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On the Absence of Sullivan’s Cusp Finiteness Theorem
in Higher Dimensions

Michael Kapovich

ABSTRACT. We prove the existence of a discontinuous finitely generated free conformal
group K3 acting on R* such that the number of rank 1 cusps of K3 is infinite. Small
deformations of K3 provide a finitely generated Kleinian group with infinitely many
conjugacy classes of finite order elements.

§1. Introduction

L.1. In this paper we continue the discussion [K-P 1] of the failure of Ahlfors’s
finiteness theorem for Kleinian groups in dimensions > 3. Here we establish the
failure of Sullivan’s cusp finiteness theorem. Namely

THEOREM. There exists a finitely generated free Kleinian group K3 C Mob(S?)
such that

(a) The number of conjugacy classes of maximal parabolic subgroups of K is
infinite.

(b) The fixed points of these parabolic subgroups (u;) C K3 have pairwise disjoint
horoball neighborhoods U; ¢ H* which are precisely invariant under (u;) in
K.

(c) If K, C Mob(S") is the conformal (Poincaré) extension of K3 to S" (n > 3),
then

rank(H,,,l (QUK,)/K.,, Q)) = .

Here and below Q( ) denotes the discontinuity domain for a Kleinian group.

COROLLARY 1. For each n > 3 there exists a JSinitely generated Kleinian group
K, C Mob(S") such that the quotient manifold M (K,) = Q(K,.)/K, has infinite
homotopy type.

So, the analog of Ahlfors’s finiteness theorem fails for every dimension n > 3.

COROLLARY 2. For all but finitely many q € 7. there exist:
1) an integer r, the rank of free group F, = (xy,...,x,),
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2) an automorphism 0: F, — F, such that the group
Foy= <x1,... L X, (0"(x1))q =1, n==%l1, j:2,...>

has infinitely many conjugacy classes of finite order elements [0" (xl)] and F,,
admits a discrete faithful representation in Mob(S?).

ReMARK. According to Selberg’s lemma [Se] Fry has a torsion-free finite index
subgroup (as a finitely generated linear group).

The manifold Q(K3)/K3 is homeomorphic to an open handlebody X, from which
some oc-component link L is removed. Each component of the link is a knot
representing a free generator of 1 (X,).

The underlying space of the orbifold M (F,,) is homeomorphic to X,, where the
singular set is L (see above).

Historical remarks.

1.2. The first version of the cusp finiteness theorem for Kleinian subgroups of
PSL(2, C) was given by Ahlfors [Ah] (see also [Kr 1]). In particular, he proved
that for a finitely generated Kleinian group K C PSL(2, C) the surface Q(K)/K
has only finitely many punctures. Combined with the Leutbecher-Shimizu lemma,
this implies that K can have only finitely many conjugacy classes of maximal par-
abolic subgroups of rank 1. Ahifors’s proof was based on analytic function theory
and fails in higher dimensions. Fifteen years later Sullivan [Su] proved that any
finitely generated discrete subgroup of PSL(2, C) has only finitely many cusps (e,
conjugacy classes of maximal parabolic subgroups). Sullivan also gave a numeri-
cal estimate for the number of cusps (in terms of the number of generators of the
group K). That estimate was improved by Kulkarni and Shalen [K-S, K] and by
Abikoff [Ab 1], who used topological considerations based on existence of a compact
“§eott core” for 3-manifolds with finitely generated fundamental group. Certainly,
a “Scott core” does not exist in higher dimensions. In contrast, Sullivan exploited
Eisenstein series associated with cusps of K and elements of the finite-dimensional
space H'(K, sl(2, C)) (these arguments were elaborated in [Kr 2]). The idea of
Eisenstein series remains meaningful in higher-dimensional hyperbolic spaces; hence
there was a hope of generalizing Sullivan’s proof to the case of discrete subgroups
in Mob(S") (n > 2). This is probably possible under some restrictions on K (see
the Conjecture below). However, the main theorem above shows that in general the
cusp finiteness theorem fails in higher dimensions.

ConJECTURE. Let T be a finitely generated discrete subgroup of Mob(S") such
that:

(1) any cusp of T has “maximal” rank = n;

(2) every cusp of T corresponds to a “cusp end” of H"T.

Then T has only finitely many cusps.

