout our paper, we will identify the extended plane with S2

We recall the standard classification:

e A transformation a is parabolic if it has exactly one fixed point on OH?, or,
equivalently, if it is not the identity and its trace satisfies tr?> a = (a + d)? = 4.
Parabolic transformations are those conjugate to z — 2z + 1.

e An elliptic transformation has two fixed points in OH? and also fixes pointwise
its azis of rotation, that is, the hyperbolic line in H* joining the fixed points.
Its trace satisfies 0 < tr?a < 4, and it is conjugate to an element of the form
2 ey for 0 <0 < .

e A lozodromic transformation o likewise has two fixed points in OH?, one repul-
sive and the other attractive; it preserves the line in H® between them which
is called the azis. The trace of « satisfies tr*a ¢ [0, 4], and « is conjugate to
z — Az, where ) satisfies [A\| > 1 and tr*a = (A + A™")?. The transformation
« acts on its axis by by moving each point hyperbolic distance 2log |A| toward
the attractive fixed point.
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The identity is not part of this classification.

A group T is elementary if there is a single point on OH?, or a pair of points on
OH?, or a single point in H*, which is invariant under all elements of T.

The generic group I' with two or more generators is nonelementary, and is likely
to be nondiscrete as well. For example, any two loxodromic transformations o and
(# without a common fixed point generate a nonelementary group I' = (a, 5). The
group ' is the homomorphic image, in many ways, of any surface group of genus
g2

The most important class of groups ruled out by the condition that I" be nonele-
mentary are groups of rotations of the two-sphere and groups conjugate to them
(unitary groups). We recall that a group, discrete or not, that is composed solely of
elliptic transformations is conjugate to a group of rotations of the 2-sphere.

In anticipation of our later work, we also recall the definition of a two-generator
classical Schottky group G = {(«, ). There are four mutually disjoint circles with
mutually disjoint interiors, arranged as two pairs (¢, ¢}) and (e, ¢)). The generator
« sends the exterior of ¢; onto the interior of ¢}, and 3 does the same for (cy, c)).
The common exterior of all four circles serves as a fundamental region for its action
on its regular set €.

Let 7 : Q — S := Q/G denote the natural projection. The surface S has genus
two, and 7(¢;) and 7(ey) are disjoint, nondividing simple loops on S. If d C S is
a simple loop with an a-invariant lift d* C €2, the free homotopy class of d in S is
uniquely determined up to Dehn twists about 7(c;) (see §1.8).

The group G extends to act on € U H?; the quotient is a handlebody of genus
two in which 7(¢q) and m(co) are compressing loops that bound mutually disjoint
compressing disks in the interior.

If, instead of circles, the pairs (¢1,¢}) and (e, ¢) are Jordan curves (which can
always be assumed to be smooth), the resulting group is called more generally a
(rank-two) Schottky group. According to [Chuckrow 1968], or [Zieschang 1962] in the
handlebody interpretation, every set of free generators of a Schottky group (of the
general kind!) corresponds to pairs of Jordan curves as described above.

Our method of construction in this paper will always yield classical Schottky groups
in terms of designated generators. The extra knowledge that, for the designated
generators, the loops can be taken as round circles is pleasing and convenient, but it
is not really necessary for the proofs.

1.3. Projective structures. Let R be a closed Riemann surface of genus at least
two, and let R = H? /@G be its representation in the universal covering surface H? (the
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two-dimensional hyperbolic plane) by a fuchsian covering group G. We will describe
a projective structure first in the universal cover H? and then intrinsically in R.

A complex projective structure with respect to G is a meromorphic, locally univalent
(i.e. locally injective) function f : H? — f(H?) C S? for which there corresponds a
homomorphism 6 : G — T' C PSL(2, C) such that f(y(t)) = 0(v)f(t) for any t € H
and any v € G. It follows that f descends to a multivalued function f, on R, called
the (multivalued) developing map; it “unrolls” R onto the sphere. The Schwarzian
derivative of f,

N 1 ", 9
(1) s = (%) =5 (5) =0,
satisfies ¢(7(t))7'*(t) = ¢(t), and therefore descends to a holomorphic quadratic
differential on R.

Conversely, given any holomorphic ¢(#) in H? with this invariance under G, there
is a solution f(¢) of (1), uniquely determined up to post composition by Mé&bius
transformations, which is a locally univalent meromorphic function that induces a
homomorphism 6 of G.

The Schwarzian equation is related to the second-order linear differential equation

(2) u'(t) + 36(t)u(t) =0

as follows. The ratio f(f) = ui(t)/us(t) of any two linearly independent solutions wu;
and 1y in H? gives a solution f of the Schwarzian; conversely, any solution f of the
Schwarzian can be so expressed, indeed

3) w= ()2, w = fu

if the Wronskian A(uy, us), which is necessarily a constant, is normalized as A = 1.
Another pair au; 4+ busy, cu; +dus of independent solutions corresponds to the solution
Bf of the Schwarzian, where B(z) = (az + b)/(cz + d).

On the Riemann surface R = H?/G, a form of (2) that is invariant under change
of local coordinates z is,

(4) v"(2) + 3{(2) + S:(m )}o(z) =0,

where 7 denotes the projection from H2. In interpreting this equation, the Schwarzian
transforms as a connection under change of local coordinate z — ¢ = ((z) and v
transforms as a half-order differential (see [Hawley and Schiffer 1966]), specifically

V(C(2)C(2) T = o(2).
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The monodromy group and monodromy representation are computed as follows.
Fix m(R; O) with basepoint O € R, and a solution f.(2) (or vi(2)/ve(2)) near O.
Let ¢ € m(R; O) be a simple loop based at O. Analytically continue f. (or vy /ve)
around ¢, arriving back at a solution vf, (or v(vy/v9)), for v € PSL(2,C). Set
O(c) = 7. In this manner the local solutions f, (or v;/v,) determine a monodromy
epimorphism

6:m(R;0) - T C PSL(2,C),

where ' is a monodromy group for the equation. A different local solution Bf,
(or B(v;/vq)), coming possibly from a different choice of basepoint, determines a
conjugate homomorphism ¢ — B6#(c)B~'. Thus, the equation itself determines a
conjugacy class of homomorphisms into PSL(2, C).

If P is a fundamental polygon for G in H?, we can regard f(P) as spread over the
Riemann sphere, a membrane in Hejhal’s terminology [Hejhal 1975a]. The #-image
of the edge pairing transformations of P will be edge-pairing transformations of the
membrane f(P), which therefore serves as an organizing principle for T.

From the topological point of view, a projective structure is defined by an orienta-
tion preserving local homeomorphism, called the (multivalued) developing map, of R
into S? or, the (single valued) developing map of the universal cover R into S? which
is equivariant with respect to the given homeomorphism #. From this perspective,
the group I is called the holonomy (or, more classically, monodromy) group. There
is a unique complex structure on R for which the local homeomorphism becomes
conformal.

The fact that the Schwarzian equation can be replaced by the linear differential
equation implies the following:

Lemma 1.3.1. If the homomorphism 6 : m(R; O) — T" C PSL(2,C) is induced by a
projective structure on R, it can be lifted to a homomorphism 6* . m(R; 0) — I'* C
SL(2,C).

Proof. Consider an action of G = (R, O) on H? given by the uniformization of the
surface R, take an element A € G. Then the solution pair (3) changes under analytic
continuation from ¢ to T = h(t) according to (see [Hawley and Schiffer 1966])

o (R mevm (s ) ()

where
az+b

cz+d

(a Z)eSL(?,(C), o(h) =

Cc
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There are 229 possible choices for /I (t) over a set of canonical generators {h} of G.
After we make a choice we get the homomorphism

0" G — SL(2,C), 6°(h) = <Z Z) € SL(2,C).

Note however that 6* is not canonically determined by the differential equation (2).
O

We emphasize that our notion of lifting does not require that the image I' of 6 be
isomorphic to the image of the lift #*. For example, a lift to SL(2, C) of a half-rotation
in PSL(2, C) has order four, not two.

We will refer to 6* as a linear monodromy representation of the projective structure.

Remark 1.3.2. The projective structure associated with the equation S,(f) = ¢
can be joined to the identity by means of solutions of S,(f) = t¢, for t € C.

1.4. Branched projective structures. A branched projective structure on a hy-
perbolic Riemann surface R is a holomorphic mapping f : H? — S? which is locally
univalent except in a discrete subset of H? and which is equivariant with respect
to a homomorphism 0 : G — PSL(2,C). We will say that such a structure is singly
branchedif f'(z) has at most simple zeroes and the projection of the set {z : f'(z) = 0}
to R is exactly one point q. These are the structures which appear in Theorem 1.1.1
and we will restrict our comments here to this special case. The more general case will
be discussed separately in §11. Near such point ¢ (which we will identify with zero
in local coordinates), the quadratic differential ¢ = S,(f) has a Laurent expansion
of the form,

-3 p ad :
(6) Pz) = =—+—+ Y a;z', b*+2a,=0.

222z 4

=0

Conversely, if ¢(z) has such an expression near z = 0, a solution of the Schwarzian
will be of the form f(z) = az?(1+0(1)) near z = 0. With ¢ given by (6), the equation
(2) has the two linearly independent solutions with expansions near z = 0 of the form

v1(z) = 23/2(1 +0:1(1)),

UQ(Z) = 271/2(1 + 02(1))
A circuit about z = 0 generates the monodromy

(™ , where J = -1 X .
U9 U2 0 -1

The projectivized monodromy in PSL(2, C) is just the identity.
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Therefore the branched structure determines the homomorphism 6 : 7 (R; O) —
PSL(2,C) as in the unbranched case. However, f cannot be lifted to a homomorphism
into SL(2,C). Indeed, given a standard presentation

(ar,b1,... 04,04 | [[bi,a;] = 1)
for 71 (R; O), and matrix representations A; and B; for (a;) and 6(b;), we have

0 (TTtvs oil) = T8 Al = .

where 0*(a;) = A; and 0*(b;) = B;.
We will discuss this matter further in §§11.5, 11.6.

1.5. Parameter Count. The vector bundle (), of quadratic differentials over Teich-
miiller space ‘¥, has complex dimension 6g — 6. Likewise, the representation variety
V, of homomorphisms 6 : 7(R; 0) — PSL(2,C), modulo conjugacy, has complex
dimension 6g—6. Let Vg’ C V, denote the subset of nonelementary representations, i.e.
equivalence classes of homomorphisms whose images are nonelementary subgroups of
PSL(2,C). Theorem 1.1.1 asserts that the map P, of projective structures Q, — V, is
surjective onto the component of V| consisting of representations liftable to SL(2,C).
In fact, the image space V, is itself a complex analytic manifold [Gunning 1981],
[Hejhal 1975a]. According to [Goldman 1988], or as a consequence of Theorem 1.1.1,
it has two components (one corresponds to liftable representations and the other one
to unliftable representations). See [B-C-R 1996] and [Li 1993] for more information
about representation varieties of surface groups.

According to Hejhal’s holonomy theorem [Hejhal 1975a] the map P, is a local
homeomorphism which is shown in [Earle 1981] to be locally biholomorphic. In par-
ticular, the set of points with a given monodromy 6 is discrete. According to (1) in
§1.6 below, there is at most one representative in the fiber over a particular Riemann
surface. However P, is not a covering map [Hejhal 1975a].

In Theorem 11.5.2 we will prove an analogue of Hejhal’s holonomy theorem for
singly branched projective structures; we prove that the holonomy mapping from the
space of singly branched projective structures to V; is locally a fiber bundle with fiber
of complex dimension 1.

1.6. The global structure. Recorded below are basic facts about projective struc-
tures. For the unbranched case, proofs are in [Gunning 1967a] and [Kra 1969, 1971].
Other useful references are [Gunning 1981] and [Hejhal 1975a]; the latter includes
extensive historical background.
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Here is a brief proof that (in the unbranched case) the holonomy group I' = §(G)
cannot be a unitary group, that is, cannot be conjugate to a group of isometries of
S2. Assume otherwise. Then I' preserves the spherical metric p. Its pullback f*p is a
G-invariant metric on H? which is locally isometric to the sphere. Consequently f*p
has constant curvature +1, in violation of the Gauss-Bonnet theorem.

For the case of a singly branched structures, property (1) below is a special case of
[Hejhal 1975a, Theorem 15], (2) will be established as Theorem 11.6.1, and (3) will
be established as Corollary 11.6.2.

Below we consider projective structures o on R = H?/G which have the holo-
morphic developing mapping f : H* — S? and monodromy representation 6 : G —
PSL(2,C). Assume that o is either unbranched (i.e. f is locally univalent) or is singly
branched. Let §(G) = T' C PSL(2,C) denote the monodromy group. The following
three properties hold.

(1) If two developing mappings f; and fy determine the same homomorphism 6,
then f; = f.
(2) T is a nonelementary group.
(3) The following statements are equivalent provided that, when o is branched,
f(H?) is not a round disk in S*
(i) f(H?) # 8%
(ii) H? — f(H?) is a possibly branched cover;
(iii) T acts discontinuously on f(H?).

Property (1) does not rule out the possibility that the same target group I' may
arise from different projective structures on R. Property (2) shows that the require-
ment in Theorem 1.1.1 that I' be nonelementary is necessary. The situation (3) has a
rich structure as it is associated with the theory of covering surfaces; in particular it
includes the theory of quasifuchsian groups and Schottky groups. In contrast, in the
general case there is a bare minimum of structure because I" need not be discrete.

1.7. Strategy of the proof. Given a homomorphism
0:m(R;0) - T C PSL(2;C)

such that I' is nonelementary, the strategy consists of two parts.

Part A (§88 5). Find a pants decomposition {P;} of R with the property that
O(m(F;)), for 1 <1i < 2g— 2, is a two-generator (classical) Schottky group.

We recall that a pants is a Riemann surface conformally equivalent to a three-holed
sphere. A surface of genus g > 2 requires 3g — 3 simple loops to cut it into pants,
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and there results 2¢g — 2 pants. It has infinitely many homotopically distinct pants
decompositions.

Part B (§§6-10). Find representations of the universal covers P, in the regular sets
(i.e. domains of discontinuity) of 6(m;(P;)) C S% Glue them together as dictated
by the combinatorics of {P,} in R, as relayed by . In general there is a Z/2-
obstruction to such gluing. If there is no obstruction, we end up with a simply
connected pants configuration S over S? that models the universal cover of a new
Riemann surface S homeomorphic to R. The projection of S to S? is a #-equivariant
local homeomorphism. If there is an obstruction, introduce a single branch point of
order 2 by applying a twist. This removes the obstruction to the construction and a
new Riemann S surface homeomorphic to R can be assembled as before. The result is
either unbranched or singly branched projective structure on S with the monodromy
representation f. According to Theorem 11.2.3 if 0 lifts to SL(2, C) then the structure
has to be unbranched, if 6 does not lift then the structure has to be singly branched;
in other words, the Z/2-obstruction to gluing is the 2nd Stiefel-Whitney class of the
representation 6. This proves Theorem 1.1.1.

The method used to assemble the pants configuration is a form of “grafting”, first
applied to kleinian groups in [Maskit 1969].

1.8. Terminology and notation. Throughout this paper we will work on closed
surface R, of genus ¢ > 2. When convenient, we will assume that R is a Riemann
surface R = H?/G in terms of its universal cover (which may be taken as the hy-
perbolic plane H?) and fuchsian cover group G. Fix O € R as the basepoint for its
fundamental group m; (R; O). Let

0:m(R;0) - T c PSL(2,C)

be the designated homomorphism with a nonelementary image I'.

Throughout we will use lowercase Latin letters a,b,c,... to denote elements of
71 (R; O), and the corresponding Greek letters «, 3,7, ... to denote their f-images in
['. A nontrivial loop is one not homotopic to a point.

We will write the compositions of both curves and transformations (and their
associated matrices) starting at the right. Thus, b follows a in both ba and (b)6(a) =
Ba.

By a standard set of generators {a;, b;} of m(R;0), where 1 < i < 2g, we mean
a set of oriented simple loops that generate the fundamental group and have the
following properties. For each 7, the loop b; crosses a; at O, from the right side of a;
to the left, and is otherwise disjoint. For j # i, the simple loops (a;, b;) are freely
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homotopic to simple loops disjoint from (a;, b;). The product of the commutators
H b;la;lbiai
i

bounds a simply connected region lying to its left.

We will refer to a product ba as a simple loop if it is homotopic to one (with fixed
basepoint). Thus, for any k& € Z, the loop bya¥ is simple, and so are ayb, 'a® and
asbiaq, but not a;lbla’f, or, for k # 1, the loop alea’f. The curve bflalbl is simple,
but not agbflalbl.

Often we will modify a simple loop ¢ C R by applying a Dehn twist, which can be
described as follows. Let A be an annular neighborhood about a (nontrivial) simple
loop a. Orient 0A so that A lies to its left. Hold one component of 0A fixed and
rotate the other |n|-times in the positive or negative direction according to whether
n > 1 orn < —1. This action extends to an orientation preserving homeomorphism
0" of A, and then to all R, by setting 6" = id outside A. 0", or more precisely its
homotopy class on R, is called the Dehn twist of order n about a. If ¢ is not freely
homotopic to a curve disjoint from a, then 6" (c¢) is not freely homotopic to c.

2. FIxep POINTS OF MOBIUS TRANSFORMATIONS

In this section we will collect the lemmas needed to control the type of composed
transformations.

2.1. Basic lemmas.

Lemma 2.1.1.

(i) Suppose « is lozodromic and [ sends neither fixed point of « to the other. Given
M > 0 there exists N > 0 such that |tr fa™| > M and fa™ is lozodromic for all
n| > N.

(ii) Suppose « is lozodromic and [ sends exactly one fized point of o to the other.
Given M > 0 there exists N > 0 such that |tr a”| > M and Ba™ is loxodromic for
alln > N (if B sends repulsive to attractive) or for alln < —N (if B sends attractive
to repulsive).

(iii) Suppose a is parabolic and (3 does not share a fized point with o. Given M > 0
there exists N > 0 such that |fa™| > M and fa™ is lozodromic for all |n| > N

Proof. For (i) and (ii) we may assume

A0 . a b )
a—(o )\1) with |A] > 1, ﬂ_<c d) with ad — be = 1.
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Then tr o™ = A'a + A™"d. Not both a and d can vanish, because [ does not
interchange the fixed points of . The assertions now follow directly.
For (iii), we may assume

1 1 a b )
oz—<0 1), ﬁ—(c d) with ad — bc = 1.

Then tr fa™ = (a + d) + nc, where ¢ # 0. Again, the desired conclusion follows. [

Lemma 2.1.2. Assume « is lozodromic with attractive fized point p* and repulsive
fized point p,.
(i) For any sequence k — +o00, the fized points of Ba* converge to 3(p*) and p,. The
fized points of a* B converge to p* and B~ (p.).
(ii) For any sequence k — —oo, the fized points of fa* converge to B(p.) and p*. The
fized points of a* B converge to p, and ~(p*).

Proof. Part (ii) follows from (i) upon replacing o by a~'. The computational proof

is instructive. Set
A0 a b
O‘_(o )\1> and ﬂ_<c d)’

where |A| > 1 and ad — be = 1. If ac # 0, the two fixed points of af3 are A2 a(1 4
VA)/2¢ — d/2¢, where
2d d? 4
A=1+ a2k - 2Nk g2k
The “4” fixed point approaches oo with k. The “—” fixed point has the form

2
E_Q_L(H\/K)fl_i

ac ¢ 2ach* 2¢’
This one approaches —b/a = 371(0).
If ¢ = 0, one fixed point of a*f is co. The other one is b/(d\~2* — a). This too
approaches —b/a = 371(0) with k.
If a = 0 the two fixed points are (—d £ Vd? — 4\?})/2¢. Both approach oo with £.
Here 371(0) = .
The fixed points of Ba* = B(a*B)3 converge to B(p*) and B(3 'p.) = p.. O

Lemma 2.1.3. Suppose v is lozodromic with attractive fived point p*, repulsive fized
point p..
(i) Suppose a(p*) # p* and B(ps) # p«. Given M > 0 there exists N > 0 such that
try "oy B > M oand v "ay" (3 is lozodromic and doesn’t share a fixed point with «
or 3 for alln > N.
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(ii) Suppose a(p.) # p. and B(p*) # p*. Given M > 0 there exists N > 0 such that
try "an" G| > M and v "ay™ 3 is loxodromic and doesn’t share a fized point with «
or 3 for alln < —N.

