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CHAPTER 1

INTRODUCTION

A Mébius structure on an n-manifold is a maximal atlas with values in S™ such
that the transition maps are restrictions of Mébius transformations in Mgb(S™),
where M6b(S™) is the group of all Mébius transformations of S™. Under the as-
sumption n > 3, a Mébius structure is nothing but a flat conformal structure. A way
to construct Mobius manifolds is the following : If a discrete group G < M 6b(S™)
acts properly discontinuously and freely on a domain Q@ C S, then the quotient
manifold /G admits a Mé6bius structure.

We restrict our attention to Mébius structures on 3-manifolds. Any manifold
modeled on one of E3,§% H? S2 x R or H? x R admits a Mbius structure ([10]).
On the other hand, any closed manifold modeled on Nil or Sol does not admit a

Mobius structure.

A Mbius structure exists on connected sum of two Mébius manifolds ([8]). The

main theorem in this thesis is Theorem 5.3:

Let M be a closed oriented 3-manifold. Then there erists a $-manifold N so that
the connected sum of M and N admits a Mébius structure.

An outline of each chapter is as follows.

Chapter 2 describes the background and machinery that we use in this thesis
to glue two Mdobius manifolds with toral boundary so that the resulting manifold
admits a Mébius structure which extends these two given structures. We define
Mo6bius structures on 3-manifolds without boundary and then have a discussion of
Mobius structures on 3-manifolds with boundary in terms of Mé&bius thickenings.

Chapter 3 presents Alexander’s theorem and its relative version, Corollary 3.9 :

For a gwen closed oriented 3-Mibius manifold M, there ezists a simple branched
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covering of S* whose singular locus is a link in a 8-ball B in M. We consider
the manifold M; gotten by removing the interior of a regular neighborhood of the
singular locus from M. The manifold M; is a compact Mébius manifold whose
boundary is a disjoint union of tori. We glue the Mébius structure on M to
appropriate Mobius manifolds with toral boundary. The resulting manifold is a
connected sum since the boundary sphere of B is a separating 2-sphere.

Chapter 4 proves the main theorem in the special case that the branched locus is
a round circle in S3. We use a Fuchsian group to construct an appropriate Mébius
manifold with toral boundary. We present a specific construction of a Fuchsian
group using Poincaré’s fundamental polyhedron theorem and we get the Mobius
manifold which is the product of the surface with connected boundary and S!.

Chapter 5 proves the main theorem in the general case that the branch locus
is a link in S®. To deal with the general case, we construct quasi-Fuchsian groups
with prescribed fundamental domains ( the closure of their complements in S3
are isotopic to regular neighborhoods of the given polygonal knots in §% ). We
obtain Theorem 5.1 :  For a given polygonal knot Ly in R®, there ezist a quast-
Fuchsian group G and a compact fundamental domain ® for G acting on S? such
that S — & s wsotopic to a regular neighborhood Nbd(Ly) of Ly. We take a
regular neighborhood Nbd(8®) in ®, denoted &'. The manifold &' /G is a Mobius
manifold with toral boundary. It is homeomorphic to the product of the surface
with connected boundary and S'. We obtain the total space of its 2-fold covering
which is a M6bius manifold with toral boundary. We discuss the procedure of gluing

such structures along the boundary to the Mébius manifold M. 1-



CHAPTER 2

MOBIUS STRUCTURES

Let X be a connected, simply connected, oriented n-dimensional manifold and
let G be a group of diffeomorphisms of X onto itself. An n-dimensional manifold
M admits an (X, G)-structure, if there exist an open cover {U;} of M and a set of
diffeomorphisms {p;} with ¢; : U, — ¢i(U;) C X such that if U; N U; # & then the
restriction of ;0. ! to each connected component of ;(U;NU;) is the restriction of
an element of G. {(U;, ¢;)} is called an atlas defining the (X, G)-structure and there
1S a unique maximal atlas which contains {(Ui,¢:)}. Note that any atlas defining
an (X, G)-structure on M determines a unique maximal structure. In general, the
extension to the maximal structure on M is done without further comment.

A diffeomorphism of S” onto itself is called a Mobius transformation of S™ if it
carries round (n — 1)-spheres to themselves. Let M 6b(S™) denote the full group of

Mébius transformations of the n-sphere §* = R* = R* U {o0}.

Definition 2.1 A MG&bius structure is an ( 8™, M6b(S™) )-structure. A manifold

with a given Mébius structure is called a Mébius manifold.

Definition 2.2 Let M and N be Mébius manifolds of dimension n. A map f:
M — N is locally Mébius if for each z € M there ezist (x € U,p) and (f(U), )

in the Mobius structures on M -and N, such that ¢ o f o ™! is a restriction of

?

a Mobius transformation in M&b(S™). A locally Mébius map is called a MGbius

morphism. If a Mobius morphism is bijective, it is called a Mobius isomorphism.

Remark 2.3 We have Liouville’s theorem as follows: Let U, V be open connected
subsets of S*, n >3, and f: U — V be a conformal map. Then f is a restriction

of a Mébius transformation g of S™ and g is uniquely determined by f.
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Under the assumption n > 3, a flat conformal structure on an n-dimensional
manifold M is nothing but a Mébius structure on M by Liouville’s theorem. So the

notions of a conformally flat manifold and a Mébius manifold are equivalent for

n > 3. /)

\

If M is a simply connected\Mobius manifold, then there exists a Mébius mor-
phism dev : M — S". It is called a developing map of the Mobius manifold
M. Tautologically, the M6bius structure on M is the pull-back structure of the
canonical Mobius structure on S™ by the developing map dev. This developing map
is unique up to postcomposition with an element of M ob(S™).

Let M be a Méb@}ls manifold. Lifting the M&bius atlas to the universal cover
M of M , we have a developing map dev : M — S*. We also call it a developing
map of M. It is considered as a multi-valued map from M to S". In this case, the
fundamental group (M) of M acts on M as a group of Mobius automorphisms of
M. By the uniqueness of the developing map, there exists a unique p(y) € Mab(S")
such that dev o~y = p(y) o dev where v € m (M )- This gives rise to a representation
p: w1 (M) — Mob(S™) which is called the holonomy representation. It is determined

uniquely up to a conjugacy by an element in M 0b(S™) by the uniqueness of the

developing map. In particular, the pair of dev and p is an invariant of the Mdbius

structure.

In this thesis, we consider only Mébius structures on orientable 3-manifolds,
that is, (8%, Mob™(S?) )-structure, where Mob* (S?) is the full group of orientation-

preserving Mobius transformations of §3.

Definition 2.4 Let M be a 3-manifold with boundary. Suppose that My is a
Mébius manifold containing M as a submanifold with the Mébius structure Ci (the
flat conformal structure ). The Mébius manifold ( My,C,) is called a Mdbius thick-
ening of M. Two Mobius thickenings (M1,Cy) and (M,,C,) of M are equivalent iof

there exists a Mobius thickening (Ms,C3) of M such that (Ms,C3) C (M;,Ci) for
i=1,2.
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Definition 2.5 Let M be o J-manifold with boundary. A Mébius structure on M

is an equivalence class of Mibius thickenings of M.

Suppose M and N are compact oriented Mobius manifolds with boundary. Let
Nbd(OM) ( resp. Nbd(dN) ) be a neighborhood of M ( resp. AN ) in a thickening
of M ( resp. N ). If there exists a Mobius isomorphism g : Nbd(OM) — Nbd(dN )
such that g(OM) = ON and 9lom is orientation-reversing, then the attaching
manifold M Uy, N by the map glore : OM — ON admits a Mébius structure
which extends Mébius structures of M and N.

If f is a homeomorphism from OM to AN isotopic to such a map g|ap : OM —

ON, then M U 5 N also admits a Mbius structure.

Theorem 2.6 Let My and M, be compact oriented Mébius manifolds with toral
boundary Ty and T, respectively. Let dev; : Nbd(T;) — S® be the restriction of
a developing map to a neighborhood Nbd(T;) of T; in a thickening of the Mébius
structure on M;, fori =1,2. Suppose that single-valued branches f : Nbd(T,) — S3
and h : Nbd(Ty) — S® of dev; ezist and that their restriction f : Ty — T] C
S and h : T, — T, C S* are 2-fold coverings between tors. If there ezists a
Mébius transformation g € Méb™(S3) such that 9(Ty) =Ty, g:T! — T} reverses
orientations (induced from M; , i = 1,2 ) and 9(fe(m1(T1))) = hu(m1(TR)), then
My U; My admits a Mébius structure which extends the Mobius structures on M;,

where §: Ty — Ty 4s a lifting of g.

Proof. Consider f just on a neighborhood N bd(T:) in a thickening of M;. Pull
back the Riemannian metric from S3 by f : N bd(Ty) — S3. Put the path metric
on Nbd(T) as a distance function. Denote by B,(z) the open metric ball of radius
r centered at z. By local injectivity of [, there exists § > 0 such that f | Bs(z) 18
injective for each z € 7. Choose € > 0 so that § > 3e. Define N(T}) = Uger, Be(z).
Then f(N(T})) = User, / (Be()) = User, B.((2)) = Uyeny B(s') = N.(TY).