1.3. Evidently, every geometrically finite discrete subgroup of Mob(S”) has only
finitely many cusps.

1.4. We now discuss Corollary 2. Every finitely generated discrete subgroup of
Mob(S?) has only finitely many conjugacy classes of finite order elements (briefly
CCFE) (the author could not find an exact reference; this statement will be proved
in §7). Every geometrically finite subgroup of Mob(S") has only a finite number of
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CCFE. As a generalization of this fact, Gromov [Gr] proved that any word hyper-
bolic group has only finitely many CCFE. There is also an old lemma of Selberg
[Se] on this matter. Selberg showed that if in every finitely generated subgroup of
SL(n, C) the finite subgroups have bounded order, then there are only finitely many
SL(n, C)-conjugacy classes of finite order elements. Probably, examples like Corol-
lary 2 are known to algebraists for the case of arbitrary finitely generated subgroups
of SL(n, C).

1.5. Corollary 1 for n = 3 was proved by a different example in the joint paper of
the author and Potyagailo [K-P 1]. For n > 5, Corollary 1 cannot be deduced from
{K-P 1], in view of Potyagailo’s remark that the Kleinian group constructed there is
not finitely presented.

1.6. The results of the present paper were announced in [Ka 1, Ka 2]. Corollary 2
was announced in [K-P 2]. In this current article we simplify the original proof of
the main theorem first given in [K-P 2].

§2. Outline of the proofs

2.1. Consider the configuration of four Euclidean spheres £, ©,, 03, T, C R?
drawn in Figure 1. We shall construct Kleinian groups I'{, I'}, T}, T} whose limit sets
are the spheres Z;, 0, @3, X4, respectively. All the groups I'} (up to finite index) are
conjugate in Mob(S?) to the groups T'; of our previous paper [K-P 1]. The groups
I/ possess the following properties:

\\
J

[ER

I,

FIGURE 1
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(1) The group G’ = (I}, T, T}, ;) is Kleinian and contains a finitely generated
free normal subgroup F’ such that G'/F' >~ Z.
(2) If 7} is the reflection in the symmetry plane L , then 1, I 13 =T, i[5 15 =
|
(3) The groups I} N F’ and I, N F’ contain parabolic elements f> and By =
7415, respectively, such that the isometric spheres [ (B2), I(B7") touch L;
at some point x = I(f) N La.
(4) The point x is a fixed point of the parabolic transformation u = (Bs) " o pa.
This point has a cusp neighborhood, precisely invariant under (u) in G'.
Then the group F” is the group K we need. Indeed, consider an element #; € G’
such that (F’, t;) = G'. The elements u and u,, = t'ut;” (m € Z) are parabolic.
Property (4) implies that the groups (u,,) are maximal nonconjugate parabolic sub-
groups of F’. So, Property (a) holds. Property (b) also follows from (4). Moreover,
according to (3) , the manifold M (K,,) has infinitely many cusp ends, giving an infinite
system of independent cocycles in H,_, (M (K,),Q). This consideration completes
the proof of the theorem.

2.2. The proof of Corollary 2 proceeds as follows. We slightly enlarge the spheres
%, and ¥, so that the isometric sphere 7(f,) intersects L, at an angle n/2q, q €
Z\{0}. Next, repeating the previous construction, we obtain representations p, : K3
— Mob(S?), lim,_. p, =id. Then the elements py () become elliptic of order q.
These elliptic elements are not conjugate in p,(K3) which happens to be Kleinian (if
q is sufficiently large).

§3. Proof of the theorem

3.0. Notation. Below, we shali denote by P(K) an isometric fundamental domain
for a Kleinian group K and by A(K) its limit set. If S is a closed surface in R3,
then int(S) will denote the interior of the compact component of R*\S and ext(S) =
S\ cl{int(S)). -

Recall that a subset S of S" is called precisely invariant under a subgroup H of
a discrete group G C Mob(S”), if h(S) = S for every h € H and g(S)N S = @ for
any g € G\H.

3.1. First we recall several constructions of our previous paper [K-P 1]. Let us
consider the unit sphere X, C R? centered at zero; p; = (0,1,0), p» = (0,0,1). Let
I1; be the extended Euclidean planes tangent to I at the points p; (see Figure 1) and
let IT;” be the component of R*\II; such that IIT N2 =2 (i = 1,2).

