Quasi-isometries preserve the geometric
decomposition of Haken manifolds*

Michael Kapovich and Bernhard Leeb**
December 29, 1995

Abstract. We prove quasi-isometry invariance of the canonical decomposition for
fundamental groups of Haken 3-manifolds with zero Euler characteristic. We show
that groups quasi-isometric to Haken manifold groups with nontrivial canonical de-
composition are finite extensions of Haken orbifold groups. As a by-product we
describe all 2-dimensional quasi-flats in the universal covers of non-geometric Haken
manifolds. !
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1 Introduction

Let I be a finitely generated group. A geodesic metric space X, on which I" acts prop-
erly discontinuously and cocompactly by isometries, can be regarded as a geometric
model for I'. Important examples are Cayley graphs associated to finite generat-
ing sets and universal covers of compact Riemannian manifolds with fundamental
group I'.  All such model spaces X are quasi-isometric to one another and their
quasi-isometry invariants are called geometric invariants of T, cf. [Grl]. It is a basic
question in this context to classify all finitely generated groups up to quasi-isometry.
Note that commensurable groups have the same geometric invariants, whereas the
converse is in general not true.

This paper deals with the geometry of 3-manifold groups. Our main result con-
cerns the canonical decomposition of Haken manifolds M with boundary of zero Eu-
ler characteristic. Jaco, Shalen, Johannson and Thurston proved that M can be cut
along flat surfaces into finitely many geometric components which are either Seifert
or hyperbolic. This canonical decomposition of M is unique up to isotopy and it
corresponds to an algebraic decomposition of 71(M) as a graph of groups which is
invariant under group automorphisms. We prove that the canonical decomposition
is more generally invariant under all quasi-isometries and therefore it is a geometric
invariant of the fundamental group. To make this precise, put a Riemannian metric
on M and take the universal cover X = M as a geometric model for m; (M). The
canonical decomposition of M lifts to a decomposition of X where a geometric com-
ponent of X is the universal cover of a geometric component of M. Let X' = M’ be
the universal cover of another Haken manifold M’ of the same kind, decomposed in
the same way.

Main Theorem 1.1 Let ¢ : X — X' be a quasi-isometry. Then ¢ preserves the
geometric decompositions of X and X' in the following sense: For any geometric com-
ponent Y of X there exists a geometric component Y' of X' within uniformly bounded
Hausdorff-distance from ¢(Y). The components Y and Y’ have the same type (Seifert
or hyperbolic). Moreover ¢ preserves the ordering of geometric components and there-
fore induces an isomorphism of the trees dual to the geometric decompositions of X
and X'.

We did a first step in this direction in our earlier paper [KL2] where we proved
that the quasi-isometry class of 7 (M) detects whether M has a Seifert component.
Theorem 1.1 implies that also the existence of a hyperbolic component is “visible”
in the geometry of m(M). This had first been proven by N. Brady and Gersten
using different techniques; they showed that the divergence of 71(M) is exponential



if and only if M has a hyperbolic component, see [Ge]. Note that there are non-
geometric Haken manifolds whose fundamental groups are quasi-isometric but not
commensurable, see [KL1, KL3].

Our main application is a geometric characterization of Haken manifold groups:

Theorem 1.2 Suppose that T" is a finitely generated group whose Cayley graphs are
quasi-isometric to the universal cover X of a non-geometric Haken manifold M with
zero Euler characteristic. Then there is a short exact sequence

1 — finite group — T — m(0) — 1

where O is a compact 3-dimensional orbifold which is finitely covered by a Haken
manifold of the same kind as M. In particular, if " is torsion-free then I is isomorphic
to the fundamental group of a Haken manifold N.

Results analogous to Theorem 1.2 were previously known in several cases when
M is geometric: The result for Nil-manifolds is due to Gromov, see [Gr2], and the
euclidean case is due to Bridson and Gersten. Rieffel [R] proved Theorem 1.2 when M
is a Seifert manifold with hyperbolic base orbifold. The case when M is a Sol-manifold
remains open. Note that there are obvious examples of self quasi-isometries of Sol
which are not within bounded distance from any isometry. Regarding the hyperbolic
case, Schwartz [Sch| proved for finite volume noncompact hyperbolic manifolds H of
dimension > 3 that the quasi-isometry group of 71 (H) is naturally isomorphic to the
commensurator of 71 (H); this shows in particular that any finitely generated group
quasi-isometric to 71 (H) is a finite extension of a group commensurable with 7 (H).

As a by-product of the proof of Theorem 1.1 we also give a classification of 2-
dimensional quasi-flats in X, cf. Theorem 4.10. We prove that each 2-quasi-flat in
X is contained in a tubular neighborhood of a finite union of isolated flats in X.
Besides quasi-flats which are Hausdorff close to a flat there are also twisted quasi-flats
which spread through a finite chain of consecutive Seifert components. We describe
canonical models for these quasi-flats in Section 4.3.

Our approach is based on the strong link between Haken 3-manifolds and the
geometry of nonpositive curvature. Based on Thurston’s Hyperbolization Theorem, it
is shown in [L] that Haken manifolds M of zero Euler characteristic generically admit
metrics of nonpositive curvature with totally geodesic flat boundary. Moreover, we
prove in [KL3] that their fundamental groups are geometrizable in the following weak
sense: If M is neither a Sol- nor Nil-manifold, then there exists a Haken manifold
of nonpositive curvature M’ such that the universal covers X = M and X' = M’
are bilipschitz homeomorphic by a homeomorphism which preserves the geometric
decomposition. In particular, the geometric components of the universal cover X are
quasi-isometrically embedded and X is bicombable. Therefore in the present paper
we shall only consider nonpositively curved Haken manifolds M.

We already mentioned that single 2-quasi-flats are generally not Hausdorff-close
to flats. Our idea is to show that sufficiently complicated patterns of 2-flats are quasi-
isometrically rigid. As in [KL2], we use the concept of asymptotic cone of a metric
space. arguments A quasi-isometry X — X’ becomes “more continuous” when one
rescales the metrics with a small factor, and in the ultralimit it induces a bilips-
chitz homeomorphism X, — X/ of asymptotic cones. By analysing the geometry
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and topology of the asymptotic cones we prove that their induced geometric decom-
positions are preserved by bilipschitz homeomorphisms. This is done by classifying
bilipschitz embedded 2-flats and topologically characterizing the flats separating geo-
metric components. The Divergence Lemma 4.1 is the key tool for translating the
topological rigidity of the asymptotic cones into a statement about quasi-isometric
rigidity for the geometric decompositions of X and X’. This lemma implies that a 2-
dimensional quasi-flat () in X which is not uniformly close to a convex set C' diverges
from C at a linear rate and hence the distinction between () and C' becomes visible
in the asymptotic cone X,,.

Regarding Theorem 1.2, a finitely generated group, which is quasi-isometric to X,
admits an action by uniform quasi-isometries on X. The Main Theorem implies that
the canonical decomposition of X is quasi-preserved and there is an induced action
on the dual tree for the canonical decomposition. By a general argument, the vertex
and edge stabilizers act quasi-transitively on the corresponding components and flats.
Using work of Schwartz and Tukia we conclude that the vertex stabilizers are finite
extensions of fundamental groups of 3-dimensional hyperbolic and Seifert orbifolds
and the edge stabilizers are their peripheral subgroups.

