
THE MONODROMY GROUPS OF SCHWARZIAN EQUATIONSON CLOSED RIEMANN SURFACESDANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENTo the memory of Lars V. Ahlfors
Abstract. Let � : �1(R) ! PSL(2; C ) be a homomorphism of the fundamentalgroup of an oriented, closed surface R of genus exceeding one. We will establishthe following theorem.Necessary and su�cient for � to be the monodromy representation associated witha complex projective stucture on R, either unbranched or with a single branch pointof order 2, is that �(�1(R)) be nonelementary. A branch point is required if andonly if the representation � does not lift to SL(2; C ).
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MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 3(ii) � is induced by a branched complex projective structure with a single branch pointof order two for some complex structure on R if and only if � does not lift to ahomomorphism into SL(2; C ).The terms will be explained in xx1.2{1.4.Theorem 1.1.1 characterizes the class of groups arising as monodromy groups ofSchwarzian di�erential equations or equivalently, of the projectivized monodromygroups for the associated linear second order di�erential equations. Poincar�e him-self explicitly raised the question by noting (for punctured spheres) second orderequations depend on the same number of parameters as their monodromy groups(the position of the singularities{the conformal structure{is allowed to change) andfrom this observation boldly concluded, \On peut en g�en�eral trouver une �equationdu 2d ordre, sans points �a apparence singuli�ere qui admette un groupe donn�e"[Poincar�e 1884, p. 218]. In our own time, the question was raised in [Gunning 1981]and [Hejhal 1975a]; in fact Gunning conjectured Part (i) of our theorem and Tan[Tan 1994] conjectured Part (ii).Schwarzian equations themselves have long been an important tool in the studyof Riemann surfaces and their uniformization. Their relation with algebraic geome-try was established by Gunning in [Gunning 1967a]: For a �xed complex structureon R, the linear monodromy representations of the complex projective structurescorrespond to 
at maximally unstable rank 2 holomorphic vector bundles over R.A similar relation for branched structures was later studied by Mandelbaum e.g.[Mandelbaum 1973], [Mandelbaum 1975] (see also x11).In x11, we will present an analogue Theorem 11.3.3 of our main theorem in thecontext of holomorphic vector bundles over Riemann surfaces. Namely, let S be anoriented closed surface of genus exceeding one and � : �1(S)! SL(2; C ) a nonelemen-tary representation. Then � is the monodromy of a holomorphic 
at connection on amaximally unstable holomorphic vector bundle of rank two over a Riemann surface R,where R is di�eomorphic to S via an orientation preserving di�eomorphism R! S.Besides the fuchsian groups of uniformization, the class of monodromy groupsincludes the discrete, isomorphic groups of quasifuchsian deformations (Bers sliceswhich model Teichm�uller spaces and their boundaries), and discrete groups such asSchottky groups which are covered by fuchsian surface groups. See [Maskit 1987] fora wide array of possibilities.Theorem 1.1.1 further implies that the image in PSL(2; C ) of \almost" every ho-momorphism of the fundamental group has a geometric structure. This is quiteastonishing, especially so as the image groups are often not discrete and not even�nitely presentable.



4 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENRyszard Rubinsztein [Rubinsztein 1996] observed that ifG0 � G = �1(R) is any in-dex two subgroup, the restriction of � to G0 can be lifted from PSL(2; C ) to SL(2; C )in 22g ways. Consequently by Theorem 1.1.1, a homomorphism whose restriction toan index two subgroup is nonelementary is always associated with a complex projec-tive structure for some complex structure on the corresponding two sheeted cover.One such index two subgroup is constructed in x8.6.Special cases of Theorem 1.1.1(i) were proved in [Hejhal 1975a] and the case of ho-momorphisms into PSL(2;R) was investigated in [Gallo et al. 1987] and [Tan 1994].Proofs of Theorem 1.1.1(i) have been announced before. Gallo's research announce-ment [Gallo 1989] proposed an innovative strategy for a proof, but the promised de-tails have not been published or con�rmed. Gallo's strategy had been developed inconsultation with W. Goldman and W. P. Thurston, and was particularly inspired byThurston's approach to the deformation of fuchsian groups by bending. Goldman'spaper [Goldman 1987] is an exemplar of this strategy applied in the interesting specialcase where � is an isomorphism onto a fuchsian group; it deals with the problem ofdetermining all complex projective structures with the prescribed monodromy. Thisquestion is discussed further in x12.The recent paper [Kapovich 1995] proposed a proof con�rming Theorem 1.1.1(i).Although the argument presented is incomplete (Lemmas 1 is incorrect and a condi-tion is omitted in Lemma 4, they are corrected in the present paper, and some detailsare missing in the proofs of Propositions 1 and 2), the paper contains new ideas anddirectly motivated a fresh examination of the whole issue.The present work was begun by Marden with the goal of settling the validityof the claims. In a general sense, Gallo's and Kapovich's strategy is followed, al-though the details, especially in Part B, are quite di�erent from those suggested in[Gallo 1989] or [Kapovich 1995]. In the latter phase of the investigation, a collabo-ration with Kapovich began. Almost immediately this produced a breakthrough inunderstanding the connection between a certain construction invariant and the liftingobstruction (xx9{10). Instead of using the di�cult continuity arguments proposed in[Kapovich 1995], we use branched structures. Motivated by Tan's work [Tan 1994] onreal branched structures, we found a technique for constructing branched projectivestructures complementing that developed earlier for joining pants. This approach ex-hibits clearly the connection. It also clari�es the role of the second Stiefel{Whitneyclass and degree of instability of holomorphic bundles which is discussed by Kapovichin x11. In fact, one of our discoveries is that it is easier to prove Theorem 1.1.1 simul-taneously for branched and unbranched structures than to establish the unbranchedcase by itself.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 5Part C of our paper brings together additional results that �ll out the picturepresented by our main theorem. These are developed in the context of holomorphicbundles over Riemann surfaces. For example, in some respects Theorem 1.1.1 ismore clearly seen in the context of a more general existence theorem for branchedcomplex projective structures with a prescribed branching divisor and monodromyrepresentation. This re�nement, Theorem 11.2.4, is expressed in terms of the secondStiefel-Whitney class. In addition, we present the full proof of the divergence theo-rem brie
y outlined in [Kapovich 1995]. This Theorem 11.4.1 deals with sequencesof monodromy homomorphisms �n : �1(R) ! PSL(2; C ) associated with divergentSchwarzian equations on a �xed Riemann surface. Such a sequence of homomor-phisms cannot converge algebraically to a homomorphism, either nonelementary orelementary. In terminology of Teichm�uller theory, the extension of a Bers slice to thefull representation variety is properly embedded. In x12 we list and brie
y discuss anumber of open problems arising from our work.We three authors decided to join together to pool the fruits of a decade of ourindividual and collaborative research relating to the main result. By doing so wehave arrived at a rather larger understanding of the fundamental existence problemfor the monodromy of projective structures.Our topic falls under the ancient and revered subject heading of linear ordinarydi�erential equations on Riemann surfaces, a subject introduced by Poincar�e. Theproblem we consider �ts comfortably with those associated with \the Riemann-Hilbert Problem" (Hilbert's 21st problem) for �rst-order fuchsian systems and n-th order fuchsian equations. Yet our approach is quite di�erent than that associ-ated with this theory [A-B 1994], [Iwasaki et al. 1991], [Sibuya 1990], [Yoshida 1987],[Hejhal 1975b]. For one thing, our approach is special to second order equations.Then we work primarily with projectivized monodromy in PSL(2; C ). This turnsthe problem into one largely involving the geometry of surfaces and M�obius groups.Another di�erence is that here we are mainly dealing with equations without sin-gularities. Finally we do not prescribe the complex structure in advance, rather itis determined as part of the solution: the number of parameters in the equationsmatches the number in the representations. The need to introduce a branch pointto handle part (ii) of our Theorem is however reminiscent of the need for \apparentsingularities" in that theory.Except for a particular case, we have left aside the general existence problem forsurfaces with punctures and branch points. However, we believe that the foundationlaid here will stimulate (further) exploration of these and other important aspects of



6 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENthe subject, including a characterization of the nonuniqueness, that are not now wellunderstood.Acknowledgments. Marden would like to thank the Mathematics Institute of theUniversity of Warwick, the Forschungsinstitut f�ur Mathematik at ETH, Z�urich, andthe Mathematical Sciences Research Institute in Berkeley, for the privilege of partic-ipating in their programs while his research was carried out. In addition he thanksDavid Epstein, Dennis Hejhal, Yasutaka Sibuya, and Kurt Strebel for helpful discus-sions. David in particular provided insightful suggestions for some of the proofs.This research additionally received support from the NSF grants DMS-9306140and DMS-96-26633 (Kapovich) and DMS-9022140 at MSRI (Kapovich and Marden).All us authors thank Silvio Levy for providing invaluable editorial and LATEX as-sistance and the referee for many helpful comments and suggestions.1.2. M�obius transformations. M�obius transformations correspond to elements ofPSL(2; C ) according to�(z) = az + bcz + d  ! �� a bc d� with ad� bc = 1:They extend from their action on the extended plane C [1 to upper half-three-spaceor, via stereographic projection, from the 2-sphere S2 to the 3-ball. The extensionsform the group of orientation-preserving isometries of hyperbolic three-space, whichwe denote by H 3 (in either the ball model or the upper half-space model) with @H 3denoting the \sphere at in�nity", that is, the extended plane or S2, depending on themodel. Throughout our paper, we will identify the extended plane with S2.We recall the standard classi�cation:� A transformation � is parabolic if it has exactly one �xed point on @H 3 , or,equivalently, if it is not the identity and its trace satis�es tr2 � = (a + d)2 = 4.Parabolic transformations are those conjugate to z 7! z + 1.� An elliptic transformation has two �xed points in @H 3 and also �xes pointwiseits axis of rotation, that is, the hyperbolic line in H 3 joining the �xed points.Its trace satis�es 0 � tr2 � < 4, and it is conjugate to an element of the formz 7! e2i�z, for 0 < � < �.� A loxodromic transformation � likewise has two �xed points in @H 3 , one repul-sive and the other attractive; it preserves the line in H 3 between them whichis called the axis. The trace of � satis�es tr2 � =2 [0; 4], and � is conjugate toz 7! �2z, where � satis�es j�j > 1 and tr2 � = (� + ��1)2. The transformation� acts on its axis by by moving each point hyperbolic distance 2 log j�j towardthe attractive �xed point.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 7The identity is not part of this classi�cation.A group � is elementary if there is a single point on @H 3 , or a pair of points on@H 3 , or a single point in H 3 , which is invariant under all elements of �.The generic group � with two or more generators is nonelementary, and is likelyto be nondiscrete as well. For example, any two loxodromic transformations � and� without a common �xed point generate a nonelementary group � = h�; �i. Thegroup � is the homomorphic image, in many ways, of any surface group of genusg � 2.The most important class of groups ruled out by the condition that � be nonele-mentary are groups of rotations of the two-sphere and groups conjugate to them(unitary groups). We recall that a group, discrete or not, that is composed solely ofelliptic transformations is conjugate to a group of rotations of the 2-sphere.In anticipation of our later work, we also recall the de�nition of a two-generatorclassical Schottky group G = h�; �i. There are four mutually disjoint circles withmutually disjoint interiors, arranged as two pairs (c1; c01) and (c2; c02). The generator� sends the exterior of c1 onto the interior of c01, and � does the same for (c2; c02).The common exterior of all four circles serves as a fundamental region for its actionon its regular set 
.Let � : 
 ! S := 
=G denote the natural projection. The surface S has genustwo, and �(c1) and �(c2) are disjoint, nondividing simple loops on S. If d � S isa simple loop with an �-invariant lift d� � 
, the free homotopy class of d in S isuniquely determined up to Dehn twists about �(c1) (see x1.8).The group G extends to act on 
 [ H 3 ; the quotient is a handlebody of genustwo in which �(c1) and �(c2) are compressing loops that bound mutually disjointcompressing disks in the interior.If, instead of circles, the pairs (c1; c01) and (c2; c02) are Jordan curves (which canalways be assumed to be smooth), the resulting group is called more generally a(rank-two) Schottky group. According to [Chuckrow 1968], or [Zieschang 1962] in thehandlebody interpretation, every set of free generators of a Schottky group (of thegeneral kind!) corresponds to pairs of Jordan curves as described above.Our method of construction in this paper will always yield classical Schottky groupsin terms of designated generators. The extra knowledge that, for the designatedgenerators, the loops can be taken as round circles is pleasing and convenient, but itis not really necessary for the proofs.1.3. Projective structures. Let R be a closed Riemann surface of genus at leasttwo, and let R = H 2=G be its representation in the universal covering surface H 2 (the



8 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENtwo-dimensional hyperbolic plane) by a fuchsian covering group G. We will describea projective structure �rst in the universal cover H 2 and then intrinsically in R.A complex projective structure with respect toG is a meromorphic, locally univalent(i.e. locally injective) function f : H 2 ! f(H 2) � S2, for which there corresponds ahomomorphism � : G! � � PSL(2; C ) such that f(
(t)) = �(
)f(t) for any t 2 H 2and any 
 2 G. It follows that f descends to a multivalued function f� on R, calledthe (multivalued) developing map; it \unrolls" R onto the sphere. The Schwarzianderivative of f , St(f) := �f 00f 0 �0 � 12�f 00f 0 �2 = �(t);(1)satis�es �(
(t))
02(t) = �(t), and therefore descends to a holomorphic quadraticdi�erential on R.Conversely, given any holomorphic �(t) in H 2 with this invariance under G, thereis a solution f(t) of (1), uniquely determined up to post composition by M�obiustransformations, which is a locally univalent meromorphic function that induces ahomomorphism � of G.The Schwarzian equation is related to the second-order linear di�erential equationu00(t) + 12�(t)u(t) = 0(2)as follows. The ratio f(t) = u1(t)=u2(t) of any two linearly independent solutions u1and u2 in H 2 gives a solution f of the Schwarzian; conversely, any solution f of theSchwarzian can be so expressed, indeedu2 = (f 0)�12 ; u1 = fu2;(3)if the Wronskian �(u1; u2), which is necessarily a constant, is normalized as � = 1.Another pair au1+bu2, cu1+du2 of independent solutions corresponds to the solutionBf of the Schwarzian, where B(z) = (az + b)=(cz + d).On the Riemann surface R = H 2=G, a form of (2) that is invariant under changeof local coordinates z is,v00(z) + 12f�(z) + Sz(��1)gv(z) = 0;(4)where � denotes the projection from H 2 . In interpreting this equation, the Schwarziantransforms as a connection under change of local coordinate z 7! � = �(z) and vtransforms as a half-order di�erential (see [Hawley and Schi�er 1966]), speci�callyv(�(z))� 0(z)�12 = v(z):



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 9The monodromy group and monodromy representation are computed as follows.Fix �1(R;O) with basepoint O 2 R, and a solution f�(z) (or v1(z)=v2(z)) near O.Let c 2 �1(R;O) be a simple loop based at O. Analytically continue f� (or v1=v2)around c, arriving back at a solution 
f� (or 
(v1=v2)), for 
 2 PSL(2; C ). Set�(c) = 
. In this manner the local solutions f� (or v1=v2) determine a monodromyepimorphism � : �1(R;O)! � � PSL(2; C );where � is a monodromy group for the equation. A di�erent local solution Bf�(or B(v1=v2)), coming possibly from a di�erent choice of basepoint, determines aconjugate homomorphism c 7! B�(c)B�1. Thus, the equation itself determines aconjugacy class of homomorphisms into PSL(2; C ).If P is a fundamental polygon for G in H 2 , we can regard f(P) as spread over theRiemann sphere, a membrane in Hejhal's terminology [Hejhal 1975a]. The �-imageof the edge pairing transformations of P will be edge-pairing transformations of themembrane f(P), which therefore serves as an organizing principle for �.From the topological point of view, a projective structure is de�ned by an orienta-tion preserving local homeomorphism, called the (multivalued) developing map, of Rinto S2 or, the (single valued) developing map of the universal cover ~R into S2 whichis equivariant with respect to the given homeomorphism �. From this perspective,the group � is called the holonomy (or, more classically, monodromy) group. Thereis a unique complex structure on R for which the local homeomorphism becomesconformal.The fact that the Schwarzian equation can be replaced by the linear di�erentialequation implies the following:Lemma 1.3.1. If the homomorphism � : �1(R;O)! � � PSL(2; C ) is induced by aprojective structure on R, it can be lifted to a homomorphism �� : �1(R;O)! �� �SL(2; C ).Proof. Consider an action of G �= �1(R;O) on H 2 given by the uniformization of thesurface R, take an element h 2 G. Then the solution pair (3) changes under analyticcontinuation from t to T = h(t) according to (see [Hawley and Schi�er 1966])� 1=pf 0f=pf 0� (T ) =ph0(t)� a bc d�� 1=pf 0f=pf 0� (t):(5)where � a bc d� 2 SL(2; C ); �(h) = az + bcz + d



10 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENThere are 22g possible choices for ph0(t) over a set of canonical generators fhg of G.After we make a choice we get the homomorphism�� : G! SL(2; C ); ��(h) = � a bc d� 2 SL(2; C ):Note however that �� is not canonically determined by the di�erential equation (2).We emphasize that our notion of lifting does not require that the image � of � beisomorphic to the image of the lift ��. For example, a lift to SL(2; C ) of a half-rotationin PSL(2; C ) has order four, not two.We will refer to �� as a linear monodromy representation of the projective structure.Remark 1.3.2. The projective structure associated with the equation Sz(f) = �can be joined to the identity by means of solutions of Sz(f) = t�, for t 2 C .1.4. Branched projective structures. A branched projective structure on a hy-perbolic Riemann surface R is a holomorphic mapping f : H 2 ! S2 which is locallyunivalent except in a discrete subset of H 2 and which is equivariant with respectto a homomorphism � : G ! PSL(2; C ). We will say that such a structure is singlybranched if f 0(z) has at most simple zeroes and the projection of the set fz : f 0(z) = 0gto R is exactly one point q. These are the structures which appear in Theorem 1.1.1and we will restrict our comments here to this special case. The more general case willbe discussed separately in x11. Near such point q (which we will identify with zeroin local coordinates), the quadratic di�erential � = Sz(f) has a Laurent expansionof the form, �(z) = �32z2 + bz + 1Xi=0 aizi; b2 + 2a0 = 0:(6)Conversely, if �(z) has such an expression near z = 0, a solution of the Schwarzianwill be of the form f(z) = az2(1+o(1)) near z = 0. With � given by (6), the equation(2) has the two linearly independent solutions with expansions near z = 0 of the formv1(z) = z3=2(1 + o1(1));v2(z) = z�1=2(1 + o2(1)):A circuit about z = 0 generates the monodromy� u1u2� 7! J � u1u2� ; where J = ��1 00 �1� :The projectivized monodromy in PSL(2; C ) is just the identity.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 11Therefore the branched structure determines the homomorphism � : �1(R;O) !PSL(2; C ) as in the unbranched case. However, � cannot be lifted to a homomorphisminto SL(2; C ). Indeed, given a standard presentationha1; b1; : : : ; ag; bg jQ[bi; ai] = 1ifor �1(R;O), and matrix representations Ai and Bi for �(ai) and �(bi), we have���Y[bi; ai]� =Y[Bi; Ai] = J;where ��(ai) = Ai and ��(bi) = Bi.We will discuss this matter further in xx11.5, 11.6.1.5. Parameter Count. The vector bundle Qg of quadratic di�erentials over Teich-m�uller space Tg has complex dimension 6g � 6. Likewise, the representation varietyVg of homomorphisms � : �1(R;O) ! PSL(2; C ), modulo conjugacy, has complexdimension 6g�6. Let V 0g � Vg denote the subset of nonelementary representations, i.e.equivalence classes of homomorphisms whose images are nonelementary subgroups ofPSL(2; C ). Theorem 1.1.1 asserts that the map Pg of projective structures Qg ! Vg issurjective onto the component of V 0g consisting of representations liftable to SL(2; C ).In fact, the image space V 0g is itself a complex analytic manifold [Gunning 1981],[Hejhal 1975a]. According to [Goldman 1988], or as a consequence of Theorem 1.1.1,it has two components (one corresponds to liftable representations and the other oneto unliftable representations). See [B-C-R 1996] and [Li 1993] for more informationabout representation varieties of surface groups.According to Hejhal's holonomy theorem [Hejhal 1975a] the map Pg is a localhomeomorphism which is shown in [Earle 1981] to be locally biholomorphic. In par-ticular, the set of points with a given monodromy � is discrete. According to (1) inx1.6 below, there is at most one representative in the �ber over a particular Riemannsurface. However Pg is not a covering map [Hejhal 1975a].In Theorem 11.5.2 we will prove an analogue of Hejhal's holonomy theorem forsingly branched projective structures; we prove that the holonomy mapping from thespace of singly branched projective structures to Vg is locally a �ber bundle with �berof complex dimension 1.1.6. The global structure. Recorded below are basic facts about projective struc-tures. For the unbranched case, proofs are in [Gunning 1967a] and [Kra 1969, 1971].Other useful references are [Gunning 1981] and [Hejhal 1975a]; the latter includesextensive historical background.