In [K-P 1, Lemma 1 and 2] we constructed a Kleinian group I'; with the following
properties:

{1) Ty contains maximal parabolic subgroups H,, H, with limit points p;, p,

respectively.

(2) T, contains a free finitely generated normal subgroup Fy such that: I';/F) =

Z, (F, 1) =T, for some i € H>; (R) & () = Hs.

(3) The group I'; has a fundamental set P such that P N cl(I1;) is an isometric

fundamental domain for the action of the group H; on cl(IT;").

(4) The group I'y has the S-RF property for every geometrically finite subgroup

S cTy;ie., for any element g € I';\S there is a finite-index subgroup I'! C T
that contains S but not g.
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REMARK. Without loss of generality, we can assume that the center of /( B-) has
coordinates (0, as, a3).

Denote by L, the plane {(x,4,x3) : (x1,x3) € R*} such that 4 > 1 and L, is
tangent to the isometric spheres I(f,), I (,82_') (see Figure 2). Let L, = L, U {c},
Ly ={(x1,x3,x3) : x2 > 42}. Denote by 7, the reflection in the plane IT; and by
7; the reflection in the plane L,. Put Ly = (L), IIj = 7,(I1;).

LeMMA 1. These exists a finite-index subgroup '\ C Ty possessing the following
properties:
(a) ppeTy;
(b) Ty = (F{, ty = (12)") for some finitely generated free normal subgroup F| C T
andn € Z;
(©) ify e T\{B, B; ', 1}, then 1(y) N L}, = o;
(d) let H! = H;N T} (i = 1,2). If y € T\H{ then I(y) 0 (TL\P(H})) = .

ProoF. Note that L, and cl(IT;\P(H{)) are compact subsets of H> = ext X,.
Then there exist only finitely many elements {y,,... ,7pt C Ty such that I(3;) N
Z; # @. The group I'| has the S-RF property for geometrically finite subgroups
S. Hence we can find a finite-index subgroup Il = (F/", t, = (12)") < Iy such
that {71,...,7,} AT\{B, B; ', 1} = @. Let H; =T7nN H,. Then there are only
finitely many elements {y,...,y,} C I'/\Hj such that I(;/) Ne(IL\P(H])) # @.
Property (3) of the group I'; implies that (H, * ﬁl)\Hz’ N{y{,....71} = @. The
Schottky-type group Hj * H| is geometrically finite. Hence I has the Hy « H{-RF
property and we can find a finite-index subgroup I') C T/ such that H; U H [ cTIy.
rin{y,... :7¢} = 2. The group I'| has all the desired properties.

Lemma 1 is proved. O

1By

1By 1Y)

FIGURE 2
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3.2. Let @ be a sphere that touches Z; at the point p; and touches L> at some
point = € TI;. Next, let x =LyNI(f) and y = LaN I(By"). There exists a unique
orientation-reversing Mébius transformation T that maps ps to = and commutes with
every element of H/. It is easy to see that 7~'(L;) C Il; and that T-Y(L5) touches
3, at the point p». Hence, it follows from property (3) above that L3 is precisely
invariant under H] = T H{ T~' in the group I'; = TT, T~} Also, for the groups
I =TIy, T} and the amalgamated subgroup H, the conditions of the first Maskit
Combination Theorem are fulfilled.

3.3, LEmMa 2. The group G| = (T}, T%) is Kleinian and has a simply connected
invariant component €, 5 oc. The manifold Q, /G| is obtained by gluing together two
hyperbolic components homeomorphic to (ext T\TY(TL, )/ T. The manifold Q/Gy
fibers over S'. The group @) = (F|, T F{T ") is a finitely generated free normal
subgroup of G| corresponding to the fiber G/ ®) = Z. There is a fundamental set D;
for the action of G| on Q| such that:

(@) (Dynel Ly)U{y} is a fundamental set for the action of Hj on cl(L3);

(ii) for some 4’ < i and plane Ly = {(x1, %, x3) : (x1,x3) € R?} the intersection

LN Dy Nt (IT)) coincides with L0 P((B2)) Ny (TI7).