Proof. We may assume

_)\0 _a,b 6_117)
V_OA*I’a_cd’ S \w z)’

with [A| > 1, ad — bc = 1, and ux — vw = 1. We find that try "ay"3 = M"cv +
A ?"bw + (au + dz).

In case (i) we have ¢ # 0 (since a(p*) # p*), and v # 0 (since 3(p.) # p.); thus
cv # 0 and v "ay"( is loxodromic for all large n. Moreover, if ¢ is a fixed point of
B, then q # p, but lim,_, ’Yﬁna’ynﬁ(Q) = DPx-

Suppose instead that ¢ is a fixed point of o, and of y"ay"3 for all large n.
First ¢ # p. since v "ay"B(p.) = p. implies B(p.) = p.. Then 3(q) # p. for
v "a(ps) = q holds for all large n only if ¢ = p, or ¢ = p*. Thus once again,
lim, 007 "Y"B(q) = s # q.

In case (ii), b # 0 (since a(p.) # p.), and w # 0 (since F(p*) # p*); hence v "ay"
is loxodromic for all small n. Moreover if ¢ is a fixed point of 3, we have ¢ # p*, but
limy,, 1o Y "y B(q) = pa.

Suppose instead that ¢ is a fixed point of a;, and of v "a~" 3 for all small n. Again
q # p* and then ((q) # p*. As above, ¢ cannot be a fixed point of v "ay™ [ for all
small n. O

Lemma 2.1.4. Suppose « is a loxodromic transformation with fixed points u and v.
(i) Given p* # u,v and T > 2, there exists € > 0 such that if 3 is any loxodromic
transformation with fized points p, q satisfying d(p,p*) < €, d(q,p*) < €, and with
trace satisfying |tr 3| > T, then « and (3 generate a classical Schottky group.
(ii) Given p,q # u,v, there exists T > 2 such that if 3 is any loxodromic transforma-
tion with fized points p,q and satisfying |tr 5| > T, and if « also satisfies [tra| > T,
then «o and 3 generate a classical Schottky group.

Proof. A loxodromic transformation 8 acts in H? U 0H?. If P C H? is a plane
orthogonal to its axis, so is #(P). The two circles 9P and 93(P) in H? that separate
the fixed points p and ¢ of § bound what we will refer to as an annular region A for
(3. Given any point ¢* # p, ¢, u, v in OH?, there are annular regions for 3 that contain
¢* in their interior.

Fix p* C OH? distinct from ¢*,p, q,u,v. Let (pn,qs.) be a sequence with p, # ¢,

and limp, = limg, = p*. Let T, be the transformation with fixed point ¢* such



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 17

that T,,(p) = pn, Tn(q) = q,. Ultimately T, is loxodromic, its attractive fixed point
converges to p*, and [tr7T,| — oc. Consider an annular domain A for § containing
¢* in its interior. T,A is an annular region for 7,87, !, all containing ¢*. The
sequence of bounding circles of T,, A converge to the point p*; that is, T,, A converges
to OH?\ {p*}. The analysis would be equally applicable to a family of transformations
{B}, each with fixed points p, g, so long as they all satisfied |tr §| > T for some T > 2
(uniformly loxodromic).

Now let A’ be an annular domain for « containing p* in its interior. Ultimately
the bounding circles of T, A also lie in the interior of A’. For such indices n, a and
T,BT, " generate a classical Schottky group. Part (i) follows at once.

To establish part (ii), note that both & and § have annular domains whose bound-
aries are circles arbitrarily close to their fixed points, if 1" is large enough. O

Corollary 2.1.5. Suppose v s loxodromic with attractive fixed point p*, repulsive
fixed point p,, and o, B are loxodromic as well.

(i) If a(p*) # p* and B(p.) # ps there exists N > 0 such that v "ay™ and ( generate
a classical Schottky group for all n > N.

(i) If a(p.) # p« and B(p*) # p* there exists N > 0 such that v "ay™ and (3 generate
a classical Schottky group for all n < —N.

Proof. This is a corollary also of Lemma 2.1.3. In case (i), the fixed points of 7y "a~y"
are arbitrarily close to p, for large n, since p* is not fixed by «, where p, is not fixed
by (. In case (ii), the fixed points of 7y "ay" are arbitrarily close to p*, for small
n. ]

2.2. Lemmas regarding half-rotations.

Lemma 2.2.1. Suppose . and 3 each have two fized points and 3 sends one of the
fized points of a to the other. Then « likewise sends one of the fixed points of B to
the other if and only if

trla = tr? 5.

Proof. We may assume that

A0 0 b
a:<0 )\1> and 6:<c d)’

where A # +1 and bc = —1. The fixed points of § are (—d + v/d? — 4)/2c. Suppose
a sends one to the other. Each case implies and is implied by one of the relations

d(N? —1) = +Vd2 — 4(\? +1).
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Squaring, we get d?A? = (A2 +1)?, or
tri=d=+(A+A")=+tra. O
U

Lemma 2.2.2. An element J of order two interchanges the fixed points of an elliptic
or loxodromic transformation ~v if and only if

Jyd =71
and fizes them if and only if
JyJ =1.
It fixes the fixed point of a parabolic transformation ~ if and only if
JyJ =~1

Proof. For the first part we may assume that
A0 0 b
7‘(0 )\1> and J_<61 0)’

while for the second,
1 b i 0
7—(0 1) and J_<0 z)

The conclusion is verified by computation. O

Lemma 2.2.3. Suppose o and 3 are lozodromic without both fized points in common.
J is an element of order two.

(i) If J interchanges the fized points of both « and (3, J neither interchanges nor fizes
the fixed points of Ba.

(ii) If J interchanges the fized points of 3 but not of Ba* for some k # 0, then J3
does not interchange the fixed points of c.

(iii) If J interchanges the fized points of both Ba* and Ba**' for some k, then J
interchanges the fized points of Ba* for all k, but neither interchanges nor fizes the
fized points of «, and does not interchange the fized points of &3 for m # 0.

Proof. For (i), JBaJ = 3 'a™' #a 137", fa.
For (ii), J; = Jf has order two, but J; # id. If Jia*J; = a % then JBa*J =
a*37', a contradiction.
For (iii), the hypotheses JBa*J = o *3~" and JBa**'J = a %3 ' JaJ imply in
turn that
oF B o) =t
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or
JaJ = Ba” "B, (Fa !, a).

Then

a *pt = Jpaty = JpipaFp,
or JBJ =31 Now, for any k,

JBakT = 3 Ba kg = a kgL
Finally, for any m # 0,

Ja"BJ = Ba BT = BamBTE# BT

(Note the proof holds as well if some 3a* is parabolic, under appropriate interpreta-
tion; see Lemma 2.2.2.) O

Lemma 2.2.4. Suppose o has two fized points but o # id, while J is an element
of order two that does not interchange the fized points of a. Then (aJ)? # id and
(Ja)? #£id.

Proof. We may assume that

A0 a b
a-(o )\1> and J_<(: a,>'

with A2 # 41, a® + bc = —1. Then

(a])? = < Na?+bc  Nab — ab ) ‘

ac — A 2ac  be+ \?a?

If (aJ)? = id, then
ab(\* —1) =0,
ac(l1 —\"%) =0.

Either ¢ = 0 or b = ¢ = 0.The former case is impossible by hypothesis. If b = ¢ =0,
then since a? = —1, we get \> = A2 = 1. This is again a contradiction. O

Lemma 2.2.5. Suppose both .J and .J,.J interchange the fixed points of the loxodromic
or elliptic transformation ~v. Then Jy fizes the fized points of .

Proof. Under the hypothesis, if p, ¢ denote the fixed points of v, we have J(p) =
JiJ(p) and J(q) = J,J(q). Hence J(p) = q and J(q) = p are fixed by .J;. O
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Remark 2.2.6. Suppose a and (3 are loxodromic without a common fixed point and
[ does not send one fixed point of a to the other. If v fixes or interchanges the fixed
points of a, then v3~! has neither of these properties. In the latter case, v - afa !
does not send one fixed point of o to the other. What will prevent us from making
use of such facts as these is that if v, for example, is the #-image of a simple loop,

then in general y3~ ' and va8a " are not.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 21

A. The Pants Decomposition
3. FINDING A HANDLE

3.1. Handles. By a handle H = (a,b) we mean two simple loops a,b € m (R;O),
crossing at O but otherwise disjoint, and such that a = 6(a) and 5 = 60(b) are
loxodromic and generate a nonelementary subgroup (a, ) of I.

Proposition 3.1.1. There exists a handle in R.

Proof. The proof will occupy the remainder of this chapter.

3.2. Case 1. There exists a simple, nondividing loop a € m; (R; O) for which (a) = «
is loxodromic. Choose b € m1(R; O) such that b is a simple loop crossing a exactly at
O, and set 3 = 6(b).

Suppose first that § neither interchanges the fixed points of o nor shares a fixed
point with a. Then, by Lemma 2.2.1, Sa* is loxodromic for some k. Moreover,
(o, Ba*) is nonelementary. We can consequently choose H = (a, ba*).

Next suppose that (8 shares exactly one fixed point p with «. Because I' is not
elementary, there is a simple loop y € 7 (R;O) that does not cross a or b and such
that 6(y) = n does not fix p. Take y with the orientation such that ay is homotopic
to a simple loop. For any k, the loop ay is homotopic to a simple loop that crosses
ba* exactly at O (Figure 1).

Now an does not share the fixed point p of Sa*. For at most one value of k, an
shares another fixed point ¢ of fa*. For if

an(q) = ¢ = Ba*(q) = Ba™(q)

with m # 0, we have a(q) = ¢, and then n(q) = ¢ = 3(q), a contradiction since ¢ # p.
Nor can an send the fixed point p of Sa* to another fixed point ¢ = an(p) of Ba* for
more than one k. For

an(p) = q = o (q) = B+ (q)

for m # 0 implies that a(q) = ¢, and then ((q) = ¢. This is impossible since ¢ # p.
Thus there exists k such that an neither interchanges the fixed points of Sa¥, nor
fixes any. By Lemma 2.1.1, we may also assume that 3a* is loxodromic.

Consequently we can return to the case above with ba* and ay.

Finally, suppose that [ either fixes both fixed points of « or interchanges them.
Again find a simple loop y that does not cross a or b and such that n = 6(y) neither
fixes both fixed points of « nor interchanges them. Take the orientation of y so that
yb is homotopic to a simple loop. Then 7{ neither fixes both fixed points of a nor
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FIGURE 1.

interchanges them. Consequently we can return to one of the cases above with a and
yb.

3.3. Case 2. There is a simple, nondividing loop a € m;(R;O) such that f(a) = «
is parabolic. Let b € m;(R; O) be a simple loop that crosses a exactly at O.

If 3 = 6(b) does not fix the fixed point p of o, then Ba* is loxodromic for all large
k|, by Lemma 2.1.1. Thus we are back to Case 1.

Suppose instead that F(p) = p. There is a simple loop y € 7 (R; O), not crossing
a or b, and such that n = 0(y) does not fix p. We may take y with the orientation
for which yb is homotopic to a simple loop, and hence also yba* is homotopic to a
simple loop. Since n3(p) # p, we conclude that nBaF is loxodromic for some k, and
yba® brings us, once again, back to Case 1.

3.4. Case 3. Let {a;,b;} be a canonical basis for m(R;O), with 6(a;) = «; and
0(b;) = ;. Assume that all the elements «;, 3;, o, B0, and B;a; are elliptic or
the identity. As the basis of our analysis of this case, we will find a simple dividing
loop d for which 0(d) is loxodromic.

In this section we will establish some useful lemmas.

Lemma 3.4.1. If a and 8 are elliptic, and their axes are not coplanar in H?, then
Ba s loxodromic.

Proof. Let P denote the plane in H? spanned by the axis of a and the common
perpendicular [ to that and the axis of 3. Form the “open book” for P with spine
along the axis of o and angle half the rotation angle of @. Then o = R R,_, where R,
and R, are half-rotations (180°) about the lines orthogonal to the axis of « indicated
in Figure 2. Similarly, 5 = R, R, where [ is the line orthogonal to the axis of (3 at
its intersection with [, and lies halfway between [ and §(1).
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P

ax(a)

FI1GURE 2. Open book for plane P

a

Consequently, fa = R, R, . Therefore Ja is elliptic if and only if the lines [, and
I intersect in H*: if instead they meet at OH®, the composition S is parabolic, and
if they do not meet at all in H* U OH?, the composition is loxodromic. Since the axis
of # does not lie in P, I3 does not lie in the plane spanned by [, and [. Therefore [,
and [z cannot meet anywhere. O

Corollary 3.4.2. Under the hypotheses of Case 3, the axes of the nonidentity ele-
ments of {c, B;} either

(a) all pass through some point ( € H*, or

(b) all lie in a plane P C H?, or

(¢) are all orthogonal to a plane P C H>.

Proof. Apply Lemma 3.4.1 to the set {«, §,}. O

Note that, in case (c), the plane P contains all the lines [,, and lg,. This is the
fuchsian case: all elements of I' preserve P.
Case (a) does not arise for our situation since I' is nonelementary.

Lemma 3.4.3. Suppose o and (3 are elliptic with distinct azes that lie in a plane
P Cc H3. Assume Ba is also elliptic. Its axis cannot lie in P.

Proof. The axes of Sa and « are different, so there is a fixed point x of S« not lying
in the axis of a. Set y = a(x); then f(y) = z. Let the plane P’ be the perpendicular
bisector of the line segment [z, y]. By construction, x and y are equidistant from P’.
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a

C

FI1GURE 3. Reflection triangle for «, 3, f * «

But x and y are also equidistant from the axis of «, since « is a rotation about its
axis. All points equidistant from 2 and y lie in P’, so the axis of « is contained in
P'. Since x and y are also equidistant from the axis of 3, this line, too, is contained
in P’. We conclude that P = P, so « ¢ P. O

In fact, the proof shows that if the axis of fa meets P or P, it does so at, and
only at, a point of intersection or common endpoint of the axes of a and f3.

Lemma 3.4.4. Suppose «, 3, and v = PBa are elliptic with distinct axes, and that
they preserve a plane P C H3. Then f~'a ! Ba is loxodromic.

Proof. Let a,b,c denote the fixed points in P of o, # and 7. Replace a and 3 by
the inverses, if necessary, so that they rotate counterclockwise about a and b. Let
Ry = J, Ry and Rj3 denote the reflection in the lines through [a,b], [b, ¢] and [c, a],
respectively. Then o = R1R3, = RyRy, and v = RyR3. The vertex angles of the
triangle in Figure 3 represent the half-rotation angles. Then

B raBa = JvJy.

In order to better study Jv.J~, we take the line [ through a and b to be the real
diameter in the disk model of P (Figure 3). .J is reflection in [; let R denote reflection
in the vertical line through ¢ and Jec. Let 6 denote the half-rotation angle of 7. Let
[y denote the line through ¢ subtending angle § with the vertical, and set I = Rl;.
Let R denote reflection in [; and R, reflection in .
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JI\ Jc

FIGURE 4. Reflection in Jl; and [,

Now we have v = R{R = RR), and
JyJ =JR{JJRJ = RT'R,
where R = JR!J is reflection in the line Jl;. Consequently,
JyJy = RYRRR, = R R),.
The lines .JI; and [, cannot intersect in P U JP. Therefore the composition of reflec-
tions in them, RY* RS, is loxodromic (hyperbolic). O

Note, however, that R}'R} = JyJy ! = (Ba?8) ! can sometimes be elliptic.

3.5. Case 3 (continued). Suppose that the elements {«;, 5;}, which are all elliptic
or the identity, preserve a plane P C H*® (Case (c) of Corollary 3.4.2). We may
assume that a; # id.

Consider first the case that (; is elliptic and its fixed point in P differs from that
of a;. Then the transformation § = 3, 'a; ' B1a1, which corresponds to the simple
loop d = b, 'a; 'biay, is hyperbolic (Lemma 3.4.4). Because d divides R, there exists
an element c of {ay, by, ..., a,, by} with v =0(c) # id. Apply the Dehn twist of order
n about d to the simple loop ¢by, to get cd™b;d™". Its image v0"3;6~" is loxodromic
for all large |n| by Lemma 2.1.3, since the fixed points on 0P of the hyperbolic § are
necessarily different from those of the elliptics v and (3, in P. Since c¢d"byd™™ is a
simple, nondividing loop, we can return with it to Case 1 (§3.2).

Consider next the case where ; has the same fixed point in P as «y, or is the
identity. We can find ¢ in {as,bo, ..., a4, by} such that v = 6(c) does not have the
same fixed point in P as ay. If §(cbiay) is not elliptic, return with c¢bja; to Case 1
or 2. Otherwise, set d = (cb1)'a, '(cb1)a1, and apply the Dehn twist about d to ca,
for a sufficiently high power. As above, return to Case 1 with the result.
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Next, suppose that the axes of the elliptic elements {a;, 3;}, which are all elliptic
or the identity, lie in a plane P C H* (Case (b) of Corollary 3.4.2). We may assume
that o # id.

Assume first that the axes of o and [, differ. If they cross at p € P, or meet at
p € 0P, there is an element ¢ of {ay, by, ..., a, by} such that the axis of v = 6(c)
does not contain p. By Lemma 3.4.3, the axis of 3;a; does not lie in P, but it crosses
P at p or meets 0P at p. Consequently this axis is not coplanar with the axis of -,
which lies in P. Now Lemma 3.4.1 says that v3;a; is loxodromic. Return to Case 1
with cb;a;.

On the other hand, suppose that the axis [; of a; and the axis [ of 3; are disjoint
in PUOP. If the axis [ of ja; is not coplanar with [; or [y, the situation is again
as above. If [ is coplanar with each of [; and [,, it cannot meet P U 0P. The plane
P' orthogonal to [ and to P is necessarily orthogonal to [; and [,. If the axes of all
nonidentity elements of {«y, f1,. .., } are orthogonal to P’, we can return to the first
subcase of this section. Otherwise the axis of some v € {ay, B, ...} is not orthogonal
to P'. Then v, is loxodromic, since the axis of v is contained in P.

Finally we need to consider the situation where 3; = id or the axes of a; and
01 coincide. Find § in {as, (o, ...} distinct from the identity and having an axis
distinct from that of a;. Replace 5; by d in the analysis above. The triple of loops
in m (R; O) giving rise to the loxodromic element found there also corresponds to a
simple nondividing loop, and it is only this property that is needed.

In light of Corollary 3.4.2, the analysis of Case 3 is complete. A handle exists, and
Proposition 3.1.1 is proved. O

4. CUTTING THE HANDLES

4.1.  We have found a special handle H as specified in §3. The next step is to cut all
the other (topological) handles, ending up with a (connected) surface of genus one
with 2(g — 1) boundary components. In cutting the handles, we will require that the
f-image of each cutting loop is loxodromic.

Although H, or rather the established properties of the #-image of its fundamental
group, serves to anchor the cutting process, in fact H itself will have to undergo
successive changes. It will become more and more complicated in terms of an initial
basis of 71 (R; ). Roughly speaking, we will be applying Dehn twists of possibly
high order to felicitous combinations of simple loops. The process will be governed
by the applicability of the lemmas of §2 to yield loxodromic transformations, yet still
arising under 6 from simple loops in m1(R; O).
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FI1GURE 5. Connection to handle H

4.2. Let H = (a,b) denote the special handle found in Chapter 3, and set a = 0(a),
B = 6(b). We claim that after replacing H = (a, b) by another handle of the form
(ab?,b) or (b,ab?), if necessary, we can assume that 3 does not send one fixed point
of a to the other.

For suppose 3 sends one fixed point of « to the other. Then, using Lemma 2.1.1(ii),
find ¢ so that a3 is loxodromic and tr? o8¢ # tr? 3. Necessarily, 37 does not share
either of its fixed points with 3. By Lemma 2.2.1, at least one of the following
statements is true: # does not send one fixed point of a3 to the other, or a(3? does
not send one fixed point of § to the other.