12 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENHere is a brief proof that (in the unbranched case) the holonomy group � = �(G)cannot be a unitary group, that is, cannot be conjugate to a group of isometries ofS2. Assume otherwise. Then � preserves the spherical metric �. Its pullback f �� is aG-invariant metric on H 2 which is locally isometric to the sphere. Consequently f ��has constant curvature +1, in violation of the Gauss-Bonnet theorem.For the case of a singly branched structures, property (1) below is a special case of[Hejhal 1975a, Theorem 15], (2) will be established as Theorem 11.6.1, and (3) willbe established as Corollary 11.6.2.Below we consider projective structures � on R = H 2=G which have the holo-morphic developing mapping f : H 2 ! S2 and monodromy representation � : G !PSL(2; C ). Assume that � is either unbranched (i.e. f is locally univalent) or is singlybranched. Let �(G) = � � PSL(2; C ) denote the monodromy group. The followingthree properties hold.(1) If two developing mappings f1 and f2 determine the same homomorphism �,then f1 = f2.(2) � is a nonelementary group.(3) The following statements are equivalent provided that, when � is branched,f(H 2) is not a round disk in S2:(i) f(H 2) 6= S2;(ii) H 2 ! f(H 2) is a possibly branched cover;(iii) � acts discontinuously on f(H 2).Property (1) does not rule out the possibility that the same target group � mayarise from di�erent projective structures on R. Property (2) shows that the require-ment in Theorem 1.1.1 that � be nonelementary is necessary. The situation (3) has arich structure as it is associated with the theory of covering surfaces; in particular itincludes the theory of quasifuchsian groups and Schottky groups. In contrast, in thegeneral case there is a bare minimum of structure because � need not be discrete.1.7. Strategy of the proof. Given a homomorphism� : �1(R;O)! � � PSL(2; C )such that � is nonelementary, the strategy consists of two parts.Part A (xx3{5). Find a pants decomposition fPig of R with the property that�(�1(Pi)), for 1 � i � 2g � 2, is a two-generator (classical) Schottky group.We recall that a pants is a Riemann surface conformally equivalent to a three-holedsphere. A surface of genus g � 2 requires 3g � 3 simple loops to cut it into pants,



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 13and there results 2g � 2 pants. It has in�nitely many homotopically distinct pantsdecompositions.Part B (xx6{10). Find representations of the universal covers ~Pi in the regular sets(i.e. domains of discontinuity) of �(�1(Pi)) � S2. Glue them together as dictatedby the combinatorics of f ~Pig in ~R, as relayed by �. In general there is a Z=2-obstruction to such gluing. If there is no obstruction, we end up with a simplyconnected pants con�guration ~S over S2 that models the universal cover of a newRiemann surface S homeomorphic to R. The projection of ~S to S2 is a �-equivariantlocal homeomorphism. If there is an obstruction, introduce a single branch point oforder 2 by applying a twist. This removes the obstruction to the construction and anew Riemann S surface homeomorphic to R can be assembled as before. The result iseither unbranched or singly branched projective structure on S with the monodromyrepresentation �. According to Theorem 11.2.3 if � lifts to SL(2; C ) then the structurehas to be unbranched, if � does not lift then the structure has to be singly branched;in other words, the Z=2-obstruction to gluing is the 2nd Stiefel-Whitney class of therepresentation �. This proves Theorem 1.1.1.The method used to assemble the pants con�guration is a form of \grafting", �rstapplied to kleinian groups in [Maskit 1969].1.8. Terminology and notation. Throughout this paper we will work on closedsurface R, of genus g � 2. When convenient, we will assume that R is a Riemannsurface R = H 2=G in terms of its universal cover (which may be taken as the hy-perbolic plane H 2) and fuchsian cover group G. Fix O 2 R as the basepoint for itsfundamental group �1(R;O). Let� : �1(R;O)! � � PSL(2; C )be the designated homomorphism with a nonelementary image �.Throughout we will use lowercase Latin letters a; b; c; : : : to denote elements of�1(R;O), and the corresponding Greek letters �; �; 
; : : : to denote their �-images in�. A nontrivial loop is one not homotopic to a point.We will write the compositions of both curves and transformations (and theirassociated matrices) starting at the right. Thus, b follows a in both ba and �(b)�(a) =��.By a standard set of generators fai; big of �1(R;O), where 1 � i � 2g, we meana set of oriented simple loops that generate the fundamental group and have thefollowing properties. For each i, the loop bi crosses ai at O, from the right side of aito the left, and is otherwise disjoint. For j 6= i, the simple loops (aj; bj) are freely



14 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENhomotopic to simple loops disjoint from (ai; bi). The product of the commutatorsYi b�1i a�1i biaibounds a simply connected region lying to its left.We will refer to a product ba as a simple loop if it is homotopic to one (with �xedbasepoint). Thus, for any k 2 Z, the loop b1ak1 is simple, and so are a2b�11 ak1 anda2b1a1, but not a�12 b1ak1, or, for k 6= 1, the loop a2b1ak1. The curve b�11 a1b1 is simple,but not a2b�11 a1b1.Often we will modify a simple loop c � R by applying a Dehn twist, which can bedescribed as follows. Let A be an annular neighborhood about a (nontrivial) simpleloop a. Orient @A so that A lies to its left. Hold one component of @A �xed androtate the other jnj-times in the positive or negative direction according to whethern � 1 or n � �1. This action extends to an orientation preserving homeomorphism�n of A, and then to all R, by setting �n = id outside A. �n, or more precisely itshomotopy class on R, is called the Dehn twist of order n about a. If c is not freelyhomotopic to a curve disjoint from a, then �n(c) is not freely homotopic to c.2. Fixed Points of M�obius TransformationsIn this section we will collect the lemmas needed to control the type of composedtransformations.2.1. Basic lemmas.Lemma 2.1.1.(i) Suppose � is loxodromic and � sends neither �xed point of � to the other. GivenM > 0 there exists N � 0 such that j tr��nj > M and ��n is loxodromic for alljnj � N .(ii) Suppose � is loxodromic and � sends exactly one �xed point of � to the other.Given M > 0 there exists N � 0 such that j tr��nj > M and ��n is loxodromic forall n � N (if � sends repulsive to attractive) or for all n � �N (if � sends attractiveto repulsive).(iii) Suppose � is parabolic and � does not share a �xed point with �. Given M > 0there exists N � 0 such that j��nj > M and ��n is loxodromic for all jnj � NProof. For (i) and (ii) we may assume� = �� 00 ��1� with j�j > 1; � = � a bc d� with ad� bc = 1:



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 15Then tr ��n = �na + ��nd. Not both a and d can vanish, because � does notinterchange the �xed points of �. The assertions now follow directly.For (iii), we may assume� = � 1 10 1� ; � = � a bc d� with ad� bc = 1:Then tr ��n = (a + d) + nc, where c 6= 0. Again, the desired conclusion follows.Lemma 2.1.2. Assume � is loxodromic with attractive �xed point p� and repulsive�xed point p�.(i) For any sequence k ! +1, the �xed points of ��k converge to �(p�) and p�. The�xed points of �k� converge to p� and ��1(p�).(ii) For any sequence k ! �1, the �xed points of ��k converge to �(p�) and p�. The�xed points of �k� converge to p� and ��1(p�).Proof. Part (ii) follows from (i) upon replacing � by ��1. The computational proofis instructive. Set � = �� 00 ��1� and � = � a bc d� ;where j�j � 1 and ad � bc = 1. If ac 6= 0, the two �xed points of �k� are �2k�(1�p�)=2c� d=2c; where � = 1 + 2da�2k + d2a2�4k � 4a2�2k :The \+" �xed point approaches 1 with k. The \�" �xed point has the form2ac � dc � d22ac�2k (1 +p�)�1 � d2c:This one approaches �b=a = ��1(0).If c = 0, one �xed point of �k� is 1. The other one is b=(d��2k � a). This tooapproaches �b=a = ��1(0) with k.If a = 0 the two �xed points are (�d�pd2 � 4�2k)=2c. Both approach 1 with k.Here ��1(0) =1.The �xed points of ��k = �(�k�)� converge to �(p�) and �(��1p�) = p�.Lemma 2.1.3. Suppose 
 is loxodromic with attractive �xed point p�, repulsive �xedpoint p�.(i) Suppose �(p�) 6= p� and �(p�) 6= p�. Given M > 0 there exists N � 0 such thatj tr 
�n�
n�j > M and 
�n�
n� is loxodromic and doesn't share a �xed point with �or � for all n � N .



16 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDEN(ii) Suppose �(p�) 6= p� and �(p�) 6= p�. Given M > 0 there exists N � 0 such thatj tr 
�n�
n�j > M and 
�n�
n� is loxodromic and doesn't share a �xed point with �or � for all n � �N .Proof. We may assume
 = �� 00 ��1� ; � = � a bc d� ; � = � u vw x� ;with j�j > 1, ad � bc = 1, and ux � vw = 1. We �nd that tr 
�n�
n� = �2ncv +��2nbw + (au+ dx).In case (i) we have c 6= 0 (since �(p�) 6= p�), and v 6= 0 (since �(p�) 6= p�); thuscv 6= 0 and 
�n�
n� is loxodromic for all large n. Moreover, if q is a �xed point of�, then q 6= p� but limn!+1 
�n�
n�(q) = p�.Suppose instead that q is a �xed point of �, and of 
�n�
n� for all large n.First q 6= p� since 
�n�
n�(p�) = p� implies �(p�) = p�. Then �(q) 6= p� for
�n�(p�) = q holds for all large n only if q = p� or q = p�. Thus once again,limn!+1 
�n�
n�(q) = p� 6= q.In case (ii), b 6= 0 (since �(p�) 6= p�), and w 6= 0 (since �(p�) 6= p�); hence 
�n�
n�is loxodromic for all small n. Moreover if q is a �xed point of �, we have q 6= p�, butlimn!+1 
�n�
n�(q) = p�.Suppose instead that q is a �xed point of �, and of 
�n�
n� for all small n. Againq 6= p� and then �(q) 6= p�. As above, q cannot be a �xed point of 
�n�
n� for allsmall n.Lemma 2.1.4. Suppose � is a loxodromic transformation with �xed points u and v.(i) Given p� 6= u; v and T > 2, there exists � > 0 such that if � is any loxodromictransformation with �xed points p, q satisfying d(p; p�) < �, d(q; p�) < �, and withtrace satisfying jtr�j � T , then � and � generate a classical Schottky group.(ii) Given p; q 6= u; v, there exists T > 2 such that if � is any loxodromic transforma-tion with �xed points p; q and satisfying jtr �j � T , and if � also satis�es jtr�j � T ,then � and � generate a classical Schottky group.Proof. A loxodromic transformation � acts in H 3 [ @H 3 . If P � H 3 is a planeorthogonal to its axis, so is �(P ). The two circles @P and @�(P ) in @H 3 that separatethe �xed points p and q of � bound what we will refer to as an annular region A for�. Given any point q� 6= p; q; u; v in @H 3 , there are annular regions for � that containq� in their interior.Fix p� � @H 3 distinct from q�; p; q; u; v. Let (pn; qn) be a sequence with pn 6= qnand limpn = lim qn = p�. Let Tn be the transformation with �xed point q� such



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 17that Tn(p) = pn, Tn(q) = qn. Ultimately Tn is loxodromic, its attractive �xed pointconverges to p�, and jtrTnj ! 1. Consider an annular domain A for � containingq� in its interior. TnA is an annular region for Tn�T�1n , all containing q�. Thesequence of bounding circles of TnA converge to the point p�; that is, TnA convergesto @H 3 nfp�g. The analysis would be equally applicable to a family of transformationsf�g, each with �xed points p; q, so long as they all satis�ed jtr �j � T for some T > 2(uniformly loxodromic).Now let A0 be an annular domain for � containing p� in its interior. Ultimatelythe bounding circles of TnA also lie in the interior of A0. For such indices n, � andTn�T�1n generate a classical Schottky group. Part (i) follows at once.To establish part (ii), note that both � and � have annular domains whose bound-aries are circles arbitrarily close to their �xed points, if T is large enough.Corollary 2.1.5. Suppose 
 is loxodromic with attractive �xed point p�, repulsive�xed point p�, and �; � are loxodromic as well.(i) If �(p�) 6= p� and �(p�) 6= p� there exists N � 0 such that 
�n�
n and � generatea classical Schottky group for all n � N .(ii) If �(p�) 6= p� and �(p�) 6= p� there exists N � 0 such that 
�n�
n and � generatea classical Schottky group for all n � �N .Proof. This is a corollary also of Lemma 2.1.3. In case (i), the �xed points of 
�n�
nare arbitrarily close to p� for large n, since p� is not �xed by �, where p� is not �xedby �. In case (ii), the �xed points of 
�n�
n are arbitrarily close to p�, for smalln.2.2. Lemmas regarding half-rotations.Lemma 2.2.1. Suppose � and � each have two �xed points and � sends one of the�xed points of � to the other. Then � likewise sends one of the �xed points of � tothe other if and only if tr2 � = tr2 �:Proof. We may assume that� = �� 00 ��1� and � = � 0 bc d� ;where � 6= �1 and bc = �1. The �xed points of � are (�d� pd2 � 4)=2c. Suppose� sends one to the other. Each case implies and is implied by one of the relationsd(�2 � 1) = �pd2 � 4(�2 + 1):



18 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENSquaring, we get d2�2 = (�2 + 1)2, ortr� = d = �(�+ ��1) = � tr�:Lemma 2.2.2. An element J of order two interchanges the �xed points of an ellipticor loxodromic transformation 
 if and only ifJ
J = 
�1;and �xes them if and only if J
J = 
:It �xes the �xed point of a parabolic transformation 
 if and only ifJ
J = 
�1:Proof. For the �rst part we may assume that
 = �� 00 ��1� and J = � 0 b�b�1 0� ;while for the second, 
 = � 1 b0 1� and J = � i 00 �i� :The conclusion is veri�ed by computation.Lemma 2.2.3. Suppose � and � are loxodromic without both �xed points in common.J is an element of order two.(i) If J interchanges the �xed points of both � and �, J neither interchanges nor �xesthe �xed points of ��.(ii) If J interchanges the �xed points of � but not of ��k for some k 6= 0, then J�does not interchange the �xed points of �.(iii) If J interchanges the �xed points of both ��k and ��k+1 for some k, then Jinterchanges the �xed points of ��k for all k, but neither interchanges nor �xes the�xed points of �, and does not interchange the �xed points of �m� for m 6= 0.Proof. For (i), J��J = ��1��1 6= ��1��1, ��.For (ii), J1 = J� has order two, but J1 6= id. If J1�kJ1 = ��k, then J��kJ =��k��1, a contradiction.For (iii), the hypotheses J��kJ = ��k��1 and J��k+1J = ��k��1J�J imply inturn that �k��1J�J = ��k�1��1;



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 19or J�J = ���1��1; (6= ��1; �):Then ��k��1 = J��kJ = J�J���k��1;or J�J = ��1. Now, for any k,J��kJ = ��1���k��1 = ��k��1:Finally, for any m 6= 0,J�m�J = ���m���1 = ���m��2 6= ��1��m:(Note the proof holds as well if some ��k is parabolic, under appropriate interpreta-tion; see Lemma 2.2.2.)Lemma 2.2.4. Suppose � has two �xed points but �2 6= id, while J is an elementof order two that does not interchange the �xed points of �. Then (�J)2 6= id and(J�)2 6= id.Proof. We may assume that� = �� 00 ��1� and J = � a bc �a� :with �2 6= �1, a2 + bc = �1. Then(�J)2 = � �2a2 + bc �2ab� abac� ��2ac bc + ��2a2� :If (�J)2 = id, then ab(�2 � 1) = 0;ac(1� ��2) = 0:Either a = 0 or b = c = 0.The former case is impossible by hypothesis. If b = c = 0,then since a2 = �1, we get �2 = ��2 = 1. This is again a contradiction.Lemma 2.2.5. Suppose both J and J1J interchange the �xed points of the loxodromicor elliptic transformation 
. Then J1 �xes the �xed points of 
.Proof. Under the hypothesis, if p, q denote the �xed points of 
, we have J(p) =J1J(p) and J(q) = J1J(q). Hence J(p) = q and J(q) = p are �xed by J1.



20 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENRemark 2.2.6. Suppose � and � are loxodromic without a common �xed point and� does not send one �xed point of � to the other. If 
� �xes or interchanges the �xedpoints of �, then 
��1 has neither of these properties. In the latter case, 
 � ����1does not send one �xed point of � to the other. What will prevent us from makinguse of such facts as these is that if 
�, for example, is the �-image of a simple loop,then in general 
��1 and 
����1 are not.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 21A. The Pants Decomposition3. Finding a Handle3.1. Handles. By a handle H = ha; bi we mean two simple loops a; b 2 �1(R;O),crossing at O but otherwise disjoint, and such that � = �(a) and � = �(b) areloxodromic and generate a nonelementary subgroup h�; �i of �.Proposition 3.1.1. There exists a handle in R.Proof. The proof will occupy the remainder of this chapter.3.2. Case 1. There exists a simple, nondividing loop a 2 �1(R;O) for which �(a) = �is loxodromic. Choose b 2 �1(R;O) such that b is a simple loop crossing a exactly atO, and set � = �(b).Suppose �rst that � neither interchanges the �xed points of � nor shares a �xedpoint with �. Then, by Lemma 2.2.1, ��k is loxodromic for some k. Moreover,h�; ��ki is nonelementary. We can consequently choose H = ha; baki.Next suppose that � shares exactly one �xed point p with �. Because � is notelementary, there is a simple loop y 2 �1(R;O) that does not cross a or b and suchthat �(y) = � does not �x p. Take y with the orientation such that ay is homotopicto a simple loop. For any k, the loop ay is homotopic to a simple loop that crossesbak exactly at O (Figure 1).Now �� does not share the �xed point p of ��k. For at most one value of k, ��shares another �xed point q of ��k. For if��(q) = q = ��k(q) = ��k+m(q)with m 6= 0, we have �(q) = q, and then �(q) = q = �(q), a contradiction since q 6= p.Nor can �� send the �xed point p of ��k to another �xed point q = ��(p) of ��k formore than one k. For ��(p) = q = ��k(q) = ��k+m(q)for m 6= 0 implies that �(q) = q, and then �(q) = q. This is impossible since q 6= p.Thus there exists k such that �� neither interchanges the �xed points of ��k, nor�xes any. By Lemma 2.1.1, we may also assume that ��k is loxodromic.Consequently we can return to the case above with bak and ay.Finally, suppose that � either �xes both �xed points of � or interchanges them.Again �nd a simple loop y that does not cross a or b and such that � = �(y) neither�xes both �xed points of � nor interchanges them. Take the orientation of y so thatyb is homotopic to a simple loop. Then �� neither �xes both �xed points of � nor



22 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDEN
y

ay

bakFigure 1.interchanges them. Consequently we can return to one of the cases above with a andyb.3.3. Case 2. There is a simple, nondividing loop a 2 �1(R;O) such that �(a) = �is parabolic. Let b 2 �1(R;O) be a simple loop that crosses a exactly at O.If � = �(b) does not �x the �xed point p of �, then ��k is loxodromic for all largejkj, by Lemma 2.1.1. Thus we are back to Case 1.Suppose instead that �(p) = p. There is a simple loop y 2 �1(R;O), not crossinga or b, and such that � = �(y) does not �x p. We may take y with the orientationfor which yb is homotopic to a simple loop, and hence also ybak is homotopic to asimple loop. Since ��(p) 6= p, we conclude that ���k is loxodromic for some k, andybak brings us, once again, back to Case 1.3.4. Case 3. Let fai; big be a canonical basis for �1(R;O), with �(ai) = �i and�(bi) = �i. Assume that all the elements �i, �i, �j�i, �j�i, and �j�i are elliptic orthe identity. As the basis of our analysis of this case, we will �nd a simple dividingloop d for which �(d) is loxodromic.In this section we will establish some useful lemmas.Lemma 3.4.1. If � and � are elliptic, and their axes are not coplanar in H 3 , then�� is loxodromic.Proof. Let P denote the plane in H 3 spanned by the axis of � and the commonperpendicular l to that and the axis of �. Form the \open book" for P with spinealong the axis of � and angle half the rotation angle of �. Then � = RlRl�, where Rl�and Rl are half-rotations (180�) about the lines orthogonal to the axis of � indicatedin Figure 2. Similarly, � = Rl�Rl, where l� is the line orthogonal to the axis of � atits intersection with l, and lies halfway between l and �(l).
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P

l

ax(α)
lαFigure 2. Open book for plane PConsequently, �� = Rl�Rl� . Therefore �� is elliptic if and only if the lines l� andl� intersect in H 3 : if instead they meet at @H 3 , the composition �� is parabolic, andif they do not meet at all in H 3 [ @H 3 , the composition is loxodromic. Since the axisof � does not lie in P , l� does not lie in the plane spanned by l� and l. Therefore l�and l� cannot meet anywhere.Corollary 3.4.2. Under the hypotheses of Case 3, the axes of the nonidentity ele-ments of f�i; �jg either(a) all pass through some point � 2 H 3 , or(b) all lie in a plane P � H 3 , or(c) are all orthogonal to a plane P � H 3 .Proof. Apply Lemma 3.4.1 to the set f�i; �jg.Note that, in case (c), the plane P contains all the lines l�i and l�i. This is thefuchsian case: all elements of � preserve P .Case (a) does not arise for our situation since � is nonelementary.Lemma 3.4.3. Suppose � and � are elliptic with distinct axes that lie in a planeP � H 3 . Assume �� is also elliptic. Its axis cannot lie in P .Proof. The axes of �� and � are di�erent, so there is a �xed point x of �� not lyingin the axis of �. Set y = �(x); then �(y) = x. Let the plane P 0 be the perpendicularbisector of the line segment [x; y]. By construction, x and y are equidistant from P 0.
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a

b

c

R1

R2

R3

Figure 3. Re
ection triangle for �, �, � � �But x and y are also equidistant from the axis of �, since � is a rotation about itsaxis. All points equidistant from x and y lie in P 0, so the axis of � is contained inP 0. Since x and y are also equidistant from the axis of �, this line, too, is containedin P 0. We conclude that P 0 = P , so x =2 P .In fact, the proof shows that if the axis of �� meets P or @P , it does so at, andonly at, a point of intersection or common endpoint of the axes of � and �.Lemma 3.4.4. Suppose �, �, and 
 = �� are elliptic with distinct axes, and thatthey preserve a plane P � H 3 . Then ��1��1�� is loxodromic.Proof. Let a; b; c denote the �xed points in P of �, � and 
. Replace � and � bythe inverses, if necessary, so that they rotate counterclockwise about a and b. LetR1 = J , R2 and R3 denote the re
ection in the lines through [a; b], [b; c] and [c; a],respectively. Then � = R1R3, � = R2R1, and 
 = R2R3. The vertex angles of thetriangle in Figure 3 represent the half-rotation angles. Then��1��1�� = J
J
:In order to better study J
J
, we take the line l through a and b to be the realdiameter in the disk model of P (Figure 3). J is re
ection in l; let R denote re
ectionin the vertical line through c and Jc. Let � denote the half-rotation angle of 
. Letl1 denote the line through c subtending angle � with the vertical, and set l2 = Rl1.Let R01 denote re
ection in l1 and R02 re
ection in l2.
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Jl1 Jc