Proor. All statements, except (i) and (ii), easily follow from the Maskit Com-
bination Theorem (see the proof of Lemma 3 in [K-P 1]). Let D, = (P\IT7) U
T(P\IT ). Then statements (i), (ii) follow from the properties of the group I' listed
above. O

3.4. Introduce the following notation: J = Hy, X> = Ly U (Zg\]({x, y,:})),
X, = 14(X2), Gy = 13G{ry, @5 = @75, Dy = 15(D)1).

Direct considerations based on Lemma 1 imply that the triple (G|, G3, J) is
proper interactive [Mk, Chapter VII] for the pair of sets (X, X>). Moreover, D; N
X, cLfori=12. N

3.5. LEMMA 3.

(1) The groups G|, G5, J satisfy the conditions of the weak Maskit Combination
Theorem [MK, Chapter VII, Theorem A.15].

(2) The group G' = (G!, G3) is isomorphic to G| *; G3.

(3) The set D = (Dy N Xy) U (D2 N X)) does not contain points equivalent under
the action of G'.

(4) int(D) C Q(G").

Proor. The first statement follows from item 3.4; the remaining statements
follow from the weak Maskit Combination Theorem. a

3.6. Denote by Q' the component of Q(G’) containing the point oc. It is easy to
see that G’ (YY) =Q'. Let B4 = 13f75; then the element u = (B4) ! o B2 is composition
of the inversions in the spheres I(f), I(Bs). Hence u is a parabolic transformation
conjugate to Euclidean translation; u(x) = x.

3.7. LEMMA 4. Let G" be the conformal extension of G’ to the space R” (n>3).
Then the point x is a parabolic cusp point for the group G". If g € G" stabilizes the
point x, then g € {(u).
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PrROOF. First we construct a cusp-neighborhood of the point x in R®. Let / be
the straight line which passes through x and is orthogonal to IT>. Let A be a closed
disk with the following properties (see Figure 2):

(1) A {(0,x2,x3): (x2,x3) € R*};
(i) QA touches / at x;

(iii) the diameter of A is less than the radius of I(f,);

(iv) AnL) = 2.

Then we define @ to be the open body in R* obtained by rotating int(A) around
[. Obviously we have (&) = @. Next we shall prove @ to be precisely invariant
under (u) in G’.

By Lemmas 2 and 3, the intersection @_ = @ Nclext/(f.) NclextI(By) lies in
D and contains no G’-equivalent points.

Let w: R* — R? be the translation w: 4 — A + (3 — x). Then the set
w(@_ )\ (B Y UI(B;")) = @' is also contained in D.

Hence, @ U B, (@) = @. contains no G’-equivalent point; this set is a funda-
mental domain for the action of (#) in #. Thus & is precisely invariant under (i),
x is a cusp point for G, and (u) is a maximal elementary subgroup of G'.

It remains to verify the statement concerning the conformal extension G” (n > 4)
of the group G* = G’. The parabolic transformation ¥ € G” is conjugate to a
Euclidean translation. Then the existence of a precisely invariant cusp-neighborhood
@, of the point x (with respect to G”, n > 4) easily follows from the properties of
@ and [W]. Lemma 4 is proved. O

3.8. Let F' = (®}, ®)) (see 3.4). Then Lemma 3 implies that F” is normal in G’
and G'/F’ = Z. Also, we have that F' is a finitely generated free group; G’ = (F', 12),
{f>, s} C F'. Hence, the element u = o (B5)~! is contained in F’.

—Hht

Next, we put u,, =t} ut;”, m € Z. Every u,, belongs to F'. Also, if g’(x) = x,

g € G’, then g’ € (u). Suppose for a moment that gu,, g~ = w;, g € F’. Then
(1 g e )ulty g~ t5) =uand 1;*g t2'(x) = x. Hence 1;*g 2" = u" and ke F
However, it now follows that 7% = |, m = k, and u,, = u;.

Thus, the parabolic groups (ur), k € Z, are maximal nonconjugate parabolic
subgroups of F’ = K3 and we obtain property (a) (see the main theorem).

3.9. The point x admits a precisely invariant cusp-neighborhood # ¢ R* with
respect to the group G’. Hence [W] implies that x has a precisely invariant horoball
neighborhood Uy in H*. The desired horoball neighborhoods U;  H* of the points
tj(x) are equal to #i(Up). Thus, we have proved property (b) of the group K3 = F".

