MÖBIUS STRUCTURES ON 3-MANIFOLDS

Sonjong Hwang

·		

CHAPTER 1

INTRODUCTION

A Möbius structure on an n-manifold is a maximal atlas with values in \mathbb{S}^n such that the transition maps are restrictions of Möbius transformations in $M\ddot{o}b(\mathbb{S}^n)$, where $M\ddot{o}b(\mathbb{S}^n)$ is the group of all Möbius transformations of \mathbb{S}^n . Under the assumption $n \geq 3$, a Möbius structure is nothing but a flat conformal structure. A way to construct Möbius manifolds is the following: If a discrete group $G < M\ddot{o}b(\mathbb{S}^n)$ acts properly discontinuously and freely on a domain $\Omega \subset \mathbb{S}^n$, then the quotient manifold Ω/G admits a Möbius structure.

We restrict our attention to Möbius structures on 3-manifolds. Any manifold modeled on one of \mathbb{E}^3 , \mathbb{S}^3 , \mathbb{H}^3 , $\mathbb{S}^2 \times \mathbb{R}$ or $\mathbb{H}^2 \times \mathbb{R}$ admits a Möbius structure ([10]). On the other hand, any closed manifold modeled on Nil or Sol does not admit a Möbius structure.

A Möbius structure exists on connected sum of two Möbius manifolds ([8]). The main theorem in this thesis is Theorem 5.3:

Let M be a closed oriented 3-manifold. Then there exists a 3-manifold N so that the connected sum of M and N admits a Möbius structure.

An outline of each chapter is as follows.

Chapter 2 describes the background and machinery that we use in this thesis to glue two Möbius manifolds with toral boundary so that the resulting manifold admits a Möbius structure which extends these two given structures. We define Möbius structures on 3-manifolds without boundary and then have a discussion of Möbius structures on 3-manifolds with boundary in terms of Möbius thickenings.

Chapter 3 presents Alexander's theorem and its relative version, Corollary 3.9: For a given closed oriented 3-Möbius manifold M, there exists a simple branched

covering of \mathbb{S}^3 whose singular locus is a link in a 3-ball B in M. We consider the manifold M_1 gotten by removing the interior of a regular neighborhood of the singular locus from M. The manifold M_1 is a compact Möbius manifold whose boundary is a disjoint union of tori. We glue the Möbius structure on M_1 to appropriate Möbius manifolds with toral boundary. The resulting manifold is a connected sum since the boundary sphere of B is a separating 2-sphere.

Chapter 4 proves the main theorem in the special case that the branched locus is a round circle in \mathbb{S}^3 . We use a Fuchsian group to construct an appropriate Möbius manifold with toral boundary. We present a specific construction of a Fuchsian group using Poincaré's fundamental polyhedron theorem and we get the Möbius manifold which is the product of the surface with connected boundary and \mathbb{S}^1 .

Chapter 5 proves the main theorem in the general case that the branch locus is a link in \mathbb{S}^3 . To deal with the general case, we construct quasi-Fuchsian groups with prescribed fundamental domains (the closure of their complements in \mathbb{S}^3 are isotopic to regular neighborhoods of the given polygonal knots in \mathbb{S}^3). We obtain Theorem 5.1: For a given polygonal knot L_0 in \mathbb{R}^3 , there exist a quasi-Fuchsian group G and a compact fundamental domain Φ for G acting on \mathbb{S}^3 such that $\overline{\mathbb{S}^3 - \Phi}$ is isotopic to a regular neighborhood $Nbd(L_0)$ of L_0 . We take a regular neighborhood $Nbd(\partial\Phi)$ in Φ , denoted Φ' . The manifold Φ'/G is a Möbius manifold with toral boundary. It is homeomorphic to the product of the surface with connected boundary and \mathbb{S}^1 . We obtain the total space of its 2-fold covering which is a Möbius manifold with toral boundary. We discuss the procedure of gluing such structures along the boundary to the Möbius manifold M_1 .

CHAPTER 2

MÖBIUS STRUCTURES

Let X be a connected, simply connected, oriented n-dimensional manifold and let G be a group of diffeomorphisms of X onto itself. An n-dimensional manifold M admits an (X,G)-structure, if there exist an open cover $\{U_i\}$ of M and a set of diffeomorphisms $\{\varphi_i\}$ with $\varphi_i:U_i\to\varphi_i(U_i)\subset X$ such that if $U_i\cap U_j\neq\emptyset$ then the restriction of $\varphi_j\circ\varphi_i^{-1}$ to each connected component of $\varphi_i(U_i\cap U_j)$ is the restriction of an element of G. $\{(U_i,\varphi_i)\}$ is called an atlas defining the (X,G)-structure and there is a unique maximal atlas which contains $\{(U_i,\varphi_i)\}$. Note that any atlas defining an (X,G)-structure on M determines a unique maximal structure. In general, the extension to the maximal structure on M is done without further comment.

A diffeomorphism of \mathbb{S}^n onto itself is called a *Möbius transformation* of \mathbb{S}^n if it carries round (n-1)-spheres to themselves. Let $M\ddot{o}b(\mathbb{S}^n)$ denote the full group of Möbius transformations of the *n*-sphere $\mathbb{S}^n = \overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$.

Definition 2.1 A Möbius structure is an $(\mathbb{S}^n, M\ddot{o}b(\mathbb{S}^n))$ -structure. A manifold with a given Möbius structure is called a Möbius manifold.

Definition 2.2 Let M and N be Möbius manifolds of dimension n. A map $f: M \to N$ is locally Möbius if for each $x \in M$ there exist $(x \in U, \varphi)$ and $(f(U), \psi)$, in the Möbius structures on M and N, such that $\psi \circ f \circ \varphi^{-1}$ is a restriction of a Möbius transformation in $M\ddot{o}b(\mathbb{S}^n)$. A locally Möbius map is called a Möbius morphism. If a Möbius morphism is bijective, it is called a Möbius isomorphism.

Remark 2.3 We have Liouville's theorem as follows: Let U, V be open connected subsets of \mathbb{S}^n , $n \geq 3$, and $f: U \to V$ be a conformal map. Then f is a restriction of a Möbius transformation g of \mathbb{S}^n and g is uniquely determined by f.

Under the assumption $n \geq 3$, a flat conformal structure on an n-dimensional manifold M is nothing but a Möbius structure on M by Liouville's theorem. So the notions of a conformally flat manifold and a Möbius manifold are equivalent for $n \geq 3$.

If M is a simply connected Möbius manifold, then there exists a Möbius morphism $dev: M \to \mathbb{S}^n$. It is called a *developing map* of the Möbius manifold M. Tautologically, the Möbius structure on M is the pull-back structure of the canonical Möbius structure on \mathbb{S}^n by the developing map dev. This developing map is unique up to postcomposition with an element of $M\ddot{o}b(\mathbb{S}^n)$.

Let M be a Möbius manifold. Lifting the Möbius atlas to the universal cover \widetilde{M} of M, we have a developing map $dev:\widetilde{M}\to\mathbb{S}^n$. We also call it a developing map of M. It is considered as a multi-valued map from M to \mathbb{S}^n . In this case, the fundamental group $\pi_1(M)$ of M acts on \widetilde{M} as a group of Möbius automorphisms of \widetilde{M} . By the uniqueness of the developing map, there exists a unique $\rho(\gamma)\in M\ddot{o}b(\mathbb{S}^n)$ such that $dev\circ\gamma=\rho(\gamma)\circ dev$ where $\gamma\in\pi_1(M)$. This gives rise to a representation $\rho:\pi_1(M)\to M\ddot{o}b(\mathbb{S}^n)$ which is called the holonomy representation. It is determined uniquely up to a conjugacy by an element in $M\ddot{o}b(\mathbb{S}^n)$ by the uniqueness of the developing map. In particular, the pair of dev and ρ is an invariant of the Möbius structure.

In this thesis, we consider only Möbius structures on orientable 3-manifolds, that is, $(\mathbb{S}^3, M\ddot{o}b^+(\mathbb{S}^3))$ -structure, where $M\ddot{o}b^+(\mathbb{S}^3)$ is the full group of orientation-preserving Möbius transformations of \mathbb{S}^3 .

Definition 2.4 Let M be a 3-manifold with boundary. Suppose that M_1 is a Möbius manifold containing M as a submanifold with the Möbius structure C_1 (the flat conformal structure). The Möbius manifold (M_1, C_1) is called a Möbius thickening of M. Two Möbius thickenings (M_1, C_1) and (M_2, C_2) of M are equivalent if there exists a Möbius thickening (M_3, C_3) of M such that $(M_3, C_3) \subset (M_i, C_i)$ for i = 1, 2.

Definition 2.5 Let M be a 3-manifold with boundary. A Möbius structure on M is an equivalence class of Möbius thickenings of M.

Suppose M and N are compact oriented Möbius manifolds with boundary. Let $Nbd(\partial M)$ (resp. $Nbd(\partial N)$) be a neighborhood of ∂M (resp. ∂N) in a thickening of M (resp. N). If there exists a Möbius isomorphism $g:Nbd(\partial M)\to Nbd(\partial N)$ such that $g(\partial M)=\partial N$ and $g|_{\partial M}$ is orientation-reversing, then the attaching manifold $M\cup_{g|_{\partial M}}N$ by the map $g|_{\partial M}:\partial M\to\partial N$ admits a Möbius structure which extends Möbius structures of M and N.

If f is a homeomorphism from ∂M to ∂N isotopic to such a map $g|_{\partial M}:\partial M\to \partial N$, then $M\cup_f N$ also admits a Möbius structure.

Theorem 2.6 Let M_1 and M_2 be compact oriented Möbius manifolds with toral boundary T_1 and T_2 respectively. Let $dev_i: Nbd(T_i) \to \mathbb{S}^3$ be the restriction of a developing map to a neighborhood $Nbd(T_i)$ of T_i in a thickening of the Möbius structure on M_i , for i=1,2. Suppose that single-valued branches $f: Nbd(T_1) \to \mathbb{S}^3$ and $h: Nbd(T_2) \to \mathbb{S}^3$ of dev_i exist and that their restriction $f: T_1 \to T_1' \subset \mathbb{S}^3$ and $h: T_2 \to T_2' \subset \mathbb{S}^3$ are 2-fold coverings between tori. If there exists a Möbius transformation $g \in M\ddot{o}b^+(\mathbb{S}^3)$ such that $g(T_1') = T_2'$, $g: T_1' \to T_2'$ reverses orientations (induced from M_i , i=1,2) and $g_*(f_*(\pi_1(T_1))) = h_*(\pi_1(T_2))$, then $M_1 \cup_{\tilde{g}} M_2$ admits a Möbius structure which extends the Möbius structures on M_i , where $\tilde{g}: T_1 \to T_2$ is a lifting of g.

Proof. Consider f just on a neighborhood $Nbd(T_1)$ in a thickening of M_1 . Pull back the Riemannian metric from \mathbb{S}^3 by $f: Nbd(T_1) \to \mathbb{S}^3$. Put the path metric on $Nbd(T_1)$ as a distance function. Denote by $B_r(x)$ the open metric ball of radius r centered at x. By local injectivity of f, there exists $\delta > 0$ such that $f|_{B_{\delta}(x)}$ is injective for each $x \in T_1$. Choose $\epsilon > 0$ so that $\delta > 3\epsilon$. Define $N_{\epsilon}(T_1) = \bigcup_{x \in T_1} B_{\epsilon}(x)$. Then $f(N_{\epsilon}(T_1)) = \bigcup_{x \in T_1} f(B_{\epsilon}(x)) = \bigcup_{x \in T_1} B_{\epsilon}(f(x)) = \bigcup_{x' \in T'_1} B_{\epsilon}(x') = N_{\epsilon}(T'_1)$.

We claim that $f: N_{\epsilon}(T_1) \to N_{\epsilon}(T_1')$ is a 2-fold covering. Note that it is a local isometry by the construction. Take $y \in N_{\epsilon}(T_1')$. Also, $y \in B_{\epsilon}(z)$ for some

 $z \in T_1'$. $(f|_{T_1})^{-1}(z)$ consists of two points x_1 and x_2 in T_1 , since $f|_{T_1}$ is a 2-fold covering. So $f^{-1}(B_{\epsilon}(z)) \supseteq B_{\epsilon}(x_1) \cup B_{\epsilon}(x_2)$. Since $\delta > 3\epsilon$ and $f|_{B_{\delta}(x_1)}$ is injective, we obtain that $x_2 \not\in B_{\delta}(x_1)$, which implies $B_{\epsilon}(x_1) \cap B_{\epsilon}(x_2) = \varnothing$. Assume there exists $x \in N_{\epsilon}(T_1) - (B_{\epsilon}(x_1) \sqcup B_{\epsilon}(x_2))$ such that $f(x) \in B_{\epsilon}(z)$. Then $x \in B_{\epsilon}(x_3)$ for some $x_3 \in T_1$ with $f(x_3) \neq z$ and $f(x_3) \in B_{\epsilon}(f(x_3)) \cap B_{\epsilon}(z)$. Letting $B_{\epsilon}(x_1) \cap B_{\epsilon}(x_3) \neq \varnothing$, we have $\epsilon \leq d(x, x_1) < 3\epsilon < \delta$ and also $f(x) \in B_{\epsilon}(z)$. It contradicts that $f|_{B_{\delta}(x_1)}$ is injective and hence $f^{-1}(B_{\epsilon}(z)) = B_{\epsilon}(x_1) \sqcup B_{\epsilon}(x_2)$.

