COARSE FIBRATIONS AND A GENERALIZATION OF THE
SEIFERT FIBERED SPACE CONJECTURE
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ABSTRACT. We prove a version of the Seifert fibered space conjecture for coarsely
fibered 3-manifold groups.

1. INTRODUCTION

The main goal of this paper is to establish a coarse analogue Seifert fibered space
conjecture for 3-manifolds. We recall that this conjecture (proved as the result of
collective efforts of a large number of mathematicians in early 1990-s) asserts that:

If M s a 3-dimensional irreducible manifold whose fundamental group has infinite
center, then M 1is a Seifert manifold.

Note, that if v is a smooth loop in M representing a nontrivial element of the
center of G = m (M), then the inverse image of vy in the universal cover X of M is a
family of proper (noncompact) curves L (not necessarily disjoint or embedded) which
is invariant under the action of the fundamental group G. The above curves are not
just proper in X, but are uniformly proper, i.e., there exists a distortion function
n: Ry — R, such that for each curve L,

n(de(z,y)) < d(z,y)

where lim; ,, n(t) = oo and df, is the distance measured along L and d is the dis-
tance in X with respect to a G-invariant Riemannian metric. Moreover, the distance
between curves L, L’ in this family cannot oscillate arbitrarily: if z € L,z’ € L' are
within distance < r then any point y € L is within distance < 9 (r) from a point in
L', where the function v does not depend on L, L', z,z', and .

Similar examples of families of curves in Riemannian manifolds X appear as fibers
of Riemannian submersions. One such example is given by Solv-manifolds:

Let h : T? — T? be an Anosov affine mapping; recall there are two h-invariant
foliations A of T? by affine geodesics. Let M be the mapping torus of h. Then each
foliation A yields a 1-dimensional lamination £ on M, whose lift to the universal
cover X gives rise to a family of curves L satisfying all the above properties.

Note however that in the latter example, no curve L is invariant under a nontrivial
element of (G. Moreover, no curve L is Hausdorff-close to a curve invariant under
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g € G\ {1}. More examples of the same kind are given by irrational affine foliations
on 3-dimensional tori. Combining the above examples we arrive to the following

Definition 1.1. Let X be a metric cell complex, see section 2 for the definition. For
the purposes of the introduction the reader can assume that X is a simplicial complex,
which admits a cocompact group action, where X is metrized so that each simplex
is isometric to the standard simplex in the Euclidean space. We define a coarse
fibration F of X as follows. Let {F,,a € A} be a collection of finite-dimensional
metric cell complexes (“fibers”); suppose that for each @ € A we are given an L-
Lipschitz map f, : F, — F, C X which is uniformly proper with the distortion
function 7 independent on «. In addition we assume that

(1) The union U,e 4 F, is Hausdorff-close to X, and

(2) There is a function ¢ : R, — R, with the property that if for a, § € A there
are points z € F,,y € F/g such that d(z,y) < r then the Hausdorff distance between
F,, Fg is at most 9(r).

If G ~ X is an (isometric) group action then we say that a coarse fibration F is
G-invariant if for each ¢ € G and o € A we have: go f, € F. We will say that F is
a coarse fibration by lines if F;, is isometric to R for each a € A.

Example 1.2. Suppose that X is a Cayley graph of a group G, C' C G is a central
subgroup. Let F' be a Cayley graph of C'. There is a natural map F' — F C X. Thus
for each element g € G' we have a map

fo: F—>F,=gFCX

induced by C C gC C G. Then the collection {(F, f;), g € G} is a coarse fibration of
X.

Observe that a coarse fibration is a coarse analogue of a Riemannian submersion
between complete Riemannian manifolds: fibers of such submersion are equidistant
from each other.

We note that coarse fibrations of the universal covers of 3-manifolds M appear in
the recent work of D. Calegari [3]. Namely, he considers quasi-homomorphisms h
of the fundamental group G = m;(M) into R. The inverse images h™'(z),z € R,
define a coarse fibration of the group G and, therefore, of the universal cover X of M.
Note however that such coarse fibrations are far from being by lines; rather, under an
appropriate finiteness assumption, they are coarse fibrations by quasi-planes. Another
instance where coarse fibrations appear in the geometric group theory is in relation
to Bieri-Neumann-Strebel invariant for finitely-generated groups [1].

The main result of our paper is:

Theorem 1.3. Suppose that M s a closed 3-manifold whose universal cover admits
a m1(M)-invariant coarse fibration by lines. Then either M is homotopy-equivalent

to a Seifert manifold or to a Solv-manifold.
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In section 7.2 we will also classify all invariant coarse fibrations of universal covers
of Seifert and Sol-manifolds.

As an application of our results we get an alternative proof of

Theorem 1.4. (P. Tukia, G. Mess, D. Gabai, A. Casson and D. Jungreis.) Let M
be a closed irreducible 3-manifold whose fundamental group has a nontrivial center.
Then M 1is homeomorphic to a Seifert manifold.

To be more precise, we are giving an alternative proof to the part of the above
theorem which was proven by G. Mess in [14]. Our proof still relies upon the clas-
sification of uniform convergence groups acting on S', which was proven by Tukia,
Gabai, Casson and Jungreis. We note that other alternative proofs of Geoftf Mess’
theorem were recently given by B. Bowditch [2] and S. Maillot [13].

Theorem 1.3 is used in our forthcoming work [8] to settle (under very strong extra
assumptions) the weak hyperbolization conjecture for 3-dimensional manifolds:

The fundamental group of a compact 3-manifold M is either Gromouv-hyperbolic or
contains a rank 2 abelian subgroup.

A coarse fibration on the universal cover X of M in [8] appears as a family of

intersection curves between leaves of certain immersed 2-dimensional laminations in
X.

This paper is organized as follows.
In section 2 we review basics of the geometric group theory and controlled topology.

In section 3 we introduce coarse fibrations and discuss their basic properties. We
define metric cell complexes which serve as coarse bases of coarse fibrations. In the
case of a coarse fibration as in Example 1.2, the base is quasi-isometric to the quotient
group G/C.

In section 4 we show that coarse fibrations (under appropriate uniform contractibil-
ity assumptions on the total space and the coarse fibers) behave homotopy-theoreti-
cally as products of the coarse base and a coarse fiber.

In section 5 we introduce the concept of coarse Poincaré duality and review some
basic properties of metric cell complexes which satisfy this duality, this subject was
discussed in much greater details in our previous paper [7]. For metric cell complexes
which satisfy coarse Poincaré duality one proves coarse analogues of Jordan separa-
tion; for instance, if L is a geodesic in YV, where Y satisfies 2-dimensional coarse
Poincaré duality, then some neighborhood of L separates Y(!) into exactly two com-
ponents none of which is within finite distance from L. A similar property holds if
instead of a geodesic one consider a fat geodesic triangle T in Y(: one can define
coarse interior and exterior of 7.

We then prove one of the critical results of this paper: If X is a coarsely fibered

uniformly contractible metric cell complex which is homeomorphic to an n-manifold,
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so that the fibers have locally compact cohomology of R?, then the coarse base Y of
the fibration satisfies n — i-dimensional coarse Poincaré duality. The reader familiar
with the paper of G. Mess [14] will note that this part of the paper is parallel to
the part of [14], where it is proven that the group 1 (M?)/C is quasi-isometric to a
planar surface, where C' is an infinite cyclic central subgroup of 7 (M?). Although,
2-dimensional coarse Poincaré duality! for a metric cell complex Y a priori is not the
same as Y being quasi-isometric to a planar surface, coarse separation properties of
the coarse base Y suffice for our arguments. According to the results of our paper
[10] we have the following dichotomy:

1. Either Y is Gromov-hyperbolic, with topological circle as the ideal boundary.
In this case the quasi-action G ~ Y is quasi-isometrically conjugate to an isometric
action G ~ HE.

2. Or Y has polynomial growth and, in case Y is quasi-isometric to a finitely
generated group (), the group @ is virtually abelian of rank 2.

To put this into prospective, suppose that Y appears as a base of a coarse fibration
F of a contractible 3-manifold X, so that F is invariant under G. Then, in the case
of the group-theoretic example 1.2 of a coarse fibration (as in G. Mess’ theorem), it
immediately follows that Y is quasi-isometric to the group G/C, which is therefore, is
either Gromov-hyperbolic with topological circle as the ideal boundary, or is virtually
nilpotent. This is our proof of G. Mess’ theorem. The reader interested only in an
alternative proof of [14] can stop reading the paper at this point.

In our situation it is not a priori clear that the base Y is quasi-isometric to a group:
the projection of a quasi-action of G' from X to Y may not be discrete. Such examples
are provided by Solv-manifolds.

In section 6 we restrict somewhat general discussion of coarse fibrations in the
preceding sections to the case of coarse fibrations by lines. We introduce the key
tool for dealing with the problem of nondiscreteness of the quasi-action of G' on the
coarse base Y of polynomial growth: the expansion function E(F') for the fibers of
the coarse fibration F. This function is a coarse analogue of the curvature in the
case of Riemannian foliations: it measures the amount of expansion of the metric on
a fiber F' under the nearest-point projection F' — Fy to a distinguished fiber Fy. We
then assume that the base Y has polynomial growth, in which case we prove:

(a) The function £ : F — R is bounded.

(b) Using (a) and amenability of Y we then show that the total space of the coarse
fibration is also amenable, i.e. admits a Fglner sequence.

(c) We then construct a homomorphism ¢ from the group G to the group of quasi-
isometries of the fiber Fj.

(d) 1. In the case when ¢ is trivial we use a commutator trick to prove that the
fiber Fy is Hausdorff-close to a central infinite cyclic subgroup Z C G.

We refer to this as Y being a quasi-plane.



2. In the case when 1 is nontrivial, by taking an asymptotic cone of F, we construct
a nontrivial homomorphism G' — Z (or, rather, we get such a homomorphism from
a finite-index subgroup in G). Thus, in the context of the universal cover of a closed
3-manifold M, we conclude that M is homotopy-equivalent to a virtually Haken
manifold.