2 Preliminaries

2.1 Notations and conventions

We will use different notions of distance between subsets A, B of metric spaces: the
Hausdorff distance and the distance of closest points denoted by dist(A, B). The
distance of a point x from a set A will be sometimes denoted by da(x). If A is a
subset of a topological space X then A will denote the closure of A in X. We use the
notation [zy| for the geodesic segment connecting points z,y in a metric space X. If
7 is a subset in a metric space X and R > 0 then Ng(Z) denotes the R-neighborhood
of Z in X, we will refer to Ngr(Z) as a tubular neighborhood of Z. We assume that
all segments, rays and geodesics are parameterized by unit speed.

A map f:(Xi1,d1) — (Xo,d2) of metric spaces is a (K, €)-quasi-isometric embed-
ding with K, e > 0 if

K~di(z,y) — € < do(f(2), f(y)) < Kdh(z,y) + e

for each z,y € X;. (One should think of € as a large positive number.) Note that
quasi-isometric embeddings are not necessarily injective or continuous. A map f; :
(X1,d1) — (Xo,ds) is a quasi-isometry if there are two constants C, Cy and another
map fy : (Xo,d2) — (Xi,d;) such that both fi, fo are quasi-isometric embeddings
and

di(fofi(z), ) < Crda(frfo(y),y) < Cy

for every x € X1,y € X5. Such spaces X, X, are called quasi-isometric.

Hadamard (or CAT(0)) spaces are complete geodesic metric spaces with nonposi-
tive curvature in the distance comparison sense, cf. [Ba, KIL|. They are not assumed
to be locally compact. In Hadamard spaces one can define the angle between geodesic
segments [ab|, [ac|, see [KL2]. We shall denote by Oy, X the geometric or ideal boun-
dary of the Hadamard space X. For a closed convex subset C' in a Hadamard space X,



projc will denote the closest-point projection to C'. These projections are distance-
nonincreasing. A flat, bilipschitz flat, respectively quasi-flat in X is (the image of) an
isometric, bilipschitz, respectively quasi-isometric embedding of the euclidean 2-plane
into X.

Convention 2.1 All flats, bilipschitz flats and quasi-flats considered in the present
paper are 2-dimensional.

2.2 3-manifolds and their canonical decomposition

We refer to [S] for information about the geometrization of 3-manifolds and a descrip-
tion of the eight 3-dimensional homogeneous geometries. Here we only recall a few
facts which are important for this paper.

A compact smooth 3-manifold P is called geometric if its interior admits a geo-
metric structure, i.e. a complete locally homogeneous Riemannian metric. If P is
aspherical and has nonempty boundary, then the occurring homogeneous spaces will
be B and H? x R. In the latter case, the manifold P is Seifert and itself admits a
metric modelled on H? X R with totally geodesic boundary, unless it has almost abelian
fundamental group. Manifolds P locally modelled on H?-geometry are called hyper-
bolic. Note that according to our definition the solid torus D? x s and S x §! x [0, 1]
are geometric manifolds which are hyperbolic and Seifert simultaneously.

In this paper we will only consider aspherical 3-manifolds of zero Euler charac-
teristic, equivalently the boundary of such manifolds is a (possibly empty) collection
of tori and Klein bottles. Instead of giving the definition of Haken manifolds, we
remind that all non-geometric Haken manifolds of zero Euler characteristic admit a
canonical decomposition into finitely many geometric manifolds which are glued along
boundary tori or Klein bottles, see [JS, J, Th, Ka, O]. This decomposition is unique
up to isotopy if these geometric submanifolds are chosen to be maximal up to isotopy.
Note that geometric components of a Haken manifold of this kind never have almost
abelian fundamental group, thus the classes of hyperbolic and Seifert components
become disjoint.

If the Haken manifold M of zero Euler characteristic carries a Riemannian metric
g of nonpositive sectional curvature with totally-geodesic flat boundary, then the
canonical topological decomposition of M into hyperbolic and Seifert components
can be realized geometrically by cutting along totally-geodesically embedded flat tori
and Klein bottles X, cf. [L, LS]. The metric g can be chosen (once differentiable) so
that all Seifert components are in their interior locally isometric to H2 x R. Call a flat
in the universal cover X of M an isolated flat if it either covers one of the flat surfaces
>’ in the canonical decomposition of M or is a boundary flat of X. This terminology
is motivated by the fact that a flat is parallel to an isolated flat if and only if no other
flat intersects it transversally. The isolated flats decompose X into convex subsets
with totally-geodesic flat boundary which we call geometric components of X; they
are universal covers of the geometric components of M. Each Seifert component Y
of X splits isometrically as the product of the real line and a 2-dimensional factor
which is isometric to a convex domain in H? bounded by disjoint geodesics. The
fibration of Y by parallel geodesics covers a Seifert fibration of the corresponding
Seifert component of M by closed geodesics.



2.3 Ultralimits and asymptotic cones

For a discussion of ultralimits of metric spaces we refer to [DW, Gr2, KL2, KIL|, here
we recall some of their basic properties.

Fix a non-principal ultrafilter w on N. For any sequence of pointed metric spaces
(Xn,22) the ultralimit (X,,22) is a metric space. Points in the ultralimit are rep-
resented by sequences (z,) of points in X,,. If the sequence (X,) is precompact in
the Gromov-Hausdorff topology, then the ultralimit is the Gromov-Hausdorff limit of
a w-large subsequence. Ultralimits of Hadamard spaces are Hadamard spaces. The
ultralimit of a sequence of (K,,¢,)-quasi-isometries f, : (X,,2°) — (V,,7°) is a
(K, €)-quasi-isometry f,, : (X,,2°) = (V,,,9?) with K = w-lim K, and € = w-lime,.

To form the asymptotic cone X, of a metric space X, one chooses sequences
of scale factors )\, > 0 with w-lim ), = 0 and basepoints 20 € X and takes the
ultralimit (X,,,z°%) := w-lim,()\, - X,2%). Here, )\, - X denotes the metric space
obtained by rescaling the metric of X with the factor \,. When we speak of “the
asymptotic cone X, of X”, we mean one of these ultralimits, suppressing the choices
of A, 22 in our notation. In general, the isometry type of X, depends on these choices.
However, in our applications various asymptotic cones will share the same geometric
properties. The asymptotic cone X, of a Hadamard space X is a Hadamard space
and in general not locally compact. If X admits a cocompact group of isometries
then X, is homogeneous.

The asymptotic cone is a useful tool for the study of quasi-isometries, because a
(K, €)-quasi-isometric embedding of metric spaces becomes continuous in the rescaling
process and induces a K-bilipschitz embedding of their asymptotic cones.

2.4 Busemann functions

Suppose that Y is a Hadamard space. Busemann functions measure the relative
distance from points at infinity. Pick a point £ in the geometric boundary of Y,
i.e. an equivalence class of parallel geodesic rays. Take a unit speed geodesic ray
p:[0,00) = X asymptotic to £. The Busemann function B¢ corresponding to p is
the monotonic limit :

By(-) := lim|[d(-, p(t)) — 1
B¢ is a convex function which is well-defined up to an additive constant. For every
ray r asymptotic to & we have:

Beor(t) = —t + const (1)

If 7,75 are two geodesic rays asymptotic to &, then Bg o ri(t) = B¢ o ro(t) holds iff
the ideal triangle with vertices r1(t),r2(t), & has angles < 7/2 for all . These two
properties characterize Busemann functions.

