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1 Introduction

In this paper we continue the discussion of the deformation theory of representations
in relation to the deformation theory of mechanical linkages that we began in [KM1].
W.Goldman and J.Millson in [GM2] prove that for the fundamental group of any
compact Kahler manifold M and a compact Lie group G the only singularities of
the representation variety Hom(m (M), G) are quadratic. In this paper we study
the possible singularities of representation varieties of uniform lattices in the group
SO(3,1). Note that according to J.Carlson and D.Toledo [CT] lattices in SO(n,1)
(n > 2) can’t be isomorphic to fundamental groups of compact Kéhler manifolds.
Thus the results of [GM2] are not applicable in our case. We construct cocompact
reflection groups I'; C SO(3,1) and irreducible representations p; : I'; = SO(3) so
that p;(I'y) is Zariski dense and py(I'y) is finite, such that the singularities of the
varieties Hom(I';, SO(3)) at p; and V(I';,SO(3)) = Hom(I';,SO(3))/SO(3) at [p,]
are strongly nonquadratic (see Section 2 for definitions).

We prove this by finding nonzero classes ¢ € H'(T';, s0(3)) such that the first
obstructions [¢,(] € H?*(T';,s0(3)) to the “integrability” of ¢ are trivial, but the
vectors ( are not tangent to any curve in V (I';, SO(3)) since the second obstructions
to the integrability of ( are nonzero.

In Section 5 we prove that strongly nonquadratic singularities are inherited by
normal subgroups of finite index. Thus by taking finite-index subgroups we prove the
following

Theorem 10.7. There exists a compact hyperbolic 3-manifold M, and an irre-
ducible infinite representation p : w (My) — SO(3) such that the singularities of the
varieties Hom(m (M), SO(3)) at p1 and V (m(My), SO(3)) at [p1] are not quadratic.

In Section 6 we prove that for a group I' strongly nonquadratic singularity at the
trivial representation into SO(3) implies that for any semi-simple Lie group G the
variety Hom(I', G) again has a nonquadratic singularity at the trivial representation.
Thus,

Theorem 10.8. There exists a compact hyperbolic 3-manifold My such that for
any semi-simple Lie group G the varieties Hom(m (M), G) and V(w1 (Ms), G) have
nonquadratic singularities at the trivial representation.

To the best of our knowledge these are the first examples of this sort.

Our examples are based on constructions of mechanical linkages in 2, which are
not rigid at the 1-st and 2-nd order, but some of the 1-st order deformations can’t be
extended to deformations of the order 3.

These examples contrast sharply with the result of [Ka]: for any cocompact re-
flection group I' C SO(3,1) the variety Hom(I',SO(4,1)) is smooth at the point
id : T' — SO(4,1). We discuss vanishing of the cup-product H'(T, so(4,1)44) X
H'(T, s0(4,1)aq) = H?*(T, s0(4,1) 44) in Section 11.



2 Varieties with nonquadratic singularities

In this section we prove a simple but useful criterion for detection of higher order
singularities.

Suppose that z = (z1, ..., ;) and fi(z), ..., f(x) are homogeneous quadratic poly-
nomials with coefficients in a field k and

(1)
Let ¢y : R — k be the evaluation at zero.

Lemma 2.1 Suppose that v : R — k[t|/(t?) is a homomorphism lifting vy and
e+ R — k[t]/(t?) is a homomorphism lifting 1. Then there exists

Yoo : R — k [t] (2)
lifting 1.
Proof: Let v, (x;) = at, ¥q(x;) = azt + b;t>. Then
filat+bit?, .. ant + b,t*) =0(mod ), j=1,...,m (3)
Since all polynomials f; are quadratic we conclude:
filait, ..., ant) =0 (4)

Therefore we take 1o, = ;. O

Let V be a variety defined over k, o € V' be a point and @V,o the complete local
ring. We denote by R

T(V) = Homicaig(Ov KIH/1™H) (5)

the m-th order jet space at o € V and by 7 : J* — T,(V) the natural projection to
the Zariski tangent space.

We say that V' has a nonquadratic singularity at o if the complete local ring of V'
at o is not formally isomorphic to the complete local ring of zero in an affine variety
W given by homogeneous quadratic equations.

Lemma 2.2 Suppose that & € J2(V') has the property that w(£) is not tangent to any
formal curve in V. Then V has a nonquadratic singularity at o.

Proof: Suppose to the contrary that V has a quadratic singularity and W is the
corresponding variety given by the quadratic equations

leO:“',fm:O (6)
Let ¢ € J2(W) be the image of £ under this isomorphism. Then ¢ corresponds to
a pair (¢1,19) as in Lemma 2.1. It follows that the homomorphism 1., given by
Lemma 2.1 will define a curve tangent to w(¢). This contradiction proves that V' has
a nonquadratic singularity. O

Suppose V is a variety such that there exists £ € J2(V) with the property that
7(€) ¢ w(J3(V)). In this case we say that the variety V has a strongly nonquadratic
singularity at the point o. The tangent vector 7(§) is said to be obstructed at the
3-rd order but not at the 2-nd order.

It follows from Lemma 2.2 that the existence of a strongly nonquadratic singularity
of V at a point o implies the nonquadratic singularity of V' at o.
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3 Computation of H*(T,,)

Let T" be a finitely-presented group and p : I' — G be a representation into the group
G of real points of a linear algebraic group defined over R. Denote by g the Lie algebra
of G. There exists a smooth compact 4-manifold M such that ' = 7 (M) (see [ST],
p. 180). We let p : X — M be the universal cover , hence I' acts freely and properly
on X. We consider g as I'-modulus via the adjoint representation Ad o p. In this
section we show how to compute H'(T',g), i = 0,1, 2 in terms of differential forms on
M. Proposition 3.2 may be of independent interest.