If ϵ is small enough, there exists two 2-fold coverings $f: N_{\epsilon}(T_1) \to N_{\epsilon}(T_1')$ and $h: N_{\epsilon}(T_2) \to N_{\epsilon}(T_2')$. Since $g \in M\ddot{o}b(\mathbb{S}^3)$ satisfies $g(T_1') = T_2'$, we obtain $g: N_{\epsilon}(T_1') \to N_{\epsilon}(T_2')$ which is an isometry by taking push-forward metric. Since $f_*(\pi_1(N_{\epsilon}(T_1))) \cong f_*(\pi_1(T_1)) \cong h_*(\pi_1(T_2)) \cong h_*(\pi_1(N_{\epsilon}(T_2)))$, there exists a lifting $\eta: N_{\epsilon}(T_1) \to N_{\epsilon}(T_2)$ such that the following diagram commutes:

$$\begin{array}{ccc}
N_{\epsilon}(T_1) & \xrightarrow{\eta} & N_{\epsilon}(T_2) \\
f \downarrow & & \downarrow h \\
N_{\epsilon}(T_1') & \xrightarrow{g} & N_{\epsilon}(T_2')
\end{array}$$

By the construction, $\eta: N_{\epsilon}(T_1) \to N_{\epsilon}(T_2)$ is a Möbius isomorphism and $\eta|_{T_1} = \tilde{g}: T_1 \to T_2$ is a lifting of $g: T_1' \to T_2'$. Therefore the attaching manifold $M_1 \cup_{\tilde{g}} M_2$ is a Möbius manifold. \square

Remark 2.7 In case that two developing maps of M_i are single-valued on M_i in Theorem 2.6, we obtain a single-valued developing map dev on $M_1 \cup_{\tilde{g}} M_2$. It is also a local homemorphism. Since $M_1 \cup_{\tilde{g}} M_2$ is compact, dev is a covering projection. Indeed, it is a homeomorphism because the base space \mathbb{S}^3 is simply-connected. Hence $dev: M_1 \cup_{\tilde{g}} M_2 \to \mathbb{S}^3$ is a Möbius isomorphism.

The above case is not interesting, because $M_1 \cup_{\tilde{g}} M_2$ is Möbius isomorphic to \mathbb{S}^3 which has the canonical Möbius structure. We want that at least one of two developing maps of M_i is multi-valued on M_i .

CHAPTER 3

BRANCHED COVERINGS OF \mathbb{S}^3

The concept of branched coverings came from the theory of Riemann surfaces. We denote by $p_k: B^2 \to B^2$ the restriction of the complex map $z \mapsto z^k$, $k \ge 1$, to the unit disk $B^2 \subset \mathbb{C}$. Branched coverings between surfaces are locally equivalent to the map p_k . If $k \ge 2$, we call the point z = 0 a singular point of index k and its image w = 0 a branch point where $p_k: z \mapsto w = z^k$.

Definition 3.1 A map $p: X \to Y$ between two closed surfaces is called a branched covering of degree d if p is finite-to-one and there exists a minimal finite set $B \subset Y$ such that the restriction $p|_{p^{-1}(Y-B)}$ is a d-fold covering.

We call B the branch set of p. The singular set of p is the set of points $x \in X$ where the branched covering p fails to be a local homeomorphism.

Example 3.2 The typical example of branched coverings of degree d is the map $f_d: \mathbb{S}^2 \to \mathbb{S}^2$ defined by $z \mapsto z^d$ for some $d \geq 2$. It has two singular points $0, \infty$ of index d and two branch points $0, \infty$.

Definition 3.3 Two branched coverings $p, p': X \to Y$ are said to be equivalent if there exist homeomorphisms $h_1: X \to X$ and $h_2: Y \to Y$ such that the following diagram commutes:

$$\begin{array}{ccc} X & \xrightarrow{h_1} & X \\ \downarrow^{p} & & \downarrow^{p'} \\ Y & \xrightarrow{h_2} & Y \end{array}$$

Definition 3.4 A branched covering $p: X \to Y$ of degree d is simple if $|p^{-1}(y)| \ge d-1$ for all $y \in Y$.

If $y \in Y$ is a branch point of a simple branched covering $p: X \to Y$ of degree d, then $|p^{-1}(y)| = d - 1$.

Example 3.5 Consider the map $f_3: \mathbb{S}^2 \to \mathbb{S}^2$ when d=3 in Example 3.2. Then f_3 is not simple. See the local model $p_3: \overline{B^2} \to \overline{B^2}$ around a singular point of f_3 . We modify p_3 to $p_3': \overline{B^2} \to \overline{B^2}$ as in Figure 3.1. Since $p_3|_{\partial \overline{B^2}} = p_3'|_{\partial \overline{B^2}}$, we can also modify $f_3: \mathbb{S}^2 \to \mathbb{S}^2$ to $f_3': \mathbb{S}^2 \to \mathbb{S}^2$ which is a simple branched covering of degree 3.

Figure 3.1. Modification of p_3 to p_3'

In general we can modify $f_d: \mathbb{S}^2 \to \mathbb{S}^2$ to $f_d': \mathbb{S}^2 \to \mathbb{S}^2$ so that f_d' is a simple branched covering of degree d with 2d-2 singular points of index 2 and 2d-2 branch points.

Theorem 3.6 (Lüroth) ([4]) If simple branched coverings $p: \mathbb{S}^2 \to \mathbb{S}^2$ and $q: \mathbb{S}^2 \to \mathbb{S}^2$ have the same degree d, then they are equivalent.

Now branched coverings between 3-dimensional manifolds is defined similarly by replacing 2-dimensional local equivalence.

Definition 3.7 A map $f: M \to N$ between 3-manifolds is called a branched covering of begree d if there exists a 1-submanifold K of M such that $f|_{M-K}: M-K \to N-f(K)$ is a d-fold covering and f is locally equivalent to the map $p_m \times id: B^2 \times I \to B^2 \times I$ with $(z,t) \mapsto (z^m,t)$, $m \ge 1$.

The points $x \in M$ corresponding to (0,t) with $m \geq 2$ belong to the singular locus of f, denoted Σ_f , and $f(\Sigma_f)$ is called the branch locus of the branched covering f, denoted B_f . Note that Σ_f is contained in $K = f^{-1}(B_f)$. Each connected component K_i of Σ_f corresponds to an integer m_i as in Definition 3.7, which is called the index of K_i . A branched covering $f: M \to N$ of degree d is simple if $|f^{-1}(y)| \geq d-1$ for all $y \in N$, that is, each point in the branch locus B_f of f has d-1 preimages. If f is simple, then for each $g \in B_f$ there is a unique $g \in \Sigma_f$ such that g = f(g). Two branched coverings $g \in S_f$ there is a unique $g \in S_f$ such that $g \in S_f$ there exist homeomorphisms $g \in S_f$ and $g \in S_f$ and $g \in S_f$ such that $g \in S_f$ there exist homeomorphisms $g \in S_f$ and $g \in S_f$ and $g \in S_f$ are said to be equivalent if there exist homeomorphisms $g \in S_f$ and $g \in S_f$ and $g \in S_f$ are said to be equivalent if diagram commutes:

$$\begin{array}{ccc}
M & \xrightarrow{h_1} & M \\
f \downarrow & & \downarrow f' \\
N & \xrightarrow{h_2} & N
\end{array}$$

Lemma 3.8 Suppose two branched coverings $p, p': \mathbb{S}^2 \to \mathbb{S}^2$ are equivalent. If p extends to a branced covering $\hat{p}: \overline{B^3} \to \overline{B^3}$, then p' extends to a branched covering which is equivalent to \hat{p} .

Proof. Since p and p' are equivalent, there exist homeomorphisms $h_i: \mathbb{S}^2 \to \mathbb{S}^2$, i=1,2, such that $h_2 \circ p = p' \circ h_1$. Any homeomorphism $h: \mathbb{S}^2 \to \mathbb{S}^2$ extends to a homeomorphism $\hat{h}: \overline{B^3} \to \overline{B^3}$ by a radial extension, known as Alexander's trick. So h_i extends to a homeomorphism $\hat{h}_i: \overline{B^3} \to \overline{B^3}$ for each i=1,2. Denote $\hat{p'} = \hat{h}_2 \circ \hat{p} \circ \hat{h}_1^{-1}$. Then $\hat{p'}: \overline{B^3} \to \overline{B^3}$ is a branched covering which is equivalent to \hat{p} . It is also an extension of p' since $\hat{p'}|_{\mathbb{S}^2} = h_2 \circ p \circ h_1^{-1} = p'$. This completes the proof. \square

Corollary 3.9 Any simple branched covering $p: \mathbb{S}^2 \to \mathbb{S}^2$ extends to a simple branched covering $\hat{p}: \overline{B^3} \to \overline{B^3}$.

Proof. Suppose that p is a simple branched covering of degree d. Let $\gamma: \overline{B^3} \to \overline{B^3}$ be the rotation about the third coordinate axis by $\frac{2\pi}{d}$. Let Γ denote the group generated by γ . Consider the quotient map $g: \overline{B^3} \to \overline{B^3}/\Gamma \cong \overline{B^3}$. Then g is a branched covering of degree d whose singular locus Σ_g is the rotation axis as in Figure 3.2.

Modify g to the simple branched covering $\hat{g}: \overline{B^3} \to \overline{B^3}$ with d-1 components of singular locus $\Sigma_{\hat{g}}$ of index 2 each as in Example 3.5 and Figure 3.2.

The restriction $\hat{g}|_{\mathbb{S}^2}: \mathbb{S}^2 \to \mathbb{S}^2$ is a simple branched covering of degree d. By Luroth's Theorem 3.6, p is equivalent to $\hat{g}|_{\mathbb{S}^2}$ which extends to a simple branched covering $\hat{g}: \overline{B^3} \to \overline{B^3}$. Therefore p extends to a branched covering $\hat{p}: \overline{B^3} \to \overline{B^3}$ which is simple. It follows from Lemma 3.8. \square

Remark 3.10 Let $p: \mathbb{S}^2 \to \mathbb{S}^2$ be a simple branched covering. The number of singular points of p is even, applying Hurwitz's formula. In Corollary 3.9 the sigular locus of \hat{p} is a union of disjoint arcs connecting two singular points of p.

Theorem 3.11 (Alexander) Every closed orientable 3-manifold is a branched covering of \mathbb{S}^3 .

Proof. Let M be a closed oriented 3-manifold and let V_1, V_2, \ldots, V_n be vertices of a triangulation of M. Pick n points P_1, P_2, \ldots, P_n in \mathbb{R}^3 such that they are in general

Figure 3.2. Modification around the singular locus Σ_g of index d

position. (No four points are coplanar.) Set $f(V_i) = P_i$ for all i = 1, 2, ..., n. After taking an orientation for $\mathbb{R}^3 = \mathbb{S}^3$, we extend $f : \{V_1, ..., V_n\} \to \mathbb{S}^3$ to a map $f : M \to \mathbb{S}^3$ as follows.

Let $[P_iP_j]$ be the shortest geodesic in \mathbb{R}^3 for each edge $[V_iV_j]$ of the triangulation. It is uniquely determined by the choice of the points P_k 's. Set $f([V_iV_j]) = [P_iP_j]$ and $f([V_iV_jV_k]) = [P_iP_jP_k]$ using affine extensions in $\mathbb{R}^3 \subset \mathbb{S}^3$, where $[V_iV_jV_k]$ is a face in the triangulation. Now, consider 3-simplices in the triangulation of M. Suppose $[V_1V_2V_3V_4]$ is a 3-simplex in the triangulation of M. First set $f([V_1V_2V_3V_4]) = [P_1P_2P_3P_4]$ by the affine extension. If the restriction of f to $[V_1V_2V_3V_4]$ is orientation-preserving, then we must keep such correspondence. If it is orientation-reversing, postcompose an inversion with respect to the boundary $\partial[P_1P_2P_3P_4]$ of $[P_1P_2P_3P_4]$. Retain the notation f for the resulting map. In this case $f([V_1V_2V_3V_4]) = \mathbb{S}^3 - int([P_1P_2P_3P_4])$. We note that an inversion with respect to $\partial[P_1P_2P_3P_4]$ is a topological inversion as follows: Consider a round shpere S

in $[P_1P_2P_3P_4]$ and a homeomorphism h of \mathbb{S}^3 which maps $\partial[P_1P_2P_3P_4]$ to S. Let i_S denote the inversion in S. Then the inversion with respect to the boundary $\partial[P_1P_2P_3P_4]$ is the composition $h^{-1} \circ i_S \circ h$.

Do the same construction on each 3-simplex in M. We obtain an orientation-preserving map $f: M \to \mathbb{S}^3$. Note that the restriction of f to the interior of each 3-simplex is a homeomorphism onto its image. Furthermore, $f|_{M-M^{(1)}}$ is a local homeomorphism.

We will modify the map f to a simple branched covering from M to \mathbb{S}^3 . Let $M^{(1)}$ be the 1-skeleton of M. It is a graph. So we modify the map f until the singular set is a link. The singular set of f is contained in $M^{(1)}$ by the construction of the map f. We take a tubular neighborhood of $M^{(1)}$ which is the union of disjoint balls \overline{B}_i with centers V_i and disjoint cylindrical neighborhoods C_{ij} with axis in the edge $[V_iV_j]$ as Figure 3.3. Moreover, $\overline{B}_i \cap C_{jk}$ is a disk if and only if $i \in \{j, k\}$.