Level sets of Busemann functions are called horospheres. The sublevel sets are
called horoballs and they are convex.

We prove two facts about Busemann functions for later reference.

Lemma 2.2 Suppose that C' is a convex subset of Y such that the Busemann function
B¢ is constant on C. Then the union U of geodesic rays emanating from points of C
and asymptotic to & is conver and splits isometrically as the direct product

C X Ry.



Proof: For a point ¢ € C let [, denote the geodesic ray emanating from ¢ in the
direction &. Let z,y be a pair of distinct points in C, the function B is constant on
[zy]. It follows from the definition of the Busemann function that the angles between
lz,1, and the geodesic segment [zry| are at least /2. However Y is a Hadamard
space, thus the ideal triangle with vertices x,y, £ has angles 7/2,7/2,0 and spans an
isometrically embedded flat half-strip, namely the union

qu[zy]lq-

The Lemma follows. O

Lemma 2.3 Let (X,,20) be a sequence of based Hadamard spaces with the ultralimit

(X, 22). Let Y, C X, be conver subsets with w-lim, d(z2,Y,) = oco. Then f :=

w w
w-lim,, (dy, — dy, (22)) is a Busemann function on X,.

Proof: For z, € X,, —Y,, denote by p,, : [0,dy, (z,)] = X, the perpendicular from
T, to Y,. For any points z,,;, € X, the function ¢ — d(py, (), ps (t)) decreases
monotonically. If z, = (z,) is a point in X, then the ultralimit p,, = w-limp, :
[0,00) — X, is a geodesic ray which does not depend on the choice of the sequence
(x,,) representing z,, and all rays p, 6 are asymptotic to the same ideal point &, €
OgeoXw- Applying the triangle inequality, we obtain

~~

2dy,, (z7,) =dy;, (zn)—

d(pz,, (t), 7,) 2 d(x},, projy, (zn)) — dy, (pz, (1)) >t + (d, () — dy, (zn)).

Passing to the ultralimit yields
d(ps, (t),2,) > t + (B(z,) — B(zw))
where B := w-limdy; . We rewrite the previous inequality:
(2 po, (1) —t = B(z],) — B(,)
and send ¢ to infinity:
B, (x;,) — Be, (z0) > Bl(z;,) — B(z)-

Since we may exchange the roles of z, and z,, the equality holds and we conclude
that the function Bg, — B is constant on X,. O

Remark 2.4 Similarly, one shows that the ultralimit of Busemann functions on X,
is a Busemann function on X, (or constant +00).

2.5 Quasi-isometric embeddings into piecewise Euclidean spa-
ces

Suppose that X is a geodesic metric space and £ C X is an open subset which is
isometric to a convex subset in the Euclidean m-space R™.



Lemma 2.5 There is a constant R = R(K, €, m) such that the following is true: Let
qf : R™ — X be a (K, ¢€)-quasi-isometric embedding with the image Q). Then either
Nr(Q) 2 E or QN E C Ng(9E).

Proof: If the conclusion of the lemma is not satisfied then the convex subset E’ :=
E - N%((?E) satisfies QN E' # () and E' ¢ Nz (Q). Thus there exists a point z € E
with R R

d(z,Q) = 3 and d(z,0F) > <5
If the assertion of the lemma were not true, then we can find sequences of subsets
E, C X,, (K, €)-quasi-isometries ¢f, : R" — X, points z, € E, and numbers R,
tending to infinity, so that: d(z,, ¢fn(R™)) = d(xn, ¢fn(0)) = % and d(z,,0E,) >
%. Now we rescale R™ with the center 0 and X,, with the center x, using the
scale factor R;'. The ultralimit of the (K, R, €)-quasi-isometric embeddings ¢f,, :
(R;'-R™,0) = (R, X,,,x,) is a K-bilipschitz embedding b : R™ — X,,. The subset
E, .= w-limE, C X, is isometric to a convex subset of R™. Moreover its interior
(with respect to an isometric embedding into R™) is open in X, because the X,
were assumed to be geodesic. By construction, the image of b intersects the interior
of E,, but does not contain it. This is impossible, because the restriction of b to
b=1(int(E,)) is a bilipschitz map between open subsets of R™ and therefore a local
homeomorphism. O

Corollary 2.6 (H. Firstenberg) Every (K, e€)-quasi-isometric embedding R™ — R™
is a (K, €')-quasi-isometry with a constant € = € (K, e, m).

3 Asymptotic cones of universal covers of Haken
manifolds

Let H,p. be the class of all compact non-geometric Haken manifolds which are
equipped with a nonpositively curved Riemannian metric such that the boundary is
totally-geodesic and flat. These manifolds have geometric rank one and they contain
totally-geodesically immersed flat 2-tori. Throughout this section, M (resp. M') shall
denote a Riemannian manifold in #,,. and X (resp. X') its universal cover. The de-
composition of X into geometric components (cf. section 2.2) induces a corresponding
decomposition of X, and we will prove that this decomposition is preserved by bilip-
schitz homeomorphisms X, — X/. A complete description of bilipschitz embedded
flats will be given in section 3.5; besides flats there are non-trivial twisted examples
of bilipschitz flats. Please keep in mind convention 2.1: all flats and bilipschitz flats
are assumed to be 2-dimensional!

3.1 Geometric components

Let Y, C X, n € N, be geometric components with w-lim A\ 1-d(Y,,, z%) < co. We call
their ultralimit Y, = w-lim X! - V,, C X, a geometric component in the asymptotic
cone X,,. Since there are only finitely many isometry types of geometric components
in X, Y, is isometric to the asymptotic cone of a geometric component Y of X. We



call Y, Seifert, respectively hyperbolic, according to the type of Y. We collect some
properties of the geometric components proven in [KL2].

A sequence of flats F,, C Y, with w-lim )\;1 . d(Fn,:L'g) < oo determines a flat
F, C Y,. In fact, every flat in Y, arises in this way. If Y, is hyperbolic, then the flats
F,, can be chosen in 0Y;,. Moreover, by Lemma 2.14 and Corollary 4.6 in [KL2], each
bilipschitz embedded flat in Y, is totally-geodesic:

Lemma 3.1 Any bilipschitz flat in X, which is contained in a geometric component
s a flat.

Seifert components are isometric to the product of R with a metric tree which
branches everywhere and is geodesically complete. A key property of hyperbolic
components is that any two distinct flats share at most one point, cf. Proposition
4.3 in [KL2]. It follows that Seifert components cannot be embedded into hyperbolic
components:

Lemma 3.2 Let T be a metric tree with at least 3 ideal end points. Then T X R
cannot be bilipschitz embedded into a hyperbolic component Y,,.

Later we will need the following lemma concerning the separation of Seifert com-
ponents by lines:

Lemma 3.3 LetT be a geodesically complete tree and C' C R a closed subset. Assume
that f : C — T X R s a bilipschitz embedding whose image | separates. Then C =
R and projr(l) is contained in a segment with no branch point in its interior. In
particular, if T branches everywhere then | is a fiber {t} x R.