We claim that f : N.(T1) — N/(T7) is a 2-fold covering. Note that it is a
local isometry by the construction. Take Yy € N(T7). Also, y € B.(z) for some
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z € T{. (flr,)""(2) consists of two points z; and z, in Ty, since flg, is a 2-fold
covering. So f~1(B,(z)) 2 B (z1)UBc(x3). Since § > 3¢ and f|Bs(z1) IS injective, we
obtain that z, ¢ Bs(z,), which implies B(z1) N B.(z9) = @. Assume there exists
z € N(Ti) — (Be(w1) U Be(3)) such that f(z) € B.(2). Then z € B(x3) for some
73 € Ty with f(z3) # z and f(z3) € B.(f(23))NB.(z). Letting B.(z1)NB(x3) # @,
we have € < d(z,z;) < 3¢ < § and also f(z) € B(z). Tt contradicts that flBs(@y) is
injective and hence f~(B.(z)) = B(z,) U B.(z,).

If € is small enough, there exists two 2-fold coverings f : N(Ty) — N.(T})
and h : Ne(Tp) — Nc(T3). Since g € M&b(S?) satisfies 9(T{) = T5, we obtain
g+ N(T}) — N(T};) which is an isometry by taking push-forward metric. Since
Fo(m(N(Th))) & fu(m(Ty)) = ho(m1(T2)) = ho(m1(Nc(T3))), there exists a lifting
1: Ne(T1) — N(T3) such that the following diagram commutes :

N(Ty) — N,(T3)

| |

Ne(Tll) —_— Ne(T2’)
g

By the construction, 7 : N(Ty) — N,(Ty) is a Mobius isomorphism and |y, = §:
Ty — T3 is a lifting of g : T} — TJ. Therefore the attaching manifold M; U; M, is

a Mobius manifold. O

Remark 2.7 In case that two developing maps of M; are single-valued on M; in
Theorem 2.6, we obtain a single-valued developing map dev on M, Us M. It is also
a local homemorphism. Since M, Us My is compact, dev is a covering projection.
Indeed, it is a homeomorphism because the base space S? is simply-connected. Hence
dev: My Uz My — S3 is a Mabius isomorphism.

The above case is not interesting, because M, Us My is Mébius isomorphic to
S® which has the canonical Mobius structure. We want that at least one of two

developing maps of M; is multi-valued on M;.



CHAPTER 3

BRANCHED COVERINGS OF §3

The concept of branched coverings came from the theory of Riemann surfaces.
We denote by pj, : B> — B2 the restriction of the complex map z ~ 2%, k > 1, to
the unit disk B2 ¢ C. Branched coverings between surfaces are locally equivalent

to the map p;. If k£ > 2, we call the point z = 0 a singular point of indez k and its

image w = 0 a branch point where py, : z — w = 2*.

Definition 3.1 Amapp: X = Y between two closed surfaces is called a branched
covering of degree d if p is finite-to-one and there exists a minimal finite set BC Y

such that the restriction p|p_1(y_B) 15 a d-fold covering.

We call B the branch set of p- The singular set of p is the set of points x € X

where the branched covering p fails to be a local homeomorphism.

Example 3.2 The typical ezample of branched coverings of degree d is the map

Ja:8% = §? defined by 7 s 4 for some d > 2. It has two singular points 0, co of

indez d and two branch points 0, oo.

Definition 3.3 Two branched coverings p, p' : X — Y are said to be equivalent

if there exist homeomorphisms hi: X = X and hy : Y = Y such that the following
diagram commutes :
X My x
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Definition 3.4 A branched coveringp: X — Y of degree d is simple if [p~1(y)| >
d~1forallyeY.

If y € Y is a branch point of a simple branched covering p : X — Y of degree d,
then [p~!(y)| =d - 1.

Example 3.5 Consider the map f3: S? — S? when d = 3 in Ezample 3.2. Then
f3 is not simple. See the local model p3 : B2 — B? around a singular point of fs.
We modify ps to py : B2 — B2 as in Figure 3.1. Since ps|,zz = psls52, we can also

modify fs : S* — 8% to f} : S — §? which is a simple branched covering of degree

=
&

2
b

fl

Figure 3.1. Modification of p; to J
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In general we can modify f; : §2 — §2 to fi: 8% = §% s0 that f} is a simple

branched covering of degree d with 2d — 2 singular points of index 2 and 2d — 2

branch points.

Theorem 3.6 ( Liiroth ) ([4]) If simple branched coverings p : §* — S? and

q:S? = S* have the same degree d, then they are equivalent.

Now branched coverings between 3-dimensional manifolds is defined similarly

by replacing 2-dimensional local equivalence.

Definition 3.7 A map f : M — N between 3-manifolds is called a branched
covering of begree d if there ezists a 1-submanifold K of M such that f|py_x :

M - K — N — f(K) is a d-fold covering and [ s locally equivalent to the map
Pm % id: B* x I — B% x I with (z,t) ~ (2™ t), m > 1.

The points z € M corresponding to (0,¢) with m > 2 belong to the singular locus
of f, denoted %, and f(Xy) is called the branch locus of the branched covering
f, denoted B;. Note that ; is contained in K = f71(Bf). Each connected
component K; of ¥; corresponds to an integer m; as in Definition 3.7, which is
called the inder of K,. A branched covering f : M — N of degree d is simple if
|/ (y)] >d~1forall y € N, that is, each point in the branch locus By of f has
d — 1 preimages. If f is simple, then for each y € By there is a unique « € & such
that y = f(z). Two branched coverings f, f': M — N are said to be equivalent if
there exist homeomorphisms h; : M — M and he : N — N such that the following

diagram commutes:

M My
fl lf’
N —— N

ha

Lemma 3.8 Suppose two branched coverings p, p' : S — S are equivalent. If p

extends to a branced covering p: B® — B3, then p' extends to a branched covering

which is equivalent to p.
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Proof. Since p and p’ are equivalent, there exist homeomorphisms A; : §2 — S?,
© = 1,2, such that hy op = p’ o h;. Any homeomorphism h : §2 — S? extends
to a homeomorphism h : B> — B3 by a radial extension, known as Alexander’s
trick. So h; extends to a homeomorphism h; : B3 — B3 for each i = 1,2. Denote
p=hyo po izl‘l. Then p' : B3 — B3 is a branched covering which is equivalent to
p. It is also an extension of p’ since [;’|g2 = hpopoh{' = p'. This completes the

proof. O

Corollary 3.9 Any simple branched covering p : S? — S? extends to a simple

branched covering p : B3 — B3.

Proof. Suppose that p is a simple branched covering of degree d. Let v : B3 — B3
be the rotation about the third coordinate axis by Zd’—r. Let I' denote the group
generated by «. Consider the quotient map ¢ : B3 — ﬁ/f‘ =~ B3, Then gis a
branched covering of degree d whose singular locus Y, is the rotation axis as in
Figure 3.2.

Modify g to the simple branched covering § : B3 — B? with d — 1 components
of singular locus ¥; of index 2 each as in Example 3.5 and Figure 3.2.

The restriction §lsz : S — S? is a simple branched covering of degree d. By
Luroth’s Theorem 3.6, p is equivalent to §|s> which extends to a simple branched

covering § : B3 — B3. Therefore p extends to a branched covering p : B® — B3

which is simple. It follows from Lemma 3.8. O

Remark 3.10 Let p : §* — §? be a simple branched covering. The number
of singular points of p is even, applying Hurwitz’s formula. In Corollary 3.9 the

sigular locus of p is a union of disjoint arcs connecting two singular points of p.

Theorem 3.11 (Alexander) Every closed orientable 3-manifold is a branched

covering of S3.

Proof. Let M be a closed oriented 3-manifold and let V;, V, , -+, Vy be vertices of a
triangulation of M. Pick n points Py, P , ..., P, in R® such that they are in general
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d-1 components
M)

)

B3 ) BS

Figure 3.2. Modification around the singular locus ¥, of index d

position. ( No four points are coplanar. ) Set f(V;) = P, foralli =1,2,...,n.
After taking an orientation for R3 = S3, we extend f : {V,...,V,} =» $* to amap
[+ M — S? as follows.

Let [P;P;] be the shortest geodesic in R for each edge [ViV}] of the triangulation.
It is uniquely determined by the choice of the points P,’s. Set f(ViV;)) = PPy
and f([V;V;Vi]) = [P,P;P;] using affine extensions in R3 C S3, where [V;V;V4]
is a face in the triangulation. Now, consider 3-simplices in the triangulation
of M. Suppose [ViV,V3Vy] is a 3-simplex in the triangulation of M. First set
f(MVaWV)) = {P1P,P;Py] by the affine extension. If the restriction of f to
ViVeV3Vy] is orientation-preserving, then we must keep such correspondence. If
it is orientation-reversing, postcompose an inversion with respect to the boundary
0[PP, Py Py] of [PLP,PyPy]. Retain the notation f for the resulting map. In this
case f([ViVLV3Vy]) =83 — int([Py P, P3P;]). We note that an inversion with respect

to 0[PP, PyPy] is a topological inversion as follows : Consider a round shpere S
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in [Py P,P;P;] and a homeomorphism h of S* which maps O[P,P,P;P,] to S. Let
is denote the inversion in S. Then the inversion with respect to the boundary
0[P, P,P3Py] is the composition h~! o ig 0 h.

