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Let G denote a connected reductive group, defined and split over Z,
and let M ⊂ G denote a Levi subgroup. In this paper we study
varieties of geodesic triangles with fixed vector-valued side-lengths
α,β,γ in the Bruhat–Tits buildings associated to G , along with
varieties of ideal triangles associated to the pair M ⊂ G . The ideal
triangles have a fixed side containing a fixed base vertex and
a fixed infinite vertex ξ such that other infinite side containing
ξ has fixed “ideal length” λ and the remaining finite side has
fixed length μ. We establish an isomorphism between varieties
in the second family and certain varieties in the first family (the
pair (μ,λ) and the triple (α,β,γ ) satisfy a certain relation). We
apply these results to the study of the Hecke ring of G and the
restriction homomorphism R(Ĝ) → R(M̂) between representation
rings. We deduce some new saturation theorems for constant
term coefficients and for the structure constants of the restriction
homomorphism.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a connected reductive group, defined and split over Z, and fix a split maximal torus T
also defined over Z. Let Ĝ = Ĝ(C) denote the Langlands dual group of G , and let R(Ĝ) denote its
representation ring. Let HG denote the (spherical) Hecke ring associated to G(Fq((t))), as described
in Section 2. The goal of this paper is to understand various connections between the rings HG and
R(Ĝ). Both come with bases and associated structure constants mα,β(γ ), nα,β(γ ) parameterized by
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Table 1
Constants associated to H and R.

cμ(λ) rμ(λ)

mα,β (γ ) nα,β (γ )

the same set, namely triples α,β,γ of G-dominant elements of the cocharacter lattice of T . Moreover,
given any Levi subgroup M ⊂ G , we have the constant term homomorphism

cG
M : HG → HM

and the restriction homomorphism

rG
M : R(Ĝ) → R(M̂);

cf. Section 2. Assuming M contains T , both maps can be described by collections of constants cμ(λ)

and rμ(λ), where μ respectively λ ranges over the G-dominant respectively M-dominant cocharacters
of T ; cf. Section 2. In this paper we are studying connections between entries appearing in Table 1.

The connection between the entries in the bottom row was studied in [KLM3] and [KM2]. In this
paper we will establish connections between the entries in the top row, the entries in the first column
and the entries in the second column. As a corollary we will establish saturation results for the entries
in the top row.

It was established in [KLM3] that mα,β(γ ) “counts” the number of Fq-rational points in the variety
of triangles T (α,β;γ ) in the Bruhat–Tits building of G(Fp((t))). Similarly, fixing a parabolic subgroup
P = M · N with Levi factor M , we will see that cμ(λ) counts (up to a certain factor depending only
on P , q, and λ) the number of Fq-points in the variety of ideal triangles IT (λ,μ; ξ) with the ideal
vertex ξ fixed by P (Fp((t))) (see Section 2 for the definition). Given λ,μ, we will find a certain
range of α,β,γ depending on λ,μ, so that the varieties IT (λ,μ; ξ) and T (α,β;γ ) are naturally
isomorphic over Fp , thereby providing a geometric explanation for the numerical equalities

cμ(λ)q〈ρN ,λ〉|KM,q · xλ| = mα,β(γ ) (1.1)

and

rμ(λ) = nα,β(γ ). (1.2)

Here KM,q := M(Fq[[t]]).
Let us state our main results a little more precisely. The equality (1.2) has a short proof using

the Littelmann path models for each side (see Section 4), and this proof gave rise to the definition
of the inequality ν �P μ (see Section 3 for the definition). Now fix any coweight ν that satisfies
this inequality, so that in particular ν + λ will be G-dominant for any M-dominant cocharacter λ

appearing as a weight in V Ĝ
μ . We can now state our first main theorem (Theorem 3.2).

Theorem 1.1. Suppose μ,λ are as above ν is any auxiliary cocharacter satisfying ν �P μ. Then there is an
isomorphism of Fp-varieties

T
(
ν + λ,μ∗;ν) ∼= IT (λ,μ; ξ).

As detailed in Section 9, the number of top-dimensional irreducible components of T (ν +λ,μ∗;ν)

(resp. IT (λ,μ; ξ)) is simply the multiplicity nν+λ,μ∗ (ν) (resp. rμ(λ)). Similarly, in Section 10 we
show that the number of Fq-points on T (ν + λ,μ∗;ν) (resp. IT (λ,μ; ξ)) is given by mν+λ,μ∗(ν)
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(resp. cμ(λ), up to a factor). Thus, Theorem 1.1 implies the numerical equalities (1.1) and (1.2). This is
stated more completely in Theorem 3.3.

Because of the homogeneity properties of the inequality ν �P μ, these equalities mean that sat-
uration theorems for nα,β(γ ) respectively mα,β(γ ) imply saturation theorems for rμ(λ) respectively
cμ(λ). The following summarizes part of Corollary 3.4.

Corollary 1.2. The quantities cμ(λ) satisfy a saturation theorem with saturation factor kΦ , and the quantities
rμ(λ) satisfy a saturation theorem with saturation factor k2

Φ .

For the precise formulation of these results we refer the reader to Section 3. Since there are two
groups of mathematicians interested in the results of this paper, we will present both algebraic and
geometric interpretations of the concepts and results.

Here are a few words on the relation of this paper to the prior work. In the earlier works [KLM1,
KLM2,KLM3], Leeb and the second and third named authors studied geometric and representation-
theoretic problems Q1, Q2, Q3, Q4 (see page 1 of [KLM3] for the precise formulations). In the present
paper we study the analogues of Q3, Q4 for group pairs (G, M). The problems analogous to Q1, Q2 for
group pairs (G, M) were studied in [BeSj] and [F] respectively. The paper [BeSj] actually studies the
problem for general group pairs G, M , where G is a reductive group and M is any reductive subgroup.

Let us give an outline of the contents of this article. In Section 2 we recall some standard defi-
nitions and notation and we also define the notions of based triangles and based ideal triangles in
the building. In Section 3 we state our main results. In Section 4 we give a simple proof of one of
main results using Littelmann paths, and thereby explain the origin of the inequality ν �P μ. In Sec-
tion 5 we give a detailed study of based ideal triangles and the corresponding Busemann functions.
We translate Theorem 3.2 into a statement about retractions and study those retractions in Sections 6
and 7; the proof of Theorem 3.2 is given in Section 8. The rest of the paper until Section 12 is
directed toward the proof of Theorem 3.3. We prove some a priori bounds on dimensions of the va-
rieties of (ideal) triangles in Section 9; these give geometric interpretations for the numbers nα,β(γ )

and rμ(λ) appearing in Theorem 3.3. Section 10 likewise gives necessary geometric interpretations for
the quantities mα,β(γ ) and cμ(λ). In Section 11 we put the pieces together and prove Theorem 3.3
and Corollary 3.4. In Section 12 we provide some equidimensionality statements which are related to
those given in [Ha2] for fibers of convolution morphisms. Finally, in Appendix A we give an alterna-
tive, more geometric, proof of the main ingredient in the proof of Theorem 1.1, namely, the equality
of the retractions ρ−ν,
G −ν and ρK P ,
M = bξ,
M on each geodesic oz of 
G -length μ, when ν �P μ.

2. Notation and definitions

2.1. Algebra

In what follows, all the algebraic groups will be over Z. Let G be a split connected reductive group,
and let T ⊂ G be a split maximal torus. Fix a Levi subgroup M ⊂ G which contains T .

Choose a parabolic subgroup P ⊂ G which has M as a Levi factor. Let P = M · N be a Levi splitting.
Then choose a Borel subgroup B of G which contains T and is contained in P . Let U ⊂ B be the
unipotent radical of B . We then have N ⊂ U .

Let Φ denote the set of roots for (G, T ), let ΦN denote the set of roots for T appearing in Lie(N)

and let ΦM denote all roots in Φ which belong to M . We let Q (Φ∨) denote the coroot lattice and
P (Φ∨) the coweight lattice.

The choice of B (resp. BM := B ∩ M) gives a notion of positive (co)root, and G-dominant (resp.
M-dominant) element of A := X∗(T ) ⊗ R. Let ρ denote1 the half-sum of the B-positive roots Φ+ .
Similarly, we define ρN respectively ρM to be the half-sums of all roots in ΦN respectively positive
roots in ΦM . Recall that W , the Weyl group of G , acts by reflections on A with fundamental domain

1 We also use the symbol ρ in the context of retractions of buildings (see Section 6) but no confusion should result from
this.
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G which is the convex hull of the G-dominant coweights. Also, we define 
M as the convex hull of
the M-dominant coweights, so that 
G ⊂ 
M and 
M is the fundamental domain of W M , the Weyl
group NM(T )/T for M . We let W̃ denote the extended affine Weyl group of G , i.e., W̃ = Λ � W ,
where Λ := X∗(T ).

Given λ ∈ X∗(T ) or X∗(T ), define λ∗ := −w0λ, where w0 ∈ W is the longest element. Note that
ρ∗ = ρ . Set kΦ = lcm(a1, . . . ,al), where

∑l
i=1 aiαi = θ is the highest root and αi are the simple roots

of Φ . Let 〈·, ·〉 : X∗(T ) × X∗(T ) → Z denote the canonical pairing.
We define Ĝ := Ĝ(C) and, similarly, define M̂ and T̂ . Having fixed the inclusions G ⊃ M ⊃ T , we

can arrange that we also have Ĝ ⊃ M̂ ⊃ T̂ . We will identify X∗(T̂ ) with X∗(T ) and roots of (Ĝ, T̂ )

with coroots of (G, T ).
Let V Ĝ

μ denote the irreducible representation of Ĝ having highest weight μ. Let Ω(μ) denote the
set of T̂ -weights in V Ĝ

μ , i.e., the intersection of the convex hull of W · μ with the character lattice

of T̂ . We shall also think of Ω(μ) as consisting of certain cocharacters of T .
For μ,λ,α,β,γ ∈ X∗(T̂ ), define

rμ(λ) = dim HomM̂

(
V M̂

λ , V Ĝ
μ

)
, (2.1)

nα,β(γ ) = dim HomĜ

(
V Ĝ

α ⊗ V Ĝ
β , V Ĝ

γ

)
. (2.2)

Let R(Ĝ) denote the representation ring of Ĝ . The numbers nα,β(γ ) are the structure constants for

R(Ĝ), relative to the basis of highest weight representations {V Ĝ
α }. Similarly, the rμ(λ) are the struc-

ture constants for the restriction homomorphism R(Ĝ) →R(M̂).
Let Fq denote the finite field with q = pn elements (for a prime p), let k denote the algebraic

closure Fp = Fq . Define the local function fields L = k((t)) and Lq = Fq((t)) and their rings of integers
O = k[[t]] and Oq = Fq[[t]].

Let G := G(L) and Gq := G(Lq), and similarly, we define B, M, N, P , T , U and Bq, Mq , etc. (Note
that in what follows, we will often abuse notation and write G, M, B , etc., instead of Gq, Mq, Bq , etc.
(resp. G, M, B , etc.), letting context dictate what is meant.)

Set K := G(O) and Kq := G(Oq). These are maximal bounded subgroups of G = G(L) respectively
Gq := G(Lq). Set KM := K ∩ M , KM,q = KM ∩ Mq , and K P := N · KM .

Let HG = Cc(Kq\Gq/Kq) and HM = Cc(KM,q\Mq/KM,q) denote the spherical Hecke algebras of Gq

and Mq respectively (they depend on q, but we will suppress this in our notation HG ). Convolution
is defined using the Haar measures giving Kq respectively KM,q volume 1. For the parabolic subgroup
P = MN of G , the constant term homomorphism cG

M :HG →HM is defined by the formula

cG
M( f )(m) = δP (m)−1/2

∫
Nq

f (nm)dn,

for m ∈ Mq . Here, the Haar measure on Nq is such that Nq ∩ K has volume 1. Further, letting | · |
denote the normalized absolute value on Lq , we have δP (m) := |det(Ad(m); Lie(N))|. We define in a
similar way δB , δBM , cG

T , and cM
T . If U M := U ∩ M , then we have U = U M N , and so

δB(t) = δP (t)δB M (t)

for t ∈ Tq , and

cG
T ( f )(t) = (

cM
T ◦ cG

M

)
( f )(t).

The map cG
T (resp. cM

T ) is the Satake isomorphism SG for G (resp. S M for M). Thus, the following
diagram commutes:
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R(Ĝ)
∼=

rest.

C[X∗(T )]W

incl.

HG
SG

cG
M

R(M̂)
∼=

C[X∗(T )]W M HM .
S M

(2.3)

Given a cocharacter λ ∈ X∗(T ), we set tλ := λ(t), where t ∈ L is the variable. For a G-dominant
coweight μ, let f G

μ = char(KqtμKq), the characteristic function of the coset KqtμKq . Let f M
λ have the

analogous meaning. When convenient, we will omit the symbols G and M in the notation for f G
μ, f M

μ .
For G-dominant coweights α,β,γ define the structure constants for the algebra HG by

fα ∗ fβ =
∑
γ

mα,β(γ ) fγ .

Note that the mα,β(γ ) are functions of the parameter q, however we will suppress this dependence.
For G-dominant μ and M-dominant λ, we define cμ(λ) by

cG
M

(
f G
μ

) =
∑
λ

cμ(λ) f M
λ .

Like the mα,β(γ ), the numbers cμ(λ) depend on q, but we will suppress this.