Proof: Suppose that projr(l) contains two points a,b which form a tripod together
with a third point c¢. If F' C T X R is a flat which doesn’t contain a and b, then F'N{
is a proper subset of [ and consequently doesn’t separate F' (Alexander duality). For
any points z,y € T x R there are flats F};, F, containing ¢ so that z € F, and y € F,,.
Therefore z and y can be connected in (£, U F,) — I, a contradiction. Hence, projr(l)
is contained in a segment with no branch point in its interior. If C' # R, then f(C)
cannot separate any flat in 7" X R and we again obtain a contradiction. O

3.2 Separation by flats

Suppose that F' is an isolated flat adjacent to a geometric component ¥ C X. We
refer to the pair (F,Y) as a cooriented flat. For each cooriented isolated flat (F,Y),
we introduce a partition Lz of F' into disjoint subsets: if Y is a Seifert component,
then L consists of the parallel lines corresponding to Seifert fibers; if Y is hyperbolic,
then Ly just consists of the points in F. A cooriented flat (F,Y’) defines a signed
distance function sdr on X: we set sdp(x) := +dist(x, F') with the positive sign if
x belongs to the same connected component of X — F' as Y and the negative sign
otherwise.

There are corresponding notions in the asymptotic cone. Namely, let (F,,Y;) be
a sequence of cooriented flats with signed distance functions sdp,. It gives rise to
a cooriented flat (F,,Y,) := w-lim(F,,,Y,) and a signed distance function sdg, :=
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w-lim sdp, on X,,. We call the set {sdg, > 0} the positive side of F,. Note that the
positive side is not connected at all! Y,, := (Y},) is the geometric component adjacent
to F, on the positive side. If the negative side of F, is non-empty (equivalently, if
F,, is not parallel to a boundary flat of X for w-all n), then there is a geometric
component Z, of X, adjacent to F, on the negative side as well. In this situation we
say that the negative side of F,, is the F,-side of Y,,. Similarly, the positive side of
F,, is the F-side of Z,,.

The flat F,, inherits a partition Lg, into points or parallel lines. If the geometric
component on the positive side is Seifert, then Lp, consists of lines parallel to the
R-fiber, otherwise it consists of points. If F, has adjacent Seifert components on both
sides, then the two families of lines which correspond to both coorientations of F,, are
transversal.

We say that a flat or a geometric component F, of X, essentially separates two
sets Sp, Sy C X, if the sets S; — F,, lie on distinct sides of F,, ( we allow S; C F,).
A set S C X, is said to be essentially split by F,, if there are points of S — F, on
both sides of F,,. There is a dual tree to the decomposition of X into geometric
components and this tree-like order persists in the asymptotic cone: For any three
geometric components Yy, Y, Y3, of X, either one of them essentially separates the
other two or there is a unique geometric component Y,, which essentially separates
any two of the components Y;,. Observe also that the set of isolated flats which
essentially separate two given isolated flats F,, and F] is totally ordered. We call
isolated flats F,, ..., Fy, in X,, consecutive if F;, and Fj,; , belong to one component
and Fj, essentially separates the flats Fji,, for all ¢ (where it makes sense). Note
that three consecutive isolated flats share at most one point. The same is true for
four consecutive geometric components.

Lemma 3.4 Assume that the subset A C X, is not essentially split by any isolated
flat. Then A is contained in a single geometric component of X,,.

Proof: Let us first consider the case that A consists of two points z, and y,. There
are isolated flats F,, O z, and F,, D y,. We are done if F,, and F,, coincide.
Otherwise the set C of geometric components which essentially separate F,, and Fy,
is non-empty and totally ordered. By assumption, any component in C contains
exactly one of the points z,, and y,, because otherwise we are again done. At most
finitely many components in C can contain interior points of the segment [z,y,],
since 4 consecutive components share at most one point. Hence there exist adjacent
components Y,,, Y € C each of which contains exactly one of the points z,, y,. Then
the isolated flat Y, N Y, essentially separates z,, and y,, a contradiction. Thus our
claim holds if A consists of two points.

Consider now the general case. Let a,b be any two points of A. As shown above,
they lie in some geometric component Yj. If A is not already contained in Yj, there
is an isolated flat F; C Y, which separates Yy — F; from a point ¢ € A. Since F}
does not split A, all of A — F} lies on the same side of Fi. In particular a,b belong
to the geometric component Y; # Y, adjacent to F;. If A is not contained in Y7,
we can continue this argument inductively and construct four consecutive geometric
components Yy, Y7, Y5, Y3 which contain the points a,b. However, the intersection of
four consecutive geometric components contains at most one point. O
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3.3 Projections to flats

Basic to our understanding of the topology of X, is the study of projections to isolated
flats. Inside geometric components, we have:

Lemma 3.5 Let F,, be an isolated flat in the geometric componentY, and leto C Y,
be a geodesic segment disjoint from F,,. Then projg, (o) is contained in a setl € L, .

Proof: The assertion for hyperbolic components is included in Lemma 4.4 of [KL2].
The Seifert case follows from the following corresponding statement for trees:

Sublemma 3.6 Let ¢ be a geodesic in a metric tree and [uv] a geodesic segment
disjoint from c. Then the nearest-point-projection to ¢ maps [uv] to a point.

Proof: Let p € ¢ be the point closest to [uv] and ¢ € [uv] be the point closest to c.
Recall that if [rs] and [st] are geodesic segments in a tree with [rs] N [st] = {s} then
[rs] U [st] = [rt]. This implies that any segment from a point on ¢ to a point on c
contains [pg| and the claim follows. O

We extend the previous lemma to projections of the entire asymptotic cone X|,.

Proposition 3.7 Let F,, be a cooriented isolated flat in X, and suppose that A is a
connected component of X, — F,, on the positive side of F,,. Then projr, (A) C 1 for
somel € Li, and hence ANFE, Cl.

Proof: Let z,,, 2, € X,—F, be points on the positive side of F, so that [z, z,]NF, = 0.
Let Y, be the geometric component of X, adjacent to F,, on the positive side.

Case 1: 1If [z,2,] N'Y, = 0 then there exists a unique isolated flat F! C Y, such
that F essentially separates [z,z,] from Y,,. Hence projg,[z,2,] C projg, F., which
is contained in a set [ € Lp, by the previous lemma.

Case 2: If [x,2,]NY,, = [z} 2] then the previous lemma implies that projp, [z! 2],
Cl € Lp, and by the same reasoning as in the Case 1 one has projp, [z, 2] C [ and
proje, 2.2l C L.

Hence each geodesic segment on the positive side of F,, and disjoint from F,
projects into a set [ € Lr,. We conclude that the sets {sdp, > 0} N projz (1) are
open for all [ € L, and our claim follows. O

3.4 Rigidity of bilipschitz homeomorphisms

We first look at the position of a bilipschitz embedded flat B = f(R?) in X,, relative
to a cooriented isolated flat F,,. Suppose that B — F,, consists of several connected
components and let By be a component on the positive side of F,,. By Proposition
3.7, 0By is contained in some ! € L, and therefore is homeomorphic to a closed
subset of the real line. Since 0B, separates B, Alexander duality yields that | = 0B,
is a line and the geometric component adjacent to F,, on the positive side is Seifert.
Note that the pair (By, 0By) is homeomorphic to the pair (R, X R 0 X R).