In section 7 we prove the main theorem of our paper. In the case when the coarse
base Y has polynomial growth, the results of section 6 imply that M is (up to ho-
motopy) virtually Haken with amenable fundamental group, which implies that M is
(up to homotopy) either flat, Solv or Nil-manifold.

In the case when the coarse base Y is Gromov-hyperbolic, by considering various
classes of cobounded subgroups of Isom(H?): discrete, solvable, dense, we conclude
that M is (up to homotopy) either a Seifert manifold with hyperbolic base, or 71 (M)
is virtually solvable. In the latter case M is homotopy-equivalent to a Solv-manifold.

In section 8 we classify coarse fibrations by lines of Seifert and Solv-manifolds.
We show that they are Hausdorff-close to standard erxamples of coarse fibrations,
i.e. Seifert fibrations, foliations by affine lines in the case of flat manifolds, and the
laminations by lines (described earlier in the introduction) for Solv-manifolds.

In section 9 we prove that each Gromov-hyperbolic group, which admits an invariant
coarse fibration by lines, must be virtually cyclic.
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2. NOTATION AND PRELIMINARIES

2.1. Notation and conventions. We let Z, := {m € Z | m > 0} and R, :=
{z € R |z >0}. We let dg(-,-) denote the Hausdorff distance between subsets of a
metric space; the usual (infimal) distance will be denoted d(-,-). All maps between
cell complexes will be continuous unless otherwise specified. Given a map f we let
Im(f) denote the image of f.

We will be using singular (co)homology with Z coefficients unless we indicate oth-
erwise. For each negative integer k we set Hy(-) = 0, H*(-) = 0, etc.

Let r;, R; be two sequences of positive real numbers. We will use the notation

RZ’ Z T;
if there exist a pair of constants A, B (independent of 7) such that for all but finitely

many ¢ € N we have:
We will use the notation R; ~ r; if R; 2 r; and r; 2 R;.

A subset S C Z of a metric space is called -dense if each point z € Z is within
distance < ¢ from S. A subset in Z which is d-dense from some § < oo, is called a
netin 7.

A metric space Z has bounded geometry if there is a function ¢ : R, — R, such
that for each metric ball B(x,r) C Z, one has:

Vol(B(z,r)) := |B(x,r)| < é(r),

where |S| denotes the cardinality of a set S.

In sections 6.4 and 6.6 we will be using asymptotic cones and ultralimits of metric
spaces. We refer the reader to [12] and [11] for definitions and properties of these
constructions.

2.2. Maps and actions. Let Y be a subset of a metric space X. Amap f:Y — X
has bounded displacement if there is C' € R such that d(f,iy) < C where iy : Y — X
is the inclusion.

A map f: X — X' between metric spaces is uniformly proper if there are constants
L, A, and a continuous strictly increasing distortion function n : Ry — R, with
lim;_, o, 7(t) = oo such that

(2.1) n(d(zy, z2)) < d(f(21), f(22)) < Ld(z1,72) + A

for all z1, 2o € X. A family of maps {f;}ics is uniformly proper if one can choose

L, A, and n as above so that (2.1) holds for all the maps in the family.
6



A map f: X — X' between metric spaces X and X' is an (L, A)-quasi-isometry if
for all z1, x5 € X we have
1
zd(l‘l, fEQ) —A S d(f(ml), f(.fL'Q)) S Ld(.’L’l, .TQ) + A
and d(2',Im(f)) < A for all 2’ € X'. We let Q\I(X, X") denote the collection of all
quasi-isometries from X to X'. Two quasi-isometries fi, fo : X — X' are equivalent if
d(f1, f2) < oo; we let QI(X, X') denote the set of equivalent classes of quasi-isometries,

—~

and use QI(X) (resp. QI(X)) in place of QI(X, X) (resp. Q\I(X,X)). Composition
of quasi-isometries induces a group structure on QI(X).

A quasi-action of a group G on a metric space X, denoted G A X, is a map
p: G — QI(X) such that for suitable constants L, A,

1. p(g) is an (L, A) quasi-isometry for all g € G,
2. d(p(1),idx) < A, and

3. d(/’(9192)a ,0(91),0(92)) < Aforall g1, g, €G.

We will usually write g(z) rather than p(g)(z), suppressing the name of the quasi-
action when it is understood. A quasi-action is discrete if for all x € X, R > 0, the

set {g € G | d(g(z),z) < R} is finite. A quasi-action G A X is called cobounded if
for some (for every) point x € X the quasi-orbit G-z = {g(z) : ¢ € G} is a net in X.

A degenerating quasi-action of a finitely-generated group G on a metric space X is
a homomorphism p : G — QI(X). Note that each quasi-action of G ~ X defines a
degenerating quasi-action. The kernel of a (degenerating) quasi-action is the kernel
of the homomorphism p : G — QI(X); it consists of the elements of G which act on
X with bounded displacement.

Suppose that G rgv Y is a quasi-action with the kernel K. Note that a priori there
is no uniform bound on the displacement functions d, = d(y, ¢(¢)y) (independent on
g € K). For instance, for any quasi-action GAR", where G acts by translations, the
kernel is the entire group G. However, if Y is a Gromov-hyperbolic geodesic metric
space whose ideal boundary consists of at least 3 points, then there is a uniform upper
bound on the functions dg, g € K.

Let G, H be groups where H is given a left-invariant metric. A map p: G — H is
called a quasi-homomorphism if there is a constant C such that for each ¢;,95 € G
we have:

d(p(9192), p(91)p(g2)) < C.

In this paper we will need only quasi-homomorphisms to R.
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2.3. Metric cell complexes. We will be working with CW complexes endowed with
an extra structure. Let X be a CW complex, and X ™) denote its m-skeleton, m € Z.
Recall that a subcomplex Y of X is a closed subset which is a union of open cells,
such that the boundary of each open cell ¢ C Y is contained in Y.

A control map for X is a function p : X — X© such that

1. p|X(0) = id x ),

2. p is constant on open cells in X,

3. p(x) belongs to the smallest subcomplex containing z, for all z € X.

A morphism (X,p) — (X', p') is a skeleton preserving continuous map so that for
each 7 € N the diameter of the p'(0) is uniformly bounded (o are i-cells in X®).

A bounded geometry metric cell complex is a CW complex X equipped with a
control map p, whose 1-skeleton XV is connected and equipped with a path metric

with respect to which all edges have length 1, subject to the condition that every
closed cell ¢ C X(™) intersects at most D = D(m) closed cells in X (™).

Remark 2.2. Note that for such a complex, the metric space X(°) has bounded geom-
etry in the sense of section 2.1.

To simplify the terminology we will refer to bounded geometry metric cell complexes
as simply metric cell complexes: the bounded geometry will be assumed by default.

Example 2.3. Suppose that X is a connected (finite-dimensional) simplicial complex
so that there exists a number M such that the star of each vertex in X contains at
most M simplices. Put a path metric on X so that each simplex is isometric to
a regular Euclidean simplex with unit edges. This path metric defines a metric on
X Define a control map p : X — X which sends each simplex in X to one of its
vertices. Then the pair (X, p) is a metric cell complex.

We say that a metric cell complex X is Gromov-hyperbolic if its zero-skeleton X (©)
is Gromov-hyperbolic.

Let X be a metric cell complex. If V. C X and R € Z,, we denote the closed
metric R-neighborhood of V' in the 0-skeleton by

NOW) = {z e XO | d(z,V) < R}.

Given m € Z,, R € Z,, and a subcomplex Y C X, we define the R-neighborhood of
Y in the m-skeleton, N g")(Y), to be the largest subcomplex of X (™) whose 0-skeleton
is NV(v(©). Note that

1L N™)>vynxm,

2. If Y, Y' C X are subcomplexes and R+ R' < d(Y(©, Y'(O)), then for all m € Z,
we have NJ”(Y) N N9 (v") = 0.

If X is an m-dimensional metric cell complex then we will use the abbreviation

Ng(V) := N(V).
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We will only use the notation B(z,r) to denote closed metric balls in the 1-skeleton
XW ie. B(z,r) :={y € XU | d(x,y) < r}, where z € X, If Y is a subset of
X, we define its diameter to be diam(Y) := diam(p(Y’)). Similarly, we define the
distance between two functions f, f': S — X to be the quantity d(po f,po f').

A (continuous) map f : (X,p) — (X',p') is uniformly proper if for each m € Z,
there are constants L = L,,, A = A,,, and a distortion function n =n,, : R, - R,
which is continuous, strictly monotone, with lim; . 7(t) = 0o, such that for all cells
01,09 € XM,

(2.4) n(d(p(o1),p(o2)) < d(p'f(01),p'f(02)) < Ld(p(o1), p(o2)) + A.

A family of maps {f;}ics is uniformly proper if one can choose L,,, A, and 7, as
above so that (2.4) holds for all the maps in the family.

A (continuous) map f: X — X' between metric cell complexes (X, p) and (X', p)
is an (Ly,, Ap)-quasi-isometry (m € Z..) if for all 1,09 € X™ we have

ﬁd(p(m),p(w)) — Am < d(p'f(01),0'f(02)) < Lind(p(01), p(02)) + Am

and d(z', Im(f™)) < A,, for all 2/ € X'™™.

A metric cell complex (X,p) is uniformly k-connected if there is a function § =
O : 7. — 7. such that the inclusion N () — Né?:)rl)(x) is null-homotopic for all
z€ X0 reZ,. X isuniformly contractible if it is uniformly k-connected for all k.

If we are given a collection X of bounded geometry cell complexes X, then we

will say that X has bounded geometry (resp. is uniformly k-connected, uniformly
contractible) if each X € X has bounded geometry (resp. is uniformly k-connected,
uniformly contractible) where the functions D(m) (resp. 6;) may be chosen indepen-
dently of X € X.
Remark 2.5. When X is a uniformly contractible cell complex, given two continuous
maps fi, fo from a finite dimensional cell complex Z into X where d(fi, fo) < D,
there is a homotopy from f; to f, whose tracks have diameter < D’ where D' =
D'(D,dim 7).

2.4. Category Cp of complexes with bounded control. For the discussion of
coarse fibrations it is convenient to introduce a category Cg of cell complexes with
bounded control over a metric space B. This category generalizes the category of
metric cell complexes.