Do the same construction on each 3-simplex in M. We obtain an orientation-
preserving map f : M — S3. Note that the restriction of f to the interior of each
3-simplex is a homeomorphism onto its image. Furthermore, f|,,_,sq) is a local
homeomorphism.

We will modify the map f to a simple branched covering from M to S3. Let M)
be the 1-skeleton of M. It is a graph. So we modify the map f until the singular
set is a link. The singular set of f is contained in MY by the construction of the
map f. We take a tubular neighborhood of M) which is the union of disjoint balls
B; with centers V; and disjoint cylindrical neighborhoods C;; with axis in the edge

ViV;] as Figure 3.3. Moreover, B; N Cjy is a disk if and only if i € 3, k}.
J j

Figure 3.3. A tubular neighborhood of M)

First, we modify the map f inside of each cylindrical neighborhood Ci; of [V;V}]
as follows. The map f is locally equivalent to Py Xid: B*x I — B?2x ] asin

Definition 3.7, where pn,;(2) = 2™ and {0} x I corresponds to a portion of Viv;].
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Modify Pny; to p;“j so that there are n;; — 1 components of singular locus of index

2 each, as in Figure 3.4. We retain the notation f for the resulting map.

Figure 3.4. Modification inside cylindrical neighborhoods of edges in M)

Figure 3.5. Modification inside a ball neighborhood B; of a vertex V; in M1

Second, we modify the map f inside of each ball neighborhood B; of V;. Since

the modified map f restricted to the boundary sphere of B; is a simple branched
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covering onto its image 2-sphere, we obtain that such restriction f laB, extends,
by Corollary 3.9, to f|sz, : B; = B; which is a simple branched covering as in

Figure 3.5.

Retain the notation f for such modified map. Then f: M — S%is a simple

branched covering. O

Remark 3.12 ([5]) We have proved in the proof of Theorem 3.11 that every closed

orientable 3-manifold is a simple branched covering whose singular locus is a link.

Theorem 3.13 Let N be a compact orientable 3-manifold with boundary and f :
N — S a PL local injection which is generic on the boundary. If M is a closed
orientable $-manifold containing N, then f extends to a simple branched covering

f:M—s? up to a small perturbation of f near the boundary of N.

Proof. Consider M as a finite oriented simplicial complex with subcomplex N.
Let Vi,...,V;, Viuq, ..., V, be vertices in M — int(N), where V4,...,V, € ON and
Visr,...,Vo € M — N for some ¢ < n. Pick Pyi,...,P, € R C S% in general
position. Suppose that f is orientation-preserving. Let P, = f V), i=t+1,t+
2,...,n after taking f(z) = f(z) for z € N. Put f([V;V;]) = [P.P)], f(ViV;Vi]) =
[P,P;Py] and f([V;V;V,Vj]) = either [P.P; P, P)] or inv([P,P;P,P)]) where inv is an
inversion with respect to d[P,P; P, P}, so that f : M — S is orientation-preserving.
f is a local homeomorphism except M1 — int(N). So the singular set of f :
M — S? is contained in M® — int(N). Modify f inside a tubular neighborhood of
M® — int(N) which is the union of balls and cylindrical neighborhoods as in the
proof of Theorem 3.11, to get a simple branched covering from M to S®. Retain the
notation f for the modified map. By the modification, we obtained that f |n— Nbd(dN)
= fIn-nbdan), where Nbd(ON) is a regular neighborhood of N in N. Hence f is

an extension of f up to a small perturbation of f near the boundary ON. 0O

Theorem 3.14 (Whitehead) ([12]) If N is an open ( noncompact without bound-

ary ) orientable 8-manifold, then N can be immersed in R®.
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We obtain a relative version of Alexander’s theorem as follows.

Corollary 3.15 If M is a closed orientable 3-manifold, then there exists a simple

branched covering of S* whose singular locus is a link contained in a 9-ball in M.

Proof. Let D be the interior of a 3-simplexin M. Take N= M —-D. Nisa compact
orientable 3-manifold whose boundary is the 2-sphere. Let N' = N U (D—=A{z}) =
M — {z}, z € D. Then N'is an open orientable manifold. By Whitehead’s
Theorem 3.14, N’ can be immersed in R3. We call g : N' = R3 such an immersion.
Let h =g|y : N = R®. his a PL local injection. By Theorem 3.13, there exists a
simple branched covering f : M — $3 such that flv- Nbaan) = h|n- Nbd(an)- Here
Nbd(ON) is a regula{r neighborhood of N in M. The singular locus of f is a link
contained in D U Nbd(ON) which is a 3-ball in M. O

Remark 3.16 If M is a closed oriented 3-manifold, then there ezists a simple
branched covering f : M — S3 such that its singular locus ¥y is a link in a 3-ball
B in M. A regular neighborhood Nbd(3y) of £ is a disjoint union of solid tori in
B. Let My = M — int(Nbd(Ef)). The restriction of f to My is a local injection.
Put the pull-back structure on M, of the canonical Mébius structure of $3 by f.
Then My is a Mobius manifold whose boundary is a disjoint union of tori and

[+ My — $% is a Mébius morphism.



CHAPTER 4

CONSTRUCTION IN A FUCHSIAN CASE

The main theorem in this thesis is the following :

Let M be a closed oriented 3-manifold. Then there ezists a 3-manifold N so that

the connected sum of M and N admits a Mdbius structure.

We have discussed the strategy of proving this in the previous two chapters.
Suppose that M is a closed oriented 3-manifold. By Corollary 3.9, there exists a
simple branched covering f : M — S3 whose singular locus Xy is a link contained in
a 3-ball B in M. (It follows from Whitehead’s Theorem and Alexander’s Theorem.)
Since f is simple, we observe that for each y € By = f(X;) there exists a unique
z € Ly such that y = f(z). We obtain that the branch locus Bj doesn’t have
a self-intersection point in S®. So By is a link in S3. The map f : M — $°
determines a Mobius structure on M — int(Nbd(Zy)). Here Nbd(2s) C B is a
disjoint union of solid tori. Each connected component of the boundary of M —
int(Nbd(Z 7)) is a torus. We will use Theorem 2.6 to glue the Mobius structure
on M — int(Nbd(Z;)) to appropriate Mobius manifolds with toral boundary. The
resulting Mobius manifold will be a connected sum because 0B is a separating
2-sphere in that manifold.

On the above procedure, the simplest case is that the image under f of each
connected component of 5 is a trivial knot in S3. A trivial knot is isotopic to a
round circle. We will prove the main theorem for the rest of this chapter only in the
case where K = Y is connected (i.e. K is a knot in B ¢ M) with its image f(K)

a round circle in S%. We postpone a discussion of the general case until chapter 5.



17

Remark 4.1 ([9]) Each Mébius transformation v acting on R® has a natural er-
tension to a Mdbius transformation acting on R*+1 g follows. Let o be a reflection
in S, an (n—1)-sphere or an (n—1)-plane in R™. Note that a reflection in a sphere
means the inversion in that sphere. There ezists g unique sphere or plane S in
R" xR = R™"*! such that SNR" = S and 3 is orthogonal to the hyperplane R™ x {0}
which contains S. Denote by & the reflection in S. Since a Mébius transformation
Y can be expressed as a finite composition of reflections, v = o 0--- 0 o1 for some

reflections 0. Set ¥ = G 0+-- 0 01- It is an extension of v acting as a Mdbius

transformation on R+,

Definition 4.2 The Poncaré extension of v in M6b(S™) is the Mébius transfor-

mation 7y in M6b(S™) as defined above.

We observe that the map v ~— ¥ is a monomorphism from Mdb(S™) into M 6b(S™*).
The Poincaré extension 5 of any v in M 6b(S™) is also an isometry of the hyperbolic
space H"*!. Furthermore, M&b(S") = I som(H™*1), the full group of isometries of
B ([9)).

Let Isom™(H™™') be the subgroup of I som(H"*1) consisting of all orientation-
preserving isometries of H"*!. A subgroup I of I som™* (H"*!) is called discrete if it
is discrete as a topological subspace. Note that I som™ (H"*!) is a Lie group. From

now on, I' is a discrete subgroup of I som™ (H"+1),

Definition 4.3 Denote by A(T) =TpNS", where p € H*! gnd OHM! = S™, the
limit set of I'. Each element of A(T’) is called a limit point of T.

Remark 4.4 A(T) s independent of choices of p € H"+!,

Definition 4.5 z € S™ = gH"*! is called a point of discontinuity if there exists
a neighborhood U of x such that YU)NU = & for all but finitely many v’s in T.
Denote by Q(T) the set of all such points, called the domain of discontinuity of I

We now summarize some properties of A(T) and Q(T') in S" as follows. We refer

the reader to [9] for more details on such materials.
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Proposition 4.6 ([9]) Let ' be a discrete subgroup of I som™*(H"*!). Then:

(1) The limit set A(T) of T is closed and invariant under T.