REMARK. In fact, the configuration in Figure 1 is familiar from the theory of
planar b-groups; the element u can be considered to be an accidental parabolic
element. The only unusual thing is that the action Ad(:) does not preserve the F’-
conjugacy class of (u).

3.10. Proof of assertion (c) of the theorem. Every point x; = #;(x) (i € Z) has a
precisely invariant cusp-neighborhood O,,; = t{(0,) C R” such that 0,, N 0,,; = @
if i # j. Each neighborhood O, ; is conformally equivalent to (R”\solid cylinder) =
(R”“\unit ball) x R = [0,00) x $"? x R. The projection E(n,i) of O,; to the

-,

manifold M(K,) = Q(K,)/K, is homeomorphic to [0,0c) x $"72 x S'. Hence,
OE(n,i) = §"* x S', E(n,i) represents one end [E(n,i)] of the manifold M(K,).
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i€Z; [E(n,i)] # [E(n, )] if i # j. Hence, the cycles [0E (n,i)] e H,_(M(K,), Q)
are independent and rank (IHI,,_I (Q(K,)/Kn, Q)) = 0. So the theorem is completely
proved.

§4. Proof of Corollary 1
Corollary 1 directly follows from part {c) of the theorem.

§5. Proof of Corollary 2

5.1. First we construct a sequence of representations pg : K5 — Mob(S?) such
that lim p, = p» =1id and order(p,(un)) = q-
g—<

Let X,(s) be the family of Euclidean spheres tangent to each other at the point
pi, radius(Z(s)) = (A-Ds+1= r(s), —1 < s < 1. Define pa(s) to be the point
of £1(s) with coordinates (0, r(s), *). Choose a parabolic transformation & that
commutes with H; and maps p> to pa(s). Let Ba(s) = & foé 1. Tt is easy to see that
the isometric spheres I (B2(s)), 1 (87 !(s)) intersect L at equal angles o(s); ©(0)=0,
@(1) = /2, ¢ is continuous function. Let 0 < s(g) < 1 be a sequence of numbers
such that p(s(q)) = 7/24.

Let p,: [, — Mob(S?) be the representation given by p,(7) =&,y ¥ é»\_'(;). Hence,
p"lH( =id. Define p,: G| — Mob(S?) to be a homomorphism such that Pyl =1d.
Next, p,: G} — Mob(S?) is given by the formula t5p,(t5g75)75 = py(g), g € G3.

Clearly, p, is a homomorphism and qll»n:}c Pq = p = 1d.

The element p, (1) is the composition of inversions in the two spheres I (p,(82)),
1(p,(Bs)), which intersect at the angle n/q. Hence p,(u) is a rotation of order ¢
around the circle #, = I1{(p,(B2)) N1 (pg(B4)).

5.2. In this subsection we consider the geometric and algebraic properties of the
group (p (")), p,(T';)) for large g.

Define Iy to be the group (I}, T, Ti(g) = pyTi,  Tualg) = (T1(9), Talg)).

There exists a number go € N such that for every ¢ > go oP(Ti(g)) N

oP(Tu(g)) = 3P(<pq(ﬁg)>) n BP((pq(ﬁ4)>) c L, (this follows directly from
Lemma 1). Define Q14(q) = P(<pq(r1)>) N P(<pq(rg)>), qo < g < 0.

LEMMA 5. For every q > qo we have
(i) The polyhedron Qi4(q) is fundamental for the group T14(q);
(ii) The circle &, has a regular neighborhood W (£,) which is precisely invariant
under (p,(u)) in T14(q) (g < 00);
(iii) The group T14(q) is isomorphic to

(T1a(o0) =Ty = T4)/ ().

PrROOF. Statement (i) follows from the Poincaré theorem on fundamental poly-
hedra [MKk]. Statement (i) implies (ii) in the same way as the properties of G’ imply
Lemma 4.

Consider (iii). Every relation in I'i4(¢) follows from relations corresponding to
edge cycles on 8Q14(q). Let ¢ = {e1,... ,ep} be any edge cycle on 8Q14(g). Then
we have three possibilities:
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(a) ¢ c8P(Ti(q)),

(b) ¢ C 9P(Tulg),

(©) ¢ = %, Up(B)(Z,) (if g< ).