4.3. Now suppose that (z,y) is another pair of loops in 7 (R;O) of the form z =
wlz'u, y = u 'y'u, where 2’ and y’ are simple loops disjoint from a and b, with one
intersection point where they cross, and v is a simple arc from aNb = O to x' Ny,
otherwise disjoint from a, b, z’,y" (see Figure 5).

Consider d = yba* and its f-image § = nBak, for some k. Set & = f(x) and

n = 0(y). The effect of a Dehn twist of order n about d is
(@, k) > (5%, fab),

(&m) = (6"€,m).

We claim that there exist £ and n such that:

(i) Ba* is loxodromic;

(i) & = nBa* is loxodromic;

(iii) 6"« is loxodromic without a common fixed point with Ba;

(iv) 0™¢ is loxodromic;
or that, after necessary relabeling and rearrangement to be spelled out below, anal-
ogous properties hold. This claim will be established in the four steps of §4.4.

Once this is accomplished, we will replace the handle H = (a,b) by the handle
(d"a, ba*), and cut R along d"x, represented by a freely homotopic simple loop. This
operation will also serve as the basis of an induction procedure.
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Note that it may well be that n = id, or £ = id, or both. In the former case,
property (ii) is satisfied with (i), and in the second, property (iv) is satisfied with

(ii).

4.4. Step (i). By §4 and Lemma 2.1.1(i), there exists K > 0 such that Sa* is
loxodromic for all |k| > K.

Step (ii). If 3 does not interchange the fixed points of «, then by Lemma 2.1.1
we may take K in step (i) so large that § = nSa¥ is loxodromic for all £ > K or for
all £ < —K.

If, however, 3 does interchange the fixed points of o but £ does not, interchange
7 and & and return to the paragraph above.

Finally, if both ng = J and &3 = .J; interchange the fixed points of «, then
né~' = JJ; fixes them (and is either loxodromic or the identity). In this case replace
(x,y) by (z,yz~"), and n by 7€', and revert to the original notation. For this case,
then, nBa* is loxodromic for all |k| > K, for some K.

Step (iii). First note that for no k& € Z and no m # 0 can both §"« and §" ™«
have fixed points in common with Sa*. For the relations

8" a(p) = p = B (p),
8" Ma(p) = p = 0"6"a(p)

imply that «(p) is a fixed point of §, then that p is a fixed point of «, and finally
that p is a fixed point of 3. The last consequence is impossible.

For any sequence k — +o0, according to Lemma 2.1.2 the fixed points of § = ngak
converge to 1n0(q) and p, where ¢ and p denote the attractive and repulsive fixed
points of a, respectively. Thus, if a sends one fixed point of § to the other for this
sequence, then n(3(q) = p. Similarly, for a sequence k& — —oo, the fixed points of
d converge to nF(p) and q. If, for this sequence, a sends one fixed point of § to
the other, then n@(p) = ¢. By our construction, nf does not interchange the fixed
points of a, so a cannot interchange the fixed points of § = nBa* for both a sequence
k — 400 and a sequence k — —oc.

Now if n3(p) = ¢, so that § is loxodromic for all £ > K (step (ii)), then for
sufficiently large K, o cannot send one fixed point of § = nBa* to the other. Likewise,
if n3(q) = p so that ¢ is loxodromic for £ < — K, again « cannot send one fixed point
of § to the other, for sufficiently large K. If n3 sends neither fixed point of a to the
other, « sends neither fixed point of ¢ to the other, for all large |k/|.

We conclude that there exists K > 0 such that § = nBa* is loxodromic for any
k > K or any k < —K, or both. Furthermore, o does not send one fixed point of §
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to the other. Given k in the admissible range, there exists N = N(k) > 0 such that
d"a, for all |n| > N, is loxodromic and does not have a fixed point in common with
Bak.

Step (iv). Consider € and § = nBak for fixed k > K or k < — K, according to (iii).

If £ does not interchange the fixed points of §, we can take N so large that either
6" or 8¢ is loxodromic for n > N = N (k).

Suppose instead that ¢ interchanges the fixed points of § but not of nBa**! = §'.
Then replace § by ¢'.

However, not both & and n¢ (nor equivalently, & and 7 '€) can interchange the
fixed points of both nBa* and nBak*!. For, if so, we apply Lemma 2.2.5 to .J = &,
Ji =mn (or ') and to both nBak and nBak*'. That implies that the fixed points of
both nBa* and nBa’r*! coincide with fixed points p, ¢ of . For this to occur, « fixes
both p and ¢, and then 7 must do so as well. But since 7 itself fixes them, 3 must
also fix them. This is impossible.

1

We may assume one of yx or y~'x is a simple loop. Depending on which, replace

(x,y) by (yz,y) or (y 'z,y). Correspondingly, replace & by n& or n~'€. This returns

us to one of the previous cases for § = nBa* or nBak+t,

4.5. Cutting the surface. The loop d"x is freely homotopic to a simple, nondivid-
ing loop d', disjoint from d"a and ba*. Cutting R along d' results in a new surface
RM with a handle H = (d™a,ba*) and two boundary components freely homotopic
to d" and yz'd "y~! (or y tz~'d "y). The corresponding transformations are §"&
and n& 1"y~ (or €716 "n), which have the same trace. The common trace,
however, can be made as large as desired (Lemma 2.1.1).

If the genus of R' exceeds one, repeat the process using the new H, and so on.
At the end, we will have a surface RY~" with a handle H = (a,b) (using again the
original notation) and 2(¢g — 1) boundary components.

Orient all the boundary components so that R9 ' lies to their right. Let z, vy, ...
denote simple loops from the basepoint O parallel to them but otherwise disjoint
from each other and from a and b. Our construction allows us to assume that the
6-images 0(x), 6(y), ... are all loxodromic. Pairwise they have the same trace, but
the traces of different pairs can be assumed to be different.

5. THE PANTS DECOMPOSITION

5.1.  We carry on from the situation left in §4.5. To start, adjust the special handle
H = {(a,b) as in §4 so that § = 6(b) does not send one fixed point of &« = #(a) to
the other. Orient b so that it crosses a from the right side of a to the left; then the
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F1GurE 6. Connection of boundary to handle H

boundary of R9~! lies to the left of ¢ = b~ 'a'ba and we have oriented the boundary
so that c lies to its right.

Choose simple loops z,y € 7 (R"';0), each parallel to a boundary component
and disjoint from each other and a, b, except at O = aNb. The orientations are such
that yba* and xba® (but not yb 'a* or xb 'a* for k # 1) are homotopic to simple
loops for all k£ (see Figure 6). From §4.5 we know that £ = 6(z) and n = 0(y) are
loxodromic.

5.2.  We begin by sorting out the following possibilities.

(1) If exactly one of nf and £0 interchanges the fixed points of «, assume that
the one that does is £3. In this case, we claim that, for all sufficiently large |k/|, the
composition § = nBa* does not fix either fixed point p, ¢ of €.

For if nBa* fixes p for two values of k, then p itself must be fixed by a, and then
by nf as well as by £&. On the other hand, since £ interchanges the fixed points p
and p’ of o, we get £4(p') = p = £(p), so B(p') = p. This contradiction to the known
properties of the handle H establishes the claim.

(2) If neither n@ nor G interchanges the fixed points of a, then by interchanging
¢ and 71 and relabeling if necessary, we may assume that for all sufficiently large |k|,
the composition § = nBa* does not fix both fixed points p, ¢ of €.

For suppose nBat fixes p, ¢ for two values of k, and, correspondingly, 8o fixes
the two fixed points of 7 for two other values of k. The first supposition implies that
p and ¢ are fixed by «, then by nf3, and of course by £&. The second implies that p
and ¢ are fixed in addition by {3 and 7. But nf(p) = p = n(p) implies that f itself
fixes p, a contradiction.
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It is important to note that if, in addition, 13 sends one fixed point of «a to the
other, then we may assume that § = nBa*, for |k| large, does not fix even one fixed
point of £. This is another application of the reasoning of (1).

(3) We defer consideration until §5.5 of the remaining case that both n4 and £
interchange the fixed points of a.

5.3. In this section and the next we will work with cases (1) and (2) of §5.2. That is,
nf does not interchange the fixed points of «, and, for all large |k|, the composition
§ = nBa® does not fix both fixed points of £, and if 3 sends one fixed point of « to
the other, n3a* does not fix either fixed point of £ . Consider d = yba®, for some k,
and its f-image 6. The effect of a Dehn twist of order n about d is

(o, Ba¥) = (0", Ba),
(&, m) = (67 "E0" ).
We will find k& and n such that:

(i) Ba* is loxodromic;
(ii) 6 = nBak is loxodromic;
(iii) 6"« is loxodromic and has no common fixed point with Sa¥;
(iv)
(v) 6 "&6™ and 1 generate a classical Schottky group.

(vi) | trd—"€d™n| is unbounded in |n|.

~"€0™n is loxodromic and has no common fixed point with 7;

o
o

Once this is accomplished, we will replace the handle {a,b) with (d"a,ba*), then
remove from R9~! the pants determined by

(d"zd",y,d "zd"y),

and repeat the process.

5.4. Step (i). The properties of the special handle H (§5.1) and Lemma 2.1.1(i)
imply that there is K > 0 such that 3a* is loxodromic for all |k| > K.

Step (ii). Since nf does not interchange the fixed points of «, we can choose K
above so large that nBa* is loxodromic for k > K, k < —K, or both. In addition, for
the admissible range of k, the composition nB8a* does not fix both fixed points of &.

Step (iii). This is identical with step (iii) of §4.3. There exists K > 0 such that
§ = nBa® is loxodromic for any & > K, or any k& < —K, or both. Given k in the
admissible range, there exists N = N(k) > 0 such that, for all |n| > N, the element
8" is loxodromic and has no fixed point in common with Ba*.
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Step (iv). Note that we may assume that K is sufficiently large so that § = nBa*
has no fixed point in common with n for [k| > K. For, if nBa* fixes a fixed point p
of n for two values of k, then « itself must fix p, and then 8 must as well.

Case (1): 1 sends one fixed point of « to the other. In this case J has no fixed
point in common with & (§5.3). Thus, by Lemma 2.1.3, the composition § "£0™n
is loxodromic for all large |n|, while we must have |n| > N to ensure that §"«
is loxodromic.

Case (2): (3 does not send one fixed point of a to the other. Then 6"« is
loxodromic for all |[n| > N, while 6 "£0™n is loxodromic either for n > N or for
n < —N, for sufficiently large N.

Finally, 6 "£6™n and n have a fixed point in common only if § "£6™ and n do. The
fixed points of 6~ "£6™ are §"(p) and § " (g), where p and ¢ are the fixed points of &.
If neither point is fixed by §, then, for sufficiently large |n|, neither 6" (p) nor 6 "(q)
will be fixed by 7. On the other hand, if p, say, is fixed by d, the same conclusion
holds because d and 1 do not share a fixed point.

Step (v). Since § and 1 have no fixed point in common, it follows from Lemma 2.1.3
and Corollary 2.1.5 that 67 "£0™ and 7 generate a classical Schottky group for suffi-
ciently large N. Also the trace of 07"£0"n can be made arbitrarily large, for suffi-
ciently large N.

5.5. Now we turn to the case, left aside in §5.2, where both n3 = J and £6 = J;
interchange the fixed points of a. Then n = JJ,&, where J.J; is loxodromic or the
identity, and fixes the fixed points of «.

At the start we arranged matters so that yba” is homotopic to a simple loop for all
k. This is equally true of (ba*) 'y(ba*), and of z(ba*) 'y (ba*), which is homotopic to
a simple loop bounding a triply connected region (pants) with boundary components
corresponding to z and y.

We claim that, in the present case, there exists K > 0 such that the corresponding
transformation

5 = £(Bak) " (Ba*) = €a~hB ok

is loxodromic for all |k| > K.

For ¢ has no fixed point in common with «: Indeed, £(p) = p = a(p) would imply
that J167"'(p) = p, in other words that 3(q) = p, where ¢ is the other fixed point of
«. Similarly, 3-'.J has no fixed point in common with «. Hence the assertion follows
from Lemma 2.1.3.
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We can take K so large that, in addition, £ does not have a fixed point p in common
with
(Ba®) " n(Ba”) = o~ 57 ok
for |k| > K. For, since neither £ nor $7'.J has a fixed point in common with «, we
have on the complement of ¢,, ¢*,
lim a *g'Jaf =¢, and lim o *g lJo* = ¢,
k—+o00 k——o0
where ¢, # p and ¢* # p denote the repulsive and attractive fixed points of a.

For sufficiently large K as dictated by Corollary 2.1.5, £ and (Ba*) n(Ba*) gen-
erate a classical Schottky group for all |k| > K.

As in §5.4(v), the trace magnitude of the transformation (8a*)~n(Ba*)¢ corre-
sponding to the new boundary component of the pants can be made arbitrarily large,
in particular in comparison with that of £ and 7, which correspond to the boundary
components on which the new pants was built.

Replace the handle {(a,ba*) by its conjugate {(ba*)'a(ba*), ba*). The new pants
is determined by (x, (ba*) 'y (bak)).

5.6. The pants decomposition. In §§5.3-5.4 we showed that, given any two bound-
ary components of R9~!, we could construct a pants with them as boundary compo-
nents and such that the transformation corresponding to the third boundary compo-
nent has trace of arbitrarily large magnitude. The surface remaining after this pants
is removed is again of genus one, but with one fewer boundary components. Again
choosing any two boundary components, we can construct another pants, and so on
until all that remains is a surface of genus one with one boundary component: a
handle.

For later requirements, we will specify the initial steps of the decomposition as
follows: Group the 2(g — 1) boundary components of R9~! into pairs, where the two
components of each pair arise from cutting a handle of R. Construct first (¢ — 1)
pants, one corresponding to each pair, which then comprise two of its boundary
components. After this is done, finish the construction with any possible succession
of pairings.

Each pair of boundaries of RY~! corresponds to transformations of the same trace,
but we may assume from §4.5 that different pairs correspond to transformations of dif-
ferent traces. When each new boundary component forming a new pants is inserted,
we can ensure by §5.4(v) and §5.5 that the trace magnitude of its corresponding
transformation exceeds that corresponding to all previously inserted boundaries.

The combinatorics of the decomposition and a corresponding reorganization of the
generating set for m1(R; O) will be discussed in §5.8 below.
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5.7. The final cut. We are left with 29 — 3 pants and a handle H. Yet more
adjustment to H is necessary before gaining the assurance that one final cut will
produce a pants decomposition { R;} called forin §1.7. Consider the handle H = (a, b)
remaining at the end of the process. A simple loop ¢ ~ b 'a 'ba bounds H on its
right side (starting in §5.1 we specifically assumed that b crosses a from the right side
of a to the left). On the left side of ¢ is a pants with boundary components oriented
so that the pants is to their left. Also, ¢ ' ~ yz, where x and y are simple loops
parallel to the boundary components, and are disjoint from ¢, b and a except for a
shared basepoint.

Set a = 6(a), f = 6(b), o = 0(c), £ = 0(x), n = O(y). We know that (£, n) is a
Schottky group and that o and 3 are loxodromic without a common fixed point. As
in §4.2, we can assume that § does not send one fixed point of « to the other.

By construction (see §5.4(iv)- (v) and §5.5), the trace magnitude of n¢ exceeds
that of n and &. In particular, neither £ nor 1 can be conjugate within PSL(2,C) to
néE =a 'flaf =01

We may assume that £ = J does not interchange the fixed points of o, and is not

m m

the identity. Otherwise, replace £ and n by their conjugates c™&o~™ and o™no ™™,
where m is chosen so that ¢™&o~™3 = J,, neither interchanges the fixed points of
« nor is the identity. To see that such an m exists, consider 0™&o ™! = J,,J,
which either has the same fixed points as «, or has order two. The latter case is
impossible because (£, n) is a Schottky group. Since & and o = n¢ have no fixed points
in common, the former is impossible as well, except perhaps for a finite number of
values of m. Consequently, replace (£, n) by the conjugate group (¢™&o~™, c™no~"™),

—m

and correspondingly (x,y) by the conjugate pants (¢™xc™™, ¢™yc™™). Return again
to the original notation.

Now we are ready to cut the handle H. But first, apply a Dehn twist of order &
about a. This changes H to {(a,ba").

Next, apply a Dehn twist of order n about a simple loop d ~ zba*. This results in

the changes

{a, ba*) — (d"a, ba"),
(x,y) — (x, d "yd").

Finally, cut the resulting handle along a simple loop freely homotopic to ba*. This
results in a pants whose fundamental group is

(bak, (d"a) " (ba*) ' (d"a)).



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 35

We claim that £ and n can be chosen so that the groups representing the adjacent
pants are now both Schottky groups

(7, (0"a) 'y (")) and (£, "no™),

where v = fa¥ and § = &7.

(i) There exists K > 0 such that § = £Ba* is loxodromic either for k > K or for
k < —K; for definiteness assume the former is true. Indeed we have already arranged
matters so that £3 does not interchange the fixed points of «.

(ii) For sufficiently large K and k£ > K the composition 6 = £y has no fixed
points in common with & or v, and aya~' has no fixed points in common with
afBa 137 £ dd.

First note that neither Sa* nor aB3a*~! can have the same fixed points for two
values of k. For example, Sa*(p) = p = Ba™(p) for m # k implies that a(p) = p,
and then (3(p) = p, which is impossible. Consequently, for sufficiently large K and
k > K, the element v = a/3* does not share a fixed point with £ or 1, nor aya™" with
aBa B 1EL, provided this latter is not the identity. It follows that neither £y and
v, nor &y and &, can share fixed points either. Finally, aBa 871671 # id because
¢ is not conjugate to né = o' 'af (because they have unequal traces, as we have
seen earlier in §5.7).

(iii) We show that (£, "nd™) is a Schottky group, either for all n > N or all
n < —N, for some N > 0; for definiteness we will assume the former.

For if § has both its fixed points in common with 7, then § and 7 commute and
the group remains (£, ). If 0 has one fixed point in common with 7, say its repulsive
fixed point p, the fixed points of 0 "nd"™ converge to p as n — 4oo. Since p is not
also a fixed point of £, the group is Schottky for large n. If § has no fixed points in
common with 7, it is Schottky for all large |n|.

(iv) We show that (v, (6"a) 'y !1(6"a)) is a Schottky group for all |n| > N, for
sufficiently large N in (iii) and fixed k¥ > K from (i) and (ii).

For the fixed points of (6"a) 1y 1(6"a) are the images under a'§~" of the fixed
points of v. As n — 400 or n — —o00, these images converge to ofl(p), where p
is the repulsive or attractive fixed point of d, since § and v have no fixed points in
common. If a~'(p) is not a fixed point of , Corollary 2.1.5 implies that the group is
Schottky for large |n|.

Suppose to the contrary that ya~'(p) = a'(p), while £&y(p) = p. Then aya~'(p) =
p, while p = aya~'v ¢ (p) = afa ' 37'¢(p). This does not occur, by (ii).

Remark 5.7.1. Had we not been so concerned about the final cut forming two of
the boundary components of a single pants corresponding to a Schottky group, we
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would have proceeded more simply, as follows. Cut H = (a, b) along a resulting in
a pants (a,b 'a~1'b). Pair boundary components of this with those of neighboring
pants {x,y), to get two new pants (a,y) and (b~'a"'b,z). Apply to these the Dehn
twist of order m about ¢ ~ b=ta"!ba. For all large |m/, the corresponding groups are
easily seen to be Schottky.

5.8. The combinatorics of pants decomposition. We will systematically orga-
nize a generating set for the fundamental group of R in terms of the pants decompo-
sition {P;}.

Start by fixing points O;, O}, O! on each component of dF;, and disjoint simple
auxiliary arcs from O; to O; and Oj. In terms of these auxiliary arcs, there is a
unique path in P; between any two boundary components. Also, a component of 0P;
with an assigned orientation uniquely determines a loop from O;, which we will take
as the basepoint of 71 (P;; O;). If a; and b; are two boundary components of P;, an
orientation of a; uniquely determines an orientation of b; such that b;a; is homotopic
to a simple loop around the third (here making use of the auxiliary arcs).

If the components a of OF; and a' of OF; correspond to the same simple loop on
R, choose the points O € a and O’ € a’ to correspond to the same point on R.