2.2. Definition of based (ideal) triangles in buildings

Let B = BG denote the Bruhat–Tits building of G . This is a Euclidean building. It is not locally
finite, because L has infinite residue field; however this will cause us no problems. This building has
a distinguished special point o fixed by K . We consider it as the “origin” in the base apartment A
corresponding to T . Later on, we shall need to consider also the base alcove a in A: it is the unique
alcove of A whose closure contains o and which is contained in the dominant Weyl chamber 
G .

In what follows, we will sometimes write 
 in place of 
G . Recall that the 
-distance d
(x, y)

in B is defined as follows. Given x, y ∈ B, find an apartment A′ ⊂ B containing x, y. Identify A′ with
the model apartment A using an isomorphism A′ → A. Then project the vector −→xy in A to a vector−→
λ the positive chamber 
G ⊂A, so that x corresponds to the origin o, the tip of 
G . Then

d
(x, y) := λ.

Thus, d
(x, y) = d
(y, x)∗ . Given a coweight λ ∈ 
 ∩ Λ and tλ ∈ T , we let xλ := tλ · o, a point in B.
Then d
(o, xλ) = W ·λ∩
. For x ∈ B and λ ∈ 
 we define the λ-sphere Sλ(x) = {y ∈ B: d
(x, y) = λ}.
In the case when x = o and λ ∈ 
 ∩ Λ, we have

Sλ(o) = K · xλ.

Definition 2.1. Given α,β,γ ∈ 
 ∩ Λ define the space of based “disoriented” triangles T (α,β;γ ) to be
the set of triangles [o, y; xγ ] with vertices o, y, xγ , so that

d
(o, y) = α, d
(y, xγ ) = β.

Note that only the point y is varying.
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Observe that T (α,β;γ ) can be identified with the subset of the usual set of oriented triangles
T (α,β,γ ∗) whose final edge is −−→xγ o. Also, it is easy to see that

T (α,β;γ ) = K xα ∩ tγ K xβ∗

under the identification given by the map [o, y; xγ ] → y.
We need to define a variant of the distance function d
(−,−), where one of the points is “at

infinity” in a particular sense we will presently describe. We let xy denote the unique geodesic seg-
ment in B connecting x to y. We will always assume that such segments (and all geodesic rays in B)
are parameterized by arc-length. We let ∂TitsB denote the Tits boundary of B, which is a spherical
building. The points of ∂TitsB could be defined as equivalence classes of geodesic rays in B: two rays
are equivalent if they are asymptotic, i.e., are within bounded distance from each other. A ray in B is
denoted xξ where x is its initial point and ξ ∈ ∂TitsB represents the corresponding point in ∂TitsB.

One says that two rays γ1(t), γ2(t) in B are strongly asymptotic if γ1(t) = γ2(t) for all sufficiently
large t .

Each parabolic subgroup P of G fixes a certain cell in ∂TitsB. In what follows, we will pick a generic
point ξ in that cell. Then P is the stabilizer of ξ in G .

Now assume that M is a Levi factor of the parabolic P corresponding to ξ . By analogy with the
definition of Busemann functions in metric geometry, we will define vector-valued Busemann func-
tions (normalized at o)

bξ,
M : BG → 
M .

We refer the reader to Section 5 for the precise definition. Intuitively, bξ,
M (y) measures the 
M -
distance from ξ to y relative to the 
M -distance from ξ to o. A fundamental property (to be proved
in Lemma 5.3) is that

bξ,
M (y) = λ ⇔ y ∈ K P xλ. (2.4)

This gives an algebraic characterization of the function bξ,
M , and also shows that it agrees with the
retraction ρK P ,
M which we define and study in Subsection 6.3.

We can now define the space of based ideal triangles.

Definition 2.2. Fix coweights λ ∈ 
M , μ ∈ 
G and a generic point ξ in the face of ∂TitsB fixed by P .
Then we define the set of based ideal triangles IT (λ,μ; ξ) to consist of the triples o, y, ξ , where

d
(o, y) = μ, bξ,
M (y) = λ.

Note that once again, only y is varying.

In other words, in view of (2.4), we have the purely algebraic characterization (proved in Corol-
lary 5.4)

IT (λ,μ; ξ) = Sμ(o) ∩ K P · xλ.

2.3. Affine Grassmannians and algebraic structure of (ideal) triangle spaces

We need to endow T (α,β;γ ) and IT (λ,μ; ξ) with the structure of algebraic varieties defined
over Fp . To do so we will realize them as subsets of the affine Grassmannian.

The affine Grassmannian GrG := G/K will be considered as the k-points of an ind-scheme defined
over Fp . We can identify this with the orbit G · o ⊂ BG . (If G is semi-simple then G · o is contained
in the vertex set of BG , in general it is a subset of the skeleton of the smallest dimension in the
polysimplicial complex BG .)



T.J. Haines et al. / Journal of Algebra 361 (2012) 41–78 47
For any G-dominant cocharacter μ, let xμ = tμK/K , a point in GrG . It is well known that the
closure K xμ of the K -orbit K xμ = Sμ(o) in the affine Grassmannian is the union

Sμ(o) =
∐

μ0�μ

Sμ0(o).

Here μ0 ranges over G-dominant cocharacters in X∗(T ), and the relation μ0 � μ means, by definition,
that μ − μ0 is a sum of positive coroots.

Each Sμ(o) (resp. Sμ(o)) is a projective (resp. quasi-projective) variety of dimension 〈2ρ,μ〉, de-
fined over Fp . Therefore GrG , the union of the projective varieties Sμ(o), is an ind-scheme defined
over Fp .

Now, K is the set of k-points in a group scheme defined over Fp (namely, the positive loop group
L�0(G)) which acts (on the left) on GrG in an obvious way. The orbits K xμ are automatically locally-
closed in the (Zariski) topology on GrG , and are defined over Fp .

Moreover, the group K P = N KM we defined earlier is the k-points of an ind-group-scheme de-
fined over Fp which also acts on GrG . The orbit spaces K P xλ are neither finite-dimensional nor
finite-codimensional in general, however, since they are orbits under an ind-group, they are still au-
tomatically locally closed in GrG .

By the above discussion, our spaces of triangles can be viewed as intersections of orbits inside GrG

T (α,β;γ ) = K xα ∩ tγ K xβ∗ ,

IT (λ,μ; ξ) = K P xλ ∩ K xμ

and as such each inherits the structure of a finite-dimensional, locally-closed subvariety defined over
Fp . Thus, it makes sense to count Fq-points on these varieties.

Remark 2.3. The Bruhat–Tits building BGq for the group Gq isometrically embeds in BG as a sub-
building. It is the fixed-point set for the natural action of the Galois group Gal(k/Fq) on BG . The orbit
Gq · o ⊂ BGq can be identified with Gq/Kq and thus with the set of Fq-points in GrG . Accordingly,
the sets of Fq-points in T (α,β;γ ) and IT (λ,μ; ξ) then become spaces of based triangles and based
ideal triangles in BGq . Then “counting” the numbers of triangles in BGq computes structure constants
for HG and (up to a factor) the constant term map cG

M . On the other hand, algebro-geometric consid-
erations are more suitable for the varieties of triangles in GrG ⊂ BG , since the field k is algebraically
closed. Therefore, in this paper (unlike [KLM3]), we almost exclusively work with the building BG

rather than BGq .

3. Statements of results

We fix cocharacters μ ∈ 
G and λ ∈ 
M . In order to state our results we need the following
definition. Recall that 〈·, ·〉 : X∗(T ) × X∗(T ) → Z denotes the canonical pairing.

Definition 3.1. Suppose μ,ν ∈ X∗(T ). We write ν �P μ if

• 〈α,ν〉 = 0 for all roots α appearing in Lie(M);
• 〈α,ν + λ〉 � 0 for all λ ∈ Ω(μ) and α ∈ ΦN .

Note that this relation satisfies a semigroup property: if ν1 �P μ1 and ν2 �P μ2, then ν1 + ν2 �P

μ1 + μ2. It is also homogeneous: for every integer z � 1, we have ν �P μ ⇔ zν �P zμ.
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Theorem 3.2. Let μ,λ be as above. Then for any cocharacter ν with ν �P μ, we have an equality of subvari-
eties in GrG ,

T
(
ν + λ,μ∗;ν) = tν

(
IT (λ,μ; ξ)

)
.

In particular, the varieties T (ν + λ,μ∗;ν) and IT (λ,μ; ξ) are naturally isomorphic as Fp-varieties.

For the next results, recall that kΦ = lcm(a1, . . . ,al), where
∑l

i=1 aiαi = θ is the highest root and
αi are the simple roots of Φ .

Theorem 3.3. For λ ∈ 
M , μ ∈ 
G as above and for any ν with ν �P μ, set α := ν + λ, β := μ∗ , γ := ν .
Then:

(i) (First column of Table 1)

cμ(λ)q〈ρN ,λ〉|KM,q · xλ| = mα,β(γ ).

(ii) (Second column) rμ(λ) = nα,β(γ ) = nν,μ(ν + λ).
(iii) (First row)

rμ(λ) �= 0 ⇒ cμ(λ) �= 0 ⇒ rkΦμ(kΦλ) �= 0.

Assume now that μ − λ (or, equivalently, λ + μ∗) belongs to the coroot lattice of G .

Corollary 3.4. i. (Semigroup property for r.) The set of (μ,λ) for which rμ(λ) �= 0 is a semigroup.
ii. (Uniform saturation for c.)

cNμ(Nλ) �= 0 for some N �= 0 ⇒ ckΦμ(kΦλ) �= 0.

iii. (Uniform saturation for r.)

rNμ(Nλ) �= 0 for some N �= 0 ⇒ rk2
Φμ

(
k2
Φλ

) �= 0.

In particular, for G of type A, the set of (μ,λ) such that rμ(λ) �= 0, is saturated.

Remark 3.5. One can improve (using results of [KM1,KKM,BK,S] on saturation for the structure con-
stants for the representation rings R(Ĝ)) the constants kΦ as follows:

One can replace kΦ (in ii.) and k2
Φ (in iii.) by:

(a) k = 2 for Φ of type B, C, G2,
(b) k = 1 for Φ of type D4,
(c) k = 2 for Φ of type Dn , n � 6.

Conjecturally (see [KM1]), one can use k = 1 for all simply-laced root systems and k = 2 for all
non-simply-laced.

Remark 3.6. The paper [Ha2] states saturation results and conjectures for the numbers mα,β(γ ) and
nα,β(γ ), when α and β are sums of G-dominant minuscule cocharacters. Suppose that μ is a sum
of G-dominant minuscule cocharacters. Then we conjecture that the implications in ii. and iii. above
hold, where kΦ and k2

Φ are replaced by 1.
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• •

•

x−ν o

xλ

λ

ν

λ + ν

pμ


G − ν


M

Fig. 1. The broken path pμ from o to xλ is an LS path of type μ. Then the Littelmann bigon with the sides pμ and oxλ yields
a Littelmann triangle with the geodesic sides x−νo, x−ν xλ and the broken side pμ .

4. Relation to Littelmann’s path model

There is a very short proof of Theorem 3.3 (ii) using Littelmann’s path models, and our discovery
of this proof was one of the starting points for this project. It gave rise to the notion of the inequality
ν �P μ which plays a key role for us. For this reason, we present this proof here. A nice reference for
the Littelmann path models used here is [Li].

We will prove the result in the following form: If ν �P μ, then rμ(λ) = nν,μ(ν + λ).
Fix μ ∈ 
G ∩Λ. Write Bμ for the set of all type μ LS-paths, that is, the set of all paths in A which

result by applying a finite sequence of “raising” respectively “lowering” operators ei respectively f i to
the path −→oμ (the straight-line path from the origin to μ). Note that each path in Bμ starts at the
origin o and lies inside Conv(Wμ), the convex hull of the Weyl group orbit of μ.

For any x ∈ A, we can consider x + Bμ , the set of all type μ paths originating at x. Let Bμ(x, y)

denote the set of type μ paths which originate at x and terminate at y.
Now consider λ ∈ 
M ∩ Λ. The Littelmann path model for rμ(λ) states that

rμ(λ) = ∣∣Bμ(o, λ) ∩ 
M
∣∣, (4.1)

the cardinality of the set of type μ paths originating at o, terminating at λ, and contained entirely in

M .

Now consider any ν ∈ 
G ∩ Λ such that ν + λ ∈ 
G . The Littelmann path model for nν,μ(ν + λ)

states that

nν,μ(ν + λ) = ∣∣Bμ(ν,ν + λ) ∩ 
G
∣∣ (4.2)

the cardinality of the set of type μ paths originating at ν , and terminating at ν + λ, and contained
entirely inside 
G .

Now assume ν �P μ. This is defined precisely so that we have

ν + (
Bμ(o, λ) ∩ 
M

) = Bμ(ν,ν + λ) ∩ 
G .

The equality of the quantities in (4.1) and (4.2) is now obvious. See Fig. 1.

5. Ideal triangles and vector-valued Busemann functions

5.1. Based ideal triangles with ideal side-length λ and side-length μ

As promised earlier in this paper we now make precise the definition of vector-valued Busemann
function. Recall that a flat in a building is an isometrically embedded Euclidean subspace. Recall also
that we fixed a parabolic subgroup P ⊂ G , with a Levi subgroup M and a point ξ ∈ ∂TitsB fixed by P ,
where B = BG . Then we also have an embedding BM ⊂ BG , where BM splits as the product

BM = F ×YM
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where F is a flat in B and YM is a Euclidean building containing no flat factors. Pick a geodesic
γ ⊂ F asymptotic to ξ , and oriented so that the subray γ (R+) is asymptotic to ξ . Then BM = P(γ ),
the subbuilding which is the parallel set of γ , i.e., the union of all geodesics which are at bounded
distance from γ .

