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Abstract

The goal of this talk is to state Thurston’s Geometrization Conjecture for 3-manifolds and
outline the Ricci flow approach to this conjecture following Hamilton and Perelman.

1 Geometrization Conjecture for 3-manifolds.

In dimension 3 TOP=PL=DIFF (Moise), i.e. each topological 3-manifold admits a unique
PL /smooth structure. Hence throughout I will be working in the category of differentiable
manifolds, assuming for simplicity that all 2- and 3-manifolds are orientable.

Loosely speaking, the goal of the Geometrization Conjecture (GC) is to generalize the
classification of surfaces by their genus.

Definition 1. A geometry is a simply-connected homogeneous unimodular Riemannian man-
ifold X. Unimodularity means that X admits a discrete group of isometries with compact
quotient.

A 14 Felix Klein we will be identifying geometry with its group of isometries.

Definition 2. A compact manifold M is called geometric if int(M) = X/T" has finite volume,
where X is a geometry and I' is a discrete group of isometries of X acting freely.

3-dimensional geometries (the first 5 are symmetric spaces):

e 53 3, HB3, are the constant (sectional) curvature geometries.
e 52 x R, H? x R are the product geometries.
e Nil,Sol, %(R) are the twisted product geometries.



Note that only the spherical geometry is compact. The hyperbolic geometry is the most
interesting one. See [20] for a detailed discussion of these geometries.

Decomposition of 3-manifolds:

Assume that M is closed (compact, no boundary).

Step 1: Connected sum decomposition of M into prime pieces (closed manifolds which
cannot be decomposed further).

Step 2. If M is prime, consider a toral decomposition of M along incompressible * tori
into simple pieces (the ones which cannot be decomposed further). Note that simple pieces
typically have nonempty toral boundary.

Both decomposition processes terminate (Kneser, Haken: theory of normal surfaces).

Uniqueness of the decompositions: (1) Components of the connected sum decomposition
are uniquely determined by M (Milnor). (2) The toral decomposition is unique up to isotopy
if we consolidate simple pieces into maximal geometric pieces (Jaco, Shalen; Johannson).

Similar decompositions exist for compact manifolds with boundary.

Thurston’s Geometrization Conjecture (GC): Each prime closed 3-manifold M is either
geometric or its simple pieces are geometric.

A similar conjecture can be stated (and is proven by Thurston!) if M has nonempty
boundary.

A restatement of the GC: Each closed prime 3-manifold is either geometric or it splits
along disjoint incompressible tori as Mpick U Mypin, where My is a disjoint union of hy-
perbolic manifolds, and My, is a graph-manifold, i.e. a manifold obtained by gluing along
boundary tori of geometric 3-manifolds which are not modeled on H?.

Graph-manifolds are interesting and well-understood objects, they appear for instance in
theory of complex surface singularities. Example of a graph-manifold: let ¥ be a surface of
genus > 1 with one boundary circle, My, M, are copies of ¥ x S'. Now glue M;, M, along
their boundary tori.

Omnibus Theorem (Thurston et al.):

(1) GC is equivalent to the conjunction of PC (Poincare conjecture), SSFC (spherical space
form conjecture) and HC (Hyperbolization conjecture).

(2) (Thurston) GC holds if M is prime but not simple.

(3) (Thurston) GC holds for Haken manifolds®. (For proofs of this theorem, which includes
(2) as a special case, see [16], [11].)

(4) If M is (prime) aspherical then GC holds for M <= GC holds for all manifolds finitely
covered by M <= GC holds for all (prime) manifolds which are homotopy-equivalent to M.
(See [7] for the proof in the most difficult case.)

(5) GC holds if 7 (M) contains Z X Z or has infinite center. (See [26], [6, 2] for the key
parts of the proof of this.)

Explanation:

PC: If M is homotopy-equivalent to the sphere then it is diffeomorphic to the sphere.
Equivalently, if M is (closed) simply-connected, then M = §3.

