BOUNDARIES OF GROMOV-HYPERBOLIC SPACES SATISFYING
COARSE POINCARE DUALITY

MICHAEL KAPOVICH AND BRUCE KLEINER

ABSTRACT. Our main theorem implies that if X is a Gromov hyperbolic simplicial
complex satisfying a coarse version of n-dimensional Poincaré duality, then with
respect to Steenrod homology, the boundary 0., X is a linearly locally acyclic ho-
mology (n — 1)-manifold with the homology of an (n — 1)-sphere.

1. INTRODUCTION

This is the first in a series of papers [14, 13] where we discuss spaces satisfying
coarse Poincaré duality; these are spaces which behave homologically, on a large
scale, like uniformly contractible manifolds (see section 3 for the precise definition
and examples). In the present paper we study the Gromov hyperbolic case, and show
that the boundary behaves homologically like a linearly locally contractible sphere.

Definition 1. A metric space W is linearly locally acyclic (respectively linearly locally
coacyclic) with respect to a (co)homology theory if there is a constant A > 0 such
that for all p € W, 0 < r < diam(W), the inclusion B(p, A\r) — B(p, ) (respectively
W\ B(p,r) = W\ B(p, A\r)) induces zero in reduced (co)homology.

Let X be a connected simplicial complex! whose links contain a uniformly bounded
number of simplices. We endow X with a path metric such that each simplex is
isometric to a regular Euclidean simplex of side length 1. Henceforth we will refer to

an object satisfying these conditions as a bounded geometry metric simplicial complex
(BGMSCQ).

The main result of this paper is the following

Theorem 2. Assume X is a Gromov hyperbolic BGMSC which satisfies n-dimensi-
onal coarse Poincaré duality over a commutative ring with unit R, equip the boundary
Oso X with a Gromov-type metric. Then:

1. With respect to Cech cohomology with coefficients in R, the ideal boundary of X

s linearly locally acyclic, linearly locally coacyclic, and has the same cohomology as
the (n — 1)-sphere. When n = 2, the boundary 0,X homeomorphic to the circle.

Date: September 11, 2004.
IWe conflate a simplicial complex with its geometric realization.
1



2. Suppose R is a hereditary ring. Then with respect to Steenrod homology with
coefficients in R, the ideal boundary 0sX is a linearly locally acyclic and coacyclic
(n — 1)-dimensional homology manifold with the same homology as the (n — 1)-sphere
St When n = 3, then 0 X 1is homeomorphic to the 2-sphere.

Universal covers of closed aspherical PL-manifolds with Gromov hyperbolic funda-
mental group are examples of spaces satisfying the hypotheses of Theorem 2. More
generally, any uniformly contractible, Gromov hyperbolic BGMSC which is a topo-
logical manifold satisfies the hypotheses.

Theorem 2 resembles a theorem of Bestvina [2, Theorem 2.8], but differs in several
respects. First, we stick to Gromov hyperbolic spaces, where there is a canonical
notion of boundary, and where the boundary comes equipped with more structure
than a mere topology — it has a canonical quasisymmetric structure; [2] considers
ideal boundaries of more general classes of spaces. Second, we do not require a group
action.? Third, we formulate the topological conclusions quantitatively, using the
quasisymmetric structure. Parts of the setup and proof — in particular the idea of
using Steenrod homology — follow [2].

Applying [21], we obtain:

Corollary 3. Let X be as in Theorem 2, with n = 2. Then X is quasi-isometric to
the hyperbolic plane HZ.

Bonk and Schramm established this result when X is a triangulation of the plane with
bounded valence, see [4]. Earlier Bowers [6] had given conditions on the 1-skeleton
of a (Gromov hyperbolic) planar triangulation which guarantee that its boundary is
homeomorphic to the circle.

Spaces satisfying the hypotheses of Theorem 2 but which are not manifolds arise
naturally in connection with Gromov hyperbolic Poincaré duality groups, and as
the “base spaces” of the coarse fibrations studied in [13]. In the forthcoming paper
[14] we will apply our results to characterize 2-dimensional Poincaré duality groups
over commutative rings, settling a conjecture of Dunwoody and Dicks. This group-
theoretic application explains why we are working with rather general commutative
rings rather than with Z or R. In [13] we will study coarse fibrations of manifolds
by lines; one of our objectives is to prove a coarse analogue of the Seifert fibered
space conjecture and give an alternative proof of G. Mess’ part of the proof of the
original Seifert fibered space conjecture. By working with spaces satisfying coarse
2-dimensional Poincaré duality instead of insisting on honest Riemannian planes (as
in [17, 15]) one can side-step some technicalities.