We fix an apartment A in BM containing o; then A necessarily contains F (and, hence, γ ) as well.
Let 
M be a chamber of BM in A with tip o; by our convention set in Section 2, 
M contains 
, the
chamber of B with the tip o. We note that 
M splits as F × 
′

M .
In the case when B has rank one (i.e., is a tree) it is well known that the correct notion of the

“distance” from a point x ∈ B to a point ξ ∈ ∂TitsB is the value of the Busemann function bξ (x),
normalized to be zero at the base-point o. The usual Busemann function bξ (x) is defined as follows:

bξ (x) := lim
t→∞

[
d
(
γ (t), x

) − d
(
γ (t),o

)]
.

We note that

bξ (o) = 0.

In what follows we will define a 
M -valued Busemann function bξ,
M (x) (which should be con-
sidered as the 
M -valued “distance” from ξ to x). Again, we note that bξ,
M will be defined so that

bξ,
M (o) = 0.

5.2. The 
M -valued distance function d̃
M on B

Before defining vector-valued Busemann function, we first introduce a (partially defined) distance
function d̃
M on B which extends the function d
M defined on BM . We first note that for every x ∈ B
there exists an apartment Aξ ⊂ B containing x, so that ξ ∈ ∂TitsAξ . For every two apartments Aξ ,A′

ξ

asymptotic to ξ there exists a (typically non-unique) isomorphism φAξ ,A′
ξ
:Aξ →A′

ξ which fixes the

intersection Aξ ∩A′
ξ pointwise. Since this intersection contains a ray asymptotic to ξ , it follows that

the extension of φAξ ,A′
ξ

to the ideal boundary sphere of Aξ fixes the point ξ . Thus, the apartments

{Aξ } form an atlas on B with transition maps in W̃ M , the stabilizer of ξ in W̃ . (Here we are abusing
the notation and identify an apartment Aξ in B and its isometric parameterization A → Aξ .) The
only axiom of a building lacking in this definition is that not every two points in B belong to a
common apartment Aξ . Nevertheless, for points x, y ∈ B which belong to some Aξ we can repeat
the definition of a chamber-valued distance function [KLM1]:

d̃
M (x, y) = d
M

(
φAξ ,A(x),φAξ ,A(y)

)
.

In particular, d̃
M restricted to BM coincides with d
M . Then d̃
M is a partially-defined 
M -valued
distance function on B. As in the case of the definition of 
-distance on B, one verifies that d̃
M is
independent of the choices of apartments and their isomorphisms. It is clear from the definition that
d̃
M is invariant under the subgroup P ⊂ G (but not under G itself).

5.3. The Busemann function bξ,
M (x)

We are now in position to repeat the definition of the usual Busemann function.
Pick x ∈ B and let γ ′ be a complete geodesic in B containing x and asymptotic to ξ . Let P(γ ′) be

the parallel set of γ ′ . The following simple lemma is critical in what follows.

Lemma 5.1. There exists t0 such that for all t � t0 we have γ (t) ∈ P(γ ′) and, furthermore, the subray
γ ([t0,∞)) and the point x belong to a common apartment A′ ⊂ P(γ ′). In particular, A′ contains ξ in its
ideal boundary and d̃
M (γ (t), x) is well defined for t � t0 .
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Proof. We will give a proof only in the case when B = BG is the Bruhat–Tits building of a reductive
group G over a nonarchimedean valued field, although the statement holds for general Euclidean
buildings as well.

There exists a unipotent element u ∈ G that carries P(γ ) to P(γ ′) and fixes ξ . Since u is unipotent
and fixes ξ , it also fixes an infinite subray of oξ . So there exists t0 such that γ ([t0,∞)) ∈ P(γ ′).
Now choose an apartment A′ in P(γ ′) which contains x and γ (t0). Since every apartment in P(γ ′)
contains γ ′ , we have ξ ∈ ∂TitsA′ and, consequently, γ (t) ∈A′ for t � t0. �

We now define bξ,
M (x) by

bξ,
M (x) := lim
t→∞

[
d̃
M

(
γ (t), x

) − d̃
M

(
γ (t),o

)]
.

We need to show that the limit on the right-hand side exists. We first claim that for each t � t0, the
difference vector

f (t, x) := d̃
M

(
γ (t), x

) − d̃
M

(
γ (t),o

)
is a well-defined element of 
M , where t0 is as in Lemma 5.1 above. Indeed, by that lemma,
d̃
M (γ (t), x) ∈ 
M is well defined for t � t0. Next, γ ⊂ F and 
M = F × 
′

M . Therefore,

−̃d
M

(
γ (t),o

) = −−−−−→
γ (t)o ∈ 
M .

Hence, by convexity of 
M , f (t, x) ∈ 
M .

Lemma 5.2. f (t, x) is constant in t for t � t0 .

Proof. Let φA′,A :A′ →A be an isomorphism of apartments as above fixing ξ . Hence φA′,A(γ (t)) =
γ (t) for t � t0 and by definition

d̃
M

(
γ (t), x

) = d
M

(
γ (t), x′), t � t0,

where x′ := φA′,A(x). Then

f (t, x) = f
(
t, x′) = d
M

(
γ (t), x′) − d
M

(
γ (t),o

)
, t � t0.

Accordingly, replacing x by x′ we have reduced to the case where x′,o and γ (t), t � t0 are contained
in the apartment A. Now apply an element of the Weyl group of M (which fixes γ and, hence,
γ (t),∀t) to x′ to obtain x′′ ∈ 
M , so that

−−−−−→
γ (t)x′′ = d̃
M

(
γ (t), x

)
, t � t0.

The lemma now follows from

f
(
t, x′) = −−−−−→

γ (t)x′′ − −−−−→
γ (t)o = −−→

ox′′,

see Fig. 2. �
Lemma 5.3. 1. bξ,
M is invariant under K P = N KM .

2. If bξ,
M (x) = bξ,
M (y) then K P x = K P y.
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• • •

•

ξ γ (t) o

x′′

Fig. 2. f (t, x′) is constant for t � t0.

Proof. 1. Let u ∈ P be unipotent. Then u not only fixes ξ but, moreover, for every geodesic ray
β : R+ → B asymptotic to ξ , there exists tu so that u(β(t)) = β(t) for all t � tu . Therefore, by the
invariance property of d̃
M ,

d̃
M

(
x, γ (t)

) = d̃
M

(
u(x), u

(
γ (t)

)) = d̃
M

(
u(x), γ (t)

)
.

It then follows from the definition of bξ,
M that it is invariant under u. The same argument works
for u replaced with k ∈ KM since it suffices to know that (the entire ray) ρ is fixed by k.

2. For every z ∈ B there exists n ∈ N so that n(z) ∈ BM . Therefore, applying elements of N to x, y,
we reduce the problem to the case when x, y ∈ BM . For such x, y,

d
M (o, y) = bξ,
M (y) = bξ,
M (x) = d
M (o, x).

Therefore, x, y belong to the same KM -orbit. �
This lemma allows us to give a purely algebraic characterization of the space of based ideal trian-

gles IT (λ,μ; ξ):

Corollary 5.4. IT (λ,μ; ξ) = K P xλ ∩ K xμ = b−1
ξ,
M

(λ) ∩ Sμ(o).

6. Retractions

6.1. The retractions ρb,A

Attached to any alcove b in an apartment A is a retraction ρb,A : BG →A. It is distance-preserving
and simplicial. Let us abbreviate it here by ρ . Recall that this retraction is defined as follows: Pick an
apartment A′ ⊂ B containing alcoves b and x. Then there exists a unique isomorphism of apartments
φ :A′ → A fixing b. Then ρ(x) := φ(x).

We need to review some of the basic properties of ρ . Let x denote any alcove in the building. Take
a minimal gallery joining the base alcove a ⊂ A to x. Let x0 denote the next-to-last alcove in this
gallery. Let F0 denote the codimension one facet separating x0 from x.

Let c′ := ρ(x0), and let H denote the hyperplane in A which contains ρ(F0) and let sH denote
the corresponding reflection in A. Let c := sH (c′). Assuming we know c′ by induction, what are the
possibilities for ρ(x)? To visualize this, we will imagine x0 and F0 as being fixed, and x as ranging
over the affine line A1 consisting of the set of all alcoves x �= x0 containing F0 as a face. Then one of
the following holds:

Position 1. If b and c′ are on the same side of H , then all x ∈ A1 retract under ρ onto c.

Position 2. If b and c′ are on opposite sides of H , then one point in A1 retracts onto c, and all
remaining points of A1 retract onto c′ .
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Suppose x ∈ BG is joined to the base alcove a by a gallery corresponding to a reduced word
expression for w ∈ W̃ . It follows from the discussion above that ρb,A(x) � wa with respect to the
Bruhat order � on the set of alcoves in A. (This Bruhat order is determined by the set of simple
affine reflections corresponding to the walls of a.)

Using this, it is not difficult to prove the following statement.

Lemma 6.1. Let x ∈ K xμ . The ρb,A(x) ∈ Ω(μ).

Finally, the following lemma is obvious.

Lemma 6.2. For any w ∈ W̃ , we have

ẇ ◦ ρb,A ◦ ẇ−1 = ρwb,A. (6.1)

Recall that W̃ = NG(T )(Fp((t)))/T (Fp[[t]]). On the left-hand side of (6.1), ẇ denotes any lift of w
in NG(T )(Fp((t))).

6.2. The retractions ρ−ν,
G −ν

For any ν ∈ X∗(T ), let W−ν denote the finite Weyl group at x−ν ∈A, namely, the group generated
by the affine reflections in A which fix the point x−ν . Regard 
G − ν as the G-dominant Weyl
chamber with apex x−ν . Then consider the retraction

ρ
G −ν : A → 
G − ν, (6.2)

v �→ w(v)

where w ∈ W−ν is chosen so that w(v) ∈ 
G − ν .
Next choose any alcove b ⊂A with vertex x−ν . Then the composition

ρ
G −ν ◦ ρb,A : BG → 
G − ν

is a retraction of the building onto the chamber 
G − ν . Because of (6.1), it is independent of the
choice of b. Hence we may set

ρ−ν,
G−ν := ρ
G −ν ◦ ρb,A. (6.3)

The following lemma will be useful later.

Lemma 6.3. For any G-dominant cocharacter μ such that ν + μ is also G-dominant, we have

ρ−1
−ν,
G−ν(xμ) = (

t−ν Ktν
)
xμ.

Proof. The special case

ρ−1
0,
G

(xν+μ) = K xν+μ (6.4)

is obvious. We have the identities (cf. Lemma 6.2)

t−ν ◦ ρb,A ◦ tν = ρb−ν,A,

t−ν ◦ ρ
G ◦ tν = ρ
G −ν,
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and these together with the definition (6.3) yield the formula

t−ν ◦ ρ0,
G ◦ tν = ρ−ν,
G −ν . (6.5)

Now the desired formula follows from the special case (6.4) above. �
6.3. The retraction ρK P ,
M

Recall that for a Borel subgroup B = T U , there is a corresponding retraction

ρU ,A : BG → A

which can be realized as ρb,A for b “sufficiently anti-dominant” with respect to the roots in Lie(U ).
We also have the retraction

ρK ,
G := ρ0,
G : BG → 
G

discussed above. We want to define a retraction

ρK P ,
M : BG → 
M

which interpolates between these two extremes, ρU ,A and ρK ,
G .
Before defining ρK P ,
M we shall review the construction of a similar retraction ρI P ,A which was

introduced in [GHKR2].
Consider the following two properties of an element ν ∈ X∗(T ):

(i) 〈α,ν〉 = 0 for all roots α ∈ ΦM ;
(ii) 〈α,ν〉 >> 0 for all roots α ∈ ΦN .

We say ν is M-central if (i) holds and very N-dominant if (ii) holds.
Let aM denote the base alcove in A determined by some set of positive roots Ψ +

M in M . (For
example, we could take Ψ +

M = Φ+
M := Φ+ ∩ ΦM .) This means that aM is the region of A which lies

between the hyperplanes Hα and Hα−1 for every α ∈ Ψ +
M . Let IM := I ∩ M , the Iwahori subgroup of

M which corresponds to the alcove aM . Set I P := N · IM .
Let S be any bounded subset of the building BG .

Lemma 6.4. (See [GHKR2].) Consider the following properties of an alcove b ⊂A:

(a) b ⊂ aM ;
(b) b has a vertex x−ν , where ν is M-central and very N-dominant (depending on S).

Then the corresponding retractions ρb,A , for b satisfying (a) and (b), all agree on the set S .

Proof. By [GHKR2], Lemma 11.2.1, there is a decomposition

G =
∐

w∈W̃

I P w I.

It follows that BG is the union of all translates g−1A, as g ranges over I P . Moreover, for g ∈ I P , the
map g : g−1A → A is a simplicial map fixing the alcove b as long as b ⊂ aM and b is sufficiently
anti-dominant with respect to N; it follows that, on g−1A, the map g : g−1A → A coincides with
ρb,A for such b.
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To be more precise, for a bounded subset S ⊂ BG let us give a condition (∗S ) on alcoves b such
that all retractions ρb,A for b satisfying (∗S ) will coincide on S . There exists a bounded subgroup
IS ⊆ I P such that S ⊂ ⋃

g∈IS g−1A. Let Ib denote the Iwahori subgroup fixing b. Then condition (∗S )

can be taken to be

IS ⊂ Ib. (∗S )

This condition suffices, because if b satisfies (∗S ), then ρb,A and g ∈ IS will coincide as maps
g−1A→A, since both are simplicial and fix b. This proves the lemma. �

Denote by ρI P ,A(v) the common value of all retractions ρb,A(v) where b ranges over a set (de-
pending on v) of alcoves as in the lemma. This defines a retraction

ρI P ,A : BG → A.