(2) The domain Q') of discontinuity of T is open and invariant under I,

(3) S" — A(T) = Q(I'), that is, A(T) U Q) = S~.

(4) T acts properly discontinuously on Q(I'), that is, for each compact subset C
of AUT), ¥(C)NC = @ for all but finitely many v's . So QT)/T is Hausdorff.
Moreover it is a manifold if T' act freely on QT).

Let M6b*(S?) be the subgroup of Mb(S?) consisting of all orientation-preserving
Mébius transformations of §3. On the other hand, M 6b* (S%) = Isom™(H?), the
group of all orientation-preserving isometries of the hyperbolic space H*. Let
Stabt(H?) denote the stabilizer of HZ2 in G = Isom™(H*) whose elements act on

H? as orientation-preserving isometries.
Lemma 4.7 Stab§(H?) = I'som™* (H?) x SO(2), where G = Isom™(H*).

Proof. Let r : Stabf,(H?) — Isom™*(H2) be the homomorphism given by restrictions
to H? and let k(r) be the kernel of 7. k(r) = SO(2) since each isometry of k(r)
fixes H* pointwise and Stabl(0) = SO(4) where 0 € H2 C H* in the ball model of
hyperbolic space H*. Note that r is an epimorphism due to the Poincaré extensions
of Isom™(H?) to G.

We obtain that k(r) < Stabf(H?) 5 Isom* (H?) is a short exact sequence. Let
e : Isom*(H?) — Stabf(H?) C G be the Poincaré extension. It’s a homomorphism
and obviously r o e = id. Hence Stab};(H2) = Isom™ (H?) x SO(2), the semi-direct
product of Isom™(H?) and SO(2).

It suffices to show that Isom™ (H?) commutes with SO(2). Let f € I som™(H?) =

PSL(2,R) be represented by f(z) = a2+ where a,b,¢,d € R with ad — bc = 1 and

z=2z+w,y > 0. It is well defined on R? as a Mobius transformation. So
we retain the same notation f. We will find an explicit formula for the Mobius
transformation e(f) : S® — S3. We have the map f: R — R given by flz) = g:—ig.
Consider the map e(f) restricted to R3 — R. Take (z,y,t) € R* — R in the

rectangular coordinates system. These coordinates are expressed in terms of the
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cylindrical coordinates (,¥,0) by v = 2,y = y'cos® and t = y'sinf. Here
Yy >0,y =0 only on the z-axis and 0 < 6 < 2r. Note that, for y' > 0,
(2',y/,0) e H2 x S! = R® — R and (@',¥,0) = (z,y,0) = (2,0) € H? x {0}. Let
Il = {(,y,0) € H? x S'|6 = 7} be the half plane for 0 < 7 < 27. In addition,
[y = H? and II, = R,(H?) where R, € SO(2) is the rotation about z-axis with
the angle 7. Since e(f) is a finite composition of reflections in 2-spheres or planes
orthogonal to the r-axis and R? x {0}, then e(f)(I,) = II, for each 7. Each
reflection restricted to U;rir = I, URUIL, ., is also the reflection actingon Il 4,

with respect to the intersection circle or line with the corresponding sphere or plane.

So we obtain that e(f)(z,6) = (2£9), since e(f)(z,0) = (£(2),0) = (&£ 0).

Hence e(f)(z,0) = (f(2),0) for f € Isom™(H?). Then
(e(f) o Rr)(2,8) = e(f) (2,0 + 1)

= (f(2),0 +1)

= R.(f(2),0) = (R, oe(f))(2,0), where 0 + 7 € [0,27) (mod 27).
This completes the proof. O

Definition 4.8 A discrete subgroup F' of M6b*(S?) with an invariant round disk

is called a Fuchsian group.

We may assume that the upper half plane H? is invariant under F and so a Fuchsian

group F'is a discrete subgroup of Isom*(H?) = PSL(2,R).

Suppose that S, is a closed surface of genus g > 2. Let F' = m((S,) and then
I is a Fuchsian group with A(F) = S'. Denote by e(F') the group of the Poincaré
extensions of F to H* in M6b+(S?) . We still have A(e(F)) = A(F) =St So
SAe(F)) = $* — S! = H? x S! by Proposition 4.6. Note that the action of e(F)
preserves the product structure of H2 x S! established by Lemma 4.7. Hence

Q(e(F))~IHIQ><SI_IHI2 L L
o)~ B —FXS =5, x §°.

We observe that the quotient map Q(e(F)) = 83 — §' — Sy x St is a covering

projection since e(F') acts freely and properly discontinuously on Q(e(F)). S, x S!
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admits a Mobius structure and its developing map is a multi-valued map from

Sg x S into §* which is the inverse of the coverin projection.
g g

Suppose that a group I acts properly discontinuously and freely on a topological
space X. Then a subset F of X is called a fundamental set for T if the orbit I'F
is equal to X and y(F)NF =@ for each y € T — {1}.

Definition 4.9 Let X be HY, Q(T') or H* U Q(T). A fundamental domain &
for a discrete group T < Isom™(H*) acting freely on X is a codimension zero
precewise-smooth submanifold of X such that -

(1) there is a fundamental set F so that nt(®)CFcCd

(2) W = & and the boundary of ® in X can be represented as a union of
pilecewise-smooth codimension one submanifolds S; so that for each S; there are
another S; and v € T' — {1} with (S;) = S;.

(8) the orbit T'® is locally finite in X , 1.e. each compact set in X intersects only
finitely many members of { y® |y € T }.

A polyhedron ¥ is the intersection of finitely many closed half-spaces in H*. The
codimension one faces are called sides. We say that the sides of ¥ are paired by
elements of Isom™ (H*) if for every side s there exist a side s' and an element g, €
Isom™(H*) with g,(s) = . The element 9s is called a side-pairing transformation.
Then gy = g7 and (s') = s.

We describe cycle transformations and infinite cycle transformations in the

following remark.

Remark 4.10 ([9]) Start with a codimension two face e = e;. Suppose that the
sides of the polyhedron ¥ are paired by elements of Isom™ (H*) and that e lies on the
boundary of a side s,. Then there are a side 51 and a side-pairing transformation g;
with g1(s1) = s}. Letey = g (e1). Suppose that e, lies on the boundary of s, and the
other side, say s,. Again, there are a side sh and a side-pairing transformation g2
with g2(s2) = sh. Continuing in this manner, we generate sequences {em}, {gm} and

{(3m,si,)}. Let k denote the least period such that all three sequences are periodic
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with period k. We observe that gk 0 ---ogi(e1) = e;. The cycle transformation
he = gro--- o g, keeps e; invariant. Note that there is the other side with the
boundary e; and that if we choose it then we obtain h' as the cycle transformation.
Let 8(e;) denote the angle measured from inside W at the codimension two face e;.
Suppose that the sides of the polyhedron W are paired by elements of Isom™ (H*).
We might have two sides that are tangent at a point £ = x; on the sphere S3 at
infinity. Call one of these sides s1- Suppose that g, is the side-pairing transforma-
tion with g1(s1) = s}. Let T = g1(x,). If 24 is not a point of tangency between two
faces, then we stop. Otherwise, let s, be the other side tangent to s} at x5 and find
a side-pairing transformation g, with 92(52) = sh, let T3 = gy(x3) and continue.
We stop either if £,y is not a point of tangency or if T} = zpq = 9k(zx). If the
latter occurs, we find side-pairing transformations gy, - - - gk with gzo---o0gi(z) = x

Denote hy = gyo---o 91 and call h, the infinite cycle transformation at z.

We describe conditions under which a polyhedron in H* is a fundamental domain

for the group generated by side-pairing transformations.

Theorem 4.11 (Poincaré’s Fundamental Polyhedron Theorem) ([9]) Let
W be a polyhedron in H*. Suppose that the sides s of ¥ are paired by side-pairing
transformations g, € Isom* (H*) and ¥ satisfies the following :

(1) 9s(s) = s' and gy = g; .

(2) gs(int(¥)) N int(¥) = @,

(3) for each codimension two face e, there is a positive integer t such that hl = 1
and (1) + - - + 0(ex) = 2, where h, is the cycle transformation at e = e;.

(4) each infinite cycle transformation is parabolic, i.e. it has ezactly one fixed point
on $? . ”

Then G, the group generated by the side-pairing transformations, is discrete, U is

a fundamental domain for G and the cycle relations h =1 form a complete set of

relations for G.

Suppose that there are finitely many closed round isometric balls in R3 C S3such
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that the balls have transverse pairwise intersections and no three balls intersect.
Let @ denote the closure of the intersection of the exterior of such balls, i.e. the
union of the balls is §* — int(®). Let ¥ be the smallest closed convex set in A
whose ideal boundary 8, ¥ is ®, denoted ¥ = Hull (®). Then there is a one-to-one
correspondence between codimension one faces s; of ¥ and codimension one faces
fi of ® with Hull(f;) = s; and 8,5; = fi» Le. 5 = Hull(0xs;). Furthermore,
Hull(f; 0 f;) = s; N s; and Ox(siNs;) = fin fi. If the sides of ¥ are paired by
side-pairing transformations and ¥ satisfies (1), (2) and (3) in Theorem 4.11, then
¢ is a fundamental domain for G < M 6b* (S®) acting on S3. Note that no two sides

of ¥ are tangent at a point in the sphere S® at infinity because the balls in S? have

transverse pairwise intersections.