2t appears that much of [2], including [2, Theorem 2.8] can probably be recast in group-less form.
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2. PRELIMINARIES

Notation and conventions. We let Z, := {m € Z | m > 0} and R, := {z €
R | z > 0}. All maps between cell complexes will be continuous unless otherwise
specified. Given a map f we let Im(f) denote the image of f.

We fix once and for all a commutative ring R with a unit. We will be using singular
(co)homology with R coefficients unless we indicate otherwise (at some point we

switch to Steenrod homology and Cech cohomology). For each negative integer k we
set Hi(-) = 0, HE(-) = 0, etc.

Metric space notions. A subset S C Z of a metric space is called d-dense if each
point z € Z is within distance < § from S. A subset in Z which is /-dense from some
0 < 00, is called a net in Z.

A metric space X is said to have bounded geometry if there is a function ¢(R) such
that each ball B(z, R) C X (of radius R centered at = € X) has cardinality < ¢(R).

The definition relates to the usual concept of a Riemannian manifold of bounded
geometry as follows. Suppose that M is a complete Riemannian manifold whose
sectional curvature is bounded both from above and from below and whose injectivity
radius is bounded away from zero; such a manifold M is called a Riemannian manifold
of bounded geometry. For instance, one can take a covering space of a compact
Riemannian manifold with the pull-back metric. Pick a maximal net X C M and
give it the induced metric from M. Then X is a metric space of bounded geometry
in the sense of the above definition.

If Y C X is a subset in a metric space, we will use the notation Nz(Y') to denote
the collection of points € X which are within distance < R from Y. The set Nz (Y)

is called an R-neighborhood of Y.
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A metric space is called proper if each metric ball in X is compact.

A map f: X — X' between metric spaces X and X' is an (L, A)-quasi-isometry if
for all 1,25 € X we have

(@) %d(xl, 22) = A < d(f(z1), f(22)) < Ld(z1,22) + A

and d(z',Im(f)) < A for all 2’ € X'.

An (L, A)-quasi-geodesic segment in X is a map f : [0,7] — X which satisfies (4).
A metric space X is called quasi-geodesic if there exists a pair of constants (L, A) such
that every pair of points a,b € X can be joined by an (L, A)-quasi-geodesic segment

(ie. f(0) = a, f(T) =b).

Metric simplicial complexes. A metric simplicial compler X is a connected sim-
plicial complex endowed with a path-metric such that each simplex in X is isometric
to the regular Euclidean simplex with the unit edges. A metric simplicial complex
X is said to have bounded geometry if there is a number v such that the star of each
vertex of X contains at most v simplices. Thus the zero-skeleton of X is a metric
space of bounded geometry in the sense of the previous section. Basic examples of
metric simplicial complexes of bounded geometry (BGMSC) are given by

1. Covering spaces of compact metric simplicial complexes.

2. Suppose that M is a Riemannian manifold of bounded geometry. Then M
admits a triangulation which is a metric simplicial complex of bounded geometry.

A metric simplicial complex X is said to be uniformly contractible (resp. uniformly
acyclic) if there is an increasing function ¢(R) such that for each R-ball B(z, R) C X
the map B(z, R) — B(xz,9¥(R)) induces a zero map on the homotopy groups (resp.
reduced homology groups).

An important class of metric simplicial complexes is given by Rips compleres of
bounded geometry metric spaces. Let Z be such a metric space and D € R,. We
define the D-Rips complex Ripsp(Z) to be the simplicial complex whose vertex set is
Z, where distinct points zy, ..., z,, € Z span an n-simplex in Ripsy(Z2) iff d(z;, ;) < D
for all 0 < 4,5 < n. Thus we get a direct system of Rips complexes Rips,(Z) with
the inclusion morphisms Rips,(Z) — Rips,(Z) for D < D'.

We metrize each connected component of a D-Rips complex by introducing a path-
metric such that each simplex in X is isometric to the regular Euclidean simplex with
the unit edges. We will be mainly interested in coarsely connected bounded geometry
metric spaces Z, i.e. metric spaces such that Rips,(Z) is connected for sufficiently
large D. Note that each quasi-geodesic metric space is coarsely connected. If Z has
bounded geometry, so does Ripsg(Z) for each R < oc.