As the notation indicates, it depends on the choice of the alcove aM and the parabolic P = MN . The
following result appeared in [GHKR2]. We give a proof for the benefit of the reader.

Lemma 6.5. (See [GHKR2].) Suppose I P is defined using P and aM as above. Then:

(i) For any g ∈ I P , we have ρI P ,A|g−1A = g.

(ii) For any alcove x in A, we have ρ−1
I P ,A(x) = I P x.

Proof. Part (i) follows from the proof of the lemma above. It implies that ρI P ,A is I P -invariant, in the
following sense: thinking of ρI P ,A as a map G/I → W̃ I/I sending alcoves in BG to those in A, for
each w ∈ W̃ , we have

ρ−1
I P ,A(wa) ⊃ I P wa.

But since we have disjoint decompositions

G/I =
∐

w∈W̃

I P w I/I =
∐

w∈W̃

ρ−1
I P ,A(wa),

this containment must actually be an equality. This proves part (ii). �
We now turn to the variant of interest to us here, namely the retraction ρK P ,
M onto the M-

dominant Weyl chamber 
M ⊂A. Here we recall KM = K ∩ M , and K P = N · KM ;

Definition 6.6. We define the retraction ρK P ,
M : BG → 
M by setting

ρK P ,
M = ρ
M ◦ ρI P ,A.

Here I P is determined by P = MN and the M-alcove aM defined in terms of some set of positive
roots Ψ +

M for M .

Of course, we need to show that this is indeed independent of the choice of aM .

Lemma 6.7. The retraction ρ
M ◦ ρI P ,A is independent of the choice of M-alcove aM .
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Proof. Fix any bounded set S ⊂ BG . Recall that on S , ρI P ,A can be realized as the retraction ρb−ν,A ,
for any M-central and very N-dominant cocharacter ν (depending on S) and any alcove b whose
closure contains o and which is contained in aM . Suppose a1

M and a2
M are two M-alcoves, and bi ⊂ ai

M
are two such alcoves. We need to show that ρ
M ◦ ρb1−ν,A = ρ
M ◦ ρb2−ν,A on S .

Let w ∈ W M be such that wa1
M = a2

M . Then by Lemma 6.4, we know already that ρwb1−ν,A =
ρb2−ν,A on S . So, it remains to see that ρ
M ◦ ρb1−ν,A = ρ
M ◦ ρwb1−ν,A on S .

Without loss of generality, we may assume w = sα , the reflection corresponding to a simple root
α in the positive system Φ+

M . We claim that ρwb1−ν,A(x) ∈ {ρb1−ν,A(x), w(ρb1−ν,A(x))}. This will
imply the lemma.

Denote by F the unique codimension 1 facet in A which separates c1 := b1 −ν from c2 := wb1 −ν .
Abbreviate ρci,A by ρi for i = 1,2.

If x ⊂A, then both retractions just give x and there is nothing to do. So, assume x is not contained
in A. Choose a minimal gallery x = x0,x1, . . . ,xd, F joining x to F . The notation means F is a face of
xd and d � 0 is the distance d(x, F ) (by definition, for a facet F , the distance d(x,F) is the minimal
number of wall-crossings needed to form a gallery from x to an alcove y with F ⊂ y).

There are two cases to consider. Assume first that xd is one of the ci . Let us assume xd = c1
(the other case is similar). Then d(x, c1) = d and d(x, c2) = d + 1. In this case c2, c1,xd−1, . . . ,x is a
minimal gallery joining c2 (and also c1) to x, and it follows that ρ1(x) = ρ2(x).

Now assume that xd is neither c1 nor c2. Then there are two minimal galleries

c1,xd, . . . ,x, c2,xd, . . . ,x

and xd �A (and hence no xi lies in A; see e.g. [BT], (2.3.6)). Thus these galleries leave A at F , and
by looking at how they fold down onto A under ρ1 and ρ2, we see that ρ1(x) = w(ρ2(x)).

This proves the claim, and thus the lemma. �
Lemma 6.5(ii) above has the following counterpart. Using Lemma 5.3, we see from it that ρK P ,
M =

bξ,
M .

Lemma 6.8. For any M-dominant λ ∈ X∗(T ), we have

ρ−1
K P ,
M

(xλ) = K P xλ.

Proof. First we show that ρK P ,
M is K P -invariant; this will show ρ−1
K P ,
M

(xλ) ⊇ K P xλ . Choose any
M-alcove aM and corresponding Iwahori IM as in the definition of ρK P ,
M as ρ
M ◦ ρI P ,A . We can
write K P = KM N = IM W M IM N . By Lemma 6.5(ii), ρI P ,A is I P -invariant, and so it suffices to show
that ρK P ,
M is W M -invariant. On a bounded set S , we realize this retraction as ρ
M ◦ ρb,A for some
alcove b contained in aM and sufficiently anti-dominant with respect to the roots in ΦN . Now for
w ∈ W M and v ∈ S , we have

ρ
M ◦ ρb,A(w v) = ρ
M

(
w

(
ρw−1b,A(v)

)) = ρ
M ◦ ρw−1b,A(v)

using Lemma 6.2 for the first equality. But by Lemma 6.7, the right-hand side is ρK P ,
M (v), and the
invariance is proved.

Next we show the opposite inclusion. We have

ρ−1
K P ,
M

(xλ) =
⋃

w∈W M

ρ−1
I P ,A(wxλ).

By Lemma 6.5(ii), the right-hand side is contained in I P W M xλ , which certainly belongs to K P xλ . This
completes the proof. �
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We deduce the following interpolation between the Cartan and Iwasawa decompositions of G:

Corollary 6.9. The map W̃ → G induces a bijection

W M\Λ = W M\W̃ /W →̃ K P \G/K .

The next lemma is a rough comparison between the retractions ρK P ,
M and ρ−ν,
G −ν . (Actually it
concerns their restrictions to a given bounded subset S ⊂ BG .) It will be made much more precise in
the next section.

Lemma 6.10. For any bounded set S ⊂ BG , there are elements ν which are M-central and very N-dominant
(depending on S) such that

ρK P ,
M |S = ρ−ν,
G −ν |S.

Proof. First we remark that for ν which is M-central and very N-dominant, and for any alcove b
having x−ν as a vertex, every point x ∈ ρb,A(S) satisfies

〈α,ν + x〉 > 0

for α ∈ ΦN . Thus the retraction of such an element x into 
G − ν coincides with its retraction into

M (and both are achieved by applying a suitable element of W M ). The lemma follows from this
remark and the definitions. �
7. Sharp comparison of ρK P ,�M and ρ−ν,�G −ν

7.1. Statement of key proposition

The following is the key technical device of this paper. It is a much sharper version of Lemma 6.10.

Proposition 7.1. Let μ be a G-dominant element of X∗(T ). Suppose ν �P μ. Then

ρ−ν,
G−ν |K xμ = ρK P ,
M |K xμ. (7.1)

The first lemma deals with the images of the two retractions appearing in Proposition 7.1.

Lemma 7.2. Assume ν �P μ. Then the following statements hold.

(a) We have Ω(μ) ∩ 
M = Ω(μ) ∩ (
G − ν).

(b) For λ ∈ 
M , the intersection K P xλ ∩ K xμ is nonempty only if λ ∈ Ω(μ).

(c) For λ ∈ 
G − ν , the intersection (t−ν Ktν)xλ ∩ K xμ is nonempty only if λ ∈ Ω(μ).

Proof. Part (a) follows easily from the definitions. Part (b) is well known (cf. [GHKR1], Lemma 5.4.1).
Let us prove (c). Assume λ ∈ 
G − ν makes the intersection in (c) nonempty. By Lemma 6.3, we see
that xλ lies in ρ−ν,
G −ν(Kμ). By Lemma 6.1 and the definition of ρ−ν,
G −ν , there exists w−ν ∈ W−ν

such that w−ν(λ) ∈ Ω(μ). Write w−ν = t−ν wtν for some w ∈ W . Then we see that

w(λ + ν) = w (̃λ) + ν (7.2)

for some λ̃ ∈ Ω(μ). Eq. (7.2) has the same form if we apply any element w ′ ∈ W M to it. By replacing
w with a suitable element of the form w ′w (w ′ ∈ W M ), we may assume the right-hand side of (7.2) is
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M-dominant. But then since ν �P μ, the right-hand side is G-dominant. Then w(λ+ν) and λ+ν are
both G-dominant, hence they coincide. This yields λ = w (̃λ); thus λ belongs to Ω(μ), as desired. �

We will rephrase Proposition 7.1 using the following lemma.

Lemma 7.3. Fix a G-dominant cocharacter μ. Then the following are equivalent conditions on an element ν
satisfying ν �P μ:

(i) (t−ν Ktν)xλ ∩ K xμ = K P xλ ∩ K xμ , for all λ ∈ Ω(μ) ∩ 
M ;

(ii) ρ−ν,
G −ν |K xμ = ρK P ,
M |K xμ .

Proof. This is immediate in view of Lemmas 6.3, 6.8, and 7.2. �
In a similar way, we have the following result.

Lemma 7.4. The following are equivalent conditions on cocharacters ν1 and ν2 which satisfy νi �P μ for
i = 1,2:

(a) (t−ν1 Ktν1 )xλ ∩ K xμ = (t−ν2 Ktν2)xλ ∩ K xμ for all λ ∈ Ω(μ) ∩ 
M ;

(b) ρ−ν1,
G −ν1 |K xμ = ρ−ν2,
G −ν2 |K xμ;

(c) ρb1,A(x) ∈ W M(ρb2,A(x)), for x ∈ K xμ .

Here for i = 1,2, bi is any alcove having x−νi as a vertex.

As discussed above in the context of ρ−ν,
G −ν , in proving (c) we are free to use any alcove having
x−νi as a vertex we wish.

Proof. The equivalence of (a) and (b) is clear. The equivalence of (b) and (c) follows by the same
argument which proved Lemma 6.10. �

If (a), (b), or (c) hold, then so does (ii) in Lemma 7.3, by virtue of Lemma 6.10. To see this, in (b)
above, take ν = ν1 and take ν2 �P μ sufficiently dominant with respect to N so that, for S = K xμ ,
the conclusion of Lemma 6.10 holds for it.

Thus, the following proposition will imply Proposition 7.1 (and in fact it is equivalent to Proposi-
tion 7.1).

Proposition 7.5. Suppose νi �P μ for i = 1,2. Then

ρ−ν1,
G −ν1 |K xμ = ρ−ν2,
G−ν2 |K xμ.

7.2. Proof of Proposition 7.5

We will prove (c) in Lemma 7.4 holds. We make particular choices for the bi , namely, we set

bi := w0a − νi

for i = 1,2, where w0 denotes the longest element in the Weyl group W (so that w0a is the alcove at
the origin which is in the anti-dominant Weyl chamber). Set ρi = ρbi ,A for i = 1,2. For these choices
of bi , we will prove the following more precise fact:

for x ∈ K xμ, we have ρ1(x) = ρ2(x).



T.J. Haines et al. / Journal of Algebra 361 (2012) 41–78 59
Let x ∈ K xμ and let a = a0,a1, . . . ,ar−1,ar be any minimal gallery in BG joining a to x (this means
that x belongs to the closure of ar and r is minimal with this property). It is obviously enough for us
to prove that

ρ1(ar) = ρ2(ar).

We will prove this by induction on r. But first, we must formulate an alcove-theoretic proposition
(Proposition 7.6 below). This involves the notion of μ-admissible alcove (cf. [HN,KR]). By definition,
an alcove in A is μ-admissible provided it can be written in the form wa for w ∈ W̃ such that w � tλ
for some λ ∈ W μ. Here � is the Bruhat order on W̃ determined by the alcove a.

The set of μ-admissible alcoves is closed under the Bruhat order on any given apartment: if ar is
μ-admissible, and ar−1 precedes ar , then ar−1 is also μ-admissible. Moreover, if x ∈ Ω(μ), then the
minimal length alcove containing x in its closure is always μ-admissible. These remarks imply that
the next proposition suffices to prove Proposition 7.5.

Proposition 7.6. Suppose a = a0,a1, . . . ,ar is any minimal gallery in BG such that, in an apartment A′
containing this gallery, the terminal alcove ar (and thus every other alcove ai ) is a μ-admissible alcove in A′ .
Then we have

ρ1(ar) = ρ2(ar).

Proof. We proceed by induction on r. There is nothing to prove for r = 0. Assume r � 1 and that
ρ1(ar−1) = ρ2(ar−1). In particular, if Fr is the face separating ar−1 from ar , we have ρ1(Fr) = ρ2(Fr).
Let H ⊂ A denote the hyperplane containing ρ1(Fr); write sH for the corresponding reflection in A.
Set c′ := ρ1(ar−1) and c = sH (c′).

We now recall the discussion of Subsection 6.1. For i = 1,2, we have

ρi(ar) ∈ {
c′, c

}
.

Following Subsection 6.1, we need to show that the alcoves b1 and b2 are simultaneously in Position 1
(or 2) with respect to c′ and H .