Let P be the principal G-bundle with flat connection wy associated to p and
adP the associated flat bundle of Lie algebras (with the fiber isomorphic to g). Let
A* (M, adP) (resp. A*(X,p*adP)) be the differential graded Lie algebra of smooth
adP-valued forms on M (resp. smooth p*adP-valued forms on X). Let Uy,...,Uyx
be a cover of M by contractible open sets such that all the intersections of the U;’s
are contractible. We let & = {Uy, ...,Ux}. The inverse image p~!(U;) is a countable
disjoint union of contractible sets permuted simply-transitively by I'. We choose an
indexing of the components by I' such that U; ,, = pU; . Thus

pH(Us) = UyerUsy (7)

We let Y = {Ui,t = 1,..., N,y € I'} be the resulting cover of X. Then all the
intersections of th~e Ui,’s are also contractible. .

Let S, (resp. S, ) denote the ¢ simplices in Nerve(U) (resp. Nerve(d)). If o € S,
(resp. o € S; ) we let U, (resp. Ujz) denote the corresponding g-fold intersection.
Now

Uioyo N - N Uiy, 0 (8)
implies
UsN...0U;, 0

Hence each ¢-simplex of Nerve(U) corresponds to a unique ¢g-simplex 7(c) on Nerve(H)
and we obtain a simplicial map

7 : Nerve(d) — Nerve(U) 9)

Now let o = (49, %1, -..,%,) be a g-simplex of Nerve(U). The inverse image p~!(U,)
is a countable union of components permuted simply-transitively by I'. Each of
these components corresponds to a unique simplex in 7 !(¢). Thus ' acts simply-
transitively on 7 (o). Therefore we may choose a I'-equivariant bijection F : S, —
Sy x I'. We write Uz = U, , with F(6) = (0,7). Hence pU, .y = Uy iy, 1 € T

Let A%, (resp. A%) denote the sheaves associated to the g-forms on M with values
in adP (resp. g-forms on X with values in p*adP). We let p,, denote the restriction
plu,.- We have an induced isomorphism of sections

Poy i T(Us, Aly) = T'(Usy, Ak) (10)
Let CP(U, A%,) and C?(U, A%) be the corresponding Cech cochain groups. Hence

i, Ay) = 11 T(Us, A) (11)

0€ESy
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oP (U, A%) = T] T(Us, AY) (12)

The group I acts on C?(U, A%) by

(/‘L : w)tf,’y = (:u_l)*wa,u—lv (13)

Let G, H be groups and V be an H-module. Then we will define the induced G-
module Ind%V with the underlying vector space

Homm(R(G), V) = {T : G - V : T(gh) = hT(g)} (14)

equipped with the G-action
90T (9) =T (95" 9) (15)
We recall Shapiro’s Lemma [B], Ch. 3, Proposition 6.2:

HP(G,Ind$V) = H?(H,V) (16)
Lemma 3.1 The T'-modules C?(U, A%) satisfy

HYT,C*(U,A%L)) =0, all p,q and i>0

Proof: Denote by e the trivial subgroup of I'. We claim that there is an isomorphism
of I'-modules

¢ Ind,C?(U, A%;) — CP(U, AL) (17)
Indeed, we define ¢(T) for T € Hom(R(T), C? (U, .A},)) by
(p(T)a,'y = p;,'yT(’Y)J (18)
We claim that ¢ is a ['-module isomorphism. Indeed we have
(T )oy = Pory (W) (V)o = Py, T (117 7)o (19)
and
(9T = (W) Oty = (1) Dy 1, T(17')s (20)

But p, -1, © 47" = p,,, and the claim follows.
The Lemma follows from Shapiro’s Lemma (taking H =e). O

Proposition 3.2 '
HP(T', A'(X,p*adP)) =0,p >0

Proof: 'We consider the Eilenberg-MacLane, Cech double complex C with CP4 =
CP(T,CYU, A)). Let T-C be the total complex. We claim
HY(TC~) =0,1> 0. To see this we filter T-C* by q. Then F*T"C-" is the subcomplex
such that '
(F'LTc,)n — Gg.cm—q,q (21)
q-1

The E;-term of the resulting spectral sequence is given by

EP? = HP(T,C(U, A)) (22)
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By Lemma 3.1 EP"Y = 0,p > 0. Also
E}M = H(T,CU, Ax)) = C(U, Ay (23)

Since A{M is a fine sheaf the Fs)-term of the spectral sequence has only one non-zero
term and '
Ey° = A¥(M,adP)

The claim follows by the basic theorem on the spectral sequences associated to a
double complex, [McC], Theorem 3.10.
We now filter C by p and find that the E;-term is given by

EP? = CP(I', HY(U, AY)) (24)
Hence the E-term is concentrated on the p-axis with
EP? = cP(T, A (X, p*adP)) (25)
Hence the Es-term is concentrated on the the p-axis with
E?’ = HP(I', A (X, p*adP)) (26)

But by the fundamental theorem on the spectral sequences associated to a double
complex we have

HP(T, A(X,p*adP)) = H?(TC~) = 0,p > 0 (27)
O

Remark 3.3 In the case p = 1 and dim(M) = 2 Proposition 3.2 was proven by I. Kra
in [Kra].

We can now prove the result we need.

Proposition 3.4 There are canonical morphisms
P : H?(',g) — H?(M, adP) such that

(i) o' is an isomorphism;

(ii) ©? is a monomorphism onto the kernel of

p*: H*(M,adP) — H*(X,p*adP)

Proof: We consider the Eilenberg-MacLane de Rham double complex C' with CP? =
C?(T', AY(X,p*adP)). Here CP? is the group of inhomogeneous cochains on T' with
values in the I'-module AY(X, p*adP) — see [MacL], Ch. 4, §5. We let (T*C", D) be
the associated total complex. We first claim that

H(T-C~) = H (M, adP)

To see this filter T°C by ¢. Then the resulting spectral sequence has EP? =
H?(T', AY(X, p*adP)). Hence by Proposition 3.2 we have E"Y = 0,p > 0. Since
we have E{"? = A%(M, adP) the claim follows.
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We will need to make explicit how the isomorphism
¢ : H*(M,adP) — H*(T"C™)
is obtained. A class in H?(T-C-) is represented by a cocycle (for the double complex)
(a,b,c) € C°(T", A%(X, p*adP)) ® C*(T, A} (X, p*adP))®

@C?(T', A°(X, p*adP)) = T*C" (28)

The cocycle condition is equivalent to
da = 0,6a = db, 6b = dec,6c =0 (29)

The isomorphism %) is induced by the map of cochains ¢ : A*(M, p*adP) — T?*C
given by ¢¥(w) = (p*w,0,0). The content of the previous argument is that given
a cocycle (a,b,c) € T*C we can find a cochain (e, f) € C°T, AY(X, p*adP)) ®
CL(T, A%(X,p*adP)) = T'C~ such that

(a,b,¢) — D(e, f) = (d',0,0)

for some o' € CO(T', A'(X, p*adP)). Since (d’,0,0) is a cocycle in the total complex
da' = 0 and da’ = 0 whence @’ = p*w with w a closed adP-valued 1-form on M.