Lemma 3.8 Any flat F,, in X, is contained in a single geometric component. More-
over, F,, arises as the ultralimit of a sequence of flats in X.
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Proof: If F,, is not contained in a geometric component then it is essentially split by
some isolated flat F, (Lemma 3.4). The geometric components on the both sides of
F! must be Seifert. Moreover, F,, N F! contains two transversal lines and therefore
F, = F!. Since any flat in a geometric component arises as the ultralimit of a
sequence of flats, the claim follows. O

Next we give a topological characterization of isolated flats which are not adjacent
to Seifert components of X,.

Lemma 3.9 Let B be a bilipschitz flat in X,. The following two properties are
equivalent:

1. The intersection of B with any other bilipschitz flat B' contains at most one
point.

2. B s an 1solated flat which is not adjacent to any Seifert component.

Proof: 1f B is a bilipschitz flat which satisfies the first property then B cannot be
essentially split by any isolated flat. By Lemmata 3.4 and 3.1, B is a flat contained in a
geometric component. The component must be hyperbolic, so B is an isolated flat and
moreover the geometric components on the both sides of B must be hyperbolic. (Note
that it may happen that B has only one side!)

Vice versa, assume now that F' is an isolated flat satisfying the second property
and let B’ be a bilipschitz flat intersecting F'. Then for any connected component
By of Bl — F, ByN F is a point in F. Since B cannot be disconnected by one point,
B’ — F consists of one component and BN F'is a point. O

Lemma 3.10 Let T be a geodesically complete tree which branches at every point.
Then for any bilipschitz embedding f : T x R — X, the image is contained in a
Seifert component and the map [ preserves the Seifert fibration.

Proof: Suppose that an isolated flat F,, essentially splits f(7 x R). Let QF be con-
nected components of f(T x R) — F,, which lie on different sides of F,,. Then their
boundaries are transversal straight lines /. in F,,. On the other hand, the inverse
images f'(l.) separate T' x R and hence they are parallel lines by Lemma 3.3. This
is impossible, because f is bilipschitz.

Hence f(T X R) is not essentially split by any isolated flat and therefore lies in
a Seifert component by Lemmata 3.4 and 3.2. The second assertion follows from
Lemma 3.1. O

We apply the above observations to show that homeomorphisms of asymptotic
cones are rigid in the sense that they preserve the decomposition into geometric
components.

Proposition 3.11 Let X, X' € Hpye and let ¢ : X, — X[, be a bilipschitz homeo-
morphism. Then:

(i) & maps flats to flats.

(i1) Each isolated flat which is not adjacent to a Seifert component is mapped via
¢ to an isolated flat of the same kind.

(iii) The image of each Seifert component of X, is a Seifert component of X,

12



Proof: Assertion (ii) follows from Lemma 3.9 and assertion (iii) from Lemma 3.10.
According to Lemma 3.8, any flat in X, lies in a geometric component. Thus for
isolated flats between hyperbolic components Assertion (i) follows again from Lemma
3.9 and for flats contained in Seifert components from Lemma 3.10. O

3.5 Structure of bilipschitz-embedded flats

Let f : B2 — X, be a C-bilipschitz embedding. We will now take a closer look at
the position of the bilipschitz flat B := f(R?) relative to an isolated flat F which
separates B, i.e. B — F' is disconnected. We observed in the beginning of Section
3.4 that, for each component By of B — F, projr(By) is a straight line contained in
BN F. Tt follows that

projplp: F — BNF

is a retraction and B N F' is contractible.

Assume that By and By are two components of B — F' on the same side of F.
Then [; := B; N F are parallel lines bounding a flat strip S C F. Any points p; € [;
and p, € ly can be connected inside B N F' by a rectifiable curve of length at most
C? - d(p1,p2)- Indeed, connect the points z; = f~'(p1), 2 = f~'(p2) by the geodesic
segment [z17o] C R?, its length is at most Cd(p1, p2). Then the projection of f([z1x5])
to F has length at most C? - d(p;, p2) and lies inside of BN F.

Since B N F'is contractible we conclude that S C BN F' and

B:B]_USUB2

Consider now the case that By and By are components of B — F' on distinct sides of
F. Then l; := B; N F are transversal straight lines in F' and, by the above,

B=B,UByU(BNF).

The set D := f~Y(F — (I, Uly)) = f~iproj~'(F — (I;Ul,)) is open in R?, and therefore
flp: D <= F — (I Uly) is a local homeomorphism. On the other hand, f(®?) is
closed because f is proper, and f(D) must be a union of connected components of
F — (I; Uly). The lines I,y divide F into four “quadrants” and we conclude that
BN F is a union of two opposite closed quadrants.

Now we are ready to discuss the structure of a bilipschitz flat B which is not
contained in a single geometric component. We describe an inductive process of
geometric decomposition of B. According to Lemma 3.4, B is essentially split by a
flat F,. Let B' be the component of B — Fj on the positive side of Fy. If BT is
contained in the Seifert component S; adjacent to Fj on the positive side then it is
a vertical half-plane, as follows for instance from Lemma 3.1. In this case, we stop
the decomposition on the right side of Fy. Otherwise, another isolated flat F; C S
essentially splits B. Between the pairs of quadrants f~1(FyNB) and f~!(F;NB) there
is a strip A; whose image f(A1) is a flat strip in S;. (This strip could degenerate to
a single line.) We continue this process of decomposition on the both sides of Fy and
obtain a sequence of consecutive Seifert components ...,S_1,Sy,S1,.... The union
of these Seifert components is a convex subset of the asymptotic cone. The transition
of () between adjacent Seifert components contributes a definite amount of stretch to
the bilipschitz embedding f, and this leads to:

13



Lemma 3.12 The number of possible Seifert components S; occurring in the decom-
position is finite and bounded uniformly in terms of the bilipschitz constant of f and
the geometry of M.

Proof: Observe that fibres /; : R — S; and [; : R — 5 in different Seifert components,
which are parameterized by unit speed, have uniform divergence. Namely there is a
positive constant «, which depends on the angles between fibers of adjacent Seifert
components in M, so that

ALL0)

lim
t—00

(07

We denote the bilipschitz constant of f by C and restrict our attention to a finite
number N of Seifert components S;. The points (1/t) - f~! o ;(¢) are contained in a
disk of radius C + o(t) in the Euclidean plane and they are (a/C + o(t))-separated.
Hence N is bounded in terms of «, C' and the assertion follows. O

We summarize the above discussion.

Description of bilipschitz 2-flats B in X,,: Either B is contained in a geometric
component and is a genuine flat. If this is not the case, we call B twisted. B is
then contained in a finite collection of consecutive Seifert components Sy, ..., S; with
k > 1. The consecutive isolated flats F; := S;_; N S; are the isolated flats which
essentially split B. We describe the intersections as we move through the chain of
Seifert pieces: (BN Sy) — Fy and (B N Sy) — Fj, are vertical half-planes Hy and Hj.
Let I} and I; be the lines in F; which consists of points closest to Fj;; and F; ;.
Furthermore, let I; and [} be the boundaries of the half-planes Hy and Hy. Then the
intersection B N Fj is the union of two opposite quadrants bounded by /. Finally,
the intersection BN S;, 0 < i < k, consists of the vertical strip V; bounded by [, i+
and four quadrants. The convex hull ch(B) of the bilipschitz flat B is given by:

Ch(B):H()UF1U‘/1UF2U...UF1€UH]C

Lemma 3.13 No bilipschitz flat in X, is contained in a horoball.