We claim that b1 and b2 are both on the same side of H . To see this, we may assume

H = Hα−k = {
p ∈ X∗(T )R

∣∣ 〈α, p〉 = k
}

for a positive root α. If α ∈ ΦM , then our assertion follows from the fact that b1 and b2 belong to
the same “M-alcove” (the anti-dominant one). If α ∈ ΦN , it follows because νi �P μ and because H
intersects the set Conv(W μ). Indeed, let p be a point in Conv(W μ) ∩ H . Then the condition

〈α,νi + p〉 � 0

implies that

〈α,−νi〉 � k,

which shows that x−ν1 and x−ν2 are on the same side of H , and this suffices to prove the claim.
This shows that the bi are simultaneously in Position 1 (or 2) with respect to H and c′ . This is

almost, but not quite enough by itself, to show that ρ1(ar) = ρ2(ar). Position 1 is quite easy to handle
(see below). As we shall see, in Position 2, ar could retract under ρi to either c or c′; we require an
additional argument, given below, to show the two retractions must coincide.

First assume we are in Position 1, that is, bi and c′ are on the same side of H . Then as in Subsec-
tion 6.1, we see that ρi(ar) = c for i = 1,2.
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Now assume we are in Position 2, that is, bi and c′ are on opposite sides of H . In this case it is a
priori possible that (say) ρ1(ar) = c while ρ2(ar) = c′ . Our analysis below will show that this cannot
happen.

Choose any minimal gallery joining b1 = w0a − ν1 to Fr :

b1 = x0,x1, . . . ,xn

where Fr is contained in the closure of xn (and n is minimal with this property). Similarly, choose a
minimal gallery joining b2 to Fr ,

b2 = y0,y1, . . . ,ym.

Further, set b := w0a − ν1 − ν2 and fix two minimal galleries in A,

b = u0,u1, . . . ,up = b1,

b = v0,v1, . . . ,vq = b2.

It is clear that ρ1 (resp. ρ2) fixes the former (resp. latter).

Claim. The concatenation b, . . . ,b1, . . . ,xn is a minimal gallery. (The same proof will show that b, . . . ,b2,

. . . ,ym is minimal.) This may be checked after applying the retraction ρ1 . But ρ1(b1), . . . , ρ1(xn) is a minimal
gallery joining b1 to an alcove of A contained in the convex hull Conv(W μ), and consequently this gallery is in
the J P -positive direction (see Subsection 7.3 below). The gallery b, . . . ,b1 is also in the J P -positive direction
(and is fixed by ρ1).

It would be natural to hope that the concatenation of two galleries in the J P -positive direction is
always in the J P -positive direction. Then we could invoke Lemma 7.8 below to prove that b, . . . ,b1 =
ρ1(b1), . . . , ρ1(xn) is minimal. But in general it is not true that the concatenation of two galleries
in the J P -direction is also in the J P -positive direction (think of the extreme case M = G). However,
in our situation, because b, . . . ,b1 lies entirely in the same M-alcove (the anti-dominant one), the
concatenation b, . . . ,b1 = ρ1(b1), . . . , ρ1(xn) is nevertheless in the J P -positive direction. Hence the
concatenation b, . . . ,b1, . . . ,xn is minimal. The claim is proved.

It follows that the concatenations

u0, . . . ,up = x0, . . . ,xn,

v0, . . . ,vq = y0, . . . ,ym

are two minimal galleries joining b to Fr . By a standard result (cf. [BT], (2.3.6)), any two such galleries
belong to any apartment that contains both b and Fr . In particular, xn = ym . Now recall we are
assuming that c′ , the common value of ρ1(ar−1) and ρ2(ar−1), is on the opposite side of H from the
alcoves bi , and so c is on the same side of H as the bi . On the other hand, ρ1(xn) and ρ2(ym) are
both equal to c, since that is the alcove sharing the facet ρi(Fr) with c′ but on the same side of H as
bi . In particular, we have ar−1 �= xn .

If ar = xn = ym , then we have ρ1(ar) = c = ρ2(ar). If ar �= xn , then we have ρ1(ar) = c′ = ρ2(ar).
This completes the proof of Proposition 7.6. �
7.3. Galleries in the J P -positive direction

We define J ⊂ G to be the Iwahori subgroup corresponding to the “anti-dominant” alcove w0a. Set
J M := J ∩ M and J P := N J M . One can think of J P as the subset of G fixing every alcove in A which
is contained in the M-anti-dominant alcove a∗

M and which is sufficiently anti-dominant with respect to
the roots in ΦN .
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Now consider any hyperplane Hβ−k (where we assume β ∈ Φ+), and let sH denote the corre-
sponding reflection in A. We can define its J P -positive side H+

β−k and its J P -negative side H−
β−k , as

follows. If β ∈ ΦM , we define H−
β−k to be the side of Hβ−k containing a∗

M . If β ∈ ΦN , we define H+
β−k

by

x ∈ H+
β−k iff x − sH (x) ∈R>0β

∨.

Suppose z′ and z are adjacent alcoves, separated by the wall H . We say the wall-crossing z′, z is
in the J P -positive direction provided that z′ ⊂ H− and z ⊂ H+ .

Definition 7.7. A gallery z0, z1, . . . , zr is in the J P -positive direction if every wall-crossing zi−1, zi is in
the J P -positive direction.

The following lemma is a mild generalization of Lemma 5.3 of [HN], and its proof is along the
same lines.

Lemma 7.8. Any gallery z0, . . . , zr in the J P -positive direction is minimal.

Proof. Let Hi denote the wall shared by zi−1 and zi . If the gallery is not minimal, there exists i < j
such that Hi = H j . We may assume the Hk �= Hi for every k with i < k < j. By assumption zi−1 ⊂ H−

i ,
and zi ⊂ H+

i . Since we do not cross Hi again before H j , we have z j−1 ⊂ H+
j . This is contrary to the

assumption that the wall-crossing z j−1, z j goes from H−
j to H+

j . �
7.4. Triangles in terms of retractions

Set ρ0 := ρ0,
G . Then the space of based triangles T (α,β;γ ) can be identified with

ρ−1
0 (xα) ∩ tγ ρ−1

0 (xβ∗)

since ρ−1
0 (xα) = Sα(o) and tγ ρ−1

0 (xβ∗ ) = Sβ∗ (xγ ).
Now we fix a G-dominant cocharacter μ and an M-dominant cocharacter λ contained in Ω(μ).

Fix a parabolic subgroup P = MN having M as Levi factor. Let ξ ∈ ∂TitsB be a generic point fixed by
P . Then

IT (λ,μ; ξ) := ρ−1
K P ,
M

(xλ) ∩ ρ−1
0 (xμ).

Note that this space depends only on P but not on ξ . Fix any auxiliary cocharacter ν which satisfies
ν �P μ. Then Proposition 7.1 shows that we can also describe this space as

IT (λ,μ; ξ) = ρ−1
−ν,
G −ν(xλ) ∩ ρ−1

0 (xμ). (7.3)

8. Proof of Theorem 3.2

Proof of Theorem 3.2. The desired equality

T
(
ν + λ,μ∗;ν) = tν

(
IT (λ,μ; ξ)

)
is just the equality

K xν+λ ∩ tν K xμ = tν(K P xλ ∩ K xμ)
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which can obviously be rewritten as(
t−ν Ktν

)
xλ ∩ K xμ = K P xλ ∩ K xμ.

But this follows from Proposition 7.1, or more precisely from its equivalent version, the equality stated
in Lemma 7.3(i). �
9. On dimensions of varieties of triangles

9.1. Based triangles

Let α,β,γ ∈ 
G ∩ Λ. Assume that α + β − γ ∈ Q (Φ∨), which is a necessary condition for
T (α,β;γ ) to be nonempty. It is clear that

T (α,β;γ ) = K xα ∩ tγ K xβ∗ ,

and, as we explained earlier, this shows that T (α,β;γ ) has the structure of a finite-dimensional
quasi-projective variety defined over Fp .

It also shows that we can identify T (α,β;γ ) with a fiber of the convolution morphism

mα,β : Sα(o) ×̃ Sβ(o) → Sα+β(o).

Here

Sα(o) ×̃ Sβ(o) := {
(y, z) ∈ B2: y ∈ Sα(o), z ∈ Sβ(y)

}
.

By definition, mα,β(y, z) = z. It follows that

T (α,β;γ ) = m−1
α,β(xγ ).

We have the following a priori bound on the dimension of the variety of triangles.

Proposition 9.1. Recall that ρ denotes the half-sum of the positive roots Φ+ . Then

dimT (α,β;γ ) � 〈ρ,α + β − γ 〉.
Moreover, the number of irreducible components of T (α,β;γ ) of dimension 〈ρ,α + β − γ 〉 equals the mul-
tiplicity nα,β(γ ).

Proof. This can be proved using the Satake isomorphism and the Lusztig–Kato formula, following the
method of [KLM3], §8.4. Alternatively, one can invoke the semi-smallness of mα,β and the geometric
Satake isomorphism, see [Ha1,Ha2]. Compare [Ha1], Theorems 1.1 and Proposition 1.3. �
9.2. Based ideal triangles

Fix μ ∈ 
G ∩ Λ and λ ∈ 
M ∩ Λ, and assume μ − λ ∈ Q (Φ∨), which is a necessary condition for
IT (μ,λ; ξ) to be nonempty.

As for the variety of based triangles T (α,β;γ ), we want to give an a priori bound on the dimen-
sion of IT (λ,μ; ξ) and also give a relation between its irreducible components and the multiplicity
rμ(λ).

The key input is the following analogue of Proposition 9.1 for the intersections of N- and K -orbits
in GrG . It is proved by considering (2.3) and manipulating the Satake transforms and Lusztig–Kato
formulas for G and M , in a manner similar to [KLM3], §8.4.

We set F := Nxλ ∩ K xμ , a finite-type, locally-closed subvariety of GrG , defined over Fp .
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Proposition 9.2. (See [GHKR1].) Let ρM denote the half-sum of the roots in Φ+
M . Then

dimF � 〈ρ,μ + λ〉 − 2〈ρM , λ〉,
and the multiplicity rμ(λ) equals the number of irreducible components of F having dimension equal to
〈ρ,μ + λ〉 − 2〈ρM , λ〉.

The link between the dimensions of F = Nxλ ∩ K xμ and IT = K P xλ ∩ K xμ comes from the fol-
lowing relation between these varieties. To state it, we first recall that the Iwasawa decomposition

G = N M K

determines a well-defined set-theoretic map

G/K → M/KM ,

nmkK �→ mKM .

We warn the reader that this is not a morphism of ind-schemes GrG → GrM ; however, when
restricted to the inverse image of a connected component of GrM , it does induce such a morphism.
(Our reference for these facts is [BD], especially Sections 5.3.28–5.3.30.) Since any K P -orbit belongs to
such an inverse image, the following lemma makes sense.

Lemma 9.3. The map nmk �→ mKM induces a surjective, Zariski locally-trivial fibration

π : K P xλ ∩ K xμ → KM xλ

whose fibers are all isomorphic to Nxλ ∩ K xμ .

Proof. Let K λ
M = (tλKMt−λ) ∩ KM denote the stabilizer of xλ in KM . The essential point is that the

morphism f : KM → KM/K λ
M is a locally trivial principal fibration according to [Ha2, Lemma 2.1].

Next note that since π is KM -equivariant, it suffices to trivialize π over a neighborhood V of xλ .
According to the result of [Ha2] there exists a Zariski open neighborhood V ⊂ K M/K λ

M of xλ and a
section s : V → KM of f | f −1(V ). Hence for x′ ∈ V we have

s
(
x′)xλ = x′.

We will now prove that the induced map π : π−1(V ) → V is equivariantly equivalent to the product
bundle V ×F → V where F = Nxλ ∩ K xμ . Indeed, define Φ : π−1(V ) → V ×F by

Φ(x) = (
π(x), s

(
π(x)

)−1
x
)
.

Put π(x) := x′ . Note that Φ does indeed map to V ×F because (from the equivariance of π ) we have

π
(
s
(
π(x)

)−1
x
) = s

(
π(x)

)−1
π(x) = s

(
x′)−1

x′ = xλ.

Now define Ψ : V ×F → π−1(V ) by

Ψ
(
x′, u

) = s
(
x′)u.

Clearly Φ and Ψ are algebraic because s and π are. The reader will verify that Φ and Ψ are mutually
inverse. �
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Since KM xλ is irreducible of dimension 2〈ρM , λ〉, we immediately deduce the following proposition
from Proposition 9.2 and Lemma 9.3. It is an analogue of Proposition 9.1 for the ideal triangles.

Proposition 9.4. We have the inequality

dimIT (λ,μ; ξ) � 〈ρ,μ + λ〉,

and the number of irreducible components of IT (λ,μ; ξ) having dimension equal to 〈ρ,μ + λ〉 is the multi-
plicity rμ(λ).

Remark 9.5. The structure group of the fiber bundle π : K P xλ ∩ K xμ → KM/K λ
M is K λ

M in the following
sense. Choose trivializations Ψ1 : V ×F → π−1(V ) and Ψ2 : V ×F → π−1(V ) determined by sections
s1 and s2 as above. Since s1 and s2 are KM -valued functions on V we may define a new KM -valued
function k(x′) on V by k(x′) = s1(x′)−1s2(x′). Hence, there exists a morphism k : V → K λ

M with

s2
(
x′) = s1

(
x′)k

(
x′).

It is then immediate that

Ψ −1
1 ◦ Ψ2

(
x′, u

) = (
x′,k

(
x′)u

)
.

10. Geometric interpretations of mα,β(γ ) and cμ(λ)

The above section gave the geometric interpretations of the numbers nα,β(γ ) and rμ(λ), by de-
scribing them in terms of certain irreducible components of the varieties T (α,β;γ ) and II(λ,μ; ξ).
The purpose of this section is to give similar geometric interpretations for mα,β(γ ) and cμ(λ). This
will be used to deduce Theorem 3.3 from Theorem 3.2.

