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Abstract 

Kapovich, M., and L. Potyagailo, On the absence of Ahlfors’ finiteness theorem for Kleinian 
groups in dimension three, Topology and its Applications 40 (1991) 83-91. 

We prove the existence of a discontinuous, conformal, finitely generated, function group F which 
acts freely on the connected component 0 c R3 of domain of discontinuity, such that the group 
?r,(fl/F) is not finitely generated. 
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1. Introduction 

In the theory of discontinuous Mobius groups acting on the complex plane @ the 

following strong Ahlfors’ finiteness theorem is fundamental for various inquiries 

[I, 91: 
Let G be a discrete nonelementary finitely generated subgroup of PSL( 2, @) acting 

freely on the domain of discontinuity O(G); then the factor space a(G)/ G consists 

of a finite number of Riemannian surfaces SI , . . . , S, each having a finite hyperbolic 

area. In particular, the group rl(Si) is finitely generated (i = 1, . . . , pl). 

Analytic methods for attacking the finiteness problem for higher-dimensional 

Kleinian groups were developed in [2,1 cPwever these m s fail to shed eight 

on the topology of the factor space of 
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be proved that even a weakened version of Ahlfors’ finiteness theorem does not 
hold in dimension 3: 

Theorem. There exists a j%itely generated, torsion free function group F c 
with invariant component C? c O(F), such that the group wi(fl/F) is not finitely 
generated. 

Let Mob@“)= Isom(W”+‘) be the group of conformal automorphisms of the 
n-dimensional sphere S” = En = R” u {a), where HI”+’ = {(x,, . . . , x,+,): x”+~ > 0) is 
the hyperbolic space. 

A subgroup G c Mob@“) is called Kleinian if the action of G is discontinuous 
at some point x E n”, i.e., there exists a neighborhood U(x) such that g( U(x)) n 

U(x) # 8 only for a finite number of elements g E G. The set of all points at which 
the action of G is discontinuous is called the domain of discontinuity a(G) and 
its complement A(G) = @“\a( G) is called the limit set of G. 

A Kleinian group G is called a function grou if there exists a connected 
component fl c 0(G) which is invariant under G. If G acts freely on 0, then the 
factor space M(G) = 0/G is an n-dimensional manifold. Let I(g) be the isometric 
sphere for an element g E Mob@“). We shall denote by D(G) the isometric funda- 
mental domain [lo] for G. 

In what follows all manifolds are assumed to have dimension 3 and be piecewise- 
linear. See [6,9, IO] for standard material on 3-manifold topology and Kleinian 
group theory. If SC R3 is a 2-sphere, then we shall denote by ext(S) and int(S) the 
components of fi”\S such that WE ext(S) and 00ti int(S). The symbol cl( ) means 
the closure of a set. 

utline of the proof 

Let X1, &, 2Z3, & be mutually tangent euclidean spheres in R3 (see Fig. 1). Each 
sphere Zi is obtained from a neighboring one by reflection q in the extended 

n, 
Fig. 1. 
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euclidean plane nj (i = 1, l . . ,4; j = 1,2). We shall construct discontinuous groups 
I’i c Mob(e3) which are isomorphic to surface bundle groups and preserve the 
interiors of the spheres Zi, respectively. By using the Maskit combination method 
we prove that both groups G, = (r, , I’*) and G2 = (r3, r4) are discontinuous and 
isomorphic to a surface bundle group (see Lemma 3). Let Fi be the corresponding 
normal surface subgroups of Gi (i = 1,2). The theorem’s proof is finished in Lemma 
5, where we show the group F = (F, , F2) to be the group we need. In particular, it 
is a normal subgroup of the geometrically finite, function group G = ( G1, G2). The 
lemma’s proof is based on the following considerations. By using the involution 72 
we construct the manifold M(F) = J2/ F as the double of some manifold (W. 
There exists an infinite regular covering M(F)- + M(G)- induce the covering 
M(F) + M(G). The manifold M(G)- is not a surface bundle since G)- contains 
a genus 2 surface. It follows that the group w,( M( F)-) is not finitely generated [6]. 
We obtain immediately that w,( M( F)) is also not finitely generated. 

4. Construction 0 

Let 1M be an open manifold which is the complement of the Borromean rings. It 
is well known that 1M admits a complete hyperbolic structure of finite volume, i.e., 

= W3/r, r c Isom(W3) [20]. 

efinition. A group K with a subgroup S is called S-residually $nite (S-RF) if for 
any element k E K\S there is a subgroup of finite index K1 c K which contains s’ 
but does not contain {k}. 

mma 1. The group r is S-residually jinite for any geometrically jinite subgroup S of 
r. 

roof. Consider a regular ideal octahedron P c W3, all of whose dihedral angles 
are $r [20]. Let Q be the reflection group determined by P, and Q1 be a finite 
extension of Q by four elements which are automorphisms of order 3. Then r is a 
subgroup of finite index in Q, [20]. So the assertion of this lemma follows from 
[ 181 and commensurability of r and Q. Cl 

emark. This lemma will be used in the proof of Lemma 2. 