Fix a metric space B (in all applications B will have bounded geometry). The
objects of the category Cp are pairs (W, ¢) where W is a CW-complex and ¢: W — B
is a not necessarily continuous control map. We note that B does not have to be
equal to W,

Example 2.6. Let (W, p) be a metric cell complex. Set B := W cp :=p.
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A morphism between (W, c¢) and (W', ) is a continuous, skeleton-preserving map
w: W — W' which is proper on each skeleton, and has (skeleton-wise) bounded
control over B, i.e.

d(cl © IU‘|W(k)1 C|w(k))
is finite for each k.

2.5. Growth and amenability. A bounded geometry metric space Z has polyno-
mial growth if there is a constant ¢ € R; such that for each ball B(z,r) C X one
has r¢ 2 Vol(B(z,r)). The optimal constant c is called the degree of the polynomial
growth. A space Z has superpolynomial growth if it does not have polynomial growth
for any c.

Similarly, a bounded geometry metric space Z has exponential growth if there is a
constant a > 0 such that for each x € Z one has:

Vol(B(z, R)) 2 e*E,
A space has subexponential growth if

e > Vol(B(z, R))
for all @ > 0.

A metric space Z is doubling if there is a constant N € Z, such that each ball
B(z,2R) C Z (where R > 1) is contained in the union of < N balls of radius R.

Lemma 2.7. (See e.g. [10].) Suppose that Z is a bounded geometry doubling metric
space. Then Z has polynomial growth.

There is another closely related concept, amenability. Assume that Z has bounded
geometry metric space. For a subset D C Z define the c-frontier 0.D as

0.D:={xe€Z\D:d(z,D)<c}.
A sequence D; C Z is called a c-Fylner sequence if

Vol (OCD]) _

lim Vol(D;) = oo, and lim = 0.

j—o0 j—o Vol(D;)
A metric space Z is called amenable if it admits a c-Fglner sequence for each c. It
is clear that amenability is a quasi-isometry invariant property for bounded geom-
etry metric spaces. A finitely-generated group is amenable iff it has an invariant
mean. Examples of amenable groups are given by solvable groups. Free nonabelian
groups provide examples of nonamenable groups. Moreover, if a group G contains a
nonamenable subgroup or maps onto a nonamenable group, then G is nonamenable.

We note that for the metric spaces Z which are vertex sets of connected graphs
with unit edges (e.g., finitely generated groups with their word metrics), to test
amenability of Z it suffices to consider the 1-frontiers 0D := 0D in the definition of

Fglner sequences.
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Lemma 2.8. If the space Z has subexponential growth then is amenable.

Proof. Pick a point x € Z and consider the sequence D; := B(z,j) C Z, j € N.

Suppose that the sequence (D;) contains no c-Fglner subsequence. Then there is a
constant C' > 0 such that for each j, Vol(0.D;) > C Vol(D;), i.e.

Vol(B(z,j+¢)) > (C+1)Vol(B(z,j))-
Then Vol(B(n)) > (C + 1)"Const and hence Z has exponential growth. O

3. COARSE FIBRATIONS

3.1. Coarse fibrations. Let F be a collection of subsets of a metric space Z. Then
F defines a coarse fibration of Z if there is a function ¢ : Ry — R, such that:

1. Forall F, F' € F,

(3.1) dn(F, ') < p(d(F, F')),
where dy denotes the Hausdorff distance.
2.

Ur
FeF
is a net in Z.
We will refer to elements of F as fibers of the coarse fibration, and to the function

n as an oscillation function. In case when Z is O-skeleton of a metric cell complex X,
by abusing notation we will also refer to F as a coarse fibration of X.

Examples:

1. Let h: Z — B be a Riemannian submersion, where Z is a connected, complete
Riemannian manifold. Then {h~!(b)}sc5 is a coarse fibration of Z. More generally, if
h: Z — B is a smooth map between complete connected Riemannian manifolds, and
there is a constant C such that for allz € Z, | Dh(z)|| < C and Dh(z) : T,Z — Thz) B
has a right inverse Ty B — T,Z with norm < C, then {h '(b)}ep is a coarse
fibration. To see this, note that the conditions imply that h is Lipschitz, and that
there is a smooth distribution transverse to the fibers of h (a “connection”), so that
unit speed paths in B can be lifted horizontally to paths in Z with uniformly bounded
speed. This leads easily to (3.1).

2. If G A Z is a cobounded quasi-action on a metric space Z, then the collection
of quasi-orbits {G - £},¢z, is a quasi-fibration of Z.

3. Suppose that we are given a finite collection of geodesic metric spaces F;,1 € J,
and for each pair i,j € J, we are given an (L, A)-quasi-isometry fi; : F; — F;
satisfying

d(fij o fiks fir) < C.
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Let T be a (connected) metric graph with edges of the unit length and suppose
that ¢ : T® — 7 is a map. Let Z denote the disjoint union of the metric spaces
F, = (Fy),v), v € T®. We metrize Z as follows: For every edge [v,w] in I' we
connect each z € F), to fow)e(w)(x) by an edge of the unit length. This, together with
the geodesic metrics on F;’s, determine a path metric on Z. The collection of subsets
F, v eT'® determine a coarse fibration of Z.

If F is a coarse fibration of Z, we (pseudo)metrize F using Hausdorff distance, and
refer to the resulting metric space B as the base of the coarse fibration. When 7 is a
length space, (F,dy) is a quasi-isometric to a length space. To see this, observe that
given two fibers F', F' € F, and a 1-Lipschitz path v :[0,1] — Z of length | € Z,

d(F,F)—1<i<d(F,F)+1,

joining F and F', we can choose fibers F; at uniform distance from (i), and then we
get
!
ZdH(E_l, E) <Cl< CdH(F, F,)
i=1
where C is independent of F, F".

If F, F' € F are two fibers (given metrics induced from Z) and ¢ : F — Z is
a bounded displacement map with Im¢ C F” (e.g. any nearest point projection
F — F'), then ¢ is an (L, A)-quasi-isometry between F and F', where L and A
depend only on the displacement of ¢ and the distortion function for F.

We say that two coarse ﬁbrations_]:' and L are Hausdorfl-close if there exists a
constant C' < oo such that for each F' € F there exists L € £ so that dg(F,L) < C,
and vice-versa.

Definition 3.2. It G ~ Z is a quasi-action on Z, then the coarse fibration F is
G-invariant if there is a constant C' such that for all ¢ € G, F € F, there is an
F' € F such that dg(g(F), F') < C.

Note that this definition is slightly more general than definition 1.1 in the intro-
duction.

For each coarse fibration F which is invariant under a quasi-action G ~ Z, we
obtain a natural quasi-action G ~ (F,dy) of G on the base: Given g € G and a
point « € B represented by a fiber F € F, we let g -z to be a point in B represented
by the fiber F' € F such that dg(g(F), F') < C. Thus we have:

Lemma 3.3. Suppose that G ~ Z is a quasi-action such that F is invariant under
G. Then the quasi-action G ~ Z projects to a quasi-action G ~ B; the latter is

cobounded provided that the quasi-action G ~ Z is cobounded.
12



We also get a degenerating quasi-action G A Fy on a fiber Fy € F as follows: Pick a
nearest point projection 7z : Z — Fy. Then we define a degenerating quasi-action 1

by composing g| R Fy — Z with rz,. The quasi-isometry constant of 1)(g) depends
only on dy(g(Fy), Fy). In particular, we obtain a homomorphism G — QI(Fp).

Suppose M is a collection of metric spaces. A coarse fibration F = {F};},c; of a
metric space Z is by elements of M if one can choose, for each j, an element M; € M
and a map f; : M; — Z such that Im(f;) = Fj for all j € J and the family {f;} is

uniformly proper.

If A is a collection of metric cell complexes, then a coarse fibration F of Z is by
elements of A if F is a coarse fibration by elements of {A® | A € A}.

3.2. Parameterizing coarse fibrations. In the sequel it will be convenient to spec-
ify parameterizations of the fibers of a coarse fibration. Suppose F = {Fj};cs is a
coarse fibration of the 0-skeleton X(©) of a metric cell complex X. A parametrization
of F is a collection of pairs {(F}, f;)};cs Where

1. For each j € J, Fj is a bounded geometry cell complex, and the family {F}};cs
has bounded geometry,

2. For each j € J, f; is a morphism from Fj to X, where f}o) : Fj(o) — X gatisfies
Im(f;o)) = Fj, and
3. The family of morphisms {f;},c7 is uniformly proper.

Definition 3.4. We will refer to a coarse fibration F together with a choice of
parametrization {(F}, f;)}jes as a parameterized coarse fibration. We denote the
parameterized coarse fibration by F. We will often refer to the F}’s as fibers of F.

The next lemma shows that in some cases one can construct a parametrization for
a given coarse fibration.

Lemma 3.5. Suppose X is a metric cell complez, and F is a coarse fibration of X©)
by elements of a collection A of cell complexes with uniformly bounded geometry. If
X is uniformly (k — 1)-connected for all k < sup{dim(A) | A € A}, then F admits a
parametrization F = {(F}, fj)}jes where F; € A for all j € J. If in addition A is
uniformly (k — 1)-connected, then for each (F, f) € F, there is a (continuous) map

_®
v . X® 5 F such that the composition Ng) (F) & F®) Iy X® s at distance

< D = D(k,R) from the inclusion map. In particular, vg) 1s always defined since

metric cell complexes are (linearly) uniformly connected.
Proof. One constructs the maps f; and vgc) by induction on skeleta using the as-

sumption of uniform (k — 1)-connectedness and the nearest-point projection f o vg)) :

X© — F to begin the induction. O
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The following lemma is elementary and we leave it to the reader:

Lemma 3.6. Suppose that F is a parameterized coarse fibration of X. Assume in
addition that there is a uniform bound on the dimension of the fibers F; and that X
1s uniformly contractible. Then there exists a parameterized coarse fibration £ of X
such that:

(a) Distinct fibers of L are disjoint.
(b) L is Hausdorff-close to F.
(c) The union of fibers in L equals X(©).

The following lemma is immediate from the definitions.

Lemma 3.7. Let Zy be a metric space.