Proposition 4.12 If P is o fundamental domain for F' = 7,(S,) in H2, then
S0(2) - P = & is a fundamental domain for e(F) in S§* — S, where SO(2) is the

group of all rotations about R = S!.

Proof. We claim that e(F) - ® covers Qe(F)) =S —S! = H2 x S!. Let (2,0) €
H? x S! be given. For such z € H?, there exists f € F such that f(2) € P. Recall
that e(f)(z,0) = (f(2),0) from Lemma 4.7. So we have e(f)(z,0) € @.

Since P is a fundamental domain for F' , for each 2 € H? there exists at most
one f € F such that f(z) € int(P). By Lemma 4.7, there also exists at most one
point e(f)(z,0) € int(®) for each (z,0) ¢ H? x S!.

To deal with other conditions of a fundamental domain for e(F"), we consider

those of the fundamental domain P for F and apply the fact that e(f)(z,0) =
(f(2),0). O

We call each transformation of thé above SO(2) a Mdbius rotation about the round
circle S!.

Recall that in this chapter we assume that f:M — Nbd(K) - S® is a single-
valued M&bius morphism and the image of the knot K under f:M— Sisa
round circle. Denote M; = M — int(N bd(K )) and Ty = OM,. Here the restriction

[Ty — T is a 2-fold covering because f: M — S3is g simple branched covering
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with ¥y = K, Ty = ONbd(K) and T{ = 0f(Nbd(K)). We continue the discussion
of N = Sy x S! and recall that N is a Mobius manifold and its developing map
dev : N — H? x S' C §® is multi-valued. Let g : S' = §' be a 2-fold covering.
Consider the 2-fold covering p : N' — N where p = id x g. We remark that N’ is
homeomorphic to N but has different Maobius structure from N. Next, we observe
that the manifold N, = (S, — D) x S! has toral boundary T = 8D x S!, where D is
an open disk in S;. Let M, = p~Y(N,) which is homeomorphic to N,. Then M, is
a Mobius manifold with toral boundary 75 = OM, and its multi-valued developing

map is h = devl|y, o plp, : My — H2 x SL. Next, we consider the multi-valued map
dev|p : T — H? x SL.

Remark 4.13 We can take a branch of such dev|r to be a single-valued map as
follows. Let o = 8D x {y} for y € S! and let & be a connected component of
dev(a). Because of the quotient map H2 x S! —s Sg x St by e(F), the image dev(a)
is contained in H? x {y}. We see that dev(a) = F - & and the multi-valued map
devlr : T — F - & x S'. Take the branch of dev|p from T to & x S!, denoted

br(dev|r). Letting Ty = & x S, this map br(dev|r) : T — Ty is a homeomorphism.

In view of Remark 4.13, br(dev|r) o plr, : Ty — T is a 2-fold covering since it is
a composition of the homeomorphism br(dev|r) with the 2-fold covering plr,. Let
br(h) denote the above map. Finally, we have a developing map h : M, — S? and
a 2-fold covering br(h) : T, — TJ. We already got f: M; -+ §*and f: Ty — T!
from the simple branched covering f : M — S3. We are now ready to apply the
Theorem 2.6 to glue two Mébius manifolds with toral boundary together. However,
we wish to find a Mébius transformation g € M 0b(S?) such that g(T!) = T3, ¢ :
T{ — T; reverses orientations ( iﬁduced from M; for i = 1,2 ) and g,(f.(r,(T}))) =
br(h).(m (T3)).

We have a specific construction of a Fuchsian group I' as follows. Suppose that
f: M — S is a simple branched covering for a oriented closed 3-manifold M and
the image f(K) under f of the connected singular locus K is a round circle in S3.

Let ¢ = f(K) be the round circle on the plane IT in R? centered at O and let
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N(C) = f(N(K)) where N(K) is a tubular neighborhood of K in M. We may
assume that C'is the unit circle and d(y, dN(C)) is a constant for each y € C, that
is, N(C) is the solid torus of revolution with the core C. There exists a positive
integer n such that d(y, ON(C)) > - Consider the rays Ry, Ry, - -- , R¢,, from O
on IT such that £(R;, R; ) = a» at O. Denote by R; the half closed plane containig
R; which is orthogonal to IT and dR; = R, the line orthogonal to IT passing through
O. For each 1, there exists 2-sphere S;(0) of center O; € II so that S;(0) is tangent
to R; and Riy; at CN R; and C N Riy1, respectively. Ler ry be the radius of
each sphere S;(0) and let 5;(t) denote the concentric sphere with S;(0) of radius
To+1, ¢ 2 0. We note that S;41(0) ( resp. Siyi(t) ) is the image of S;(0) ( resp.
Si(t) ) under the rotation by g about R. It follows that ry < 76n- For each t > 0
and ¢, the dihedral angle 9;(t) between Si(t) and Sip,(¢) is 9;(t) = 2sec‘1(ﬁ’$—t).
Let 0;(t) = 9(t). Then 9(t) is increasing and 0 < 9(¢t) < 7. For given t > 0,
let O(t) denote the sum of all dihedral angles J;(t). So ©(t) = 16n9(t) which is
also increasing. There exists ¢, > 0 such that O(t) = 27. Now, fix the spheres
Si(to), Sa(te), -+, Sten(to) -

We claim that Si(t) N Sk(t)) # @, 4 # k, if and only if two spheres S;(t,)
and Si(ty) are adjacent. Assume that Si(to) N Ss(te) # @. Then to > 1. We
have J(t9) > 2sec™!(2), which imlpies that J(to) > %. This contradicts to the
fact that ©(t)) = 2 = 16nd(ty). So the claim is completed. It follows that
To + 1o < 2r¢ < g-. Remark that all Si(to)’s are contained in the solid torus N(C)
because d(y, IN(C)) > =

Denote by C' < II the concenric circle with C that is orthogonal to S;(t,)
for all i = 1,2,--- ,16n. Let A be the radius of C'. Then we have the equation
A2+ (ro+19)? = 1+r2 by the orthogonality of C’ and S;(t,), C and S;(0). Obviously
A < 1. We show that C' is contained in ;@T:Bi, where B;’s are the open balls such
thst 0B, = Si(te). It is enough to shov:r that A > 1 — \/m since the
radius of intersection circle 5; N S;,; is v/ (ro + %0)? — r2. From the equation above,
A% =1~ (2roto +1%). So we obtain 1 > A > 1 — V 2oty + 2.

Now there are the circle C' on II and the spheres S;(¢y)’s which are orthogonal
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Figure 4.1. Construction with 16 rays on II

to C' as in Figure 4.1. We remark that ' is isotopic to C' = f(K). Take a solid
torus Nbd(C’) such that UB; C Nbd(C') ¢ N (C) and Nbd(C") is invariant under
the group of Mébius rotations a}aout C'. We see UB; is also invariant under the
group of Mobius rotations about ' , since each dB; = S(to) is orthogonal to C’.
Recall that Nbd(C') ¢ N(C) = f(N(K)). Let Nbd(K') = (flney) " (NBA(CT))
where K’ is the inverse image of C' by (fln) ™" and let M, = M — Nbd(K").
K C Nbd(K') C N(K) because C' C Nbd(C') € N(C). We denote the tori
Ty =0M, and Ty = ONbd(C"). So f(T)) =T,

6n _
We use Nbd(C") - '1le1- to construct a Mobius manifold M, with toral boundary,
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which is homeomorphic to (Sg— D) x SL. In chapter 5, we will call N bd(C") —
the truncated fundamental domain. Consider spherical faces of Nbd(C') —UB;. Let
D' be the disk on IT with the boundary circle C’. D' N (Nbd(C") — UB,) is the

union of spherical arcs a,,b;,aj and b; for j =1,2,--. 4n. Here, a; C S4] 3,0 C
54] 2,05 C .5'4] 1 and b; C Sy;. We denote by a; ( resp. b;, _;,5 ) the SO(2)—orb1ts

of a; ( resp. bj,a5,b; ), where SO(2) is the group of all Mobius rotations about
the circle C'. By Lemma 4.7, the 16n spherical faces of Nbd(C" ) —UB; are exactly
a;,b;,@; and b; for j =1,2,...  4n.

We define orientation- -preserving face-pairing Mébius transformations a; and
Bj, j »4n, as follows. Denote by P, the plane containing O and O; and
orthogonal to IT for ¢ =1,2,--- ,16n. Define the inversion in the sphere S;(t,) by
I1(Si(to)) and the reflection in the plane P; by J(B,). Let, for J=12,--- 4n,

@ = J(Py—3) 0 I(S4;_s(to)), B; = J(Pyj_1) o I(S4i(to)).

Then a;, 6; € Mdb*(S?). Furthermore, @;(a;) = aj; and B;(b;) = b as in Figure 4.2.