Let X be a metric simplicial complex. If V C X and R € Z,, we let Ng(V)
denote the smallest metric simplicial subcomplex in X which is contained in the

R-neighborhood of V in X. Note that if Y C X is a subcomplex then
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1. No(Y) =Y.
2. If Y, Y’ C X are subcomplexes and R+R' < d(Y,Y"), then Ng(Y)NNg (Y') = 0.

Although Ng(Y) is not the same as the metric R-neighborhood Nz(Y') defined in
the previous section, these subsets are not that much different:

There exists a function R = R(r) such that for each subcomplex Y C X,
Ny (Y) C N (Y), and Ngy(Y) C N, (Y).

Gromov hyperbolic spaces. Let Z be a geodesic metric space. A geodesic triangle
A C Z is called R-thin if every side of A is contained in the R-neighborhood of the
union of two other sides. An R-fat triangle is a geodesic triangle which is not R-thin.
A geodesic metric space Z is called d-hyperbolic in the sense of Rips (Rips was the
first to introduce this definition) if each geodesic triangle in Z is §-thin.

Let X be a metric space (which is no longer required to be geodesic). For each base-
point p € X define a number 6, € [0, 00| as follows. For each z € X set |z, := d(z, p)
and define the Gromov product

(2 9)p 7= 5 (laly + lyly — d(z. ).

Then

0y = 5 i[{)lf ]{(5|Vx, Y,z € X, (z,y), > min((z, 2),, (y, 2)p) — I}
€|0,00

We say that X is d-hyperbolic in the sense of Gromov, if co > § > 6, for some p € X.

We note that if X a geodesic metric space which is d-hyperbolic in Gromov’s sense
then X is 45-hyperbolic in the sense of Rips and vice-versa (see [11, 6.3C]).

A metric space Z is Gromov hyperbolic if it is d-hyperbolic for some § < co. If Z
is coarsely connected, has bounded geometry, and is d-hyperbolic then there exists
D such that for each R > D, the complex Ripsg(Z) is uniformly contractible. To
prove it note that under the above assumptions, for all sufficiently large R, the space
Ripsg(Z) is a geodesic metric space and the inclusion ¢ : Z — Ripsg(Z) is a quasi-
isometry. Thus the image ¢(Z) is a net in Ripsg(Z) and therefore the assertion follows
from [11, Lemma 17.A], see also [7, Propositon 3.23].

Recall that a subset Y C X is c-quasi-convez if every geodesic segment v C X with
endpoints in Y is contained in N.(Z).

If Y C X is a c-quasi-convex subset in a d-hyperbolic metric space X, one defines
the nearest-point projection

p: X—->Y
by sending each point in X to a point y = p(z) € Y such that for each point ¢’ € Y’
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Such point y is typically non-unique. However there is a function R = R(J, ¢) such
that the subset Y’ C Y, consisting of points y' € Y satisfying the above inequality,
has diameter < R.

Suppose that X is a d-hyperbolic proper geodesic metric space. Then the ideal
boundary of X is the set of equivalence classes of geodesic rays in X, emanating from
the same point p € X, where rays p and p’ are said to be equivalent if they are within
finite Hausdorff distance from each other. The boundary 0, X of X is topologized as
follows: Given a geodesic ray p, its basis of neighborhoods consists of the sets U(p, T):

Ulp,T) :={p": p'(0) =pand Vt € [0, T], d(p(t),p'(t)) <20+ 1}.

A sequence (z;) in X is said to converge to a point n € 0, X if each subsequence in
the sequence of geodesic segments px; converges to a ray p' equivalent to p, where the
convergence is uniform on compacts in [0, 00).

The topology on 0, X is metrized as follows (see for instance [7]). We first extend
the Gromov product to 0,,X:

(ga 77)1) ‘= sup lim . i.n (:L‘ia yj)pa
1,j—00
where supremum is taken over all sequences (z;), (y;) which converge to &, n respec-
tively. Then (&,7), < oo if £ # n and (&,7), = oo otherwise. Now, given a constant
¢ > 0 define the function p, on (9 X)?:

pC(ga 77) = exp(—c(f, n)P)’

if £ # n and p.(&,€) := 0. The function p, is not a metric, however it determines a
metric d. on 0 X by

de(&,m) :=inf Y pe(&i, i),

=1

where the infimum is taken over all finite chains & = &, &y, ..., &,—1 = 1 “connecting”
& ton.