We now filter 7"C~ by p. We find that E{”O = C?(I", g) and consequently Eg’o =
HP(T',g). We define ¢” to be the composition

B EP? = FPHP(TC) C HP(M,adP) (30)

Since H'(X)®g = 0, it is immediate that (' is an isomorphism and (? is a monomor-
phism. It remains to identify the image of (.

By general results on the spectral sequences associated to a double complex [McC]|,
Theorem 2.1, the image of ? is the subspace of H?(M, adP) consisting of classes of
filtration level 2 for the filtration induced via the isomorphism %) from the filtration
T?C by p. Hence w € I'm(p?) if and only if ¥(w) is cohomologous to a cocycle in
T?C~ of the form (0,0,c). We now prove that v(w) is cohomologous to a cocycle
of the form (0,0, ¢) if and only if p*w is exact in A?(X, p*adP). Suppose first that
h(w) is cohomologous to such a cocycle. Then there exists (e, f) € T'C~ such that
de = p*w, de = df, 6f = 0. Now e € A'(X, p*adP) so p*w is exact.

Now suppose that p*w is exact. Then there exists e € A'(X, p*adP) such that
de = p*w. For each v € T, de(7) is a closed p*adP-valued 1-form on X. Since X
is simply-connected there exists f(7), a smooth section of p*adP, such that df(y) =
de(y). Put ¢ =40 f. Then c(u, ) is a parallel section of p*adP for u,~y € T and defines
an element of Z2(T, g). The cochain (e, f) gives a cohomology from 9 (w) = (p*w, 0, 0)
to (0,0, ¢) and the proposition follows.

O

4 The Massey triple product

Let I' be a finitely-presented group. We assume that I' = 71 (M) where M is a smooth
compact 4-manifold as in the previous section so that M = X/I.
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We recall that the 1-st cohomology group H'(T',g) is isomorphic to the Zariski
tangent space of the representation variety V (I, G) at the point [p].

In this section we show that a nonzero tangent vector ¢ € H'(T,g) is obstructed
at 3-rd order, but not at 2-nd order if and only if the cup-product

[€.¢] € H*(T, g) (31)
vanishes but the Massey triple product
(CI¢IC) € HA(T,9)/1 (32)
is nonzero. Here I C H?(T,g) is the subspace
I'={[n¢l:neH (T, g9} (33)

It will be crucial for us that we can compute H¢(T,g), ¢ = 1,2 and the deformation
space of p in terms of differential forms.
Choose a point o € M and define an augmentation

€: A*(M,adP) — g (34)

as follows. For & € A%(M,adP) define ¢(§) = &(xg). For n € AY(M,adP), i > 0
we define ¢(n) = 0. We let A*(M,adP)y denote the kernel of e. We abbreviate
A* (M, adP), to L*. We have an isomorphism

H'(L*)—Z'(T,q) (35)

Here Z'(T', g) is the space of Eilenberg-MacLane 1-cocycles. The map 7 is induced
by the period map
7: AY (M, adP) — C*(T, g) (36)

(here C'(T',g) is the space of Eilenberg-MacLane 1-cochains), which is defined as
follows. Let p : X — M be the universal cover. Choose a base-point T, € X over x.
Let n € AY(M, adP). Define 7(n) € C'(T, g) by

Zo

)= [ o (37)

Here we identify p*n with an g-valued 1-form on X by parallel translation from Z,.
We will need another description of the period map 7. We define

w: H'(L*) — Z'(T, g) (38)

as follows. Given [n] € H'(L®) choose a representing closed 1-form n € L*. Let
7 =p*n. Let f: X — g be the unique function satisfying

(i) f(Zo) =0;

(i) df = 7.
Define w([n]) € Z*(T, g) by

w([n])(v) = f(z) — Adp() f(v ')

We observe that w is well-defined. Indeed, if [n] is exact in L* then w([n]) = 0.
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Lemma 4.1 w=r.

Proof: We have f(z) = [3 7 whence

w(ln)(v) = ~ﬁ—Mﬂ/wwﬁ:/fﬁ—é7mmwﬁ:

O

Let [¢],[n] € HY(T,g), choose differential forms ¢,n € L' representing these
classes. Define [(, 7] to be the wedge product of these forms where we use the Lie
bracket in g to multiply the coefficients of these forms. The corresponding class
My ([¢]) :=[¢,¢] € H?(T, ) is called the cup-product of ¢ with itself.

Now let @ C Z!(T',g) be the quadratic cone consisting of those cocycles ¢ such
that [¢,¢] = 0in H%(T,g). Let Q C H'(L*) be the quadratic cone consisting of those
classes 1 such that [,7] = 0 in H?(L®*). The next lemma is a consequence of [GM1],
Lemma 4.1.

Lemma 4.2 The period map T carries the cone Q onto the cone Q.

We now define the Massey triple product (¢|¢|¢) as follows. Choose a closed form
n € L' representing (. Since ( € Q there exists 1; € L' such that dns = [ny, ).

Lemma 4.3 [n;, 7] € H*(T, g).