Let T" denote the group generated by o; and B;,i=1,2,--- 4n. Tisa subgroup
of Mob*(S?). We note that a; and ; preserve the disk D' on II. It follows from
the fact that P, and Si(to) are all symmetric with respect to the plane IT and they
are all orthogonal to 8D’ = C’. The group I' is Fuchsian if " is discrete.

Let g = 4n. We show that (Nbd(C") — UB;)/T is a Mobius manifold which is
homeomorphic to (S,—D) xS! where D is an open disk in .S;. Denote & = S§3— 16nl§
By the construction of face-pairing Mébius transformations a; and §;, we obtam
that fy(int(q))) Nint(®) = @ for v € {oj, B;}= =1,2,- 4n=¢g- The sum of angles at

edges measured from inside & is O(to) = 27. Let [a], B;] = ﬂ- o aj o fBj o a; and

g
ITle, 851 = [ag, B,] o -o[ay, £1]. We claim that H [0, B;] = id. Tt suffices to show
1

j=

that H[a], Bil(z) = z where z € R, N Si(to) in D'. Tt follows from the fact that

g9
[1ley, B;] preserves the sphere S1(to) and the disk D', By Poincaré’s Fundamental

Jj=1
Polyhedron Theorem, we obtain that I' is discrete, & is a fundamental domain

g
for I and T' = (a;, 4| [1ley, B;]). We note that T acts on D’ as the Fuchsian
i=1
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Figure 4.2. face-pairing transformations of O(UB))

group 71(Sy). So, ®/T = (H? x S1)/T = (H/m1(S,)) x S' = S, x §! = N.
Let D = D' — Nbd(C') and D = pr(D), where pr : H2 x §' — S, x S! is a
covering projection. By Lemma 4.7, §3 — Nbd(C") = SO(2) - D. We obtain that
(Nbd(C") — UB)/T = (S, — D) x S, denoted Nj.

Let My = p~'(Np), where p = idxq : SgxS! — 5y xS! and ¢ is a 2-fold covering
of S'. We have the multi—value(; developing map dev : N — §3 of N = Sy x St
and recall that M, is the M&bius manifold with toral boundary Ty = M, and its
multi-valued developing map is h = dev|n, o pla, : My — H? x S!. We observe
the 2-fold covering br(k) = br(dev|r) o ply, : Ty — T; C H? x S! as described in
Remark 4.13.

A solid torus W is a space which is homeomorphic to D? x S!, where D? =
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{zeR?: |z] <1} and S' = {|z| = 1}. A homeomorphic image of 0D? x {x}
(resp. {*} x S ) on OW is called a meridian ( resp. longitude ) of W or oW,
Denote by my and I, for k = 0,1,2, a meridian and a longitude of the torus Tj.
Recall that Ty = ONbA(C"), Ty = OM, = ONbd(K') and T, = OM,. and we have
two 2-fold coverings f : Ty — Ty and br(h) : Ty — Ty. So, by the construction
above, we obtain that f,(m,) ~ 2mg =~ br(h),(m,) and filly) > 1o ~ br(h).(ly) .
Therefore, f, (WI(BMI)) = br(h)*(m(aMg)).

There exists a lifting f : 9M; — OM, of f such that the following diagram

commutes:

oM, — au,
fl lbr(h)
T, T,

Note that f is the lifting of id|r, where id € Mabt(S?) and that id|r, reverses
orientations ( induced from M; and M; ). By Theorem 2.6, the attaching manifold
MU i M; admits the Mobius structure which extends the Mébius structures of M,
and M,. Topologically it is a connected sum of M and Sy x S'. We have proved
the main theorem in the case that f 18 connected and its image By = f(% F)is a

round circle, where f : M — S? is a simple branched covering.

Remark 4.14 Indeed, we have proved the main theorem in the case that Xf is

connected and its image By is unknotted, since this trivial knot B 7 18 isotopic to a

round circle.



CHAPTER 5

PROOF OF THE MAIN THEOREM

Recall that we have constructed a Fuchsian group with a fundamental domain
whose complement in S2 is isotopic to a tubular neighborhood of the circular branch
locus.

In general, the branch locus B rof f: M — S%isalink in S, where fisa simple
branched covering. We may assume each component of the link By = f(X;) is a
polygonal knot. A discrete subgroup of Méb+ (S?) whose limit set is a topological
circle is called a quasi-Fuchsian group. To deal with the general case, we need
to construct quasi-Fuchsian groups with prescribed fundamental domains whose
complements are isotopic to regular neighborhoods of the given polygonal knots in
S3. Tt suffices to construct a quasi-Fuchsian group whose fundamental domain has

the complementary region isotopic to a regular neighborhood of a given polygonal
knot.

Theorem 5.1 For a given polygonal knot Ly in R3, there exist a quasi-Fuchsian
group G and a compact fundamental domain ® for G acting on S* such that S3 — @

is 1s0topic to a regular neighborhood Nbd(L,) of L.

Proof. Let Lg be a polygonal knot in R3. L, is isotopic to a right-angled polygonal
knot which lies on a plane IT except bridges at its crossings. We may assume that
each bridge is of the same height from II and is contained in an orthogonal plane
to the base plane II. We retain the same notation L, for such a polygonal knot.
Give Lg an orientation and we have a finite set V(L) of consecutive vertices
whose order is consistent with the orientation of Ly, say V(Lo) = {v1,va, -+ ,Um}-

Let €; = [vj,v;44] for i = 1,2,--- ,m—1, ¢, = [Um, v1] be oriented edges of L.
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Then e; is orthogonal to its adjacent edges e;_; and e;,;. We may assume that
each edge e; has rational length I;, where [; = % for even integers s; and t;. Put
To = (titg -+ tp) "L

For each i =1,2,--- ,m, let n; = T% = sitity- -+t t,. We note that each n;
is divisible by 2% = 16 since m > 4. Cover each e; by %t closed balls of radius rq so
that two endpoints v; and v;,; are centers. By the construction of T and n;, the
center of each ball lies in Ly and two adjacent balls are tangent to each other at a
point in L.

We hope that such two balls intersect if and only if they are adjacent. Suppose
two non-adjacent balls intersect. Then construct a new cover for Lg consisting of

closed balls of radius %ro with the property that each v; is the center of such a ball.

Figure 5.1. A cover for Ly with balls of radius %7‘0

Keep doing the same procedure as above until we get a cover for Ly consisting

of closed balls of radius (é)"ro for some n > 0 such that two balls intersect if and

only if they are adjacent.

Go two more steps to get the cover for Ly that consists of closed balls of radius

(3)+

3 ro. This will be used for modifying the polygonal knot L, inside a certain

tubular neighborhood of L, containing the union of balls of radius (3)"*'ry. Now
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there are 3(n; + - - - 4+ n,y,)3"*? balls of radius ( 5)"*2rq to cover Lg. After rescaling,

we may assume that such balls are all of radius 1.

We modify the polygonal knot L into L as follows. Let LN By (v;) = {v;,v}}.
First, modify L, inside each ball centered at a vertex v; using a quarter v; v} of a

unit circle centered at O; as in Figure 5.2.

Figure 5.2. Modification of Ly around each vertex

The second modification occurs on the base plane II or the bridge planes which are

orthogonal to I1. Consider the rest of the segment UiUi 11, denoted by vfvy ;.

L

N \ N v

Figure 5.3. Modification of Ly around each edge
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We choose a half plane bounded by m, in IT or corresponding bridge plane,
so that the induced orientation for m from the half plane coincide with the
orientation for the edge [v;,vi11] of Ly. Modify the segment m in the half
plane bounded by m using quarters of unit circles as in Figure 5.3. Then the
second modification is uniquely determined for each U;*T;l Thus we get a modified
knot L because there are even number of balls between v} and vy, .

We will find a cover for L consisting of closed balls of the same size with the
property that two adjacent balls are tangent to each other at a point in L and two
balls intersect only if they are adjacent.

Recall that L is the union of quarters C; of unit circles C~',~ whose order is
consistent with the orientation of L for i = 1,2,---,g = (ng + -+ + n,,)3"+2.
Denote by C;(+) two endpoints of C;. such that C;(+) = Ci;1(—). We first consider
a quarter C; of a unit circle C; because it is a building block for the modified knot L.
Let II; denote the plane containing C;. Construct metric balls B ()5, 1=1,2,3,4,
for each building block C; as indicated in Figure 5.4.

R() I,

O(i+), C@

Figure 5.4. A building block with four tangent balls B(3) j
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Let O(7) be the center of the unit circle C;. Denote by R(7) and R(i)4 the rays
from O(i) passing through Cj(—) and Cj(+), respectively. Let R(i); denote the
rays from O(¢) on the plane II; with £(R(7);, R(i)j11) = § for j = 0,1,2,3. There
exist four metric balls B(i);, B(i),, B(i)3 and B(3) so that each B(i); is centered
on IT; and tangent to both R(i);_; and R(i); at a point in C;. Then C; C jLiJIB(i)j
for each 7 and the spheres 8B(:); are orthogonal to the circle C;. Let O(t); denote
the center of B(i); for j = 1,2,3,4. We note that all 4g metric balls B(3); are
isometric fori =1,2,--- [gand j = 1,2,3,4.