Theorem 5. (See [3].) If X is a contractible Rips compler of a bounded geometry
0-hyperbolic quasi-geodesic metric space Y then X U0, X s a Z-set compactification
of X.

We refer the reader to [2] for the precise definition of a Z-set compactifications.
Intuitively speaking, this compactification of a metric space X homologically looks

“like” a compact manifold with boundary, whose interior is X.
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Steenrod homology. We refer the reader to [18] and [10] for the detailed account
of the Steenrod homology theory.

Let Z be a compact metrizable space. Choose a cofinal sequence {U;};>o of finite
open covers so that U is the trivial cover {Z}, and U;; refines U; for all i > 0. Let
W be the mapping telescope associated with the induced diagram of nerves:

...« Nerve(l;) <+ Nerve(Ui;1) + ...

Then the proper homotopy type of W is independent of the choice of covers, which
leads to:

Definition 6. The (reduced) Steenrod homology of Z is defined as the locally finite
homology of W:

H!Z) = HEL(W).

Relative Steenrod homology is defined similarly for compact metrizable pairs. If Z
is compact metric space and U C Z is open, we define the Steenrod homology of the
pair (Z,U) to be the direct limit lim H*(Z, K) where K ranges over compact subsets
of U.

If Z C X is a Z-set embedding of Z into a compact, finite dimensional, absolute
retract X, then X \ Z has the same proper homotopy type as the mapping telescope
W, and hence H*(Z) ~ HLF (X \ Z). In particular, by applying this definition to
the pair (X, Z), where X is a contractible Rips complex of a bounded geometry o-
hyperbolic coarsely connected metric space and Z = 0, X, we compute the Steenrod
homology of Z via the locally finite homology of X.

3. COARSE POINCARE DUALITY

We first recall the usual Poincaré duality theorem:

Theorem 7. Suppose that X is a BGMSC homeomorphic to an n-dimensional man-
ifold. Then for each closed subset W C X and k € Z there is an isomorphism

PW,k : ﬁf(W) — Hn,k(X,X \ W)

which is local in the following sense: For each T € Z¥(W) and any open set U contain-
ing the support of T, there is a representative of Py (7) supported in U ; here H: (")
denotes Cech cohomology. The family {Pw,} is compatible with homomorphisms in-
duced by inclusions.

The coarse Poincaré duality is a coarse analogue of the above property. Let R
be a commutative ring with the unit. In the following definition all homology and

cohomology groups are taken with coefficients in R.
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Definition 8. Let X be a uniformly acyclic BGMSC. We say that X satisfies coarse
n-dimensional Poincaré duality over R if the following holds. There is a constant
D > 0 so that for each k € Z there is a system of homomorphisms { Pk} defined for
subcomplexes K C X:

Py : HF(Np(K)) — H, +(X, X\ K),

which are compatible with homomorphisms induced by inclusions, and which deter-
mine an approzimate isomorphism?® in the sense that the homomorphisms « and £ in
the following commutative diagram are zero:

Prpx)

kET(PND(K)) — Hf(NQD(K)) — Hn_k(X, VD(K)) — coker(PND(K))
(9) al " Bl
ker(Pg) — HMNp(K)) 25 H, w(X,Vo(K)) —  coker(Px).

Here and in what follows V,(K) := X — N,(K). The homomorphisms Pk are local in
the following sense: If [o] € H¥(Np(K)) is represented by a cocycle o € Z¥(Np(K)),
then Pk (o) can be represented by a relative cycle 7 supported in Np(Supp(o)).

Note that (9) implies that H}(X,R) ~ H}(R",R).

Lemma 10. Suppose that n > 2 and X is a BGMSC satisfying coarse n-dimensional
Poincaré duality over R. Then X is 1-ended.

Proof. This follows directly from the fact that H!(X) = {0}. O

We note that in [12] we have proven a number of coarse versions of Jordan separation
theorem for complexes satisfying coarse Poincaré duality. In particular:

Proposition 11. Suppose that Z is a metric simplicial complex satisfying n-dimen-
stonal Poincaré duality, M s a uniformly acyclic BGMSC which is homeomorphic to
an n-manifold. Then for each uniform proper map f: M — Z, the image f(M) is a
net in Z.