Proof: By Proposition 3.4 it suffices to prove that p*[n,no] is exact. Since X is
simply-connected there exists v; € A%(X,p*adP) such that dv; = p*n. We will
abbreviate p*n; to 7; henceforth. The graded Jacobi identity [GM2], §1.1, implies

[v1, [, ) = 2[00, (v, 7] (39)
and hence 3
dlv1, [v1, 7] = 5[’/1, (771, 7] (40)
To conclude we have only to observe that
d[v, 7] = [7i1, 7] + [v1, [T, ]| (41)

O
Define M3(¢) = (€[¢|¢) to be the class of [n;, 7] in H*(T,g)/I. We recall that

I'={ln,¢l:neH(T,g)} (42)
is the ideal generated by [(].

Lemma 4.4 (C|C|¢) is well-defined.



Proof: We check that [n;,n9] is closed. Indeed

dn, me] = [n1, dna] = [y, [m,m]] =0 (43)

The last equality follows from the graded Jacobi identity in L®. The reader will check
that (C|C|¢) is independent of choices of the forms 7, 7y. O

One defines the higher Massey n-fold product operations M,, similarly (see [GM3]),
we will need them only for n = 2, 3.

We now relate the the operations M, to infinitesimal deformations of representa-
tions. Let A, denote the truncated polynomial ring R[t]/(t"*1). If m < n we have a
surjection

Wpp: Ap — Ay,

We abbreviate I1,,_; ., to II,,. Observe that the set Hom(I', G)(A,) of A,-points of
the affine variety Hom(T, g) is the set of “curves”

pe = po + pit + ... 4 pt” (44)

such that
pe(zy) = pi(x)pe(y) (mod ") (45)
We let Hom(I', G),(Ay) denote the subset of the above set such that py = p where
p: ' — G is a fixed representation. We have the induced maps
II,, : Hom(I', G),(A,) = Hom(I', G),(A,_1) (46)

obtained by dropping the last term. We use II; , to project Hom(I', G),(4,) into
Hom(T, G),(A;). We will denote the image of Hom(T', G),(A,) by Hom!(T', G),(4,),
it consists of infinitesimal deformations of the representation p which are “integrable
up to order n”. By [GM1], §4.4 we have natural bijections of sets:

Hom(T,G),(A;) = Z'(T, g) (47)
Hom' (T, G),(42) 2 Q (48)
The bijections in (47) and (48) are obtained as follows. Let p; = p + pit €
Hom(T',G),(A;). Define ¢ € Z*(T', g) by
c(y) = p(Mp(7) "

The reader will verify that c satisfies the cocycle identity

c(1172) = c(m) + Ad p(y1)e(72)

If there exists po : I' — G such that p + pit + pot? € Hom(T, G)(Az) then it is
easily checked [GM2], §4.4, that [c, ¢] is exact, whence ¢ € Q. The map Il is just the
correspondence p; — c.
We now wish to identify Hom'(T', G)(A3) as well as the map II3. Define C C Q
by
C ={¢e Q:(C[¢)=0} (49)

Lemma 4.5 There is a canonical bijection Hom!'(T',G)(A3) = C corresponding to
the map Il3.
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Proof: We replace the infinitesimal deformation theory of p with the equivariant
deformation theory of the flat connection wy. Precisely, we replace the groupoid
Ry, (p) of [GM2], §6.4, with the equivalent groupoid F) (wo) of [GM2], §6.4. The
objects of F) (wo) are infinitesimal deformations (parameterized by Spec(A,)) of
wo and the morphisms are infinitesimal deformations of the identity in the group
of gauge transformations. By Corollary 6.4 of [GM2] the holonomy map induces a
canonical bijection hol from the set of isomorphism classes IsoF) (wo) to the set
Hom(T',G)(A,). For n = 1 we obtain the bijection w. For n = 2 we obtain the
bijection 7 between Q and Q of Lemma 4.2. Thus to prove the lemma we have to
solve the following problem.

Let n, € Q with hol(n) = 7(n) = ¢. Hence there exists 7, € L' such that
wy = Mt + nut? satisfies

1
dwy + §[w2, wy] = 0(mod t°) (50)

Find necessary and sufficient conditions that there exist 15,73 € L' such that ws =
mt + wt? + vst® satisfies

1
dws + §[w3, ws] =0 (mod t*) (51)
For any choice of v, 13 satisfying (51) we have:

dvy = [, m] ,dvs = [, 1] (52)

Hence there exists a closed form « such that vy = 1y + a. We find that v, v3 exist as
above if and only if there is a closed 1-form o € L' and a 1-form 73 € L' such that

dns = [, m2] + [m, o] (53)

The latter equation holds if and only if the cohomolgy class of [n;, 7] belongs to 1.
O

Thus we obtain the main result of this section.

Theorem 4.6 Let I' be a finitely-presented group as above and p : ' — G be a rep-
resentation. Then the varieties Hom(T', G) and V(T', G) have strongly nonquadratic
singularities at the points p and [p] if and only if there exists ( € H'(T', g) such that:

[€.¢]=0 in H*(T,g)

(CI¢lC) #0 in H*(T,g)/1

5 Nonquadratic singularities for representations of
subgroups of finite index

In this section we will prove that strongly nonquadratic singularities of representation
varieties are inherited by normal subgroups of finite index.
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Theorem 5.1 Suppose that I is a finitely presented group as in §4, I'' is a torsion-
free normal subgroup in T of finite index. Let G be a semisimple Lie group such
that the representation variety Hom(I', G) has strongly nonquadratic singularity at a
point p. Then the varieties Hom(I", G) and V(I'', G) also have strongly nonquadratic
singularities at the points p' = p|r and [p] respectively.

Proof: According to Theorem 4.6 there exists a class ¢ € H'(T', g) such that M5({) =0
but M3(¢) # 0 in H*(T',g)/I. Let ¢’ be the image of ¢ under the inclusion
H'(T,g) — H'(T", )
Let I' C H*(T", g) be defined by
I'={[n,¢T:n' € H'(I",9)} (54)

Our goal is to prove that (¢'|¢'|¢") # 0 in H*(I",g)/I' (in this case Theorem 4.6
would imply that we have a strongly nonquadratic singularity). Let A = I'/T” and
M = X/I'". Denote by

A*(M, adP)*
the subalgebra of invariants in A*(M, adP).