θ

θ θ
R1

l1 l2

R2

R
l

J

Figure 4. Re
ection in Jl1 and l2Now we have 
 = R01R = RR02 andJ
J = JR01JJRJ = R0�1 R;where R0�1 = JR01J is re
ection in the line Jl1. Consequently,J
J
 = R0�1 RRR02 = R0�1 R02:The lines Jl1 and l2 cannot intersect in P [ @P . Therefore the composition of re
ec-tions in them, R0�1 R0�2 , is loxodromic (hyperbolic).Note, however, that R0�1 R01 = J
J
�1 = (��2�)�1 can sometimes be elliptic.3.5. Case 3 (continued). Suppose that the elements f�i; �ig, which are all ellipticor the identity, preserve a plane P � H 3 (Case (c) of Corollary 3.4.2). We mayassume that �1 6= id.Consider �rst the case that �1 is elliptic and its �xed point in P di�ers from thatof �1. Then the transformation � = ��11 ��11 �1�1, which corresponds to the simpleloop d = b�11 a�11 b1a1, is hyperbolic (Lemma 3.4.4). Because d divides R, there existsan element c of fa2; b2; : : : ; ag; bgg with 
 = �(c) 6= id. Apply the Dehn twist of ordern about d to the simple loop cb1, to get cdnb1d�n. Its image 
�n�1��n is loxodromicfor all large jnj by Lemma 2.1.3, since the �xed points on @P of the hyperbolic � arenecessarily di�erent from those of the elliptics 
 and �1 in P . Since cdnb1d�n is asimple, nondividing loop, we can return with it to Case 1 (x3.2).Consider next the case where �1 has the same �xed point in P as �1, or is theidentity. We can �nd c in fa2; b2; : : : ; ag; bgg such that 
 = �(c) does not have thesame �xed point in P as �1. If �(cb1a1) is not elliptic, return with cb1a1 to Case 1or 2. Otherwise, set d = (cb1)�1a�11 (cb1)a1, and apply the Dehn twist about d to ca1for a su�ciently high power. As above, return to Case 1 with the result.



26 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENNext, suppose that the axes of the elliptic elements f�i; �ig, which are all ellipticor the identity, lie in a plane P � H 3 (Case (b) of Corollary 3.4.2). We may assumethat �1 6= id.Assume �rst that the axes of �1 and �1 di�er. If they cross at p 2 P , or meet atp 2 @P , there is an element c of fa2; b2; : : : ; ag; bgg such that the axis of 
 = �(c)does not contain p. By Lemma 3.4.3, the axis of �1�1 does not lie in P , but it crossesP at p or meets @P at p. Consequently this axis is not coplanar with the axis of 
,which lies in P . Now Lemma 3.4.1 says that 
�1�1 is loxodromic. Return to Case 1with cb1a1.On the other hand, suppose that the axis l1 of �1 and the axis l2 of �1 are disjointin P [ @P . If the axis l of �1�1 is not coplanar with l1 or l2, the situation is againas above. If l is coplanar with each of l1 and l2, it cannot meet P [ @P . The planeP 0 orthogonal to l and to P is necessarily orthogonal to l1 and l2. If the axes of allnonidentity elements of f�1; �1; : : : ; g are orthogonal to P 0, we can return to the �rstsubcase of this section. Otherwise the axis of some 
 2 f�2; �2; : : :g is not orthogonalto P 0. Then 
�1�1 is loxodromic, since the axis of 
 is contained in P .Finally we need to consider the situation where �1 = id or the axes of �1 and�1 coincide. Find � in f�2; �2; : : : g distinct from the identity and having an axisdistinct from that of �1. Replace �1 by � in the analysis above. The triple of loopsin �1(R;O) giving rise to the loxodromic element found there also corresponds to asimple nondividing loop, and it is only this property that is needed.In light of Corollary 3.4.2, the analysis of Case 3 is complete. A handle exists, andProposition 3.1.1 is proved. 4. Cutting the Handles4.1. We have found a special handle H as speci�ed in x3. The next step is to cut allthe other (topological) handles, ending up with a (connected) surface of genus onewith 2(g� 1) boundary components. In cutting the handles, we will require that the�-image of each cutting loop is loxodromic.Although H, or rather the established properties of the �-image of its fundamentalgroup, serves to anchor the cutting process, in fact H itself will have to undergosuccessive changes. It will become more and more complicated in terms of an initialbasis of �1(R;O). Roughly speaking, we will be applying Dehn twists of possiblyhigh order to felicitous combinations of simple loops. The process will be governedby the applicability of the lemmas of x2 to yield loxodromic transformations, yet stillarising under � from simple loops in �1(R;O).
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Figure 5. Connection to handle H4.2. Let H = ha; bi denote the special handle found in Chapter 3, and set � = �(a),� = �(b). We claim that after replacing H = ha; bi by another handle of the formhabq; bi or hb; abqi, if necessary, we can assume that � does not send one �xed pointof � to the other.For suppose � sends one �xed point of � to the other. Then, using Lemma 2.1.1(ii),�nd q so that ��q is loxodromic and tr2 ��q 6= tr2 �. Necessarily, ��q does not shareeither of its �xed points with �. By Lemma 2.2.1, at least one of the followingstatements is true: � does not send one �xed point of ��q to the other, or ��q doesnot send one �xed point of � to the other.4.3. Now suppose that hx; yi is another pair of loops in �1(R;O) of the form x =u�1x0u, y = u�1y0u, where x0 and y0 are simple loops disjoint from a and b, with oneintersection point where they cross, and u is a simple arc from a \ b = O to x0 \ y0,otherwise disjoint from a; b; x0; y0 (see Figure 5).Consider d = ybak and its �-image � = ���k, for some k. Set � = �(x) and� = �(y). The e�ect of a Dehn twist of order n about d ish�; ��ki 7! h�n�; ��ki;h�; �i 7! h�n�; �i:We claim that there exist k and n such that:(i) ��k is loxodromic;(ii) � = ���k is loxodromic;(iii) �n� is loxodromic without a common �xed point with ��k;(iv) �n� is loxodromic;or that, after necessary relabeling and rearrangement to be spelled out below, anal-ogous properties hold. This claim will be established in the four steps of x4.4.Once this is accomplished, we will replace the handle H = ha; bi by the handlehdna; baki, and cut R along dnx, represented by a freely homotopic simple loop. Thisoperation will also serve as the basis of an induction procedure.



28 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENNote that it may well be that � = id, or � = id, or both. In the former case,property (ii) is satis�ed with (i), and in the second, property (iv) is satis�ed with(ii).4.4. Step (i). By x4 and Lemma 2.1.1(i), there exists K � 0 such that ��k isloxodromic for all jkj � K.Step (ii). If �� does not interchange the �xed points of �, then by Lemma 2.1.1we may take K in step (i) so large that � = ���k is loxodromic for all k � K or forall k � �K.If, however, �� does interchange the �xed points of � but �� does not, interchange� and � and return to the paragraph above.Finally, if both �� = J and �� = J1 interchange the �xed points of �, then���1 = JJ1 �xes them (and is either loxodromic or the identity). In this case replacehx; yi by hx; yx�1i, and � by ���1, and revert to the original notation. For this case,then, ���k is loxodromic for all jkj � K, for some K.Step (iii). First note that for no k 2 Z and no m 6= 0 can both �n� and �n+m�have �xed points in common with ��k. For the relations�n�(p) = p = ��k(p);�n+m�(p) = p = �n�m�(p)imply that �(p) is a �xed point of �, then that p is a �xed point of �, and �nallythat p is a �xed point of �. The last consequence is impossible.For any sequence k ! +1, according to Lemma 2.1.2 the �xed points of � = ���kconverge to ��(q) and p, where q and p denote the attractive and repulsive �xedpoints of �, respectively. Thus, if � sends one �xed point of � to the other for thissequence, then ��(q) = p. Similarly, for a sequence k ! �1, the �xed points of� converge to ��(p) and q. If, for this sequence, � sends one �xed point of � tothe other, then ��(p) = q. By our construction, �� does not interchange the �xedpoints of �, so � cannot interchange the �xed points of � = ���k for both a sequencek! +1 and a sequence k ! �1.Now if ��(p) = q, so that � is loxodromic for all k � K (step (ii)), then forsu�ciently largeK, � cannot send one �xed point of � = ���k to the other. Likewise,if ��(q) = p so that � is loxodromic for k � �K, again � cannot send one �xed pointof � to the other, for su�ciently large K. If �� sends neither �xed point of � to theother, � sends neither �xed point of � to the other, for all large jkj.We conclude that there exists K � 0 such that � = ���k is loxodromic for anyk � K or any k � �K, or both. Furthermore, � does not send one �xed point of �



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 29to the other. Given k in the admissible range, there exists N = N(k) � 0 such that�n�, for all jnj � N , is loxodromic and does not have a �xed point in common with��k.Step (iv). Consider � and � = ���k for �xed k � K or k � �K, according to (iii).If � does not interchange the �xed points of �, we can take N so large that either�n� or �n��1 is loxodromic for n � N = N(k).Suppose instead that � interchanges the �xed points of � but not of ���k+1 = �0.Then replace � by �0.However, not both � and �� (nor equivalently, � and ��1�) can interchange the�xed points of both ���k and ���k+1. For, if so, we apply Lemma 2.2.5 to J = �,J1 = � (or ��1) and to both ���k and ���k+1. That implies that the �xed points ofboth ���k and ���k+1 coincide with �xed points p; q of �. For this to occur, � �xesboth p and q, and then �� must do so as well. But since � itself �xes them, � mustalso �x them. This is impossible.We may assume one of yx or y�1x is a simple loop. Depending on which, replacehx; yi by hyx; yi or hy�1x; yi. Correspondingly, replace � by �� or ��1�. This returnsus to one of the previous cases for � = ���k or ���k+1.4.5. Cutting the surface. The loop dnx is freely homotopic to a simple, nondivid-ing loop d0, disjoint from dna and bak. Cutting R along d0 results in a new surfaceR(1) with a handle H = hdna; baki and two boundary components freely homotopicto dn and yx�1d�ny�1 (or y�1x�1d�ny). The corresponding transformations are �n�and ���1��n��1 (or ��1��1��n�), which have the same trace. The common trace,however, can be made as large as desired (Lemma 2.1.1).If the genus of R1 exceeds one, repeat the process using the new H, and so on.At the end, we will have a surface Rg�1 with a handle H = ha; bi (using again theoriginal notation) and 2(g � 1) boundary components.Orient all the boundary components so that Rg�1 lies to their right. Let x; y; : : :denote simple loops from the basepoint O parallel to them but otherwise disjointfrom each other and from a and b. Our construction allows us to assume that the�-images �(x), �(y), : : : are all loxodromic. Pairwise they have the same trace, butthe traces of di�erent pairs can be assumed to be di�erent.5. The Pants Decomposition5.1. We carry on from the situation left in x4.5. To start, adjust the special handleH = ha; bi as in x4 so that � = �(b) does not send one �xed point of � = �(a) tothe other. Orient b so that it crosses a from the right side of a to the left; then the
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y
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akFigure 6. Connection of boundary to handle Hboundary of Rg�1 lies to the left of c = b�1a�1ba and we have oriented the boundaryso that c lies to its right.Choose simple loops x; y 2 �1(Rg�1;O), each parallel to a boundary componentand disjoint from each other and a; b, except at O = a\ b. The orientations are suchthat ybak and xbak (but not yb�1ak or xb�1ak for k 6= 1) are homotopic to simpleloops for all k (see Figure 6). From x4.5 we know that � = �(x) and � = �(y) areloxodromic.5.2. We begin by sorting out the following possibilities.(1) If exactly one of �� and �� interchanges the �xed points of �, assume thatthe one that does is ��. In this case, we claim that, for all su�ciently large jkj, thecomposition � = ���k does not �x either �xed point p; q of �.For if ���k �xes p for two values of k, then p itself must be �xed by �, and thenby �� as well as by �. On the other hand, since �� interchanges the �xed points pand p0 of �, we get ��(p0) = p = �(p), so �(p0) = p. This contradiction to the knownproperties of the handle H establishes the claim.(2) If neither �� nor �� interchanges the �xed points of �, then by interchanging� and � and relabeling if necessary, we may assume that for all su�ciently large jkj,the composition � = ���k does not �x both �xed points p; q of �.For suppose ���k �xes p; q for two values of k, and, correspondingly, ���k �xesthe two �xed points of � for two other values of k. The �rst supposition implies thatp and q are �xed by �, then by ��, and of course by �. The second implies that pand q are �xed in addition by �� and �. But ��(p) = p = �(p) implies that � itself�xes p, a contradiction.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 31It is important to note that if, in addition, �� sends one �xed point of � to theother, then we may assume that � = ���k, for jkj large, does not �x even one �xedpoint of �. This is another application of the reasoning of (1).(3) We defer consideration until x5.5 of the remaining case that both �� and ��interchange the �xed points of �.5.3. In this section and the next we will work with cases (1) and (2) of x5.2. That is,�� does not interchange the �xed points of �, and, for all large jkj, the composition� = ���k does not �x both �xed points of �, and if �� sends one �xed point of � tothe other, ���k does not �x either �xed point of � . Consider d = ybak, for some k,and its �-image �. The e�ect of a Dehn twist of order n about d ish�; ��ki 7! h�n�; ��ki;h�; �i 7! h��n��n; �i:We will �nd k and n such that:(i) ��k is loxodromic;(ii) � = ���k is loxodromic;(iii) �n� is loxodromic and has no common �xed point with ��k;(iv) ��n��n� is loxodromic and has no common �xed point with �;(v) ��n��n and � generate a classical Schottky group.(vi) j tr ��n��n�j is unbounded in jnj.Once this is accomplished, we will replace the handle ha; bi with hdna; baki, thenremove from Rg�1 the pants determined by(d�nxdn; y; d�nxdny);and repeat the process.5.4. Step (i). The properties of the special handle H (x5.1) and Lemma 2.1.1(i)imply that there is K � 0 such that ��k is loxodromic for all jkj � K.Step (ii). Since �� does not interchange the �xed points of �, we can choose Kabove so large that ���k is loxodromic for k � K, k � �K, or both. In addition, forthe admissible range of k, the composition ���k does not �x both �xed points of �.Step (iii). This is identical with step (iii) of x4.3. There exists K � 0 such that� = ���k is loxodromic for any k � K, or any k � �K, or both. Given k in theadmissible range, there exists N = N(k) � 0 such that, for all jnj � N , the element�n� is loxodromic and has no �xed point in common with ��k.



32 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENStep (iv). Note that we may assume that K is su�ciently large so that � = ���khas no �xed point in common with � for jkj � K. For, if ���k �xes a �xed point pof � for two values of k, then � itself must �x p, and then � must as well.Case (1): �� sends one �xed point of � to the other. In this case � has no �xedpoint in common with � (x5.3). Thus, by Lemma 2.1.3, the composition ��n��n�is loxodromic for all large jnj, while we must have jnj � N to ensure that �n�is loxodromic.Case (2): �� does not send one �xed point of � to the other. Then �n� isloxodromic for all jnj � N , while ��n��n� is loxodromic either for n � N or forn � �N , for su�ciently large N .Finally, ��n��n� and � have a �xed point in common only if ��n��n and � do. The�xed points of ��n��n are ��n(p) and ��n(q), where p and q are the �xed points of �.If neither point is �xed by �, then, for su�ciently large jnj, neither ��n(p) nor ��n(q)will be �xed by �. On the other hand, if p, say, is �xed by �, the same conclusionholds because � and � do not share a �xed point.Step (v). Since � and � have no �xed point in common, it follows from Lemma 2.1.3and Corollary 2.1.5 that ��n��n and � generate a classical Schottky group for su�-ciently large N . Also the trace of ��n��n� can be made arbitrarily large, for su�-ciently large N .5.5. Now we turn to the case, left aside in x5.2, where both �� = J and �� = J1interchange the �xed points of �. Then � = JJ1�, where JJ1 is loxodromic or theidentity, and �xes the �xed points of �.At the start we arranged matters so that ybak is homotopic to a simple loop for allk. This is equally true of (bak)�1y(bak), and of x(bak)�1y(bak), which is homotopic toa simple loop bounding a triply connected region (pants) with boundary componentscorresponding to x and y.We claim that, in the present case, there exists K � 0 such that the correspondingtransformation � = �(��k)�1�(��k) = ���k��1J�kis loxodromic for all jkj � K.For � has no �xed point in common with �: Indeed, �(p) = p = �(p) would implythat J1��1(p) = p, in other words that �(q) = p, where q is the other �xed point of�. Similarly, ��1J has no �xed point in common with �. Hence the assertion followsfrom Lemma 2.1.3.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 33We can take K so large that, in addition, � does not have a �xed point p in commonwith (��k)�1�(��k) = ��k��1J�kfor jkj � K. For, since neither � nor ��1J has a �xed point in common with �, wehave on the complement of q�; q�,limk!+1��k��1J�k = q� and limk!�1��k��1J�k = q�;where q� 6= p and q� 6= p denote the repulsive and attractive �xed points of �.For su�ciently large K as dictated by Corollary 2.1.5, � and (��k)�1�(��k) gen-erate a classical Schottky group for all jkj � K.As in x5.4(v), the trace magnitude of the transformation (��k)�1�(��k)� corre-sponding to the new boundary component of the pants can be made arbitrarily large,in particular in comparison with that of � and �, which correspond to the boundarycomponents on which the new pants was built.Replace the handle ha; baki by its conjugate h(bak)�1a(bak); baki. The new pantsis determined by hx; (bak)�1y(bak)i.5.6. The pants decomposition. In xx5.3-5.4 we showed that, given any two bound-ary components of Rg�1, we could construct a pants with them as boundary compo-nents and such that the transformation corresponding to the third boundary compo-nent has trace of arbitrarily large magnitude. The surface remaining after this pantsis removed is again of genus one, but with one fewer boundary components. Againchoosing any two boundary components, we can construct another pants, and so onuntil all that remains is a surface of genus one with one boundary component: ahandle.For later requirements, we will specify the initial steps of the decomposition asfollows: Group the 2(g � 1) boundary components of Rg�1 into pairs, where the twocomponents of each pair arise from cutting a handle of R. Construct �rst (g � 1)pants, one corresponding to each pair, which then comprise two of its boundarycomponents. After this is done, �nish the construction with any possible successionof pairings.Each pair of boundaries of Rg�1 corresponds to transformations of the same trace,but we may assume from x4.5 that di�erent pairs correspond to transformations of dif-ferent traces. When each new boundary component forming a new pants is inserted,we can ensure by x5.4(v) and x5.5 that the trace magnitude of its correspondingtransformation exceeds that corresponding to all previously inserted boundaries.The combinatorics of the decomposition and a corresponding reorganization of thegenerating set for �1(R;O) will be discussed in x5.8 below.