SSFC: If the universal cover of M is the 3-sphere then M admits a metric of (positive)
constant curvature, i.e. it is geometric, modeled on S3.

.e. m -injective.
2I.e. M is prime and contains an incompressible surface: a m;-injective surface which is not S2.



HC: If M is prime, aspherical (i.e. its universal cover is contractible) and 71 (M) does not
contain Z x Z then M is hyperbolic.

HC is the most interesting (although, not the most famous) of the 3 parts of the geometriza-
tion conjecture.

A confidence-building exercise: GC implies PC. Indeed, suppose that M is closed
and simply-connected. Consider connected sum decomposition of M into prime components
My, ..., My. Then each M; is also closed and simply-connected. Since m(M;) is trivial, M;
contain no incompressible tori, hence, by GC, M; is geometric. Since the only compact 3-
dimensional geometry is spherical, we conclude that M; = S> for each i. Hence M = S? as
well.

A historic remark. The proof of Thurston’s hyperbolization theorem for Haken manifolds
splits in two cases: (a) Case of manifolds which fiber over the circle, (b) Generic case.

Part of the proof in the case (a) (the Double Limit Theorem) was covered in Thurston’s
unpublished preprint [24], the remaining part of the proof was given by McMullen in [14]. A
different (and self-contained) proof of the hyperbolization theorem for manifolds fibering over
S! was given by Otal in [16].

Parts of the proof in the case (b) were covered by Thurston in his paper [23], his unpublished
preprint [25] and his lecture notes [22]. A key part of the argument in the case (b) (the Bounded
Image Theorem) was proven by McMullen 1989, [13]; a year earlier Morgan and Shalen [15]
proved a part of the Bounded Image Theorem. A complete proof in the case (b) is presented
in [11].

2 Ricci Flow

The previous section described the status of the GC until November of 2002. In November
of 2002 Perelman had posted a preprint [17] which is the first part of the proof of the entire
GC. The second Perelman’s paper [19] was posted in March of 2003, the third paper [18] was
posted in July of 2003. The fourth paper (concerning collapse) should appear some time in the
future, although it was essentially covered in the preprint of Shioya and Yamaguchi [21]. The
goal of this section is to outline the approach (Ricci flow) to GC used in Perelman’s papers.

Ricci flow was introduced by Hamilton in 1982 as a possible approach to GC. I refer the
reader to [9], [3], [1], [4] for surveys of the Ricci flow.

We consider a closed 3-manifold M and a smooth family of Riemannian metrics g(t),g €
[0,T), T < 00, on M. This family is said to be Ricci flow if it satisfies the Ricci Flow Equation
(RF):

g'(t) = —2Ric(g(t)),

where Ric(g(t)) is the Ricci tensor of g(t).

Ricci flow typically does not preserve volume (e.g. it decreases the volume if the ¢g(0) has
positive curvature); by rescaling both space and time one gets Normalized Ricci Flow Equation
(NRF):

~ 2

7 (1) = —2Ric(q(t)) + 5r7).

Here r = r(t) a scalar function, which is the average scalar curvature of the metric g. The
metric g has constant volume, this metric is called the normalized solution of the Ricci flow.

What is it good for? Suppose for a moment that g is a fixed point of the NRF, then
9'(t) = 0 and hence the Ricci tensor is a scalar multiple of the metric tensor, i.e. the metric
g is Einsten. In dimension 3, Einsten metrics are metrics of constant (sectional) curvature,
hence M is geometric!



Ricci flow as an analogue of the heat flow. Consider the metric tensor g;;(z) in a normal
coordinate (z = (z')) near zero, then

1
9ij(x) = i = 3 Ripjor"a’ + O(|z*)

where Rjpi, is the Riemann curvature tensor (and I use the Einstein summation notation).
Hence for the usual (Euclidean) Laplacian A we have:
1

Agij (0) = _gRicij-

Thus, up to the higher order terms, the Ricci flow equation is the heat equation
9:;(t) = —6Ag;;

on the space of symmetric 3 x 3 matrices.