Proof: It follows from the description of bilipschitz flats in X, that if a convex set
contains a bilipschitz flat then it also contains a flat. Therefore, if a horoball contains
a bilipschitz flat, the corresponding Busemann function is bounded from above and
hence is constant on a 2-flat. Lemma 2.2 implies that X, must contain a 3-dimensional
Euclidean half-space H. We know that any 2-flat in X, is contained in a geometric
component. Since parallel 2-flats must be contained in the same geometric component,
H itself lies in a geometric component, which is absurd. O

4 Quasi-isometries of universal covers of Haken
manifolds

In this section, X, X’ will denote the universal covers of nonpositively curved Rie-
mannian 3-manifolds M, M' € H,,.
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4.1 Linear divergence of quasi-disks

We want to understand the position of quasi-flats relative to convex subsets in X.
The following local statement will be our basic tool. A quasi-disk is defined as (the
image of) a (K, €)-quasi-isometric embedding

qd: Br(0) CR* — X
of a Euclidean 2-disk for positive constants 2, K and e.

Divergence Lemma 4.1 There are positive functions p = p(e, K),a = a(e, K) and
ro = 1o(€, K) with the following property: If C' C X is a convex subset, R > 0 and
gd : Br(0) = X is a (K, e€)-quasi-disk such that dc(qd(0)) > p then for every r €
[ro, R] the quasi-disk qd(B,(0)) is not contained in the ar 4+ dc(qd(0))-neighborhood of
C. (Thus, qd(Bg(0)) is linearly divergent from C'.)

Proof: Tt is enough to prove the following assertion: There exist positive numbers
D, R such that for any quasi-disk gd : Bgr(0) — X, whose center ¢d(0) lies at distance
at least D away from a convex set C' C X, there is a point ¢ € ¢d(Bg(0)) with
de(q) > 1+ do(qd(0)).

Assume that the assertion is not true. Then we have a sequence of convex sets
C., sequences of positive numbers (R,) and (D)) tending to infinity and a sequence
of quasi-disks ¢d, : Bg, — X satisfying:

de, (9dn(0)) > Dy, and dc, |gdn(Br, (0)) < 1+ dc, (gdn(0))

We pick .2 := min(R,,D,) and form the ultralimit X, of the sequence of based
metric spaces (A, X, ¢d,(0)). The sequence of quasi-disks yields a bilipschitz flat B in
X, According to Lemma 2.3, the ultralimit of the functions A, - (d¢, — dc, (¢d.(0)))
is the Busemann function B; associated to an ideal boundary point § of X,,. By
construction, B is nonpositive on B. This contradicts Lemma 3.13. O

As a consequence we see: If the boundary of a quasi-disk lies close (relative to its
radius) to a convex set C, then most of the interior of the quasi-disk lies uniformly
close to C'. More precisely:

Corollary 4.2 There is a positive constant 6 = §(K, €) such that every (K, €)-quasi-
disk qd : Br(0) — X satisfies:

4d(Br(0)) C {do < §- R} = qd(Bx(0)) C {do < p}

Proof: Choose 6 := min(£,%). If R < 2ry, then ¢gd(Bg(0)) is contained in the p-

2r97 2
neighborhood of C. Assume that R > 2ro and there is a point p € Bz (0) with

dc(gd(p)) > p. Since § > rg, the previous lemma implies that the quasi-disk

qd(B%(p)) C qd(Bg(0)) is not contained in the 2% > §R-neighborhood of C, a

contradiction. O
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4.2 Rigidity of quasi-isometries

Let gf : R2 — X be a (K, ¢)-quasi-isometric embedding.

Definition 4.3 We call a quasi-flat Q := f(R?) C X asymptotically flat, if for some
sequence of scale factors A\, — 0 and some base point ¢y € Q, Q, = w-lim(\, - @, qo)
s a flat in the asymptotic cone X,,.

Proposition 4.4 Let p(K,€) be as in Lemma 4.1. If the (K, €)-quasi-flat Q is asymp-
totically flat, then it is contained in the p(K, €)-neighborhood of a flat F.

Proof: By Lemma 3.8, each flat F,, in X, is represented by a sequence (F,,) of flats in
X. If Q, = F,, we have ¢f(B,-1(0)) C Nj,-1(Fy,) for w-all n. Corollary 4.2 implies
that ¢f(B)-1,,(0)) C Ny(Fy) for w-all n. Consequently the flats F), subconverge to a
flat ' which contains () in its p-neighborhood . O

Corollary 4.5 The following properties are equivalent for (K, €)-quasi-flats Q in X :
1. Q is asymptotically flat.
2. @ is contained in the p(K,€)-neighborhood of a flat.

3. @Q 1s contained in a tubular neighborhood of a geometric component.

Proof: We already proved the implication 1 = 2. 2 = 3 holds, because flats are
contained in geometric components. Assume that () satisfies property 3. Then the
asymptotic cone (), is a bilipschitz flat which is contained in a geometric component
of X,. Lemma 3.1 implies that @, is a flat. O

Note that if the quasi-flat @) is contained in the p-neighborhood of the flat F,
then Q and F' have finite Hausdorff-distance bounded in terms of the quasi-isometry
constants, cf. Corollary 2.6.

We now can control the effect of quasi-isometries ¢ : X — X’ on flats F C X.
Although quasi-flats in X’ are in general not Hausdorff-close to a flat, we have:

Theorem 4.6 Suppose that ¢ : X — X' is a quasi-isometry. Then the image under
¢ of any flat F in X lies within uniformly bounded Hausdorff distance from a flat F’
in X'

Proof: We proved in Lemma 3.11 that the induced bilipschitz homeomorphism ¢, :
X, — X/ maps flats to flats. Hence ¢(F) is an asymptotically-flat quasi-flat in X"
Thus Corollary 4.5 implies that ¢(F') is Hausdorff-close to a flat. O

Let ¢4 (F') denote a flat F' C X' which is Hausdorff-close to ¢(F'). Note that F”
is essentially unique, any other flat with the same property is parallel to F".

other. ¢(F;).
Lemma 4.7 Let Fy, Iy, F3 be pairwise nonparallel isolated flats in X which do not

separate each other. Then the flats F| = ¢4 (Fy), Fy = ¢u(F), F§ = ¢4 (F>) also do
not separate each other.
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Proof: For any r > 0 we can connect Fy and F3 outside the r-neighborhood N, (F})
by a curve . If r is chosen sufficiently large, then the image ¢(7) lies on one side of
¢4 (F1). Therefore ¢4 (F») and ¢4 (F3) lie on the same side of ¢4 (Fy). O

Corollary 4.8 Let F' be a boundary flat in X. Then ¢4 (F') is a boundary flat in X'
as well.

Lemma 4.7 implies our Main Theorem 1.1.
in the component ¢(Y"). hyperbolic).