Figure 3.3. A tubular neighborhood of $M^{(1)}$

First, we modify the map f inside of each cylindrical neighborhood C_{ij} of $[V_iV_j]$ as follows. The map f is locally equivalent to $p_{n_{ij}} \times id : B^2 \times I \to B^2 \times I$ as in Definition 3.7, where $p_{n_{ij}}(z) = z^{n_{ij}}$ and $\{0\} \times I$ corresponds to a portion of $[V_iV_j]$.

Modify $p_{n_{ij}}$ to $p'_{n_{ij}}$ so that there are $n_{ij} - 1$ components of singular locus of index 2 each, as in Figure 3.4. We retain the notation f for the resulting map.

Figure 3.4. Modification inside cylindrical neighborhoods of edges in $M^{(1)}$

Figure 3.5. Modification inside a ball neighborhood B_i of a vertex V_i in $M^{(1)}$

Second, we modify the map f inside of each ball neighborhood B_i of V_i . Since the modified map f restricted to the boundary sphere of B_i is a simple branched

covering onto its image 2-sphere, we obtain that such restriction $f|_{\partial \overline{B}_i}$ extends, by Corollary 3.9, to $\overline{f|_{\partial \overline{B}_i}}: \overline{B_i} \to \overline{B_i}$ which is a simple branched covering as in Figure 3.5.

Retain the notation f for such modified map. Then $f:M\to \mathbb{S}^3$ is a simple branched covering. \square

Remark 3.12 ([5]) We have proved in the proof of Theorem 3.11 that every closed orientable 3-manifold is a simple branched covering whose singular locus is a link.

Theorem 3.13 Let N be a compact orientable 3-manifold with boundary and $f: N \to \mathbb{S}^3$ a PL local injection which is generic on the boundary. If M is a closed orientable 3-manifold containing N, then f extends to a simple branched covering $\hat{f}: M \to \mathbb{S}^3$ up to a small perturbation of f near the boundary of N.

Proof. Consider M as a finite oriented simplicial complex with subcomplex N. Let $V_1,\ldots,V_t,V_{t+1},\ldots,V_n$ be vertices in M-int(N), where $V_1,\ldots,V_t\in\partial N$ and $V_{t+1},\ldots,V_n\in M-N$ for some t< n. Pick $P_{t+1},\ldots,P_n\in\mathbb{R}^3\subset\mathbb{S}^3$ in general position. Suppose that f is orientation-preserving. Let $P_i=\hat{f}(V_i),\ i=t+1,t+2,\ldots,n$ after taking $\hat{f}(x)=f(x)$ for $x\in N$. Put $\hat{f}([V_iV_j])=[P_iP_j],\ \hat{f}([V_iV_jV_k])=[P_iP_jP_k]$ and $\hat{f}([V_iV_jV_kV_l])=$ either $[P_iP_jP_kP_l]$ or $inv([P_iP_jP_kP_l])$ where inv is an inversion with respect to $\partial[P_iP_jP_kP_l]$, so that $\hat{f}:M\to\mathbb{S}^3$ is orientation-preserving. \hat{f} is a local homeomorphism except $M^{(1)}-int(N)$. So the singular set of $\hat{f}:M\to\mathbb{S}^3$ is contained in $M^{(1)}-int(N)$. Modify \hat{f} inside a tubular neighborhood of $M^{(1)}-int(N)$ which is the union of balls and cylindrical neighborhoods as in the proof of Theorem 3.11, to get a simple branched covering from M to \mathbb{S}^3 . Retain the notation \hat{f} for the modified map. By the modification, we obtained that $\hat{f}|_{N-Nbd(\partial N)}=f|_{N-Nbd(\partial N)}$, where $Nbd(\partial N)$ is a regular neighborhood of ∂N in N. Hence \hat{f} is an extension of f up to a small perturbation of f near the boundary ∂N . \square

Theorem 3.14 (Whitehead) ([12]) If N is an open (noncompact without boundary) orientable 3-manifold, then N can be immersed in \mathbb{R}^3 .

We obtain a relative version of Alexander's theorem as follows.

Corollary 3.15 If M is a closed orientable 3-manifold, then there exists a simple branched covering of \mathbb{S}^3 whose singular locus is a link contained in a 3-ball in M.

Proof. Let D be the interior of a 3-simplex in M. Take N=M-D. N is a compact orientable 3-manifold whose boundary is the 2-sphere. Let $N'=N\cup (D-\{x\})=M-\{x\},\ x\in D$. Then N' is an open orientable manifold. By Whitehead's Theorem 3.14, N' can be immersed in \mathbb{R}^3 . We call $g:N'\to\mathbb{R}^3$ such an immersion. Let $h=g|_N:N\to\mathbb{R}^3$. h is a PL local injection. By Theorem 3.13, there exists a simple branched covering $f:M\to\mathbb{S}^3$ such that $f|_{N-Nbd(\partial N)}=h|_{N-Nbd(\partial N)}$. Here $Nbd(\partial N)$ is a regular neighborhood of ∂N in M. The singular locus of f is a link contained in $D\cup Nbd(\partial N)$ which is a 3-ball in M. \square

Remark 3.16 If M is a closed oriented 3-manifold, then there exists a simple branched covering $f: M \to \mathbb{S}^3$ such that its singular locus Σ_f is a link in a 3-ball B in M. A regular neighborhood $Nbd(\Sigma_f)$ of Σ_f is a disjoint union of solid tori in B. Let $M_1 = M - int(Nbd(\Sigma_f))$. The restriction of f to M_1 is a local injection. Put the pull-back structure on M_1 of the canonical Möbius structure of \mathbb{S}^3 by f. Then M_1 is a Möbius manifold whose boundary is a disjoint union of tori and $f: M_1 \to \mathbb{S}^3$ is a Möbius morphism.

CHAPTER 4

CONSTRUCTION IN A FUCHSIAN CASE

The main theorem in this thesis is the following:

Let M be a closed oriented 3-manifold. Then there exists a 3-manifold N so that the connected sum of M and N admits a Möbius structure.

We have discussed the strategy of proving this in the previous two chapters. Suppose that M is a closed oriented 3-manifold. By Corollary 3.9, there exists a simple branched covering $f: M \to \mathbb{S}^3$ whose singular locus Σ_f is a link contained in a 3-ball B in M. (It follows from Whitehead's Theorem and Alexander's Theorem.) Since f is simple, we observe that for each $g \in B_f = f(\Sigma_f)$ there exists a unique $g \in \Sigma_f$ such that g = f(g). We obtain that the branch locus $g \in \Sigma_f$ doesn't have a self-intersection point in $g \in \Sigma_f$ is a link in $g \in \Sigma_f$. The map $g \in \Sigma_f$ determines a Möbius structure on $g \in \Sigma_f$ is a link in $g \in \Sigma_f$. Here $g \in \Sigma_f$ is a disjoint union of solid tori. Each connected component of the boundary of $g \in \Sigma_f$ is a disjoint union of solid tori. Each connected component of the boundary of $g \in \Sigma_f$ is a torus. We will use Theorem 2.6 to glue the Möbius structure on $g \in \Sigma_f$ is a separating Möbius manifold will be a connected sum because $g \in \Sigma_f$ is a separating 2-sphere in that manifold.

On the above procedure, the simplest case is that the image under f of each connected component of Σ_f is a trivial knot in \mathbb{S}^3 . A trivial knot is isotopic to a round circle. We will prove the main theorem for the rest of this chapter only in the case where $K = \Sigma_f$ is connected (i.e. K is a knot in $B \subset M$) with its image f(K) a round circle in \mathbb{S}^3 . We postpone a discussion of the general case until chapter 5.

Remark 4.1 ([9]) Each Möbius transformation γ acting on $\overline{\mathbb{R}^n}$ has a natural extension to a Möbius transformation acting on $\overline{\mathbb{R}^{n+1}}$ as follows. Let σ be a reflection in S, an (n-1)-sphere or an (n-1)-plane in \mathbb{R}^n . Note that a reflection in a sphere means the inversion in that sphere. There exists a unique sphere or plane \bar{S} in $\mathbb{R}^n \times \mathbb{R} = \mathbb{R}^{n+1}$ such that $\bar{S} \cap \mathbb{R}^n = S$ and \bar{S} is orthogonal to the hyperplane $\mathbb{R}^n \times \{0\}$ which contains S. Denote by $\bar{\sigma}$ the reflection in \bar{S} . Since a Möbius transformation γ can be expressed as a finite composition of reflections, $\gamma = \sigma_m \circ \cdots \circ \sigma_1$ for some reflections σ_j . Set $\bar{\gamma} = \bar{\sigma}_m \circ \cdots \circ \bar{\sigma}_1$. It is an extension of γ acting as a Möbius transformation on $\overline{\mathbb{R}^{n+1}}$.

Definition 4.2 The Poncaré extension of γ in $M\ddot{o}b(\mathbb{S}^n)$ is the Möbius transformation $\bar{\gamma}$ in $M\ddot{o}b(\mathbb{S}^{n+1})$ as defined above.

We observe that the map $\gamma \mapsto \bar{\gamma}$ is a monomorphism from $M\ddot{o}b(\mathbb{S}^n)$ into $M\ddot{o}b(\mathbb{S}^{n+1})$. The Poincaré extension $\bar{\gamma}$ of any γ in $M\ddot{o}b(\mathbb{S}^n)$ is also an isometry of the hyperbolic space \mathbb{H}^{n+1} . Furthermore, $M\ddot{o}b(\mathbb{S}^n) = Isom(\mathbb{H}^{n+1})$, the full group of isometries of \mathbb{H}^{n+1} ([9]).

Let $Isom^+(\mathbb{H}^{n+1})$ be the subgroup of $Isom(\mathbb{H}^{n+1})$ consisting of all orientation-preserving isometries of \mathbb{H}^{n+1} . A subgroup Γ of $Isom^+(\mathbb{H}^{n+1})$ is called *discrete* if it is discrete as a topological subspace. Note that $Isom^+(\mathbb{H}^{n+1})$ is a Lie group. From now on, Γ is a discrete subgroup of $Isom^+(\mathbb{H}^{n+1})$.

Definition 4.3 Denote by $\Lambda(\Gamma) = \overline{\Gamma p} \cap \mathbb{S}^n$, where $p \in \mathbb{H}^{n+1}$ and $\partial \mathbb{H}^{n+1} = \mathbb{S}^n$, the limit set of Γ . Each element of $\Lambda(\Gamma)$ is called a limit point of Γ .

Remark 4.4 $\Lambda(\Gamma)$ is independent of choices of $p \in \mathbb{H}^{n+1}$.

Definition 4.5 $x \in \mathbb{S}^n = \partial \mathbb{H}^{n+1}$ is called a point of discontinuity if there exists a neighborhood U of x such that $\gamma(U) \cap U = \emptyset$ for all but finitely many γ 's in Γ . Denote by $\Omega(\Gamma)$ the set of all such points, called the domain of discontinuity of Γ .

We now summarize some properties of $\Lambda(\Gamma)$ and $\Omega(\Gamma)$ in \mathbb{S}^n as follows. We refer the reader to [9] for more details on such materials.

Proposition 4.6 ([9]) Let Γ be a discrete subgroup of $Isom^+(\mathbb{H}^{n+1})$. Then:

- (1) The limit set $\Lambda(\Gamma)$ of Γ is closed and invariant under Γ .
- (2) The domain $\Omega(\Gamma)$ of discontinuity of Γ is open and invariant under Γ .
- (3) $\mathbb{S}^n \Lambda(\Gamma) = \Omega(\Gamma)$, that is, $\Lambda(\Gamma) \sqcup \Omega(\Gamma) = \mathbb{S}^n$.
- (4) Γ acts properly discontinuously on $\Omega(\Gamma)$, that is, for each compact subset C of $\Omega(\Gamma)$, $\gamma(C) \cap C = \emptyset$ for all but finitely many γ 's in Γ . So $\Omega(\Gamma)/\Gamma$ is Hausdorff. Moreover it is a manifold if Γ act freely on $\Omega(\Gamma)$.

Let $M\ddot{o}b^+(\mathbb{S}^3)$ be the subgroup of $M\ddot{o}b(\mathbb{S}^3)$ consisting of all orientation-preserving Möbius transformations of \mathbb{S}^3 . On the other hand, $M\ddot{o}b^+(\mathbb{S}^3) = Isom^+(\mathbb{H}^4)$, the group of all orientation-preserving isometries of the hyperbolic space \mathbb{H}^4 . Let $Stab_G^+(\mathbb{H}^2)$ denote the stabilizer of \mathbb{H}^2 in $G = Isom^+(\mathbb{H}^4)$ whose elements act on \mathbb{H}^2 as orientation-preserving isometries.

Lemma 4.7
$$Stab_G^+(\mathbb{H}^2) = Isom^+(\mathbb{H}^2) \times SO(2)$$
, where $G = Isom^+(\mathbb{H}^4)$.

Proof. Let $r: Stab_G^+(\mathbb{H}^2) \to Isom^+(\mathbb{H}^2)$ be the homomorphism given by restrictions to \mathbb{H}^2 and let k(r) be the kernel of r. $k(r) \cong SO(2)$ since each isometry of k(r) fixes \mathbb{H}^2 pointwise and $Stab_G^+(0) \cong SO(4)$ where $0 \in \mathbb{H}^2 \subset \mathbb{H}^4$ in the ball model of hyperbolic space \mathbb{H}^4 . Note that r is an epimorphism due to the Poincaré extensions of $Isom^+(\mathbb{H}^2)$ to G.