We next observe that (unlike the usual Poincaré duality) coarse Poincaré duality is
a quasi-isometry invariant property:

Lemma 12. (See [13].) Suppose Y and Y' are quasi-isometric uniformly acyclic
BGMSC’s. Then'Y satisfies coarse n-dimensional Poincaré duality iff Y' does.

Proof. We first note that if Y satisfies n-dimensional Poincaré duality with the con-
stant D then it also satisfies n-dimensional Poincaré duality with the constant D for
any D > D. Next, the quasi-isometry f©@ : V© — y*© extends to a Lipschitz
mapping f : Y — Y’ which admits a Lipschitz proper homotopy-inverse f such that:

3Vanishing of a means the approrimate monomorphism and vanishing of 8 means the approzimate

epimorphism.
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1. Both f and f are (L, A)-quasi-isometries.

2. The tracks of the homotopies fo f and fo f have diameter not exceeding certain
constant A’ > A.

To construct the duality operators Pj, for K’ C Y’ we take K := f!(K’) and
consider the composition P' = f, o Py, k) o f*:

Pnpx)

HM(Np (K')) & HP(Ngyn(K))
— Hy i (Y, Vo(Nr(K))) & Ho n(Y, Vo(K))

for appropriately chosen D' and R = %’ — A’. 'We have to choose D' so that P’
would satisfy the approximate isomorphism property. We consider the approximate
epimorphism property and leave the approximate monomorphism part to the reader.
Consider the following commutative diagram:

Hy i (Y7, Vs, (K7))

!

Ho h(V,Voa(K)) L5 Hoy n(Y', Vi (K))
{ {

HY(No(K)) 5 Ho y(V,Va(K)) L5 Hoof (Y, V,(KY))
{ { {

HY (N3, (K")) L5 HE(NY(K)) -5 H, (Y V(K) 25 H, oY, Va(K"))

Here d > D is chosen sufficiently large so that
2
A'<p< %—Aand 3p < Z(d_QAI)'

Set D' = 3p. Consider a homology class a € H, ,(Y',Vo(K')) which lifts into
a € H,_,(Y',V5,(K')) with the intermediate lifts & € H,_x(Y',V,(K')), and & €
H,_(Y',V5,(K")). Then using the map f. one can lift the classes &, &, o to classes
B, 3,8 which belong to H, (Y, Vou(K)), Hyp (Y, Va(K)), H, (Y, Vo(K)) respec-
tively. Next, use the approrimate epimorphism property of P to lift B and 3 to
classes 4, in the groups H¥(Nyy(K)), H¥(Ny4(K)) respectively. Finally, using the
projection of f*(%) to H¥(N,(K")) we lift v to a class € € H¥(N3,(K")). This estab-
lishes the approzimate epimorphism property for P’ with the constant D’ above. [

Lemma 13. (See [12].) The following BGMSC satisfy coarse n-dimensional Poincaré
duality:
1. An acyclic metric simplicial compler X which admits a free, simplicial, cocom-

pact action by a PD(n) group.
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2. An n-dimensional, bounded geometry metric simplicial complexr X, with an aug-
mentation o : C%(X) — Z for the compactly supported simplicial cochain complez, so
that (C}(X), @) is uniformly acyclic.

3. A uniformly acyclic, bounded geometry metric simplicial compler X which is a
topological n-manifold.

Remark 14. Here an augmentation is a homomorphism « which vanishes on all n-
dimensional coboundaries.

Other examples are obtained as total spaces of coarse fibrations, see [13].

4. GROMOV HYPERBOLIC SPACES SATISFYING COARSE POINCARE DUALITY

In this section we prove the main theorem of this paper.

Let R be a commutative ring with unit. For the rest of this section all (co)homology
groups will be with coefficients in R. We recall that a commutative ring R is called
hereditary if every ideal I C R is projective as an R-module, see [9]. Every PID
and many other rings are hereditary. An example of a commutative ring which is not
hereditary is a free Boolean ring on uncountable set of generators, see [1]. (A Boolean
ring is a ring of characteristic 2.)

Let X be a Gromov hyperbolic BGMSC satisfying n-dimensional coarse Poincaré
duality over R. Since coarse Poincaré duality is quasi-isometry invariant we can
replace X with Rips,(X®) (for sufficiently large s): We are primarily interested in
the topology of the ideal boundary of X, which of course quasi-isometry invariant. We
will retain the notation X for this Rips complex, and let § denote the hyperbolicity
constant of X. We endow 0, X with a Gromov-type metric as it is done in section 2.