10.1. Hecke algebra structure constants

By applying Theorem 8.1 and Lemma 8.5 from [KLM3], and taking into account that |Sλ(o)(Fq)| =
|Sλ∗ (o)(Fq)|, we see that

Lemma 10.1. mα,β(γ ) = |T (α,β;γ )(Fq)|.

10.2. The constant term

The goal of this subsection is to give a geometric interpretation of the constants cμ(λ). Fix the
weights λ ∈ 
M , μ ∈ 
G . In what follows we temporarily abuse notation and write G, K , M etc.,
in place of Gq, Kq, Mq , etc. The following lemma comes from integration in stages according to the
Iwasawa decomposition G = K N M .

Lemma 10.2. We have

|Nxλ ∩ K xμ| = q〈ρN ,λ〉cG
M( fμ)

(
tλ

) = q〈ρN ,λ〉cμ(λ).

Proof. The Iwasawa decomposition G = K N M gives rise to an integration formula, relating integration
over G to an iterated integral over the subgroups K , N , and M , where if Γ is any of these unimodular
groups, we equip Γ with the Haar measure which gives Γ ∩ K volume 1. For a subset S ⊂ G , write
1S for the characteristic function of S . Using the substitution y = knm in forming the iterated integral,
the left-hand side above can be written as
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∫
G

1N K
(
t−λ y

)
1Ktμ K (y)dy =

∫
G

1N K
(
t−λ y−1)1Ktμ K

(
y−1)dy

=
∫
M

∫
N

∫
K

1N K
(
t−λm−1n−1k−1)1Ktμ K

(
m−1n−1k−1)dk dn dm

=
∫
M

∫
N

1N K
(
m−1n−1)1Ktμ K

(
tλm−1n−1)dn dm

=
∫
M

∫
N

1N K (m)1Ktμ K
(
tλmn

)
dn dm

=
∫
N

1Ktμ K
(
tλn

)
dn

= δ
−1/2
P

(
tλ

)
cG

M( fμ)
(
tλ

)
,

which implies the lemma since δ
1/2
P (tλ) = q−〈ρN ,λ〉 . �

Now we return to the previous notational conventions, where we distinguish between G, K , M etc.
and Gq, Kq, Mq , etc.

Set

I := IT (λ,μ; ξ),

τλμ = ∣∣IT (λ,μ; ξ)(Fq)
∣∣,

iλ,q := ∣∣KM,q : K λ
M,q

∣∣,
where K λ

M is the stabilizer of xλ in KM and K λ
M,q := KM,q ∩ K λ

M . In other words, iλ,q is the cardinality
of the orbit KM,q(xλ), and in particular, it is finite. Recall also that

F = Fλμ := Nxλ ∩ K xμ.

By Lemma 9.3 the variety I fibers over KM/K λ
M = KM(xλ) with fibers isomorphic to F via the map

f which is the restriction of the N-orbit map on N KM xλ to I . In particular,

∣∣I(Fq)
∣∣ = iλ,q

∣∣F(Fq)
∣∣.

It is proved in Lemma 10.2 that

∣∣F(Fq)
∣∣ = q〈ρN ,λ〉cG

M( fμ)
(
tλ

) = q〈ρN ,λ〉cμ(λ).

Set

ϕ(λ,q) := 1

q〈ρN ,λ〉iλ,q
.

By combining Lemma 10.2 with Lemma 9.3, we obtain the following geometric interpretation of
cμ(λ):
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Corollary 10.3.

cμ(λ) = q−〈ρN ,λ〉∣∣F(Fq)
∣∣ = ϕ(λ,q)τλ,μ = ϕ(λ,q)

∣∣IT (λ,μ; ξ)(Fq)
∣∣.

11. Proofs of Theorem 3.3 and Corollary 3.4

Proof of Theorem 3.3. (i) Since ν �P μ, by Theorem 3.2, the Fp-varieties T (α,β;γ ) = T (ν+λ,μ∗;ν)

and IT (λ,μ; ξ) are isomorphic. Since the cardinalities of their sets of Fq-rational points are mα,β(γ )

and

cμ(λ)q〈ρN ,λ〉|KM,q · xλ|
respectively (see Lemma 10.1 and Corollary 10.3), we conclude that

mα,β(γ ) = cμ(λ)q〈ρN ,λ〉|KM,q · xλ|.
(ii) We now prove the equality rμ(λ) = nν,μ(ν + λ). First, it is well known that nν,μ(ν + λ) =

nν+λ,μ∗ (ν). Next, by Proposition 9.1, nλ+ν,μ∗ (ν) is the number of irreducible components of
T (λ + ν,μ∗;ν) of dimension 〈

ρ,λ + ν + μ∗ − ν
〉 = 〈ρ,λ + μ〉.

On the other hand, by Proposition 9.4, rμ(λ) is the number of irreducible components of IT (λ,μ; ξ)

of dimension 〈ρ,λ + μ〉. Since T (λ + ν,μ∗;ν) ∼= IT (λ,μ; ξ), the equality follows.
(iii) Consider the implication

rμ(λ) �= 0 ⇒ cμ(λ) �= 0.

Set α = ν + λ, β = μ∗ , and γ = ν . Using parts (i) and (ii), the implication is equivalent to the
implication

nα,β(γ ) �= 0 ⇒ mα,β(γ ) �= 0.

Now if nα,β(γ ) �= 0, then by Proposition 9.1 the variety T (α,β;γ ) is nonempty and so
|T (α,β;γ )(Fq)| �= 0 for all q >> 0. But the Hecke path model for T (α,β;γ ) then shows that
|T (α,β;γ )(Fq)| �= 0 for all q (cf. [KLM3], Theorem 8.18). Thus mλ,β(γ ) �= 0.

Consider next the implication

cμ(λ) �= 0 ⇒ rkμ(kλ) �= 0

for k := kΦ . If cμ(λ) �= 0 then mλ+ν,μ∗(ν) �= 0 for ν �P μ as above. By [KM2],

mλ+ν,μ∗(ν) �= 0 ⇒ nk·(λ+ν),k·μ∗(k · ν) �= 0.

Since the inequality �P is homogeneous with respect to multiplication by positive integers, we get

kν �P kμ.

Therefore,

nk·(λ+ν),k·μ∗(k · ν) = rkμ(kλ).

This concludes the proof of Theorem 3.3. �
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Proof of Corollary 3.4. Assume that μ − ν ∈ Q (Φ∨
G ).

i. (Semigroup property for r.) Suppose (λi,μi) ∈ (
M ∩Λ)× (
G ∩Λ) are such that rμi (λi) �= 0 for
i = 1,2. For each i, choose νi with νi �P μi . If we set αi := νi + λi , βi := μ∗

i , and γi = νi , for i = 1,2,
then Theorem 3.3(ii) gives us

nαi ,βi (γi) = rμi (λi) �= 0.

It is well known that the triples (α,β,γ ) with nα,β(γ ) �= 0 form a semigroup, so we have
nα1+α2,β1+β2 (γ1 + γ2) �= 0. By the semigroup property of �P , we have ν1 + ν2 �P μ1 + μ2, so Theo-
rem 3.3(ii) applies again and implies

nα1+α2,β1+β2(γ1 + γ2) = rμ1+μ2(λ1 + λ2).

The result is now clear.
ii. (Uniform saturation for c.) Consider the implication

cNμ(Nλ) �= 0 for some N �= 0 ⇒ ckΦμ(kΦλ) �= 0.

As above, take ν �P μ and set α := ν + λ, β := μ∗ , γ := ν . Then (with some positive factors Const1,
Const2)

cμ(λ) = Const1 · mα,β(γ ), cNμ(Nλ) = Const2 · mNα,Nβ(Nγ ).

Note that our assumption μ − λ ∈ Q (Φ∨) is equivalent to λ + μ∗ ∈ Q (Φ∨) and thus to α + β − γ ∈
Q (Φ∨). Now the implication follows from the uniform saturation for the structure constants m for
the Hecke ring HG proved in [KLM3].

iii. (Uniform saturation for r.) Consider the implication

rNμ(Nλ) �= 0 for some N �= 0 ⇒ rk2μ

(
k2λ

) �= 0

for k := kΦ . Similarly to (ii), this implication follows from the implication

nNα,Nβ(Nγ ) �= 0 for some N �= 0 ⇒ nk2α,k2β

(
k2γ

) �= 0

proved in [KM2]. Since for type A root systems Φ , kΦ = 1, it follows that the semigroup {rμ(λ) �= 0},
is saturated. �
12. Remarks on equidimensionality

When computing the dimensions of various varieties, we may just as well work over the algebraic
closure k = Fp of Fp . We will also consider all the following schemes and ind-schemes with reduced
structure, as this has no effect on dimension questions.

By [Ha2], we know that when α and β are sums of minuscule cocharacters, then the variety
T (α,β;γ ) is either empty, or it is equidimensional of dimension 〈ρ,α + β − γ 〉. Here we present
some analogous results for IT (λ,μ; ξ).

Corollary 12.1. Let G = GLn. Then IT (λ,μ; ξ) = N KM xλ ∩ K xμ (resp. Nxλ ∩ K xμ) is either empty or it is
equidimensional of dimension 〈ρ,μ + λ〉 (resp. 〈ρ,μ + λ〉 − 2〈ρM , λ〉).

Proof. All coweights for GLn are sums of minuscules. So for any choice of ν with ν �P μ, the cochar-
acters α = ν + λ and β = μ∗ are sums of G-dominant minuscule cocharacters. Hence the result for
IT (λ,μ; ξ) follows using Theorem 3.2 and the equidimensionality of T (ν+λ,μ∗;ν) proved in [Ha2].
The statement on Nxλ ∩ K xμ follows from the statement on IT (λ,μ; ξ) using Lemma 9.3. �
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With more work, one can show the following stronger result.

Proposition 12.2. Let G be arbitrary and suppose μ is a sum of minuscule G-dominant cocharacters. Then the
conclusion of Corollary 12.1 holds for the pair (μ,λ). Consequently, we have rμ(λ) �= 0 ⇔ cμ(λ) �= 0.

Unlike Corollary 12.1, this is not a direct application of [Ha2]. It would be in the situation where
we can find ν such that ν �P μ and such that ν + λ is a sum of minuscules. However, there is no
guarantee we can find ν with such properties in general.

This proposition is a special case of a more general result. For λ ∈ 
M and μ ∈ 
G we set

Qμ = K xμ,

S N
λ = Nxλ.

These are finite-type Fp-varieties which are locally closed in the affine Grassmannian GrG .

Theorem 12.3. Let μ be a sum of minuscule G-dominant cocharacters. Suppose the variety S N
λ ∩ Qμ is

nonempty, and let C ⊂ S N
λ ∩ Qμ be an irreducible component whose generic point belongs to the stratum

Qν ⊂Qμ , for a G-dominant coweight ν � μ. Then

dim(C) = 〈ρ,ν + λ〉 − 2〈ρM , λ〉.

In particular, S N
λ ∩ Qμ is either empty, or it is equidimensional with dimension equal to 〈ρ,μ + λ〉 −

2〈ρM , λ〉.

We will prove this theorem in the following section.

13. Proof of Theorem 12.3

13.1. Proof of Theorem 12.3 for S N
wμ ∩Qμ

In this subsection μ will denote an arbitrary G-dominant coweight, but now we assume λ = wμ
for some w ∈ W . We continue to assume that λ = wμ is M-dominant (this puts some restrictions on
w which we shall not need to use).

It is easy to prove the following generalization of a result of Ngô and Polo [NP], Lemma 5.2.

Proposition 13.1. (See [NP].) The map n �→ nxwμ gives an isomorphism of varieties

∏
α∈Φ+

wα∈ΦN

〈α,μ〉−1∏
i=0

U wα,i −̃→ S N
wμ ∩Qμ,

where ΦN is the set of B-positive roots in Lie(N), and Uβ,i is affine root group consisting of the set of elements
of form uβ(xti) (x ∈ Fp), where uβ : Ga → G is the homomorphism determined by the root β , and where
i ∈ Z.

In particular, we see that S N
wμ ∩Qμ is just an affine space of dimension

dim
(

S N
wμ ∩Qμ

) =
∑

α∈Φ+
wα∈Φ

〈α,μ〉

N
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=
∑

α∈Φ+∩w−1Φ+
〈α,μ〉 −

∑
α∈Φ+∩w−1Φ+

M

〈α,μ〉

= 〈ρ,μ + wμ〉 −
∑

β∈wΦ+∩Φ+
M

〈β, wμ〉,

where Φ+
M is the BM -positive roots in M . We have used the identity

∑
α∈Φ+∩w−1Φ+

α = ρ + w−1ρ

in simplifying the first sum in the second line.
Now note that the inclusion wΦ+ ∩ Φ+

M ⊆ Φ+
M and the M-dominance of wμ show that in any

event

∑
β∈wΦ+∩Φ+

M

〈β, wμ〉 � 2〈ρM , wμ〉,

and thus

dim
(

S N
wμ ∩Qμ

)
� 〈ρ,μ + wμ〉 − 2〈ρM , wμ〉.

But by the dimension estimate in Proposition 9.2 this inequality is an equality, and we get the fol-
lowing result.

Proposition 13.2. Assume wμ is M-dominant. Then
∑

β∈wΦ+∩Φ+
M
〈β, wμ〉 = 2〈ρM , wμ〉, and

S N
wμ ∩Qμ

∼= A〈ρ,μ+wμ〉−2〈ρM ,wμ〉.