1. If Z and Z' are length spaces, [ : Z — Zy, f': Z' — Zy are uniformly proper
maps, and Zy C N.(Im(f)) N N.(Im(f")) for some r € R, then there is an (L, A)
quasi-isometry ¢ : Z — Z' so that d(f' o ¢, f) < D where L, A, D depend only on r
and the distortion data of f and f'.

2. If X and X' are uniformly contractible metric cell complezes, and f : X© — Z,,
X 0 Zy are surjective uniformly proper maps, then there is an (L, A) quasi-
isometry ¢ : X — X' so that d(f' o ¢\, f) < D where L, A, D depend only on the
distortion data of f and f'.

Proposition 3.8. Let F be a parameterized coarse fibration of the zero skeleton
Z =X of a metric cell complez.

1. If (F1, 1), (Fy, fo) € F and o : Fy — X© is a bounded displacement map with
image contained in Fy, then there is a quasi-isometry ¢ : Fl(o) — FQ(O) such that

d( o fi, fao d) < D,
where D and the quasi-isometry constants depend only on the displacement of 1.
2. Suppose G ~ Z is a quasi-action preserving F. Then each ¢ € G induces a
quasi-isometry (F,dy) % (F,dg). We also obtain, for each (F, f) € F, a degener-
ating quasi-action G (14 F©O by sending g € G to the composition

(0)
FO L, xO 8 x©0 % po)
Here the quasi-isometry constant of 1(g) depends only on dg(g(F), F).

Proof. Let ¢ be asin 1. Then Im(¢) o fl(o)) is D;-dense in Im(fQ(O)), where D; depends
only on the displacement § of ¢). We can perturb fQ(O) to a map h so that Im(h) =

Im(¢) o fl(o)), and h is uniformly proper with distortion controlled by D; (and hence

by ). Now part 2 of Lemma 3.7 applies.
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Part 2 follows from Lemma 3.7 and the corresponding assertions (see Lemma 3.3
and the discussion that follows it) for unparametrized coarse fibrations. g

As a corollary of the above lemma, we get a topological action of G on the space
of ends of the fiber Fj.

Definition 3.9. In case when Fj is 2-ended, we say that the degenerating quasi-action
1 preserves orientation on Fy if G acts trivially on the space of ends of Fj.

Note that degenerating quasi-action of G preserves orientation on one fiber Fy iff
it preserves orientation on any other fiber F;.

4. COARSE FIBRATIONS AND PRODUCT STRUCTURE

In this section we will show that coarse fibration behave homotopy theoretically
like products when the total space and the fibers are (the zero skeleta of) uniformly
contractible metric cell complexes.

Let (X, p) be a uniformly contractible metric cell complex, and suppose F is a coarse
fibration of X© by a uniformly contractible, bounded geometry family A of metric cell
complexes. Using Lemma 3.5, F can be given a parametrization F = {(F}, f;)}jess
where F; € A.

Let Y be a net in (F,dy) with the property that all R-balls in Y have cardi-
nality < C = C(R). Let cx : X — Y(© be a (discontinuous) projection map given by
letting cx () € Y(© be a fiber nearest to p(z). The pair (X, cx) defines an object in
the category Cy o) (see section 2 for the definition of bounded control categories). Pick
(F, f) € F. If V is any CW-complex based on Y with control map ¢y : V — Y(©),
we get another object in Cy©) by taking the pair (V X F,cy«r) where cyyp is the
composition V x F — V % v,

Our main goal in this section is:

Proposition 4.1. There is a bounded geometry, uniformly contractible CW complex
Y based on Y with control map cy : Y — YO and a morphism ¢ : (Y X F, cyxp) —
(X, cx) which is a homotopy equivalence in the category Cy (o).

Definition 4.2. We will refer to Y as a coarse base of the coarse fibration F.

The proof of the Proposition 4.1 occupies the rest of this section. The proof is by
induction on the skeleta of Y. We start by noting that since Y is a quasi-isometric
to a length space (see section 3.1), there is a metric graph Y (based on Y(©) so that
the inclusion map (Y, dy) — Y is a quasi-isometry. The graph Y has bounded
geometry because each R-ball in (Y9, dy) has cardinality < C(R). To continue with

the induction we will need several auxiliary lemmas.
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Lemma 4.3. Pick k € Z,. For every R there is an R' = R'(R), and a function « :
R, — R, such that for any F € F, any map ¢ : S* — N}f) (F) with diam(Im ¢) < D,
admits a null-homotopy ¢ = const with image in Ngfﬂ)(ﬁ) N NSZ;?(Im b).
Proof. Let R be given, and let ¢ : S* — Ngc)(ﬁ’) be a continuous map so that
diam(Im @) < D. The image of the composition vr o ¢ : S¥ — F has diameter
< Dy = D;(D, R). By the uniform contractibility of F, there is a null-homotopy
H : S* x I — F of vp o ¢ whose image Im(H) is contained in the D, = Dy(D, R)
neighborhood of Im(vp 0 ¢) in the (k+ 1)-skeleton of X. By Remark 2.5, the map ¢ is
homotopic to fowvgo¢ by a homotopy whose tracks have diameter < D3 = D3(D, R).
Combining this homotopy with the homotopy f o H, we obtain the desired null-
homotopy. O
Let V be a metric cell complex based on Y@ with a control map ¢y : V — Y.
Pick (F, f) € F, and let cy«Fr be as indicated above, so that (V x F,cy«p) is an
object in the category Cy (o).

Lemma 4.4. There is a morphism ® : (V X F,cyxr) — (X, cx) in the category Cy (o)
with the following property. For every R-ball B C YO the restriction of vp o ® to
(¢ (B)NV®) x FO s at distance at most D = D(k,l, R,d(B, cx(F)) from the
projection (¢ (B)NV®) x FO — F.

Proof. We construct ® by induction on the skeleta of V. We define ®© : VO xF — X
so that for each y = (F', f') € V(O = Y the restriction of ®© to y x F agrees with

Vgt

the composition F' Lxmplx

We continue inductively. To proceed from V& to V*+1) for each cell A®+D in
V &+ we construct a map A®+Y x I — X by extending the given map (OA*+1)) x
F — X. This extension is done by induction on skeleta in F' via Lemma 4.3. O

Lemma 4.5. For every n € Z ., there is a bounded geometry cell compler Y™ based
on YO with control map ¢ : Y™ — YO so that Y™ is uniformly (n — 1)-connected.

Proof. Assume inductively that a uniformly (k¥ — 1)-connected bounded geometry cell
complex Y*) has been constructed.

We note that given D € R, , there exists a collection of “singular k-spheres” h; :
Sk — Y*) 50 that:

1. The diameters diam(Im(h;)) are uniformly bounded.
2. The collection of sets Im(h;),j € N, is uniformly locally finite.
3. Any map ¢ : S* — Y(*)| whose image has diameter < D, is null-homotopic in

WED(D) := Y U (Up,e;).

Here e;’s are k + 1-—cells which we attach to Y®) via the maps h;.
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We give W+ (D) structure of a metric cell complex by extending the control
map p : Y*® — YO to the k + 1-cells e;: send each point of e; \ de; to a point
y € Im(h;) N Y©.

Remark 4.6. Arguing inductively, on the skeleta of the sphere S*, using the above
properties of W+ one proves the following. Given D there is a D, = Dy(D)
such that any two maps ¢, ¢’ : S* — Y*) with d(¢,¢’) < D become homotopic in
W+ (Dy), where the tracks of the homotopy have diameter < Dy = Dy(D).

Using the uniform (k — 1)-connectedness of Y*) and induction on skeleta, we may
e , .
construct a morphism X *) Ty y k) (in the category Cy () which extends cX|

(k)
Since X is a bounded geometry cell complex, the composition X*) — Yy
p(k+1)

W+ (D) extends to a morphism X *+) "—" W&+ (D) when D > R, = Ry (k).

Pick (F,f) € F, and point t € FO. Let ® : Y®) x F — X be the morphism
provided by Lemma 4.4 when applied with V = Y*)_ Let ¥ : Y*) — X&) be the
composition of the inclusion Y®) — Y*) x {#} with ®; note that ¥ is a morphism in
the category Cy (o).

Consider a map ¢ : S* — Y® and the composition q§ =Vog¢:S* - Xk By
Lemma 4.3, the map ¢ is null-homotopic via a null-homotopy H : S* x I — X (*+1
such that 7(**1) o H has image diameter < #(diam(Im(¢))) where 6 : R, — R,
depends only on k. Since d(7(®) o ®, ®) < Ry = Ry(k), we conclude by Remark 4.6
that ¢ is homotopic to #®) o ¢ within W*+) (D) whenever D > D;(Rj). Therefore
¢ is null-homotopic in W*+1) (D) whenever D > Rj(k); furthermore, the diameter of
the homotopy is at most 6; (diam(Im(¢))) where 6; depends only on k. O

Xx(0)*

By the preceding lemma, we may construct a uniformly contractible metric cell
complex Y based on Y with control map ¢:Y — Y©. Pick (F, f) € F. We apply
Lemma 4.4 to construct a morphism ¢ : ¥ x F' — X.

Lemma 4.7. We let @ : Y X F' — X be as above. Then ® admits a homotopy inverse
® in the category Cy (o).

Proof. Since the metric cell complex Y is uniformly contractible, we can construct
a morphism h : (X,cx) — (Y,cy) by induction on skeleta starting with the map
cx 1 X© 5 YO, We then let @ : (X,cx) = (Y X F,cyxr) be given by @ := (h, vr).
We verify that ®, ® are homotopy-inverse to each other in the category Cy (0 using
uniform contractibility of Y, F' and Lemma 4.3.

O

Lemma 4.7 completes the proof of Proposition 4.1.
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5. COARSE FIBRATIONS AND COARSE POINCARE DUALITY

Let X, F, ®, ®, and Y be as in the previous section. Assume in addition that X
is homeomorphic to an n-manifold, and that every (F, f) € F satisfies
H;(F) = H(R).
We will show that under these assumptions the complex Y behaves coarsely like a
manifold of dimension n — 1.
We recall that X satisfies the Poincaré duality:

Theorem 5.1. For each closed subset W C X and k € Z there is an isomorphism
Py : H¥ (W) — H, (X, X \ W)

which is local in the following sense: Supp(Pw(7)) C Np, (Supp(7)) for each T €
ZF¥(W). The constant Dx does not depend on W and 7. The family {Pwy} is
compatible with homomorphisms induced by inclusions.