34 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDEN5.7. The �nal cut. We are left with 2g � 3 pants and a handle H. Yet moreadjustment to H is necessary before gaining the assurance that one �nal cut willproduce a pants decomposition fRig called for in x1.7. Consider the handleH = ha; biremaining at the end of the process. A simple loop c � b�1a�1ba bounds H on itsright side (starting in x5.1 we speci�cally assumed that b crosses a from the right sideof a to the left). On the left side of c is a pants with boundary components orientedso that the pants is to their left. Also, c�1 � yx, where x and y are simple loopsparallel to the boundary components, and are disjoint from c, b and a except for ashared basepoint.Set � = �(a), � = �(b), � = �(c), � = �(x), � = �(y). We know that h�; �i is aSchottky group and that � and � are loxodromic without a common �xed point. Asin x4.2, we can assume that � does not send one �xed point of � to the other.By construction (see x5.4(iv)- (v) and x5.5), the trace magnitude of �� exceedsthat of � and �. In particular, neither � nor � can be conjugate within PSL(2; C ) to�� = ��1��1�� = ��1.We may assume that �� = J does not interchange the �xed points of �, and is notthe identity. Otherwise, replace � and � by their conjugates �m���m and �m���m,where m is chosen so that �m���m� = Jm neither interchanges the �xed points of� nor is the identity. To see that such an m exists, consider �m���m��1 = JmJ ,which either has the same �xed points as �, or has order two. The latter case isimpossible because h�; �i is a Schottky group. Since � and � = �� have no �xed pointsin common, the former is impossible as well, except perhaps for a �nite number ofvalues ofm. Consequently, replace h�; �i by the conjugate group h�m���m; �m���mi,and correspondingly hx; yi by the conjugate pants hcmxc�m; cmyc�mi. Return againto the original notation.Now we are ready to cut the handle H. But �rst, apply a Dehn twist of order kabout a. This changes H to ha; baki.Next, apply a Dehn twist of order n about a simple loop d � xbak. This results inthe changes ha; baki 7! hdna; baki;hx; yi 7! hx; d�nydni:Finally, cut the resulting handle along a simple loop freely homotopic to bak. Thisresults in a pants whose fundamental group ishbak; (dna)�1(bak)�1(dna)i:



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 35We claim that k and n can be chosen so that the groups representing the adjacentpants are now both Schottky groupsh
; (�n�)�1
�1(�n�)i and h�; ��n��ni;where 
 = ��k and � = �
.(i) There exists K � 0 such that � = ���k is loxodromic either for k � K or fork � �K; for de�niteness assume the former is true. Indeed we have already arrangedmatters so that �� does not interchange the �xed points of �.(ii) For su�ciently large K and k � K the composition � = �
 has no �xedpoints in common with � or 
, and �
��1 has no �xed points in common with����1��1��1 6= id.First note that neither ��k nor ���k�1 can have the same �xed points for twovalues of k. For example, ��k(p) = p = ��m(p) for m 6= k implies that �(p) = p,and then �(p) = p, which is impossible. Consequently, for su�ciently large K andk � K, the element 
 = ��k does not share a �xed point with � or �, nor �
��1 with����1��1��1, provided this latter is not the identity. It follows that neither �
 and
, nor �
 and �, can share �xed points either. Finally, ����1��1��1 6= id because� is not conjugate to �� = ��1��1�� (because they have unequal traces, as we haveseen earlier in x5.7).(iii) We show that h�; ��n��ni is a Schottky group, either for all n � N or alln � �N , for some N � 0; for de�niteness we will assume the former.For if � has both its �xed points in common with �, then � and � commute andthe group remains h�; �i. If � has one �xed point in common with �, say its repulsive�xed point p, the �xed points of ��n��n converge to p as n ! +1. Since p is notalso a �xed point of �, the group is Schottky for large n. If � has no �xed points incommon with �, it is Schottky for all large jnj.(iv) We show that h
; (�n�)�1
�1(�n�)i is a Schottky group for all jnj � N , forsu�ciently large N in (iii) and �xed k � K from (i) and (ii).For the �xed points of (�n�)�1
�1(�n�) are the images under ��1��n of the �xedpoints of 
. As n ! +1 or n ! �1, these images converge to ��1(p), where pis the repulsive or attractive �xed point of �, since � and 
 have no �xed points incommon. If ��1(p) is not a �xed point of 
, Corollary 2.1.5 implies that the group isSchottky for large jnj.Suppose to the contrary that 
��1(p) = ��1(p), while �
(p) = p. Then �
��1(p) =p, while p = �
��1
�1��1(p) = ����1��1��1(p). This does not occur, by (ii).Remark 5.7.1. Had we not been so concerned about the �nal cut forming two ofthe boundary components of a single pants corresponding to a Schottky group, we



36 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENwould have proceeded more simply, as follows. Cut H = ha; bi along a resulting ina pants ha; b�1a�1bi. Pair boundary components of this with those of neighboringpants hx; yi, to get two new pants ha; yi and hb�1a�1b; xi. Apply to these the Dehntwist of order m about c � b�1a�1ba. For all large jmj, the corresponding groups areeasily seen to be Schottky.5.8. The combinatorics of pants decomposition. We will systematically orga-nize a generating set for the fundamental group of R in terms of the pants decompo-sition fPig.Start by �xing points Oi; O0i; O00i on each component of @Pi, and disjoint simpleauxiliary arcs from Oi to O0i and O00i . In terms of these auxiliary arcs, there is aunique path in Pi between any two boundary components. Also, a component of @Piwith an assigned orientation uniquely determines a loop from Oi, which we will takeas the basepoint of �1(Pi;Oi). If ai and bi are two boundary components of Pi, anorientation of ai uniquely determines an orientation of bi such that biai is homotopicto a simple loop around the third (here making use of the auxiliary arcs).If the components a of @Pi and a0 of @Pj correspond to the same simple loop onR, choose the points O 2 a and O0 2 a0 to correspond to the same point on R.Let T denote the trivalent graph of genus g corresponding to the pants decom-position fPig: each vertex of T corresponds to one of the pants Pi, and each edgecorresponds to a pair (a; a0) of boundary components, one on each pants correspond-ing to an endpoint. Two boundary components are paired (a; a0) if and only if theycorrespond to the same simple loop on R.T has 2g � 2 vertices and 3g � 3 edges. Exactly g of the vertices have one-edgeloops attached to them; this is a consequence of the particular combinatorics of thedecomposition. We call these vertices extreme.Remove from T those g one-edge loops; the result T0 is a maximal (connected)tree. The extreme vertices of T are those that are extreme in T0 in the sense thatonly one edge of T0 is attached to the vertex.Designate one of these extreme vertices as the root v0 of T0: for example, thevertex corresponding to the last handle we cut. There is a unique simple path in T0from any vertex to the root.Denote the pants corresponding to the vertex v by P (v). Consider the verticesv0 6= v whose shortest path to v0 contains v. Mark the boundary components of P (v)where these shortest paths �rst cross; we will use these shortest paths below. If v isnot extreme, two of the three boundary components of P (v) will be marked. If v isextreme but v 6= v0, none of the boundary components will be marked. Exactly oneof the boundary components of P (v0) will be marked.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 37Making use of the auxiliary arcs in the fPig, the simple edge-arc in T0 from thevertex vi = Pi to vj = Pj uniquely determines a simple arc in R from Oi to Oj.Likewise, a simple edge-loop in T uniquely determines a simple loop in R.Let P0 be the pants corresponding to the root v0, and O = O0 the designatedbasepoint for its fundamental group. Take also O as the basepoint of the fundamentalgroup of R. As we have seen, T0 uniquely determines a simple arc ci in R from Oto each Oi. Thus, a simple loop ai 2 �1(Pi;Oi) can be uniquely associated withc�1i aici 2 �1(R;O). Suppose ei is one of the g edge-loops of T, with both end pointson the same vertex vi. Likewise with the help of the auxiliary arcs in Pi = P (vi), theedge ei, with an assigned orientation, uniquely determines a loop c0�1i eic0i 2 �1(R;O).The totality of elements c�1i aici from oriented boundary components of pants fPigplus g elements c0�1i eic0i from edges e =2 T0 generate �1(R;O).



38 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENB. Pants Con�gurations from Schottky Groups6. Joining Overlapping Plane Regions6.1. In this section we will describe a method of using covering surfaces to separatetwo overlapping plane regions which are acted on by a common M�obius transforma-tion. It is no restriction to describe the process with the loxodromic transformation� : z 7! �2z, with j�j > 1 and �xed points 0 and 1. Let T or T (�) denote thequotient torus T = (C n f0g)=h�i;and � the projection from C n f0g. Denote the simple compressing loop �(fz : jzj =1g) in T by c. A noncontractible simple loop on T lifts to a closed curve in C n f0gif and only if it is freely homotopic (or homologous) to �c.If a simple loop a is not of this type, a� = ��1(a) is a simple �-invariant arc. Ifa is given the orientation dictated by �, the arc a� is directed toward the attractive�xed point.Conversely, if a�1 is a simple, �-invariant arc in C directed toward the attractive�xed point, a1 = �(a�1) is a simple loop freely homotopic (or homologous) to theresult of applying to a the Dehn twist about c of some order n: namely, a1 � a+ nc.6.2. Let SN denote the N -sheeted cover of the sphere S1 = S2, branched overthe �xed points 0 and 1 of �. Topologically, SN is again a sphere. The mapz 7! z1=N = w sends SN back to S1; it is conformal except at 0 and 1. The cyclicgroup of cover transformations is conjugated to the group of rotations hw 7! e2�i=Nwi.The transformation � lifts to an automorphism �� of SN , determined up to compo-sition with cover transformations. It is conjugated to the loxodromic transformationw 7! �2=Nw, which in turn is determined only up to composition with cover transfor-mations.Consider the torus TN = TN(�), de�ned byTN = (SN n f0;1g)=h��i:It is the N -sheeted torus over T , uniquely determined by the properties that a liftsto exactly N mutually disjoint simple loops and cN lifts to one simple loop.For the following lemma a and c are simple loops on T as before: c is the projectionof the unit circle and a is the projection of a simple, �-invariant arc a� � C , positivelyoriented by �. If the simple arc a1 crosses a transversely at every point of intersection,the geometric intersection number is de�ned as the number of points of intersection.We assume this number is �nite.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 39Lemma 6.2.1. Suppose a1 is freely homotopic and transverse to a, with geometricintersection number n. Set N = 2n + 1. Then there is a lift a0 of a and a lift a01 ofa1 that are disjoint, freely homotopic simple loops in TN . Correspondingly, there is alift a� of a and a�1 of a1 to SN that are disjoint, ��-invariant simple arcs.Remark 6.2.2. A more precise measure of intersection would be to setn = max jm(�)j;where � � a1 is a segment whose endpoints don't lie on a, m(�) is the algebraicintersection number of � and a, and the maximum is taken over all such connectedsegments � of a1.Proof. Fix a lift a0 of a to TN or a lift a� to SN . We can label the N = 2n+ 1 sheetson TN or on SN over T n fag in cyclic order, starting to the left of a0 or of a�. Apoint in the (n+ 1)-st sheet can be connected to one on a0 or on a� only by crossingn other lifts of a. Fix p 2 a1 n a, and the point p0 or p� lying over p in the (n+ 1)-stsheet. The endpoint of the arc ~a1 lying one-to-one over a1 n fpg and starting at p0 orp� also lies in the (n+1)-st sheet, because a1 is freely homotopic to a; in TN , the arc~a1 closes up to form a simple loop. The conclusion is a direct consequence.Note that without the condition that a1, positively oriented by �, be freely homo-topic to a, the conclusion of the lemma is false. Instead, the following is true.Corollary 6.2.3. Suppose, more generally, that the simple loop a1 � T , transverseto a, is the projection of an �-invariant arc in C nf0g. There exists N = N(a; a1) � 1and m 2 Z such that �ma1 and a have disjoint lifts on TN and SN , where � denotesthe Dehn twist about c.6.3.Lemma 6.3.1. Suppose a and a1 are �-invariant simple arcs in C n f0g, the liftsof freely homotopic transverse loops in T (�) with geometric intersection number n.Suppose a is contained in the boundary of a simply connected region P � C n f0glying to its left, while a1 is contained in the boundary of a simply connected regionP1 lying to its right. Set N = 2n+4. Then on SN n f0;1g there are disjoint lifts a�of a and a�1 of a1 with the property that the corresponding lifts P � of P and P �1 of P1that contain a� and a�1 in their respective boundaries are disjoint as well.Proof. Fix a lift a� of a in SN n f0;1g and let E be the generator of the order-Ncyclic group of cover transformations with the property that a� and Ea� bound tothe left of a� a lift �� of C n fag, which we will refer to as the �rst sheet of the
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Figure 7. Separation of regions when N = 4covering. In cyclic order to the left of a� the lifts of a are Ea�; : : : ; EN�1a�, and thecorresponding sheets are ��, E��, : : : , EN�1��.Denote by P � the lift of P adjacent to a� on its left side. Necessarily P � lies entirelyin the �rst sheet ��.If a1 is disjoint from a, then N = 4 (although N = 3 will do). Let a�1 be the liftof a1 lying in the third sheet E2��, and P �1 the lift of P1 adjacent to a�1 on its rightside. P �1 lies in the sector bounded by a�1 and E�1a�1, which lies in the second sheetE��. Hence P �1 is disjoint from P � (see Figure 7).More generally, choose p 2 a1 \ a and let p� denote the point over p on En+2a�.Let a�1 denote the lift of a�1 through p�; then a�1 does not intersect E2a� or E�2a�.Consequently, E�1a�1 does not intersect Ea�. Let P �1 be the lift of P1 adjacent to a�1on its right side; P �1 lies in the sector between a�1 and E�1a�. Therefore P �1 is disjointfrom P �.Note that we have not optimized the choice of N , which can be done in particularcases.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 41Corollary 6.3.2. In the hypotheses of Lemma 6.3.1, assume that not only a and a1but also P and P1 are �-invariant in C nf0g. There is a lift �� of � to SN that leavesP � and P �1 invariant.Proof. Let �� be the lift of � that maps the �rst sheet �� onto itself, and hence P �onto itself. Necessarily �� maps every sheet Ek�� onto itself, and hence P �1 onto itselfas well.6.4. Joining overlapping regions. In this section we will build a prototype for theprocedure that forms the basis of x8. It is typical of tricks used in classical functiontheory and is a generalization of a technique applied to M�obius groups called grafting[Maskit 1969], [Hejhal 1975a], [Goldman 1987].Consider the hypotheses of Lemma 6.3.1: a and a1 are �-invariant simple arcs inC n f0g directed toward 1, and one does not spiral around the other (an informalway of saying that they arise from freely homotopic loops in T ). The region P liesto the left of a, and P1 to the right of a1. Like a and a1 themselves, P and P1 canbadly overlap each other.However, on SN , P � and P �1 are disjoint. Let Q� be the region on SN that lies tothe right of a� and to the left of a�1: then P �1 [a�1[Q� [a�[P � is a simply connectedregion R� in SN n f0;1g. According to Corollary 6.3.2, if P and P1 are �-invariant,�� is a conformal automorphism of R�.Let g : H 2 ! R� be a Riemann map, where the hyperbolic plane H 2 is realizedas the unit disk. Then g�1��g is a hyperbolic M�obius transformation ��0 in H 2 . Let� : SN ! S2 denote the projection. Then f = ��g is a locally univalent meromorphicfunction on H 2 with the property thatf��0(z) = �f(z)for all z 2 H 2 . That is, f determines a complex projective structure on H 2 thatinduces the isomorphism between cyclic groups h��0i ! h�i.We have joined together the annular regions P=h�i = P �=h��i and P1=h�i =P �1 =h��i by means of the annulus Q�=h��i, which attaches to the boundary compo-nents a=h�i and a1=h�i.7. Pants Within Rank-two Schottky Groups7.1. Suppose h�1; �2i is a two-generator classical Schottky group acting on its regularset 
 � S2. The quotient surface R = 
=h�1; �2i has genus two (and bounds thehandlebody R+ = H 3=h�1; �2i if the group is extended to hyperbolic three-space).There are round circles b�1 and b�2, mutually disjoint in 
, with the following prop-erty: The two pairs of circles (b�1; �1b�1) and (b�2; �2b�2) are mutually disjoint with



42 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENmutually disjoint interiors in S2, and �i maps the exterior of b�i onto the interior of�ib�i . The circles b�1 and b�2 are lifts of mutually disjoint, nondividing simple loops b1and b2 in R. These bound disks in R+ and for that reason are called compressingloops.Let a1 and a2 be simple, nondividing loops in R such that a1 \ (a2 [ b2) = ; anda2\(a1[b1) = ;, while ai crosses bi transversely at a single point. Then a1 and a2 havelifts a�1 and a�2 to 
 uniquely determined by the condition that they are �1-invariantand �2-invariant simple arcs, respectively. Let �i denote the Dehn twist about bi.Then, for example, �n1 a1 can be used in place of a1: it, too, can be taken to be asimple loop disjoint from a2 and b2, meeting and there crossing b1 at a single point.It too has a uniquely determined �1-invariant lift (�na1)� in 
. (More generally, thesimple loop a01 has an �1-invariant lift if and only if a01 is freely homotopic to a1 withinthe handlebody R+.)7.2. Finding pants. Assign a1 and a2 their positive orientation, that is, the onethat directs a�1 and a�2, their �1- and �2-invariant lifts, toward the attractive �xedpoints of �1 and �2. We can join a1 and a2 to a common basepoint O 2 R so that theresulting simple loops a01 and a02 have the property that a02a01 is homotopic to a simpleloop a03; this loop a03 is then freely homotopic to a simple loop a3 that, together witha1 and a2, divides R into two pants P and P 0; also, a3 has an �2�1-invariant lift a�3and an �1�2-invariant lift �1a�3 (Figure 8).Note that the free homotopy class of a3 on R is not uniquely determined by thatof a1 and a2: we can change a3 by applying Dehn twists about a simple dividingloop homotopic to b0�11 a0�11 b01a01 without a�ecting a1 or a2. We can also change a3 byapplying Dehn twists about b1 or b2, but that will change a1 or a2 as well. In anycase there is an �2�1-invariant lift of a3.Let P denote the pants lying to the right of a1 and a2, and to the left of a3. Ofcourse we may assume that b1 \ P and b2 \ P are simple arcs. There is a lift P �0 ofP to 
 that is an \octagon" bounded by connected segments of a�1, a�2, a�3, �1a�3 andb�1, b�2 (see Figure 8, top). The orbit of P �0 (adding its boundary arcs on b�1 and b�2)under h�1; �2i is a simply connected region P � that is the universal cover of P .7.3. Isomorphisms are geometric. We summarize the analysis of x7.2 as follows.Lemma 7.3.1. Let Q be a pants with oriented boundary components (d1; d2; d3),and choose generators d01; d02; d03, d03 � d02d01, for �1(Q;O) such that d0i is parallelto di; O 2 Q. Suppose � is the isomorphism of �1(Q;O) onto the Schottky grouph�1; �2i determined by the correspondence �(d01) = �1, �(d02) = �2. Then there is apants P in R = 
=h�1; �2i bounded by simple loops (a1; a2; a3), positively oriented by
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2Figure 8. Pants determined by Schottky group�1; �2; �2�1, and a homeomorphism h : �Q! �P taking di (with its orientation) to ai,i = 1; 2; 3, which induces �: there is a point O� 2 P � � 
 over h(O) 2 P such thatthe lift of h(d0i) from O� terminates at �i(O�), for i = 1; 2; 3.Proof. In x7.2 we observed the following convention for �nding pants P and P 0 in aSchottky group with designated generators �1 and �2. The three boundary compo-nents have �1-, �2-, and �2�1-invariant lifts, positively oriented by �1, �2 and �1�2,respectively. If a1 and a2 are represented by generators a01 and a02 in �1(P ;O) or�1(P 0;O0), then a02a01 is homotopic to a simple loop parallel to a3. The two pants Pand P 0 are distinguished in that one lies to the right of a1 and a2, and to the left ofa3, while the opposite holds for the other.The orientations of the di can temporarily be reversed as necessary so that Q liesto the right of d1; d2 and left of d3. Make the corresponding temporary replacementsof �i by ��1i . Now �nd a pants P meeting the requirements, and then return to theoriginal designations.