The good news:

1. Short-time existence theorem (Hamilton, 1982, [8]; de Turck, 1983, [5]): There exists
T > 0 such that given the initial condition ¢g(0) the RF equation has a (unique) solution for
tel0,T).

2. Positive curvature solutions (Hamilton, 1982, [8]): If g(0) has positive curvature then
the RF equation has a solution for ¢t € [0,00), the solution has positive curvature and the
normalized solution converges to a constant curvature metric. In particular, M is geometric.

Pinch this neck

T

Infinite curvature

Figure 1: Neck pinching.

3. Geometric decomposition at infinity (Hamilton, 1999, [10]): Suppose that RF equation
has a solution for all ¢ > 0 and the curvature tensor Rm of the normalized solution g has
operator norm bounded by some time-independent constant: |Rm(t)| < Const for all t. Then
GC holds for M. Moreover, as t — oo, (M, g(t)) splits as Mypick U Mipsp, along incompressible
tori, where (Mypick,g(t)) converges to a disjoint union of finite-volume complete hyperbolic
manifolds and My;, collapses and is homeomorphic to a graph-manifold.

The bad news: If M contains essential spheres then NRF blows up in a finite amount of
time.

Example: Take two copies of the round sphere $% and connect them by a thin neck. The
neck will get pinched (under RF) in a finite time. Figure 1.

Hamilton-Perelman Approach to GC via (unnormalize) Ricci flow:
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Figure 2: Blow up times.

Part 0. Without loss of generality (via Kneser’s theorem) we can assume that the manifold
M is irreducible.

Part 1. Show that the forming singularities of the normalized solution at the blow-up times
T; (say, near the first finite blow-up time T7) are standard: “neck” or “cap”. See Figure 3.
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Figure 3: Standard singularities.

To identify the location of neck and caps look “around” points of (M, g(t)), t = T; — ¢,
where the norm |Rm| is maximal.
Remark: Hamilton was unable to justify this step of the program, in particular, he was unable
to rule out a singularity of the form S'x 2-dimensional “cigar soliton” (steady-state) solution
of the Ricci flow. Step 1 was done by Perelman in his 1-st paper, [17].

Part 2. Do the surgery: Cut out necks and cups from M near T; and replace them with
(carefully chosen) spherical cups of bounded curvature. See Figure 4.
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Figure 4: Surgery.

In the resulting manifold throw away components of positive sectional curvature; call the
result M*¥" (this manifold is connected by assumption).

Continue the flow on M*".
Remark. Throwing away components of positive sectional curvature does not change the
topology of M (since M was assumed to be irreducible), except in the case M*"" = (). In the
latter case we necessarily have: M admits a metric of positive sectional curvature and hence is



a spherical space-form (by Hamilton’s theorem [8]). In the case M*“" = ) the Ricci flow with
surgeries is said to become eztinct in a finite amount of time.

Part 3. Show that there are only finitely many (Hamilton)/ locally finitely many (Perelman)?
blow-up times T;.

Part 4. Show that as ¢ > 0, the manifold M*"" splits (along incompressible tori) into
Mipick U Mypin where the metrics on the components of the thick part converge to finite volume
complete hyperbolic metrics; the thin part collapses as ¢t — oo.

Part 5. Show that My;, is a graph-manifold.