Remark 15. By an argument similar to the one that proves the contractibility of Rips
complexes of nets in geodesic Gromov-hyperbolic spaces, one can show that for every
C there is an Ry = Ry(C') such that every C-quasi-convex subcomplex Y C X, the
inclusion Y — Ng,(Y) is a null-homotopic map and for all R > Ry the complex
Ripsz(Y(®) is uniformly contractible with (linear) contractibility function depending
only on C and R.

Given a subset W C X U 0,X, we define the hull of W, Hull(W), to be the union
of the geodesics (segments/rays) with (ideal) endpoints in W. Hulls are 104-quasi-
convex.

Theorem 16 (Linear local (co)acyclicity). Assume in addition that the ring R is
hereditary. Then 0,X is linearly acyclic and coacyclic with respect to the Steenrod
homology. More precisely: There is a constant 1 > X\ > 0 such that for all £ € 0,,X
and all r < diam(0,X), the inclusions B(&,A\r) — B(&,7) and 0,,X \ B(&, A\r) «
0o X \ B(&,7) induce zero in reduced Steenrod homology. The boundary 0xX is a

linearly locally acyclic (Steenrod) homology (n — 1)-sphere over R.
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Proof. We begin the proof with several technical lemmas.

Following [2], for each C-quasi-convex subset Y C X and R > Ry(C), we may
identify the (reduced) Steenrod homology H?*(d,Y) with the locally finite homology
HIE (Rips(Y(®)). This identification is compatible with the inclusions Y© — Y
(i.e. the functors H?(0s-) and HEF (Rips.(-)) on the category of quasi-convex subsets

of X, are naturally equivalent).

The first lemma relates locally finite homology of Rips complexes of quasi-convex
subcomplexes Y in X to the locally finite homology of metric neighborhoods of Y
in X. Although these homologies are not isomorphic, they are approximately iso-
morphic in the appropriate sense: If the metric neighborhoods Np (Y ©) of Y(© were
contractible, we would get an actual isomorphism. We get an approzimate isomor-
phism by using uniform contractibility of the ambient space X.

Lemma 17. For every C, and R > Ry(C), there are constants Dy = Dy(C), D3y =
D3(C) such that if Y C X is a subcomplex so that Y C X is C-quasi-convez, then
HEF (Ripsp(Y®)) is canonically isomorphic to

Im (H;" (Np, (Y)) = H" (Np,(Y)))
for any Dy > Ds. These isomorphisms are compatible with inclusions, i.e. if Y C

Y" are both C-quasi-convez, then the isomorphisms are compatible with the induced
homomorphisms HEF (Rips,(Y(©)) — HLF (Rips, (YY) and

tm ( HEF (Np, (V) = HEF (Npy (V) —
s Tm (HEF (Np, (V) = HEF (N, (V1)) ).

Proof. Using the uniform contractibility and the finite dimensionality of X, we get
an L-Lipschitz map i : Ripsp(Y(?) — X extending the inclusion

Ripsz(YO) o YO nXx©® - X,

where L = L(C, R). Similarly, extending a nearest point projection X(© — Y(©  we
get a map r : X — Ripsg(Y) which for each t restricts to an L'-Lipschitz map on
Ny(Y), where L' = L'(C, R,t), and which satisfies d(i o 7(x),z) < C(1 + d(z, Y©)).
Using uniform contractibility again, we find a homotopy from r 0% t0 idgy, (y©) with
tracks of diameter < D = D(C, R) and a homotopy ior ~ idy whose track at xz € X
has diameter bounded by ¢(d(z, Y)), where ¢ : R, — R, depends only on C and
R. The lemma follows. u
Suppose € € 05X, and v : Ry — X is a unit speed geodesic ray asymptotic to &.
Define p : X — R, so that yo p: X — X is a nearest point projection to Im(7).

For t € R, set Uy := p ([t,00)), Vi := p ([0,t]), Uy := Hull(T;), and V, :=
Hull(V}).
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FiGURE 1. Sets Ui, and V.

Loosely speaking, the subsets U; and V; are analogues of geodesic half-spaces in
H" and of their complements. Such spaces (in the case of H") are convex, so taking
convex hulls is unnecessary in this situation. In the case of H", the ideal boundaries
of U; and V; are complementary round balls in S” ! = 9,,H". The next lemma shows
that, to some degree, the same holds for arbitrary Gromov-hyperbolic spaces.