44 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDEN7.4. Two groups with a common generator: Compatibility. Consider twoSchottky groups h�1; �2i and h�2; �3i with a common generator �2. Denote theregular sets in S2 by 
 and 
0, and set R = 
=h�1; �2i and R0 = 
0=h�2; �3i. Choosesimple loops (a1; b1; a2; b2) in R and (a02; b02; a03; b03) in R0 as in x7.1; here a0j and aiare taken with their positive orientations from �j and �i. Find, as in x7.2, a pantsP � R lying, say, to the right of a2, and then a pants P 0 � R0 lying to the left of a02.De�nition 7.4.1. As above, suppose a2 and a02 are simple loops on R and R0, with�2-invariant lifts a�2 and a0�2 to 
 and 
0, respectively. The loops a2 and a02 arecompatible (with respect to �2) if the projections of a�2 and a0�2 (that is, the embeddingsof a2 and a02) in the torus T (�2), are freely homotopic there.Recall that T (�2) = (S2 n fp; qg)=h�2i, where p and q are the �xed points of �2.Let �2 denote the Dehn twist about b02 on R0. In general a02 will not be compatiblewith a2. However,Lemma 7.4.2. The loop a02 on R0 can be made compatible with a2 on R: a2 iscompatible with �m2 a02 for s unique value of m.Proof. Let �2 denote the Dehn twist about b02 on R0. Note that b02 embeds as a simpleloop on T (�2), so that �2 can be taken to act on T (�2) as well as on R0. For exactlyone value of m, the loop �m2 a02 will be compatible with a2.Remark 7.4.3. We emphasize that the process of making a2 and a02 compatiblea�ects only one of the surfaces: say R0. And, on R0, it a�ects only a02, not a03.However, the third boundary component c0 of the pants P 0 is a�ected. Indeed, thereis a lift c0� to 
0 invariant under �3�2. The simple loop b02 which crosses c0 oncealso embeds in T (�3�2), and the twist �2 equally can be taken to act on the torusT (�3�2). Thus, under the action of �m2 on R0, the loop c0 changes to �m2 c0; the pants�m2 P 0 is bounded by �m2 a02, �m2 c0, and a03.7.5. Compatibility conditions on one pants. Consider a Schottky group h�; �iand a pants P in 
=h�; �i, as in Figure 9.Denote the boundary components of P by a; b; c, with the orientation indicated.With respect to these curves, we can �nd compressing loops x and y (which lift toclosed loops in 
), with the orientations and intersections indicated in the �gure.A Dehn twist of order p about x composed with a twist of order q about y has thefollowing e�ect on a; b; c:a 7! �p+qa; b 7! ��qb; c 7! �pc:
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Figure 9. Pants and compressing loopsHere we use the notation �kt to denote the e�ect on the simple oriented loop t ofa twist of order k about an oriented simple compressing loop crossing t once, fromits right side to its left; geometrically the result is realized and accounted for on thetorus T (�) that is associated with t.Suppose b and c are to be paired with boundary components b0 and c0 on otherpants, where �mb is compatible with b0 and �nc is compatible with c0. This canbe ful�lled simultaneously in P by setting p = n and q = �m. The e�ect on ais to replace it by �n�ma. That is, compatibility for two boundary components ofP can always be achieved, but then the state of the third boundary component isdetermined.Suppose instead that c is to be paired with c0 on another pants, with compatibilityrequirement c0 = �nc, while b is to be paired with a with compatibility requirementa = �mb. In terms of x7.4, this means that there is a transformation 
 with � =
�
�1, where a and b have been determined by � and �, respectively. That is, thereis an �-invariant lift a� and a �-invariant lift b�, and the two can be compared interms of the �-invariant arcs a� and 
b�.Therefore p = n, while q is determined by the condition�q = n+ q +m; or q = �12(m+ n):A solution q 2 Z exists if and only if m+n is even, that is, if m and n have the sameparity.In other words, the algebraic sum [(p+ q)� q+p] = 2p of the Dehn twists that canbe applied e�ectively to the boundary components of a pants is even. Consequently,if the requirements for compatibility in a pants demand that the algebraic sum beodd, those requirements cannot be met.Remark 7.5.1. There is also a compressing loop u in 
=h�; �i that divides, separat-ing a and b while crossing c twice. A Dehn twist about u leaves a and b unchanged,but changes the homotopy type of c and P on the surface 
=h�; �i. Yet it leaves



46 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENunchanged the free homotopy type of the projection c� of c to its associated torusT (��).For on T (��), there are two representatives of u, u�1 and u�2. They are disjoint,parallel and oriented opposite one another: one crosses c� from right to left, the otherfrom left to right. A Dehn twist about u is re
ected by twists on T (��) about u�1and u�2. But, because of their opposite orientations, these twists cancel, leaving thefree homotopy class of c� unchanged.In short, twists about u have no e�ect on compatibility questions.7.6. A compatibility condition on identical pants. For later application in x8,consider the following augmentation to the second situation of x7.5, where � = 
�
�1.In the conjugate group 
h�; �i
�1, consider the pants P1 that corresponds preciselyto P , distinguishing corresponding elements by the subscript. Suppose, as before,that c and c1 are to be paired with c0 and c01 on other pants P 0; P 01, but now withthe same compatibility requirements: c0 = �nc and c01 = �nc1. Instead of pairing bwith a as before, pair b1 with a and b with a1. Because the two groups are virtuallyidentical, the compatibility requirements are a = �mb1 and a1 = �mb.The result of Dehn twists of order p and q about x and y, and of order p1 and q1about x1 and y1, is as calculated in x7.5. We must have p = p1 = n. That leaves, forq and q1, the equation�q1 = n+ q +m; or q + q1 = �(m + n):In this case there are always solutions: for example, q = �m and q1 = �n.8. Building the Pants Configuration8.1. What remains to be done? In x5.7 the combinatorics of the pants decompositionfPig of R found in Part A was described as a trivalent graph T arising from a treeT0 � T by the addition of g edges, one attached to each extreme vertex. The universalcover of T is re
ected in the combinatorics of the lifts fQ�i g in the universal cover H 2of R, that is, in how the lifts �t together.Corresponding to each lift Q�i is the Schottky group �(StabQ�i ), which in turnstabilizes the lift P �i of a pants Pi in its quotient surface. Using the technique of x6,our goal is to follow the information in T, or the combinatorics of fQ�i g in H 2 , tobuild a simply connected Riemann surface J. This will be the universal cover of asurface obtained by joining together the pants fPig by attaching auxiliary cylinders.However, to join a boundary component a of Pi to a0 of Pj (or perhaps to a0 of Pi),it is necessary that a and a0 be compatible in the sense of x7.4. It is not necessarilytrue that the totality of compatibility conditions can be satis�ed.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 47In xx8.2{8.4, typical cases of joining pants will be described, before we draw thegeneral conclusions in xx8.4{8.6. In x9, we will show how to add branch points whenneeded.8.2. Joining pants. We continue with the situation of x7.4. There, we found simpleloops a3 � a2a1 on R and a04 � a03a02 on R0 such that (a1; a2; a3) bound pants P � Rlying to the right of a1 and a2, while (a02; a03; a04) bound pants P 0 � R0 lying to theleft of a02 and a03. Here (a1; a2; a02; a03) are positively oriented by generators �1, �2 and�3. According to Lemma 7.4.2, the loop a02 can be taken compatible with a2. We willnow show how to join the pants P and P 0 by attaching a cylinder to the left side ofa2 and the right side of a02.Let P � denote the region in 
 over P and P 0� the region over P 0 in 
0. Both P �and P 0� are simply connected, as they represent the respective universal covers.We are in a position to apply Lemma 6.3.1 to P � and P 0�. There exists an N -sheeted SN of S2, branched over the �xed points of �2, on which there are disjointlifts a��2 and a0��2 of a�2 and a0�2 that border disjoint lifts P �� and P 0�� of P � and P 0�:the projections P �� ! P � and P 0�� ! P 0� are homeomorphisms. Equally well, P ��and P 0�� represent the universal covers of P and P 0.Next, take the sector Q�� on SN lying between the left side of a��2 and the rightside of a0��2 , and form Q��1 = P �� [ a��2 [Q�� [ a0��2 [ P 0��:Then Q��1 is invariant under a lift a�2 of �2 to SN . It comes with a conformal structureand a projection �� into S2 which is a locally injective meromorphic function.Construct the orbit of Q��1 under the group ��� generated by the cover transfor-mations of P �� over P and P 0�� over P 0; ��� is the free product of these groups withamalgamation over h��2i. This can be done as follows. Suppose, for example, that�� =2 h��2i is a cover transformation of P �� over P , so that �� is the lift of a covertransformation � of P � over P . In particular, �� sends the edge a��2 of P �� to theedge ��a��2 , which is invariant under the conjugate ����2���1 of ��2.But the con�guration Q��1 extends beyond P �� at a��2 . We correspondingly attach��(Q��1 ) to extend beyond ��a��2 . Moreover there is a projection �� of Q��1 into S2which is a local homeomorphism, the extension of the restriction of �� to P ��. Extend�� from P �� to ��(Q��1 ) by��(z) = ���(z0); z = ��(z0); z0 2 Q��1 :



48 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENThe cover transformation 
� of P �� or P 0�� over P or P 0 is conjugated to the covertransformation ��
����1 of ��(P ��) = P �� or ��(P 0��) over P or P 0. The transfor-mation ��
����1 itself is the lift of the cover transformation �
��1 of P � over P orof �(P 0�) over P 0.Q��1 and then Q��1 [ ��(Q��1 ) are simply connected Riemann surfaces that inherittheir complex structure from S2 via ��.Continuing on, we construct a pants con�gurationJ(P; a2; a02; P 0)which is a simply connected Riemann surface with a group of conformal automor-phisms ���. It has a meromorphic projection �� into (usually onto) S2, which is alocal homeomorphism. The projection �� induces a homomorphism of ��� onto thegroup generated by h�1; �2i and h�2; �3i.Consequently, with the group ���, the abstract con�gurationJ(P; a2; a02; P 0)is a model for the universal covering of the Riemann surfaceP [ a2 [ (Q��=h��2i) [ a02 [ P 0:It is a four-holed sphere; the pants P and P 0 have been connected by the cylinderQ��=h��2i, which joins a2 and a02.The Riemann mapping g : H 2 ! J(P; a2; a02; P 0)conjugates ��� to a fuchsian group G in H 2 . The function f = ��g : H 2 ! S2is meromorphic and locally univalent in H 2 . It gives a projective structure on thefour-holed sphere H 2=G with the associated homomorphism sending G to the groupgenerated by h�1; �2i and h�2; �3i.8.3. Adding to the join of two pants. At the level of the pants P in R and P 0 inR0, the construction of x8.2 only involved neighborhoods of the boundary componentsa2 of P and a02 of P 0, and the sector of SN between their two lifts.Thus, suppose there is another Schottky group h�3; �4i sharing the generator �3with h�2; �3i. We can join the boundary component a03 of P 0 to a compatibly chosenboundary component a003 of a pants P 00 in R00 = 
00=h�3; �4i, lying to the right ofa003, by constructing the appropriate SN . A lift of P 0� appears in both con�gurationsJ(P 0; a03; a003;P 00) and J(P; a2; a02; P 0), and these two lifts of P 0� can be identi�ed.Join together these two con�gurations by identifying the two lifts P 0�� and P 0��1 ofP 0�. After that, further construct its orbit under ���2 . Now ���2 is the free product



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 49of ��� and the corresponding group ���1 of J(P 0; a03; a003; P 00) with amalgamation overthe common subgroup Stab(P 0��) = Stab(P 0��1 ), which is just the lift of the coveringgroup of P 0� over P 0. We end up with an abstract con�gurationJ(P; a2; a02; P 0; a03; a003; P 00) = J2;which is a simply connected Riemann surface with a group ���2 of conformal automor-phisms. There is a meromorphic projection �� into S2 that is a local homeomorphismand induces a homomorphism of ���2 onto the group generated by h�1; �2i, h�2; �3iand h�3; �4i. Also, J2 is a model of the universal cover for a �ve-holed sphere formedby connecting P to P 0 as in x7.5, and the result to P 00 with an appropriate cylinderconnecting a03 and a003.8.4. Making handles. In x8.2, suppose that instead of a second Schottky group,we are presented with a transformation � such that ��1��1 = �2. We can as welljoin the group h�1; �2i to its conjugate �h�1; �2i��1 = h�2; ��2��1i, to have thee�ect that the boundary component a2 of the pants P in R is joined to a1. We muststart by ensuring that a�2 is compatible with �a�1 with respect to �2; this may requirereplacing a2 by the result of applying some power of a Dehn twist about b2.As before, we can �nd an SN that holds disjoint lifts of P � and �P �. Then acon�guration J is constructed with a group of automorphisms ��� isomorphic to theHNN extension of Stab(P �) by a suitable lift �� of �. This J is a simply connectedRiemann surface with a locally univalent meromorphic projection into S2. It is amodel for the universal covering surface for the one-holed torus obtained by attachingthe cylinder obtained from SN to the boundary components a1 and a2 of P .8.5. Recall from x5.7 the trivalent graph T and the maximal tree T0 � T. There, wechose one of the extreme vertices of T0 as the root. Let Tr denote the graph resultingfrom T after removing the one-edge loop hanging from the root. Thus Tr representsa surface S � R of genus g � 1 with two boundary components. Let �r denote thesubgroup of �1(R;O) that is the fundamental group of S.Lemma 8.5.1. There exists a pants con�guration J(Tr) modeled on Tr . It is a simplyconnected Riemann surface, the universal cover of a Riemann surface S of genus g�1with two boundary components. Let g : H 2 ! J(Tr) be a Riemann mapping, and� : J(Tr) ! S2 the meromorphic projection. Then f = �g is a projective structurefor S for the homomorphism � : �r ! �(�r) � �.



50 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENProof. First we check that the compatibility conditions can be satis�ed. Denote byP (v) the pants corresponding to the vertex v, and by �(v) the Schottky group withregular set 
(v).In x5.8 we marked the boundary components of P (v) according to the followingrule. There is a unique path in Tr from any vertex v0 to the root v0. The unmarkedboundary component a of P (v) is the one on the path from v itself. If v is not anextreme point of T0, it has two immediate predecessors v1 and v2, and P (v) has twomarked boundary components b and c, lying on their paths to v0. Following thenotation of x7.5, let x and y denote compressing loops (which lift to simple loops in
(v)) such that x crosses c and a, and y crosses b and a.Now move down the tree T0. Start at the extreme vertices v 6= v0. Two of theboundary components b and c of P (v) are to be paired. Make them compatible by atwist about either x or y.Continue down the tree. Do not go to a vertex before dealing with all its predeces-sors. Arriving at a vertex v and P (v) with marked borders b and c, replace them bythe result of twists about x and y, so as to be compatible with the (unmarked) bor-ders b0 and c0 associated with the immediate predecessors v1 and v2. When the rootv0 is reached, the one marked border of P (v0) is made compatible with its immediatepredecessor.Finally, use the technique illustrated in xx8.2{8.4 to join the pants fPig togetherwith auxiliary cylinders to build a Riemann surface of genus g � 1 with two bound-ary components remaining from the pants P (v0). This is done by building a pantscon�guration J(Tr), which is its universal cover.8.6. The �nal handle or the two-sheeted covering. Having constructed J(Tr),all attention is focused on P (v0), with its three boundary components a; b; c andcompressing loops x; y as in x7.5. Since P (v0) has been attached to its predecessor,say by establishing the compatibility of c with its partner c0, no more twisting aboutx is possible. Can we make a compatible with b, allowing attachment of the �nalhandle? As we have seen in x7.5, this is possible if and only if one can do the jobwith an even number of twists. If so, we can �nish the construction of J(T), thepants con�guration re
ecting the full trivalent graph T, which will then be a simplyconnected Riemann surface with a group of conformal automorphisms making it theuniversal cover of a surface of genus g.If not, keeping in mind the alternate construction of x7.6, we will construct in-stead a pants con�guration J that models a two-sheeted unbranched covering of thereference surface R.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 51Suppose a and b have arisen from cutting R along a curve b00, freely homotopic tothe nondividing simple loop b0 2 �1(R;O). Set R0 = R n fb00g, and �nd the simpleloop a0 2 �1(R;O) such that b0 and a0b�10 a�10 give rise to �1(P (v0);O). The groupN = ha20; �1(R0;O); a0�1(R0;O)a�10 iis a normal subgroup of index two in �1(R;O). It de�nes a two-sheeted unbranchedcovering ~R of R that is a compact surface of genus 2g � 1.The surface ~R is explicitly constructed as follows. Label the boundary componentsof R0 as b+0 and b�0 , corresponding to the two sides of b00 in R. Take another copy R00of R0. Then ~R is the surface obtained by identifying b+0 and b�0 on R00 with b�0 andb+0 , respectively on R0. The cover transformation is determined by a0.Let T2 denote the trivalent graph built likewise by taking two copies of Tr andattaching two new edges e1 and e2, as follows. The endpoints of the new edges arethe two vertices corresponding to v0 (and pants P (v0)), and they serve to pair theboundary components a and b on one copy of P (v0) with b and a, respectively, onthe other.Correspondingly, take two copies of J(Tr). Because of the compatibility estab-lished in x7.6, they can be joined together following the combinatorics of T2 andthe restriction of � to N . The resulting pants con�guration J(T2) is again a simplyconnected Riemann surface with a group of conformal automorphisms isomorphic toN , making it the universal cover of a surface of genus 2g � 1.Because of the asymmetry in satisfying the compatibility for the two copies of P (v0)(see x7.6), J(T2) does not have conformal automorphisms that represent the sheetinterchange of ~R. If, however, J(T) can be constructed, and then J(T2) constructedin addition, J(T2) will have that symmetry: it will represent the universal cover ofthe two-sheeted cover of the Riemann surface corresponding to J(T).A Riemann mapping g : H 2 ! J(T) or g2 : H 2 ! J(T2) conjugates the covertransformations to a fuchsian group G isomorphic to �1(R;O) or to a fuchsian groupG2 isomorphic to the index two subgroup N . Let � denote the projection of J(T) orJ(T2) to S2. The meromorphic function f = �g or f2 = �g2 determines a projectivestructure that induces � : G! � or � : G2 ! �(G2) � �.We cannot exclude the possibility that �(G2) = �. Although the transformationin � that makes the conjugation corresponding to the pairing of the boundary com-ponents a, b of P (v0) is not the identity (because P (v0) arises from a two-generatorSchottky group), it may already belong to �(G2). In any case, if � : �1(R) ! �cannot be lifted to SL(2,C ), � : N ! �(N) can be so lifted.



52 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDEN9. Attaching Branched Disks to Pants9.1. One can attach a disk to any surface with boundary by introducing a singlebranch point. Explicitly for our situation, consider a pants P embedded in C and aboundary component a oriented so that P lies to its right. Suppose d is an orientedsimple loop bounding a disk � lying to its right. Suppose that d crosses a at a pointp, and that z1 and z2 are points separated by both a and d, with z1 2 P \�. Assumethat there exists a simple arc � between z1 and z2 that crosses both loops at p andis otherwise disjoint from them. Set �0 = � \ P \�.Attach the � to P as follows. Denote the opposite sides of �0 by �+0 and ��0 .Identify the side �+0 of � n �0 with the side ��0 of P n �0, and the side ��0 of � n �0with the side �+0 of P n �0. This determines a new Riemann surface P 0 that isconformally equivalent to a new pants. Its boundary @P 0 consists of a [ d (hered lies \over" P ) and the remaining components of @P . The natural holomorphicprojection � : P 0 ! P [ � is a local homeomorphism except at the point over z1,where it behaves like z 7! z2. See Figure 10.Note that the construction does not essentially depend on a choice for �. Insteadwe can work in the two-sheeted cover of S2, branched over z1 and z2The same construction can be applied to attach an (n� 1)-sheeted disk to P , forany n � 2.9.2. Application to pants in a Schottky group. Suppose that h�; �i is a Schot-tky group acting on 
 � C , and P � 
=h�; �i is a pants with boundary componentsa; b; c oriented so that P lies to the right of a and b, which have �- and �-invariantlifts a� and b� in 
. Let d be a compressing curve on the handlebody surface 
=h�; �ithat crosses a exactly once, at a point p.Introduce a simple arc � in 
=h�; �i that joins a point z1 2 P to z2 in its comple-ment, and crosses the loops a and d at p, otherwise being disjoint from them. Set�0 = � \ P .Let d� be a simple loop in 
 lying over d, which crosses a� (necessarily once).Orient d and thus d� so that the disk � lying to its right contains the lift of �0 thatis adjacent to d�.Attach � to P by means of the slit �0. Neither the resulting pants P1 is embeddedin C nor � is embedded in 
=h�; �i. Nevertheless, any annular neighborhood of d in
=h�; �i is conformally equivalent to its lift about d�. Thus the conformal structureof P1 is well de�ned.Equivalently, the universal cover ~P of P is embedded in 
, and the universal cover~P1 of P1 arises from that by attaching � by means of the lift of �0 that is adjacent
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Figure 10. Attachment of branched diskto d�, and then taking the orbit under h�i of the attachment. We need to examinethis construction more closely.The attachment of � to a� at p� 2 a� over p leads to the attachment of the loopd� to a� at p�: as we move along a� toward the attracting �xed point of �, when wereach p� we take a detour along d� in its positive direction, returning to p� and thencontinuing along a�. Since d� intersects a� only at p�, the resulting arc is essentiallya simple arc, and so is its h�i-orbit, which covers the point set a� [ �k(d�).



54 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENThe essentially simple, �-invariant arc a� [ �k(d�) can equally be described asfollows. It is the lift of the result of applying to a on 
=h�; �i, or its representationin the torus T (�), a Dehn twist about d.9.3. Another alternative to the geometric obstruction of Section 8.6. Inx8.6 we faced the question of adding the �nal handle to the pants con�gurationJ(Tr). If that was not possible, we showed that we could instead construct a pantscon�guration corresponding to a two-sheeted, unbranched cover of the surface ofgenus g.Alternatively, using the construction of x9.2, we can carry out the �nal constructionafter introducing a branch point of order two (or any even order). That is, wecan construct a pants con�guration Jb(T) representing the universal covering of aRiemann surface of genus g. If g : H 2 ! Jb(T) is a Riemann map, and � : Jb(T) ! S2is the natural projection, then f = � � g is a meromorphic function. It is locallyinjective except at the conjugacy class of branch points of order two, and still inducesthe homomorphism � : �1(R;O)! �.10. The Obstructions10.1. The modulo 2 construction invariant. An admissible pants decompositionfPig for the homomorphism � : �1(R;O) ! � is one for which the restriction of �sends each �1(Pi) to a Schottky group. Its combinatorics are associated with atrivalent graph T. To each vertex v of T is associated a Schottky group S(v) = h�v; �viacting on 
(v) � S2. To each S(v) is associated a pants P (v) � 
(v)=S(v) withboundary components a; b; c that have �v-, �v- and �v�v-invariant lifts in 
(v). Interms of corresponding elements of �1(P (v)), we have c0 � b0a0 in 
(v)=S(v). Theorientation of P (v) with respect to a and b, and hence c, has been dictated by thatof the corresponding Pi with respect to its boundary components and carried over toT by �.Each edge e of T corresponds to a common generator � of the two Schottky groupsS(v1) and S(v2) if the endpoints of e lie on v2 6= v1. If v2 = v1, then e is associatedwith a pair of boundary components of P (v1), which in turn correspond to generators�v and �v related by �v = 
v��1v 
�1v for some element 
v 2 �. In any case the pairof boundary components corresponding to � project to a pair of simple loops on thetorus T (�). The two boundary components are called compatible if their projections,appropriately oriented, are freely homotopic on T (�).We will call T compatible if all pairs of boundary components of the associatedpants fP (v)g are compatible.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 55Recall that on each torus T (�) there is a free homotopy class of simple loops calledcompressing loops (x6), each of which lifts to a simple loop in S2.Lemma 10.1.1. Suppose that on each T (�) one of the boundary projections is freelyhomotopic to the result of a Dehn twist of order n(�) (about a compressing loop)applied to the other. Set n(T) = �P� n(�)�mod2. There is a compatible pantsdecomposition fP (v)g corresponding to T if and only if n(T) = 0.Proof. To each pair of pants one can apply Dehn twists about compressing loopson 
(v)=S(v). The algebraic sum n(P (v)) of their e�ect on the three boundarycomponents of P (v) is an even number. ThusXn(P (v)) = 0 (mod 2):Hence the values of n(T) cannot be changed by repositioning the pants P (v) in thesurfaces 
(v)=S(v).For the graph T of x8.4 that represents the \localization" of the obstruction tothe construction, the question of compatibility rested on the compatibility of the twopaired boundary components in the root pants P (v0) (x8.6). This was precisely thequestion of whether or not n(T) = 0. That is, if n(T) = 0 we can distribute thetwists so that T is compatible.For other graphs T, we refer to Corollary 10.5.2.10.2. Lifting Schottky groups. Lifting refers to the property that a given ho-momorphism � : �1(R;O) ! PSL(2; C ) lifts to a homomorphism �� : �1(R;O) !SL(2; C ). The image groups are not necessarily isomorphic.It is helpful to recall the case where H = h�; �i is a two-generator, purely lox-odromic fuchsian group. As such it represents either a handle or a pants. Let Aand B be matrix representations of � and �. Then H is isomorphic to hA;Bi. Thecommutator matrix [A;B] is independent of the choice of lift of � and �. The twocases, handle or pants, can be distinguished according to whether [�; �] represents asimple loop or not, or whether no axis in its conjugacy class separates the axes of �and � or does, or whether tr[A;B] < �2 or tr[A;B] > 2. Moreover, in the case of ahandle, the free homotopy class in the torus T ([�; �]) determined by a loop parallelto the handle boundary is uniquely determined, independent of Dehn twists aboutcompressing loops when regarding h�; �i as a Schottky group.More generally, any Schottky group h�; �i can be lifted to an isomorphic group inSL(2; C ) by designating matrix representatives for � and �.