Here and in what follows H?(-) denotes the Cech cohomology.
Recall that F is a parameterized coarse fibration on n-dimensional uniformly con-
tractible manifold X so that every fiber (F, f) € F satisfies
H(FY) = HY(RY),
and Y is a coarse base of the coarse fibration F. Set j :=n — 1.
The following is an analog of the fact that if B is the base of a fibration whose total
space and fibers are aspherical manifolds, then B is an aspherical manifold.

Theorem 5.2. (Y satisfies j-dimensional coarse Poincaré duality.) Pick k € 7,
and set m = 1+ max(k,j — k). For every subcompler K C Y™ there exists a
homomorphism

Px: H¥Y(K) — H; (Y™, Y™\ K)

so that the collection { Pk} has the following properties for a suitable D € R:

1. {Px} is compatible with inclusions K1 C Ky C y(m)

2. The kernel of PN(m)(K) 1s contained in the kernel of the restriction

D

Hf(Ngn) (K)) — H¥(K) (i.e., Px is an approzimate monomorphism,).

3. The image of the inclusion

H; (Y™, Y™\ N (K)) - H;_,(Y™, Y™\ K)

is contained in the image of Pk (i.e., Pk is an approzimate epimorphism,).

4. Px is local in the following sense: if [0] € H¥(K) is represented by a cocy-
cle 0 € Z%(K), then Py(o) can be represented by a relative cycle T supported in

N (Supp(0)).
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Proof. We construct the maps Px as follows. Let [w] be a generator of H!(F(+D).
First, send each [0] € HF(K) to the tensor product [0] ® [w] € H M ((K x F)(”l)).
Then pull back [0] ® [w] via (®™+))* to obtain (®™))*([o] ® [w]) € H’““(K) where
K = (&))" (K x F) ¢ X+ and ® is the homotopy-equivalence ® : X — ¥V x F
constructed in Lemma 4.7 of the previous section. Next, apply Py given by
Theorem 5.1:

o] ® [w] = (@) ([0] ® [w]) = Py i ((249)*([0] @ [w])) = [1].
The result is a homology class
[77] e Hn_(kH)(X(mH),X(mH) \ K—) — Hj,k(X(mH),X(mH) \ K—)

Then send [1] to H;_((Y x F)Mm+) (Y x F)m+)\ (K x F)m+0)) via (@(m+9), . Next
we apply the isomorphism

H; (Y™ x F, (Y™ \ K) x F) ~ Hj (Y™, Y™\ K).
induced by the projection ¥ x F' — Y. By composing with this isomorphism we get
In] = (B0). (In]) = [7] € Hy (Y™, Y0\ K).
As the result we finally get the homomorphism

k1

P+ o] = [n] = [7].

It remains to verify that the Px’s so defined satisfy conditions 1-4 above. Property 1
follows immediately from the fact that each of the factors in the composition defining
Py is compatible with inclusions. Property 4 follows readily from the locality of
Py 11; and the fact that ®(m+) has bounded control over Y. We will only prove
property 2, as the proof of 3 is similar. The map Pk : [0] — [7] is a composition of
homomorphisms all but two of which are clearly isomorphisms, the exceptions being
the pull-back and push-forward via ®. Since the map ® preserves skeleta and X is
an n-dimensional manifold, it suffices to restrict to

M .Y x F 5 X, : X 5V xF .
We recall that (since ® and ® are homotopy inverses in Cy )
Pod™ .y x5y xR

is homotopic to idy- () » via a homotopy H : Y™ x FxI — Y1 x F in the category
Cy©; projections to Y (%) of the tracks of this homotopy have diameter < Dy for some
Dy. Similarly, (by enlarging Dy if necessary) ®™ o ® : X — X is homotopic to idyx
via homotopy H : X x I — X in the category Cy(; projections to V(%) of the tracks
of this homotopy have diameter < Dy . Finally, we assume that Dy is chosen in such
a way that d(cx o ®,cx) < Dy and d(cyxr © P, cyxr) < Dy.

Set D := Dx + 4Dy: here Dy is the constant that appears in Theorem 5.1.
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Suppose that R > 3Dy. If [n] € H;j_,x(X, X \ m)) and [n] — ®,([n]) = 0 then
[n] maps to zero under the inclusion induced map

Hj o(X, X \ (NG (K) x F)) = Hj_p(X, X \ 871N, (K) x F)).

(This follows by noticing that ®, o ®,(n) — 7 = d(f) where the projection of the
support of § to Y% has diameter < Dy.)

The same argument applies to the map
o] ® [w] = @[] ® [w],

where [0] ® [w] € HF(NU™(K) x FG) for some R > Dy. If [0] ® [w] maps to
zero then (again using the homotopy H) we conclude that [0] ® [w] restricts to zero
in HHR(NGY, (K) x FOD),

Combining these two statements and locality of the usual Poincaré duality map, it
follows that if [0]® [w] € HIT™* (N (K) x F) belongs to the kernel of the composition
®, o P o ®*, then [0] ® [w] belongs to the kernel of the inclusion

H (N (K) x F) — HY (K x F). O

Corollary 5.3. For every k we have H¥(Y*+Y) = HKRI). If j > 2 then Y is
1-ended in the sense that YV is 1-ended.

Corollary 5.4. If in Theorem 5.2, n = 3 and i = 1 then the coarse base Y is a
quasi-plane, i.e. it is simply-connected and satisfies coarse 2-dimensional Poincaré
duality.

6. COARSE FIBRATIONS BY LINES

In this section G ~ Z will be a cobounded quasi-action on the 0-skeleton Z of a met-
ric cell complex X, which preserves a parameterized coarse fibration F = {(F;, f;) }ics
of Z (see section 2). We will assume that the above coarse fibration is by lines, i.e.
each F; is isometric to the real line R with the usual metric and the cell complex
structure is given by the triangulation of R with vertices at the integer points. Let Y
be a metric cell complex which is a coarse base of the fibration F (see section 3 for
the definition).

_ For convenience, we will further assume that Z is the disjoint union of the fibers
F;, i € J and that for each g € G, i € J, there is an i’ € J such that g(F;) C Fy.
We will sometimes denote Fj by g,F;.

We recall (Lemma 3.8) that for each fiber (F, f) € F, we have an induced degen-

erating quasi-action G rw\v F. We denote the image of an element x € F' under g € G

by ¥r, (g) or ¥(g)(z).
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6.1. The fiber expansion function. One interpretation of the curvature of a curve
sitting in a Riemannian manifold is that it determines the rate of change of length
of the curve under normal variation. There is a coarse analog of curvature for the
fibers of our parameterized coarse fibration F on a metric cell complex X. Consider
a pair of fibers F}, F5. Given an interval I C F}, we can measure the length of its
image in F, under the mapping vp, o f; where vp, : Z — F), has the property that
the composition f, o vg, is a nearest-point projection Z — Fj, see Lemma 3.5. By
taking into account the action of the group, we find that the stretch factor of I under
the mapping vg, o fi is independent of the choice of the interval up to a uniform
multiplicative error, provided that [ is sufficiently long.

Remark 6.1. This basic construction works more generally for coarse fibrations with
uniformly doubling fibers. However instead of the “lengthwise” distortion discussed
in this paper one would consider the distortion of volume for domains in the fibers
which are quasi-balls with small isopetrimetric ratio. The analogs of Lemma 6.6,
Definition 6.11, Corollaries 6.12, 6.13 hold in this context.

We begin by observing that there are many group elements which “almost preserve”
any given pair of fibers:

Lemma 6.2. Let Fy, F, be fibers, let R := d(F\,F;), R > 1. There is a positive
constant D (depending on the geometry of the quasi-action G ~ Z and the coarse
fibration F) with the following property. Pick x € F, let

G={9€G|d(g(F),F) <D fori=1,2},
and set G(z) := {¢g(z) | g € G} C Fi. Then

1. G(x) is a net in Fy.

2. If moreover the quasi-action G ~ Z 1is discrete, then there are constants L, C
(depending only on G ~ Z and F) such that if m is the number of fibers contained
in Npr(F}), then the density of G(x) in F is at least %, in the sense that if [ C Fy
18 an interval, then the quantity

|G(z) N 1|
(6.3) -
1]

15 at least % when I is sufficiently long.

Proof. The quasi-action G ~ X is cobounded, so there is a Dy such that for any
z, ' € X, there is a g € G such that d(g(z),z") < Dy. It follows that if

0:={g€G|d(g(F), F1) < Do},
then for any x € F}, the set

Go(x) :={v(g(z)) | g € Go}
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is an r1-net in F; where 7 is independent of the fibers F, F, and the point x € F.

For each g € Gy, the image of F, under ¢! is contained in a fiber Fi(g) for some

i(g) € I, and Fjyy) lies in Nyg(F}), where L depends only on the constants of the
quasi-action G ~ Z. Let Jy C J denote the collection of i(g) € J as g ranges over
Go, and form a set ¥ C G by choosing, for each i € Jy, a 0 € G such that o~! € G,
and o(F,) C F;. The set ¥ consists of the elements o as above. Notice that for each
pair g € Gy, 0 € ¥ such that o(F3) and g*(F,) are contained in the same fiber, we
have
dH(gU(F_;)aF_;) <D fOI'Z.:1,2,
where D is independent of Fi, Fy, and z. Set

G:={9€G|dy(9(F),F;) <D fori=1,2}.

Pick z € Fy. Define a map 7 : Go(z) — G(x) as follows. For each y € Go(z), pick
gy € Go such that ¥(g,)(z) = y, choose o, € X such that o,(F;) and g '(F;) are
contained in the same fiber, and set 7(y) := 1¥(goy)(z). The map 7 has bounded
displacement, which implies that G(z) is a net in Fj. This proves the first assertion
of Lemma.