Let us consider a model of hyperbolic space 
3-sphere C = X1, centered at zero. Furthermore let 
parabolic subgroups of r and A( 
and p2 have coordinates (0, 
euclidean planes tangent to 

be nonconjugate maximal 

e a 
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of W3\17, such that Hi n C = 0 (i = 1,2). Denote by 7 reflection in the extended 
euclidean plane I& (j = 1,2). If Al and A2 are subgroups of Mob( S3), then we shall 
denote by (A,, A,) the group generated by A, and At. 

In the following lemma we shall prove that all conditions of the Maskit Combina- 
tion Theorem [S] are satisfied for some subgroup of a finite index f c r and for 
the planes I&. Consider certain neighborhoods V;; of Hi\{pi). Namely, let Wi be a 
sphere tangent to C at the point pi such that: 

(1) WiC cl(B); 
(2) the ball cl(int( Wi)) contains C. 

Put vl:=eXt( Wi) (i= 1,2). 

2. There exists Q subgroup of jinite index F c f, for which the following 
conditions hold. 

(a) T%e group r has a normal finitely generated subgroup F such that F = (E t), 
for some t E Hz n F. 

(b) The group f has a fundamental set such that 9 n Vi is a fundamental domain 
for the action of the gtoup fii = Hi n F on v(: (i = 1,2). 

Proof. By compactness arguments, there exists at most a finite number of elements 
h,~HisuchthatI(hl,)n(~~u(~3\D(Hi))f0(jfi;i,j~{1,2},0~k<~).Accord- 
ing to the residually finiteness of the group r [ll] we can choose a subgroup of 
finite index P c r for which hk E P. Let Hi = f n Hi (i = 1,2). 

We now prove (a). Let @ be a normal subgroup of r which corresponds to a 
fiber of A#; then 6 = @ n % is a normal subgroup of f There exists 1 E P sucltr that 
f=(&,l). Let t&6 then t=ar-l”, for some (YE& Set ~“=(6,l”)=(~,t). 
Clearly we have If: r”l< 00. 

NOW we prove (b). Let Hi = Hi n r”. We have proved that Cl(R3\D( Hi)) c D( Hj), 
for i #j; then by the Klein Combination Theorem the set D( r?,) n D(&) is a 
fundamental domain for the Schottky-type group fi = (fi, , & = fi, * fi2 [lo]. 

Hence the set R = D( A,) n D( fi2) n cl( V, u V,) has no equivalent points for action 
of J?. The closure of the set T = R n ( W, u W,) is compact in B; hence there is at 
most a finite number of elements gk E r” such that gk( T) n T # (b (k = 1, . . . , m). 
The group H is geometrically finite [lo]; hence r” is H-residually finite according 
to Lemma 1. Thus there exists a subgroup f c r” such that ]r”: If] c 00, I?- c f and 
gk&, k=l,..., m. It is clear that for any g E F we have g(R) n R = 0. Indeed, 
suppose there exists an element g E r for which the last assertion is not valid. Then 
g g H because R does not contain equivalent points under fi. Further, there are h, , 
hz~~,u~~suchthatk,*g~ h,(T)nT#@Thisisimpossiblesincey=h,*g* h,# 
1, y E f Clearly the group f satisfies condition (a) as well. So R is a fundamental 
set for the action of p in the orbit f( V, u V,). 

Choose an arbitrary fundamental set A for action of f in B\p(cl( V, u V,)). 

ence Au R = 9 is a fundamental set for action of the group F in B. For this 
fundamental set the condition (b) holds. 
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Finally put F = f n @? Cl 

Let us introduce notations: & = f, rz = T& TV, 6, = (r,, r,), G2 = rzGI Q, G = 

(G,, Gz)m 

Lemma 3. The group G, is discontinuous and contains a finitely generated normal 
subgroup F, such that G,/ FI = H and G1 = (F, ) t), where t is the element dejned by 
Lemma 2. l 

Proof. Let ~9~ = 9, where 9 is the fundamental set of the group p = rI constructed 
in Lemma 2. The group fil - - & n r2 stabilizes the plane I7,. According to assertion 
(b) of Lemma 2 and maximality of the parabolic subgroups fii of &, the domain 
cl(&) is precisely invariant under fi, in the group rI. By analogy the domain 
r1 cl(&) is precisely invariant under the subgroup fi, of rz. Thus all conditions 
of Maskit Combination 1 Theorem [ 131 are satisfied (the multidimensional version 
of the Combination Theorem is in [5] j. Consequently, the group G, is discontinuous, 
isomorphic to & *R, I’*, and has as its fundamental set RI = 9, n q( $). Moreover 
the group G, acts on the invariant component 0, @E 0,). 

aim (see also [ 151). The manifold M( G,) = 0,/G, is homeomorphic to the interior 
of a surface bundle over S’ and w,( 0,) = 1. 