4.3 Structure of quasi-flats

In this section we will completely describe the quasi-flats in X. Asymptotically flat
quasi-flats were treated in Corollary 4.5. Let us start by constructing examples of
quasi-flats which are twisted, i.e. not asymptotically flat: Take a chain Sy, ..., S of
successive Seifert components in X. They are separated by a chain of consecutive
isolated flats F1,..., Fy where F; = S; 1N S;. For 0 < i < k, there is a vertical flat
strip V; C S; which connects and is orthogonal to the successive flats F;, F; 1: V; is a
union of Seifert fibers in S; and can be described as the union of all shortest geodesic
segments whose endpoints lie in F;, respectively Fj,;. Finally we take two vertical
flat half-planes Hy C Sy, Hr C S; which are orthogonal to and whose boundary line
is contained in F}, respectively Fj. Note that

A:H()UFlU‘/lUFQUUFkUHk

has finite Hausdorff distance < d from its convex hull, and A, equipped with the path
metric, is (1, L)-quasi-isometrically embedded in X, where the positive constants d, L
depend on the geometry of M. Each flat F; contains a pair of distinguished transversal
lines arising as intersection with adjacent strips or half-planes. They divide F; into
4 quadrants. Remove from each flat F; one pair of opposite open quadrants. What
remains from A is a quasi-flat whose quasi-isometry constants are uniformly bounded
in terms of £ and the geometry of M.

Let @ = qf(R?) be a twisted (K, ¢)-quasi-flat. Based on our analysis of the
structure of bilipschitz flats in X, cf. Section 3.5, we will show that () is uniformly
close to one of the model quasi-flats just constructed.

Definition 4.9 We say that a flat F essentially splits the (K, €)-quasi-flat Q if Q
contains points at distance > p = p(K,€) on the both sides of F. Otherwise we
say that Q) lies essentially on one side of F'. A set A essentially contains Q) if @ is
contained in the p-neighborhood of A.

Since ( is twisted, Corollary 4.5 implies that there are isolated flats which essen-
tially split Q. We denote by @), C X, the bilipschitz flat represented by the constant
sequence (). (Here we consider ultralimits with a constant sequence of base points.)
Due to the Divergence Lemma 4.1, a flat F' essentially splits @ in X, if and only if
the flat F,, := (F) essentially splits @, = (@) in X,,. According to our discussion in
Section 3.5, there are finitely many consecutive isolated flats which essentially split
.- Consequently, the collection of all isolated flats essentially splitting () is finite
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and forms a chain Fi,..., F} of consecutive isolated flats in X. There is a chain of
consecutive Seifert components Sy, ..., S, such that F; = S;_1 NS;. Their union Z
is a convex set which essentially contains @) and therefore Q, C Z, = (7). Q, is
the union of pairs of opposite quadrants in the flats F;, and half-planes Hy, C Sy,
Hy,, C Skw- (Any two successive isolated flats Fj, have a line in common and the ver-
tical strips inbetween therefore degenerate.) We represent the half-planes Hy,,, H,
by sequences of half-planes Hy, C Sy, respectively Hy,, C Sk, which are orthogonal to
and whose boundary line is contained in Fj, respectively Fj. We denote by C,, C X
the convex hull of Hy, U UY_, F; U Hy,. Since Q, is contained in C, = (C,), we
conclude using Corollary 4.2 that for all ¢ € () and R > 0 there is a w-large set of
values n such that:

Q N BR(Q) C NP(Cn)

Observe that () contains points in Sy, Sy which are arbitrarily far away from the
boundary flats Fi, F. It follows that the sequences (Hyy,), (Hgy,) subconverge to half-
planes Hy, H,. We denote by V; C 5;, 0 < 7 < k, the vertical strips orthogonal to
F;, Fiq. The set

is uniformly Hausdorff-close to its convex hull, and we conclude from the previous
discussion that @ is contained in a uniformly bounded tubular neighborhood of A.
After replacing () by a quasiflat at uniformly bounded Hausdorff distance, we may
assume that @ is contained in A. Moreover @ is a (K, €')-quasiflat in A equipped
with the path metric, with K’, ¢’ depending on K, e and M, because the path metric
on A and the metric induced from X are (1, L)-quasi-isometric with a constant L =
L(M). The intersection lines with adjacent strips or half-planes divide each flat F;
into four quadrants. By Lemma 2.5, each of these quadrants is either contained in
the r-neighborhood of () or the intersection of the quadrant with () is r-close to
its boundary, with a constant r = r(K', €', M). It follows from the description of
bilipschitz flats in X, that for each F; exactly two quadrants are contained in the
r-neighborhood of (). Similarly, the half-planes Hy, and Hj are contained in the
r-neighborhood of (). This concludes the proof of:

Theorem 4.10 (Classification of quasi-flats) There is a constant d = d(K, e, M)
so that each (K, €)-quasi-flat lies at Hausdorff distance at most d from a flat or a
tunsted model quasi-flats as described in the beginning of this section.

Corollary 4.11 (1) Any (K, €)-quasi-flat Q) in X lies within uniform distance from a
finite union of flats. (2) The number of necessary flats is uniformly bounded in terms
of K. (8) The limit set of Q in the ideal boundary Oy, X is a simple loop which is
continuous with respect to the Tits metric. (4) There is a constant Ko = Ko(M) > 1
such that if K < Ky then Q s asymptotically flat.

Proof: The first and third claim follow directly from our previous discussion.

The asymptotic cone @), is isometric to a complete Euclidean cone over a circle of
length [ > 2(7 + ka) where k is the number of isolated flats essentially separating
and « > 0 is the minimal possible angle of intersection between the fibers of adjacent
Seifert components. There is a K-bilipschitz homeomorphism b : R2 — @, and we
assume without loss of generality that b maps the origin to the tip of the cone @,,.
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Let 7 be the image of the unit circle. v has length at most 27K and circumvents the
disk of radius K~! centered at the tip of Q,,. Therefore 2rK > w and

(K2 - 1)r

k<

This implies the second and fourth claim. O

5 Groups quasi-isometric to fundamental groups
of Haken manifolds

5.1 Quasi-actions of groups on metric spaces

Suppose that I' is a group and p is a map from I to the set of all (K, €)-quasi-isometries
of a metric space X.

Definition 5.1 We call p a quasi-action or under-representation of I' on X if for
some constant L and all v1,ve € T' the quasi-isometries p(v1v2) and p(y1) o p(y2) are
L-close. The quasi-action is called quasi-transitive if for some constant M all orbits
p(I)-z are M -close to X. The kernel (or under-represented subgroup) of the action p
1s the subgroup of I' which consists of elements whose action on X is Hausdorff-close
to the identity. A quasi-action is called properly discontinuous if for each bounded
subset C C X there are only finitely many elements v; € T' so that p(v;)(C)NC # 0.

To simplify notations, we will denote p(7) - x by ~vyx.

A typical example of properly discontinuous quasi-transitive quasi-actions appears
as follows: Assume that the finitely generated group I' is quasi-isometric to a metric
space X, i.e. there is a quasi-isometry ¢ from a Cayley graph of I' to X. Then ¢
transfers the isometric action of I' on the Cayley graph to a quasi-action on X. If
I', equipped with a word metric, can be injectively and quasi-isometrically embedded
into X, then there is an honest action of I' on X by quasi-isometries with uniform
constants. This is the case if X is a geodesic metric space (and I infinite).

We need the next lemma for decomposing quasi-actions on trees of spaces. Let A
be a collection of subsets A C X such that:

e Every bounded subset B C X intersects only finitely many sets in A.
e Any two distinct sets in A have infinite Hausdorff distance.

e There is a constant H such that for all v € " and A € A the set vA is H-
Hausdorff close to another set in A.