We obtain that $k(r) \hookrightarrow Stab_G^+(\mathbb{H}^2) \stackrel{r}{\to} Isom^+(\mathbb{H}^2)$ is a short exact sequence. Let $e: Isom^+(\mathbb{H}^2) \to Stab_G^+(\mathbb{H}^2) \subset G$ be the Poincaré extension. It's a homomorphism and obviously $r \circ e = id$. Hence $Stab_G^+(\mathbb{H}^2) = Isom^+(\mathbb{H}^2) \ltimes SO(2)$, the semi-direct product of $Isom^+(\mathbb{H}^2)$ and SO(2).

It suffices to show that $Isom^+(\mathbb{H}^2)$ commutes with SO(2). Let $f \in Isom^+(\mathbb{H}^2) = PSL(2,\mathbb{R})$ be represented by $f(z) = \frac{az+b}{cz+d}$ where $a,b,c,d \in \mathbb{R}$ with ad-bc=1 and z=x+iy, y>0. It is well defined on $\overline{\mathbb{R}^2}$ as a Möbius transformation. So we retain the same notation f. We will find an explicit formula for the Möbius transformation $e(f): \mathbb{S}^3 \to \mathbb{S}^3$. We have the map $f: \overline{\mathbb{R}} \to \overline{\mathbb{R}}$ given by $f(x) = \frac{ax+b}{cx+d}$. Consider the map e(f) restricted to $\mathbb{R}^3 - \mathbb{R}$. Take $(x,y,t) \in \mathbb{R}^3 - \mathbb{R}$ in the rectangular coordinates system. These coordinates are expressed in terms of the

cylindrical coordinates (x', y', θ) by $x = x', y = y' \cos \theta$ and $t = y' \sin \theta$. Here $y' \geq 0$, y' = 0 only on the x-axis and $0 \leq \theta < 2\pi$. Note that, for y' > 0, $(x',y',\theta) \in \mathbb{H}^2 \times \mathbb{S}^1 = \mathbb{R}^3 - \mathbb{R} \text{ and } (x',y',0) = (x,y,0) = (z,0) \in \mathbb{H}^2 \times \{0\}.$ Let $\Pi_{\tau}=\{(x',y',\theta)\in\mathbb{H}^2\times\mathbb{S}^1|\theta= au\}$ be the half plane for $0\leq au<2\pi.$ In addition, $\Pi_0 = \mathbb{H}^2$ and $\Pi_{\tau} = R_{\tau}(\mathbb{H}^2)$ where $R_{\tau} \in SO(2)$ is the rotation about x-axis with the angle τ . Since e(f) is a finite composition of reflections in 2-spheres or planes orthogonal to the x-axis and $\mathbb{R}^2 \times \{0\}$, then $e(f)(\Pi_{\tau}) = \Pi_{\tau}$ for each τ . Each reflection restricted to $\Pi_{\tau,\tau\pm\pi} = \Pi_{\tau} \cup \mathbb{R} \cup \Pi_{\tau\pm\pi}$ is also the reflection acting on $\Pi_{\tau,\tau\pm\pi}$ with respect to the intersection circle or line with the corresponding sphere or plane. So we obtain that $e(f)(z,\theta) = (\frac{az+b}{cz+d},\theta)$, since $e(f)(z,0) = (f(z),0) = (\frac{az+b}{cz+d},0)$. Hence $e(f)(z,\theta) = (f(z),\theta)$ for $f \in Isom^+(\mathbb{H}^2)$. Then $(e(f) \circ R_{\tau})(z, \theta) = e(f)(z, \theta + \tau)$ $=(f(z),\theta+\tau)$

 $=R_{\tau}(f(z),\theta)=(R_{\tau}\circ e(f))(z,\theta), \text{ where } \theta+\tau\in[0,2\pi) \text{ (mod } 2\pi).$

This completes the proof. \Box

Definition 4.8 A discrete subgroup F of $M\ddot{o}b^+(\mathbb{S}^2)$ with an invariant round disk is called a Fuchsian group.

We may assume that the upper half plane \mathbb{H}^2 is invariant under F and so a Fuchsian group F is a discrete subgroup of $Isom^+(\mathbb{H}^2) = PSL(2,\mathbb{R})$.

Suppose that S_g is a closed surface of genus $g \geq 2$. Let $F = \pi_1(S_g)$ and then F is a Fuchsian group with $\Lambda(F) = \mathbb{S}^1$. Denote by e(F) the group of the Poincaré extensions of F to \mathbb{H}^4 in $M\ddot{o}b^+(\mathbb{S}^3)$. We still have $\Lambda(e(F))=\Lambda(F)=\mathbb{S}^1$. So $\Omega(e(F)) = \mathbb{S}^3 - \mathbb{S}^1 = \mathbb{H}^2 \times \mathbb{S}^1$ by Proposition 4.6. Note that the action of e(F)preserves the product structure of $\mathbb{H}^2 \times \mathbb{S}^1$ established by Lemma 4.7. Hence

$$\frac{\Omega(e(F))}{e(F)} = \frac{\mathbb{H}^2 \times \mathbb{S}^1}{e(F)} = \frac{\mathbb{H}^2}{F} \times \mathbb{S}^1 = S_g \times \mathbb{S}^1.$$

We observe that the quotient map $\Omega(e(F)) = \mathbb{S}^3 - \mathbb{S}^1 \to S_g \times \mathbb{S}^1$ is a covering projection since e(F) acts freely and properly discontinuously on $\Omega(e(F))$. $S_g \times \mathbb{S}^1$

admits a Möbius structure and its developing map is a multi-valued map from $S_g \times \mathbb{S}^1$ into \mathbb{S}^3 which is the inverse of the covering projection.

Suppose that a group Γ acts properly discontinuously and freely on a topological space X. Then a subset \mathcal{F} of X is called a *fundamental set* for Γ if the orbit $\Gamma \mathcal{F}$ is equal to X and $\gamma(\mathcal{F}) \cap \mathcal{F} = \emptyset$ for each $\gamma \in \Gamma - \{1\}$.

Definition 4.9 Let X be \mathbb{H}^4 , $\Omega(\Gamma)$ or $\mathbb{H}^4 \cup \Omega(\Gamma)$. A fundamental domain Φ for a discrete group $\Gamma < Isom^+(\mathbb{H}^4)$ acting freely on X is a codimension zero piecewise-smooth submanifold of X such that :

- (1) there is a fundamental set ${\mathcal F}$ so that $int(\Phi)\subset {\mathcal F}\subset \overline{\Phi}$
- (2) $\overline{int(\Phi)} = \overline{\Phi}$ and the boundary of Φ in X can be represented as a union of piecewise-smooth codimension one submanifolds S_i so that for each S_i there are another S_j and $\gamma \in \Gamma \{1\}$ with $\gamma(S_i) = S_j$.
- (3) the orbit $\Gamma\Phi$ is locally finite in X, i.e. each compact set in X intersects only finitely many members of $\{ \gamma\Phi \mid \gamma \in \Gamma \}$.

A polyhedron Ψ is the intersection of finitely many closed half-spaces in \mathbb{H}^4 . The codimension one faces are called *sides*. We say that the sides of Ψ are paired by elements of $Isom^+(\mathbb{H}^4)$ if for every side s there exist a side s' and an element $g_s \in Isom^+(\mathbb{H}^4)$ with $g_s(s) = s'$. The element g_s is called a *side-pairing transformation*. Then $g_{s'} = g_s^{-1}$ and (s')' = s.

We describe cycle transformations and infinite cycle transformations in the following remark.

Remark 4.10 ([9]) Start with a codimension two face $e = e_1$. Suppose that the sides of the polyhedron Ψ are paired by elements of I som $^+(\mathbb{H}^4)$ and that e_1 lies on the boundary of a side s_1 . Then there are a side s_1' and a side-pairing transformation g_1 with $g_1(s_1) = s_1'$. Let $e_2 = g_1(e_1)$. Suppose that e_2 lies on the boundary of s_1' and the other side, say s_2 . Again, there are a side s_2' and a side-pairing transformation g_2 with $g_2(s_2) = s_2'$. Continuing in this manner, we generate sequences $\{e_m\}$, $\{g_m\}$ and $\{(s_m, s_m')\}$. Let k denote the least period such that all three sequences are periodic

with period k. We observe that $g_k \circ \cdots \circ g_1(e_1) = e_1$. The cycle transformation $h_e = g_k \circ \cdots \circ g_1$ keeps e_1 invariant. Note that there is the other side with the boundary e_1 and that if we choose it then we obtain h_e^{-1} as the cycle transformation. Let $\theta(e_i)$ denote the angle measured from inside Ψ at the codimension two face e_i .

Suppose that the sides of the polyhedron Ψ are paired by elements of I som $^+(\mathbb{H}^4)$. We might have two sides that are tangent at a point $x=x_1$ on the sphere \mathbb{S}^3 at infinity. Call one of these sides s_1 . Suppose that g_1 is the side-pairing transformation with $g_1(s_1)=s_1'$. Let $x_2=g_1(x_1)$. If x_2 is not a point of tangency between two faces, then we stop. Otherwise, let s_2 be the other side tangent to s_1' at x_2 and find a side-pairing transformation g_2 with $g_2(s_2)=s_2'$, let $x_3=g_2(x_2)$ and continue. We stop either if x_{k+1} is not a point of tangency or if $x_1=x_{k+1}=g_k(x_k)$. If the latter occurs, we find side-pairing transformations g_1, \dots, g_k with $g_k \circ \dots \circ g_1(x)=x$ Denote $h_x=g_k \circ \dots \circ g_1$ and call h_x the infinite cycle transformation at x.

We describe conditions under which a polyhedron in \mathbb{H}^4 is a fundamental domain for the group generated by side-pairing transformations.

Theorem 4.11 (Poincaré's Fundamental Polyhedron Theorem) ([9]) Let Ψ be a polyhedron in \mathbb{H}^4 . Suppose that the sides s of Ψ are paired by side-pairing transformations $g_s \in Isom^+(\mathbb{H}^4)$ and Ψ satisfies the following:

- (1) $g_s(s) = s'$ and $g_{s'} = g_s^{-1}$.
- (2) $g_s(int(\Psi)) \cap int(\Psi) = \varnothing$.
- (3) for each codimension two face e, there is a positive integer t such that $h_e^t = 1$ and $\theta(e_1) + \cdots + \theta(e_k) = \frac{2\pi}{t}$, where h_e is the cycle transformation at $e = e_1$.
- (4) each infinite cycle transformation is parabolic, i.e. it has exactly one fixed point on \mathbb{S}^3 .

Then G, the group generated by the side-pairing transformations, is discrete, Ψ is a fundamental domain for G and the cycle relations $h_e^t=1$ form a complete set of relations for G.

Suppose that there are finitely many closed round isometric balls in $\mathbb{R}^3\subset\mathbb{S}^3$ such

that the balls have transverse pairwise intersections and no three balls intersect. Let Φ denote the closure of the intersection of the exterior of such balls, i.e. the union of the balls is $\mathbb{S}^3 - int(\Phi)$. Let Ψ be the smallest closed convex set in \mathbb{H}^4 whose ideal boundary $\partial_\infty \Psi$ is Φ , denoted $\Psi = Hull(\Phi)$. Then there is a one-to-one correspondence between codimension one faces s_i of Ψ and codimension one faces f_i of Φ with $Hull(f_i) = s_i$ and $\partial_\infty s_i = f_i$, i.e. $s_i = Hull(\partial_\infty s_i)$. Furthermore, $Hull(f_i \cap f_j) = s_i \cap s_j$ and $\partial_\infty (s_i \cap s_j) = f_i \cap f_j$. If the sides of Ψ are paired by side-pairing transformations and Ψ satisfies (1), (2) and (3) in Theorem 4.11, then Φ is a fundamental domain for $G < M\ddot{o}b^+(\mathbb{S}^3)$ acting on \mathbb{S}^3 . Note that no two sides of Ψ are tangent at a point in the sphere \mathbb{S}^3 at infinity because the balls in \mathbb{S}^3 have transverse pairwise intersections.

Proposition 4.12 If P is a fundamental domain for $F = \pi_1(S_g)$ in \mathbb{H}^2 , then $SO(2) \cdot P = \Phi$ is a fundamental domain for e(F) in $\mathbb{S}^3 - \mathbb{S}^1$, where SO(2) is the group of all rotations about $\overline{\mathbb{R}} = \mathbb{S}^1$.

Proof. We claim that $e(F) \cdot \Phi$ covers $\Omega(e(F)) = \mathbb{S}^3 - \mathbb{S}^1 = \mathbb{H}^2 \times \mathbb{S}^1$. Let $(z, \theta) \in \mathbb{H}^2 \times \mathbb{S}^1$ be given. For such $z \in \mathbb{H}^2$, there exists $f \in F$ such that $f(z) \in P$. Recall that $e(f)(z, \theta) = (f(z), \theta)$ from Lemma 4.7. So we have $e(f)(z, \theta) \in \Phi$.

Since P is a fundamental domain for F, for each $z \in \mathbb{H}^2$ there exists at most one $f \in F$ such that $f(z) \in int(P)$. By Lemma 4.7, there also exists at most one point $e(f)(z,\theta) \in int(\Phi)$ for each $(z,\theta) \in \mathbb{H}^2 \times \mathbb{S}^1$.

To deal with other conditions of a fundamental domain for e(F), we consider those of the fundamental domain P for F and apply the fact that $e(f)(z,\theta) = (f(z),\theta)$. \square

We call each transformation of the above SO(2) a Möbius rotation about the round circle \mathbb{S}^1 .