Note that S N
wμ ∩Qμ is irreducible in this case. If μ is minuscule, then any element λ ∈ Ω(μ) is of

the form λ = wμ for some w ∈ W . Thus Proposition 13.2 proves Theorem 12.3 for μ minuscule.

13.2. Some morphisms between affine Grassmannians

In the following we find it convenient to change some of our earlier notations. Let ∗ (resp. ∗M )
denote the obvious base-point in the affine Grassmannian Q= G/K (resp. QM = M/KM ). Recall (Sub-
section 9.2), the Iwasawa decomposition G = N M K gives rise to a well-defined set-theoretic map

π : G/K → M/KM ,

nm∗ → m ∗M .

Recall that if c denotes a connected component of the ind-scheme QM , then (G/K )c := π−1(c) ⊂ G/K
is a locally-closed sub-ind-scheme, and the restricted map

π : (G/K )c → M/KM

is a morphism of ind-schemes. The upshot is that in the discussion below, all morphisms we will
define set-theoretically using the Iwasawa decomposition are actually morphisms of (ind-)schemes.
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For an r-tuple of G-dominant coweights μi , we have the twisted product

Q̃μ• := Qμ1 ×̃ · · · ×̃Qμr ⊂ Qr

a finite-dimensional projective variety whose points are r-tuples (g1∗, . . . , gr∗) such that for each
i = 1, . . . , r,

g−1
i−1 gi∗ ∈ Qμi ,

where by convention g0 = 1.
Projection onto the last factor (g1∗, . . . , gr∗) �→ gr∗, gives a projective birational morphism

mμ• : Q̃μ• → Q|μ•|,

where by definition |μ•| = ∑
i μi .

It is a well-known fact due to Mirković–Vilonen [MV1,MV2] that mμ• is semi-small and locally
trivial in the stratified sense (cf. also [Ha2]). We shall make essential use of the local triviality, which
means that around each y ∈Qν ⊂Q|μ•| , there is an open subset V ⊂Qν and an isomorphism

m−1
μ• (V ) ∼= V × m−1

μ• (y)

which commutes with the projections onto V .

13.3. Preliminaries for the proof of Theorem 12.3 in general

We will denote by πc• any morphism of the form

π r : (G/K )c1 × · · · × (G/K )cr → M/KM × · · · × M/KM ,

for any suitable family of connected components ci of M/KM . We let πc•,r denote the composition of
such a morphism with the projection onto the last factor of (M/K M)r .

Recall we are assuming μ is a sum of G-dominant minuscule coweights. Let us fix an r-tuple of
G-dominant minuscule coweights μi , i = 1, . . . , r, such that μ = |μ•| := ∑

i μi .

Definition 13.3. For ν• an r-tuple of M-dominant coweights νi with νi ∈ W μi , we define σi =
(ν1, . . . , νi) and an ind-scheme

SN
σi

= N
(

KMtν1 KM · · · KMtνi KM
)

K/K ,

and set SN
ν• := SN

σ1
× · · · ×SN

σr
. Further, define a scheme

SN
ν• ∩ Q̃μ• = (

SN
σ1

× · · · ×SN
σr

) ∩ Q̃μ• ,

the intersection being taken in Q × · · · × Q. Finally, if λ is M-dominant and λ �M |ν•|, then let us
define the following scheme

(
SN

ν• ∩ Q̃μ•
)
λ

= π−1
c•,r

(
tλ∗M

) ∩ (
SN

ν• ∩ Q̃μ•
)
,

where the sequence of connected components c• is the unique one such that

SN
ν• ⊂ (G/K )c1 × · · · × (G/K )cr .
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With this notation, we have the following crucial lemma.

Lemma 13.4. We have an equality of locally-closed subvarieties

m−1
μ•

(
S N

λ ∩Qμ

) =
⋃
ν•

(
SN

ν• ∩ Q̃μ•
)
λ
.

Here ν• = (ν1, . . . , νr) ranges over all ordered r-tuples of M-dominant coweights with νi ∈ W μi for all i,
whose sum satisfies λ �M |ν•|.

Proof. Since S N
λ ∩Q|μ•| is the fiber over tλ∗M for the restriction of the morphism

π : G/K → M/KM

to Q|μ•| , it is clear that the right-hand side is contained in the left. Let (g1∗, . . . , gr∗) belong to the
left-hand side. By the Iwasawa decomposition, we may represent g1∗ ∈Qμ1 as g1∗ = x1m1tν1∗, where
x1 ∈ N , ν1 ∈ W μ1 is M-dominant, and m1 ∈ KM . Further, g−1

1 g2 ∈ Qμ2 , so by the same reasoning we
can represent g2∗ by

g2∗ = x1m1tν1 x2m2tν2∗
for some x2 ∈ N , m2 ∈ KM , and ν2 ∈ W μ2 an M-dominant coweight. Continuing we finally represent
gr∗ in the form

gr∗ = x1m1tν1 · · · xrmrtνr ∗,

where xi ∈ N , mi ∈ KM , and νi ∈ W μi is M-dominant, for all i. It is immediate that (g1∗, . . . , gr∗) ∈
(SN

ν• ∩ Q̃μ•)λ . �
In preparation for the next lemma, let us recall some of the standard notation relating to loop

groups over a function field k((t)). Let LG = G(k((t))). Let L�0G = G(k[[t]]) (= K ), and let L<0G denote
the kernel of the homomorphism

G
(
k
[
t−1]) → G(k),

determined by t−1 �→ 0. A fundamental fact about the topology of loop groups is that the multiplica-
tion map L<0G × L�0G → LG defines open immersions

gL<0G −̃→ gL<0G ∗ ⊂ Q;
see [BL].

Now let ν• be as in Lemma 13.4. Then using the above remarks applied to the loop group LM ,
one can show that Zariski-locally the twisted product Q̃M

ν• = QM
ν1

×̃ · · · ×̃QM
νr

is isomorphic to the

product QM
ν1

×· · ·×QM
νr

; see e.g. [NP]. Further, since the map L�0M →Qνi given by m �→ mtνi ∗M has

a section Zariski-locally on the base (Lemma 9.3), we see that we may cover Q̃M
ν• by sufficiently small

Zariski-open subsets on which an element in the twisted product can be expressed in the form(
m1tν1∗M ,m1tν1m2tν2∗M , . . . ,m1tν1 · · ·mrtνr ∗M

)
,

for unique elements mi ∈ KM . Let V be such an open set.
The following is the key result allowing us to reduce the general case of Theorem 12.3 to the

special case already treated in Proposition 13.2.
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Lemma 13.5. For any ν• as in Lemma 13.4 and any open subset V ⊂ Q̃M
ν• as above, there is an isomorphism

(
SN

ν• ∩ Q̃μ•
) ∩ π−1

c• (V ) ∼= (
S N
ν1

∩Qμ1 × · · · × S N
νr

∩Qμr

) × V .

Further, this induces an isomorphism

(
SN

ν• ∩ Q̃μ•
)
λ
∩ π−1

c• (V ) ∼= (
S N
ν1

∩Qμ1 × · · · × S N
νr

∩Qμr

) × (
V ∩ m−1

ν•
(
tλ∗M

))
.

Here mν• : Q̃M
ν• →QM|ν•| is the convolution morphism on the affine Grassmannian for M.

Proof. It is easy to construct the desired isomorphism. By the construction of V and Proposition 13.1,
we may express any element in (S N

ν1
∩Qμ1 × · · · × S N

νr
∩Qμr ) × V as

(
x1tν1∗, . . . , xrtνr ∗) × (

y1tν1∗M , y1tν1 y2tν2∗M , . . . , y1tν1 · · · yrtνr ∗M
)

for some uniquely determined xi ∈ N and yi ∈ KM . We send this to the element

(
y1x1tν1∗, . . . , y1x1tν1 · · · yr xrtνr ∗)

in (SN
ν• ∩ Q̃μ• ) ∩ π−1

c• (V ). It is easy to construct the inverse of this morphism and show that inverse
is algebraic. �
Lemma 13.6. Each space (S N

ν1
∩Qμ1 ×· · ·× S N

νn
∩Qμn )× (V ∩m−1

ν• (tλ∗M)) is equidimensional of dimension
〈ρ,μ + λ〉 − 2〈ρM , λ〉.

Proof. By Proposition 13.2 the first term in the product is an affine space of dimension

n∑
i=1

〈ρ,μi + νi〉 − 2〈ρM , νi〉 = 〈
ρ,μ + |ν•|

〉 − 2
〈
ρM , |ν•|

〉
.

By the main result of [Ha2], the second term in the product is a union of irreducible components of
dimension

〈
ρM , |ν•| − λ

〉
.

Adding these, we see that we need to show that

〈ρ,μ + λ〉 − 2〈ρM , λ〉 = 〈
ρ,μ + |ν•|

〉 − 2
〈
ρM , |ν•|

〉 + 〈
ρM , |ν•| − λ

〉
.

The difference between the two sides is simply

〈
ρ − ρM , |ν•| − λ

〉 = 0.

This is zero since |ν•|−λ is a sum of BM -positive simple coroots of M: each such α∨ is also a simple
B-positive coroot of G , and so 〈ρ,α∨〉 = 〈ρM ,α∨〉 = 1. �
Corollary 13.7. The locally closed varieties (SN

ν• ∩ Q̃μ•)λ are equidimensional of dimension 〈ρ,μ + λ〉 −
2〈ρM , λ〉, a number independent of ν• . Consequently by Lemma 13.4, m−1

μ• (S N
λ ∩ Q̃μ•) is equidimensional of

the same dimension.
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13.4. Proof of Theorem 12.3 in general

Proof. Let U ⊂ C be a dense open subset of C which misses all the other irreducible components of
S N

λ ∩ Qμ . By shrinking U if necessary, we may assume U ⊂ Qν and even that mμ• is trivial over U

(recall mμ• is locally trivial in the stratified sense; see [Ha2], Lemma 2.1). Then for any fixed point
y ∈ U, we have an isomorphism

m−1
μ• (U) ∼= U× m−1

μ• (y).

By the main theorem of [Ha2], the fiber is equidimensional of dimension

dim
(
m−1

μ• (y)
) = 〈ρ,μ − ν〉,

recalling that |μ•| = μ. Also, by Corollary 13.7, we see that m−1
μ• (U) is equidimensional of dimension

dim
(
m−1

μ• (U)
) = 〈ρ,μ + λ〉 − 2〈ρM , λ〉.

These facts imply that U has dimension 〈ρ,ν + λ〉 − 2〈ρM , λ〉, as desired. �
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Appendix A

To simplify the notation we set ρξ := bξ,
M and ρ−ν := ρ−ν,
G −ν . Our goal is to give a geometric
proof of Theorem 3.2, which can be restated as follows.

Theorem A.1. If ν �P μ then for every geodesic γ = oz ⊂ BG of 
-length μ, we have

ρ−ν |γ = ρξ |γ .

Proof. Throughout the proof we will be using the concept of a generic geodesic in a building intro-
duced in [KM2]. A geodesic (finite or infinite) γ in BG is generic if it is disjoint from the codimension
2 skeleton of the polysimplicial complex BG , except for, possibly, the end-points of γ . It is easy to see
that generic segments are dense: Every geodesic contained in the apartment A is the limit of generic
geodesics in A.

We next review basic properties of the retractions ρξ and ρν . Both maps are isometric when
restricted to each alcove in BG ; hence, both maps are 1-Lipschitz, in particular, continuous.

Observe that for every x ∈ BG , there exists an apartment Ax ⊂ BG so that ξ ∈ ∂TitsAx , Ax ∩ A
has nonempty interior and contains an infinite subray in oξ . This follows by applying Lemma 5.1
to a generic geodesic γ ⊂ A asymptotic to ξ and passing through an alcove a ⊂ A containing o.
For such an apartment Ax , there exists a unique isomorphism φx : Ax → A fixing Ax ∩ A. Then
y = φx(x) ∈ A is independent of the choice of Ax (although, φx does). By the definition of bξ,
M , we
see that bξ,
M (x) = bξ,
M (y). Hence, ρx factors as the composition ρ
M ◦ ρξ,A , where ρξ,A(x) = y.
(The map ρξ,A equals the map ρI P ,A defined in Subsection 6.3.)
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We next make observations about the geometric meaning of the partial order �P . In what follows
it will be convenient to extend the partial order ν �P μ to arbitrary vectors μ in A (not only cochar-
acters) (we will be still assuming however that ν ∈ X∗(T )). We will also extend the definition of xλ

from λ ∈ Λ to general vectors λ in the affine space A: Given a vector λ in the apartment A, we let
xλ ∈ A denote the point so that −−→oxλ = λ.

Given ν ∈ Λ we let aν denote the alcove of (A, W̃ ) with the vertex xν and contained in the
negative chamber −
G + ν .

Lemma A.2. Suppose that ν is annihilated by all roots of ΦM . Then the following are equivalent:

1. ν �P μ.

2. Cμ := Conv(W · xμ) ∩ 
M is contained in 
 − ν .
3. For every positive root α ∈ Φ \ ΦM ,

α|Cμ � α(x−ν).

4. If a wall H of (A, W̃ ) intersects the set Cμ , then it does not separate x−ν from ξ in the sense that the ray
x−νξ does not cross H.

5. If a wall H of (A, W̃ ) has nonempty intersection with Cμ , then it does not separate a−ν from ξ in the
sense that it does not separate any point of a−ν from ξ .