We let 11,71, be A-invariant 1-forms on M so that [n,n:] = dne and [m;] = (.
Since M3(C) # 0 for each 73, & € AY(M, adP)® with d¢ = 0 we have the property:

(02, m] # [, m] + dns (55)

We now define the Reynolds operator

R: AY(M,adP) — A'(M, adP)* (56)
by the formula:
]' *
R(n) = 5y >N (57)
YEA

Then R is a morphism of complexes, R(u) = p for u € A' (M, adP)® and R satisfies
the Reynolds identity

R([p,v])) = [p, R(v)], p€ AYM,adP)>,v € A (M, adP) (58)

Suppose now that M3(¢’') = 0 in H*(T",g)/I’. Then there exists £ € A'(M,adP)
with d¢’ = 0 and n} € A'(M, adP) such that

(2, m] = [€',m] + dny (59)

We apply the operator R to this formula and use the fact that 7,, 7, are A-invariants
to obtain

(12, m] = [R(£'), m] + dR(n}) (60)
Since R(¢') and R(nj) are A-invariants this contradicts the property (55). O
Remark 5.2 In the proof we used heavily the fact that the singularity is strongly non-

quadratic which means that it suffice to consider only 2 and 3-fold Massey products.
In the case of higher-order singularities one may need more complicated calculations.
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6 Singularities near the trivial representation

In this section we will prove that if Hom([', SO(3)) has a strongly nonquadratic
singularity at the trivial representation 1 then (Hom(I', G), 1) also has a strongly
nonquadratic singularity at 1 for all semi-simple Lie group G.

To begin with we may replace SO(3) by SU(2) since 1 has the same (local)
deformation theory in the two groups (both deformation problems are controlled by
A* (M) ® so3 where m (M) =T).

Let g be the Lie algebra of a semi-simple group G. It must contain so(3) and this
inclusion induces a monomorphism of the controlling differential graded Lie algebras
for the trivial representation A*(M) ® so(3) — A*(M)®g. We will identify A*(M)®
so(3) with the image of this embedding. Since so(3) is semi-simple we may find an
so(3)-invariant complement m to so(3) in g. We have [so(3),m] C m.

Now we can prove

Theorem 6.1 Suppose that the (Hom(I',SO(3)), 1) has a strongly nonquadratic sin-
gularity. Then for any semi-simple Lie group G the germ
(Hom(I', G),1) also has a strongly nonquadratic singularity.

Proof: According to Theorem 4.6 there exists a class [(] € H'(T', so(3)) such that
[¢,¢] =dn in H*(T', s0(3)) and

(CICIC) # 0 in H*(T, 50(3))/Iso3) (61)

Here I;,(3) denotes the ideal {[(,w]: w € H'(T,s0(3))}. Assume that ((|¢|¢) = 0 in
H?(T,g)/I,. Then there exists a closed form 8 € A*(M)®g such that [¢, 7]+ [, 8] is
trivial in H?(T', g). We write 8 = '+ 4" with ' € A'(M)®s0(3) and 3" € A'(M)@m.
We obtain

[C;m+ BT+1C. 5]

is trivial in H?(T, g). However the first summand belongs to A?(M) ® so(3) and the
second one to A?*(M)®m since [so(3), m] C m. We also have the splitting of complexes

A (M) ® g = A*(M) ® s0(3) ® A* (M) ® m

Thus the sum of the closed forms [(,m + £], [(, "] is exact if and only if the both
forms are exact. This means [(,n; + '] = 0 in H?(T, so(3)). This contradicts our
assumption that Mz(¢) # 0 in H?(T, s0(3)). O

7 Construction of lattices
In this and following two sections we will construct lattices in SO(3,1) and their

representations which give representation varieties with strongly nonquadratic singu-
larities.
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B2

Figure 1

Start with a graph A in S? which is drawn on Figure 1. We assign numbers n; € Z
to edges of A as on Figure 1; we shall omit the number 2 using the standard convention
for Dynkin diagrams. If the label m = 4 then we denote the labelled graph by As, if
m = 7 then we denote the labelled graph by A;. (Instead of the number 7 here one
can choose any prime number m > 7.)

Then we add extra edges and vertices Q, F, F5 to A to triangulate the comple-
mentary regions of §2 — A. Denote the result by A# (Figure 2). Finally we add 14
extra vertices Z1, ..., Z14 to the graph A¥ as on Figure 3 (we omit the labels Z;). All
the edges added to the graph A# have the label 2. The result is a labelled planar
graph I[I =11, j = 1, 2.

14



Figure 2

Consider the graph IT* dual to II. We assign integers to the edges of IT* as follows.
If the edge e* of II* intersects an edge e of II then we assign to e* the same number
which is assigned to e.
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Lemma 7.1 There erists a compact finitely-sided convez polyhedron ® = ®; in H®
(7 = 1,2) whose faces correspond to complementary regions of the graph II; and the
dihedral angle at each edge e of T1* is equal to 7 /n if the number n is assigned to e.

Proof: All vertices of IT* have valency 3 since II was the 1-skeleton of a triangulation.
Then, by examining the graphs A, A# and II, we conclude that for each simple closed
loop ¢ C II:

(a) either the number of edges in £ is 3 and £ bounds a triangle in §2 — II or the
edges of £ are labelled as (4,4, k) with k =4, 7;

(b) or the number of edges in £ is 4 and a label on at least one edge of £ is > 3;

(c) or the number of edges in £ is 4 and one of components of §? — ¢ contains
exactly one edge;

(d) or the number of edges in / is at least 5.

Then the existence of ® follows from the Andreev’s theorem (see [T], Theorem
13.6.1). O

We label faces of ® by the letters A, B;, C... which denote corresponding vertices
of the dual graph II. According to Poincare’s theorem on fundamental polyhedra
[Mk], the group I' = I'; generated by reflections 7 in faces of the polyhedron @, is
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discrete and ®; is the fundamental polyhedron of I'. Hence I' is a uniform lattice.
The system of relations in I" can be described as follows. Suppose that S, Q) are two
faces of %2 — IT* which have a common edge e with the label ¢. Then the product of
reflections 7g - 7¢ in the faces S, ) has order g.