Let T denote the trivalent graph of genus ¢ corresponding to the pants decom-
position {P;}: each vertex of T corresponds to one of the pants P;, and each edge
corresponds to a pair (a, a’) of boundary components, one on each pants correspond-
ing to an endpoint. Two boundary components are paired (a,a’) if and only if they
correspond to the same simple loop on R.

T has 2g — 2 vertices and 3¢9 — 3 edges. Exactly g of the vertices have one-edge
loops attached to them; this is a consequence of the particular combinatorics of the
decomposition. We call these vertices extreme.

Remove from T those g one-edge loops; the result Ty is a maximal (connected)
tree. The extreme vertices of T are those that are extreme in T, in the sense that
only one edge of Ty is attached to the vertex.

Designate one of these extreme vertices as the root vy of Ty: for example, the
vertex corresponding to the last handle we cut. There is a unique simple path in T
from any vertex to the root.

Denote the pants corresponding to the vertex v by P(v). Consider the vertices
v" # v whose shortest path to vy contains v. Mark the boundary components of P(v)
where these shortest paths first cross; we will use these shortest paths below. If v is
not extreme, two of the three boundary components of P(v) will be marked. If v is
extreme but v # vg, none of the boundary components will be marked. Exactly one
of the boundary components of P(vy) will be marked.
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Making use of the auxiliary arcs in the {P;}, the simple edge-arc in Ty from the
vertex v; = F; to v; = P; uniquely determines a simple arc in R from O; to O;.
Likewise, a simple edge-loop in T uniquely determines a simple loop in R.

Let Py be the pants corresponding to the root vy, and O = Oy the designated
basepoint for its fundamental group. Take also O as the basepoint of the fundamental
group of R. As we have seen, Ty uniquely determines a simple arc ¢; in R from O
to each O;. Thus, a simple loop a; € m(F;; O;) can be uniquely associated with
¢; 'aic; € T (R; O). Suppose e; is one of the g edge-loops of T, with both end points
on the same vertex v;. Likewise with the help of the auxiliary arcs in P; = P(v;), the
edge e;, with an assigned orientation, uniquely determines a loop ¢, ‘e;c; € m(R; O).

The totality of elements ¢; 'a;c; from oriented boundary components of pants { P}
plus ¢ elements ¢, 'e;c; from edges e ¢ T, generate 7, (R; O).
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B. Pants Configurations from Schottky Groups
6. JOINING OVERLAPPING PLANE REGIONS

6.1. In this section we will describe a method of using covering surfaces to separate
two overlapping plane regions which are acted on by a common Maobius transforma-
tion. It is no restriction to describe the process with the loxodromic transformation
a1z — Az, with |A] > 1 and fixed points 0 and cc. Let T or T'(a) denote the
quotient torus

T'=(C\{0})/{),

and 7 the projection from C\ {0}. Denote the simple compressing loop 7({z : |z| =
1}) in T by e. A noncontractible simple loop on T lifts to a closed curve in C\ {0}
if and only if it is freely homotopic (or homologous) to +c.

If a simple loop a is not of this type, a* = 7 !(a) is a simple a-invariant arc. If
a is given the orientation dictated by «, the arc a* is directed toward the attractive
fixed point.

Conversely, if a] is a simple, a-invariant arc in C directed toward the attractive
fixed point, a; = 7(a}) is a simple loop freely homotopic (or homologous) to the
result of applying to a the Dehn twist about ¢ of some order n: namely, a; ~ a4+ nc.

6.2. Let Sy denote the N-sheeted cover of the sphere S; = S2% branched over
the fixed points 0 and oo of a. Topologically, Sy is again a sphere. The map
z — 2N = w sends SN back to S;; it is conformal except at 0 and co. The cyclic
group of cover transformations is conjugated to the group of rotations (w — e?™/Nw).

The transformation « lifts to an automorphism a* of Sy, determined up to compo-
sition with cover transformations. It is conjugated to the loxodromic transformation
w +— A*Nw, which in turn is determined only up to composition with cover transfor-
mations.

Consider the torus Ty = T («), defined by

Ty = (Sw \ {0, 00})/(a").

It is the N-sheeted torus over T', uniquely determined by the properties that a lifts
to exactly N mutually disjoint simple loops and ¢V lifts to one simple loop.

For the following lemma a and ¢ are simple loops on 71" as before: ¢ is the projection
of the unit circle and a is the projection of a simple, a-invariant arc a* C C, positively
oriented by «. If the simple arc a; crosses a transversely at every point of intersection,
the geometric intersection number is defined as the number of points of intersection.
We assume this number is finite.
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Lemma 6.2.1. Suppose ay is freely homotopic and transverse to a, with geometric
intersection number n. Set N = 2n + 1. Then there is a lift a' of a and a lift a| of
ay that are disjoint, freely homotopic simple loops in Tx. Correspondingly, there is a
lift a* of a and a3 of ay to Sy that are disjoint, a*-invariant simple arcs.

Remark 6.2.2. A more precise measure of intersection would be to set
n = max |m(7)|,

where 7 C ay is a segment whose endpoints don’t lie on a, m(7) is the algebraic
intersection number of 7 and a, and the maximum is taken over all such connected
segments 7 of a;.

Proof. Fix a lift o’ of a to Ty or a lift a* to Sy. We can label the N = 2n + 1 sheets
on Ty or on Sy over T\ {a} in cyclic order, starting to the left of ¢’ or of a*. A
point in the (n 4 1)-st sheet can be connected to one on @' or on a* only by crossing
n other lifts of a. Fix p € a; \ a, and the point p’ or p* lying over p in the (n + 1)-st
sheet. The endpoint of the arc @, lying one-to-one over a; \ {p} and starting at p' or
p* also lies in the (n 4+ 1)-st sheet, because a; is freely homotopic to a; in Ty, the arc
a1 closes up to form a simple loop. The conclusion is a direct consequence. O

Note that without the condition that a;, positively oriented by «, be freely homo-
topic to a, the conclusion of the lemma is false. Instead, the following is true.

Corollary 6.2.3. Suppose, more generally, that the simple loop ay C T, transverse
to a, is the projection of an a-invariant arc in C\{0}. There exists N = N(a,a;) > 1
and m € Z such that ™a, and a have disjoint lifts on T and Sy, where 6 denotes
the Dehn tunst about c.

6.3.

Lemma 6.3.1. Suppose a and a; are a-invariant simple arcs in C\ {0}, the lifts
of freely homotopic transverse loops in T(«) with geometric intersection number n.
Suppose a is contained in the boundary of a simply connected region P C C\ {0}
lying to its left, while aq is contained in the boundary of a simply connected region
Py lying to its right. Set N =2n+4. Then on Sy \ {0, 00} there are disjoint lifts a*
of a and ai of a; with the property that the corresponding lifts P* of P and P} of P,
that contain a* and ai in their respective boundaries are disjoint as well.

Proof. Fix a lift «* of a in Sy \ {0,00} and let E be the generator of the order-N
cyclic group of cover transformations with the property that ¢* and Fa* bound to
the left of a* a lift o* of C\ {a}, which we will refer to as the first sheet of the
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FIGURE 7. Separation of regions when N =4

covering. In cyclic order to the left of a* the lifts of a are Ea*,..., EN"'a*, and the
corresponding sheets are o*, Fo*, ..., EN "lo*.

Denote by P* the lift of P adjacent to a* on its left side. Necessarily P* lies entirely
in the first sheet o*.

If a, is disjoint from a, then N = 4 (although N = 3 will do). Let a} be the lift
of a; lying in the third sheet E?c*, and P} the lift of P, adjacent to a} on its right
side. P; lies in the sector bounded by a} and E~'a}, which lies in the second sheet
Ec*. Hence Py is disjoint from P* (see Figure 7).

More generally, choose p € a; Na and let p* denote the point over p on E""2q*.
Let a} denote the lift of a} through p*; then a} does not intersect E?a* or E~2a*.
Consequently, E~'a} does not intersect Fa*. Let P} be the lift of P, adjacent to a}
on its right side; P; lies in the sector between a} and EF~'a*. Therefore Py is disjoint
from P*. U

Note that we have not optimized the choice of N, which can be done in particular
cases.
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Corollary 6.3.2. In the hypotheses of Lemma 6.3.1, assume that not only a and a,
but also P and Py are a-invariant in C\ {0}. There is a lift o of o to Sy that leaves
P* and Py invariant.

Proof. Let o be the lift of o that maps the first sheet ¢* onto itself, and hence P*
onto itself. Necessarily a* maps every sheet E¥o* onto itself, and hence P} onto itself
as well. O

6.4. Joining overlapping regions. In this section we will build a prototype for the
procedure that forms the basis of §8. It is typical of tricks used in classical function
theory and is a generalization of a technique applied to Mobius groups called grafting
[Maskit 1969], [Hejhal 1975a], [Goldman 1987].

Consider the hypotheses of Lemma 6.3.1: @ and a; are a-invariant simple arcs in
C \ {0} directed toward oo, and one does not spiral around the other (an informal
way of saying that they arise from freely homotopic loops in T'). The region P lies
to the left of @, and P, to the right of a;. Like a and a; themselves, P and P, can
badly overlap each other.

However, on Sy, P* and Py are disjoint. Let QQ* be the region on Sy that lies to
the right of a* and to the left of a}: then PfUajUQ* Ua* U P* is a simply connected
region R* in Sy \ {0,00}. According to Corollary 6.3.2, if P and P, are a-invariant,
o is a conformal automorphism of R*.

Let g : H? — R* be a Riemann map, where the hyperbolic plane H? is realized
as the unit disk. Then g 'a*g is a hyperbolic Mobius transformation o in H?. Let
7 Sy — S?denote the projection. Then f = mog is a locally univalent meromorphic
function on H? with the property that

fag(z) = af(2)
for all z € H?. That is, f determines a complex projective structure on H? that
induces the isomorphism between cyclic groups (o) — ().
We have joined together the annular regions P/(a) = P*/(a*) and P/{a) =
Py /{a*) by means of the annulus Q*/(a*), which attaches to the boundary compo-
nents a/(a) and a; /().

7. PANTS WITHIN RANK-TWO SCHOTTKY GROUPS

7.1. Suppose (aq, ay) is a two-generator classical Schottky group acting on its regular
set  C S% The quotient surface R = Q/(a;, as) has genus two (and bounds the
handlebody R, = H? /{«y, as) if the group is extended to hyperbolic three-space).
There are round circles b and b3, mutually disjoint in €2, with the following prop-
erty: The two pairs of circles (b, ayb}) and (b3, asbl) are mutually disjoint with
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mutually disjoint interiors in S?, and a; maps the exterior of b} onto the interior of
a;bf. The circles b and b; are lifts of mutually disjoint, nondividing simple loops b;
and by in R. These bound disks in R, and for that reason are called compressing
loops.

Let a; and ay be simple, nondividing loops in R such that a; N (ay U by) = () and
asN(a;Uby) = 0, while a; crosses b; transversely at a single point. Then a; and a, have
lifts a] and a3 to 2 uniquely determined by the condition that they are «;-invariant
and as-invariant simple arcs, respectively. Let d; denote the Dehn twist about b;.
Then, for example, 0]a; can be used in place of a;: it, too, can be taken to be a
simple loop disjoint from as and by, meeting and there crossing b, at a single point.
It too has a uniquely determined ay-invariant lift (6™a;)* in Q. (More generally, the
simple loop @} has an a;-invariant lift if and only if o} is freely homotopic to a; within
the handlebody R, .)

7.2. Finding pants. Assign a; and ay their positive orientation, that is, the one
that directs a} and aj, their a;- and as-invariant lifts, toward the attractive fixed
points of a; and ap. We can join a; and ay to a common basepoint O € R so that the
resulting simple loops @} and a;, have the property that aja) is homotopic to a simple
loop aj; this loop aj is then freely homotopic to a simple loop as that, together with
a; and ay, divides R into two pants P and P’'; also, a3 has an asa;-invariant lift a}
and an «jag-invariant lift aya} (Figure 8).

Note that the free homotopy class of a3 on R is not uniquely determined by that
of a; and ay: we can change az by applying Dehn twists about a simple dividing
loop homotopic to b, 'a} b} a} without affecting a; or a;. We can also change as by
applying Dehn twists about b; or by, but that will change a; or as as well. In any
case there is an ayaq-invariant lift of as.

Let P denote the pants lying to the right of a; and as, and to the left of az. Of
course we may assume that by N P and by, N P are simple arcs. There is a lift P of
P to Q) that is an “octagon” bounded by connected segments of aj, a3, a3, a;aj and
by, b5 (see Figure 8, top). The orbit of P (adding its boundary arcs on b and b3)
under (aq, @) is a simply connected region P* that is the universal cover of P.

7.3. Isomorphisms are geometric. We summarize the analysis of §7.2 as follows.

Lemma 7.3.1. Let Q) be a pants with oriented boundary components (dy,ds,ds),
and choose generators dy,dy, dy, dy ~ dyd|, for m(Q;0O) such that d. is parallel
to d;,O € Q. Suppose 0 is the isomorphism of m(Q;O) onto the Schottky group
(an, ) determined by the correspondence 0(dy) = aq, 6(dy) = ay. Then there is a
pants P in R = Q/(ay, ag) bounded by simple loops (ay, as, ag), positively oriented by
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FI1GURE 8. Pants determined by Schottky group

a1, g, ey, and a homeomorphism h . Q — P taking d; (with its orientation) to a;,
i =1,2,3, which induces 6: there is a point O* € P* C Q over h(O) € P such that
the lift of h(d}) from O* terminates at o;(O*), fori=1,2,3.

Proof. In §7.2 we observed the following convention for finding pants P and P’ in a
Schottky group with designated generators «; and «s. The three boundary compo-
nents have a;-, as-, and asa-invariant lifts, positively oriented by aq, as and ajas,
respectively. If a; and ay are represented by generators @} and aj in m(P;O) or
m1(P'; O'), then aya) is homotopic to a simple loop parallel to az. The two pants P
and P' are distinguished in that one lies to the right of a; and as, and to the left of
asz, while the opposite holds for the other.

The orientations of the d; can temporarily be reversed as necessary so that @ lies
to the right of d;, dy and left of d3. Make the corresponding temporary replacements
of a; by oz;l. Now find a pants P meeting the requirements, and then return to the
original designations. 0
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7.4. Two groups with a common generator: Compatibility. Consider two
Schottky groups (ai, @) and (a9, a3) with a common generator as. Denote the
regular sets in S? by Q and ', and set R = Q/{ay, ay) and R’ = Q'/{ay, a3). Choose
simple loops (a1, b1, az,by) in R and (ajy, by, az, b3) in R' as in §7.1; here aj and q;
are taken with their positive orientations from «; and ;. Find, as in §7.2, a pants
P C R lying, say, to the right of ay, and then a pants P’ C R' lying to the left of aj.

Definition 7.4.1. As above, suppose as and ai, are simple loops on R and R', with
ag-invariant lifts e and af to € and Q') respectively. The loops ay and ai are
compatible (with respect to ay) if the projections of a} and af (that is, the embeddings
of ay and a}) in the torus T'(ay), are freely homotopic there.

Recall that T'(az) = (S*\ {p, ¢})/{a2), where p and ¢ are the fixed points of «s.
Let 9o denote the Dehn twist about b}, on R’. In general a), will not be compatible
with a,. However,

Lemma 7.4.2. The loop a) on R' can be made compatible with ay on R: ay is
compatible with 6*aly, for s unique value of m.

Proof. Let §y denote the Dehn twist about b}, on R'. Note that 0}, embeds as a simple
loop on T'(aw), so that J; can be taken to act on T'(as) as well as on R'. For exactly
one value of m, the loop 65*al, will be compatible with as. O
Remark 7.4.3. We emphasize that the process of making a; and ai, compatible
affects only one of the surfaces: say R'. And, on R, it affects only a), not aj.
However, the third boundary component ¢’ of the pants P’ is affected. Indeed, there
is a lift ¢ to Q' invariant under aza,. The simple loop b}, which crosses ¢ once
also embeds in T'(asas), and the twist do equally can be taken to act on the torus
T(aszas). Thus, under the action of 65" on R', the loop ¢ changes to 65'c’; the pants
05'P' is bounded by 05'al,, 3¢, and aj.

7.5. Compatibility conditions on one pants. Consider a Schottky group («, )
and a pants P in Q/(a, (), as in Figure 9.

Denote the boundary components of P by a, b, ¢, with the orientation indicated.
With respect to these curves, we can find compressing loops = and y (which lift to
closed loops in 2), with the orientations and intersections indicated in the figure.

A Dehn twist of order p about x composed with a twist of order ¢ about y has the
following effect on a, b, c¢:

ar 0", b 6%, c— dPc.
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FIGURE 9. Pants and compressing loops

Here we use the notation 6%t to denote the effect on the simple oriented loop ¢ of
a twist of order k£ about an oriented simple compressing loop crossing t once, from
its right side to its left; geometrically the result is realized and accounted for on the
torus T'(7) that is associated with t.

Suppose b and ¢ are to be paired with boundary components ' and ¢’ on other
pants, where 6™b is compatible with & and ¢"c¢ is compatible with ¢/. This can
be fulfilled simultaneously in P by setting p = n and ¢ = —m. The effect on a
is to replace it by 0" ™a. That is, compatibility for two boundary components of
P can always be achieved, but then the state of the third boundary component is
determined.

Suppose instead that ¢ is to be paired with ¢’ on another pants, with compatibility
requirement ¢ = §"¢, while b is to be paired with a with compatibility requirement
a = 0™b. In terms of §7.4, this means that there is a transformation v with a =

By
is an a-invariant lift ¢* and a [-invariant lift b*, and the two can be compared in

, where a and b have been determined by « and [, respectively. That is, there

terms of the a-invariant arcs a* and ~vb*.
Therefore p = n, while ¢ is determined by the condition

—g=n+q+m, or q=—z(m+n).

A solution g € Z exists if and only if m + n is even, that is, if m and n have the same
parity.

In other words, the algebraic sum [(p+¢) — g+ p|] = 2p of the Dehn twists that can
be applied effectively to the boundary components of a pants is even. Consequently,
if the requirements for compatibility in a pants demand that the algebraic sum be
odd, those requirements cannot be met.

Remark 7.5.1. There is also a compressing loop u in /(«, #) that divides, separat-
ing a and b while crossing ¢ twice. A Dehn twist about u leaves a and b unchanged,
but changes the homotopy type of ¢ and P on the surface Q/{a, 3). Yet it leaves
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unchanged the free homotopy type of the projection ¢, of ¢ to its associated torus
T(fa).

For on T'(fBa), there are two representatives of u, u,; and u,;. They are disjoint,
parallel and oriented opposite one another: one crosses ¢, from right to left, the other
from left to right. A Dehn twist about u is reflected by twists on T'(fa) about u.,
and u,,. But, because of their opposite orientations, these twists cancel, leaving the
free homotopy class of ¢, unchanged.

In short, twists about u have no effect on compatibility questions.

7.6. A compatibility condition on identical pants. For later application in §8,
consider the following augmentation to the second situation of §7.5, where o = y3y~".
In the conjugate group v(a, 3)y "', consider the pants P; that corresponds precisely
to P, distinguishing corresponding elements by the subscript. Suppose, as before,
that ¢ and ¢; are to be paired with ¢’ and ¢} on other pants P’ P{, but now with
the same compatibility requirements: ¢ = 6"c¢ and ¢, = d"¢;. Instead of pairing b
with a as before, pair b; with a and b with a;. Because the two groups are virtually
identical, the compatibility requirements are a = §™b; and a; = 6™b.

The result of Dehn twists of order p and ¢ about x and y, and of order p; and ¢;
about x; and v, is as calculated in §7.5. We must have p = p; = n. That leaves, for
g and ¢;, the equation

—qr=n+q+m, or q+q =—(m+n).

In this case there are always solutions: for example, ¢ = —m and ¢; = —n.

8. BUILDING THE PANTS CONFIGURATION

8.1. What remains to be donel” In §5.7 the combinatorics of the pants decomposition
{P;} of R found in Part A was described as a trivalent graph T arising from a tree
Ty C T by the addition of g edges, one attached to each extreme vertex. The universal
cover of T is reflected in the combinatorics of the lifts {Q;} in the universal cover H?
of R, that is, in how the lifts fit together.