From geometric decomposition of the group G, = r, *G, r, it follows that 
(G,) is obtained by glueing of M, and M*, where r,)\(Klfi*), M* = 

nl(&)\(r,lIJk,). Furthermore &/I?, = ~J;/fi ' x (0,1). Therefore 

each manifold Aa, is homeomorphic to a surface bundle whose fiber correspond to 
the subgroup Fc f The glueing homeomorphism # : a preserves the 
bundle structure since it is covered by the identity homeomorphism cp : 17, + l7,. By 
van Kampen’s theorem, we have the isomorphism nI( M( 6,)) = rI *G, r, = G1. The 
group G, is a Hopfian group [ 111; hence gI( 0,) = 1. The claim is proved. 

Thus the subgroup Fl of G, which corresponds to a fiber of (G,) is a normal 

subgroup and G,/ FI = Z. Due to assertion (a) of Lemma 2 we also have G1 = ( FI, t) 

where t E fi2. Each surface bundle M( &) admits a natural compactification by 
adjoining a torus for each cusp, and the same is true for M(G,). Hence the group 
FI is finitely generated. Cl 

We set F = (F, , F2), where F2 = QF, r2. Let & = T, I&T, and J = (I&, &). 

. (a) The group G is the Maskit Combination of the groups G, and Gz along 

the subgroup J. 
(b) The group G is discontinuous and has an invariant component 

take to be the component containing 00). 
(c) The finitely generated 
(d) The manifold 
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Proof. (a) By virtue of Lemma 3, the group G, acts discontinuously on 0, and 
R1 = 9 n T,( 9) is a fundamental set for this action. Due to Lemma 2 the domain 
R, n cl(&) is a fundamental set for the action of the group J on the ball cl(&). 
Moreover in the neighborhood V= V2n T,( V,) of n,\n(J) we have R,n V= 
D(&) n D( &) n V (see Lemma 2) and the open surface n,\n (J) is precisely 
invariant under J in the group G, . Hence there exists a neighborhood JV of &\A (J) 
such that JY is also precisely invariant under J in the group G1 and JR a( G,). 

To prove assertion (a) it remains to verify the following claim. 

Claim. The sphere I& is precisely invariant under the subgroup J of G, . 

roof. Let us suppose that there exists an element g E G,\J for which g(R;) n I& = 

(x} c A(J). The Schottky-type group J is geometrically finite [lo, 121; and we have 
two cases [4]: 

(1) x is a point of approximation, or 
(2) x is fixed point of a parabolic transformation y E J. 
In the case (I), there exists a sequence h, E J such that lim,,, h,(x) = x0 and 

y. = lim,,, h,(z) # x0 for any z E cl(n~)\{x}, where y. E &. It is easy to see that 
the sequence of spheres h,,g(&) converges to &. Therefore the intersection 
h,g(N) n X is not empty for large n. This is impossible, since JV is precisely invariant 
under J in the group G, and all elements h, are different. 

In the case (2), there exist elements h, h’E J such that h 0 g 0 h’({ p2, p3}) = (p2, p3}, 
where p3 = T~( p2). Due to the fact that fi*, fi3 are maximal and nonconjugate 
parabolic subgroups of G,, the element g belongs to J, which is impossible. The 
claim is proved. 

We immediately obtain assertion (b) of Lemma 4 from (a) via the First Maskit 
Combination Theorem. 

To prove assertion (c) we have to verify that for any g, E 3, and g2 E G2 the 
relations gr’F,g, c F = (F,, F2) and g2Flgi1 c F hold. The element g, has the form 
fit”, where f,e F,, tEfi2c G,nG2, G2 = (F2, t) (see Lemma 3). So, g,F2g,’ = 

f,tnF2t-nf~‘=fiF2f;‘~(F~, F2). 
Thus assertion (c) is proved. 
(d) As we have seen in Lemma 3, both manifo!ds M(G,) and M(G,) admit 

natural compactifications by adjoining a torus for each cusp. Hence both manifolds 
M( GJ = M( Gl)\&/ J and M( G2)- = M ( G2)\( T~( &)/ J), as well as the manifold 
M(G), which is obtained by glueing them along the compact surface s= 
(f12\A (J))/ J, admit compactifications as compact manifolds with boundary. Cl 

Notice that A(F) = A (6) since F is normal subgroup of G. Moreover, according 
to assertions (b) and (c) of Lemma 4, we have the groups G and F possess a 
common invariant component 0. Let pvd( F) be the manifold R/E 
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Lemlnma 5. Tke group rr,(M( F)) is not finitely generated. 

roof. Step 1. First let US verify that the orbits cl(&) and FI( I7,) are equal. 
Indeed, G, = (F, , t), where t e fi2. Thus, since t(&) = I&, the equality G&n;) = 
F,(&) holds. Further we claim that G is generated by F and t. Indeed, for each 
g E G we have the decomposition g = glg2 l l l g, (where gi E G, u G2); hence from 
the equalities gj =_Qrnj (cli;. E FI v F2) we obtain g = ft”, where f c F and m E Z. 