8 Construction of linkages

We construct geodesic maps ¢; : A — X2, 4 = 1,2 as follows. Consider the unit sphere
¥:2 in R® with center at zero. Choose the following points on ¥2:

D=C=(0,1,0),B; = (0,1/v2,(-1)7/V2),j = 1,2,

A = (sint, cost,0), F = (sin 2t, cos 2t, 0),

where t = w/m, t ¢ Zn/2, m = 4,7. Hence the vectors D, E are linearly inde-
pendent. Note that the number m here is the same as the label of the segments
[A,C],[A, E], [E, D] in the graphs A;, i = 1,2. (See Figure 4.)

zA
& —>
A
E
c >
D A
B1
y
Figure 4

If two vertices of A are connected by an edge then connect the corresponding
points of ¢;(A) by the shortest geodesic segment on ¥.2. We introduce a path metric
on A by pull-back of the spherical metric via ¢;. A shall denote by the set of
vertices of A. The graph A is an abstract mechanical linkage and ¢;(A) C ¥? is its
realization in 2-sphere.

9 Deformations of mechanical linkages

In this section we drop the index i for the linkage A; and the map ¢; since the
arguments will be independent on the choice of m = 4,7. Consider the deformation
variety Def(A) of the linkage A in the sphere Y2 which is the space of all geodesic
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maps h : A — X2 which are isometries on all edges (we do not divide out by the group
SO(3)).

The space Def(A) has a natural structure of an algebraic variety which can be
described as follows. We shall regard points of the unit sphere ¥2 as unit vectors in
R?. Denote by v the number of vertices in A and by € the number of edges.

Define the polynomial map

R:R¥ xR — R (62)

by the formula

where ¢ = (q1, .-, 4,),p = (p1,.--,p,) € R* and the dot product appears if either the
vertices v;,v; of A are connected by an edge or ¢ = j.

Now let p = (pY,...,p°) be the collection of unit vectors corresponding to the
configuration ¢(A®) and r° = R(p,p) € R™. Then the identification Def(A) =
R™1(r%) gives the deformation space a structure of the algebraic variety.

Thus the Zariski tangent space T,(Def(A)) to Def(A) is given by the kernel
of the map R(p,e) : R* — RT. Elements of T,(Def(A)) are called infinitesimal
deformations of 1(A). An infinitesimal deformation ¢’ is called trivial if it belongs
to the kernel of the projection T'(Def(A)) — T(Def(A)/SO(3)). This means that
there exists an element of the Lie algebra ¢ € so(3) = R® such that q;- = ( X p;, where
e x o is the vector product in R®.

The second order jet space J7(Def(A)) of the variety Def(A) is described as
follows. Let ¢' € Tp(Def(A)),q" € ®”. Then (¢',¢") € J2(Def(A)) iff

R(q¢,q") + R(p,q") =0 (64)

The elements (¢',¢") are called second order deformations of the configuration p;
in such case ¢" is called the acceleration of the deformation (¢',¢"). An element
¢ € T,(Def(A)) is called second order integrable if there exists ¢" such that (¢',¢") €
JZ(Def(A)). Similarly we can define higher order deformations. Suppose that p :
[0,1] — X2 is a smooth curve such that p(0) = p so that

dm
dt—mp(t)h:o = (Z(m)

and the identities p;(t) - pi(t) = p;(0) - p;(0) are satisfied up to the order m of t — 0
for each v;,v; € A connected by an edge. Then the vector ¢ = (¢ = ¢, ¢" =
@, ¢" = ¢, ..., ¢"™) is an infinitesimal deformation of order m. These deformations
belong to the m-th order jet space J;'(Def(A)) of the variety Def(A) at p. An
infinitesimal deformation ¢’ € T,(Def(A)) is called m-th order integrable if there
exists 7 € JI"(Def(A)) such that ¢!V = ¢

Theorem 9.1 There exists a nontrivial infinitesimal deformation

q' € Ty(Def(A))

which is 2-nd order integrable but is not 3-rd order integrable.
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Proof: The infinitesimal deformation ¢’ is given by the following velocities:
D'=C"=E=0,B;=(1,0,0) (j=1,2),A = (0,0,1)
We choose the acceleration vectors in p” as follows:
D"=FE"=0,B]=(0,0,(-1)""'/v2),(j=1,2),
C" = (2—1/sin’t,0,0), A” = (1/sint — 2sint, —2 cost, 0)

Then direct calculations show that:
Bj-B;-’:—l,A-A”: -1,A"-E=0,A"-C+C"-A=0
B}-C=B/-D=B;-C"=0
Thus (¢',p") € Jq%(Def(A)).

Now we will prove that there is no 3-jet (¢/,¢",¢") in Jg(Def(A)). Suppose that
such jet exists. We will retain notations A”, B” etc for its components.

Proposition 9.2 The deformations (¢",q") can be chosen so that E" = 0.

Proof: Recall that E- E =1,E - E" = 0 since (¢',¢") € J3(Def(A)). Hence a direct
calculation shows that there exists a skew-symmetric matrix S with the property:
E" = —SE. We define a 1-parameter family of orthogonal transformations by

Q; = exp(t29)

The curve p(t) = p(0) +¢'t +¢"t*>/2+ ¢"'t3 /6 is order 3 tangent to the variety Def(A)
at the point p(0) = ¢. The same is true for the curve ¢(t) = Q;(p(t)). The curve ¢(?)
has the same 1-st derivative as p(t) but the restriction of the deformation ¢(¢) to the
vertex E has zero second derivative SE + E”. Thus instead of (p, ¢", ¢"") we can take
the 3-jet (p/,p",p"") of the curve p(¢). O

In what follows we shall assume that E” = 0 which will simplify our calculations.
Let A" = C" — D",A" = C" — D". The scalar products B; - C and B; - D must be
preserved up to the 3-rd order, thus