Suppose that G ~ Z is discrete. Then for each z; € G(z), 0 € X, the set

{y € Go(z) | 7(y) = 21,04 = 0}
has uniformly bounded cardinality. Hence 7 has multiplicity < M|X| < Mm where M
is independent of F}, Fy, and x, and m is the number of fibers contained in Ngy (F}).
Since Go(z) is an ry-net in Fy, the density estimate (6.3) follows.
]

Consider a pair of fibers (F}, f;), and choose a map p : F; — F» which has “bounded
displacement”,

(6.4) §:=d(f1,fa0p) < .

Definition 6.5. Given an interval I = [a,b] C Fi, we define the expansion of I under
p to be the quantity
|p(a) — p(b)]
E(l, p) = ———F—~
(Z,p) Py

In what follows we will use the notation |I| to denote the length of an interval I C R.

Note that if p' : F; — F5 is another bounded displacement map, then the symmetric
difference [p(a), p(b)]Alp (a), p'(b)] has length bounded independent of a, b, and hence
the ratio of the quantities E(I, p) and E(I,p') tends to 1 as |I| tends to infinity.

Let (Fi, f1), (Fy, fo) be a pair of fibers, and let p be a map satisfying (6.4).
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Lemma 6.6. There is a constant C which is independent of the choice of fibers and
the map p, such that when I and I' are sufficiently long intervals, we have

(6.7 GBI p) < B(I'p) < CE(T,p).

Proof. The idea is to use “translates” of the image p(I) of an interval I to get a
controlled multiplicity covering of the image p(.J) of a longer interval J; this allows
one to compare expansion factors.

Consider the collection G of elements of G’ determined by the pair of fibers Fi, F,
as in Lemma 6.2. Each g € G determines a quasi-isometry ¢r,(g) : F; — F;, i = 1,2,
and the quasi-isometry constants of these maps are bounded independently of g and
the choice of fibers Fi, F,. Note that

(68) d(p © ,‘pFl (g)a ¢F2 (g) ° p) < 01
where ('] is independent of g € G.

Let C be the collection of intervals of the form [¥r (g9)(a), ¥r (9)(b)] C F1, where g
ranges over G and I = [a, b]. The collection of left endpoints of the intervals in C is a

net in F; by Lemma 6.2. For each interval I = [a,b] € C, we have

(6.9) ([~ || and [p(b) — p(a)| = |p(b) — p(a)| = E(L, p)|I|

provided |I| is sufficiently big, since the family {¢r (g) : ¢ € G} has quasi-isometry
constants (L, A) independent of Fj, F5, and p is a quasi-isometry. Again using the
fact that p is a quasi-isometry, we can find a constant Cy such that if {z1, 22,23} C F}
and d(z;,z;) > C, for ¢ # j, then x5 lies between z1 and 3 if and only if p(x3) lies
between p(x1) and p(x3). When [ is sufficiently long, we may choose a subcollection
Cy == {[a;, b;]}jez of C (still covering Z), such that for all i € Z,

(610) a; + Oy < b,’_l < Qj41 — Cy and bz’—l +Cy < Qi < bz — C,.

Pick an interval J = [c,d] C Fi. Let j; := max{j € Z | a; + Cy < ¢} and
Jo :=min{j € Z | b; — Cy > d}, and set
Cy = {lag,b5] - [az, b1 € €1, 1 <J <}
Then C; covers J with multiplicity < 2, and

J2
> b — aj)

J=n
is comparable to |J| when |J| is large. Note that the collection
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p«(Cs) = {lp(a;), p(bj)] | laj, b;] € Cs}
covers [p(c), p(d)] with multiplicity < 2, by (6.10). Also,
> 65) ~ plas) = E(T, )1

is comparable to p(d) — p(c) when |J| is large. It follows that E(I, p) is comparable
to E(J, p). Applying the same reasoning to I’ yields that E(I’, p) is comparable to
E(J, p), hence (6.8) follows. O

Definition 6.11. Consider an ordered pair of fibers ((Fi, f1), (Fa, f2)), which we will
conflate with (Fi, Fy). The fiber expansion factor for (Fy, F») is defined to be

E(Fy, F») :=limsup E(I, p)

[I|—00

where p : Fi — F5, is any bounded displacement map. The remark after Definition
6.5 implies that this is independent of p.

The next corollary follow from Lemma 6.6:

Corollary 6.12. 1. Given three fibers Fy, Fy, F3, we have

1
EE(FI;FQ)E(F%FZ&) < E(F\, F3) < E(Fy, F5)E(F>, F3).

2. There is a constant C' such that if (F1, f1), (Fa, f2) € F, g € G, then

1
EE(Fl’FQ) < E(g9.F1,9.F) < C'E(Fy, F).

Therefore we get

Corollary 6.13. Pick a fiber Fy; for elements g € G consider the function

(6.14) I(g) = log E(Fp, g.F%).

Then l : G — R is a quasi-homomorphism.
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6.2. Coarse fibrations with amenable base. Recall that a bounded geometry
metric space S is called amenable if it admits a c-Fdlner sequence for each c¢. Recall
that for a subset D C S the set 0.D consists of points in S \ D which are within
distance < ¢ from D.

Proposition 6.15. If the fiber expansion function of F is bounded and the base Y
1s amenable, then Z is amenable as well.

Proof. Let p: Z — Y(© be the projection (recall that Z is the disjoint union of the

fibers F' € F). Let Dy C Y(© be a sequence with % — 0.

Pick (F, f) € F. Choose vp : Z — F so that fovp : Z — Z is a nearest point
projection to F'. For each T, let Ir C F be an interval of length T . For fixed k,
consider the family of intersections Eyr := p~'(Dy) N vy’ (Ir), where T > 0. Note
that

. 0.7 0. Dy
lim sup — < C ,
Tooo |k | Dg|
where C' is independent of k; so we can obtain a Fglner sequence of the form Ej 1,
for an appropriately chosen sequence T}. O

Remark 6.16. It is tempting to try to prove that X has polynomial growth provided
Y has polynomial growth or is doubling. However, it seems that to prove this directly
one would need stronger control over the nearest point maps between fibers.

6.3. Coarse fibrations with subexponentially growing base. Consider the fi-
bration of H? by horocycles asymptotic to & € O H2. This fibration is invariant under
the stabilizer of £ in PSL(2,R), which acts transitively on H?. If we discretize this
example we get a coarse fibration of H? by copies of Z whose base is quasi-isometric
to Z, with unbounded fiber expansion function. Examples like this are incompatible
with a discrete quasi-action, however.

Proposition 6.17. Assume that G ~ Z is a discrete quasi-action, and Y© has

subexponential growth. Then the fiber expansion function E(-,-) of the coarse fibration
F s bounded.

Proof. Suppose that the function E is unbounded; therefore the quasi-homomorphism
[ defined in (6.14) is unbounded as well. Thus for suitable g € G and «y > 0 we have
(") < —agk

for all £ > 0. So there is an o > 0 such that for all Ry, there are fibers Fy, F, € F
such that d(Fi, F;) = R > R, and

(6.18) E(F, Fy) < ek
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Take a bounded displacement function p : Fy — Fj, then there exists a map
p: Fy — F, such that po f; = fy0p.
Pick z € F; and let G, L be as in Lemma 6.2. The discreteness of G ~ Z im-

plies that the map G — G(z) (respectively G — G(p(z))) given by g — g (9)(z)
(respectively g — g, (9)(p(z))) has multiplicity bounded independently of Fi, Fs.
Therefore, when I = [a,b] C F} is a sufficiently long interval we have

(6.19) 1G(z) N a, bl ~ |G (p(x)) N [p(a), p(b)]]-

By Lemma 6.2, when I = [a, b] is sufficiently long, we have

b—a

(6.20) G(z) Nla, 0] 2

where m is the number of fibers contained in Nyz(F}). If we choose F}, F; such that
(6.18) holds, for long intervals I = [a, b] C F}, by applying the estimates (6.19), (6.18)
and (6.20) we obtain (for certain constants Cy, Cs):

(6.21) C1|G(pz)N[p(a), p(B)]] < p(b) = p(a) < 2(b—a)e™*" < Come™**|G(z) Nla, b]l.

When R is large, m < e®® (recall that Y(©) has subexponential growth), so (6.21)
contradicts the fact that the cardinalities |G(pz) N [p(a), p(b)]| and |G(z) N [a, b]| are
comparable. O

By combining Propositions 6.15, 6.17 and using the fact that each bounded ge-
ometry metric space of subexponential growth is amenable (see e.g. Lemma 2.8) we
obtain:

Corollary 6.22. If Y has subezponential growth and G ~ Z is discrete then the
fiber expansion function E is bounded and Z is amenable.

6.4. The homomorphism from G to QI(F). Recall that for each (F, f) € F, we

have a degenerating quasi-action GG rdiv F'| where for each g € G, we obtain the map

¥(g) : F — F by post-composing the composition F’ L 7 % 7 with vp : Z — F,
see Lemma 3.8. Let (g.F, f,) € F denote the fiber for which g,F O g(F). Then
there is a quasi-isometry h : F' — ¢, F', with constants independent of F' and g, such
that d(g o f, fy o h) < C where C is independent of F' and g (Lemma 3.7). Hence
Y(g) := vp o go fis at bounded distance from the composition vg o f; o h. The
composition p := vp o f, : g.F' — F satisfies the inequality (6.4). This means that
when z, y € F' are far apart, then

d((9)(x), ¥ (9)(y)) = d((vr © fg) © h(x), (vr 0 fg) 0 h(y))

~ E(g.F, F)d(h(z), h(Q%)) ~ E(g.F, F)d(z,y).