Let 7; denote the rotation by I about O(3) on II; such that Yi(R(1)o) = R(z);
and let e(7;) be its Poincaré extension to H*. By the construction of the rays, we
wmmmm%mmgzomﬂJMj:Lza&wmxmm):mmﬂmmm
Poincaré extension e(y;) of v;. We claim that v;(O(i)4) = O(@i +1),. Let C; be the
full circle containing C; on IT; and let T;(%) be the tangent line at Ci(%) to C; on I,
Then we see that two lines T;(+) and Tj,;(~) are identical. So O(i +1); € Ty(+).
Since O(i)y, O(i + 1)1 € Ti(+), £(0(i)40(6)0% + 1)) = z and the midpoint of
O(i)s and O(i + 1)y is the point C;(+), we obtain that Yi(O(@)4) = O(: +1);. This
completes the proof of the claim. It follows that e(vi)(B(i)s) = B(i + 1),.

Now we have a cover for L consisting of isometric balls each of which is tangent

to its adjacent balls as in Figure 5.5

~OQ 2'a
S FD
o N 0

| (D (D () ()
L 0 Qt" S
L : S
0 \‘,
NS

Figure 5.5. A cover for L with 4g tangent balls B(i);
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Recall that the number of the isometric balls B(i);’s in Figure 5.5 is 4¢g and
that e(v;)(B(:);) = B(i)j4; for all 5 = 1,2,3. and e(%:)(B(i)4) = B(i + 1),.
For each ¢ = 1,2,--- g, there exist four isometric balls B(i); such that B(5)! is
concentric with B(i); for each j = 1,2,3,4 and the dihedral angle between B(1);
and B(i)},, is 35 for each j = 1,2,3. Tt comes from a similar construction in
Figure 4.1. We also obtain that, for all i = 1,2,--- , g, the metric balls B(z); are
isometric for all j = 1,2, 3,4. Furthermore, e(7;) ( B(1);) = B(i)}, forallj =1,2,3
and e(y;) (B(2)}) = B(i + 1)} because B(i); is concentric with B(3);.

We claim that the dihedral angle between B(i); and B(i + 1), is also equal to
75 for each 1 =1,2,---, g where B(g +1); = B(1);. We recall that e(v;)(B(i) )4) =

B(i+1)}. Since all balls B (¢); are isometric and the dihedral angles between B (2);
and B(i);,, = e(7:)(B(i)}) are equal to X 35> We have that the dihedral angle between
B(i)} and B(i+1)} is also 34 for each <. Thus the sum of all dihedral angles between
two adjacent balls is equal to 4g - = = 27.

Now we have constructed the solld torus 9 L_J B(i ); whose interior is isotopic
to a regular nelghborhood of a polygonal kn(;t Iio in R%. Let ® denote the closure
of the complement of L_J U B(1); in S3. We will define the face-pairing Mobius
transformations o; anél ﬁ,] for ¢+ = 1,2,--- g and show that ® is the fundamen-
tal domain for the quasi-Fuchsian group generated by these o; and B; using the
Poincaré’s Fundamental Polyhedron Theorem 4.11.

Denote by O(i); ( resp. O(i)s ) the orthogonal plane to II, containing O(z) and
O(i)2 ( resp. O(i)s ) and by J(i), ( resp. J(i); ) the reflection in O(i)z ( resp.
O(:)3 ). Let I(i); ( resp. I(:)s ) denote the inversion in OB(i); (resp. dB(i)} ) as
indicated in Figure 5.6.

Put, for i = 1,2,---,g, o = J(i)o0I(3)1, B = J(i)3 0 I(i)s.
We have the spherical faces of ® as follows.
a; = 0B(i); N (B(i — 1)y U B(i)3)°, B = dB(i), N (BG), U B(),)°
a; = 0B(1); N (B(i)y UB(i),)°, b = 8B(), N (B(3)5 U B(i +
fori=1,2,---,g

where ¢ stands for the complement in S3. ( See Figure 5.7. )



35

o(y),

Figure 5.6. Construction of reflections J (1)2, J(i)s and inversions I(1);, I(3)

We will show the following :

(0) ai, B; € Mbt(S?).

(1) a,(aB(z) ) = 0B(i)} and B:(0B(3)}) = 0B(i),.

(2) o (int(® )) Nint(®) = @ and ﬂ:ﬂ(int(@)) Nint(P) =

(3) ( face—palrlng Moblus transformations ) «;(a;) = aj, and B;(5;) = b,
)

(4) ( cycle relation ) H[a,, Gi] =

(0): Since o is the composite of the reflection J (4)2 with the inversion I(),, o; is

an orientation-preserving Mébius transformation. We note that a;t = I(i);0J (i),
and B! = I(i)4 0 J(3)s.

(1): Since J(é)2(R(3)o) = R(i)s an
O(’i)3, that iS, J(Z)Q( —(Z)ll) B( )
pointwise. Hence, o;(0B(i)}) = (J (5

d J(1)2(R(i)1) = R(1), we have J(3)2 (0(i),) =
Note that the inversion I(i), fixes BB(z)l
0)3-

)20 1(0)1) (0B(1);) = J(i)2(0B(5),) = 8B(3)
(2): Recall that ; = J(i)z01 (i)1. Since I(1), (int(®)) C B(i), and J (i) (B(i);) =
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.00

Figure 5.7. Spherical faces of ®

B(1)}, we obtain that o;(int(®)) C B(i);. However, int(®) is contained in the
complement of B(i); in S3. Hence, o (int(®)) Nint(®) = .

(3): The reflection J(4), takes O(i)1 to O(i)3 and O(i — 1), to O(%)4 and fixes
O(i)s. Tt follows that J(i), takes 0B(3); to dB(i); and B(i — 1)y to B(i)} and

B(:)} to B(i)}. Since a; = 8B(i), N (B(i - 1) U B(4)3)°, we have that a;(a;) =
0B(i);N(B(:),uB (1)5)° = @,. Similarly, we get face-pairing Mobius transformations
o7 (@) = a;, Bi(b;) =B, and B (b;) = b; as indicated in Figure 5.7.

(4): We show that ]gl[a,-, Bi] = id. Recall that the cover for I — U C; consists
of 4g balls B(i)} and <I> is the complement of the union of int(B(i);) in S3 The 4g
edges of ® are denoted by e;, = =dB(i— 1), NdB(: )1 and e;; = 0B (i), _, N dB(i),
for £ = 2,3,4. Note that the round circle e;,; 1s orthogonal to I1; and contained in
the plane whose intersection with II; is the line containing the ray R(:);_;. Since
a; = J(i)2 0 I(i); and §; = J(5); o I(3)4, we obtain, as in Figure 5.8,

ai(ein) = (J()2 0 I(3)1) (esy) = J(@)2(e51) = €34,

Bileia) = (J(D)s 0 1(6)a) (es0) = J(D)s(es) = eq,



37

o; Hei3) = (1(3)1 0 J (i), )(eis) = I(i)1(ein) = €59,

B Hesn) = (I()a 0 J(i)3 )(eiz) = I(i)q (€it1, 1) = €it1,1-
It follows that lai, B)(eir) = €i+1,1. Hence, H[az,ﬂl](el 1) = ey where €g+1,1 1S
denoted by e;;. However, it does not complete the proof of the assertlon (4)

because the restriction Pler, - €11 — e1,1 could be a rotation where p = H[ai,ﬁi].
i=1

g
It remains only to show that [, Bi](z1) = z; for some T, €€y
i=1

R(), I,

O(id),
poripo)

O®)

Figure 5.8. Tmage of z under [o;, ;]

Suppose that II,_; is the base plane II and II, is a bridge plane which is
orthogonal to II. Let II* = II, and let ¢ denote the smallest integer such that
Meyr = T and s < t. We see that [I- — I, = Hs+1 = --- = II; is the bridge
plane containing the modified bridge U C; where U C;NIl = {Cy(-), Ce(+)} as

in Figure 5.9. The set es; NII conswts of two pomts We choose a point z, out

of these two points. Consider the line segments C;(—)C¢(+) and C,(—)z, on II

which are perpendicular to each other. We call Cs(—)Ci(+) the bridge line in 11
t

corresponding to the bridge UC; as in Figure 5.9. Let r denote the point in II



38

such that the parallel transport of the line segment Cy(—)z, along the bridge line

Cs(=)Ci(+) on I is the segment Cy(+)z in II. We note that both C,(—)z, and
Cy(+)z are orthogonal to C, (—=)C(+).

e¢+z,}.§x,” =x GO Gw e \x,

Figure 5.9. A modified bridge in [T+

t t
We claim that the point z is equal to [][a, Bil(zs). Denote z¢1 = [[[oy, Bi](z,)

i=s i=s
and we show that z;,, = z. Let A denote the half 3-space containing Ts and
bounded by IT+ = II,. We recall that (s, Bs(es1) = es+11 and {z,} = e, NIINH.