C"-B;+3C" - Bj+C-B'=0 (65)
D"-B;+3D"-B,+D-B =0 (66)

This implies that A"™-B; = A”-B}. The vectors B; , j = 1,2 are linearly independent,
B = B} and A" . C = 0, thus we conclude A" - B; =0, j = 1,2. It follows that
A" - Bi = 0. However A".C = 0 and the vectors B},C are linearly independent.
Hence A” = (0,0, ). The scalar product D - E must be preserved up to the second
order, therefore D" - E =0, F - (0,0,A) = 0 which implies C" - E = 0. The vectors
C, E are linearly independent, thus the equality C”-C = 0 implies that C" = (0,0, ).
We have 0 = A-C" + A" - C, thus A” - C = 0 and on the other hand A” - E = 0.
It follows that A” - A = 0 since the vector A is a linear combination of C, E. Recall
however that the scalar product A-A must be preserved up to the second order, hence
A-A"+ A"~ A" = 0. We conclude that A’ - A’ = 0 which contradict the assumption
that A’ is the unit vector (0,0,1). O

Note that the infinitesimal deformation ¢’ is nontrivial since it is not extendable
to a 3-rd order deformation of the linkage.
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10 Representation varieties with nonquadratic
singularities

Let I' = I'; be one of two reflection groups constructed in Section 7. We define a
representation p : I' — SO(3) as follows. Suppose that a face of the fundamental
polyhedron @ is labelled by a letter S which is the label of a vertex S in the graph
A. Then we let p(75) be the rotation of order two around the vector ¢(S) C X2
Otherwise (if S € II is not a vertex of A) we let ¢(75) = 1. It follows from the list of
relations of the group I' and the geometry of A that p is a homomorphism (see the
proof of Lemma 10.4). (For instance, the rotations p(74)p(7g), p(7p)p(7£), p(74) p(TD)
have orders dividing m).

Lemma 10.1 Ift = w/m = /4 then the group p;(L;) is finite. If m = 7 then the
group p;(T;) is infinite. Moreover in the latter case the group p;(T;) is Zariski dense
in SO(3).

Proof: We first assume that t = 7/m = /4. It is easy to see that the finite collection
of vectors {(€1, €2, €3),€; € {0,1,—1}} is invariant under the generators of the group
p2(T3). These vectors span R, thus the group p,(Ty) is finite. Suppose now that
m > 7 is a prime number. Then the group p;(I';) contains the rotation p;(Q) =
p1(7c 0 T4) of order m around the axis z. The rotation p; (TpQ75) has axis different
from z and the same order m. On the other hand, if K C SO(3) is a finite subgroup
which contains an element of prime order m > 7 then this is a dihedral group and
axes of all such elements in K must coincide. We conclude that p;(I'y) is infinite.
The representation p is irreducible, thus p; (') contains two elements of infinite order
with different axes, thus p;(I';) is Zariski dense in SO(3). O

Remark 10.2 It follows that for m > 7 the group pi(T'y) is dense in SO(3) in the
classical topology.

Theorem 10.3 For each i = 1,2 the representation variety Hom([;, SO(3)) has a
strongly nonquadratic singularity at the point p; and the quotient variety V (I';, SO(3))
has a strongly nonquadratic singularity at the point [p;].

Proof: We again drop the index ¢ for the groups I'; and representations p;. Denote
by A C I the reflection group generated by 75, S € A. Theorem 3.2 of [KM1] implies
that there exists an isomorphism ¥ between the germ of the variety Hom(A, SO(3))
near p and the germ of the variety Def(A) near ¢(A). The last variety has nontriv-
ial elements of Ty(Def(A)) which can be extended to second order jets, but are not
extendable to 3-rd order jets. Hence, the same holds for the variety Hom(A, SO(3))
at p. Since ¥ is SO(3)-invariant it induces an isomorphism of quotient germs. Con-
sequently the germ of V(A,SO(3)) at [p] also has an infinitesimal deformation with
the above properties.

Lemma 10.4 The restriction map
Res : Hom(I',SO(3)) = Hom(A, SO(3)) (67)

s an tsomorphism of germs of these varieties near the representation p.
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Proof: Let N be the normal subgroup of I" generated by the set ) of reflections in the
faces of the polyhedron ® corresponding to the vertices @, F;, Z; that were erased in
passing from II to A. The composition ¢ : A — I' — I'/N is clearly a surjection. We
claim that it is also an injection. Let = be the set of reflections in the faces of ® not
included in the set §2 above (the “rest of generators of I'”). Then I' has a presentation
of the form:

I'= <E’ Q: 52’ w2a (fifj)Qmij’ (wkwl)anl’ (fswr)2p8T> (68)

Here £ runs through =, w through € and the numbers ny;, mj, ps, are determined by
the labels of edges of the graph I'.

The above presentation for I" induces a presentation for I'/N by adding the extra
relation w = 1 for all w € 2. We can then eliminate the relations (wyw;)?™!, (&sw,)?Ps
since the generators £ have order 2. We obtain the following presentation for I'/N:

L/N = (2: &, (&&)"™) (69)

Now it is clear that ¢ is an isomorphism since A has the same presentation and
(&) = &;. The isomorphism ¢ : A — I'/N induces an isomorphism of varieties

Hom(T'/N,S0(3)) = Hom(A, SO(3))

(see Remark below).

We now prove that the quotient map I' — I'/N induces an isomorphism of germs
(Hom(I'/N,SO(3)), p) = (Hom(T', SO(3)), p). Indeed
Hom(I'/N, SO(3)) is the inverse image of the trivial representation under the restric-
tion map Hom(I', SO(3)) — Hom((£2), SO(3)) where (€2) is the subgroup generated
by elements in €. Since p|(qy is the trivial representation 1, we obtain an induced
fiber square of germs

(Hom(I'/N,SO(3)),p) — (Hom(I',SO(3)), p)

) )
{1} — (Hom({22),S0(3)),1)

We claim that the trivial representation is an isolated point of

Hom({2), SO(3)). Indeed, T1(Hom((2), SO(3))) is the space of 1-cocycles

Z'((Q), s0(3)). But since (Q) is generated by elements of order 2 and acts trivially
on so(3) we have Z'({(Q), s0(3)) = 0. Hence Ti(Hom({2),SO(3))) = {0} and the
claim follows. Hence the bottom arrow of the above square is an isomorphism and
consequently the top one is also. O

Corollary 10.5 The map Res induces a map
Res : V(I',SO(3)) — V(A,S0(3)) (70)

which is an isomorphism of germs near [p].