Part 1 is covered by the 1-st Perelman’s paper [17]; parts 2, 3 and 4 are covered by the
second paper [17]; part 5 should appear in the fourth paper by Perelman. Part 5 is essentially
covered by the preprint of Shioya and Yamaguchi [21]. In their paper Shioya and Yamaguchi
cannot handle the case when 71 (M) is finite. However in this case the Ricci flow with surgeries
becomes extinct in a finite amount of time:

In his third preprint [18] Perelman gives a simplified version of his argument for manifolds with
finite fundamental groups. Namely, he shows that after a finite number of surgeries at times
T1,...,Ty, as t — T4 the (scalar) curvature of the manifold M*"" blows up to +oo everywhere
on M*%". In this case the manifold M*“" has positive sectional curvature for ¢ =~ Ty, 41, hence
the solution of the Ricci flow becomes extinct at ¢ = T;,11 and M is a spherical space-form.
This solves the Poincaré conjecture and the spherical space-form conjecture for 3-manifolds.
The discussion of collapse is not needed in this case.

I refer the reader to the notes by Kleiner and Lott [12] where they fill in some of the details
in 1-st Perelman’s paper [17].

3 Beyond the GC.

Assume that GC holds.

Corollary 1. Suppose that M is aspherical (m;(M) = 0,i > 2). Then:

1. The universal cover of M is diffeomorphic to R3.

2. Homotopy-equivalence M ~ N implies diffeomorphism M = N. Thus M is determined
by its fundamental group.

Remark. (1) fails (even in the topological setting) for manifolds of dimension > 4, as was
shown by Mike Davis.

(2) fails for manifolds of dimension > 4. Topological version of this is known in higher
dimensions as Borel Conjecture. It was verified by Farrell and Jones in a number of cases.

Corollary 2. Suppose that M is compact. Then:

1. All three algorithmic problems for wi (M) (i.e. the word, conjugacy and isomorphism
problem in the class of 3-manifold groups) are solvable.

2. The homeomorphism problem (PL setting) is solvable for 3-manifolds.

3. If mi (M) is amenable then it is “elementary amenable” (and, moreover, is virtually
solvable).

Note that 1, 2 and 3 fail for 4-manifolds.

Corollary 3. One can “order” hyperbolic 3-manifolds by their volume: This is analogous
to ordering surfaces by their genus.

3In the original version of [17] Perelman was saying that there are only finitely many blow-up times. Later, he
modified the claim to local finiteness.



The problem with this “order” is that given v there could be several (but only finitely
many) hyperbolic manifolds with the volume v. Also, the set of hyperbolic volumes in R,
is not discrete, although the appearance of accumulation points is relatively well-understood
(hyperbolic Dehn surgery).

Several remaining open problems:

1. Relate topology of a hyperbolizable 3-manifold M with the geometric properties of the
hyperbolic metric on M. For instance: Kashaev’s conjecture; how to predict Margulis tubes;
how to predict arithmeticity of 71 (M), etc.

2. Virtual problems, e.g. the virtual by (M) > 0 problem, i.e. if M is hyperbolic then it
admits a finite cover with positive first Betti number. This problem is still open even in the
case of arithmetic 71, although much was proven in the works of Millson, Li, Clozel, Lubotzky
and others.

3. PD(3) groups: Show that 3-dimensional Poincare duality groups G are 3-manifold
groups. Much of the Coarse Approach (see [11, Chapter 20]) to the GC makes sense in this
setting, but since we have no smooth structure to speak of, analytic methods are not available.
Note however that even “Haken” case (i.e. when G splits as an amalgam) is open, even
assuming that G is, say, amenable!

4. Algorithmic aspects: Once GC is known to hold for M, there is a rigorous but extremely
inefficient algorithm for constructing geometric structures on the simple pieces of M. The
most difficult case here is when M is hyperbolic. On the other hand, there are very efficient
algorithms (Weeks; Casson) for constructing hyperbolic structure on M. However there is no
theoretical justification for their work (can a combinatorial version of Ricci flow help here?).
Find a (justified and efficient) algorithm for geometrizing 3-manifolds. The same applies to
the recognition problem for 3-manifolds: The fastest (probabilistic) algorithm to tell two 3-
manifolds apart is to check that they are hyperbolic, compute their volumes and show that the
volumes are different. Can this be converted to a rigorous procedure? (One needs of course
more invariants in addition to the volume.)
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