Recall that in this chapter we assume that $f: M - Nbd(K) \to \mathbb{S}^3$ is a single-valued Möbius morphism and the image of the knot K under $f: M \to \mathbb{S}^3$ is a round circle. Denote $M_1 = M - int(Nbd(K))$ and $T_1 = \partial M_1$. Here the restriction $f: T_1 \to T_1'$ is a 2-fold covering because $f: M \to \mathbb{S}^3$ is a simple branched covering

with $\Sigma_f = K$, $T_1 = \partial Nbd(K)$ and $T_1' = \partial f(Nbd(K))$. We continue the discussion of $N = S_g \times \mathbb{S}^1$ and recall that N is a Möbius manifold and its developing map $dev: N \to \mathbb{H}^2 \times \mathbb{S}^1 \subset \mathbb{S}^3$ is multi-valued. Let $q: \mathbb{S}^1 \to \mathbb{S}^1$ be a 2-fold covering. Consider the 2-fold covering $p: N' \to N$ where $p = id \times q$. We remark that N' is homeomorphic to N but has different Möbius structure from N. Next, we observe that the manifold $N_o = (S_g - D) \times \mathbb{S}^1$ has toral boundary $T = \partial D \times \mathbb{S}^1$, where D is an open disk in S_g . Let $M_2 = p^{-1}(N_o)$ which is homeomorphic to N_o . Then M_2 is a Möbius manifold with toral boundary $T_2 = \partial M_2$ and its multi-valued developing map is $h = dev|_{N_o} \circ p|_{M_2} : M_2 \to \mathbb{H}^2 \times \mathbb{S}^1$. Next, we consider the multi-valued map $dev|_T: T \to \mathbb{H}^2 \times \mathbb{S}^1$.

Remark 4.13 We can take a branch of such $dev|_T$ to be a single-valued map as follows. Let $\alpha = \partial D \times \{y\}$ for $y \in \mathbb{S}^1$ and let $\tilde{\alpha}$ be a connected component of $dev(\alpha)$. Because of the quotient map $\mathbb{H}^2 \times \mathbb{S}^1 \to S_g \times \mathbb{S}^1$ by e(F), the image $dev(\alpha)$ is contained in $\mathbb{H}^2 \times \{y\}$. We see that $dev(\alpha) = F \cdot \tilde{\alpha}$ and the multi-valued map $dev|_T : T \to F \cdot \tilde{\alpha} \times \mathbb{S}^1$. Take the branch of $dev|_T$ from T to $\tilde{\alpha} \times \mathbb{S}^1$, denoted $br(dev|_T)$. Letting $T'_2 = \tilde{\alpha} \times \mathbb{S}^1$, this map $br(dev|_T) : T \to T'_2$ is a homeomorphism.

In view of Remark 4.13, $br(dev|_T) \circ p|_{T_2} : T_2 \to T_2'$ is a 2-fold covering since it is a composition of the homeomorphism $br(dev|_T)$ with the 2-fold covering $p|_{T_2}$. Let br(h) denote the above map. Finally, we have a developing map $h: M_2 \to \mathbb{S}^3$ and a 2-fold covering $br(h): T_2 \to T_2'$. We already got $f: M_1 \to \mathbb{S}^3$ and $f: T_1 \to T_1'$ from the simple branched covering $f: M \to \mathbb{S}^3$. We are now ready to apply the Theorem 2.6 to glue two Möbius manifolds with toral boundary together. However, we wish to find a Möbius transformation $g \in M\ddot{o}b(\mathbb{S}^3)$ such that $g(T_1') = T_2'$, $g: T_1' \to T_2'$ reverses orientations (induced from M_i for i = 1, 2) and $g_*(f_*(\pi_1(T_1))) = br(h)_*(\pi_1(T_2))$.

We have a specific construction of a Fuchsian group Γ as follows. Suppose that $f:M\to\mathbb{S}^3$ is a simple branched covering for a oriented closed 3-manifold M and the image f(K) under f of the connected singular locus K is a round circle in \mathbb{S}^3 . Let C=f(K) be the round circle on the plane Π in \mathbb{R}^3 centered at O and let

N(C) = f(N(K)) where N(K) is a tubular neighborhood of K in M. We may assume that C is the unit circle and $d(y, \partial N(C))$ is a constant for each $y \in C$, that is, N(C) is the solid torus of revolution with the core C. There exists a positive integer n such that $d(y, \partial N(C)) > \frac{\pi}{4n}$. Consider the rays R_1, R_2, \dots, R_{16n} from O on Π such that $\angle(R_i, R_{i+1}) = \frac{\pi}{8n}$ at O. Denote by \bar{R}_i the half closed plane containing R_i which is orthogonal to Π and $\partial \bar{R}_i = R$, the line orthogonal to Π passing through O. For each i, there exists 2-sphere $\bar{S}_i(0)$ of center $O_i \in \Pi$ so that $\bar{S}_i(0)$ is tangent to \bar{R}_i and \bar{R}_{i+1} at $C \cap R_i$ and $C \cap R_{i+1}$, respectively. Let r_0 be the radius of each sphere $\bar{S}_i(0)$ and let $\bar{S}_i(t)$ denote the concentric sphere with $\bar{S}_i(0)$ of radius $r_0+t,\,t\geq 0.$ We note that $\bar{S}_{i+1}(0)$ (resp. $\bar{S}_{i+1}(t)$) is the image of $\bar{S}_i(0)$ (resp. $\bar{S}_i(t)$) under the rotation by $\frac{\pi}{8n}$ about R. It follows that $r_0 < \frac{\pi}{16n}$. For each $t \geq 0$ and i, the dihedral angle $\vartheta_i(t)$ between $\bar{S}_i(t)$ and $\bar{S}_{i+1}(t)$ is $\vartheta_i(t) = 2\sec^{-1}(\frac{r_0+t}{r_0})$. Let $\vartheta_i(t) = \vartheta(t)$. Then $\vartheta(t)$ is increasing and $0 \le \vartheta(t) < \pi$. For given $t \ge 0$, let $\Theta(t)$ denote the sum of all dihedral angles $\vartheta_i(t)$. So $\Theta(t)=16n\vartheta(t)$ which is also increasing. There exists $t_0 > 0$ such that $\Theta(t_0) = 2\pi$. Now, fix the spheres $\bar{S}_1(t_0), \bar{S}_2(t_0), \cdots, \bar{S}_{16n}(t_0)$.

We claim that $\bar{S}_i(t_0) \cap \bar{S}_k(t_0) \neq \emptyset$, $i \neq k$, if and only if two spheres $\bar{S}_i(t_0)$ and $\bar{S}_k(t_0)$ are adjacent. Assume that $\bar{S}_1(t_0) \cap \bar{S}_3(t_0) \neq \emptyset$. Then $t_0 \geq r_0$. We have $\vartheta(t_0) \geq 2\sec^{-1}(2)$, which imlpies that $\vartheta(t_0) \geq \frac{\pi}{3}$. This contradicts to the fact that $\Theta(t_0) = 2\pi = 16n\vartheta(t_0)$. So the claim is completed. It follows that $r_0 + t_0 < 2r_0 < \frac{\pi}{8n}$. Remark that all $\bar{S}_i(t_0)$'s are contained in the solid torus N(C) because $d(y, \partial N(C)) > \frac{\pi}{4n}$.

Denote by $C' \subset \Pi$ the concentric circle with C that is orthogonal to $\bar{S}_i(t_0)$ for all $i=1,2,\cdots,16n$. Let λ be the radius of C'. Then we have the equation $\lambda^2+(r_0+t_0)^2=1+r_0^2$ by the orthogonality of C' and $\bar{S}_i(t_0)$, C and $\bar{S}_i(0)$. Obviously $\lambda<1$. We show that C' is contained in $\bigcup_{i=1}^{16n}\bar{B}_i$, where \bar{B}_i 's are the open balls such that $\partial\bar{B}_i=\bar{S}_i(t_0)$. It is enough to show that $\lambda>1-\sqrt{2r_0t_0+t_0^2}$ since the radius of intersection circle $\bar{S}_i\cap\bar{S}_{i+1}$ is $\sqrt{(r_0+t_0)^2-r_0^2}$. From the equation above, $\lambda^2=1-(2r_0t_0+t_0^2)$. So we obtain $1>\lambda>1-\sqrt{2r_0t_0+t_0^2}$.

Now there are the circle C' on Π and the spheres $\bar{S}_i(t_0)$'s which are orthogonal

Figure 4.1. Construction with 16 rays on Π

to C' as in Figure 4.1. We remark that C' is isotopic to C = f(K). Take a solid torus Nbd(C') such that $\cup \bar{B}_i \subset Nbd(C') \subset N(C)$ and Nbd(C') is invariant under the group of Möbius rotations about C'. We see $\cup \bar{B}_i$ is also invariant under the group of Möbius rotations about C', since each $\partial \bar{B}_i = \bar{S}(t_0)$ is orthogonal to C'. Recall that $Nbd(C') \subset N(C) = f(N(K))$. Let $Nbd(K') = (f|_{N(K)})^{-1}(Nbd(C'))$ where K' is the inverse image of C' by $(f|_{N(K)})^{-1}$ and let $M_1 = M - Nbd(K')$. $K \subset Nbd(K') \subset N(K)$ because $C \subset Nbd(C') \subset N(C)$. We denote the tori $T_1 = \partial M_1$ and $T_0 = \partial Nbd(C')$. So $f(T_1) = T_0$

We use $Nbd(C') - \bigcup_{i=1}^{16n} \bar{B}_i$ to construct a Möbius manifold M_2 with toral boundary,

which is homeomorphic to $(S_g - D) \times \mathbb{S}^1$. In chapter 5, we will call $Nbd(C') - \cup \bar{B}_i$ the truncated fundamental domain. Consider spherical faces of $Nbd(C') - \cup \bar{B}_i$. Let D' be the disk on Π with the boundary circle C'. $D' \cap (Nbd(C') - \cup \bar{B}_i)$ is the union of spherical arcs a_j, b'_j, a'_j and b_j for $j = 1, 2, \dots, 4n$. Here, $a_j \subset \bar{S}_{4j-3}, b'_j \subset \bar{S}_{4j-2}, a'_j \subset \bar{S}_{4j-1}$ and $b_j \subset \bar{S}_{4j}$. We denote by \bar{a}_j (resp. $\bar{b}'_j, \bar{a}'_j, \bar{b}_j$) the SO(2)-orbits of a_j (resp. b'_j, a'_j, b_j), where SO(2) is the group of all Möbius rotations about the circle C'. By Lemma 4.7, the 16n spherical faces of $Nbd(C') - \cup \bar{B}_i$ are exactly $\bar{a}_j, \bar{b}'_j, \bar{a}'_j$ and \bar{b}_j for $j = 1, 2, \dots, 4n$.

We define orientation-preserving face-pairing Möbius transformations α_j and $\beta_j, j=1,2,\cdots,4n$, as follows. Denote by \bar{P}_i the plane containing O and O_i and orthogonal to Π for $i=1,2,\cdots,16n$. Define the inversion in the sphere $\bar{S}_i(t_0)$ by $I(\bar{S}_i(t_0))$ and the reflection in the plane \bar{P}_i by $J(\bar{P}_i)$. Let, for $j=1,2,\cdots,4n$,

$$\alpha_j = J(\bar{P}_{4j-2}) \circ I(\bar{S}_{4j-3}(t_0)), \ \beta_j = J(\bar{P}_{4j-1}) \circ I(\bar{S}_{4j}(t_0)).$$

Then $\alpha_j, \beta_j \in M\ddot{o}b^+(\mathbb{S}^3)$. Furthermore, $\alpha_j(\bar{a}_j) = \bar{a}'_j$ and $\beta_j(\bar{b}_j) = \bar{b}'_j$ as in Figure 4.2. Let Γ denote the group generated by α_j and β_j , $j = 1, 2, \dots, 4n$. Γ is a subgroup of $M\ddot{o}b^+(\mathbb{S}^3)$. We note that α_j and β_j preserve the disk D' on Π . It follows from the fact that \bar{P}_i and $\bar{S}_i(t_0)$ are all symmetric with respect to the plane Π and they are all orthogonal to $\partial D' = C'$. The group Γ is Fuchsian if Γ is discrete.

Let g=4n. We show that $(Nbd(C')-\cup\bar{B}_i)/\Gamma$ is a Mobius manifold which is homeomorphic to $(S_g-D)\times\mathbb{S}^1$ where D is an open disk in S_g . Denote $\Phi=\mathbb{S}^3-\overset{16n}{\cup}\bar{B}_i$. By the construction of face-pairing Möbius transformations α_j and β_j , we obtain that $\gamma(int(\Phi))\cap int(\Phi)=\varnothing$ for $\gamma\in\{\alpha_j,\beta_j\}_{j=1,2,\cdots,4n=g}$. The sum of angles at edges measured from inside Φ is $\Theta(t_0)=2\pi$. Let $[\alpha_j,\beta_j]=\beta_j^{-1}\circ\alpha_j^{-1}\circ\beta_j\circ\alpha_j$ and $\prod_{j=1}^g [\alpha_j,\beta_j]=[\alpha_g,\beta_g]\circ\cdots\circ[\alpha_1,\beta_1]$. We claim that $\prod_{j=1}^g [\alpha_j,\beta_j]=id$. It suffices to show that $\prod_{j=1}^g [\alpha_j,\beta_j](x)=x$ where $x\in R_1\cap\bar{S}_1(t_0)$ in D'. It follows from the fact that $\prod_{j=1}^g [\alpha_j,\beta_j]$ preserves the sphere $\bar{S}_1(t_0)$ and the disk D'. By Poincaré's Fundamental Polyhedron Theorem, we obtain that Γ is discrete, Φ is a fundamental domain for Γ and $\Gamma=\langle\alpha_j,\beta_j|\prod_{j=1}^g [\alpha_j,\beta_j]\rangle$. We note that Γ acts on D' as the Fuchsian

Figure 4.2. face-pairing transformations of $\partial(\cup \bar{B}_i)$

group $\pi_1(S_g)$. So, $\Phi/\Gamma = (\mathbb{H}^2 \times \mathbb{S}^1)/\Gamma = (\mathbb{H}^2/\pi_1(S_g)) \times \mathbb{S}^1 = S_g \times \mathbb{S}^1 = N$. Let $\hat{D} = D' - Nbd(C')$ and $D = pr(\hat{D})$, where $pr : \mathbb{H}^2 \times \mathbb{S}^1 \to S_g \times \mathbb{S}^1$ is a covering projection. By Lemma 4.7, $\mathbb{S}^3 - Nbd(C') = SO(2) \cdot \overline{D}$. We obtain that $(Nbd(C') - \cup \overline{B}_i)/\Gamma = (S_g - D) \times \mathbb{S}^1$, denoted N_0 .