Lemma 18. There are constants a,b,c and a function L : Ry — R, independent of
&, such that limg_, o L(s) = 00 and for all t,s € Ry :

1. d(Upys, Vi) > L(s).

2. X\ Ve CUy and Uy € X\ V4.

3. If v(0) = x (the base-point in X used to define the metric on 0,X ), then

B(E 1e™) C 0ul € B(E,be™)

and

1
X\ B(&be™™) C 0V; C X \ B(€, Ze—at).
Proof. Pick v and v such that 1006 < v < v < oo. Applying the -thinness con-
dition repeatedly, one gets Hull(p™!([u,v])) € p~'([u — 1006, v + 1004]). With this

observation, 1 and 2 follow from the properties of the nearest-point projection in the
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hyperbolic spaces, see for instance [8, Lemma 8.4.24]. Claim 3 follows directly from
the definition of the Gromov type metric on J,X. O

Proof of Theorem 16. In view of Lemma 18 (part 3), it suffices to prove that there
is a constant ¢y such that for all unit speed rays v and all t € R, , the inclusions
OooUttcy = OoUp and 0oV — 050 Vite, induce zero on reduced Steenrod homology.
Lemma 17 and the remark preceding it, show that we need only prove that when ¢
is sufficiently large, the inclusions Np,(Uiie,) = Np,(Ur) and Np, (Vi) = Np, (Viieo)
induce zero on locally finite reduced homology. By the universal coefficient theorem
[9] applied to the compactly supported cochain complexes, cf. [2, Remark 1.9], it
suffices to show that when ¢ is sufficiently large these inclusions induce zero on the
compactly supported cohomology.

Recall that for C' = 106, the sets U; and V; are C-quasi-convex for all ¢; pick
Dj > max(D, D3(C)) where D is the constant from the Definition 8 and D3 = D3(C)
is the function from Lemma 17. Let ¢ be a constant as in Lemma 18 and Ry = Ry(C)
be as in Remark 15. By Lemma 18 (parts 1 and 2), for ¢ € R, and ¢ sufficiently
large, we have the inclusions

Npsi2p(Ue) C X\ (Nro(Vire)) C X\ Vige C U C Npy (Uy).
The inclusion V. — Npg,(Vii.) induces zero on the reduced homology since V.
is C-quasi-convex (see Remark 15). Therefore the composition of coarse Poincaré
duality
Ppywy) : HI (Np, (Ur)) = Hn—u(X, X\ Up)
with the map
Hy (X, X\ Uy) = Hyeaet (X \ Ut) = Hyeaoos (X \ Npgs 0 (Usir)
is zero. But this composition is the same as the composition of the restriction
HZ(Np,(Ur)) = HZ(Npyi2p(Upier))
with the coarse Poincaré duality
H;(Npg120(Urter) = Hn (X, X \ Npyyp(Usser) = Hnw 1(X \ Npy1p(Usrer))-

By the approximate monomorphism part of the Definition 8, we have:

Ker (H:(Npy420(Ure)) = Ho et (X\ Noys 0 (Uir))

c Ker (2 (Npyap(Uise)) = H: (No,(Uise))),
which implies that the composition of the restriction homomorphisms
HZ(Np,(Uy)) = H;(Npy12p(Uprer)) = HZ (Np, (Upie))

is zero. Thus the inclusions Np,(Uyye) — Np,(U;) induce zero on the locally finite

reduced homology groups and hence the maps H**(0sUsye) — H(0sU;) are zero.
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The proof that H*(9,,V;) — H?*(0s Vi) is zero is similar. Thus we have proved
that 0, X is linearly locally acyclic and coacyclic (with respect to Steenrod homology).
We note now that H(9X) = H\ (X) = Hoq (R*) = H,(S™). Hence 05X is a
homology (n — 1)-manifold over R which is also a homology (n — 1)-sphere over R.
This concludes the proof of Theorem 16. O

In the proof of Theorem 16, the assumption that R was hereditary was only used
when we used the universal coefficient theorem to relate locally finite homology with
compactly supported cohomology. Hence we get the following variant of the above
theorem for arbitrary rings R:

Theorem 19 (Linear local (co)acyclicity for Cech cohomology). There is a constant
1 > XA > 0 such that for all £ € 0xX and all 7 < diam(0X), the inclusions
B(&,Ar) — B(&, 1) and 0oX \ B(&,Ar) < 00X \ B(&,7) induce zero in reduced
Cech cohomology. The boundary 8. X has the same Cech cohomology over R as the
(n — 1)-sphere.