Or, to put it another way, for every g € GG, there are constants L and A, where L is
independent of g and F', so that

(6.23) LT'E(gF,F)d(z,y) — A < d(¥(9)(x),¥(9)(y)) < LE(gF, F)d(z,y) + A

for points z,y € F which are sufficiently far apart. So, modulo rescaling the metric on
the target by the factor E(g.F, F'), the map v (g) defines a quasi-isometry with uni-
formly controlled Lipschitz constant (but uncontrolled additive constant). We recall
that if w is a nonprincipal ultrafilter on N, ¢ : W — W' is an (L, A) quasi-isometry
between metric spaces, wy, € W, wy, € W', and A\, € R, are sequences with Ay — oo
where w-limy, id(¢(wk), w;) < oo then ¢ induces an L-bilipschitz homeomorphism
¢, between the asymptotic cones w—lim(iW, wy) and w—lim(iW’ ,wy,). Hence if for
some sequences zx € F and \; € R, we have w-limy id(qﬁ(g) (xk), zx) < oo for each
element g of a generating set for G, then we get an induced homomorphism ,, from
G to the group of bilipschitz homeomorphisms of F, = R. Equation 6.23 implies that
for such a homomorphism 1,,, and each g € G, we have

(6.24) L7 E(gF, F)d(z,y) < d(t(9)(2),%.(9) () < LE(gF, F)d(z,y),

which means that 1, is an action by homeomorphisms which are all uniformly bilip-
schitz modulo rescaling of the target metric (by a factor which depends on the group
element).

6.5. The case when the homomorphism G — QI(F) is trivial. Assume the

quasi-action G ~ Z is discrete and cobounded, in particular, the group G is finitely
generated. Pick a fiber F' € F.

Lemma 6.25. Suppose the homomorphism G — QI(F) induced by the quasi-action
G ~ F is trivial, or equivalently, suppose d(¢(g),idr) < oo for every g € G. Then
for any x € F, there is an r such that N,(Zg(z)) D F, where Zg is the center of G.
In particular Zq is infinite.

Proof. Let g1, ...,g, be generators of G. For each ¢+ = 1,...,n the quasi-isometry
¥(g;) : F — F has bounded displacement.

Pick a point z € F. Since the quasi-action G ~ Z is cobounded, there exists
a subset H C G such that the sets H(z) and F are at finite Hausdorff distance.
Consider the set of commutators

K :={[g1,h],h € H}.

Since 1(g1) has bounded displacement, there is a constant C; < oo so that for each
k € K we have d(k(x),z) < C;. Hence discreteness of the quasi-action G ~ Z implies
that there is an element h; € H and a subset J; C H so that

1. [g1, h1] = [g1, h], for each h € J;.

2. The sets .J;(z) and F are Hausdorff-close.
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Set H, := hy'J,. The first property implies that [g;, h;'h] = 1 for each h € Jy, i.e.
[glag] = 1’vg S Hl-

The second property implies that dg(H:(z), F) < oc.
We now repeat the above argument using H; instead of H and proceed inductively.
After n steps we get a subset H,, C G so that:

3. [gi,h] =1, for each h € H,, i =1,...,n.

Hence the center Zg of the group G contains the infinite subset H, and the assertion
of the proposition follows. Il

6.6. Bounded expansion functions. Suppose the expansion function E(-,-) is
bounded.

Lemma 6.26. If the homomorphism G — QI(F) is nontrivial, F' € F, then there a
nontrivial isometric action G ~ R. If, moreover, the image of G — QI(F) consists

of orientation preserving quasi-isometries, then there is a nontrivial homomorphism
G — R

Proof. Let {g1,...,9.} C G be a generating set. For each x € F define

(2) i= max{d(z, 1(g:)()),i = 1, ... n}.
By assumption, the quasi-isometry 1(g;) : F — F has unbounded displacement for
some 1 < ¢ < n. Therefore there is a sequence of points z; € F' such that
lim sup6(z;) = oc.
j—o0
Let w be a nonprincipal ultrafilter. Then (after renumbering the generators g; and
passing to a subsequence of (z;) if necessary) we may assume:

Aj = 0(z;) = d(zj,v(91)(z;))
for all 5. Thus

lim \; = oo.
j—o0

We now consider the ultralimit
1
w-im(F, —dp,z;) = F,.
J /\j
Since the fiber expansion function is bounded, the quasi-action v : G ~ F has
bounded multiplicative quasi-isometry constants, see the inequality (6.23). Therefore
after passing to the ultralimit we get an action v, : G ~ F, = R by uniformly
bilipschitz homeomorphisms. Hence the action v, is conjugate to an action of G on R
by isometries (see for instance [6]). The action of g; is nontrivial (¢, (g1)(zw), zw) =1
due to our choice of scale factors. When G — QI(F) is orientation preserving, so is

Y, and we get a nontrivial isometric action G ~ R by translations. O
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We summarize our results in the following

Corollary 6.27. Suppose that F is a parameterized coarse fibration of Z by lines
so that the base YO has polynomial growth and G ~ Z is a discrete cobounded
quasi-action which preserves the fibration F and orientation on the fibers. Then:

1. Z is amenable.

2. (a) Either G contains an infinite cyclic central subgroup Z whose orbil is
Hausdorff-close to a fiber of F, or

(b) G admits a nontrivial homomorphism to Z.

7. 3-MANIFOLDS COARSELY FIBERED BY LINES

In this section we will prove the main theorem of our paper, Theorem 1.3. Sup-
pose that M is a closed 3-manifold whose universal cover X admits a G-invariant
parameterized coarse fibration

F=A{(Fj: fi)}ieq
by lines, where G = 7 (M).

Suppose G has more than one end. Then there is a compact set K C X and a
pair C}, C; of distinct unbounded components of X \ K. Suppose F € F is a fiber
lying in a single component C' of X \ K. Since dy(F, Fy) < oo for every F' € F,
the portion of F lying outside C' has bounded diameter. Using the fact that F is the
image of a uniform embedding R — X with controlled distortion, we conclude that
F\ C has uniformly bounded diameter (for all coarse fibers F of F). Pick i € {1,2}
so that C; # C. We then can find fibers passing through points p € C; arbitrarily
far from K, which is a contradiction. Therefore every fiber F must intersect at least
two components of X \ K, which forces F to pass within uniform distance of K. It
follows that X is at finite Hausdorff distance from every fiber, and so G is 2-ended.
This implies that G = Z or G = Zyx Zs, and in both cases M is homotopy-equivalent
to a Seifert manifold.

Henceforth we will assume that G is 1-ended, which implies that X is contractible.
Since we are interested in describing M up to homotopy-equivalence, we can assume
that the manifold M is irreducible. If a manifold M is finitely covered by a Seifert
manifold or a Solv-manifold, then M is itself Seifert or Solv-manifold (see [15] in
Seifert case and [4] in the Solv-case); hence we a free to pass to finite index subgroups
of G when convenient. Therefore, we pass to an index 2 subgroup in G that preserves
the orientation of the fibers of F, i.e. each element of G' acts trivially on the set of

ends of each fiber of F.
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We note that X has a natural structure of a uniformly contractible metric cell
complex, the action G ~ X is a properly discontinuous, free?, cocompact and pre-
serves the structure of a metric cell complex on X. Hence (see Proposition 4.1) there
exists a uniformly contractible metric cell complex Y, the coarse base of the coarse
fibration . Note also that the (quasi)-action G ~ X projects to a cobounded
quasi-action G ~ Y0 see Remark 3.3. According to Corollary 5.4, the complex YV
is a quasi-plane.

Our goal is to analyze the group GG and the geometry of the coarse fibration depend-
ing upon the coarse geometry of the space Y and the dynamics of the quasi-action
GAYO,

We will use Theorem 1.2 from [10]:

Theorem 7.1. If Y is a quasi-plane and G ~ Y is a cobounded action then one of
the two cases can occur:

Case 1. YO is Gromov-hyperbolic. In this case there erists an quasi-isometry
h : YO — H? which conjugates the quasi-action of G to an isometric cobounded
action G ~ H2,

Case 2. YO has is doubling, and hence has polynomial growth. If Y is quasi-
isometric to a finitely generated group Q) then Q is virtually abelian of rank 2.

7.1. The hyperbolic case. Assume that Y is a Gromov-hyperbolic, in this case (by
Theorem 7.1) there exists a cobounded isometric action of G on H? (which is quasi-
isometrically conjugate to the quasi-action G ~ Y). The action G ~ H? factors
through a homomorphism

¢:G — G C Isom(H?).
Below is the discussion of the three possible types of isometric actions G~ H2.

Lemma 7.2. FEach cobounded isometric action T' ~ H? belongs to one of the following
types:

1) T is dense in PSL(2,R).

2) T is a discrete cocompact lattice in Isom (H?).

3) T fizes a point £ € O, H? and the closure of T in Isom(H?) is a solvable nonabelian
group.

Proof. Since the connected component T of the closure T in Isom(H?) is a connected
Lie subgroup (which is trivial iff T is discrete and which acts transitively on H?

otherwise), T’ is either {1}, or a solvable nonabelian, or is equal to PSL(2,R). O

2Most of the discussion remains valid in the case when G has torsion.
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Case la. The action G ~ H2 is discrete. Then G is a cocompact Fuchsian group,
which therefore has virtual cohomological dimension 2. Since the cohomological di-
mension of G is 3, the homomorphism ¢ has to have a nontrivial kernel. Moreover,
each orbit of this kernel is Hausdorff-close to a fiber F in the coarse fibration F. Hence
Ker(¢) is quasi-isometric to Z, which in turn implies that Ker(¢) is isomorphic to Z
(recall that G is torsion-free). Hence the fundamental group G of the 3-manifold M
fits into a short exact sequence:

15 Z = m(M)—G—1.

Thus M is a Seifert manifold with hyperbolic base-orbifold (whose fundamental group
is isomorphic to G), see [15], and the fibers of F are uniformly close to the lifts of the
fibers of Seifert fibration from M to X.

In the following two cases the action G His nondiscrete; hence the quasi-action
G ~ YW is nondiscrete as well, i.e. there exists p € Y and sequences of g; € G
and numbers R; — oo such that

d(9i| B, )+ 1d) < Const, Bg,(p) C Yy,

but each ¢; : YU — Y does not have bounded displacement. In this case the
kernel of the quasi-action G ~ Y has to be trivial since the action G ~ X is discrete
and Y is Gromov-hyperbolic (see section 2.1). In particular, the kernel of the
homomorphism ¢ : G — G is trivial.