56 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDEN10.3. The modulo 2 lifting obstruction. Let T be a trivalent graph as in x10.1.Lift to SL(2; C ) the Schottky groups corresponding to its vertices.Let e be an edge of T with endpoints v1 and v2. If v1 6= v2, the edge e correspondsto a common generator � of S(v1) and S(v2). The lifting will be called compatibleon e if the lifted � in S(v1) and lifted � in S(v2) have the same trace. If v1 = v2, thecompatibility condition is that the designated lifts of � and 
�
�1 from S(v1) havethe same trace. The lifting of T will be called compatible if it is compatible on eachedge.Suppose T is the graph of x8.4 with its maximal tree T0. Start at the extremevertices of T0 and work down towards the root: Exactly in analogy to the constructionof x8.4, choose at each step a lift of a generator of a Schottky group to be compatiblewith the lifts previously chosen. We end up with a compatible lift of Tr . The lift ofTr is determined by the two choices made at the g � 1 extreme points of T0 otherthan the root, and one choice at the root.Lemma 10.3.1. Suppose T is the trivalent graph corresponding to an admissiblepants decomposition. Then T has a compatible lift to SL(2; C ) if and only if thehomomorphism � can be lifted to SL(2; C ).Proof. The graph T corresponds to a presentation of �1(R).10.4. Localization of the lifting obstruction. Denote by h��1��; ��1i the Schot-tky group corresponding to the root. We recall from x5.7 that the \handle group"H = h�; �i is nonelementary with � and � loxodromic, even though it may not bediscrete.Applying the technique of x8, we can build a pants con�guration Jh on which Hacts so that Jh=H is a handle. Likewise the graph T0h resulting from removing from Tthe root and attached edges determines a pants con�guration J0h acted on by a groupH 0 so that J0h=H 0 is a surface of genus g � 1 with one boundary component.Choose matrix representatives A and B for � and �; then [B;A] is a representativefor [�; �], which corresponds to the boundary component of the handle.The graph T0h can be lifted to SL(2; C ) as in x10.4, which yields a matrix Crepresenting [�; �] 2 H 0. Therefore C = �[B;A].Lemma 10.4.1. The homomorphism � lifts to SL(2; C ) if and only if C = [B;A].In particular, � lifts if Jh and J0h can be joined to form a pants con�guration for T.Proof. The �rst assertion follows from Lemma 10.3.1. The second follows as a conse-quence of the existence of a projective structure (see, for example, Remark 1.3.1).



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 5710.5. Equivalence of obstructions.Proposition 10.5.1. The procedure of x8 succeeds in constructing a projective struc-ture associated with the given homomorphism � : �1(R;O) ! PSL(2; C ) if and onlyif � can be lifted to a homomorphism into SL(2; C ).Proof. From x1.3 we already know lifting is a necessary condition. Now suppose � canbe lifted, yet the construction cannot be completed. That is, in the notation of x10.4,Jh cannot be attached to J0h. But then, as in x9, we can introduce a single branchpoint of order two and construct instead a branched projective structure associatedwith �. According to x1.4, � cannot be then lifted to SL(2; C ), in contradiction withthe assumption.Corollary 10.5.2. If the construction of a projective structure works for one admis-sible pants decomposition for �, it works for any admissible decomposition.



58 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENC. Rami�cations11. Holomorphic Bundles over Riemann Surfaces, the 2ndStiefel-Whitney Class, and Branched Complex ProjectiveStructuresThe purpose of this chapter is to place Theorem 1.1.1 in a more general setting,and to use that to clarify the role played by branched structures in Part B. We willalso discuss relations between instability of holomorphic vector bundles over Riemannsurfaces and branched complex projective structures. In x11.5 we establish the localcharacter of the map between singly branched structures over Teichm�uller space andthe representation variety. In x11.6, we again use holomorphic vector bundles to provethat for singly branched structures too the monodromy representation is necessarilynonelementary.11.1. The 2nd Stiefel-Whitney class of sphere bundles over Riemann sur-faces. Suppose that � : P ! R is a holomorphic C P1 -bundle over a closed Riemannsurface R. It is known (see for instance [Beauville 1983, Proposition III.7]) thatP can be obtained as the projectivization of a holomorphic (rank 2) vector bundle� : V ! R. Let det(V ) denote the determinant bundle of V , this is a holomor-phic line bundle over the surface R. The bundle V is not uniquely determinedby the projective bundle P ! R, and to obtain an isomorphic projective bundle,we can alter V by multiplying it by a holomorphic line bundle � over R. Thendeg(det(V 
 �)) = deg(det(V )) + 2deg(�). Thus we can always choose V so thatdet(V ) has degree 0 or 1.Let p : V ! P (V ) = P be the projectivization. We shall think of p as a holo-morphic line bundle over the base P . It is well-known that there are exactly twotopologically distinct orientable S2-bundles over the surface R (see [Melvin 1984])and they are distinguished by the 2nd Stiefel-Whitney class w2(P ) of the bundleP ! R.Note that if deg(det(V )) = 0 then the determinant bundle det(V ) is topologicallytrivial. In this case the bundle V is associated to an SL(2; C )-bundle over R which ishenceforth topologically trivial. We conclude that w2(P ) equals deg(det(V )) (mod 2).Let � : R ! P (V ) be a holomorphic section of P (V ). It de�nes a holomorphicline bundle L ! R by pull-back ��(p) of the line bundle p. The line bundle L iscanonically embedded as a holomorphic subbundle of the bundle � : V ! R with theimage p�1(�(R)).



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 59Lemma 11.1.1. (1) �2 = deg(det(V )) � 2deg(L), where the left-hand side is theself-intersection number of the cycle �(R) in P (V ). (2) The number �2 (mod 2)equals the 2nd Stiefel-Whitney class w2(P ) of the bundle � : P ! R.Proof. The �rst assertion is a particular case of a general result proven in [Lange 1983,Section 1]. Since w2(P ) equals deg(det(V )) (mod 2), the second assertion follows.Nevertheless we will provide a elementary proof of the �rst assertion for the sakeof completeness. We �rst consider the case deg(det(V )) = 0 and then we shallreduce the general case to this one. If deg(det(V )) = 0 then both bundles V andP are topologically trivial. Hence there is an orientation preserving di�eomorphismP (V )! R� F , where F = S2. By the K�unneth formula, the homology class [�] canbe written as [�] = n[F ] + [R];and we get: �2 = 2n. There are two possible cases: n � 0 (if �2 � 0) and n < 0 (if�2 < 0). We consider the former; the later case is analogous (one just has to workwith anti-holomorphic functions instead of the holomorphic ones). We can think of � :R! R�F as a graph of a smooth function f : R! F = S2 which has non-negativedegree n. The function f is not holomorphic, however (after deforming the section� within its homotopy class) we can assume that f�1(1) = Z := fz1; :::; zng � Rand f is holomorphic near each point zj so that f 0(zj) 6= 0, 1 � j � n. Now werealize F = C [ f1g as the complex projective line C P1 so that the point 1 hasthe homogeneous coordinates [1 : 0]. Then we lift the function f to the meromorphicfunction ~f : R! C 2 ; ~f(z) = (f(z); 1)which does not have zeroes and is holomorphic in a punctured neighborhood of eachpoint zj 2 Z and has a simple pole at each zj 2 Z. Thus ~f corresponds to a smoothmeromorphic section of the line bundle L � V which has n simple poles and nozeroes. Hence deg(L) = �n = ��2=2.Now we consider the case when deg(det(V )) = 2k is an even number. Take acomplex line bundle � over R so that deg(�) = �k, then deg(det(�
 V )) = 0. Thesection � : R ! P de�nes complex line subbundle of � 
 V which is isomorphic to�
L. As we proved above, �2 = deg(det(�
V ))�2 deg(�
L) which in turn equalsto deg(det(V )) � 2 deg(L). This completes the proof in the case when deg(det(V ))is even.In the case when deg(det(V )) is odd take a 2-fold unrami�ed covering ~R! R. Thenthe bundle V ! R pulls back to a bundle ~V ! R and deg(det( ~V )) = 2 deg(det(V ))is even. Similarly, the section � determines a section ~� : ~R ! P ( ~V ) and ~�2 = 2�2.



60 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENThe pull-back of the line bundle L to ~L � ~V has degree equal to 2 deg(L). We get:~�2 = deg(det( ~V ))� 2 deg(~L)which implies �2 = deg(det(V ))� 2 deg(L):This concludes the proof in the general case.11.2. Branched structures. Consider a Riemann surface R = 
=�1(R) where 
is the universal cover ~R of R and is either the unit disk, or the complex plane, orthe Riemann sphere and the group �1(R) of M�obius transformations acts freely anddiscontinuously on 
.Suppose that � : �1(R) ! � � PSL(2; C ) is a homomorphism, and f : 
 !f(
) � S2 is a meromorphic function (without essential singularities) which is �-equivariant and de�nes a branched (complex) projective structure � on R as in x1.4.Alternatively one can de�ne a branched projective structure on R as a collection oflocally de�ned holomorphic (but not necessarily univalent) mappings �� from R toS2 so that di�erent mappings are related by M�obius transformations 
�;�:�� = 
�;� � ��(see for instance [Mandelbaum 1972]).The homomorphism � is the (projective) monodromy representation of the branchedprojective structure, and in the terminology of x1.3 the projection f� : R ! S2 isthe (multivalued) developing map. We de�ne the branching divisor Df as follows.Consider the discrete set ~Df � ~R consisting of critical points of f . Thus (afterholomorphic change of variables), near such a critical point zj the function f(z) canbe written as f(z) = zk; 2 � k <1The number k is the order of branch point zj. Since the function f is �-equivariantwe conclude that for any 
 2 �1(R) the point 
(zj) is again a branch point with thesame order k. Hence the projection of ~Df to the surface R is a �nite collection ofpoints, to each such point wj we have the associated the number ord(wj) = kj > 1which is its order. De�ne the (additive) branching divisor D = Df of the structure �as Xwj (kj � 1)wj:The number d =Xwj (kj � 1) = deg(Df ) � 0



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 61is the degree of this divisor. The number kj � 1 is the local degree degwj (D) of thedivisor D at the point wj. The multiplicity jDj of the divisor D is just the numberof points in it. If deg(D) = 0, the divisor D is empty and there is no branching.For reasons that we shall see later on, it is convenient to de�ne the divisor D bysubtracting 1 from the order of each branch point. In addition we will consider thebranching divisor as a topological object, not an analytic one. Thus we will say thattwo branching divisors D;D0 on R are equivalent if there exists a bijective order-preserving map D ! D0 between them. This is the only meaningful equivalencerelation in our situation since we will have to change the complex structure on R inorder to �nd a branched projective structure with the prescribed monodromy.Next we review the relation between branched projective structures and Schwarz-ian di�erential equations as in x1.4. Let D be a positive divisor on the Riemannsurface R. Suppose that �(z)dz2 is a meromorphic quadratic di�erential on R whichis holomorphic on R�D and near each point wj 2 D has a Laurent expansion of theform �(z) = (1� k2j )2z2 + bz + 1Xi=0 aizi:(7)Here we use local coordinates such that wj = 0 and kj � 1 = degwjD is the localdegree of D. If f(z) = zkjh(z)(8)where h(z) is a holomorphic function such that h0(0) 6= 0, then the Schwarzianderivative Sf(z) near zero has Laurent expansion of the form (7). Conversely, tohave a solution in the form (8) the quadratic di�erential �(z)dz2 must satisfy anextra condition of integrability, see [Hejhal 1975a] or [Mandelbaum 1973].Let QD(R) denote the space of meromorphic quadratic di�erentials on R with atmost simple poles at points of D. Suppose that  0 is a �xed quadratic di�erential ofthe form (7), then all other such quadratic di�erentials can be written as � = �0+ ,where  2 QD(R). Let n denote the multiplicity of D. There exists a collectionof n polynomials Kj on the (3g � 3 + n)-dimensional complex vector space QD sothat � is integrable if and only if the di�erential  belongs to the zero set of all thepolynomials Kj. If deg(D) � 2g � 2 then the algebraic varietyI(R;D) := fKj( ) = 0; j = 1; :::; ng



62 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENhas generic dimension 3g � 3. In the case of a single order two branch point at theorbit of z = 0 2 H 2 , I(R;D) is given by the polynomial equationu2 + 2bu+ 2v = 0(9)where u is the coe�cient of the z�1 term and v is the constant term in the Lau-rent expansion of  at z = 0. The number b is given by x1.4(6). We refer to[Mandelbaum 1972], [Mandelbaum 1973], [Mandelbaum 1975] for more details.Now we go back to the linear di�erential equationu00 + 12�u = 0(10)expressed in a local coordinate system on the surface R. With � 2 QD(R) + �0and satisfying the integrability condition as above, the equation (9) has two linearlyindependent solutions. If zj is a singular point of � and we choose local coordinatesso that zj = 0, near this point these solutions have the form� u1(z) = z(1+kj)=2(1 + o(1))u2(z) = z(1�kj )=2(1 + o(1)):A circuit about z = 0 generates the linear monodromy� u1u2� 7! Jkj�1� u1u2� ; where J = ��1 00 �1� :The projectivization of this monodromy in PSL(2; C ) is just the identity.Lemma 11.2.1. On the surface R�D with a base-point O, the di�erential equation(9) has a linear monodromy representation�� : �1(R�D;O)! SL(2; C ):Proof. This is a consequence of the fact that the Wronskian of two solutions is aconstant (see Corollary 1.3.1).Let U � R be a closed disc which contains all the singular points zj 2 D and �xa base point O 2 @U = `. The matrix ��(`) that results from analytic continuationalong ` equals Jd where d = deg(D) is the degree of this divisor and J = �1. Therepresentation �� projects to a homomorphism � : �1(R)! PSL(2; C ). We concludethat � can be lifted to a linear representation~� : �1(R)! SL(2; C )if and only if the number d is even, in particular if d = 0 as in Chapter 1. It isinstructive to see a topological proof of this fact as well.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 63Let P denote the S2-bundle over R associated with the monodromy representation� of a complex projective structure � on R. It carries a natural 
at connection. Letw2(�) := w2(P ). The developing map f of the structure � de�nes a holomorphicsection � of the holomorphic bundle P ! R. We will treat � as a 2-cycle in P .Proposition 11.2.2. Under the above conditions we have: h�(R); �(R)i = 2� 2g+deg(D), where h�; �i is the intersection pairing on the 4-manifold P .Proof. Note that the polynomial zn admits arbitrarily small deformations p� in thespace of polynomials of degree n so that p0�(z) has only simple roots near zero. Thus,after perturbing the projective structure a little bit and keeping the homomorphism �the same, we assume that the order of each critical point of the meromorphic functionf : 
! S2 is 2. It is clear that this perturbation does not change h�(R); �(R)i andd = deg(D). The developing section � is transversal to the 
at connection over allpoints of R except at the singular points �1; :::; �d of the structure. Let D be thedivisor of this singular locus. There exists a smooth vector �eld X on R, which hasn = 2g + 2 nondegenerate zeros, where g is the genus of R: it has 1 sink, 1 source,and 2g saddle-type points. (For instance, take a Morse function � : R! R which hasone minimum, one maximum and 2g saddle points, then using a Riemannian metricon R let X := grad(�).) Denote zeroes of X by �1; :::; �n where the last two pointshave index 1. We can choose X so thatf�1; :::; �ng \ f�1; :::; �dg = ;Thus the vector �eld X is a section of the tangent bundle TR which is transversal tothe zero section. Now using the developing section � : R! P we lift the vector �eldX to a tangent vector �eld Y = ��(X) along the surface � = �(R) � P . The verticaldirections in P de�ne the normal bundle N(�) as in Section 11.1. The 
at connectionon P de�nes the projection r : Tx(P ) ! Vx(P ) where Vx(P ) is the distribution ofvertical planes in P . The vector �eld Q = r(Y ) is a section of the normal bundleN(�). The section � is transversal to the 
at connection on P everywhere except atthe set f�1; :::; �dg. Thus the set of zeros of the �eld Q is�f�1; :::; �d; �1; :::; �ng:A direct computation shows that the sectionQ of the normal bundleN(�) is transver-sal to the zero section 0�. Moreover, the intersection Q(�) \ 0� is positive at thepoints f�1; :::; �d; �n�1; �ng and is negative at the points f�1; :::; �n�2g. Hence the al-gebraic intersection number hQ(�); 0�i (which is equal to h�;�i) equalsd+ 2� (n� 2) = d+ 2� 2g



64 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENwhich proves the Proposition.Corollary 11.2.3. The degree deg(D) = d is even if and only if the representation� lifts to SL(2; C ). Equivalently, � is liftable if and only if the second Stiefel-Whitneyclass satis�es the equation w2(P ) = deg(D) = 0( mod 2).Proof. The representation � lifts to SL(2; C ) if and only if the bundle P is trivial(equivalently, w2(P ) = 0), see [Goldman 1988]. As in the previous Proposition wehave the developing section � of the bundle P ! R. We proved that h�(R); �(R)i =2� 2g + deg(D), hence h�(R); �(R)i = deg(D) (mod 2):On the other hand, according to Lemma 11.1.1 we have:h�(R); �(R)i = w2(P ) (mod 2)and the Corollary follows.Now we are ready with the promised re�nement of Theorem 1.1.1.Theorem 11.2.4. Suppose the surface R and homomorphism � satisfy the hypothesisof Theorem 1.1.1. Suppose that D is a nonnegative divisor on R such that w2(�) =d (mod 2), where d = deg(D). Then there exists a complex projective structure on Rthat has the monodromy � and branching divisor equivalent to D.Proof. The proof is a straightforward generalization of the proof of Theorem 1.1.1.Let P denote the S2-bundle over the surface R associated with the homomorphism �.We �rst construct a decomposition of the surface R into a union of pairs of pants sothat the restriction of � to the fundamental group of each pair of pants is a Schottkyrepresentation. We use these representations to build a complex projective structureon a pants con�guration. But there is a \topological" Z=2-obstruction to forming the�nal handle. This obstruction is a Dehn twist along a compressing loop. Suppose �rstthat w2(P ) = 0. If the obstruction is nontrivial, then we can still construct a projec-tive structure for the pants con�guration which has exactly one branch point of order1 and the monodromy �. However the existence of such a structure contradicts Corol-lary 11.2.3. Thus the \topological" obstruction to the existence of an unbranchedstructure was trivial to begin with. In parallel, we conclude that if w2(P ) 6= 0, thenthe pants con�guration admits a branched structure with a single branch point oforder 1. Now consider the general case assuming that w2(P ) = 0. By adding to thepants con�guration (for example to a single pants in the con�guration) branch pointsequivalent to the divisor D, we do not change the \topological" Z=2-obstruction to