Note: We do not yet claim that G/F = 2. This isomorphism will be established 
later. 

Step 2. By construction we have 72G7=2 = G. Therefore by means of the covering 
p : 0 + O/G = M(G), the involution 72 projects to the involution F2: M(G) + M(G). 
Clearly the surface s= p(n2\A(J)) is the fixed-point set for the last involution. In 
the same manner the involution 72 projects to the involution e2 : Cn/ F + sZ/ F = M(F). 

So we have the commutative diagram: 

9 

a- M(F)- ,. M(G) 

9 r 

a-M(F)- M(G) 

where p = r 0 q and r is a regular covering with the deck-transformation group G/F. 
The surface 4 = r-‘(S) = q(n2\A(J)) is a connected surface (due to Step 1). Clearly 
4 is the fixed-point set for the ?*. 

Step 3. Since the group G results from the Maskit Combination of the groups 
CF; and G,, the domain (~Q,i(G,(~~,)));G, is the &s-ure of souse component of 

M(G)\.% Let us denote. this closure by M(G)-. Let M(F)- be the manifold 
r-‘(M(G)-). On the other hand, the manifolds M(F)- and (G)- are equal to 

M(F,)\(KIJ n F) and M( Gl)\(&/J), respectively. Thus the covering 
r : M(F)- + M(G)- is just the restriction of the infinite cyclic covering M(F) + 

M(G)= 
Step 4. As we have seen in Lemma 4, the manifold M(G)- may be compactified 

as N(G)-. The boundary component s of M(G)- is a compact surface of genus 
2 (it is the quotient of plane domain n2 n 6!(J) by the Schottky-type group J). 
Hence the manifold N(G)- is not a surface bundle over S’. Moreover both manifolds 
N(G)- and N( F j- do not contain fake cells since they are covered by subdomains 
of s3. 

Step 5. Here we shall prove that the group 7r1( M( F)-) is not finitely generated. 
Due to Step 3 we have the exact sequence 

l+v,(M(F)-)+r,(M(G)-)=a#J(G)-)+++I. 

Let us suppose that the group 
does not contain projective 



90 M. Kapovich, L. Potyagailo 

M( G,). Furthermore n,(M(F)-) is a non-Abelian group; hence by Stallings’ 
theorem [6, Theorem 11.6] the manifo!d N(G)- is homeomorphic to a surface 
bundle over S’. However this contradicts Step 4. 

So the group q( M( F)-) is not finitely generated. 
Step 6. It remains to prove that the group ?r,( M( F)) also is not finitely generated. 

Let u : fi + M(F) be the universal covering with automorphism group 7r = 
wl( M( Fj). Evidently the manifold M(F)- is homeomorphic to M(F)/ &. Let us 
consider a lift Fz: G + G of the involution &. Thus v = F2vrf2 and the group 
(55 = ( rI( 1w( F)), %) acts discontinuously on k Let TORS be the normal subgroup 
of & generated by its elements of finite order. Then by Armstrong’s theorem [3], 
n,( M( F)-) is isomorphic to &/TORS; hence the group @ is not finitely generated. 
Evidently the group m,( M( F)) is not finitely generated also (as a subgroup of index 
2). By construction, the conformal group F = (F1, F2) is finitely generated, hence 
Lemma 5 and the theorem are proved. Cl 

5. Concluding remarks 

As noticed by the second author [ l&8], the finitely generated group F constructed 
in the theorem is not finitely presented. 

By related ideas the first author [7,8] showed that multidimensional versions of 
Ahlfors’ and Sullivan’s [19] finiteness theorems do not hold. Namely, there exists 
a finitely generated free Kleinian group KJ c Mob(S3) such that 

(a) the number of conjugacy classes of maximal parabolic subgroups of lK3 is 
infinite; 

(b ) if x c r_.K,LI C”\ ;E *km fl ” - 1*ruu\u *r.5-,1 av+XX*e!*- *_ , *o &.‘W ~OllluLllla? Q_%%Sli3iGii bf AK3 fo 3 mrr! (@3j, i"nen 

rank(H,_,(0(K,)/K,,, Ck)) = 00. 

The manifold M( K,) = 0( K,,)/ K, has infinite homotopy type. 
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