Corresponding to each lift Q7 is the Schottky group 6(Stab @), which in turn
stabilizes the lift P’ of a pants P; in its quotient surface. Using the technique of §6,
our goal is to follow the information in T, or the combinatorics of {Q}} in H?, to
build a simply connected Riemann surface J. This will be the universal cover of a
surface obtained by joining together the pants { P;} by attaching auxiliary cylinders.

However, to join a boundary component a of P; to a’ of P; (or perhaps to a’ of P;),
it is necessary that a and a' be compatible in the sense of §7.4. It is not necessarily
true that the totality of compatibility conditions can be satisfied.
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In §§8.2-8.4, typical cases of joining pants will be described, before we draw the
general conclusions in §§8.4-8.6. In §9, we will show how to add branch points when
needed.

8.2. Joining pants. We continue with the situation of §7.4. There, we found simple
loops a3 ~ asa; on R and a) ~ ajal, on R’ such that (ay,as, a3) bound pants P C R
lying to the right of a; and ay, while (a}, aj, a}) bound pants P’ C R’ lying to the
left of a), and aj. Here (a1, aq, aj, ay) are positively oriented by generators oy, ay and
az. According to Lemma 7.4.2, the loop aj can be taken compatible with ay. We will
now show how to join the pants P and P’ by attaching a cylinder to the left side of
ay and the right side of al.

Let P* denote the region in €2 over P and P’ the region over P’ in Q. Both P*
and P™ are simply connected, as they represent the respective universal covers.

We are in a position to apply Lemma 6.3.1 to P* and P"™. There exists an N-
sheeted Sy of S? branched over the fixed points of g, on which there are disjoint
lifts a%* and a%* of aj and af that border disjoint lifts P** and P"* of P* and P":
the projections P** — P* and P"* — P™ are homeomorphisms. Equally well, P**
and P"™* represent the universal covers of P and P’.

Next, take the sector Q** on Sy lying between the left side of a3* and the right

IE3]

kok P** ok g,)** £33 Pl**
1 2 2

Then Q7 is invariant under a lift a3 of ay to Sy. It comes with a conformal structure
and a projection 7* into S? which is a locally injective meromorphic function.

Construct the orbit of )7 under the group I'** generated by the cover transfor-
mations of P** over P and P"™* over P’; I'** is the free product of these groups with
amalgamation over (a%). This can be done as follows. Suppose, for example, that
a* ¢ (a3) is a cover transformation of P** over P, so that a* is the lift of a cover
transformation o of P* over P. In particular, o sends the edge a3* of P** to the
edge a*a}*, which is invariant under the conjugate a*ajia* ! of aj.

But the configuration Q7" extends beyond P** at a3*. We correspondingly attach
a*(Q1*) to extend beyond a*ai*. Moreover there is a projection 7* of Q}* into S?
which is a local homeomorphism, the extension of the restriction of 7* to P**. Extend

7* from P** to o*(Q7*) by

(2) = ar(z), z=a"(z), 20 € Q7"
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The cover transformation v* of P** or P™** over P or P’ is conjugated to the cover
transformation a*y*a*~! of a*(P**) = P** or a*(P"™*) over P or P'. The transfor-

* % o k—1

mation a*y*a* ! itself is the lift of the cover transformation aya~! of P* over P or
of a(P"™) over P'.
7* and then Q7* U a*(Q7*) are simply connected Riemann surfaces that inherit
their complex structure from S? via 7*.
Continuing on, we construct a pants configuration

3(Pa G2, 0’127 P,)

which is a simply connected Riemann surface with a group of conformal automor-
phisms I'**. It has a meromorphic projection 7* into (usually onto) S?, which is a
local homeomorphism. The projection 7* induces a homomorphism of I'** onto the
group generated by (ay, as) and (ay, ag).

Consequently, with the group I'**, the abstract configuration

8(P, a9; 0,,2, P’)
is a model for the universal covering of the Riemann surface
PUay U (Q™/(as)) Uay U P

It is a four-holed sphere; the pants P and P’ have been connected by the cylinder
Q** /{a3), which joins ay and al,.
The Riemann mapping
g B = J(P.as; ay, P')

conjugates I'** to a fuchsian group G in H?. The function f = 7*¢g : H? — S?
is meromorphic and locally univalent in H?. It gives a projective structure on the
four-holed sphere H? /G with the associated homomorphism sending G to the group
generated by (aq, as) and (9, a3).

8.3. Adding to the join of two pants. At the level of the pants P in R and P’ in
R, the construction of §8.2 only involved neighborhoods of the boundary components
ay of P and af, of P', and the sector of Sy between their two lifts.

Thus, suppose there is another Schottky group (as, a4) sharing the generator aj
with (as, a3). We can join the boundary component a} of P’ to a compatibly chosen
boundary component af of a pants P” in R" = Q"/(as, a4), lying to the right of
ay, by constructing the appropriate Sy. A lift of P™ appears in both configurations
J(P',ay; ay; P") and J(P, ag; al, P'), and these two lifts of P™* can be identified.

Join together these two configurations by identifying the two lifts P"** and P/** of
P™. After that, further construct its orbit under I';*. Now I'}* is the free product
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of I'"* and the corresponding group I't* of J(P’', ay; a3, P") with amalgamation over
the common subgroup Stab(P"**) = Stab(P;**), which is just the lift of the covering
group of P™ over P'. We end up with an abstract configuration

H(Pa a?;aéaplaa%;agapu) = 327

which is a simply connected Riemann surface with a group I';* of conformal automor-
phisms. There is a meromorphic projection 7* into S? that is a local homeomorphism
and induces a homomorphism of T'* onto the group generated by (ay, as), (o, ag)
and (as, ay). Also, J5 is a model of the universal cover for a five-holed sphere formed
by connecting P to P’ as in §7.5, and the result to P” with an appropriate cylinder
connecting a4 and aj.

8.4. Making handles. In §8.2, suppose that instead of a second Schottky group,
we are presented with a transformation § such that Sa;57 ! = as. We can as well
join the group (ay, as) to its conjugate B{ay, )" = (ag, Basf~'), to have the
effect that the boundary component a, of the pants P in R is joined to a;. We must
start by ensuring that aj is compatible with Ba] with respect to aw; this may require
replacing as by the result of applying some power of a Dehn twist about bs.

As before, we can find an Sy that holds disjoint lifts of P* and SP*. Then a
configuration J is constructed with a group of automorphisms I'** isomorphic to the
HNN extension of Stab(P*) by a suitable lift §* of 3. This g is a simply connected
Riemann surface with a locally univalent meromorphic projection into S2. It is a
model for the universal covering surface for the one-holed torus obtained by attaching
the cylinder obtained from Sy to the boundary components a; and as of P.

8.5. Recall from §5.7 the trivalent graph T and the maximal tree Ty C T. There, we
chose one of the extreme vertices of Ty as the root. Let T, denote the graph resulting
from T after removing the one-edge loop hanging from the root. Thus T, represents
a surface S C R of genus g — 1 with two boundary components. Let 3, denote the
subgroup of 71 (R; O) that is the fundamental group of S.

Lemma 8.5.1. There exists a pants configuration J(T,) modeled on'T,.. It is a simply
connected Riemann surface, the universal cover of a Riemann surface S of genus g—1
with two boundary components. Let g : H? — J(T,) be a Riemann mapping, and
7 : J(T,) — S? the meromorphic projection. Then f = mg is a projective structure
for S for the homomorphism 6 : 3, — 0(X,) C T.
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Proof. First we check that the compatibility conditions can be satisfied. Denote by
P(v) the pants corresponding to the vertex v, and by I'(v) the Schottky group with
regular set (v).

In §5.8 we marked the boundary components of P(v) according to the following
rule. There is a unique path in T, from any vertex v’ to the root vy. The unmarked
boundary component a of P(v) is the one on the path from v itself. If v is not an
extreme point of Ty, it has two immediate predecessors v; and vy, and P(v) has two
marked boundary components b and ¢, lying on their paths to vy. Following the
notation of §7.5, let = and y denote compressing loops (which lift to simple loops in
Q(v)) such that x crosses ¢ and a, and y crosses b and a.

Now move down the tree Ty. Start at the extreme vertices v # vy. Two of the
boundary components b and ¢ of P(v) are to be paired. Make them compatible by a
twist about either x or y.

Continue down the tree. Do not go to a vertex before dealing with all its predeces-
sors. Arriving at a vertex v and P(v) with marked borders b and ¢, replace them by
the result of twists about z and y, so as to be compatible with the (unmarked) bor-
ders b' and ¢ associated with the immediate predecessors v; and v,. When the root
vg is reached, the one marked border of P(vg) is made compatible with its immediate
predecessor.

Finally, use the technique illustrated in §§8.2-8.4 to join the pants {P;} together
with auxiliary cylinders to build a Riemann surface of genus ¢ — 1 with two bound-
ary components remaining from the pants P(vg). This is done by building a pants
configuration J(T,), which is its universal cover. O

8.6. The final handle or the two-sheeted covering. Having constructed J(T,),
all attention is focused on P(wg), with its three boundary components a,b,c and
compressing loops =,y as in §7.5. Since P(vy) has been attached to its predecessor,
say by establishing the compatibility of ¢ with its partner ¢’, no more twisting about
x is possible. Can we make a compatible with b, allowing attachment of the final
handleI" As we have seen in §7.5, this is possible if and only if one can do the job
with an even number of twists. If so, we can finish the construction of J(T), the
pants configuration reflecting the full trivalent graph T, which will then be a simply
connected Riemann surface with a group of conformal automorphisms making it the
universal cover of a surface of genus g¢.

If not, keeping in mind the alternate construction of §7.6, we will construct in-
stead a pants configuration J that models a two-sheeted unbranched covering of the
reference surface R.
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Suppose a and b have arisen from cutting R along a curve bj, freely homotopic to
the nondividing simple loop by € m(R;O). Set Ry = R\ {b;}, and find the simple
loop ag € m (R; O) such that by and agh, 'a, "' give rise to m (P(vg); O). The group

N = <(Lg, 7T1(R0; O),(L07T1(R0;O)U/61>

is a normal subgroup of index two in 71 (R;O). It defines a two-sheeted unbranched
covering R of R that is a compact surface of genus 2¢g — 1.

The surface R is explicitly constructed as follows. Label the boundary components
of Ry as by and by, corresponding to the two sides of b} in R. Take another copy R},
of Ry. Then R is the surface obtained by identifying b and by on R} with by and
by, respectively on Ry. The cover transformation is determined by ay.

Let Ty denote the trivalent graph built likewise by taking two copies of T, and
attaching two new edges e; and ey, as follows. The endpoints of the new edges are
the two vertices corresponding to vy (and pants P(vp)), and they serve to pair the
boundary components a and b on one copy of P(vy) with b and a, respectively, on
the other.

Correspondingly, take two copies of J(T,). Because of the compatibility estab-
lished in §7.6, they can be joined together following the combinatorics of Ty and
the restriction of 6 to N. The resulting pants configuration J(Ts) is again a simply
connected Riemann surface with a group of conformal automorphisms isomorphic to
N, making it the universal cover of a surface of genus 2¢g — 1.

Because of the asymmetry in satisfying the compatibility for the two copies of P(vy)
(see §7.6), J(Ty) does not have conformal automorphisms that represent the sheet
interchange of R. If, however, J(T) can be constructed, and then J(T) constructed
in addition, J(Ty) will have that symmetry: it will represent the universal cover of
the two-sheeted cover of the Riemann surface corresponding to J(T).

A Riemann mapping ¢ : H? — J(T) or g, : H*> — J(T,) conjugates the cover
transformations to a fuchsian group G isomorphic to m; (R; O) or to a fuchsian group
G isomorphic to the index two subgroup N. Let 7 denote the projection of J(T) or
J(Ty) to S?. The meromorphic function f = mg or f, = mg, determines a projective
structure that induces # : G - ' or §: Gy — 6(Gy) C T

We cannot exclude the possibility that §(Gy) = T'. Although the transformation
in [' that makes the conjugation corresponding to the pairing of the boundary com-
ponents a, b of P(vg) is not the identity (because P(vg) arises from a two-generator
Schottky group), it may already belong to 6(Gs). In any case, if § : m(R) — T
cannot be lifted to SL(2,C), # : N — 6(N) can be so lifted.
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9. ATTACHING BRANCHED DiISKS TO PANTS

9.1. One can attach a disk to any surface with boundary by introducing a single
branch point. Explicitly for our situation, consider a pants P embedded in C and a
boundary component a oriented so that P lies to its right. Suppose d is an oriented
simple loop bounding a disk A lying to its right. Suppose that d crosses a at a point
p, and that z; and 25 are points separated by both a and d, with z; € PN A. Assume
that there exists a simple arc o between z; and 2, that crosses both loops at p and
is otherwise disjoint from them. Set 0p = o N P N A.

Attach the A to P as follows. Denote the opposite sides of oy by o and o, .
Identify the side oj of A\ oy with the side o, of P\ 0y, and the side o, of A\ oy
with the side of of P\ 0o. This determines a new Riemann surface P’ that is
conformally equivalent to a new pants. Its boundary 9P’ consists of a U d (here
d lies “over” P) and the remaining components of dP. The natural holomorphic
projection 7 : P' — P U A is a local homeomorphism except at the point over zi,
where it behaves like z — 22. See Figure 10.

Note that the construction does not essentially depend on a choice for o. Instead
we can work in the two-sheeted cover of S?, branched over z; and z,

The same construction can be applied to attach an (n — 1)-sheeted disk to P, for
any n > 2.

9.2. Application to pants in a Schottky group. Suppose that («, #) is a Schot-
tky group acting on Q C C, and P C Q/(«, ) is a pants with boundary components
a, b, c oriented so that P lies to the right of a and b, which have a- and f-invariant
lifts a* and b* in €. Let d be a compressing curve on the handlebody surface Q/(«, )
that crosses a exactly once, at a point p.

Introduce a simple arc o in Q/(«a, 3) that joins a point z; € P to 2, in its comple-
ment, and crosses the loops a and d at p, otherwise being disjoint from them. Set
oy =0NP.

Let d* be a simple loop in € lying over d, which crosses a* (necessarily once).
Orient d and thus d* so that the disk A lying to its right contains the lift of o that
is adjacent to d*.

Attach A to P by means of the slit o3. Neither the resulting pants P, is embedded
in C nor A is embedded in ©/(«, #). Nevertheless, any annular neighborhood of d in
Q/{a, B) is conformally equivalent to its lift about d*. Thus the conformal structure
of P; is well defined.

Equivalently, the universal cover P of P is embedded in €2, and the universal cover
Py of P, arises from that by attaching A by means of the lift of oy that is adjacent
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FicurE 10. Attachment of branched disk

to d*, and then taking the orbit under (a) of the attachment. We need to examine
this construction more closely.

The attachment of A to a* at p* € a* over p leads to the attachment of the loop
d* to a* at p*: as we move along a* toward the attracting fixed point of o, when we
reach p* we take a detour along d* in its positive direction, returning to p* and then
continuing along a*. Since d* intersects a* only at p*, the resulting arc is essentially
a simple arc, and so is its ()-orbit, which covers the point set a* U of(d*).
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The essentially simple, a-invariant arc a* U o®(d*) can equally be described as
follows. It is the lift of the result of applying to a on Q/(«, 3), or its representation
in the torus T'(«), a Dehn twist about d.

9.3. Another alternative to the geometric obstruction of Section 8.6. In
§8.6 we faced the question of adding the final handle to the pants configuration
J(T,). If that was not possible, we showed that we could instead construct a pants
configuration corresponding to a two-sheeted, unbranched cover of the surface of
genus g¢.

Alternatively, using the construction of §9.2, we can carry out the final construction
after introducing a branch point of order two (or any even order). That is, we
can construct a pants configuration J,(T) representing the universal covering of a
Riemann surface of genus g. If g : H* — J,(T) is a Riemann map, and 7 : J,(T) — S?
is the natural projection, then f = 7 o g is a meromorphic function. It is locally
injective except at the conjugacy class of branch points of order two, and still induces
the homomorphism 6 : 7, (R; O) — T.

10. THE OBSTRUCTIONS

10.1. The modulo 2 construction invariant. An admissible pants decomposition
{P,;} for the homomorphism 6 : 7 (R;O) — T is one for which the restriction of 6
sends each m(P;) to a Schottky group. Its combinatorics are associated with a
trivalent graph T. To each vertex v of T is associated a Schottky group S(v) = (a, 3,)
acting on Q(v) C S% To each S(v) is associated a pants P(v) C Q(v)/S(v) with
boundary components a, b, ¢ that have «,-, f,- and (,«q,-invariant lifts in Q(v). In
terms of corresponding elements of 7, (P(v)), we have ¢ ~ b'a’ in Q(v)/S(v). The
orientation of P(v) with respect to a and b, and hence ¢, has been dictated by that
of the corresponding P; with respect to its boundary components and carried over to
T by 6.

Each edge e of T corresponds to a common generator « of the two Schottky groups
S(vq) and S(vy) if the endpoints of e lie on vy # vy. If v9 = vy, then e is associated
with a pair of boundary components of P(v;), which in turn correspond to generators
a, and f3, related by 8, = v,a, ', " for some element 7, € . In any case the pair
of boundary components corresponding to « project to a pair of simple loops on the
torus T'(«). The two boundary components are called compatible if their projections,
appropriately oriented, are freely homotopic on T'(«).

We will call T compatible if all pairs of boundary components of the associated
pants { P(v)} are compatible.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 55

Recall that on each torus T'(«) there is a free homotopy class of simple loops called
compressing loops (§6), each of which lifts to a simple loop in S

Lemma 10.1.1. Suppose that on each T(«) one of the boundary projections is freely
homotopic to the result of a Dehn twist of order n(a) (about a compressing loop)
applied to the other. Set n(T) = (Y, n(a))mod2. There is a compatible pants
decomposition {P(v)} corresponding to T if and only if n(T) = 0.

Proof. To each pair of pants one can apply Dehn twists about compressing loops
on Q(v)/S(v). The algebraic sum n(P(v)) of their effect on the three boundary
components of P(v) is an even number. Thus

Zn(P(v)) =0 (mod 2).

Hence the values of n(T) cannot be changed by repositioning the pants P(v) in the
surfaces Q(v)/S(v).

For the graph T of §8.4 that represents the “localization” of the obstruction to
the construction, the question of compatibility rested on the compatibility of the two
paired boundary components in the root pants P(vg) (§8.6). This was precisely the
question of whether or not n(T) = 0. That is, if n(T) = 0 we can distribute the
twists so that T is compatible.

For other graphs T, we refer to Corollary 10.5.2. O

10.2. Lifting Schottky groups. Lifting refers to the property that a given ho-
momorphism 0 : m(R;O) — PSL(2,C) lifts to a homomorphism 6* : m(R; O) —
SL(2,C). The image groups are not necessarily isomorphic.

It is helpful to recall the case where H = (a, 3) is a two-generator, purely lox-
odromic fuchsian group. As such it represents either a handle or a pants. Let A
and B be matrix representations of o and 3. Then H is isomorphic to (A, B). The
commutator matrix [A, B] is independent of the choice of lift of a and §. The two
cases, handle or pants, can be distinguished according to whether [a, 3] represents a
simple loop or not, or whether no axis in its conjugacy class separates the axes of «
and [ or does, or whether tr[A, B] < —2 or tr[A, B] > 2. Moreover, in the case of a
handle, the free homotopy class in the torus T'([«, 3]) determined by a loop parallel
to the handle boundary is uniquely determined, independent of Dehn twists about
compressing loops when regarding («, 3) as a Schottky group.

More generally, any Schottky group (a, 3) can be lifted to an isomorphic group in
SL(2,C) by designating matrix representatives for o and (.
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10.3. The modulo 2 lifting obstruction. Let T be a trivalent graph as in §10.1.
Lift to SL(2, C) the Schottky groups corresponding to its vertices.

Let e be an edge of T with endpoints v; and vy. If v; # vy, the edge e corresponds
to a common generator o of S(vy) and S(vg). The lifting will be called compatible
on e if the lifted o in S(v1) and lifted a in S(ve) have the same trace. If v; = v, the
compatibility condition is that the designated lifts of a and yay~' from S(v;) have
the same trace. The lifting of T will be called compatible if it is compatible on each
edge.