In the cases (a),(b) the relation R(c) follows from the relations of the groups
I}, T, respectively. In the case (c) we have the relation (pg(u)?).

The lemma is proved. O

5.3. LEMMA 6. The half-space T1, U I = V\ is precisely invariant in the group
T'14(q) under the subgroup

H(q) = H{ * p,(13H]7)).
Proor.  First consider the plane domain
%, = (P(H(q) = P(H') P(p,(3H{x})) N 1.

The Klein Combination Theorem implies that %, is an isometric fundamental domain
for the action of H (¢) inIT;. It follows from Lemma 1 and Lemma 2 that the domain
%, is contained in Q14(q). Hence, the sphere I, is precisely invariant under A (q)
(cf. [K-P 1]). The projection of &, to M(Tu(q)) = Q(T14(¢))/T14lg) is a regular
compact surface ﬁq‘ There are two cases:

(a) %, divides M (T1a(q)),

(b) %, does not divide M (T4(q)).

Consider (a). Then there exists an element 7 € T(g) such that (1) ¢ ¥,
where I1j = 7;(IT; ). Note that IT} > int A(T'1(g)) U int A(T4(g)). It is easy to see

that g(T1;) N (intA(Fl(q)) UintA(D(q))) = @ for every g € I'14(q). Hence, for the

element y we have y(I1) > int A(T'y(¢)) U int A(T4(g)), so that y(IT}) NIT; # o.
This contradiction shows that the case (a) does not hold.

Consider (b). Then there is an element y € I'14(g) such that y(TI;) is the comple-
ment to an open ball in ext A(T';(¢)) Next A(T4(g)). Then 7(IT7 ) D int A(T (g)) N
int A(T'4(¢)) and we get a contradiction as above,

The lemma is proved. 0

5.4. LEMMa 7.
(i) The pair of groups (Tialg), (T3, T 1)) with amalgamated subgroup H (q) sat-
isfies the conditions of the first Maskit Combination Theorem.
(i) The group G(q) = py(G') is isomorphic to G'/((u%)).
(iii) The( regular neighborhood V' (Z,) of ¢, is precisely invariant in G(q) under
<pq u)q>.

PrOOF. As we have proved in Lemma 6, the half-space V] is precisely invariant
in T'14(q) under H(g). Consider the group I'ag) = Ty = (T, I';). The sets
Py = T(P) and ' T(P) = P; are fundamental for the groups I, T}, respectively
(see 3.2). We have P> N Ly = P3N Ly = P(J)n L, Hence, I results from
the Maskit combination of the groups I}, I'; along the subgroup J. The domain
Q»3 = P> N P is fundamental for the group I'»:. The property (d) of the group I
implies that

Im, n On =11 N P(H(q))
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Similarly to Lemma 6, we see that W, = I, U I} is precisely invariant under
H(q) in Ty;. Then assertion (1) is true. As a fundamental set for the group

G(g) =Tulq) *u(y T2

we shall use 03 N Qua(g) = Q(g). Then Lemma 5 implies assertion (iii).
Next we note that

r(q) =3 (rl * r‘4/<<uq>>) * £ (y) ' and G = 1"1 * 14 *H(q) F23.

Hence G(q) = G'/{{u?)).
The lemma is proved. (]

5.5. Now, using assertion (ii) of the previous lemma, arguing analogously as in
subsection 3.8 we deduce that the elliptic elements p, (), p, () are not conjugate
forany g < g<oo, mk€Z m# k. So the finitely generated Kleinian group
p,(F') contains infinitely many conjugacy classes of finite order elements.

Consider the representation y, = p,|,. We know that Ker(p,): G' — G(q) is
the normal closure of (u,) in G'. Since (u) C F ’ and F’ is normal in G’, we obtain
that Ker(y,) is the normal closure of mLEJZ 7 (ud) ;™ in F'. So the group wy(F')

has the presentation
(X1yeen X i Uf, M ISWAR

It is easy to see that the elements f, f4 can be included in a system of free generators
of the free group F’. Hence, the same is true for the element u = f, ! B,. Then the
group w,(F’) has the desired representation

G 0" (x) =1, meZLy = Fy

where 6 is the automorphism of free group F, induced by Ad(z;). Corollary 2 is
proved. J

§6. Description of the quotient manifolds

In this section we describe briefly the topology of the manifolds M (K3) and
O(Fr.q) = Q(Fr.q)/Fr,q’ q > qo.