Let $M_2 = p^{-1}(N_0)$, where $p = id \times q : S_g \times \mathbb{S}^1 \to S_g \times \mathbb{S}^1$ and q is a 2-fold covering of \mathbb{S}^1 . We have the multi-valued developing map $dev : N \to \mathbb{S}^3$ of $N = S_g \times \mathbb{S}^1$ and recall that M_2 is the Möbius manifold with toral boundary $T_2 = \partial M_2$ and its multi-valued developing map is $h = dev|_{N_0} \circ p|_{M_2} : M_2 \to \mathbb{H}^2 \times \mathbb{S}^1$. We observe the 2-fold covering $br(h) = br(dev|_T) \circ p|_{T_2} : T_2 \to T_2' \subset \mathbb{H}^2 \times \mathbb{S}^1$ as described in Remark 4.13.

A solid torus W is a space which is homeomorphic to $\overline{D^2} \times S^1$, where $\overline{D^2} =$

 $\{x \in \mathbb{R}^2 : |x| \leq 1\}$ and $S^1 = \{|x| = 1\}$. A homeomorphic image of $\partial \overline{D^2} \times \{*\}$ (resp. $\{*\} \times S^1$) on ∂W is called a *meridian* (resp. longitude) of W or ∂W . Denote by m_k and l_k , for k = 0, 1, 2, a meridian and a longitude of the torus T_k . Recall that $T_0 = \partial Nbd(C')$, $T_1 = \partial M_1 = \partial Nbd(K')$ and $T_2 = \partial M_2$. and we have two 2-fold coverings $f: T_1 \to T_0$ and $br(h): T_2 \to T_0$. So, by the construction above, we obtain that $f_*(m_1) \simeq 2m_0 \simeq br(h)_*(m_2)$ and $f_*(l_1) \simeq l_0 \simeq br(h)_*(l_2)$. Therefore, $f_*(\pi_1(\partial M_1)) = br(h)_*(\pi_1(\partial M_2))$.

There exists a lifting $\tilde{f}:\partial M_1\to\partial M_2$ of f such that the following diagram commutes:

$$\begin{array}{ccc} \partial M_1 & \stackrel{\tilde{f}}{\longrightarrow} & \partial M_2 \\ f \downarrow & & \downarrow br(h) \\ T_0 & = & T_0 \end{array}$$

Note that \tilde{f} is the lifting of $id|_{T_0}$ where $id \in M\ddot{o}b^+(\mathbb{S}^3)$ and that $id|_{T_0}$ reverses orientations (induced from M_1 and M_2). By Theorem 2.6, the attaching manifold $M_1 \cup_{\tilde{f}} M_2$ admits the Möbius structure which extends the Möbius structures of M_1 and M_2 . Topologically it is a connected sum of M and $S_g \times \mathbb{S}^1$. We have proved the main theorem in the case that Σ_f is connected and its image $B_f = f(\Sigma_f)$ is a round circle, where $f: M \to \mathbb{S}^3$ is a simple branched covering.

Remark 4.14 Indeed, we have proved the main theorem in the case that Σ_f is connected and its image B_f is unknotted, since this trivial knot B_f is isotopic to a round circle.

CHAPTER 5

PROOF OF THE MAIN THEOREM

Recall that we have constructed a Fuchsian group with a fundamental domain whose complement in \mathbb{S}^3 is isotopic to a tubular neighborhood of the circular branch locus.

In general, the branch locus B_f of $f: M \to \mathbb{S}^3$ is a link in \mathbb{S}^3 , where f is a simple branched covering. We may assume each component of the link $B_f = f(\Sigma_f)$ is a polygonal knot. A discrete subgroup of $M\ddot{o}b^+(\mathbb{S}^3)$ whose limit set is a topological circle is called a quasi-Fuchsian group. To deal with the general case, we need to construct quasi-Fuchsian groups with prescribed fundamental domains whose complements are isotopic to regular neighborhoods of the given polygonal knots in \mathbb{S}^3 . It suffices to construct a quasi-Fuchsian group whose fundamental domain has the complementary region isotopic to a regular neighborhood of a given polygonal knot.

Theorem 5.1 For a given polygonal knot L_0 in \mathbb{R}^3 , there exist a quasi-Fuchsian group G and a compact fundamental domain Φ for G acting on \mathbb{S}^3 such that $\overline{\mathbb{S}^3 - \Phi}$ is isotopic to a regular neighborhood $Nbd(L_0)$ of L_0 .

Proof. Let L_0 be a polygonal knot in \mathbb{R}^3 . L_0 is isotopic to a right-angled polygonal knot which lies on a plane Π except bridges at its crossings. We may assume that each bridge is of the same height from Π and is contained in an orthogonal plane to the base plane Π . We retain the same notation L_0 for such a polygonal knot.

Give L_0 an orientation and we have a finite set $V(L_0)$ of consecutive vertices whose order is consistent with the orientation of L_0 , say $V(L_0) = \{v_1, v_2, \dots, v_m\}$. Let $e_i = [v_i, v_{i+1}]$ for $i = 1, 2, \dots, m-1$, $e_m = [v_m, v_1]$ be oriented edges of L_0 .

Then e_i is orthogonal to its adjacent edges e_{i-1} and e_{i+1} . We may assume that each edge e_i has rational length l_i , where $l_i = \frac{s_i}{t_i}$ for even integers s_i and t_i . Put $r_0 = (t_1 t_2 \cdots t_m)^{-1}$.

For each $i = 1, 2, \dots, m$, let $n_i = \frac{l_i}{r_0} = s_i t_1 t_2 \cdots \hat{t_i} \cdots t_m$. We note that each n_i is divisible by $2^4 = 16$ since $m \geq 4$. Cover each e_i by $\frac{n_i}{2}$ closed balls of radius r_0 so that two endpoints v_i and v_{i+1} are centers. By the construction of r_0 and n_i , the center of each ball lies in L_0 and two adjacent balls are tangent to each other at a point in L_0 .

We hope that such two balls intersect if and only if they are adjacent. Suppose two non-adjacent balls intersect. Then construct a new cover for L_0 consisting of closed balls of radius $\frac{1}{3}r_0$ with the property that each v_i is the center of such a ball.

Figure 5.1. A cover for L_0 with balls of radius $\frac{1}{3}r_0$

Keep doing the same procedure as above until we get a cover for L_0 consisting of closed balls of radius $(\frac{1}{3})^n r_0$ for some $n \geq 0$ such that two balls intersect if and only if they are adjacent.

Go two more steps to get the cover for L_0 that consists of closed balls of radius $(\frac{1}{3})^{n+2}r_0$. This will be used for modifying the polygonal knot L_0 inside a certain tubular neighborhood of L_0 containing the union of balls of radius $(\frac{1}{3})^{n+1}r_0$. Now

there are $\frac{1}{2}(n_1 + \cdots + n_m)3^{m+2}$ balls of radius $(\frac{1}{3})^{m+2}r_0$ to cover L_0 . After rescaling, we may assume that such balls are all of radius 1.

We modify the polygonal knot L_0 into L as follows. Let $L \cap \overline{B_1(v_i)} = \{v_i^-, v_i^+\}$. First, modify L_0 inside each ball centered at a vertex v_i using a quarter $\widehat{v_i^- v_i^+}$ of a unit circle centered at O_i as in Figure 5.2.

Figure 5.2. Modification of L_0 around each vertex

The second modification occurs on the base plane Π or the bridge planes which are orthogonal to Π . Consider the rest of the segment $\overline{v_iv_{i+1}}$, denoted by $\overline{v_i^+v_{i+1}^-}$.

Figure 5.3. Modification of L_0 around each edge

We choose a half plane bounded by $\overleftarrow{v_iv_{i+1}}$, in Π or corresponding bridge plane, so that the induced orientation for $\overleftarrow{v_iv_{i+1}}$ from the half plane coincide with the orientation for the edge $[v_i, v_{i+1}]$ of L_0 . Modify the segment $\overleftarrow{v_i^+v_{i+1}^-}$ in the half plane bounded by $\overleftarrow{v_iv_{i+1}}$ using quarters of unit circles as in Figure 5.3. Then the second modification is uniquely determined for each $\overleftarrow{v_i^+v_{i+1}^-}$. Thus we get a modified knot L because there are even number of balls between v_i^+ and v_{i+1}^- .

We will find a cover for L consisting of closed balls of the same size with the property that two adjacent balls are tangent to each other at a point in L and two balls intersect only if they are adjacent.

Recall that L is the union of quarters C_i of unit circles \tilde{C}_i whose order is consistent with the orientation of L for $i=1,2,\cdots,g=(n_1+\cdots+n_m)3^{n+2}$. Denote by $C_i(\pm)$ two endpoints of C_i . such that $C_i(+)=C_{i+1}(-)$. We first consider a quarter C_i of a unit circle \tilde{C}_i because it is a building block for the modified knot L. Let Π_i denote the plane containing C_i . Construct metric balls $\bar{B}(i)_j$, j=1,2,3,4, for each building block C_i as indicated in Figure 5.4.

Figure 5.4. A building block with four tangent balls $\bar{B}(i)_j$

Let O(i) be the center of the unit circle \tilde{C}_i . Denote by $R(i)_0$ and $R(i)_4$ the rays from O(i) passing through $C_i(-)$ and $C_i(+)$, respectively. Let $R(i)_j$ denote the rays from O(i) on the plane Π_i with $\angle(R(i)_j, R(i)_{j+1}) = \frac{\pi}{8}$ for j = 0, 1, 2, 3. There exist four metric balls $\bar{B}(i)_1, \bar{B}(i)_2, \bar{B}(i)_3$ and $\bar{B}(i)_4$ so that each $\bar{B}(i)_j$ is centered on Π_i and tangent to both $R(i)_{j-1}$ and $R(i)_j$ at a point in C_i . Then $C_i \subset \bigcup_{j=1}^4 \bar{B}(i)_j$ for each i and the spheres $\partial \bar{B}(i)_j$ are orthogonal to the circle \tilde{C}_i . Let $O(i)_j$ denote the center of $\bar{B}(i)_j$ for j = 1, 2, 3, 4. We note that all 4g metric balls $\bar{B}(i)_j$ are isometric for $i = 1, 2, \dots, g$ and j = 1, 2, 3, 4.

Let γ_i denote the rotation by $\frac{\pi}{8}$ about O(i) on Π_i such that $\gamma_i(R(i)_0) = R(i)_1$ and let $e(\gamma_i)$ be its Poincaré extension to \mathbb{H}^4 . By the construction of the rays, we obtain that $\gamma_i(O(i)_j) = O(i)_{j+1}$ for j = 1, 2, 3. So $e(\gamma_i) \left(\bar{B}(i)_j\right) = \bar{B}(i)_{j+1}$ for the Poincaré extension $e(\gamma_i)$ of γ_i . We claim that $\gamma_i(O(i)_4) = O(i+1)_1$. Let \tilde{C}_i be the full circle containing C_i on Π_i and let $T_i(\pm)$ be the tangent line at $C_i(\pm)$ to \tilde{C}_i on Π_i . Then we see that two lines $T_i(+)$ and $T_{i+1}(-)$ are identical. So $O(i+1)_1 \in T_i(+)$. Since $O(i)_4, O(i+1)_1 \in T_i(+)$, $\angle(O(i)_4O(i)O(i+1)_1) = \frac{\pi}{8}$ and the midpoint of $O(i)_4$ and $O(i+1)_1$ is the point $C_i(+)$, we obtain that $\gamma_i(O(i)_4) = O(i+1)_1$. This completes the proof of the claim. It follows that $e(\gamma_i) \left(\bar{B}(i)_4\right) = \bar{B}(i+1)_1$.

Now we have a cover for L consisting of isometric balls each of which is tangent to its adjacent balls as in Figure 5.5

Figure 5.5. A cover for L with 4g tangent balls $\bar{B}(i)_j$

Recall that the number of the isometric balls $\bar{B}(i)_j$'s in Figure 5.5 is 4g and that $e(\gamma_i)\big(\bar{B}(i)_j\big) = \bar{B}(i)_{j+1}$ for all j=1,2,3. and $e(\gamma_i)\big(\bar{B}(i)_4\big) = \bar{B}(i+1)_1$. For each $i=1,2,\cdots,g$, there exist four isometric balls $\bar{B}(i)'_j$ such that $\bar{B}(i)'_j$ is concentric with $\bar{B}(i)_j$ for each j=1,2,3,4 and the dihedral angle between $\bar{B}(i)'_j$ and $\bar{B}(i)'_{j+1}$ is $\frac{\pi}{2g}$ for each j=1,2,3. It comes from a similar construction in Figure 4.1. We also obtain that, for all $i=1,2,\cdots,g$, the metric balls $\bar{B}(i)'_j$ are isometric for all j=1,2,3,4. Furthermore, $e(\gamma_i)\big(\bar{B}(i)'_j\big)=\bar{B}(i)'_{j+1}$ for all j=1,2,3 and $e(\gamma_i)\big(\bar{B}(i)'_4\big)=\bar{B}(i+1)'_1$ because $\bar{B}(i)'_j$ is concentric with $\bar{B}(i)_j$.