Suppose T is the graph of §8.4 with its maximal tree Ty. Start at the extreme
vertices of T and work down towards the root: Exactly in analogy to the construction
of §8.4, choose at each step a lift of a generator of a Schottky group to be compatible
with the lifts previously chosen. We end up with a compatible lift of T,. The lift of
T, is determined by the two choices made at the ¢ — 1 extreme points of Ty other
than the root, and one choice at the root.

Lemma 10.3.1. Suppose T is the trivalent graph corresponding to an admissible
pants decomposition. Then T has a compatible lift to SL(2,C) if and only if the
homomorphism 0 can be lifted to SL(2,C).

Proof. The graph T corresponds to a presentation of 7 (R). ]

10.4. Localization of the lifting obstruction. Denote by (a 'S, 67') the Schot-
tky group corresponding to the root. We recall from §5.7 that the “handle group”
H = (a, ) is nonelementary with « and § loxodromic, even though it may not be
discrete.

Applying the technique of §8, we can build a pants configuration J, on which H
acts so that J,/H is a handle. Likewise the graph T}, resulting from removing from T
the root and attached edges determines a pants configuration g} acted on by a group
H' so that g}, /H' is a surface of genus g — 1 with one boundary component.

Choose matrix representatives A and B for o and 3; then [B, A] is a representative
for [3, @], which corresponds to the boundary component of the handle.

The graph T} can be lifted to SL(2,C) as in §10.4, which yields a matrix C
representing [, ] € H'. Therefore C' = +[B, A].

Lemma 10.4.1. The homomorphism 0 lifts to SL(2,C) if and only if C = [B, A].
In particular, 0 lifts if 3, and J), can be joined to form a pants configuration for T.

Proof. The first assertion follows from Lemma 10.3.1. The second follows as a conse-
quence of the existence of a projective structure (see, for example, Remark 1.3.1). O
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10.5. Equivalence of obstructions.

Proposition 10.5.1. The procedure of § 8§ succeeds in constructing a projective struc-
ture associated with the given homomorphism 6 : m(R; O) — PSL(2,C) if and only
if O can be lifted to a homomorphism into SL(2, C).

Proof. From §1.3 we already know lifting is a necessary condition. Now suppose 6 can
be lifted, yet the construction cannot be completed. That is, in the notation of §10.4,
dn cannot be attached to J},. But then, as in §9, we can introduce a single branch
point of order two and construct instead a branched projective structure associated
with 6. According to §1.4, # cannot be then lifted to SL(2, C), in contradiction with
the assumption. O

Corollary 10.5.2. If the construction of a projective structure works for one admis-
sible pants decomposition for 0, it works for any admissible decomposition.
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C. Ramifications

11. HOLOMORPHIC BUNDLES OVER RIEMANN SURFACES, THE 2ND
STIEFEL-WHITNEY CLASS, AND BRANCHED COMPLEX PROJECTIVE
STRUCTURES

The purpose of this chapter is to place Theorem 1.1.1 in a more general setting,
and to use that to clarify the role played by branched structures in Part B. We will
also discuss relations between instability of holomorphic vector bundles over Riemann
surfaces and branched complex projective structures. In §11.5 we establish the local
character of the map between singly branched structures over Teichmiiller space and
the representation variety. In §11.6, we again use holomorphic vector bundles to prove
that for singly branched structures too the monodromy representation is necessarily
nonelementary.

11.1. The 2nd Stiefel-Whitney class of sphere bundles over Riemann sur-
faces. Suppose that 1 : P — R is a holomorphic CP'-bundle over a closed Riemann
surface R. It is known (see for instance [Beauville 1983, Proposition II1.7]) that
P can be obtained as the projectivization of a holomorphic (rank 2) vector bundle
£ :V — R. Let det(V) denote the determinant bundle of V, this is a holomor-
phic line bundle over the surface R. The bundle V is not uniquely determined
by the projective bundle P — R, and to obtain an isomorphic projective bundle,
we can alter V' by multiplying it by a holomorphic line bundle A over R. Then
deg(det(V @ A)) = deg(det(V)) + 2deg(A). Thus we can always choose V' so that
det(V) has degree 0 or 1.

Let p: V. — P(V) = P be the projectivization. We shall think of p as a holo-
morphic line bundle over the base P. It is well-known that there are exactly two
topologically distinct orientable S*-bundles over the surface R (see [Melvin 1984])
and they are distinguished by the 2nd Stiefel-Whitney class wy(P) of the bundle
P — R.

Note that if deg(det(V')) = 0 then the determinant bundle det(V) is topologically
trivial. In this case the bundle V" is associated to an SL(2, C)-bundle over R which is
henceforth topologically trivial. We conclude that wy(P) equals deg(det(V)) (mod 2).

Let 0 : R — P(V) be a holomorphic section of P(V). It defines a holomorphic
line bundle L — R by pull-back o*(p) of the line bundle p. The line bundle L is
canonically embedded as a holomorphic subbundle of the bundle £ : V' — R with the
image p~'(0(R)).



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 59

Lemma 11.1.1. (1) 0® = deg(det(V')) — 2deg(L), where the left-hand side is the
self-intersection number of the cycle o(R) in P(V). (2) The number o (mod 2)
equals the 2nd Stiefel-Whitney class wo(P) of the bundle n: P — R.

Proof. The first assertion is a particular case of a general result proven in [Lange 1983,
Section 1]. Since wq(P) equals deg(det(V)) (mod 2), the second assertion follows.

Nevertheless we will provide a elementary proof of the first assertion for the sake
of completeness. We first consider the case deg(det(V)) = 0 and then we shall
reduce the general case to this one. If deg(det(V)) = 0 then both bundles V' and
P are topologically trivial. Hence there is an orientation preserving diffeomorphism
P(V) — R x F, where F' = S?. By the Kiinneth formula, the homology class [o] can
be written as

o] = n[F] + [R],

and we get: 02 = 2n. There are two possible cases: n > 0 (if 02 > 0) and n < 0 (if
0? < 0). We consider the former; the later case is analogous (one just has to work
with anti-holomorphic functions instead of the holomorphic ones). We can think of o :
R — R x F as a graph of a smooth function f : R — F = S? which has non-negative
degree n. The function f is not holomorphic, however (after deforming the section
o within its homotopy class) we can assume that f1(oc) = Z := {21,...,2,} C R
and f is holomorphic near each point z; so that f'(z;) # 0, 1 < j < n. Now we
realize F = C U {oc} as the complex projective line CP' so that the point oo has
the homogeneous coordinates [1 : 0]. Then we lift the function f to the meromorphic
function
fiR—C f(2) = (f(2),1)

which does not have zeroes and is holomorphic in a punctured neighborhood of each
point z; € Z and has a simple pole at each z; € Z. Thus f corresponds to a smooth
meromorphic section of the line bundle L C V which has n simple poles and no
zeroes. Hence deg(L) = —n = —o0?%/2.

Now we consider the case when deg(det(V)) = 2k is an even number. Take a
complex line bundle A over R so that deg(A) = —k, then deg(det(A ® V)) = 0. The
section o : R — P defines complex line subbundle of A ® V' which is isomorphic to
A® L. As we proved above, 0% = deg(det(A®V)) —2 deg(A® L) which in turn equals
to deg(det(V)) — 2 deg(L). This completes the proof in the case when deg(det(V"))
is even.

In the case when deg(det(V)) is odd take a 2-fold unramified covering R — R. Then
the bundle V' — R pulls back to a bundle V' — R and deq(det(V)) = 2 deg(det(V))
is even. Similarly, the section o determines a section 5 : R — P(V) and 6° = 20°.
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The pull-back of the line bundle L to L C V has degree equal to 2 deg(L). We get:
5% = deg(det(V)) — 2 deg(L)

which implies
0 = deg(det(V)) — 2 deg(L).

This concludes the proof in the general case. O

11.2. Branched structures. Consider a Riemann surface R = Q/m(R) where Q
is the universal cover R of R and is either the unit disk, or the complex plane, or
the Riemann sphere and the group m;(R) of M&bius transformations acts freely and
discontinuously on ).

Suppose that 6 : m(R) — I' € PSL(2,C) is a homomorphism, and f : Q —
f(Q) C S?is a meromorphic function (without essential singularities) which is 6-
equivariant and defines a branched (complez) projective structure o on R as in §1.4.
Alternatively one can define a branched projective structure on R as a collection of
locally defined holomorphic (but not necessarily univalent) mappings ¢, from R to
S? so that different mappings are related by Mobius transformations 7, g:

¢a = Yo, © ¢B

(see for instance [Mandelbaum 1972]).

The homomorphism @ is the (projective) monodromy representation of the branched
projective structure, and in the terminology of §1.3 the projection f, : R — S? is
the (multivalued) developing map. We define the branching divisor Dy as follows.
Consider the discrete set Bf C R consisting of critical points of f. Thus (after
holomorphic change of variables), near such a critical point z; the function f(z) can
be written as

flz)=2" 2<k<o
The number k is the order of branch point z;. Since the function f is #-equivariant
we conclude that for any v € m;(R) the point 7y(z;) is again a branch point with the
same order k. Hence the projection of Df to the surface R is a finite collection of
points, to each such point w; we have the associated the number ord(w;) = k; > 1
which is its order. Define the (additive) branching divisor D = Dy of the structure o

Z(k] — 1)’(1)]'.

wj

as

The number

=3 "(k; — 1) = deg(Dy) > 0

wj
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is the degree of this divisor. The number k; — 1 is the local degree degwj(D) of the
divisor D at the point w;. The multiplicity |D| of the divisor D is just the number
of points in it. If deg(D) = 0, the divisor D is empty and there is no branching.

For reasons that we shall see later on, it is convenient to define the divisor D by
subtracting 1 from the order of each branch point. In addition we will consider the
branching divisor as a topological object, not an analytic one. Thus we will say that
two branching divisors D, D’ on R are equivalent if there exists a bijective order-
preserving map D — D’ between them. This is the only meaningful equivalence
relation in our situation since we will have to change the complex structure on R in
order to find a branched projective structure with the prescribed monodromy.

Next we review the relation between branched projective structures and Schwarz-
ian differential equations as in §1.4. Let D be a positive divisor on the Riemann
surface R. Suppose that ¢(z)dz? is a meromorphic quadratic differential on R which
is holomorphic on R — D and near each point w; € D has a Laurent expansion of the
form

(7) ¢(z)—(1_k +§+Zalz

=0

Here we use local coordinates such that w; = 0 and k; — 1 = deg,, D is the local
degree of D. If

(8) f(z) = 2Mh(z)

where h(z) is a holomorphic function such that A'(0) # 0, then the Schwarzian
derivative Sy(z) near zero has Laurent expansion of the form (7). Conversely, to
have a solution in the form (8) the quadratic differential ¢(2)dz? must satisfy an
extra condition of integrability, see [Hejhal 1975a] or [Mandelbaum 1973].

Let Qp(R) denote the space of meromorphic quadratic differentials on R with at
most simple poles at points of D. Suppose that v is a fixed quadratic differential of
the form (7), then all other such quadratic differentials can be written as ¢ = ¢q + 1/,
where 1) € Qp(R). Let n denote the multiplicity of D. There exists a collection
of n polynomials K; on the (3g — 3 + n)-dimensional complex vector space ()p so
that ¢ is integrable if and only if the differential ¢ belongs to the zero set of all the
polynomials K. If deg(D) < 2g — 2 then the algebraic variety

I(R, D) == {K;¥)=0,j =1,...,n}
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has generic dimension 3¢g — 3. In the case of a single order two branch point at the
orbit of z = 0 € H?, I(R, D) is given by the polynomial equation

(9) u® + 2bu + 20 = 0

where u is the coefficient of the z~! term and v is the constant term in the Lau-
rent expansion of ¢) at z = 0. The number b is given by §1.4(6). We refer to
[Mandelbaum 1972], [Mandelbaum 1973], [Mandelbaum 1975] for more details.

Now we go back to the linear differential equation
(10) "+ tpu=0

expressed in a local coordinate system on the surface R. With ¢ € Qp(R) + &
and satisfying the integrability condition as above, the equation (9) has two linearly
independent solutions. If z; is a singular point of ¢ and we choose local coordinates
so that z; = 0, near this point these solutions have the form

{ uy (2) = 20FK)/2(1 4 0(1))
uy(z) = 2(7K)/2(1 4 0(1)).

A circuit about z = 0 generates the linear monodromy

—1
U)o gkt (M , where J = X .
(75) U2 0 -1
The projectivization of this monodromy in PSL(2, C) is just the identity.

Lemma 11.2.1. On the surface R — D with a base-point O, the differential equation
(9) has a linear monodromy representation

6" :m(R—D,0) — SL(2,C).

Proof. This is a consequence of the fact that the Wronskian of two solutions is a
constant (see Corollary 1.3.1). O

Let U C R be a closed disc which contains all the singular points z; € D and fix
a base point O € 9U = ¢. The matrix 6*(¢) that results from analytic continuation
along ¢ equals J¢ where d = deg(D) is the degree of this divisor and J = —1. The
representation 6% projects to a homomorphism 6 : 7 (R) — PSL(2,C). We conclude
that 6 can be lifted to a linear representation

0 :m(R) — SL(2,C)

if and only if the number d is even, in particular if d = 0 as in Chapter 1. It is
instructive to see a topological proof of this fact as well.
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Let P denote the S%-bundle over R associated with the monodromy representation
f of a complex projective structure 7 on R. It carries a natural flat connection. Let
wy(0) = wy(P). The developing map f of the structure 7 defines a holomorphic
section o of the holomorphic bundle P — R. We will treat ¢ as a 2-cycle in P.

Proposition 11.2.2. Under the above conditions we have: (o(R),0(R)) =2 —2g+
deg(D), where (-,-) is the intersection pairing on the 4-manifold P.

Proof. Note that the polynomial 2™ admits arbitrarily small deformations p, in the
space of polynomials of degree n so that p’(z) has only simple roots near zero. Thus,
after perturbing the projective structure a little bit and keeping the homomorphism 6
the same, we assume that the order of each critical point of the meromorphic function
f:Q — S%is 2. It is clear that this perturbation does not change (o(R),o(R)) and
d = deg(D). The developing section o is transversal to the flat connection over all
points of R except at the singular points &, ...,&; of the structure. Let D be the
divisor of this singular locus. There exists a smooth vector field X on R, which has
n = 2g + 2 nondegenerate zeros, where ¢ is the genus of R: it has 1 sink, 1 source,
and 2g saddle-type points. (For instance, take a Morse function p : R — R which has
one minimum, one maximum and 2¢ saddle points, then using a Riemannian metric
on R let X := grad(p).) Denote zeroes of X by (i, ..., (, where the last two points
have index 1. We can choose X so that

{Cla L Cn} N {51, ...,fd} =0

Thus the vector field X is a section of the tangent bundle Tk which is transversal to
the zero section. Now using the developing section o : R — P we lift the vector field
X to a tangent vector field Y = 0,(X) along the surface ¥ = o(R) C P. The vertical
directions in P define the normal bundle N(X) as in Section 11.1. The flat connection
on P defines the projection V : T, (P) — V,(P) where V,(P) is the distribution of
vertical planes in P. The vector field Q = V(Y') is a section of the normal bundle
N(X). The section o is transversal to the flat connection on P everywhere except at
the set {&1,...,&}. Thus the set of zeros of the field @ is

0—{513 "'1€da Cla reey Cn}

A direct computation shows that the section @) of the normal bundle N (X) is transver-
sal to the zero section Oy, Moreover, the intersection Q(X) N Oy is positive at the
points {&i, ..., &4, (o1, ()} and is negative at the points {(;, ..., (,_2}. Hence the al-
gebraic intersection number (Q(X), 0x) (which is equal to (X, X)) equals

d4+2—-(n—-2)=d+2—-2g
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which proves the Proposition. ]

Corollary 11.2.3. The degree deg(D) = d is even if and only if the representation
0 lifts to SL(2,C). Equivalently, 0 is liftable if and only if the second Stiefel- Whitney
class satisfies the equation wy(P) = deg(D) = 0( mod 2).

Proof. The representation 6 lifts to SL(2,C) if and only if the bundle P is trivial
(equivalently, wy(P) = 0), see [Goldman 1988]. As in the previous Proposition we
have the developing section o of the bundle P — R. We proved that (o(R),o(R)) =
2 — 2g + deg(D), hence

(0(R),0(R)) = deg(D) (mod 2).
On the other hand, according to Lemma 11.1.1 we have:
(0(R),0(R)) = wy(P) (mod 2)
and the Corollary follows. O

Now we are ready with the promised refinement of Theorem 1.1.1.

Theorem 11.2.4. Suppose the surface R and homomorphism 0 satisfy the hypothesis
of Theorem 1.1.1. Suppose that D is a nonnegative divisor on R such that wy(f) =
d (mod 2), where d = deg(D). Then there exists a complex projective structure on R
that has the monodromy 0 and branching divisor equivalent to D.

Proof. The proof is a straightforward generalization of the proof of Theorem 1.1.1.
Let P denote the S?-bundle over the surface R associated with the homomorphism 6.
We first construct a decomposition of the surface R into a union of pairs of pants so
that the restriction of # to the fundamental group of each pair of pants is a Schottky
representation. We use these representations to build a complex projective structure
on a pants configuration. But there is a “topological” Z/2-obstruction to forming the
final handle. This obstruction is a Dehn twist along a compressing loop. Suppose first
that wo(P) = 0. If the obstruction is nontrivial, then we can still construct a projec-
tive structure for the pants configuration which has exactly one branch point of order
1 and the monodromy #. However the existence of such a structure contradicts Corol-
lary 11.2.3. Thus the “topological” obstruction to the existence of an unbranched
structure was trivial to begin with. In parallel, we conclude that if wo(P) # 0, then
the pants configuration admits a branched structure with a single branch point of
order 1. Now consider the general case assuming that wy(P) = 0. By adding to the
pants configuration (for example to a single pants in the configuration) branch points
equivalent to the divisor D, we do not change the “topological” Z/2-obstruction to
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completing the construction. Since deg(D) = 0 (mod 2), adding the branch points
has the effect of twisting one of the boundary curves an even number of times. Hence
for the resulting branched pants configuration there is no obstruction to completing
it to a closed surface. The construction in the case wq(P) # 0 is similar. U

11.3. The algebro-geometric interpretation. Let R be a closed Riemann surface
R of genus g > 2. In this section we shall consider holomorphic vector bundles W
over R such that rank(W) = 2 and det(W) = 1 (i.e. the determinant bundle is
trivial). Let V*(R) denote the collection of holomorphic vector bundles W over R
such that W admits a holomorphic flat connection. According to Weil’s theorem (see
[Atiyah 1957], [Gunning 1967b], [Weil 1938]), elements of V*(R) can be characterized
intrinsically as follows:

Suppose that W = @;W; is the holomorphic direct sum decomposition of W into
(holomorphically) indecomposable vector bundles. Then the bundle W admits a
holomorphic flat connection if and only if deg(det(1V;)) = 0 for all j.

Let

F*(R) :={(&,V): £ € V*(R),V is a holomorphic flat connection on £}
be the space of local systems on R. We have the Riemann-Hilbert correspondence:
RH}, . F*(R) — Y (m(R),SL(2,C)) := Hom(m (R),SL(2,C))/SL(2,C)

given by the conjugacy class of the monodromy of the flat connection V. It is clear
that the mapping RH7, is bijective (since every flat bundle over R has a canonical
complex structure). The space Y (m (R),SL(2,C)) has a natural (non-Hausdorff)
topology, we topologize F*(R) so that RH}, is a homeomorphism.

We also have the natural projection

T FY(R) — VI(R), 7R(¢,V):=¢
Recall that each holomorphic vector bundle W has the degree of instability u(W)
defined as follows:

uw(W) = d is the maximal number such that W contains a holomorphic line sub-
bundle L C W such that deg(L) = d.