6.1. We start with the sphere Z;(s) for some s >0, s< 1/(2 —1). Then we
construct a representation p, : G’ — G(s) c Mob(S?) in the same manner as
in subsection 5.1. A fundamental polyhedron Q(s) for the group G(s) is equal to
P>, N P3N P(ETETY) N P(ehE, T 73). As in Lemma 7, we conclude that G(s) is
a Kleinian group. Let Q(s) be the infinite component of Q(G(s)). Then, according
to the Maskit Combination Theorem, the manifold M (s) =Q(G(s))/ G(s) is home-
omorphic to a fiber bundle over S! (cf. Lemma 3 in [K-P 1]). Let x2(s), yals) =
ps(B2)(x2(s)) be distinct points of OP (ps(TD)N AP ({ps(B2)); xals) =7 (x2(s)) and
ya(s) = 5()2(s)). Join the pair of points x1(s) and x4(s) by a Euclidean segment
1,. Join the pair of points ya(s) and ya(s) by a Euclidean segment I.

The union 7, U I/ projects to a circle C in M(s).

6.2. PROPOSITION 1. The manifold S /G’ is homeomorphic to M(s\C; m (&)
=1.

ProOF. Note that the removal of 7, U I/ from Q(s) is equivalent to deleting
{x,y} from cl(Q(oc) = P(G')). Then the proof is concluded as in [K-P 1, Lemma 3}.
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6.3. Let ¥ be a fiber of the manifold M (s). The cyclic covering ,: Q(s)/p, F’ —
Q(s)/G'(s) is induced by the embedding 7,(F) — 7 (M (s)). The manifold X, =
Q(s)/p,F’ is homeomorphic to the handlebody § x R and n;(J) is a free group of
rank r. Then the manifold €'/F’ is homeomorphic to X,\(n;'(C) = L), which
is the complement to the infinite-component link in the handlebody.

Let .#(C) be an open regular neighborhood of the knot C,M ~(s)=M (s)\.#(C).

6.4. PROPOSITION 2. Let Q, be the infinite component of Q(G(q)). Then the
orbifold Q,/G(q) is homeomorphic to M~ (s) Uy, D(q) x S', where D(q) is 2-
disc with one singular point of order q.

Proor. Evident (see Lemmas 5-7 and the considerations above). |

6.5. Thus, the quotient orbifold Q,/F(g) is supported by an open handlebody
X, and the singular set is the infinite-component link L. of order q.

Remark. Every quotient manifold Q(F(g))/F(g) (g0 < g < oc) has also four
components besides Q,/F(g). These components are homeomorphic to the handle-

body im(A(F(q)))/(F(q) NTig)). i=1,... 4.

§7. Finite order elements in discrete subgroups of PSL(2,C)

ProPOSITION 3. Let T be any discrete finitely generated subgroup of PSL(2,C).
Then T contains only a finite number of conjugacy classes of finite order elements.

ProoF. Denote by M (G) the factor orbifold for a discrete group G in PSL(2,C).
Let I'y < I be a torsion-free finite index normal subgroup in I" (which exists according
to Selberg’s lemma). Then the finite group F = I'/ Ty acts on the manifold M (),
preserving the peripheral structure of the fundamental group =, (M (I'y)) = Ip. Then
it is easy to see that the manifold M (I') has a compact Scott core C(T'y) [Se] invariant
under F. The compact orbifold O(T') = C(T'y)/F has the singular set X(I'), which
is a finite graph. Vertices of X(I') and vertex—free components of it are in one-to-one
correspondence to the I'-conjugacy classes of maximal finite order subgroups of I'.
Hence, I' contains only finitely many conjugacy classes of finite order subgroups.
The proposition is proved. O

§8. On the Abikoff conjecture about noncone limit points
for finitely generated discrete subgroups of PSL(2,C)