We claim that the dihedral angle between $\bar{B}(i)_4$ and $\bar{B}(i+1)_1$ is also equal to $\frac{\pi}{2g}$ for each $i=1,2,\cdots,g$ where $\bar{B}(g+1)_1=\bar{B}(1)_1$. We recall that $e(\gamma_i)\big(\bar{B}(i)_4'\big)=\bar{B}(i+1)_1'$. Since all balls $\bar{B}(i)_j'$ are isometric and the dihedral angles between $\bar{B}(i)_j'$ and $\bar{B}(i)_{j+1}'=e(\gamma_i)\big(\bar{B}(i)_j'\big)$ are equal to $\frac{\pi}{2g}$, we have that the dihedral angle between $\bar{B}(i)_4'$ and $\bar{B}(i+1)_1'$ is also $\frac{\pi}{2g}$ for each i. Thus the sum of all dihedral angles between two adjacent balls is equal to $4g\cdot\frac{\pi}{2g}=2\pi$.

Now we have constructed the solid torus $\bigcup_{i=1}^g \bigcup_{j=1}^4 \bar{B}(i)'_j$ whose interior is isotopic to a regular neighborhood of a polygonal knot L_0 in \mathbb{R}^3 . Let Φ denote the closure of the complement of $\bigcup_{i=1}^g \bigcup_{j=1}^4 \bar{B}(i)'_j$ in \mathbb{S}^3 . We will define the face-pairing Möbius transformations α_i and β_i for $i=1,2,\cdots,g$ and show that Φ is the fundamental domain for the quasi-Fuchsian group generated by these α_i and β_i using the Poincaré's Fundamental Polyhedron Theorem 4.11.

Denote by $\bar{O}(i)_2$ (resp. $\bar{O}(i)_3$) the orthogonal plane to Π_i containing O(i) and $O(i)_2$ (resp. $O(i)_3$) and by $J(i)_2$ (resp. $J(i)_3$) the reflection in $\bar{O}(i)_2$ (resp. $\bar{O}(i)_3$). Let $I(i)_1$ (resp. $I(i)_4$) denote the inversion in $\partial \bar{B}(i)'_1$ (resp. $\partial \bar{B}(i)'_4$) as indicated in Figure 5.6.

Put, for
$$i = 1, 2, \dots, g$$
, $\alpha_i = J(i)_2 \circ I(i)_1$, $\beta_i = J(i)_3 \circ I(i)_4$.

We have the spherical faces of Φ as follows.

$$\bar{a}_{i} = \partial \bar{B}(i)'_{1} \cap \left(\bar{B}(i-1)'_{4} \cup \bar{B}(i)'_{2}\right)^{c}, \quad \bar{b}'_{i} = \partial \bar{B}(i)'_{2} \cap \left(\bar{B}(i)'_{1} \cup \bar{B}(i)'_{3}\right)^{c}, \\ \bar{a}'_{i} = \partial \bar{B}(i)'_{3} \cap \left(\bar{B}(i)'_{2} \cup \bar{B}(i)'_{4}\right)^{c}, \quad \bar{b}_{i} = \partial \bar{B}(i)'_{4} \cap \left(\bar{B}(i)'_{3} \cup \bar{B}(i+1)'_{1}\right)^{c}, \\ \text{for } i = 1, 2, \dots, g$$

where c stands for the complement in \mathbb{S}^3 . (See Figure 5.7.)

Figure 5.6. Construction of reflections $J(i)_2, J(i)_3$ and inversions $I(i)_1, I(i)_4$

We will show the following:

- (0) $\alpha_i, \beta_i \in M\ddot{o}b^+(\mathbb{S}^3)$.
- (1) $\alpha_i (\partial \bar{B}(i)'_1) = \partial \bar{B}(i)'_3$ and $\beta_i (\partial \bar{B}(i)'_4) = \partial \bar{B}(i)'_2$.
- $(2) \ \alpha_i^{\pm 1} \big(int(\Phi) \big) \cap int(\Phi) = \varnothing \ \text{ and } \ \beta_i^{\pm 1} \big(int(\Phi) \big) \cap int(\Phi) = \varnothing.$
- (3) (face-pairing Möbius transformations) $\alpha_i(\bar{a}_i)=\bar{a}_i', \text{ and } \beta_i(\bar{b}_i)=\bar{b}_i'.$
- (4) (cycle relation) $\prod_{i=1}^{g} [\alpha_i, \beta_i] = id$.
- (0): Since α_i is the composite of the reflection $J(i)_2$ with the inversion $I(i)_1$, α_i is an orientation-preserving Möbius transformation. We note that $\alpha_i^{-1} = I(i)_1 \circ J(i)_2$ and $\beta_i^{-1} = I(i)_4 \circ J(i)_3$.
- (1): Since $J(i)_2(R(i)_0) = R(i)_3$ and $J(i)_2(R(i)_1) = R(i)_2$, we have $J(i)_2(O(i)_1) = O(i)_3$, that is, $J(i)_2(\bar{B}(i)_1') = \bar{B}(i)_3'$. Note that the inversion $I(i)_1$ fixes $\partial \bar{B}(i)_1$ pointwise. Hence, $\alpha_i(\partial \bar{B}(i)_1') = (J(i)_2 \circ I(i)_1)(\partial \bar{B}(i)_1') = J(i)_2(\partial \bar{B}(i)_1') = \partial \bar{B}(i)_3'$.
 - (2): Recall that $\alpha_i = J(i)_2 \circ I(i)_1$. Since $I(i)_1 (int(\Phi)) \subset \bar{B}(i)'_1$ and $J(i)_2 (\bar{B}(i)'_1) =$

Figure 5.7. Spherical faces of Φ

 $\bar{B}(i)_3'$, we obtain that $\alpha_i(int(\Phi)) \subset \bar{B}(i)_3'$. However, $int(\Phi)$ is contained in the complement of $\bar{B}(i)_3'$ in \mathbb{S}^3 . Hence, $\alpha_i(int(\Phi)) \cap int(\Phi) = \emptyset$.

- (3): The reflection $J(i)_2$ takes $O(i)_1$ to $O(i)_3$ and $O(i-1)_4$ to $O(i)_4$ and fixes $O(i)_2$. It follows that $J(i)_2$ takes $\partial \bar{B}(i)'_1$ to $\partial \bar{B}(i)'_3$ and $\bar{B}(i-1)'_4$ to $\bar{B}(i)'_4$ and $\bar{B}(i)'_2$ to $\bar{B}(i)'_2$. Since $\bar{a}_i = \partial \bar{B}(i)'_1 \cap \left(\bar{B}(i-1)'_4 \cup \bar{B}(i)'_2\right)^c$, we have that $\alpha_i(\bar{a}_i) = \partial \bar{B}(i)'_3 \cap \left(\bar{B}(i)'_4 \cup \bar{B}(i)'_2\right)^c = \bar{a}'_i$. Similarly, we get face-pairing Möbius transformations $\alpha_i^{-1}(\bar{a}'_i) = \bar{a}_i$, $\beta_i(\bar{b}_i) = \bar{b}'_i$ and $\beta_i^{-1}(\bar{b}'_i) = \bar{b}_i$ as indicated in Figure 5.7.
- (4): We show that $\prod_{i=1}^{g} [\alpha_i, \beta_i] = id$. Recall that the cover for $L = \bigcup_{i=1}^{g} C_i$ consists of 4g balls $\bar{B}(i)'_j$ and Φ is the complement of the union of $int(\bar{B}(i)'_j)$ in \mathbb{S}^3 . The 4g edges of Φ are denoted by $e_{i,1} = \partial \bar{B}(i-1)'_4 \cap \partial \bar{B}(i)'_1$ and $e_{i,k} = \partial \bar{B}(i)'_{k-1} \cap \partial \bar{B}(i)'_k$ for k = 2, 3, 4. Note that the round circle $e_{i,j}$ is orthogonal to Π_i and contained in the plane whose intersection with Π_i is the line containing the ray $R(i)_{j-1}$. Since $\alpha_i = J(i)_2 \circ I(i)_1$ and $\beta_i = J(i)_3 \circ I(i)_4$, we obtain, as in Figure 5.8,

$$\alpha_i(e_{i,1}) = (J(i)_2 \circ I(i)_1)(e_{i,1}) = J(i)_2(e_{i,1}) = e_{i,4},$$

$$\beta_i(e_{i,4}) = (J(i)_3 \circ I(i)_4)(e_{i,4}) = J(i)_3(e_{i,4}) = e_{i,3},$$

$$\alpha_i^{-1}(e_{i,3}) = (I(i)_1 \circ J(i)_2)(e_{i,3}) = I(i)_1(e_{i,2}) = e_{i,2},$$

$$\beta_i^{-1}(e_{i,2}) = (I(i)_4 \circ J(i)_3)(e_{i,2}) = I(i)_4(e_{i+1,1}) = e_{i+1,1}.$$

It follows that $[\alpha_i, \beta_i](e_{i,1}) = e_{i+1,1}$. Hence, $\prod_{i=1}^g [\alpha_i, \beta_i](e_{1,1}) = e_{1,1}$ where $e_{g+1,1}$ is denoted by $e_{1,1}$. However, it does not complete the proof of the assertion (4) because the restriction $\rho|_{e_{1,1}}: e_{1,1} \to e_{1,1}$ could be a rotation where $\rho = \prod_{i=1}^g [\alpha_i, \beta_i]$. It remains only to show that $\prod_{i=1}^g [\alpha_i, \beta_i](x_1) = x_1$ for some $x_1 \in e_{1,1}$.

Figure 5.8. Image of z under $[\alpha_i, \beta_i]$

Suppose that Π_{s-1} is the base plane Π and Π_s is a bridge plane which is orthogonal to Π . Let $\Pi^{\perp} = \Pi_s$ and let t denote the smallest integer such that $\Pi_{t+1} = \Pi$ and s < t. We see that $\Pi^{\perp} = \Pi_s = \Pi_{s+1} = \cdots = \Pi_t$ is the bridge plane containing the modified bridge $\bigcup_{i=s}^t C_i$ where $\bigcup_{i=s}^t C_i \cap \Pi = \{C_s(-), C_t(+)\}$ as in Figure 5.9. The set $e_{s,1} \cap \Pi$ consists of two points. We choose a point x_s out of these two points. Consider the line segments $\overline{C_s(-)C_t(+)}$ and $\overline{C_s(-)x_s}$ on Π which are perpendicular to each other. We call $\overline{C_s(-)C_t(+)}$ the bridge line in Π corresponding to the bridge $\bigcup_{i=s}^t C_i$ as in Figure 5.9. Let x denote the point in Π

such that the parallel transport of the line segment $\overline{C_s(-)x_s}$ along the bridge line $\overline{C_s(-)C_t(+)}$ on Π is the segment $\overline{C_t(+)x}$ in Π . We note that both $\overline{C_s(-)x_s}$ and $\overline{C_t(+)x}$ are orthogonal to $\overline{C_s(-)C_t(+)}$.

Figure 5.9. A modified bridge in Π^{\perp}

We claim that the point x is equal to $\prod_{i=s}^t [\alpha_i, \beta_i](x_s)$. Denote $x_{t+1} = \prod_{i=s}^t [\alpha_i, \beta_i](x_s)$ and we show that $x_{t+1} = x$. Let \mathcal{H} denote the half 3-space containing x_s and bounded by $\Pi^{\perp} = \Pi_s$. We recall that $[\alpha_s, \beta_s](e_{s,1}) = e_{s+1,1}$ and $\{x_s\} = e_{s,1} \cap \Pi \cap \mathcal{H}$. Denote by x_{s+1} the image of x_s under $[\alpha_s, \beta_s]$. So $x_{s+1} \in e_{s+1,1}$. We again observe that

$$\begin{split} &\alpha_s(e_{s,1}) = \big(J(s)_2 \circ I(s)_1\big)(e_{s,1}) = J(s)_2(e_{s,1}) = e_{s,4} \,, \\ &\beta_s(e_{s,4}) = \big(J(s)_3 \circ I(s)_4\big)(e_{s,4}) = J(s)_3(e_{s,4}) = e_{s,3} \,, \\ &\alpha_s^{-1}(e_{s,3}) = \big(I(s)_1 \circ J(s)_2\big)(e_{s,3}) = I(s)_1(e_{s,2}) = e_{s,2} \,, \\ &\beta_s^{-1}(e_{s,2}) = \big(I(s)_4 \circ J(s)_3\big)(e_{s,2}) = I(s)_4(e_{s+1,1}) = e_{s+1,1} \,. \end{split}$$

It follows that $[\alpha_s, \beta_s](e_{s,1}) = [J(s)_2, J(s)_3](e_{s,1})$, since $I(s)_1$ fixes $e_{s,1}$, $e_{s,2}$ pointwise and $I(s)_4$ fixes $e_{s,4}$, $e_{s+1,1}$ pointwise. So $x_{s+1} = [J(s)_2, J(s)_3](x_s)$. We note that $J(s)_2(\mathcal{H}) = \mathcal{H}$ and $J(s)_3(\mathcal{H}) = \mathcal{H}$ because both reflection planes corresponding reflections $J(s)_2$ and $J(s)_3$ are orthogonal to $\Pi^{\perp} = \partial \mathcal{H}$. The point x_s can be considered as the highest point of the semicircle $e_{s,1} \cap \mathcal{H}$ from Π^{\perp} . So $x_{s+1} = [J(s)_2, J(s)_3](x_s)$ is also the highest point of the semicircle $e_{s+1,1} \cap \mathcal{H}$. It follows from the fact that both restrictions $J(s)_2|_{\mathcal{H}}$, $J(s)_3|_{\mathcal{H}}: \mathcal{H} \to \mathcal{H}$ preserve the height from $\Pi^{\perp} = \partial \mathcal{H}$. Since $x_{t+1} = \prod_{i=s}^t [\alpha_i, \beta_i](x_s) = \prod_{i=s}^t [J(i)_2, J(i)_3](x_s)$, the point x_{t+1} is also the highest point of the semicircle $e_{t+1,1} \cap \mathcal{H}$ from Π^{\perp} . Because the circle $e_{t+1,1}$ is centered at $C_t(+) \in \Pi \cap \Pi^{\perp}$ and orthogonal to Π^{\perp} , the segment $\overline{C_t(+)}x_{t+1}$ is orthogonal to Π^{\perp} . Recall that $\overline{C_t(+)x}$ is orthogonal to Π^{\perp} . So $\overline{C_t(+)}x_{t+1}$ coincides with $\overline{C_t(+)x}$ since they have the same length. We obtain that $x_{t+1} = x$. This completes the proof of the claim.