In general, u(W) = d — deg(det(W).
For all bundles W € V*(R),
—g<uW)<g-1

(see for instance [Gunning 1967b]), and stable (resp. semistable) bundles W are
defined by the condition u(W) < 0 (resp. u(W) < 0). Stable and semistable bundles
and their moduli spaces have been extensively studied by algebraic geometers since
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the seminal paper of Narasimhan and Seshadri [N-S]. In contrast, our main objects
are mazimally unstable bundles W which are defined by the condition u(W) = g — 1.
Gunning [Gunning 1967a] proves that projectivizations of all maximally unstable
bundles over R are holomorphically isomorphic to each other. We let Mz denote the
corresponding projective bundle over R. It gives rise to a finite subset M}, of V}; that
consists of 229 vector bundles that can be described as follows. Let K denote the
canonical bundle on R. Choose a holomorphic line bundle L on R such that L? = K.
Then deg(L) = g — 1. There are 2% characters y : m(R) — {£1} € C. Each
character gives rise to a holomorphic line bundle over R which we shall denote by
the same letter x. Then the collection of square roots VK of the bundle K consists
of 2% bundles x ® L. For each A = y ® L € VK there is a unique holomorphically
indecomposable bundle W = W, for which there is a short exact sequence

1AW A 1

of holomorphic morphisms of holomorphic bundles. Notice that W, = x ® W; where
1 : m(R) — {£1} is the trivial homomorphism. Then M} = {W,,x : m(R) —
{£1}}.

Also in [Gunning 1967a], Gunning establishes the basic relation between maximally
unstable bundles and complex projective structures on the surface R. He proves that

RH} () ' (M) C Y (m1(R),SL(2,C))

consists of (conjugacy classes of) linear monodromy representations of complex pro-
jective structures on the Riemann surface R. The relation between (branched) com-
plex projective structures and instability of holomorphic vector bundles is further

explored in [Mandelbaum 1972}, [Mandelbaum 1973], and [Mandelbaum 1975].
The results of the previous two sections imply the following:

Corollary 11.3.1. Suppose that 0 : m(R) — PSL(2,C) is the monodromy represen-
tation of a branched projective structure with branching divisor D. Let P — R denote

the associated S®.-bundle over R which is the projectivization of a holomorphic vector
bundle V-— R. Then u(V) > g — 1 + [deg(det(V)) — deg(D)]/2.

Proof. The developing map of the projective structure defines a section o of the
bundle P, let L. C V' be the corresponding line subbundle. Then Lemma 11.1.1 and
Proposition 11.2.2 imply that

deg(L) = g — 1+ [deg(det(V)) — deg(D)]/2.
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From now on it will be convenient to projectivize all vector bundles, connections
and representations. Let

Y(m(R), PSL(2,C)) := {p(p), p € Hom(m (R), SL(2, C))}/ PSL(2,C) C Vj,

where p(p) is the projectivization of p. Denote the spaces of projectivized holomorphic
bundles and local systems over R by V(R) and F(R) respectively. Let RHg : F(R) —
Y (m (R),PSL(2,C)) denote the induced Riemann-Hilbert correspondence. Similarly
define the projection mp by projectivizing the mapping 7.

Our next step is to allow the complex structure on the surface R to vary. We let S
be the oriented smooth surface underlying R. Let T(S) denote the Teichmiiller space
of S. Consider the spaces

Vi(8) = |J V(R).
)

REX(S

Fop(S) = |J F(n),

and mappings,
7 Fiop(S) = Vigp(S) , RH : Fi,,(S) = Y (m(S), PSL(2, C)),
whose restrictions to the fibers F(R) are ng : F(R) — V(R) and RHpg.

Remark 11.3.2. The space Fj,,(S) is naturally identified with the product
Ftop(s) = {I(S) X Y(T['l(S), PSL(2, (C))

The projection Fy,,(S) — ¥(S) which maps F(R, ¢) to (R, ¢) € T(S) is the projection
of Fy,,(S) to the first factor of the product decomposition.

Indeed, suppose (R, ¢) € T(S) is a marked Riemann surface with the marking
¢ :m(S) — m(R) (which is an isomorphism defined up to an inner automorphism).
Then ¢ indices an natural isomorphism

Y (11 (R), PSL(2,C)) — Y (m(S), PSL(2, C))

given by precomposition of representations with ¢. Note that we have to work with
the Teichmiiller space of S rather than with the moduli space 90t(S), otherwise the
natural projection to 9(S) would be a nontrivial fibration (in the orbifold sense).

The projection
IT: Vip(S) = F(5),I1: V(R) - R

has a section
p:R— Mg € V(R) C Vigp(95),



68 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDEN
where Mpg is the projectivization of maximally unstable vector bundles over R. Let
Yoe(m1(S), PSL(2,C)) C V;

denote the collection of conjugacy classes of all projectivized nonelementary repre-
sentations into SL(2, C). We summarize this in the diagram below:

T(5) - Viop(S)
EHOW gﬂ'
" u(2(S))) C Fiop(S)

ERH ERH

Yoo(m(S),PSL(2,C)) C Y (m(S),PSL(2,C))

In view of [Gunning 1967a], the image RH (7w '(u(%(S)))) consists of (projective)
monodromy representations of complex projective structures on the surface S. On
the other hand, each holomorphic bundle in M7}, is maximally unstable. Let V, be a
maximally unstable bundle associated with a representation p : m (R) — SL(2,C).
Thus, for all characters x : m(R) — {%1}, the bundles x ® V, = V,,., are also maxi-
mally unstable. The inverse image of the subvariety 7~ '(Mg) in Y (7 (R), SL(2, C))
has 2% components. Each component consists of holomorphically isomorphic vec-
tor bundles over R, but members of distinct components are not holomorphically
isomorphic to each other.
Therefore, by applying Theorem 1.1.1, we obtain,

Theorem 11.3.3. The map RH sends ' (u(T(S))) onto Y,,.(m(S), PSL(2,C)). In
other words, let p € Y (m(S),SL(2,C)) be a nonelementary representation. It is the
monodromy of a holomorphic flat connection on a maximally unstable holomorphic
vector bundle over a Riemann surface R; R is diffeomorphic to S via an orientation
preserving diffeomorphism.

11.4. Proper embeddings in the representation variety. In this section we will
give a detailed proof of the “divergence” theorem. It was first suggested by Hejhal
in [Hejhal 1975a] that such theorem could be true. This theorem shows that on a
fixed Riemann surface, if any sequence of quadratic differentials diverge, so must the
conjugacy classes of corresponding monodromy representations. A brief outline of
the proof was given in [Kapovich 1995, §7.2]°.

As before, R denotes a closed Riemann surface of genus exceeding one and Q(R)
its space of holomorphic quadratic differentials. Let hol denote the map that sends

2Note that the discussion in [Kapovich 1995, §7.2] does not distinguish linear and projective
monodromy representations.
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each ¢ € Q(R) to the monodromy homomorphism determined by the corresponding
Schwarzian equation S(f) = ¢. By Theorem 1.1.1, the image lies in the component
of the representation variety V, containing the identity (cf., §1.5). That is,

hol : Q(R) — Y (m(R),PSL(2,C)).
Theorem 11.4.1. (Divergence Theorem) The map hol is proper.

Proof. Let Z C Hom(m (R),SL(2,C)) denote the preimage of Z, where Z is the
image of hol.

Our first goal is to show that Z is a properly embedded complex analytic subvariety
in Hom(m(R),SL(2,C)). Indeed, if p : m(R) — SL(2,C) is any representation,
the associated vector bundle V, — R is maximally unstable if and only if p € Z.
Equivalently,

peZ < H'(R,L*®V,)#0 for some L € VK.

The set /K is finite. Thus, by the upper semicontinuity theorem for cohomology
(see [B-S 1976]), the subset Z is closed and is equal to a finite union of disjoint
complex analytic subvarieties X, properly embedded in Hom(m(R), SL(2,C)) (these
subvarieties are indexed by L € VK).

Recall that Z is contained in the open subset Hom,.(mi(R),SL(2,C)) of nonele-
mentary representations, i.e. those whose projectivizations are nonelementary. The
group SL(2,C) acts on Hom,,(m (R),SL(2,C)) by conjugation and the quotient is
Yye(m (R),SL(2,C)). Hence the projection

Hotmne (11 (R), SL(2, ©)) — Yiuo(mi (R)., SL(2, ©))

is a principal SL(2, C)-bundle. Since Z is invariant under this action, the projection
Z* of Z to Yye(m(R),SL(2,C)) is again a closed properly embedded complex analytic
subvariety. It consists of 229 components indexed by elements of VK.

The restriction of the projection

p: Yne(ﬂ'l(R): SL(2= (C)) — Yne(ﬂ'l(R): PSL(2= (C))

to each component of Z* is a bijection onto hol(Q(R)). Now p(Z*) = Z is closed,
since p is a finite covering. It is disjoint from the collection of conjugacy classes
of elementary representations because all elementary representations correspond to
semistable bundles over R. Consequently we can restrict our study to the smooth
(Hausdorff) manifold Y,,.(m(R), PSL(2, C)).

According to [Gunning 1967b], the partition of Y,,.(m(R), SL(2, C)) into holomor-
phic equivalence classes is a smooth foliation. The components of Z* are leaves of
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this foliation; hence they are complex submanifolds in Y,,.(m (R), SL(2, C)). This im-
plies that Z C Y,.(m (R),PSL(2,C)) is a properly embedded complex submanifold.
On the other hand, the mapping hol : Q(R) — Z is a continuous bijection, hence
a homeomorphism. Therefore hol : Q(R) — Z C Y,.(m(R),PSL(2,C)) is proper.
Hence the composition of

hol : Q(R) — Y,.(m(R),PSL(2,C))
with the inclusion
Yye(m (R), PSL(2,C)) — Y (m (R),PSL(2,C))
is a proper map Q(R) — Y (m (R), PSL(2,C)). O

Remark 11.4.2. The above proof shows that elementary representations cannot
be limits of sequences from hol(Q(R)). It was proven [Kapovich 1995] only that
the mapping hol : Q(R) — Yi(m (R),PSL(2,C)) is proper. Tanigawa [Tanigawa]
recently gave a nice geometric proof of this statement in contrast to algebro-geometric
proof presented here and in [Kapovich 1995]. However Tanigawa’s arguments do not
seem to prove that Z = hol(Q(R)) is closed in Y (m (R),PSL(2,C)), only in the
submanifold corresponding to nonelementary representations. See also §12.4.

11.5. An analogue of Hejhal’s holonomy theorem for branched projec-
tive structures. The nonelementary representation variety V, has two components
[Goldman 1988]. These correspond to the representations that lift to SL(2, C), and
those that do not. Each of these has dimension 6g—6. By a singly branched projective
structure we mean one that has exactly one branch point and that is of order two. In
the next section we will show that the monodromy of each singly branched projective
structure is a nonelementary representation but we will use this fact in this section.

Let R be a closed Riemann surface of genus ¢ > 2 and p € R a given point.
We will first parameterize singly branched structures on R with branch point at the
designated point p. Let D be the divisor of p and @p(R) the space of holomorphic
quadratic differentials on R which have at most a simple pole at p.

Recall from §1.4, equation (6), that the meromorphic quadratic differential ¢,
generates a singly branched complex projective structure if its Laurent expansion at
the chosen branch point p has the form

o= —3/2>+b/z+ag+ayz+---, where b* + 2ay = 0,

(here and below we choose local coordinates so that p is identified with zero). The side
condition comes from the requirement that the solution of the Schwarzian equation
has no logarithmic term.
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We note that there exists such a differential ¢y. First of all the Riemann-Roch
theorem implies there is a quadratic differential with a double pole at any point p.
Secondly it also implies that there is an abelian differential w which does not vanish at
p. The holomorphic differential w? can be employed to insure that the side condition
is satisfied ([Mandelbaum 1972]). Fix one such quadratic differential ¢.

There is a meromorphic quadratic differential with a single pole at p with the
Laurent expansion

w():]_/Z‘l‘(I/[]"‘dlZ—""'.

Adding w?, which does not vanish at p, to 1 if necessary, we may assume that
ag +b 75 0.

Let ¢;, 1 <1 < 3g — 3 be a basis of the holomorphic quadratic differentials on R.
Then 1;, 0 < i < 3¢ — 3 is a basis of the space Qp(R).

Let a; be the constant term in the Laurent expansion of 1; at p. Not all a; can
vanish.

The vector space Qp(R) consists of the differentials ¢ = 3729 % ¢ieh;. When is
¢o + 1 an admissible quadratic differential in the sense of §1.4, equation (6)I" The
answer is when u? + 2bu + 2v = 0, where v is the constant term in in the Laurent
expansion of ¢ at p, and wu is its residue.

The constant term in ) is v = Z?ﬁgg c;a;. The residue term is just c¢g. Hence the
condition reads

3g—3
(11) co+2bcg +2 Y cia; = 0.

i=0
Recall that aq + b # 0, thus the implicit function theorem implies that the collection
of vectors ¢ = (¢, c1, ..., c34—3) satisfying the above equation is a complex manifold of
dimension 3¢g — 3 provided that the norm || is sufficiently small. (Actually it suffices
to require that only |¢g] is sufficiently small.)

Consequently we can choose a small neighborhood U of ¢, in the affine space of
meromorphic quadratic differentials ¢g + Q)p(R) with the following property.

The collection of differentials ¢ + Z:ﬁgg c;Y; € U satisfying (11) forms a (3¢ — 3)-
dimensional complex manifold A containing ¢g.

Let B, denote the holomorphic variety which consists of singly branched complex
projective structures on closed Riemann surfaces S of genus g > 2. Let T(S —
{q}) denote the Teichmiiller space of surfaces S with one marked point. There is
a holomorphic mapping v : B, — ¥(S — {¢q}) whose fiber over a marked Riemann
surface R with a marked point p is the space I(R, D) of singly branched complex
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projective structures with the underlying complex structure R and branching at D =
p. It follows from the above discussion that B, is a holomorphic variety of generic
dimension 6g — 5: the Teichmiiller space of once punctured surfaces T(S — {q}) has
complex dimension 3g — 2 and the fiber of v has complex dimension 3g — 3. There
is an open and dense subset of B, which is a complex manifold of dimension 6g — 5.
We will use the notation (S, ¢, ¢) for elements of B,, where S denotes the marked
Riemann surface, ¢ the branch point and ¢ the meromorphic quadratic differential.

We will need the following explicit description of the space B,. Choose a point R as
the “origin” in (S) and write R = H? /G where H? is the unit disk {|z| < 1} and G is
a fuchsian group acting on H2. In the “Bers’ slice” model, Teichmiiller space T(S) is
identified with that subset of the space Q(R) of holomorphic quadratic differentials on
R, lifted to H?, such that the corresponding developing map h, : H? — S 7 € Q(R),
is a univalent holomorphic mapping with homeomorphic extension to {|z| = 1}. Thus
h = h, solves the Schwarzian equation for 7; we will normalize it by the requirement
that h(0) = 0,h'(0) = 1. Let p, : G — G, denote the corresponding monodromy
representation. As 7 — 0, G, converges algebraically back to G.

The image p,(G) = G, is a quasifuchsian group. Its set of discontinuity has two
components. One is Q= h,(H?). The other €, represents the marked Riemann
surface R, := Q, /G, € T(S). The homotopy marking of this point in ¥(5) is given
by the isomorphism p, : G = m(R) — G, = m(R;). If we mark a point p € R, we
get an element of (S — {q}).

Any given compact subset of {2y belongs to €2, for 7 sufficiently close to 0; likewise
any neighborhood of the closure of €}y contains €2, for 7 sufficiently close to 0. Here
Qy={z:]z] > 1} Ucc.

Lemma 11.5.1. There is a locally defined holomorphic map P : B, — S? that
“records” the position of the branch points.

Proof. We construct P in a small neighborhood A of a given point (R, q,¢) € B,
where ¢ is a quadratic differential on R, the surface R is the “origin” in the Te-
ichmiiller space and ¢ € R is the branch point. We will denote points ¢ € A by
(R, 4o, ps) where 7 = 7(0) € T(S) and ¢, € R, is the branch-point. If 7 = 0, then
o represents a change of branch point from ¢ to ¢, on R itself. The point 0 = 0
is (R,q,p). Let fo: Qo — S* denote the (as yet unnormalized) developing map of
(R,q,¢) and 0 : G = m(R) — PSL(2,C) the associated nonelementary monodromy
representation (here we are applying Theorem 11.6.1 that will be proven in the next
section).

Let f, : Q. — S? be the associated holomorphic developing map. We will show
in the next paragraph how to fix a consistent normalization for f, given f; so that
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the restrictions of f, to compact domains in €2y depend holomorphically on o. Each
developing mapping f, corresponds to the monodromy representation

0 :=0,0p,:G— G, — H, C PSL(2,C).

At the origin, 0} = 6,.

Consider the projection Hom(m (R),PSL(2,C)) — V,. We will construct a local
cross section \79 near 6 as follows. We know from Part A that we can find in H, three
loxodromic elements hy = 6(g1), ha = 6((g2), hs = 6{(g3) with distinct attracting
fixed points ay, as, az, where gy, g2, g3 € G. Normalize each developing mapping f, so
that the attracting fixed point of ¢/ (g;) remains a;, j = 1,2, 3. This can be done for
all 0 € A if A is sufficiently small, i.e., if the attracting fixed points remain distinct
and the elements ¢/ (g;) remain loxodromic. Thus in A we have a holomorphic lift

hol : B, — V, C Hom(G, PSL(2, C)).

Now given a lift ¢* € Q of ¢ € R, there is, in the set of lifts of ¢, to ,, a closest (in
the spherical metric) point ¢* to ¢*. Define

P:(R;, qs, 05) — f-(q:) € S*

It is clear that the mapping P is holomorphic provided that A is so small that the
point ¢ is unique. 0

Thus, by the previous lemma we have a locally defined holomorphic map
p= (P hol): B, » S*x V,
and its lift - N
fi=(P,hol): B, —S*xV, .
We are now ready to state our theorem:.

Theorem 11.5.2. The holonomy map hol : By, — Vj s locally a topological fiber
bundle with fiber of complex dimension one.

Remark 11.5.3. The fibers reflect the choice of branch point. This result should
generalize to the space of D-branched projective structures where D is a fixed (topo-
logical) branching divisor, provided we consider structures with nonelementary mon-
odromy.

Proof. In Lemma 11.5.5 and Lemma 11.5.4 below we will prove that p is injective
and an open map. Hence p is a local homeomorphism. Since S? x V, is a complex
manifold of dimension (6g — 5) we can therefore use u to locally identify B, with the
product S? x V; so that hol is identified with the projection to the second factor. [
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Lemma 11.5.4. Let X be a holomorphic variety of generic compler dimension n
(i.e. there is an open dense subset U C X which is a complex manifold of dimension
n). Let f: X — M be a locally injective holomorphic mapping, where M is a complex
manifold of dimension n. Then f is open.

Proof. Since this is a local question it suffices to consider the germ of X at a point
x € X and the germ of f at x. Since f is locally injective, the germ of the mapping
f at x is “finite” in the terminology of [Gunning 1990, p. 56].

Suppose that the germ of f at x is not onto. Apply [Gunning 1990, Corollary
9]: it follows that there exists a nonzero germ of a holomorphic function h on M
at m = f(x) such that ho f = 0. The germ at m of the zero level set {h = 0} of
h is a holomorphic subvariety of dimension strictly less than n, by the uniqueness
principle of holomorphic functions. Thus the germ of the image f(X) at m has
generic dimension less than n. However f(X) is generically a manifold, hence f(U)
has dimension less than n, a contradiction to invariance of domain for manifolds. [

Lemma 11.5.5. The mapping p is locally injective.

Proof. 1t suffices to show that two nearby branched structures with the same mon-
odromy representation are identical provided that the images of their branch points
under P are the same. Our proof is analogous to that of [Hejhal 1975a, Theorem 1].
It clearly enough to show local injectivity of the holomorphic lift

ii= (P hol): B, = S*x V.

We consider the points 0 = (R.,q,, p,) of a small neighborhood A of the point
(R, q,¢) € By.

Let F, C €, denote the (closed) Dirichlet fundamental domain for G, in the
hyperbolic metric on Q, and with center ¢&; 7 = 7(0). Let Fj be a small open
neighborhood of F;, and take A so small that F, C Fj for all c € A. We may also
assume that the orbit G, (¢%) meets the closure of F; only at ¢.