Proof. The proof is straightforward and is left to the reader. We observe only that for every positive
root α,

max(α|a−ν) = α(x−ν) = −〈α,ν〉.
Thus, if ν �P μ, then any wall H of (A, W̃ ) intersecting Cμ does not separate a−ν from ξ . �

The next lemma establishes equality of the retractions ρξ ,ρ−ν on certain subsets of BM .

Lemma A.3. 1. If ν �P μ then the retractions ρξ ,ρ−ν agree on Conv(W xμ) ⊂A.
2. Suppose that x ∈ BM is such that ρξ (x) ∈ 
G − ν . Then, again ρξ (x) = ρ−ν(x).

Proof. 1. Let x ∈ Conv(W xμ). There exists w ∈ W M such that x′ := w(x) ∈ 
M ; then

x′ ∈ Cμ = Conv(W xμ) ∩ 
M .

Clearly, x′ = ρξ (x). On the other hand, since Cμ ⊂ 
G − ν , it follows that ρ−ν(x) = ρ−ν(x′) = x′ .
2. The proof is similar to (1). First, find k ∈ KM such that k(x) ∈ A and w ∈ W M such that

x′ = wk(x) ∈ 
M . Then, by the definition of ρξ , wk(x) = ρξ (x). On the other hand, d
(x−ν, x) =
d
(x−ν, x′). Then ρ−ν(x) = w ′(x′), for some w ′ ∈ W−ν . However, by our assumption, x′ ∈ 
G − ν ,
hence w ′(x′) = x′ . �

Note that, given μ ∈ 
G , the segment oxμ is the limit of generic segments oxμi ⊂ Conv(W · xμ).
In particular, Conv(W · xμi ) ⊂ Conv(W · xμ) and, therefore,

ν �P μ ⇒ ν �P μi, ∀i.

Thus, since both the retraction ρξ ,ρ−ν are continuous, it suffices to prove Theorem A.1 for μ such
that the segment γ is generic.

We will assume from now on that μ is generic and ν �P μ. Moreover, we will assume that μ is
rational, i.e., μ ∈ Λ ⊗Q.
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For convenience of the reader we recall the definition of a Hecke path in the sense of [KM2]. Let
π = π(t), t ∈ [0, r] be a piecewise-linear path in A parameterized by its arc-length. At each break-
point t , the path π has two derivatives π ′−(t),π ′+(t), which are unit vectors in A. Then π is a Hecke
path if the following holds for each break-point ([KM2], Definitions 3.1 and 3.26):

1. π ′+(t) = dw(π ′−(t)) for some w ∈ W̃π(t) , the stabilizer of π(t) in W̃ .
2. Moreover, w is a composition of affine reflections

w = σm ◦ · · · ◦ σ1, σi ∈ W̃π(t),

each σi is the reflection in an affine hyperplane {αi(x) = ti} through the point π(t), αi ∈ Φ+ , so that
for each i = 1, . . . ,m,

〈αi, ηi〉 < 0, i = 0, . . . ,m − 1,

where η0 = π ′−(t), ηi := dτi(ηi−1), i = 1, . . . ,m and ηm = π ′+(t). Thus, for π ′−(t) ∈ 
G , we have m = 0
and, hence, π ′−(t) = π ′+(t); this means that the corresponding Hecke path π is geodesic as it does
not have break-points.

We will need another property of Hecke paths: Suppose that π is a rational Hecke path, i.e., it
starts at o and ends at a rational point, i.e, a point in Λ ⊗Q. Then there exists N ∈N so that the path
N · π is an LS path in the sense of Littelmann [Li]. The proof consists in unraveling the definition of
an LS path as it was done in [KM2] and observing that all break-points of a rational LS path occur at
rational points. We will also need the fact that for every geodesic segment σ ⊂ BG and any ν ∈ Λ, the
image of σ under the retraction ρxν ,
+ν is a Hecke path (see [KM2]). The next proposition generalizes
Lemma 7.2(b) from μ ∈ 
G ∩ Λ to μ ∈ 
G .

Proposition A.4. ρξ (γ ) ⊂ Cμ . In particular, ρξ,A(γ ) ⊂ Conv(W xμ).

Proof. We first prove an auxiliary lemma which is a weak version of Theorem A.1. (Cf. Lemma 6.10.)

Lemma A.5. Given γ , if ν is M-central and very N-dominant (more precisely, 〈α,ν〉 � const(γ ) for all roots
α ∈ ΦN ), then ρξ |γ = ρ−ν |γ .

Proof. Consider geodesic rays xξ from the points x ∈ BG asymptotic to ξ . For every such ray there
exists a unique point x′ = fξ (x) ∈ xξ so that the subray x′ξ is the maximal subray in xξ contained
in BM . Explicitly, the map fξ can be described as follows. First, recall that for x ∈ BG , there is a
unique point x ∈ BM so that x = n(x) for some n ∈ N (even though, the element n ∈ N is non-unique).
Moreover, for every alcove a ⊂ BG , the element n ∈ N can be chosen the same for all x ∈ a. The
function x �→ x is isometric on each alcove in BG , hence, it is continuous. Now, given x ∈ γ , find
an element n ∈ N so that x := n(x) ∈ BM . Then, by convexity of BM in BG , n(xξ) ⊂ BM . By the above
observation, the image n(xξ) is independent of the choice of n. By convexity of Fix(n), the intersection
Fix(n) ∩ n(xξ) is an infinite ray.

Claim A.6. For every n ∈ N such that x = n(x) ∈ BM , we have

x′ξ = Fix(n) ∩ n(xξ),

where x′ = fξ (x).

Proof. Since n(x′) ∈ n(xξ) ⊂ BM , we have n(x′) = x′ . For the same reason, n fixes the entire sub-ray
x′ξ pointwise. Thus, x′ξ ⊂ Fix(n) ∩ n(xξ). Let y ∈ n(x)x′ \ {x′}. Then n−1(y) ∈ xx′ \ {x′} and, hence, does
not belong to the subbuilding BM . Therefore, y /∈ Fix(n) and Fix(n) ∩ n(xξ) ⊂ x′ξ . �
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We next claim that the function fξ is continuous. Indeed, it suffices to verify its continuity on each
alcove a ⊂ BG . As observed above, n can be (and will be) taken the same for all points of a. Then (by
using the action of KM ) continuity of fξ reduces to the following

Claim A.7. Let n ∈ N. Then the function p �→ q, p ∈A defined by

qξ = Fix(n) ∩ pξ

is continuous.

Proof. The statement follows easily from the fact that the fixed-point set of n intersected with A is
a convex polyhedron. �

We now apply the continuous function fξ to the compact γ . Its image is a compact subset C ′ of
BM . Thus C ′′ := ρξ (C ′) ⊂ 
M is also compact. Then, for all M-central ν ∈ 
G which are sufficiently
N-dominant (depending on the diameter of C ′′), the set C ′′ is contained in the relative interior of

G − ν in 
M . We then claim that for such choice of ν , ρξ |γ = ρ−ν |γ .

For every x ∈ γ , the segment x′x′′ := x′ξ ∩ ρ−1
ξ (
G − ν) ⊂ BM has positive length. According to

part 2 of Lemma A.3, ρξ |x′x′′ = ρ−ν |x′x′′ . Moreover, ρξ (xx′′) is the unique geodesic segment in A
containing the subsegment ρξ (x′x′′) and having the same metric length as xx′′ . (This follows from the
fact that ρξ restricts to an isometry on the ray xξ .)

We now claim that the projection ρ−ν also sends xx′′ to a geodesic segment in 
G − ν . Indeed,
the path π := ρ−ν(x′′x) is a Hecke path in A. The unit tangent vector τ to π at ρ−ξ (x′′) is contained
in 
G since its opposite (pointing to ξ ) is contained in −
G . Then the definition of a Hecke path
above implies that π is geodesic.

The retraction ρ−ν preserves metric lengths of curves [KM2], therefore, π is a geodesic of the
same length as xx′′ . Hence, ρ−ν(x) = ρξ (x). Lemma follows. �

The only corollary of this lemma that we will use is

Corollary A.8. ρξ (γ ) is a Hecke path in (A, W̃ ) of the 
-length μ in the sense of [KM2].

Proof. By [KM2], the retractions ρ−ν : BG → 
G − ν send geodesics in BG to Hecke paths preserving

-lengths. Now, the assertion follows from the above lemma. �

We are now ready to prove Proposition A.4. According to Corollary A.8, the image ρξ (γ ) is a Hecke
path in 
M with the initial point o. Let π be a subpath of ρξ (γ ) starting at the origin o. Assume for
a moment that π = π : [0,1] → A is an LS path in the sense of Littelmann of the 
-length β . Then
the terminal point π(1) of π is a weight of a representation V Ĝ

β , see [Li]. Therefore, π(1) is contained
in Conv(W xβ) ⊂ Conv(W xμ). Since π is contained in 
M , it then follows that π ⊂ Cμ .

More generally, suppose that π is a subpath of ρξ (γ ) which terminates at a rational point π(1) ∈
Λ ⊗Q of the apartment A. Then there exists N ∈ N so that N · π is an LS path of the 
-length Nβ ,
where β is the 
-length of π . Then, by the above argument,

N · π(1) ∈ Conv(W · xNβ)

and, hence, π(1) ∈ Conv(W · xβ) ⊂ Conv(W · xμ). The general case follows by density of rational points
in ρξ (γ ). Thus, ρξ (γ ) ⊂ Cμ . The second assertion of Proposition A.4 immediately follows from the
first. �
Proposition A.9. For every point x ∈ γ there exists an apartment Ax ⊂ BG connecting a−ν, x and ξ , i.e.,
a−ν ∪ {x} ⊂Ax and ξ ∈ ∂TitsAx.
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Proof. Clearly, the assertion holds for x = o since o,a−ν, ξ belong to the common model apartment
Ao := A ⊂ X . We cover γ by alcoves ai ⊂ BG , i = 0, . . . ,m, where a0 ⊂ A is an alcove intersecting γ
only at the point o. Recall that, by the genericity assumption, γi = ai ∩ γ is contained in the interior
of ai except for the end-points of this arc. Then, if the assertion holds for some point in the interior
of γi , it holds for all points of γi . We suppose therefore that the assertion holds for points in the
alcoves a0, . . . ,ak and will prove it for the points of γk+1. We will mostly deal with the case k � 1
and explain how to modify the argument for k = 0. Let x := γk ∩ γk+1 and y be such that xy = γk+1.

Let Ax be an apartment as above. We assume that x belongs to a wall H in BG and a = ak+1 is
not contained in Ax (for otherwise we again would be done). If k = 0, we take H ⊂ A. In this case,
ν �P μ implies that H does not separate ξ from a−ν . Assume now that k > 0. Since γ is generic, the
germ H ∩ a of H at x is contained in Ax . Therefore, without loss of generality, we can assume that
H ⊂Ax .

Claim A.10. H does not separate a−ν from ξ in Ax.

Proof. In view of Lemma A.2, it suffices to show that H does not separate x−ν from ξ .
Let H ′ ⊂ A be the (unique) wall containing ρξ (H ∩ a). Since ν �P μ, ρξ (γ ) ⊂ Cμ =

Conv(W xμ) ∩ 
M (Proposition A.4), it follows that H ′ ∩ Cμ �= ∅. Hence, H ′ does not separate a−ν

from ξ .
We recall that the map ρξ |Ax is obtained in two steps: First, an isomorphism φ : Ax → A fixing

a−ν , and then applying the projection ρ
G −ν : A → 
G − ν (obtained by acting on φ(p), p ∈ Ax ,
by an appropriate element w ∈ W M ). Let w ∈ W M be the element which sends φ(ak) (and, hence,
φ(H ∩ a)) to 
M . Note that w fixes ξ and x−ν . Since H ′ did not separate ξ from x−ν in A, it then
follows that w−1(H ′) does not separate either. Since φ :Ax →A is an isomorphism fixing ξ and a−ν ,
it then follows that H = φ−1 w−1(H ′) also does not separate ξ and x−ν . The claim follows. �

Since BG is a thick building, there exists a half-apartment A+
y ⊂ BG containing the alcove a, so

that A+
y ∩ Ax = H . Let A−

x denote the half-space in Ax bounded by H and containing a−ν ; hence,
ξ ∈ ∂∞A−

x . Then Ay := A−
x ∪ A+

y is an apartment, a−ν ⊂ Ay , y ∈ Ay and ξ ∈ ∂∞Ay . Proposition
follows. �

We now can finish the proof of the main theorem. Pick x ∈ γ . We will show that ρ−ν(x) = ρξ (x).
The map ρ−ν : BG �→ 
G − ν is the composition of two maps: First the canonical isomorphism

of the apartments ψx : Ax → A which fixes the intersection Ax ∩ A, and then the quotient map
ρ
G −ν : A → 
G − ν . The intersection V := Ax ∩ A has nonempty interior in A (since a−ν does)
Similarly, the projection ρξ : BG �→ 
M is obtained by first taking the isomorphism of apartments

ρξ,A|Ax : Ax → A

(again, fixing V ) and then applying ρ
M . Since V has nonempty interior, it follows that the isomor-
phisms of apartments ψx and ρξ,Ax |Ax agree on the entire apartment Ax . Hence,

ρξ,A(x) = ψx(x).

By Proposition A.4, ρξ,A(x) ∈ Conv(W xμ). By Lemma A.3, part 1,

ρ
M |Conv(W xμ) = ρ
G −ν |Conv(W xμ).

Therefore,

ρξ (x) = ρ
M ◦ ρξ,A(x) = ρ
G −ν ◦ ψx = ρ−ν(x). �
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