Denote by z,,; the image of z, under [as, Bs]. So z,41 € €s+1,1- We again observe
that

as(es1) = (J(8)g 0 I(s) )1)(es1) = J(s) )o(es1) = €54,
/83(654 (J(8301(5 4)(€s4)“J(3 (634)—653,
Hess) = (I(s)1 0 J( (s)2) (€s,3) —I(S )1(es2) = €52,

(s)

Hes,2) (I (s)ao J(s 3)(68,2 8)a(€st1,1) = €s11,1 -



39

It follows that [a, Bsl(es1) = [J(8)a, J(s)3](es,1), since I(s); fixes €s,1, €52 Pointwise
and I(s), fixes e, 4, €s+1,1 pointwise. So z,,; = [J(s)2, J(3)3](zs). We note that
J(s)2(H) = H and J(s)3(H) = H because both reflection planes corresponding
reflections J(s); and J(s); are orthogonal to II* = K. The point z; can be
considered as the highest point of the semicircle esi NH from IIt. So Tsy1 =
[J(5)2, J(s)3)(z,) is also the highest point of the semicircle €s+1,1 N H. It follows
from the fact that both restrlctlons J(8)2ln, J (s) |7 : H — H preserve the height

from IT* = 8H. Since z;,, = H[a,,ﬂ,](a:s) = H[J(z)2, J(i)s)(z,), the point ;. is
also the highest point of the sérhnlcucle €14+1,1 ﬂH from IT+. Because the circle €1+1,1
is centered at Cy(+) € IINII* and orthogonal to IIL, the segment Cy(+)zey; is
orthogonal to IT+. Recall that Cy(+)z is orthogonal to IT*. So Cy(+)z44; coincides
with C,(+)z since they have the same length. We obtain that Tty1 = . This
completes the proof of the claim.

We may assume that C; C II where [, — .L’illC’i and let e;; NIT = {zq, y }.
=

9
By the above claim, we can ignore each bridge to prove [[[a, 8i](z1) = z;. So
i=1

we have that H[az, Bil(z1) € e1,1 NI, that s, Ig[[az, Bil(z1) equals either z; or y;.
Let Ly denote the union of L NII and all brldge lines corresponding the bridges
of L. This Ly is a smooth closed curve in II and has the induced orientation from
L. Consider the parallel transport of Ci(D)z, along Ly on the base plane II. The
result of the parallel transport is Cy(—)z; since II is orientable. Thus, we obtain
that H[az, Bil(z1) = z1. It completes the proof of the assertion (4).

Let G denote the group generated by o; and §;,i = 1,2,---,9. By the
Poincaré’s Fundamental Polyhedron Theorem 4.11, ® is a fundamental domain
for G and G is a discrete subgroup of Mab+ (S%). By the construction of ®, S5 — ®
Is isotopic to a regular neighborhood N bd(Lg) of the polygonal knot L,. This
completes the proof. O

Remark 5.2 To complete the proof of Theorem 5.1, we need to show that the
limit set of G is a topological circle. We see that G = m1(S), where S is a closed
surface. Let F' = m(S). This is a Fuchsian group. The limit set A(F) of F is
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a round circle. Suppose that ¢ : F — G is an isomorphism. The following is
gwen by Tukia in [11]. If the groups G and F are conver cocompact, i.e. have
fundamental polyhedrons in H* with finitely many sides and without cusps, then
there is @ homeomorpfism A(F) — A(F) which induces ¢. So the limit set A(G) s

a topological circle.
The main theorem in this thesis is the following :

Theorem 5.3 Let M be a closed oriented 3-manifold. Then there ezists a 3-

manifold N so that the connected sum of M and N admits a Mobius structure.

Proof. Suppose that. M is a closed oriented 3-manifold. Then there is a simple
branched covering f : M — S® such that the singular locus ¥ of f is a link which
is contained a 3-ball B in M. It follows from Corollary 3.9. Consider only the case
that Xy is connected, that is, a knot in B. So the branch locus By of f is a knot in
S3.

Denote M; = M — int(Nbd(Ef)) and Ty = ONbd(Xf). Let Nbd(By) =
f(Nbd(Eyf)) and T = ONbd(By). In this case, Nbd(Xy) and Nbd(By) are solid
tori with boundary T} and T7, respectively. We consider the restriction of f to M.
Since f : M; — §? is a local injection, we give M; the pull-back structure of the
canonical structure on S* by f. Then M; is a Mobius manifold with toral boundary
and f: M; — S? is a Mobius morphism. Let m, ( resp. I; ) be a meridian ( resp.
longitude ) of T} and let m} ( resp. ! ) be a meridian ( resp. longitude ) of TY.
We note that the restriction of f to the boundary torus Ty, f : T} — T}, is a 2-fold
covering such that f.(m;) = 2m} and f.(l;) = I up to homotopy. It follows from
the fact that the index of o is 2-

On the other hand, for a knot By there exist a quasi-Fuchsian group G and a
compact fundamental domain @ for G acting on S3 so that S? — @ is isotopic to
a regular neighborhood of B;. It follows from Theorem 5.1. Denote T — S
which is a solid torus in S2. Then there exists a homeomorphism h : §3 — §3 such

that h(Nbd(X f))=N bd(f), where N bd(f) is a regular neighborhood of the solid
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torus 7. Denote Ty = ONbd(T). We consider h o [ : My — S3, denoted f;. Then
fi i My = S is a Mobius morphism. We note that the restriction of fi1 to the
boundary torus T3, f; : T} — T, is a 2-fold covering such that fe(m1) = 2m!, and
fe(lh) =I5 up to homotopy, where mj, ( resp. l3 ) be a meridian ( resp. longitude )
of T;.

Let @' = & — Nbd(T). We call ®' the truncated fundamental domain. Since
=N bd(f) — int(f), the truncated fundamental domain @' is homeomorphic to
a solid torus removed an open neighborhood of the core. Note that 0®' = 9 LI T},
We remark that & has a product structure as follows. @' is homeomorphic to
T? x I, where T? is the torus and I = [0,1]. Furthermore, 8®' and T correspond
to T? x {0} and T? x {1}, respectively.

Let p: T? — T2 be a 2-fold covering such that p,(m) = 2m and p,(I) = [ up to
homotopy, where m and ! are a meridian and a longitude of the torus T2. Denote
by p : & — &' the 2-fold covering with P=pxid:T?xI - T?x I. We note
that we have 2-fold covering 5 : P, — @', &) = &' and ¥ has a different Mobius
structure from ¢’. Consider the quotient map ¢q; : ¥, — ®,/G. We note that
face-pairing transformations induce an equivalence relation on &} and each point
in @, — 0@ is equivalent only to itself. Denote My = ®,/G and T, = OM,.

We claim that M, is a Mdbius manifold with toral boundary T5,. Consider the
quotient map ¢ : Q(G) — Q(G)/G. Then /G = Q(G) /G — q(® — Nbd(T)), denote
Mj. The Mébius manifold M is homeomorphic to S* x S!, where S* is a surface
with boundary gotten by removing an open disk from a closed surface. Then the
manifold M is also homeomorphic to S* x S! and M, is a 2-fold cover of M} since
5* xSt — S* x S is given by (z,e't) — (z,e*). Hence M, is the Mobius manifold
with boundary torus T,. The claim is completed.

Now we consider a regular neighborhood N bd(T3) in M,. Recall that 8%’ = oL
T;. Since there is a one-to one correspondence between @, — 9%’ and M, — ¢2(0D)
and p : @, — @ is a 2-fold covering, we obtain the 2-fold covering fo : Nbd(13) —
Nbd(T;), where Nbd(T3) is a regular neighborhood of T} in ®. The single-valued

map fy is a M6bius morphism. We note that the restriction of f, to the boundary
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torus Ty, fo : Ty = T3, is a 2-fold covering such that f,(m,) = 2ms5 and f.(lp) =1}
up to homotopy, where my ( resp. I, ) be a meridian ( resp. longitude ) of T5.
Consider the identity map id : Ty — T3 which reverses orientations ( induced
form M; and M, ). Note that fro(m(Th)) = fau(m1(T2)). There exists a lifting
id : OM, = Ty = To = OM; of id : Ty — T} such that the following diagram

commutes:

T1 _zd_) T2
fi J l f2
T T

By Theorem 2.6, the attaching manifold M, Uy My admits the Mébius structure
which extends the Mobius structures of M, and M;. Let Q = M, Uz My. We recall
that int(Nbd(X;)) € B C M. The Mébius manifold ® is the connected sum of M
and N = (S? —int(Nbd(y))) Uz M. This completes the proof of the case that
the singular locus ¥ is a knot in B.

It is generalized for the case that the singular locus Xy is a link in B. Let & F=
K;U---UK,,, where K; is a connected component of the link X and Nbd(Zyf) =
Nbd(Ky)U--- U Nbd(K,,). Suppose that S; x St are glued to M — int(Nbd(Zy))
using homeomorphisms g; : 8SF x S! — 9N bd(K;) so that the resulting manifold
() admits a Mobius structure. For each %, S7 is a surface with boundary gotten
by removing an open disk from a closed surface. Denote X — U(SF x S') and

g = Ug;. Then the Mébius manifold Q is the connected sum of M and N, where
N = (S* —int(Nbd(2;))) U, X. O
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