We again use the developing mappings f, : 0, — S2 Decreasing A even more if
necessary, we may assume that:

a) For each 0 € A there is an open neighborhood F; of F, such that for any pair
of points 0,0 € A we have F5 C F}, and

b) Given small e > 0, there is a disk V' C Fy about ¢* of radius 2¢ with the following
property. To any z € F;\V, and to any pair of points o, € A, corresponds a unique
point z,5 € Fj such that

f5(205) = f-(2), and d(z,4,2) < e

Here d(-,-) is the spherical metric.
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The “membranes” {f,(F,)} over S? serve as “fundamental domains” for the image
groups H, = 0. (G).

Suppose [ is not injective in any neighborhood A. Then for arbitrarily small
A there exist 0 # 0 € A so that P(o) = P(d) and the normalized monodromy
representations are identical, i.e.,

(0 :G— H,) = (05 : G— H;s).

We claim that there is a branch F' of f({l o f, which is a conformal homeomorphism
of the fundamental domain ¥, onto a new fundamental domain Fj for G in €2;().
Such a map F' would necessarily be equivariant in the sense that if z, g(z) € F,, g €
Gr(o), then F(z2), F(g(2)) € F; and F(g(2)) = prs) © py0(9)F(2). Here & := pr 0
p;(lg) : G1(0) = G4 (5) is the isomorphism which factors through G.

Indeed, for z ¢ V define F(2) := 2,5. It is clear F' is a univalent holomorphic
mapping. Furthermore F|F, \ V extends over V to a conformal mapping because
both f, and fs; are 2-fold branched coverings near ¢* € )y with the same critical

value
folgz) = P(o) = P(6) = fs(q5).

The mapping F projects to a conformal map of R, = Q.(5)/Gr(») Onto R, 5y =
Q-5)/G). Correspondingly F' extends to a conformal mapping F : Q) — Q.5
that induces the isomorphism § : G, ;) — Gr(s).

The map h, 5 o h;(b) is a conformal map of £,y onto 2,5 which also induces the
isomorphism &. The two conformal mappings have continuous extensions to the limit
set which are necessarily identical. Since the limit set is a quasicircle they are the
restrictions of a Mobius transformation. In particular F' is a Mobius transformation

and o = 9, a contradiction.
O

The following is a direct consequence of Theorem 11.5.2.

Corollary 11.5.6. Let 0 = (R, p, @) be a singly branched projective structure. Let
A C B, be a sufficiently small neighborhood of o in the space of singly branched
structures § on R “with the same image of the branch point” P(d) as 0. Suppose the
sequence of normalized representations 0; . w1 (R) — PSL(2, C) converges algebraically
to the normalized monodromy representation 6 associated with o. Then for all large
i, 0; is associated with a unique o; € A.

11.6. Monodromy of singly branched projective structures. In this section
we will prove facts that have been announced in §1.6.
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Theorem 11.6.1. Suppose that R is a closed Riemann surface of genus g > 2,
6 : i (R) — PSL(2,C) is the monodromy representation of a singly branched complex
projective structure 7 on R. Then I' = 0(m(R)) is a nonelementary subgroup of

PSL(2, C).

Proof. Since 7 has exactly one branch point and the order of this branch point is 2,
the representation # has nonzero 2nd Stiefel-Whitney class. In particular, # cannot
be lifted to a representation 7 (R) — SL(2, C). Suppose that the group I' = §(m (R))
is elementary. There are three cases:

(a) The group I has a fixed point z € S% Without loss of generality we can assume
that z = oo, thus I' is contained in the group A of complex affine transformations of
C. The inclusion A — PSL(2,C) admits a 1-1 lift A — SL(2,C)

, ba!
a’z +b— <8 :1>

Therefore 6 lifts to a representation * : m;(R) — SL(2,C), which contradicts the
assumption that # has nonzero 2nd Stiefel-Whitney class.

(b) Suppose that I' is conjugate to the subgroup PU(2) € PSL(2,C). Let R — R
be a 2-fold covering over R. Thus 2(g — 1) = g — 1, where g denotes the genus of R.
The complex projective structure 7 on R defines a complex projective structure 7 on
R with two branch points of order two. Suppose that I' ¢ PU(2); then 8(m(R)) C

PU(2) as well. The representation 0|m;(R) lifts to a linear representation

0" : m (R) — SU(2) € SL(2,C).
Consider the flat vector bundle V of the rank 2 over the surface R associated with the
action 0* of 7, (R) on C2. Clearly det(V) = 1. The developing map of the branched
complex projective structure 7 defines a section
o:R— P(V).

According to Proposition 11.2.2, the self-intersection number o of the surface o(R)
in P(V) equals (2 — 2g) + 2, since the structure 7 has exactly two branch points of
the order 2.

It follows from Lemma 11.1.1 that the section o gives rise to a line subbundle
L C V such that

deg(L)=(g—1) - 1=29g—-3>0.

We conclude that u(V) > 0 and the bundle V' is unstable. On the other hand, every
flat bundle over R with unitary monodromy group is semistable (see for instance
[N-S]). This contradiction shows that I' cannot be contained in PU(2).
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(¢) Consider the case that the group 6(m (R)) has an invariant pair of points in S
(This does not imply that 6 can be lifted to SL(2, C).) We argue as in Case (b). There
is a 2-fold covering R — R such that the group 6(m; (R)) has a pair of fixed points in
S2. Therefore the induced complex projective structure on R has two branch points
and the monodromy group (7 (R)) has a lift 6*(7;(R)) to a subgroup of SL(2, C)
conjugate to the group of diagonal matrices. Let V' denote the holomorphic vector
bundle associated with the representation 6* : m; (R) — SL(2, C). The representation
0* splits as the direct sum of representations. Hence the bundle V' is decomposable
(into the direct sum of two line bundles of degree zero), which implies that u(V) = 0.
On the other hand, the developing map of the branched complex projective structure

on R defines a section o : R — P(V) with the self-intersection number
(2-2§)+2<0,
where § denotes the genus of R. Hence (V) > 0 which contradicts u(V) = 0. O

Suppose that 7 is a branched complex projective structure on the closed Riemann
surface R of genus at least two. We identify the universal cover of R with the
hyperbolic plane H2. Let f : H? — S? be the developing map of 7 and I' = 0(7,(R))
be the holonomy group. We say that 7 is a branched hyperbolic structure if T has
at least one branch point and the image of f is a round disk in S2. This definition
is motivated by the fact that in such case I' preserves the hyperbolic metric ds? in
f(H?). The pull back of ds? from f(H?) to R is a hyperbolic metric on R which has
singular points at the branch points z; of 7; the total angle around z; is 27k;, where
k; is the order of z;.

Later we will show by example why the following result is false if we do not exclude
branched hyperbolic structures. This too has been announced in §1.6.

Corollary 11.6.2. Suppose that either the complex projective structure (f,0) is un-
branched, or is singly branched but is not a branched hyperbolic structure (i.e. f(H?)
is not a round disk). Then the following statements are equivalent:

(i) f(H?) # S%;

(i) H? — f(H?) is a (possibly branched) cover;
(iii) T acts discontinuously on f(H?).

Proof. The unbranched case is classical (see §1.6). Consider then the branched case.
By Theorem 11.6.1, I' = 6(7;(R)) is nonelementary. The limit set A(I") is the smallest
[-invariant closed nonempty subset of S?. Since T' is nonelementary, A(T) is the
closure of the set of fixed points of loxodromic elements of I'. It follows that the
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[-orbit of any open set containing a limit point is S?. Suppose that I' C PSL(2, C)
is nondiscrete. Let T be the closure of T' in PSL(2,C). Since I is nonelementary it
follows that T is either PSL(2, C) or it preserves a round circle C C S?and A(T') = C
[Greenberg]. If the latter case occurred, f(H?) would be one of the two round disks
in S? bounded by C. It would follow that 7 is a branched hyperbolic structure
in contradiction to our assumption. If T' = PSL(2,C) then f(H?) is contained in
A(T') = S? which implies that f(H?) = S%

We conclude that if (i) holds then T is a discrete subgroup of PSL(2, C) and f(H?)
is contained in the discontinuity domain Q(I') = S*\ A(T"). Hence (i) = (iii). Clearly,
(iii) = (i).

The implication (ii) = (i) is immediate. Conversely if (iii) holds, f(H?) must be
contained in a component A of the domain of discontinuity of T'. Since f(H?) is
connected and I'-invariant it follows that A is also I'-invariant. Hence f projects to
a holomorphic map f : R — f(R) € © = A/T. Since f(R) is a compact subsurface
without boundary in ¥ we conclude that f(R) = Y and X is a closed surface. Any
nonconstant holomorphic surjective mapping between closed Riemann surfaces is
necessarily a covering, possibly branched. Consequently f itselfis a possibly branched
covering map. O

We will now construct an example of a singly branched hyperbolic structure on a
surface R of genus two which has nondiscrete holonomy in PSL(2, R).

Start with a regular hyperbolic octagon X C H* with vertex angles /2 (cf,
[Tan 1994]). Label the edges b, ', a1, by,a;,",...a," in positive order around X . Iden-
tify the edges by corresponding isometries A;, By, Ay, By to obtain a Riemann surface
of genus two such that H? is a two sheeted cover branched over one point on R. Let
o denote the line segment from the left end point of b, ' to the right end point of a; '
Then

AlBlAlefl - E - AQBQA;lBgl

where FE is a elliptic transformation of order two fixing the midpoint of o. Let v denote
the branched projective structure on R with the holonomy group I' = (A, By, Ay, By).
The quotient orbifold H? /T is a torus with one cone point of order two. Clearly the
holonomy 6 : 71 (R) — T is not injective (cf. [Goldman 1987]). According to Theorem
1.1.1, 6 does not lift to SL(2, R).

Next, we will show there exists a hyperbolic structure with exactly one branch
point of order two and a nondiscrete holonomy group. Take the example above of a
branched structure . The representation variety Hom(I', PSL(2,R))/ PSL(2,R) is
2-dimensional and the representation variety Hom(m (R), PSL(2,R))/PSL(2,R) is
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6-dimensional. Therefore we can find a real-analytic curve of nonelementary repre-
sentations 6, : m (R) — PSL(2,R), 6y = 60,t € [0,1], which do not factor through
6 :m(R) — I'. The fact that 6, is a real-analytic curve implies that there is a dense
subset J C [0, 1] so that K = ker(;) = ker(6,),s,t € J. Let I'" := m(R)/K. We
claim that there cannot be a sequence of ¢ € J which converge to ¢ = 0 such that
each I'y := 0;(m(R)) is discrete. For otherwise a sequence of discrete nonelementary
representations p; : IV — 'y, ¢ € J would converge to p: IV — I" as t — 0. The limit
p of such sequence has to be a faithful representation as well, as a consequence of
[J-K 1982]. This contradicts the fact that ker(p) = ker(#)/K # {1}. Thus there is
an infinite sequence of nondiscrete representations #; : m(R) — I'; which converges
to . In addition I'; necessarily preserves the upper halfplane for ¢ close to 0. By
Corollary 11.5.6, #, is the monodromy of a branched complex projective structure 7,
on R with branch point likewise at z = 0.

12. OPEN QUESTIONS ABOUT COMPLEX PROJECTIVE STRUCTURES

In this chapter we list some unsolved problems. Some are well known in the field,
others arise from the specific analysis of this paper.

There are two general issues: the monodromy representation per se, and the Rie-
mann surfaces of specified type where it is induced by a particular projective struc-
ture.

We recall from §1.5 that (), denotes the vector bundle of quadratic differentials
over Teichmiiller space T, and V] is the subset of nonelementary representations in
the representation variety V,, modulo conjugation by PSL(2, C).

12.1. Existence and nonuniqueness of points in (), with given monodromy.
Our proof exhibits two sources of nonuniqueness:

e The non-uniqueness of the pants decomposition on which the monodromy is
Schottky.

e The nonuniqueness of the pants configuration over S? obtained from a pants
decomposition: one can use N-sheeted branched covers for arbitrarily large N.

Our Theorem 1.1.1 provides a Riemann surface for every nonelementary represen-
tation . On the other hand, if we fix attention on a particular oriented surface R,
we don’t know whether all projective structures on R itself can be obtained from
the pants decomposition method. For example, can there be a complex projective
structure o on R so that for each simple loop v C R with loxodromic monodromy,
no element of its homotopy class is sent by the developing map to a simple arc in S*I’
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For the case of representations into PSL(2,R) all projective structures can be
obtained by the pants decomposition method, see [Faltings 1983], [Goldman 1987],
[Gallo 1997]. However in all three papers the proofs that the developing map is a
covering over the upper and the lower half-planes have the same gap: In general
the pull-back of a complete Riemannian metric on a manifold via a local diffeomor-
phism can be incomplete. For complete proofs of the assertion about covering see
[Kuiper 1950, pp. 485 486], [K-P 1986], or [C-L 1997]).

For those projective structures on R which do arise from pants decompositions, are
there optimal choices for the decompositionsl” For example, does the developing map-
ping send each pants of some decomposition directly into the domain of discontinuity
of the corresponding Schottky groupl’

Problem 12.1.1. Characterize and classify the nonuniqueness of projective struc-
tures with given monodromy.

In particular is it possible to get one projective structure on R from another by a
specific series of “moves” I’

One might ask to do this through a sequence of graftings. Yet, at least in the case
of a once-punctured torus R, a connection solely by means of a grafting sequence
is known to be impossible in general. The reason has to do with the fact that
in the Bers slice, the result of pinching R along a simple non-dividing loop v is a
B-group I' representing the punctured torus on one side, and the triply punctured
sphere on the other. Specifically, construct two complex-projective structures on R
with the monodromy G — I' as follows. Consider simple nondividing loops « and
B on the surface R so that all the loops «, 3, are mutually non-homologous. Let
o, t € [0,1) denote the family of complex-projective structures on R which is being
pinched along v as t — 1. Let gro(0y), grg(or) be the complex-projective structures
on R obtained from o, via grafting along o and . One can show that gr, (o), grg(oy)
are convergent to complex-projective structures o}, 0} on R as t approaches 1. There
results two structures o}, o} with the same orientation and the same monodromy
G — I'. However these complex projective structures are not related by grafting.
The underlying reason is that the “complex of simple loops” on the once punctured
torus R is totally disconnected.

For branched structures, there is another way of changing projective structures
without changing the monodromy. This is the method of “bubbling”.

Suppose that R is a Riemann surface with a (branched) projective structure o.
Let o C R be a compact simple arc, disjoint from the singular points of o, which the
developing map sends to simple arcs in S%. Let a be one of these arcs in S%2. Then
split R open along «, split S? open along a, take N copies of the Riemann surface
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S?— @ and glue them to R —« with appropriate identification of boundary edges. The
net result is a projective structure on the new “bubble-on” Riemann surface Ry with
the same monodromy. The projective structure on Ry has two additional branch
points (at the end points of a), both of order N.

“Bubble-off” is the inverse operation on R.

Problem 12.1.2. Suppose that o1, 09 are complez-projective structures on a surface
R with the same monodromy representation. Can one pass from o1 to oy using the
following elementary moves: “grafting”, inverse to “grafting”, “bubble-on”, “bubble-

off 7¢

12.2. Surfaces with punctures. What about surfaces with punctures where the
corresponding quadratic differentials have at most double polesI' As with compact
surfaces, the dimension of the vector bundle Q) of quadratic differentials over
the Teichmiiller space €, ,) agrees with that of the representation variety, if one
allows arbitrary monodromy at the punctures (for an analysis of the derivative of
the monodromy map for this case see [Luo 1993]). One can search again for pants
decompositions, provided the monodromy is not elliptic of infinite order at a punc-
tures. With discrete monodromy at the punctures, one can look for representations
of fundamental groups of pants to extended forms of Schottky groups (i.e. Klein
combinations of pairs of discrete cyclic subgroups of PSL(2, C)).

Suppose the genus of R is positive. We believe that our technique in Part A will
yield a pants decomposition of R in which the restrictions of the monodromy are onto
Schottky-like groups, provided the representation around each puncture is a discrete

(cyclic) group.

Problem 12.2.1. Prove and/or explore the existence and non-uniqueness of complex
projective structures with given nonelementary monodromy in the case of punctures,
most importantly and most classically, punctured spheres.

12.3. Linear monodromy representations. Throughout the paper we considered
Schwarzian differential equations on Riemann surfaces. Their monodromy represen-
tations are projective representations 0 : w1 (R) — PSL(2, C).

One can also consider the more general case of representations into GL(2,C). In
the classical case of punctured spheres R, the dimension of the representation variety,
modulo conjugations, is identical to the dimension of the vector bundle over €, of
linear equations

u" +pu' 4+ q=0,
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where p has at most simple poles and ¢ double poles at the punctures. Note that
we have to restrict to the representations #* into GL(2, C) which map the peripheral
loops of R to unipotent elements.

Problem 12.3.1. Is there an analogue of Theorem 1.1.1 for punctured spheres if
one seeks a differential equation that induces a given linear representation 0* ¢

12.4. Divergence of monodromy representations. Fix a closed Riemann surface
R of the genus g > 1 and let ¢, = ¢,(2)dz? be a sequence of quadratic differentials
on R so that ||¢,|| = oc. Let [p,] be the sequence of conjugacy classes of monodromy
representations of ¢,. We know from Theorem 11.4.1 that the sequence [p,] cannot
subconverge to the to the conjugacy class of any representation.

Problem 12.4.1. Characterize the “limit points” of divergent sequences of repre-
sentations in the representation variety. Prove the Divergence Theorem 11.4.1 for
complex projective structures on R which have a single branch point of order 2.

One way that the representation variety V, can be compactified is by (projective
classes of) actions of the group G = m;(R) on metric trees. Which actions of G on
trees can appear as limits of the sequences [p,|I" For instance, is it true that for each
sequence of quadratic differentials ¢, = n¢o, ¢ # 0, there is a limit p of the sequence
pn with the following property: p is an action of G on a tree that is dual to the
singular foliation on R determined by ¢I'

12.5. Path lifting properties of monodromy mappings. Hejhal [Hejhal 1975a]
proved that the natural mapping

Py Qq— Vg,
is a local homeomorphism which fails to be a covering mapping.

Problem 12.5.1. Let v : [0,1] =V, be a continuous path, 7 : [0,1) — Q, a partial
lift which can not be extended to the end-point 1. Describe the asymptotic behavior
of the path .

For instance is it true that 4 has a well-defined limit
lim 5(#)

in a natural (e.g. closed ball) compactification of Q,I
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12.6. Branched projective structures. As the degree of a positive divisor D in-
creases, it becomes easier to construct a complex projective structure with the branch-
ing divisor D. Thus, one should be able to eliminate the assumption that the repre-
sentation 6 is nonelementary for sufficiently large values of deg(D). For instance, if 0
is the trivial representation, then branched structures with the monodromy 6 are just
m-fold ramified coverings f : R — S% Thus x(R) = mx(S?) —deg(D) = 2m—deg(D).
The number m is at least 2, hence deg(D) > 4 — x(R) = 2g+ 2. The minimal degree
is realized by a hyperelliptic ramified covering f, for which we have: deg(D) = 2¢g+ 2.

Problem 12.6.1. Make precise and optimize the connection between branching di-
visors and monodromy. Namely, compute the function d : Hom(G,PSL(2,C)) — Z,
where d(0) is the smallest integer for which there exists a branched complex projective
structure with branching divisor of degree d and monodromy 6.

We proved that d(f) = 0 for all liftable nonelementary representations 6 and d() =
1 for all nonliftable nonelementary representations 6. Is it true that d(6) = 2g for
all liftable representations 6 : G — SO(3) C PSL(2,C) and d(f) = 2¢g — 1 for all
nonliftable elementary representations § : G — SO(3) C PSL(2,C), provided that
the monodromy group 6(G) is dense in SO(3)T" Is it true that d(6) < 2g + 2 for any
6:G — PSL(2,C)T

Remark 12.6.2. For the flat holomorphic bundles of rank 2 over R the correspond-
ing question is the following: given a representation 6* : G — SU(2) with dense
image, find a complex structure on R so that the associated flat C*-bundle V over R
has the degree of instability u(V) = —1.
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