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 65completing the construction. Since deg(D) = 0 (mod 2), adding the branch pointshas the e�ect of twisting one of the boundary curves an even number of times. Hencefor the resulting branched pants con�guration there is no obstruction to completingit to a closed surface. The construction in the case w2(P ) 6= 0 is similar.11.3. The algebro-geometric interpretation. Let R be a closed Riemann surfaceR of genus g � 2. In this section we shall consider holomorphic vector bundles Wover R such that rank(W ) = 2 and det(W ) = 1 (i.e. the determinant bundle istrivial). Let V �(R) denote the collection of holomorphic vector bundles W over Rsuch thatW admits a holomorphic 
at connection. According to Weil's theorem (see[Atiyah 1957], [Gunning 1967b], [Weil 1938]), elements of V �(R) can be characterizedintrinsically as follows:Suppose that W = �jWj is the holomorphic direct sum decomposition of W into(holomorphically) indecomposable vector bundles. Then the bundle W admits aholomorphic 
at connection if and only if deg(det(Wj)) = 0 for all j.Let F �(R) := f(�;r) : � 2 V �(R);r is a holomorphic 
at connection on �gbe the space of local systems on R. We have the Riemann-Hilbert correspondence:RH�R : F �(R)! Y (�1(R); SL(2; C )) := Hom(�1(R); SL(2; C ))= SL(2; C )given by the conjugacy class of the monodromy of the 
at connection r. It is clearthat the mapping RH�R is bijective (since every 
at bundle over R has a canonicalcomplex structure). The space Y (�1(R); SL(2; C )) has a natural (non-Hausdor�)topology, we topologize F �(R) so that RH�R is a homeomorphism.We also have the natural projection��R : F �(R) �! V �(R); ��R(�;r) := �:Recall that each holomorphic vector bundle W has the degree of instability u(W )de�ned as follows:u(W ) = d is the maximal number such that W contains a holomorphic line sub-bundle L � W such that deg(L) = d.In general, u(W ) = d� deg(det(W ):For all bundles W 2 V �(R), �g � u(W ) � g � 1(see for instance [Gunning 1967b]), and stable (resp. semistable) bundles W arede�ned by the condition u(W ) < 0 (resp. u(W ) � 0). Stable and semistable bundlesand their moduli spaces have been extensively studied by algebraic geometers since



66 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENthe seminal paper of Narasimhan and Seshadri [N-S]. In contrast, our main objectsare maximally unstable bundles W which are de�ned by the condition u(W ) = g� 1.Gunning [Gunning 1967a] proves that projectivizations of all maximally unstablebundles over R are holomorphically isomorphic to each other. We let MR denote thecorresponding projective bundle over R. It gives rise to a �nite subset M�R of V �R thatconsists of 22g vector bundles that can be described as follows. Let K denote thecanonical bundle on R. Choose a holomorphic line bundle L on R such that L2 = K.Then deg(L) = g � 1. There are 22g characters � : �1(R) ! f�1g � C . Eachcharacter gives rise to a holomorphic line bundle over R which we shall denote bythe same letter �. Then the collection of square roots pK of the bundle K consistsof 22g bundles �
 L. For each � = � 
 L 2 pK there is a unique holomorphicallyindecomposable bundle W = W� for which there is a short exact sequence1! �!W ! ��1 ! 1of holomorphic morphisms of holomorphic bundles. Notice that W� = �
W1 where1 : �1(R) ! f�1g is the trivial homomorphism. Then M�R = fW�; � : �1(R) !f�1gg.Also in [Gunning 1967a], Gunning establishes the basic relation between maximallyunstable bundles and complex projective structures on the surface R. He proves thatRH�R((��R)�1(M�R)) � Y (�1(R); SL(2; C ))consists of (conjugacy classes of) linear monodromy representations of complex pro-jective structures on the Riemann surface R. The relation between (branched) com-plex projective structures and instability of holomorphic vector bundles is furtherexplored in [Mandelbaum 1972], [Mandelbaum 1973], and [Mandelbaum 1975].The results of the previous two sections imply the following:Corollary 11.3.1. Suppose that � : �1(R)! PSL(2; C ) is the monodromy represen-tation of a branched projective structure with branching divisor D. Let P ! R denotethe associated S2-bundle over R which is the projectivization of a holomorphic vectorbundle V ! R. Then u(V ) � g � 1 + [deg(det(V ))� deg(D)]=2.Proof. The developing map of the projective structure de�nes a section � of thebundle P , let L � V be the corresponding line subbundle. Then Lemma 11.1.1 andProposition 11.2.2 imply thatdeg(L) = g � 1 + [deg(det(V ))� deg(D)]=2:



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 67From now on it will be convenient to projectivize all vector bundles, connectionsand representations. LetY (�1(R);PSL(2; C )) := fp(�); � 2 Hom(�1(R); SL(2; C ))g=PSL(2; C ) � Vg;where p(�) is the projectivization of �. Denote the spaces of projectivized holomorphicbundles and local systems over R by V (R) and F (R) respectively. Let RHR : F (R)!Y (�1(R);PSL(2; C )) denote the induced Riemann-Hilbert correspondence. Similarlyde�ne the projection �R by projectivizing the mapping ��R.Our next step is to allow the complex structure on the surface R to vary. We let Sbe the oriented smooth surface underlying R. Let T(S) denote the Teichm�uller spaceof S. Consider the spaces Vtop(S) := [R2T(S) V (R);Ftop(S) := [R2T(S)F (R);and mappings,� : Ftop(S)! Vtop(S) ; RH : Ftop(S)! Y (�1(S);PSL(2; C ));whose restrictions to the �bers F (R) are �R : F (R)! V (R) and RHR.Remark 11.3.2. The space Ftop(S) is naturally identi�ed with the productFtop(S) = T(S)� Y (�1(S);PSL(2; C )):The projection Ftop(S)! T(S) which maps F (R; �) to (R; �) 2 T(S) is the projectionof Ftop(S) to the �rst factor of the product decomposition.Indeed, suppose (R; �) 2 T(S) is a marked Riemann surface with the marking� : �1(S)! �1(R) (which is an isomorphism de�ned up to an inner automorphism).Then � indices an natural isomorphismY (�1(R);PSL(2; C )) ! Y (�1(S);PSL(2; C ))given by precomposition of representations with �. Note that we have to work withthe Teichm�uller space of S rather than with the moduli space M(S), otherwise thenatural projection to M(S) would be a nontrivial �bration (in the orbifold sense).The projection � : Vtop(S)! T(S);� : V (R)! Rhas a section � : R 7!MR 2 V (R) � Vtop(S);



68 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENwhere MR is the projectivization of maximally unstable vector bundles over R. LetYne(�1(S);PSL(2; C )) � V 0gdenote the collection of conjugacy classes of all projectivized nonelementary repre-sentations into SL(2; C ). We summarize this in the diagram below:T(S) ��! Vtop(S)x??� � � x??���1(�(T(S))) � Ftop(S)??yRH ??yRHYne(�1(S);PSL(2; C )) � Y (�1(S);PSL(2; C ))In view of [Gunning 1967a], the image RH(��1(�(T(S)))) consists of (projective)monodromy representations of complex projective structures on the surface S. Onthe other hand, each holomorphic bundle in M�R is maximally unstable. Let V� be amaximally unstable bundle associated with a representation � : �1(R) ! SL(2; C ).Thus, for all characters � : �1(R)! f�1g, the bundles �
 V� = V��� are also maxi-mally unstable. The inverse image of the subvariety ��1(MR) in Y (�1(R); SL(2; C ))has 22g components. Each component consists of holomorphically isomorphic vec-tor bundles over R, but members of distinct components are not holomorphicallyisomorphic to each other.Therefore, by applying Theorem 1.1.1, we obtain,Theorem 11.3.3. The map RH sends ��1(�(T(S))) onto Yne(�1(S);PSL(2; C )). Inother words, let � 2 Y (�1(S); SL(2; C )) be a nonelementary representation. It is themonodromy of a holomorphic 
at connection on a maximally unstable holomorphicvector bundle over a Riemann surface R; R is di�eomorphic to S via an orientationpreserving di�eomorphism.11.4. Proper embeddings in the representation variety. In this section we willgive a detailed proof of the \divergence" theorem. It was �rst suggested by Hejhalin [Hejhal 1975a] that such theorem could be true. This theorem shows that on a�xed Riemann surface, if any sequence of quadratic di�erentials diverge, so must theconjugacy classes of corresponding monodromy representations. A brief outline ofthe proof was given in [Kapovich 1995, x7.2]2.As before, R denotes a closed Riemann surface of genus exceeding one and Q(R)its space of holomorphic quadratic di�erentials. Let hol denote the map that sends2Note that the discussion in [Kapovich 1995, x7.2] does not distinguish linear and projectivemonodromy representations.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 69each � 2 Q(R) to the monodromy homomorphism determined by the correspondingSchwarzian equation S(f) = �. By Theorem 1.1.1, the image lies in the componentof the representation variety Vg containing the identity (cf., x1.5). That is,hol : Q(R)! Y (�1(R);PSL(2; C )):Theorem 11.4.1. (Divergence Theorem) The map hol is proper.Proof. Let ~Z � Hom(�1(R); SL(2; C )) denote the preimage of Z, where Z is theimage of hol.Our �rst goal is to show that ~Z is a properly embedded complex analytic subvarietyin Hom(�1(R); SL(2; C )). Indeed, if � : �1(R) ! SL(2; C ) is any representation,the associated vector bundle V� ! R is maximally unstable if and only if � 2 ~Z.Equivalently, � 2 ~Z () H0(R;L� 
 V�) 6= 0 for some L 2 pK:The set pK is �nite. Thus, by the upper semicontinuity theorem for cohomology(see [B-S 1976]), the subset ~Z is closed and is equal to a �nite union of disjointcomplex analytic subvarieties XL properly embedded in Hom(�1(R); SL(2; C )) (thesesubvarieties are indexed by L 2 pK).Recall that ~Z is contained in the open subset Homne(�1(R); SL(2; C )) of nonele-mentary representations, i.e. those whose projectivizations are nonelementary. Thegroup SL(2; C ) acts on Homne(�1(R); SL(2; C )) by conjugation and the quotient isYne(�1(R); SL(2; C )). Hence the projectionHomne(�1(R); SL(2; C )) ! Yne(�1(R); SL(2; C ))is a principal SL(2; C )-bundle. Since ~Z is invariant under this action, the projectionZ� of ~Z to Yne(�1(R); SL(2; C )) is again a closed properly embedded complex analyticsubvariety. It consists of 22g components indexed by elements of pK.The restriction of the projectionp : Yne(�1(R); SL(2; C )) ! Yne(�1(R);PSL(2; C ))to each component of Z� is a bijection onto hol(Q(R)). Now p(Z�) = Z is closed,since p is a �nite covering. It is disjoint from the collection of conjugacy classesof elementary representations because all elementary representations correspond tosemistable bundles over R. Consequently we can restrict our study to the smooth(Hausdor�) manifold Yne(�1(R);PSL(2; C )).According to [Gunning 1967b], the partition of Yne(�1(R); SL(2; C )) into holomor-phic equivalence classes is a smooth foliation. The components of Z� are leaves of



70 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENthis foliation; hence they are complex submanifolds in Yne(�1(R); SL(2; C )). This im-plies that Z � Yne(�1(R);PSL(2; C )) is a properly embedded complex submanifold.On the other hand, the mapping hol : Q(R) ! Z is a continuous bijection, hencea homeomorphism. Therefore hol : Q(R) ! Z � Yne(�1(R);PSL(2; C )) is proper.Hence the composition ofhol : Q(R)! Yne(�1(R);PSL(2; C ))with the inclusion Yne(�1(R);PSL(2; C )) ,! Y (�1(R);PSL(2; C ))is a proper map Q(R)! Y (�1(R);PSL(2; C )).Remark 11.4.2. The above proof shows that elementary representations cannotbe limits of sequences from hol(Q(R)). It was proven [Kapovich 1995] only thatthe mapping hol : Q(R) ! Yne(�1(R);PSL(2; C )) is proper. Tanigawa [Tanigawa]recently gave a nice geometric proof of this statement in contrast to algebro-geometricproof presented here and in [Kapovich 1995]. However Tanigawa's arguments do notseem to prove that Z = hol(Q(R)) is closed in Y (�1(R);PSL(2; C )), only in thesubmanifold corresponding to nonelementary representations. See also x12.4.11.5. An analogue of Hejhal's holonomy theorem for branched projec-tive structures. The nonelementary representation variety V 0g has two components[Goldman 1988]. These correspond to the representations that lift to SL(2; C ), andthose that do not. Each of these has dimension 6g�6. By a singly branched projectivestructure we mean one that has exactly one branch point and that is of order two. Inthe next section we will show that the monodromy of each singly branched projectivestructure is a nonelementary representation but we will use this fact in this section.Let R be a closed Riemann surface of genus g � 2 and p 2 R a given point.We will �rst parameterize singly branched structures on R with branch point at thedesignated point p. Let D be the divisor of p and QD(R) the space of holomorphicquadratic di�erentials on R which have at most a simple pole at p.Recall from x1.4, equation (6), that the meromorphic quadratic di�erential �0generates a singly branched complex projective structure if its Laurent expansion atthe chosen branch point p has the form�0 = �3=z2 + b=z + �0 + �1z + � � � ; where b2 + 2�0 = 0;(here and below we choose local coordinates so that p is identi�ed with zero). The sidecondition comes from the requirement that the solution of the Schwarzian equationhas no logarithmic term.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 71We note that there exists such a di�erential �0. First of all the Riemann-Rochtheorem implies there is a quadratic di�erential with a double pole at any point p.Secondly it also implies that there is an abelian di�erential ! which does not vanish atp. The holomorphic di�erential !2 can be employed to insure that the side conditionis satis�ed ([Mandelbaum 1972]). Fix one such quadratic di�erential �0.There is a meromorphic quadratic di�erential with a single pole at p with theLaurent expansion  0 = 1=z + a0 + d1z + � � � :Adding !2, which does not vanish at p, to  0 if necessary, we may assume thata0 + b 6= 0.Let  i; 1 � i � 3g � 3 be a basis of the holomorphic quadratic di�erentials on R.Then  i; 0 � i � 3g � 3 is a basis of the space QD(R).Let ai be the constant term in the Laurent expansion of  i at p. Not all ai canvanish.The vector space QD(R) consists of the di�erentials  = P3g�3i=0 ci i. When is�0 +  an admissible quadratic di�erential in the sense of x1.4, equation (6)? Theanswer is when u2 + 2bu + 2v = 0, where v is the constant term in in the Laurentexpansion of  at p, and u is its residue.The constant term in  is v =P3g�3i=0 ciai. The residue term is just c0. Hence thecondition reads c20 + 2bc0 + 2 3g�3Xi=0 ciai = 0:(11)Recall that a0 + b 6= 0, thus the implicit function theorem implies that the collectionof vectors ~c = (c0; c1; :::; c3g�3) satisfying the above equation is a complex manifold ofdimension 3g� 3 provided that the norm j~cj is su�ciently small. (Actually it su�cesto require that only jc0j is su�ciently small.)Consequently we can choose a small neighborhood U of �0 in the a�ne space ofmeromorphic quadratic di�erentials �0 +QD(R) with the following property.The collection of di�erentials �0+P3g�3i=0 ci i 2 U satisfying (11) forms a (3g� 3)-dimensional complex manifold � containing �0.Let Bg denote the holomorphic variety which consists of singly branched complexprojective structures on closed Riemann surfaces S of genus g � 2. Let T(S �fqg) denote the Teichm�uller space of surfaces S with one marked point. There isa holomorphic mapping � : Bg ! T(S � fqg) whose �ber over a marked Riemannsurface R with a marked point p is the space I(R;D) of singly branched complex



72 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENprojective structures with the underlying complex structure R and branching at D =p. It follows from the above discussion that Bg is a holomorphic variety of genericdimension 6g � 5: the Teichm�uller space of once punctured surfaces T(S � fqg) hascomplex dimension 3g � 2 and the �ber of � has complex dimension 3g � 3. Thereis an open and dense subset of Bg which is a complex manifold of dimension 6g � 5.We will use the notation (S; q; ') for elements of Bg, where S denotes the markedRiemann surface, q the branch point and ' the meromorphic quadratic di�erential.We will need the following explicit description of the space Bg. Choose a point R asthe \origin" in T(S) and write R = H 2=G where H 2 is the unit disk fjzj < 1g and G isa fuchsian group acting on H 2 . In the \Bers' slice" model, Teichm�uller space T(S) isidenti�ed with that subset of the space Q(R) of holomorphic quadratic di�erentials onR, lifted to H 2 , such that the corresponding developing map h� : H 2 ! S2, � 2 Q(R),is a univalent holomorphic mapping with homeomorphic extension to fjzj = 1g. Thush = h� solves the Schwarzian equation for � ; we will normalize it by the requirementthat h(0) = 0; h0(0) = 1. Let �� : G ! G� denote the corresponding monodromyrepresentation. As � ! 0, G� converges algebraically back to G.The image �� (G) = G� is a quasifuchsian group. Its set of discontinuity has twocomponents. One is 
� = h� (H 2). The other 
� represents the marked Riemannsurface R� := 
�=G� 2 T(S). The homotopy marking of this point in T(S) is givenby the isomorphism �� : G = �1(R) ! G� = �1(R� ). If we mark a point p 2 R� weget an element of T(S � fqg).Any given compact subset of 
0 belongs to 
� for � su�ciently close to 0; likewiseany neighborhood of the closure of 
0 contains 
� for � su�ciently close to 0. Here
0 = fz : jzj > 1g [1.Lemma 11.5.1. There is a locally de�ned holomorphic map P : Bg ! S2 that\records" the position of the branch points.Proof. We construct P in a small neighborhood � of a given point (R; q; ') 2 Bg,where ' is a quadratic di�erential on R, the surface R is the \origin" in the Te-ichm�uller space and q 2 R is the branch point. We will denote points � 2 � by(R� ; q�; '�) where � = �(�) 2 T(S) and q� 2 R� is the branch-point. If � = 0, then� represents a change of branch point from q to q� on R itself. The point � = 0is (R; q; '). Let f0 : 
0 ! S2 denote the (as yet unnormalized) developing map of(R; q; ') and � : G = �1(R)! PSL(2; C ) the associated nonelementary monodromyrepresentation (here we are applying Theorem 11.6.1 that will be proven in the nextsection).Let f� : 
� ! S2 be the associated holomorphic developing map. We will showin the next paragraph how to �x a consistent normalization for f� given f0 so that



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 73the restrictions of f� to compact domains in 
0 depend holomorphically on �. Eachdeveloping mapping f� corresponds to the monodromy representation�0� := �� � �� : G! G� ! H� � PSL(2; C ):At the origin, �00 = �0.Consider the projection Hom(�1(R);PSL(2; C )) ! Vg. We will construct a localcross section eVg near �00 as follows. We know from Part A that we can �nd in H0 threeloxodromic elements h1 = �00(g1); h2 = �00(g2); h3 = �00(g3) with distinct attracting�xed points a1; a2; a3, where g1; g2; g3 2 G. Normalize each developing mapping f� sothat the attracting �xed point of �0�(gj) remains aj, j = 1; 2; 3. This can be done forall � 2 � if � is su�ciently small, i.e., if the attracting �xed points remain distinctand the elements �0�(gj) remain loxodromic. Thus in � we have a holomorphic liftfhol : Bg ! eVg � Hom(G;PSL(2; C )):Now given a lift q� 2 
0 of q 2 R, there is, in the set of lifts of q� to 
�, a closest (inthe spherical metric) point q�� to q�. De�neP : (R� ; q�; '�) 7! f�(q��) 2 S2:It is clear that the mapping P is holomorphic provided that � is so small that thepoint q�� is unique.Thus, by the previous lemma we have a locally de�ned holomorphic map� = (P; hol) : Bg ! S2� Vgand its lift ~� = (P; fhol) : Bg ! S2� eVg :We are now ready to state our theorem.Theorem 11.5.2. The holonomy map hol : Bg ! Vg is locally a topological �berbundle with �ber of complex dimension one.Remark 11.5.3. The �bers re
ect the choice of branch point. This result shouldgeneralize to the space of D-branched projective structures where D is a �xed (topo-logical) branching divisor, provided we consider structures with nonelementary mon-odromy.Proof. In Lemma 11.5.5 and Lemma 11.5.4 below we will prove that � is injectiveand an open map. Hence � is a local homeomorphism. Since S2� V 0g is a complexmanifold of dimension (6g� 5) we can therefore use � to locally identify Bg with theproduct S2�Vg so that hol is identi�ed with the projection to the second factor.



74 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENLemma 11.5.4. Let X be a holomorphic variety of generic complex dimension n(i.e. there is an open dense subset U � X which is a complex manifold of dimensionn). Let f : X !M be a locally injective holomorphic mapping, whereM is a complexmanifold of dimension n. Then f is open.Proof. Since this is a local question it su�ces to consider the germ of X at a pointx 2 X and the germ of f at x. Since f is locally injective, the germ of the mappingf at x is \�nite" in the terminology of [Gunning 1990, p. 56].Suppose that the germ of f at x is not onto. Apply [Gunning 1990, Corollary9]: it follows that there exists a nonzero germ of a holomorphic function h on Mat m = f(x) such that h � f = 0. The germ at m of the zero level set fh = 0g ofh is a holomorphic subvariety of dimension strictly less than n, by the uniquenessprinciple of holomorphic functions. Thus the germ of the image f(X) at m hasgeneric dimension less than n. However f(X) is generically a manifold, hence f(U)has dimension less than n, a contradiction to invariance of domain for manifolds.Lemma 11.5.5. The mapping � is locally injective.Proof. It su�ces to show that two nearby branched structures with the same mon-odromy representation are identical provided that the images of their branch pointsunder P are the same. Our proof is analogous to that of [Hejhal 1975a, Theorem 1].It clearly enough to show local injectivity of the holomorphic lift~� = (P; fhol) : Bg ! S2� eVg :We consider the points � = (R� ; q�; '�) of a small neighborhood � of the point(R; q; ') 2 Bg.Let F� � 
� denote the (closed) Dirichlet fundamental domain for G� in thehyperbolic metric on 
� and with center q��; � = �(�). Let F�0 be a small openneighborhood of F0, and take � so small that F� � F�0 for all � 2 �. We may alsoassume that the orbit G� (q��) meets the closure of F�0 only at q��.We again use the developing mappings f� : 
� ! S2. Decreasing � even more ifnecessary, we may assume that:a) For each � 2 � there is an open neighborhood F�� of F� such that for any pairof points �; � 2 � we have F� � F�� , andb) Given small � > 0, there is a disk V � F0 about q� of radius 2� with the followingproperty. To any z 2 F�0 nV , and to any pair of points �; � 2 �, corresponds a uniquepoint z�;� 2 F�0 such thatf�(z�;�) = f�(z); and d(z�;�; z) < �:Here d(�; �) is the spherical metric.