In this situation, we can speak of the stabilizer in I' of a set A € A: it consists of
all elements v € I' such that yA and A have finite Hausdorff distance. Clearly the
stabilizer is a subgroup of I'.

Lemma 5.2 If the quasi-action p is quasi-transitive then the stabilizer of any set
A € A acts quasi-transitively on A, i.e. orbits of points in A are uniformly close to
A.
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Proof: Let B C X be a ball so that X = I' - B. By assumption, only finitely many
sets 71 4,...,mA € A intersect B. Let C = max{d(y;0v; "(B),B) : 1 <1i,j <}.
For z,y € A there are v,,7, € I' so that v,(x),v,(y) € B. 7,A and ,A are Hausdorff
close to some subsets ;A and ;A respectively. Then v,y = 7, Lvivi Ly, is in the
stabilizer of A and carries x uniformly close to y: d(v4(2),y) < C + diam(B) O

5.2 Quasi-actions on geometric components

We first consider the case of hyperbolic components. Let Y be the universal cover of
a hyperbolic component of M and suppose that we have a quasi-transitive action of
a group G on Y by (K, €)-quasi-isometries. Richard Schwartz [Sch] proves:

e The group G fits into a short exact sequence
1 — Fin(G) — G — G — 1 (2)

with Fin(G) finite and G a nonuniform lattice in I'som(H?). Hence Fin(G)
is the unique maximal finite normal subgroup of G and G is the fundamental
group of a compact hyperbolic 3-orbifold with flat boundary.

e If F'is a boundary flat of Y then the quasi-action of the stabilizer of F' in G is
within bounded distance from an isometric action of a Euclidean lattice on F' =2
R?. The stabilizers of boundary flats in G correspond to peripheral subgroups
of the orbifold fundamental group. Fin(G) is also the unique maximal finite
normal subgroup of the stabilizer of F.

Remark 5.3 It is unknown whether a group G satisfying (2) admits a torsion-free
subgroup of finite index.

Now we turn to the case of Seifert components. Let S = ¥ X R be the universal
cover of a Seifert component of M with hyperbolic base orbifold and consider a
properly discontinuous quasi-transitive quasi-action action of a group G on S by
(K, €)-quasi-isometries. . is a convex domain of the hyperbolic plane whose boundary
is a non-empty union of disjoint geodesics. For our purposes, we are interested in the
case when the collection of boundary flats of S is invariant under this action, i.e.
boundary flats are carried to within uniformly bounded distance of boundary flats.
Using reflections in faces of S we extend this quasi-action to a properly discontinuous
quasi-transitive quasi-action of a bigger group H on H2 xR by (K’ €')-quasi-isometries;
the new constants K’ ¢ depend on K, e and the geometry of . The convex domain
S C H? x R is quasi-preserved by G.

Proposition 5.4 Any (K, ¢€)-quasi-isometry ¢ of a Seifert component S = ¥ X R
quasi-preserves the Seifert fibration, i.e. there is a number r = r(K¢) such that for
any s € ¥ the image ¢({s} X R) is r-Hausdorff close to another fiber {¢(s)} X R.

Proof: Any fiber {s} x R is the intersection of two orthogonal flats F, F' in S and ac-
cording to Corollary 4.5 the images of F, F' are Hausdorff-close to flats ¢ (F), ¢4 (F")
in Y. For any R > 0, the intersection of tubular neighborhoods Ng(¢4(F)) N
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Ng(¢4(F")) is a union C’ x R of Seifert fibers. The diameter of C' is bounded above
in terms of K, e and R, because F' and F”’ are orthogonal. The assertion follows. O

This Proposition was first proven by E. Rieffel in [R] who used quite different
arguments.

As a consequence the quasi-action of H on H? x R descends to a quasi-transitive
quasi-action on the hyperbolic plane by quasi-isometries with bounded constants.
Let K be the kernel of this quasi-action and H = H/K. The induced action of H
on the ideal circle 9,¢,H? by homeomorphisms is effective and a convergence group
action in the sense of Gehring and Martin. Moreover, it satisfies the “simple axis
condition” of Tukia and is topologically conjugate to an action of a Moebius group
by Theorem 6B in [Tu]. This Moebius group acts cocompactly on H2 and also properly
discontinuously, because it preserves a locally finite pattern of geodesics. This implies
that the group G = G/K is the fundamental group of a compact 2-dimensional
hyperbolic orbifold O with boundary. We therefore have an exact sequence

l1—K—G—m(0)—1

Peripheral subgroups of 71 (O) correspond to stabilizers of boundary geodesics of X.

Now we want to determine the structure of the kernel K of the quasi-action on
hyperbolic plane. K stabilizes each fiber (up to uniformly bounded distance) and
acts quasi-transitively and properly discontinuously on each fiber.

Lemma 5.5 K has a unique mazimal finite normal subgroup Fin(G) and the quo-
tient group K/Fin(G) is isomorphic to Z or the infinite dihedral group D.

Proof: There is an element & € K which is far from the identity and preserves the
orientation of the fibres on the large scale. k is quasi-isometrically conjugate to a
translation and generates an infinite cyclic subgroup of K. The subgroup (k) = 7
has finite index in K because K acts properly discontinuously on fibers. This implies
assertion of the lemma. O

Since m1(O) does not have nontrivial finite normal subgroups, Fin(G) is alge-
braically characterized as the unique maximal finite normal subgroup of G. The
quotient group G := G/Fin(Q) fits into an exact sequence

l1—Zor Dy — G —m(0)—1

and is isomorphic to the fundamental group of a Seifert orbifold. The peripheral
subgroups of the Seifert orbifold correspond to the stabilizers of boundary flats of
S. Fin(G) is also the unique maximal finite normal subgroup of the stabilizers of
boundary flats in G.

5.3 The general case

Suppose that I" is a finitely generated group which is quasi-isometric to the universal
cover X of a Haken manifold M with nontrivial canonical decomposition. We can
assume without loss of generality that M is nonpositively curved. Let T be the
simplicial tree dual to the geometric decomposition of X. We have a quasi-transitive
properly discontinuous quasi-action of I' on X. By Theorem 1.1 this action induces an
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action of I' by automorphisms on the tree 7. The quotient 7'/ is a finite graph and I"
therefore decomposes as a finite graph of groups. The vertex and edge stabilizers were
described in section 5.2. The unique maximal finite normal subgroups of all vertex and
edge stabilizers coincide and therefore coincide with the kernel Fin(I') of the action
of ' on T. The vertex stabilizers for the action of T' := I'/Fiin(T') are fundamental
groups of 3-dimensional hyperbolic and Seifert orbifolds with flat boundary. We recall
that the edge stabilizers are peripheral subgroups of these orbifolds. We glue these
orbifolds along boundary components according to the graph 7'/T". The fundamental
group of the resulting orbifold O is isomorphic to I'. The orbifold O is finitely covered
by a Haken manifold, c¢f. [MM]. This proves Theorem 1.2.
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Abstract

We prove quasi-isometry invariance of the canonical decomposition for fundamental
groups of Haken 3-manifolds with zero Euler characteristic. We show that groups
quasi-isometric to Haken manifold groups with nontrivial canonical decomposition
are finite extensions of Haken orbifold groups.
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