Proof. Following [3], when Y C X is C-quasi-convex and R > Ry(C), we may identify
the reduced Cech cohomology ﬁ;‘(BOOY) with the compactly supported cohomology
H*+!'(Rips(Y(®)). (This follows from tautness of Cech cohomology for the subset
05Y C Ripsg(Y(®), and excision.) This identification is compatible with the inclu-
sions Y(© — vy,

With this identification, we can repeat the argument of Proposition 16, replacing
locally finite homology with compactly supported cohomology everywhere. O

Corollary 20. Let X be a Gromov hyperbolic BGMSC.
1. (Cf. [4]) If X satisfies coarse 2-dimensional Poincaré duality over a ring R,
then X is quasi-isometric to H?.

2. If X satisfies coarse 3-dimensional Poincaré duality over a hereditary ring R,
then the boundary O X is a linearly locally contractible 2-sphere.

Proof. 1. We first show that Z := 0,,X is homeomorphic to S'. We will do this
by proving that Z is connected, has no cut points, and is separated by any pair of
distinct points, see [23]. Note that Z is connected since H°(Z,R) ~ H°(S', R). The
co-acyclicity implies that there are no cut points *:

Given a point £ € Z consider the exhaustion of its complement Z \ {£} by the
subsets Z \ B(&,r), 7 > 0. By coacyclicity of Z we have zero restriction maps

i (W, R) =4 (W, R) .

4When X is quasi-isometric to a group, the fact that Z is locally connected and has no cut points
follows from [5, 20]; however their argument doesn’t apply when there is nondiscrete cocompact
quasi-action.
14



By taking the inverse limit we conclude that H°(Z \ {¢},R) = 0 and thus Z \ {¢} is
connected.

It remains to show that every pair of points separates.

First consider the case when R is hereditary. Then 0, X \ {p} has trivial Steenrod
homology for any p € 0,X. Hence the Meyer-Vietoris sequence shows that each
pair of points separates J,,X into precisely two components. In the general case,
let p, p' € 0xX be distinct points. By Theorem 19, we can exhaust 0,X \ {p}
(resp. 0X \ {p'}) by a nested sequence of open sets {U;} (resp. {U]}) such that the
inclusions U; — Uy; (resp. U! — UL, ,) induce zero on reduced Cech cohomology. For
large i, we obtain a sequence of coverings (U;, U}) of 0 X . The nested family {U;NU}}
of intersections exhausts 0, X \ {p, p'}. Applying Meyer-Vietoris sequence, we obtain

a compatible system of monomorphisms R ~ H'(9,,X,R) — H°(U; N U!,R). Since
UiU; NU] = 0X \ {p,p'} can be exhausted by compact sets, this implies that
00X \ {p,p'} is not connected.

Hence 0, X = 0, X is a topological circle which is linearly locally connected. Thus
O0xX is quasisymmetrically homeomorphic to the standard circle, see [21]. Then [19]
implies that there is a quasiconvex subcomplex Z C X which is quasi-isometric to
H2. Tt then follows from Proposition 11 that Z( is a net in X(®. This proves (1).

2. Note that by Proposition 16, over a hereditary ring R, the compact 0, X is
a homology 2-manifold with the homology of a 2-sphere (with respect to Steenrod
homology). Thus, 0 X is connected, locally connected and has no global cut-points.
In particular, 0, X is not a dendroid and therefore contains an embedded topological
circle. To conclude that 0, X is homeomorphic to S? it remains to show that each
embedded topological circle S C 0, X, separates 0,,X, see [22], i.e. 0,,X satisfies
Jordan curve separation theorem. To prove the latter we repeat the proof of Jordan
separation theorem given in [16, Ch. III, Corollary 6.4], using Steenrod homology
with R-coefficients instead of the singular homology with the integer coefficients. The
inductive proof of [16, Ch. III, Corollary 6.4] is based on vanishing of H, (05X \ p)
for each point p € 0, X. In our case this property is satisfied since 0,, X is a Steenrod
homology sphere over R. O

Remark 21. In the case when X is a planar graph, the part 1 of the above corollary
was proven in [6].
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