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 75The \membranes" ff�(F�)g over S2 serve as \fundamental domains" for the imagegroups H� = �0�(G).Suppose ~� is not injective in any neighborhood �. Then for arbitrarily small� there exist � 6= � 2 � so that P (�) = P (�) and the normalized monodromyrepresentations are identical, i.e.,(�0� : G! H�) � (�0� : G! H�):We claim that there is a branch F of f�1� �f� which is a conformal homeomorphismof the fundamental domain F� onto a new fundamental domain F 0� for G�(�) in 
�(�).Such a map F would necessarily be equivariant in the sense that if z; g(z) 2 F�; g 2G�(�), then F (z); F (g(z)) 2 F 0� and F (g(z)) = ��(�) � ��1�(�)(g)F (z). Here � := ��(�) ���1�(�) : G�(�) ! G�(�) is the isomorphism which factors through G.Indeed, for z =2 V de�ne F (z) := z�;�. It is clear F is a univalent holomorphicmapping. Furthermore F jF� n V extends over V to a conformal mapping becauseboth f� and f� are 2-fold branched coverings near q� 2 
0 with the same criticalvalue f�(q��) = P (�) = P (�) = f�(q�� ):The mapping F projects to a conformal map of R�(�) = 
�(�)=G�(�) onto R�(�) =
�(�)=G�(�). Correspondingly F extends to a conformal mapping F : 
�(�) ! 
�(�)that induces the isomorphism � : G�(�) ! G�(�).The map h�(�) �h�1�(�) is a conformal map of 
�(�) onto 
�(�) which also induces theisomorphism �. The two conformal mappings have continuous extensions to the limitset which are necessarily identical. Since the limit set is a quasicircle they are therestrictions of a M�obius transformation. In particular F is a M�obius transformationand � = �, a contradiction.The following is a direct consequence of Theorem 11.5.2.Corollary 11.5.6. Let � = (R; p; ') be a singly branched projective structure. Let� � Bg be a su�ciently small neighborhood of � in the space of singly branchedstructures � on R \with the same image of the branch point" P (�) as �. Suppose thesequence of normalized representations �i : �1(R)! PSL(2; C ) converges algebraicallyto the normalized monodromy representation � associated with �. Then for all largei, �i is associated with a unique �i 2 �.11.6. Monodromy of singly branched projective structures. In this sectionwe will prove facts that have been announced in x1.6.



76 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENTheorem 11.6.1. Suppose that R is a closed Riemann surface of genus g � 2,� : �1(R)! PSL(2; C ) is the monodromy representation of a singly branched complexprojective structure � on R. Then � = �(�1(R)) is a nonelementary subgroup ofPSL(2; C ).Proof. Since � has exactly one branch point and the order of this branch point is 2,the representation � has nonzero 2nd Stiefel-Whitney class. In particular, � cannotbe lifted to a representation �1(R)! SL(2; C ). Suppose that the group � = �(�1(R))is elementary. There are three cases:(a) The group � has a �xed point z 2 S2. Without loss of generality we can assumethat z =1, thus � is contained in the group A of complex a�ne transformations ofC . The inclusion A ,! PSL(2; C ) admits a 1-1 lift A ,! SL(2; C )a2z + b 7! � a ba�10 a�1 � :Therefore � lifts to a representation �� : �1(R) ! SL(2; C ), which contradicts theassumption that � has nonzero 2nd Stiefel-Whitney class.(b) Suppose that � is conjugate to the subgroup PU(2) � PSL(2; C ). Let ~R! Rbe a 2-fold covering over R. Thus 2(g � 1) = ~g � 1, where ~g denotes the genus of ~R.The complex projective structure � on R de�nes a complex projective structure ~� on~R with two branch points of order two. Suppose that � � PU(2); then �(�1( ~R)) �PU(2) as well. The representation �j�1( ~R) lifts to a linear representation�� : �1( ~R)! SU(2) � SL(2; C ):Consider the 
at vector bundle V of the rank 2 over the surface ~R associated with theaction �� of �1( ~R) on C 2 . Clearly det(V ) = 1. The developing map of the branchedcomplex projective structure ~� de�nes a section� : ~R! P (V ):According to Proposition 11.2.2, the self-intersection number �2 of the surface �( ~R)in P (V ) equals (2 � 2~g) + 2, since the structure ~� has exactly two branch points ofthe order 2.It follows from Lemma 11.1.1 that the section � gives rise to a line subbundleL � V such that deg(L) = (~g � 1)� 1 = 2g � 3 > 0:We conclude that u(V ) > 0 and the bundle V is unstable. On the other hand, every
at bundle over ~R with unitary monodromy group is semistable (see for instance[N-S]). This contradiction shows that � cannot be contained in PU(2).



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 77(c) Consider the case that the group �(�1(R)) has an invariant pair of points in S2.(This does not imply that � can be lifted to SL(2; C ).) We argue as in Case (b). Thereis a 2-fold covering ~R! R such that the group �(�1( ~R)) has a pair of �xed points inS2. Therefore the induced complex projective structure on ~R has two branch pointsand the monodromy group �(�1( ~R)) has a lift ��(�1( ~R)) to a subgroup of SL(2; C )conjugate to the group of diagonal matrices. Let V denote the holomorphic vectorbundle associated with the representation �� : �1( ~R)! SL(2; C ). The representation�� splits as the direct sum of representations. Hence the bundle V is decomposable(into the direct sum of two line bundles of degree zero), which implies that u(V ) = 0.On the other hand, the developing map of the branched complex projective structureon ~R de�nes a section � : R! P (V ) with the self-intersection number(2� 2~g) + 2 < 0;where ~g denotes the genus of ~R. Hence u(V ) > 0 which contradicts u(V ) = 0.Suppose that � is a branched complex projective structure on the closed Riemannsurface R of genus at least two. We identify the universal cover of R with thehyperbolic plane H 2 . Let f : H 2 ! S2 be the developing map of � and � = �(�1(R))be the holonomy group. We say that � is a branched hyperbolic structure if � hasat least one branch point and the image of f is a round disk in S2. This de�nitionis motivated by the fact that in such case � preserves the hyperbolic metric ds2 inf(H 2). The pull back of ds2 from f(H 2) to R is a hyperbolic metric on R which hassingular points at the branch points zj of � ; the total angle around zj is 2�kj, wherekj is the order of zj.Later we will show by example why the following result is false if we do not excludebranched hyperbolic structures. This too has been announced in x1.6.Corollary 11.6.2. Suppose that either the complex projective structure (f; �) is un-branched, or is singly branched but is not a branched hyperbolic structure (i.e. f(H 2)is not a round disk). Then the following statements are equivalent:(i) f(H 2) 6= S2;(ii) H 2 ! f(H 2) is a (possibly branched) cover;(iii) � acts discontinuously on f(H 2).Proof. The unbranched case is classical (see x1.6). Consider then the branched case.By Theorem 11.6.1, � = �(�1(R)) is nonelementary. The limit set �(�) is the smallest�-invariant closed nonempty subset of S2. Since � is nonelementary, �(�) is theclosure of the set of �xed points of loxodromic elements of �. It follows that the



78 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDEN�-orbit of any open set containing a limit point is S2. Suppose that � � PSL(2; C )is nondiscrete. Let �� be the closure of � in PSL(2; C ). Since � is nonelementary itfollows that �� is either PSL(2; C ) or it preserves a round circle C � S2 and �(�) = C[Greenberg]. If the latter case occurred, f(H 2) would be one of the two round disksin S2 bounded by C. It would follow that � is a branched hyperbolic structurein contradiction to our assumption. If �� = PSL(2; C ) then f(H 2) is contained in�(�) = S2 which implies that f(H 2) = S2.We conclude that if (i) holds then � is a discrete subgroup of PSL(2; C ) and f(H 2)is contained in the discontinuity domain 
(�) = S2n�(�). Hence (i)) (iii). Clearly,(iii)) (i).The implication (ii) ) (i) is immediate. Conversely if (iii) holds, f(H 2) must becontained in a component � of the domain of discontinuity of �. Since f(H 2) isconnected and �-invariant it follows that � is also �-invariant. Hence f projects toa holomorphic map f̂ : R ! f̂(R) � � = �=�. Since f̂(R) is a compact subsurfacewithout boundary in � we conclude that f̂(R) = � and � is a closed surface. Anynonconstant holomorphic surjective mapping between closed Riemann surfaces isnecessarily a covering, possibly branched. Consequently f itself is a possibly branchedcovering map.We will now construct an example of a singly branched hyperbolic structure on asurface R of genus two which has nondiscrete holonomy in PSL(2;R).Start with a regular hyperbolic octagon X � H 2 with vertex angles �=2 (cf.,[Tan 1994]). Label the edges b�11 ; a1; b1; a�11 ; : : : a�12 in positive order around X. Iden-tify the edges by corresponding isometries A1; B1; A2; B2 to obtain a Riemann surfaceof genus two such that H 2 is a two sheeted cover branched over one point on R. Let� denote the line segment from the left end point of b�11 to the right end point of a�11Then A1B1A�11 B�11 = E = A2B2A�12 B�12where E is a elliptic transformation of order two �xing the midpoint of �. Let 
 denotethe branched projective structure onR with the holonomy group � = hA1; B1; A2; B2i.The quotient orbifold H 2=� is a torus with one cone point of order two. Clearly theholonomy � : �1(R)! � is not injective (cf. [Goldman 1987]). According to Theorem1.1.1, � does not lift to SL(2;R).Next, we will show there exists a hyperbolic structure with exactly one branchpoint of order two and a nondiscrete holonomy group. Take the example above of abranched structure 
. The representation variety Hom(�;PSL(2;R))=PSL(2;R) is2-dimensional and the representation variety Hom(�1(R);PSL(2;R))=PSL(2;R) is



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 796-dimensional. Therefore we can �nd a real-analytic curve of nonelementary repre-sentations �t : �1(R) ! PSL(2;R), �0 = �; t 2 [0; 1], which do not factor through� : �1(R)! �. The fact that �t is a real-analytic curve implies that there is a densesubset J � [0; 1] so that K = ker(�t) = ker(�s); s; t 2 J . Let �0 := �1(R)=K. Weclaim that there cannot be a sequence of t 2 J which converge to t = 0 such thateach �t := �t(�1(R)) is discrete. For otherwise a sequence of discrete nonelementaryrepresentations �t : �0 ! �t; t 2 J would converge to � : �0 ! � as t! 0. The limit� of such sequence has to be a faithful representation as well, as a consequence of[J-K 1982]. This contradicts the fact that ker(�) = ker(�)=K 6= f1g. Thus there isan in�nite sequence of nondiscrete representations �t : �1(R) ! �t which convergesto �. In addition �t necessarily preserves the upper halfplane for t close to 0. ByCorollary 11.5.6, �t is the monodromy of a branched complex projective structure 
ton R with branch point likewise at z = 0.12. Open Questions About Complex Projective StructuresIn this chapter we list some unsolved problems. Some are well known in the �eld,others arise from the speci�c analysis of this paper.There are two general issues: the monodromy representation per se, and the Rie-mann surfaces of speci�ed type where it is induced by a particular projective struc-ture.We recall from x1.5 that Qg denotes the vector bundle of quadratic di�erentialsover Teichm�uller space Tg and V 0g is the subset of nonelementary representations inthe representation variety Vg, modulo conjugation by PSL(2; C ).12.1. Existence and nonuniqueness of points in Qg with given monodromy.Our proof exhibits two sources of nonuniqueness:� The non-uniqueness of the pants decomposition on which the monodromy isSchottky.� The nonuniqueness of the pants con�guration over S2 obtained from a pantsdecomposition: one can use N -sheeted branched covers for arbitrarily large N .Our Theorem 1.1.1 provides a Riemann surface for every nonelementary represen-tation �. On the other hand, if we �x attention on a particular oriented surface R,we don't know whether all projective structures on R itself can be obtained fromthe pants decomposition method. For example, can there be a complex projectivestructure � on R so that for each simple loop 
 � R with loxodromic monodromy,no element of its homotopy class is sent by the developing map to a simple arc in S2?



80 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENFor the case of representations into PSL(2;R) all projective structures can beobtained by the pants decomposition method, see [Faltings 1983], [Goldman 1987],[Gallo 1997]. However in all three papers the proofs that the developing map is acovering over the upper and the lower half-planes have the same gap: In generalthe pull-back of a complete Riemannian metric on a manifold via a local di�eomor-phism can be incomplete. For complete proofs of the assertion about covering see[Kuiper 1950, pp. 485{486], [K-P 1986], or [C-L 1997]).For those projective structures on R which do arise from pants decompositions, arethere optimal choices for the decompositions? For example, does the developing map-ping send each pants of some decomposition directly into the domain of discontinuityof the corresponding Schottky group?Problem 12.1.1. Characterize and classify the nonuniqueness of projective struc-tures with given monodromy.In particular is it possible to get one projective structure on R from another by aspeci�c series of \moves"?One might ask to do this through a sequence of graftings. Yet, at least in the caseof a once-punctured torus R, a connection solely by means of a grafting sequenceis known to be impossible in general. The reason has to do with the fact thatin the Bers slice, the result of pinching R along a simple non-dividing loop 
 is aB-group � representing the punctured torus on one side, and the triply puncturedsphere on the other. Speci�cally, construct two complex-projective structures on Rwith the monodromy G ! � as follows. Consider simple nondividing loops � and� on the surface R so that all the loops �; �; 
 are mutually non-homologous. Let�t; t 2 [0; 1) denote the family of complex-projective structures on R which is beingpinched along 
 as t ! 1. Let gr�(�t); gr�(�t) be the complex-projective structureson R obtained from �t via grafting along � and �. One can show that gr�(�t); gr�(�t)are convergent to complex-projective structures �01; �001 on R as t approaches 1. Thereresults two structures �01; �001 with the same orientation and the same monodromyG ! �. However these complex projective structures are not related by grafting.The underlying reason is that the \complex of simple loops" on the once puncturedtorus R is totally disconnected.For branched structures, there is another way of changing projective structureswithout changing the monodromy. This is the method of \bubbling".Suppose that R is a Riemann surface with a (branched) projective structure �.Let � � R be a compact simple arc, disjoint from the singular points of �, which thedeveloping map sends to simple arcs in S2. Let a be one of these arcs in S2. Thensplit R open along �, split S2 open along a, take N copies of the Riemann surface



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 81S2�a and glue them to R�� with appropriate identi�cation of boundary edges. Thenet result is a projective structure on the new \bubble-on" Riemann surface RN withthe same monodromy. The projective structure on RN has two additional branchpoints (at the end points of �), both of order N .\Bubble-o�" is the inverse operation on R.Problem 12.1.2. Suppose that �1; �2 are complex-projective structures on a surfaceR with the same monodromy representation. Can one pass from �1 to �2 using thefollowing elementary moves: \grafting", inverse to \grafting", \bubble-on", \bubble-o�"?12.2. Surfaces with punctures. What about surfaces with punctures where thecorresponding quadratic di�erentials have at most double poles? As with compactsurfaces, the dimension of the vector bundle Q(g;n) of quadratic di�erentials overthe Teichm�uller space T(g;n) agrees with that of the representation variety, if oneallows arbitrary monodromy at the punctures (for an analysis of the derivative ofthe monodromy map for this case see [Luo 1993]). One can search again for pantsdecompositions, provided the monodromy is not elliptic of in�nite order at a punc-tures. With discrete monodromy at the punctures, one can look for representationsof fundamental groups of pants to extended forms of Schottky groups (i.e. Kleincombinations of pairs of discrete cyclic subgroups of PSL(2; C )).Suppose the genus of R is positive. We believe that our technique in Part A willyield a pants decomposition of R in which the restrictions of the monodromy are ontoSchottky-like groups, provided the representation around each puncture is a discrete(cyclic) group.Problem 12.2.1. Prove and/or explore the existence and non-uniqueness of complexprojective structures with given nonelementary monodromy in the case of punctures,most importantly and most classically, punctured spheres.12.3. Linear monodromy representations. Throughout the paper we consideredSchwarzian di�erential equations on Riemann surfaces. Their monodromy represen-tations are projective representations � : �1(R)! PSL(2; C ).One can also consider the more general case of representations into GL(2; C ). Inthe classical case of punctured spheres R, the dimension of the representation variety,modulo conjugations, is identical to the dimension of the vector bundle over T(0;n) oflinear equations u00 + pu0 + q = 0;



82 DANIEL GALLO, MICHAEL KAPOVICH, AND ALBERT MARDENwhere p has at most simple poles and q double poles at the punctures. Note thatwe have to restrict to the representations �� into GL(2; C ) which map the peripheralloops of R to unipotent elements.Problem 12.3.1. Is there an analogue of Theorem 1.1.1 for punctured spheres ifone seeks a di�erential equation that induces a given linear representation ��?12.4. Divergence of monodromy representations. Fix a closed Riemann surfaceR of the genus g > 1 and let �n = 'n(z)dz2 be a sequence of quadratic di�erentialson R so that jj�njj ! 1. Let [�n] be the sequence of conjugacy classes of monodromyrepresentations of �n. We know from Theorem 11.4.1 that the sequence [�n] cannotsubconverge to the to the conjugacy class of any representation.Problem 12.4.1. Characterize the \limit points" of divergent sequences of repre-sentations in the representation variety. Prove the Divergence Theorem 11.4.1 forcomplex projective structures on R which have a single branch point of order 2.One way that the representation variety Vg can be compacti�ed is by (projectiveclasses of) actions of the group G = �1(R) on metric trees. Which actions of G ontrees can appear as limits of the sequences [�n]? For instance, is it true that for eachsequence of quadratic di�erentials �n = n�; � 6= 0; there is a limit � of the sequence�n with the following property: � is an action of G on a tree that is dual to thesingular foliation on R determined by �?12.5. Path lifting properties of monodromy mappings. Hejhal [Hejhal 1975a]proved that the natural mapping Pg : Qg ! Vg;is a local homeomorphism which fails to be a covering mapping.Problem 12.5.1. Let 
 : [0; 1]! Vg be a continuous path, ~
 : [0; 1)! Qg a partiallift which can not be extended to the end-point 1. Describe the asymptotic behaviorof the path ~
.For instance is it true that ~
 has a well-de�ned limitlimt!1 ~
(t)in a natural (e.g. closed ball) compacti�cation of Qg?



MONODROMY OF SCHWARZIAN EQUATIONS ON CLOSED RIEMANN SURFACES 8312.6. Branched projective structures. As the degree of a positive divisor D in-creases, it becomes easier to construct a complex projective structure with the branch-ing divisor D. Thus, one should be able to eliminate the assumption that the repre-sentation � is nonelementary for su�ciently large values of deg(D). For instance, if �is the trivial representation, then branched structures with the monodromy � are justm-fold rami�ed coverings f : R! S2. Thus �(R) = m�(S2)�deg(D) = 2m�deg(D).The number m is at least 2, hence deg(D) � 4��(R) = 2g+2. The minimal degreeis realized by a hyperelliptic rami�ed covering f , for which we have: deg(D) = 2g+2.Problem 12.6.1. Make precise and optimize the connection between branching di-visors and monodromy. Namely, compute the function d : Hom(G;PSL(2; C )) ! Z,where d(�) is the smallest integer for which there exists a branched complex projectivestructure with branching divisor of degree d and monodromy �.We proved that d(�) = 0 for all liftable nonelementary representations � and d(�) =1 for all nonliftable nonelementary representations �. Is it true that d(�) = 2g forall liftable representations � : G ! SO(3) � PSL(2; C ) and d(�) = 2g � 1 for allnonliftable elementary representations � : G ! SO(3) � PSL(2; C ), provided thatthe monodromy group �(G) is dense in SO(3)? Is it true that d(�) � 2g + 2 for any� : G! PSL(2; C )?Remark 12.6.2. For the 
at holomorphic bundles of rank 2 over R the correspond-ing question is the following: given a representation �� : G ! SU(2) with denseimage, �nd a complex structure on R so that the associated 
at C 2 -bundle V over Rhas the degree of instability u(V ) = �1.References[A-B 1994] D. V. Anosov and A. A. Bolibruch, The Riemann-Hilbert Problem, Vieweg, 1994.[Atiyah 1957] M. Atiyah, Complex analytic connections in �bre bundles, Trans. AMS, 85 (1957),181{207.[B-S 1976] C. Banica and O. Stanasila, Algebraic Methods in the Global Theory of Complex Spaces,Wiley, 1976.[Beauville 1983] A. Beauville, Complex Algebraic Surfaces, London Mathematical Society, StudentTexts, Vol. 34, 1983.[B-C-R 1996] V. Benyash-Krivetz, V. I. Chernousouv, A.S. Rapinchuk, Representation varieties ofthe fundamental groups of compact orientable surfaces, Israel J. Math. 93 (1996), 29{71.[C-E-G 1987] R. Canary, D.B.A. Epstein, P. Green, \ Notes on notes of Thurston", in Analyticaland Geometric Aspects of Hyperbolic Space, London Math. Society Lecture Notes 111 (1987), 3{92.[C-L 1997] S. Choi, H. Lee, \Geometric structures on manifolds and holonomy invariant metrics,"Forum Math. 9 (1997), 247{256.
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