Proof: Follows from SO(3)-invariance of the map Res. O

21



Remark 10.6 In the above proof we have used the fact that the isomorphism of
groups ¢ : A — I'/N induces an isomorphism of representation varieties. Since the
description of a representation variety Hom(I', H) depends on a presentation of the
abstract group T this is not obvious. We prove that now. The coordinate ring R of a
representation variety represents the functor of points A — Hom([', H)(A) where A
is an affine k-algebra. But since Hom(I', H)(A) = Hom(T', H(A)), a homomorphism
of abstract groups induces a natural transformation of the above functors. Hence an
tsomorphism of abstract groups induces a natural isomorphism of functors and so the
representing objects (the two coordinate rings) are isomorphic.

This discussion concludes the proof of Theorem 10.3. O

Now we can prove two main theorems of this paper.

Theorem 10.7 There exists a cocompact torsion-free lattice T} in SO(3,1) and an
irreducible representation p; : Ty — SO(3) such that the varieties Hom(I'}, SO(3))
and V (I}, SO(3)) have nonquadratic singularities at p; and [p1]| respectively.

Proof: Take any torsion-free normal subgroup of finite index I} C I'y where I'y is as
in Theorem 10.3. Then the assertion follows from Theorems 10.3, 4.6, 5.1. O

Theorem 10.8 There ezists a cocompact torsion-free lattice Ty, in SO(3,1) such that
for any semi-simple Lie group G the varieties Hom(I'y, G) and V(I'y, G) have non-
quadratic singularities at the trivial representation 1 and its conjugacy class [1] re-
spectively.

Proof: We have constructed a lattice I'y, C SO(3,1) and a finite representation ps :
I'y — SO(3) with a strongly nonquadratic singularity of the germ (Hom(T'y, SO(3)), p2).
Take any torsion-free normal subgroup of finite index I', C I'y such that py(I'%) = 1.
Then the assertion follows from Theorems 4.6, 5.1, 6.1. O

11 Deformation theory near the identity represen-
tation

Suppose that I' C SO(3,1) is a cocompact lattice, p is the identity representation
I' — SO(3,1). We are interested in the germ (V(I',SO(4,1)),[p]). Recall that
the embedding SO(3,1) — SO(4, 1) corresponds to the totally-geodesic embedding
H® — H!. Denote by 7 the reflection in H* which fixes H® pointwise. Then the Lie
algebra so(4, 1) splits as so(3,1) ®@m so that 7 acts as 1 on so(3,1) and —1 on m. This
splitting is orthogonal with respect to the Killing form on so(4, 1), thus it is invariant
under the adjoint action of so(3,1). It follows that for any &,7 € m,

[£;m] € s0(3,1) (71)

We recall that the 1-st obstruction to the integrability of infinitesimal deforma-
tions ¢ € H'(T,so0(4,1)) is the cup product [(,(]. The 1-st cohomology group
H'(T, s0(4,1)) splits as

H'(T,s0(3,1))® H' ([, m)
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and the 1-st summand is equal to zero according to Calabi-Weil rigidity theorem.
Thus for any class ¢ € H'(T', so(4,1)) we can choose a representative ¢ € Z'(I', m).
We owe the following argument to Gregg Zuckerman.

Proposition 11.1 The cup-product
[, ]: H'(T,s0(4,1)) ® H'(T, s0(4,1)) — H*(T, s0(4,1)) (72)

15 tdentically zero.

Proof: For classes &1,& € H'(T', so(4,1)) we choose representatives &1, € Z'(I', m).
The cup product [£1, &) is represented by the 2-cocycle on I':

O(.’E, y) = [gl (.T), adng(y)] (73)

where [, ] is the Lie bracket on so(4, 1). Then (71) implies that o(z,y) € Z?(T, s0(3,1)).
However, according to the Calabi-Weil rigidity and Poincare duality we get

H?(T, 50(3,1)) = 0

O

Theorems 10.7, 10.8 imply that vanishing of the cup-product alone is not apriori
enough to guarantee smoothness of the variety V(I', SO(4,1)) near [p]. However we
don’t know any examples when the identity representation [p] actually is a singular
point. Results of [Ka] imply that such pathological examples do not exist in the class
of reflection groups.

12 Remarks on mechanical linkages

Our examples of mechanical linkages were motivated by a construction due to R. Con-
nelly [C] of a rigid mechanical linkage in R?, which is not rigid at 1-st and 2-nd order.
Unfortunately the infinitesimal deformation of 2-nd order constructed by Connelly can
be extended to a deformation of 3-rd order and we can’t use his construction to prove
Theorem 10.7. More generally, for each positive integer n Connelly constructs a locally
rigid mechanical linkage in R? which admits a nontrivial infinitesimal deformation of
order n. This construction works for S2 as well but to construct a representation of a
Coxeter group one needs rationality conditions for lengths of edges which are difficult
to arrange. Note that the books on mechanical engineering [ALC], [S] contain lots of
examples of mechanical linkages which can draw quite complicated algebraic curves.

We recall the classical result of A.B.Kempe [Ke] that for any planar compact real
algebraic curve C there exists a finite collection of mechanical linkages in R*> which can
draw C' “piece-by-piece”. To apply this theorem to construction of Coxeter groups
with arbitrarily complicated singularities of representation varieties one has to solve
the same rationality problem.

Question 12.1 Suppose that V is an affine variety in R™. Is it true that there exists a
cocompact lattice T C SO(3,1), compact Lie group G and a representation p: ' — G
such that the germ (Hom(T', G), p) is analytically isomorphic to the germ (V x K™, 0)
for some m?

We will address this problem in another paper [KM2].
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