8.1. Let I' € Mob(S”) be a discrete group. Then there is a hierarchy of limit
points x € A(I') according to the way in which they can be approximated by an orbit
I'(z), z € H™"!. A point x is said to be an approximation or cone limit point if up to
an infinite subsequence the family I'(z) lies in some Euclidean cone K ¢ H"*'. This
may be considered as the best (fastest) approximation. The set of cone limit points
is denoted by A.(I'). The dynamics of I' near an approximation point is similar to
the dynamics near a fixed point of a loxodromic element. In contrast, parabolic fixed
points cannot be cone limit points. Unlike cone limit points, nonapproximation limit
points are a much more intriguing matter. In a very instructive survey [Ab 2] Abikoff
proposed the following

CoNJECTURE. Let I C PSL(2,C) be any finitely generated discrete group. Then
(A(DNAAD)) /T is a finite set.
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REMARK. This conjecture was motivated by Sullivan’s finiteness theorem (para-
bolic fixed points modulo I" form a finite set).

8.2. The main aim of this section is to disprove the above conjecture. There are
two types of counterexamples. In fact, both are from Abikoff’s paper.

8.3. Next, we recall some constructions from [Ab2]. Consider a Fuchsian tor-
sion-free group F C PSL(2,R) such that S = H 2/F is a compact surface. Let & :
F — F be a pseudo-Anosov homomorphism with attractive and repulsive foliations
% and &* respectively. We realize H? as the unit disk A C C, A* = ext(A). Lift
the foliations &, #* to foliations .# C A, 4 C A* invariant under F. Add to
any geodesic in .#°, #* its end-points; the resulting “foliations” will be denoted by
#, #*. Consider two equivalence relations on C:

(1) x ~ y, if x and y belong to a path-connected component of # or to the

closure in C of some component of A\ #;

(2) x =~ y, if x and y belong to a path-connected component of # U #* or to

the closure in C of some component of A\(F U _#*).

These equivalence relations are invariant under the action of F. Hence, the action
of F descends to C/~ and C/~. Thus, we obtain topological models for the action on
T of singly (case 1) and doubly (case 2) degenerate groups [Ab 2]. Let us denote the
corresponding discrete subgroups of PSL(2,C) by Fi and F»; let ¢\ be the projection:
C—C/~ (:C—C/~.

PROPOSITION 4. The sets Ao(Fi) = A(F)\A.(F,) contain continua {;(C\@A) N
A(F;).

REMARK. Indeed, {(A) = A(F))\A.(F,) consists of the end-points of the tree
A(Fy).

PRrROOF OF PrOPOSITION 4. We shall discuss only case (1); the second case is
essentially similar. . O

8.4. First we recall another definition of approximation points [B-M].

Let I' C Mob(S") be a discrete group, x € A(T). Then x € A (I') if and only
if there exists an infinite sequence {y,,} C I' such that for every point y € S”

(a) the limit lim,, .o y.(y) = ¥ exists,

(b) y* # x* for all y # x, and

(c) the point z = y* is one and the same for all ) # x.

8.5. Suppose that x € A.(F;) N (A). Hence x = &i(1), where [ is some geodesic
in # and x admits a sequence {f,} with the properties (a)-(c) above. We shall
denote by {f.} the corresponding sequence in F. Let {e, B} be the set of end-
points of /. The sequence {f,,} is not relatively compact in PSL(2,C); hence there
exists a subsequence { /. } C {fw} and points v, w € A(F) such that:

lim { i ()} =w € A(F) forevery: € C\{v}.

§—oC

Il

Then for point a or B (say a) we have that w = lim {fm(2)}

I

lim { f,, ()} for all but one point = € C. Consequently lim {fm (1(x)}
tim {fm Ci(a)}= lim {fm1(2)}. This contradiction proves that x is not an ap-
proximation limit point.
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8.6. Now we prove that every ¥ € A(F)\((A) is an approximation point. Let
x = {; }(X); clearly, this is not an end-point of any geodesic from #. The group F
is geometrically finite and it is easy to construct a sequence {f,,} C F possessing
the properties (a)-(b) with respect to x, such that

(d) y* is not an end-point of geodesics from the foliation #.

Then x* is not equivalent to the point y*. So, the sequence {f,,} C F; has the
properties {a)—(c) with respect to x.

The proposition is proved. O

Remark. The results of 8.5 can be proved more geometrically without passing
to a Fuchsian group, as in [Ab 2]. However that proof cannot be generalized to the
case of doubly degenerate groups.
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