We may assume that $C_1 \subset \Pi$ where $L = \bigcup_{i=1}^g C_i$ and let $e_{1,1} \cap \Pi = \{x_1, y_1\}$. By the above claim, we can ignore each bridge to prove $\prod_{i=1}^g [\alpha_i, \beta_i](x_1) = x_1$. So we have that $\prod_{i=1}^g [\alpha_i, \beta_i](x_1) \in e_{1,1} \cap \Pi$, that is, $\prod_{i=1}^g [\alpha_i, \beta_i](x_1)$ equals either x_1 or y_1 . Let L_{Π} denote the union of $L \cap \Pi$ and all bridge lines corresponding the bridges of L. This L_{Π} is a smooth closed curve in Π and has the induced orientation from L. Consider the parallel transport of $\overline{C_1(-)x_1}$ along L_{Π} on the base plane Π . The result of the parallel transport is $\overline{C_1(-)x_1}$ since Π is orientable. Thus, we obtain that $\prod_{i=1}^g [\alpha_i, \beta_i](x_1) = x_1$. It completes the proof of the assertion (4).

Let G denote the group generated by α_i and β_i , $i=1,2,\cdots,g$. By the Poincaré's Fundamental Polyhedron Theorem 4.11, Φ is a fundamental domain for G and G is a discrete subgroup of $M\ddot{o}b^+(\mathbb{S}^3)$. By the construction of Φ , $\overline{\mathbb{S}^3-\Phi}$ is isotopic to a regular neighborhood $Nbd(L_0)$ of the polygonal knot L_0 . This completes the proof. \square

Remark 5.2 To complete the proof of Theorem 5.1, we need to show that the limit set of G is a topological circle. We see that $G \cong \pi_1(S)$, where S is a closed surface. Let $F = \pi_1(S)$. This is a Fuchsian group. The limit set $\Lambda(F)$ of F is

a round circle. Suppose that $\varphi: F \to G$ is an isomorphism. The following is given by Tukia in [11]. If the groups G and F are convex cocompact, i.e. have fundamental polyhedrons in \mathbb{H}^4 with finitely many sides and without cusps, then there is a homeomorphism $\Lambda(F) \to \Lambda(F)$ which induces φ . So the limit set $\Lambda(G)$ is a topological circle.

The main theorem in this thesis is the following:

Theorem 5.3 Let M be a closed oriented 3-manifold. Then there exists a 3-manifold N so that the connected sum of M and N admits a Möbius structure.

Proof. Suppose that M is a closed oriented 3-manifold. Then there is a simple branched covering $f: M \to \mathbb{S}^3$ such that the singular locus Σ_f of f is a link which is contained a 3-ball B in M. It follows from Corollary 3.9. Consider only the case that Σ_f is connected, that is, a knot in B. So the branch locus B_f of f is a knot in \mathbb{S}^3 .

Denote $M_1 = M - int(Nbd(\Sigma_f))$ and $T_1 = \partial Nbd(\Sigma_f)$. Let $Nbd(B_f) = f(Nbd(\Sigma_f))$ and $T'_1 = \partial Nbd(B_f)$. In this case, $Nbd(\Sigma_f)$ and $Nbd(B_f)$ are solid tori with boundary T_1 and T'_1 , respectively. We consider the restriction of f to M_1 . Since $f: M_1 \to \mathbb{S}^3$ is a local injection, we give M_i the pull-back structure of the canonical structure on \mathbb{S}^3 by f. Then M_1 is a Möbius manifold with toral boundary and $f: M_1 \to \mathbb{S}^3$ is a Möbius morphism. Let m_1 (resp. l_1) be a meridian (resp. longitude) of T_1 and let m'_1 (resp. l'_1) be a meridian (resp. longitude) of T'_1 . We note that the restriction of f to the boundary torus T_1 , $f: T_1 \to T'_1$, is a 2-fold covering such that $f_*(m_1) = 2m'_1$ and $f_*(l_1) = l'_1$ up to homotopy. It follows from the fact that the index of σ_f is 2_f

On the other hand, for a knot B_f there exist a quasi-Fuchsian group G and a compact fundamental domain Φ for G acting on \mathbb{S}^3 so that $\overline{\mathbb{S}^3 - \Phi}$ is isotopic to a regular neighborhood of B_f . It follows from Theorem 5.1. Denote $\widehat{T} = \overline{\mathbb{S}^3 - \Phi}$ which is a solid torus in \mathbb{S}^3 . Then there exists a homeomorphism $h: \mathbb{S}^3 \to \mathbb{S}^3$ such that $h(Nbd(\Sigma_f)) = Nbd(\widehat{T})$, where $Nbd(\widehat{T})$ is a regular neighborhood of the solid

torus \widehat{T} . Denote $T_2' = \partial Nbd(\widehat{T})$. We consider $h \circ f : M_1 \to \mathbb{S}^3$, denoted f_1 . Then $f_1 : M_1 \to \mathbb{S}^3$ is a Möbius morphism. We note that the restriction of f_1 to the boundary torus $T_1, f_1 : T_1 \to T_2'$, is a 2-fold covering such that $f_*(m_1) = 2m_2'$ and $f_*(l_1) = l_2'$ up to homotopy, where m_2' (resp. l_2') be a meridian (resp. longitude) of T_2' .

Let $\Phi' = \Phi - Nbd(\widehat{T})$. We call Φ' the truncated fundamental domain. Since $\Phi' = Nbd(\widehat{T}) - int(\widehat{T})$, the truncated fundamental domain Φ' is homeomorphic to a solid torus removed an open neighborhood of the core. Note that $\partial \Phi' = \partial \Phi \sqcup T_2'$. We remark that Φ' has a product structure as follows. Φ' is homeomorphic to $T^2 \times I$, where T^2 is the torus and I = [0,1]. Furthermore, $\partial \Phi'$ and T_2' correspond to $T^2 \times \{0\}$ and $T^2 \times \{1\}$, respectively.

Let $p:T^2\to T^2$ be a 2-fold covering such that $p_*(m)=2m$ and $p_*(l)=l$ up to homotopy, where m and l are a meridian and a longitude of the torus T^2 . Denote by $\hat{p}:\Phi'\to\Phi'$ the 2-fold covering with $\hat{p}=p\times id:T^2\times I\to T^2\times I$. We note that we have 2-fold covering $\hat{p}:\Phi'_2\to\Phi'$, $\Phi'_2=\Phi'$ and Φ'_2 has a different Möbius structure from Φ' . Consider the quotient map $q_2:\Phi'_2\to\Phi'_2/G$. We note that face-pairing transformations induce an equivalence relation on Φ'_2 and each point in $\Phi'_2-\partial\Phi$ is equivalent only to itself. Denote $M_2=\Phi'_2/G$ and $T_2=\partial M_2$.

We claim that M_2 is a Möbius manifold with toral boundary T_2 . Consider the quotient map $q:\Omega(G)\to\Omega(G)/G$. Then $\Phi'/G=\Omega(G)/G-q(\Phi-Nbd(\widehat{T}))$, denote M_2' . The Möbius manifold M_2' is homeomorphic to $S^*\times\mathbb{S}^1$, where S^* is a surface with boundary gotten by removing an open disk from a closed surface. Then the manifold M_2 is also homeomorphic to $S^*\times\mathbb{S}^1$ and M_2 is a 2-fold cover of M_2' since $S^*\times\mathbb{S}^1\to S^*\times\mathbb{S}^1$ is given by $(x,e^{it})\mapsto (x,e^{2it})$. Hence M_2 is the Möbius manifold with boundary torus T_2 . The claim is completed.

Now we consider a regular neighborhood $Nbd(T_2)$ in M_2 . Recall that $\partial \Phi' = \partial \Phi \sqcup T_2'$. Since there is a one-to one correspondence between $\Phi_2' - \partial \Phi'$ and $M_2 - q_2(\partial \Phi)$ and $\hat{p}: \Phi_2' \to \Phi$ is a 2-fold covering, we obtain the 2-fold covering $f_2: Nbd(T_2) \to Nbd(T_2')$, where $Nbd(T_2')$ is a regular neighborhood of T_2' in Φ . The single-valued map f_2 is a Möbius morphism. We note that the restriction of f_2 to the boundary

torus T_2 , $f_2: T_2 \to T_2'$, is a 2-fold covering such that $f_*(m_2) = 2m_2'$ and $f_*(l_2) = l_2'$ up to homotopy, where m_2 (resp. l_2) be a meridian (resp. longitude) of T_2 .

Consider the identity map $id: T_2' \to T_2'$ which reverses orientations (induced form M_1 and M_2). Note that $f_{1*}(\pi_1(T_1)) = f_{2*}(\pi_1(T_2))$. There exists a lifting $id: \partial M_1 = T_1 \to T_2 = \partial M_2$ of $id: T_2' \to T_2'$ such that the following diagram commutes:

$$T_1 \xrightarrow{\tilde{i}d} T_2$$

$$f_1 \downarrow \qquad \qquad \downarrow f_2$$

$$T_2' = T_2'$$

By Theorem 2.6, the attaching manifold $M_1 \cup_{\tilde{id}} M_2$ admits the Möbius structure which extends the Möbius structures of M_1 and M_2 . Let $Q = M_1 \cup_{\tilde{id}} M_2$. We recall that $int(Nbd(\Sigma_f)) \subset B \subset M$. The Möbius manifold Q is the connected sum of M and $N = (S^3 - int(Nbd(\Sigma_f))) \cup_{\tilde{id}} M_2$. This completes the proof of the case that the singular locus Σ_f is a knot in B.

It is generalized for the case that the singular locus Σ_f is a link in B. Let $\Sigma_f = K_1 \sqcup \cdots \sqcup K_m$, where K_i is a connected component of the link Σ_f and $Nbd(\Sigma_f) = Nbd(K_1) \sqcup \cdots \sqcup Nbd(K_m)$. Suppose that $S_i^* \times \mathbb{S}^1$ are glued to $M - int(Nbd(\Sigma_f))$ using homeomorphisms $g_i : \partial S_i^* \times \mathbb{S}^1 \to \partial Nbd(K_i)$ so that the resulting manifold Q admits a Möbius structure. For each i, S_i^* is a surface with boundary gotten by removing an open disk from a closed surface. Denote $X = \sqcup (S_i^* \times \mathbb{S}^1)$ and $g = \cup g_i$. Then the Möbius manifold Q is the connected sum of M and N, where $N = (\mathbb{S}^3 - int(Nbd(\Sigma_f))) \cup_g X$. \square

REFERENCES

- [1] J. W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), 370-372.
- [2] R. Benedetti, C. Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, 1992.
- [3] R. Canary, B. A. Epstein, P. Green, *Notes on notes of Thurston*, London Math. Soc. Lecture Notes 111 (1987), 3-92.
- [4] A. L. Edmonds, Deformation of maps to branched coverings in dimension two, Ann. Math. 110 (1979), 113-125.
- [5] M. Feighn, Branched covers according to J. W. Alexander, Collect. Math. 37 (1986) no. 1, 55-60.
- [6] Y. Kamishima, S. P. Tan, Deformation spaces on geometric structures, Adv. Stud. Pure Math. Vol. 20 (1992), 263-299.
- [7] M. Kapovich, Flat conformal structures on 3-manifolds, I: Uniformization of closed Seifert manifolds, J. Diff. Geom. 38 (1993), 191-215.
- [8] R. Kulkarni, Conformal Structures and Möbius Structures, Conformal Geometry, Aspects of Math. Vol. 12 (R. Kulkarni, U. Pinkall, eds.), Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden (1988), 1-39.
- [9] B. Maskit, Kleinian groups, Springer-Verlag, 1987.
- [10] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-478.
- [11] P. Tukia, The limit map of a homeomorphism of discrete Möbius groups, Inst. Hautes Étdues Sci. Publ. Math. no. 82 (1995), 97-132.
- [12] J. H. C. Whitehead, The immersion of an open 3-manifold in Euclidean 3-space, Proc. London Math. Soc. (3) 11 (1983), 81-90.