Case 1b. G is dense in PSL(2,R). We claim that this case cannot occur. Since G
is dense in PSL(2,R), it contains a nontrivial elliptic element § and it also contains a
sequence of elements h; which converge to 1 € PSL(2,R). Let g, h; € G be elements
which map (via ¢) to § and hi respectively. There exists » € R such that for each

m € Z, g™(F) C N,(F). Hence we obtain an orientation-preserving quasi-action
(99 "F=R

and it follows that g acts on F' with bounded displacement.

By taking conjugates g; := h;gh; ', we get an infinite collection of distinct elements
{gi : i € N} of G so that for each n € Z, g;(F) is contained in Ni(F) where R € R,
and F' € F are independent of i. We note that since all g; are pairwise conjugate to
g, there exists C' < oo such that d(z, g;(x)) < C for each x € F and i € N. This

contradicts discreteness of the action of G on X.

Case lc. G is solvable. Hence, since Ker(¢p : G — G) is trivial, G is virtually
solvable itself. Therefore, according to the classification of Haken manifolds with
solvable fundamental groups (see [5]), M is modeled on one of the three geometries:
E3, Nil, Solv.
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7.2. The case of doubling base. Case 2. Y has polynomial growth. Then
according to Corollary 6.27, the group G is amenable and either

2a. (G has infinite center Zg, or
2b. M is Haken.

In the first case we can use the solution of Seifert conjecture, in the case at hand
(i.e., when G is amenable) it follows from G. Mess’ work [14] that M is a Seifert
manifold modeled on E? or Nil geometry. As an alternative we can use the following
trick. Since the infinite group Z¢ is torsion-free, it contains an infinite cyclic subgroup
Z C Zg. The Z subgroup determines a coarse fibration £ of X by lines (a priori this
coarse fibration is not Hausdorff-close to F).

We now argue as before: form the coarse base Y’ of the coarse fibration £. The
quasi-action G ~ X descends to a quasi-action G ~ Y’ and the complex Y’ is a
quasi-plane. Now however the space Y’ © i quasi-isometric to a Cayley graph of the
quotient group G' = G/Z and the quasi-action G' ~ Y’ ) i5 discrete and cocompact.

If V'O s quasi-isometric to the hyperbolic plane then we get a homomorphism
G' — Isom(H?) whose image is a discrete cocompact subgroup: this contradicts
amenability of G. If Y’ © has polynomial growth then the group G’ has polynomial
growth and therefore is virtually nilpotent. This implies that the group G is virtually
nilpotent as well and hence the manifold M is modeled on E? or Nil. O

In the case 2b we use

Lemma 7.3. Fach closed Haken 3-manifold with amenable fundamental group is
geometric, and hence must be modeled on 2, Nil, or Solv.

Proof. We give two different proofs.

First proof. By Thurston’s Geometrization theorem for Haken manifolds, our man-
ifold M admits a decomposition along genus 1 surfaces into geometric components
which are each diffeomorphic to quotients of model spaces by lattices or are covered
by [0,1] x T?%. Suppose first that M is not geometric. If all components in the geo-
metric decomposition are covered by [0, 1] x T2 then the entire manifold M is actually
geometric and we obtain a contradiction.

Otherwise at least one component M; in the geometric decomposition has the form
X/T;, where T'; is a nonuniform lattice. But nonuniform lattices occur only in the

—~———

geometries H?, H? x R, SL(2,R), all of whose lattices are nonamenable. Subgroups
of amenable groups are amenable, so this is impossible. If M is geometric the same
argument implies that M is modeled on E?, Nil, or Solv.

Second proof. We let G := m;(M). Counsider a two-sided, embedded, incompressible
surface S C M. Since G is amenable, S has genus 1. Let G ~ T be the action on

the Bass-Serre tree corresponding to the decomposition of G' along 71 (S). Since G
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is amenable, either 7" is a line, or G must fix a point in the ideal boundary of 7’
(otherwise G will contain a free nonabelian subgroup).

In the first case, after passing to an index two subgroup if necessary, the action
G ~ T will be by translations, and hence we get an exact sequence 1 - H —- G —
Z — 1 where H = m((S). Therefore, by the Stallings-Waldhausen theorem, M is
homeomorphic to a surface bundle over a circle with fiber S. Thus the manifold M
is modeled on E?, Nil, or Solv.

We claim that the second case is impossible unless 7' is a line. Let v € T be a
vertex. The vertex stabilizer G, must fix the incident edge e which points towards
the fixed point at infinity. Hence the vertex group G, coincides with G, ~ m(S5).
Hence the stabilizers of all edges incident to v are of finite index in G, (all groups
are virtually Z?). If there were more than two edges incident to v, we could pass to a
finite index subgroup G’ of G, which fixed at least two of them, and then the quotient
of the vertex space by G' would have two boundary components whose inclusion is a
homotopy equivalence, which implies that the difference of (the fundamental classes
of the) two boundary components is null homologous, and hence there can be no
other boundary components. This means that 7" is a line. 0

Thus in the both cases 2a, 2b, the manifold M is geometric modeled on E?, Nil, or
Solv. This concludes the proof of the main theorem. O

8. CLASSIFICATION OF COARSE FIBRATIONS OF GEOMETRIC 3-MANIFOLDS

In this section we classify invariant coarse fibrations of the universal covers of closed
irreducible 3-manifolds M. By the main theorem we already know that every such
M must be either Seifert or Solv-manifold. We recall several constructions of coarse
fibrations:

1. Suppose that M is a Seifert manifold with noncompact universal cover X;
consider the lift £ of the Seifert fibration on M to X. Then L is a coarse fibration of
X by lines.

2. Let h: T? — T? be an Anosov affine mapping. Then there exists two h-invariant
foliations G of T by affine geodesics. Let M be the mapping torus of A. Then each
foliation G yields a 1-dimensional lamination L on M. Let £ denote the lift of £ to
the universal cover X of M. Then L is a coarse fibration of X by lines.

3. Let M be a Euclidean 3-manifold, i.e. the quotient of X = E? by a torsion-free
lattice G. Consider a G-invariant family £ of parallel lines in X. Then L is a coarse
fibration of X by lines.

We will refer to these examples as standard coarse fibrations by lines. The main

result of this section is
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Theorem 8.1. Suppose that M is a Seifert manifold or Solv-manifold with universal
cover X and F is a m(M)-invariant coarse fibration of X by lines. Then F is
Hausdorff-close to a standard coarse fibration £ of X by lines.

In the case when the coarse base Y of the coarse fibration F is hyperbolic (which
includes the Solv-manifolds and Seifert manifolds with hyperbolic base), the proof
of the main theorem immediately implies that F is within finite distance from a
standard coarse fibration £ by lines.

Thus we are done in the case when M is a Seifert manifold with hyperbolic base.
However even in the case of Solv-manifolds, there is (an a priori) possibility that the
coarse base Y of the coarse fibration F has polynomial growth. Hence we are left
with three classes of 3-manifolds M to consider:

(a) Euclidean manifolds.
(b) Nil-manifolds.
(¢) Solv-manifolds.

Thus (after passing to a finite cover) we may assume that our manifold M is of the
form K/G, where K is R®, the Heisenberg group, or the solvable connected Lie group
Isom’(Solv), and G is a torsion-free lattice in K.

The following lemma will be used repeatedly in the analysis.

Lemma 8.2. Let G ~ X be a cobounded quasi-action on a metric space, and let
F be a G-invariant coarse fibration. Then there is a constant D with the following
property. For oll F € F, z, ' € F, there are sequences {z;} € F, {¢;} € G such that
for all 1,

(8-3) dp(9:F, F) < D
and
(8.4) d(giz,x;) < D, d(giz',z;41) < D.

Proof. Set xy := x, x; := 2', and gy = 1 € G. Using the coboundedness of G ~ X,
pick g1 € G such that d(g,z¢,21) < Dy, where D; depends only on the quasi-action
G ~ X. Then dy(g.F,F) < D, where D, depends only on the constants of the
coarse fibration F. So we can pick z, € F such that d(xs, g11) < Dy. Proceeding by
induction, we define g;, z;11 for ¢ > 0. Define g;, x; for ¢+ < 0 inductively as follows.
Assume g,z have been defined for k& > i. Pick g; € G such that d(g;x1,z;41) < Dy,
and z; € F such that d(z;, g;70) < Do. The sequences {z;}, {g;} satisfy (8.3) and
(8.4) with D = max(D;, D,). O

Corollary 8.5. For every z,z' € F the mapping v : Z — X given by i — x; is
(2D + d(z, z"))-Lipschitz.
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Lemma 8.6. Suppose G ~ R" is a cobounded quasi-action by translations, and F is
a G-invariant coarse fibration by lines. Then F is at finite Hausdorff distance from
an affine foliation by lines: there is a line L C R* so that every fiber F € F is at
uniformly bounded Hausdorff distance from a line parallel to L.

Proof. Pick F € F, p € F. For each g € F, we apply Lemma 8.2 with 2 = p and
2’ = ¢ to obtain sequences {z;(q)} € F, {g:(¢)} € G and constant D. Since G quasi-

acts by translations, for all ¢ € F, i € Z, we have |(2i11(q) — zi(q)) — (¢ — p)| < 2D.
This means that for alli < j € Z, q € F,

(8.7) [(z5(q) — zi(q)) — (4 —21)(g — p)| < 2D(j — ).
So when |g — p| > 2D, the map i — x;(q) € F' C R is bilipschitz:
7 —il(lg — p| = 2D) < |z;(q) — ()| < |7 —il(lg — p| + 2D),

which clearly implies that {z;(q)} is an e-net in F, for some ¢ = ¢(q). By applying
the inequality (8.7) to ¢ = 0 we get for x = z,(q):

(88) |z —p) —j(g—p)| < 2Dj,
and hence (provided that |¢ — p| > 2D)

: : |z — pl
8.9 z—pl >jllg—pl—2D), < —"—.
(89) o —pl>illa—pl=2D). j <o
Therefore by combining (8.8) with (8.9) we get:

. . _ 2Dz —p|
8.10 dlx—p,jlg—p) <2Dj < ——.
(8.10) (¢~ p.i(a—p) s

Let L, be the line {p +t(¢ — p) | t € R}. By (8.10), we get that {z;(¢)} is contained

in the cone
Q, = {a: cR" | d(z, L,) < 2D },
d(z,p) ~ lg—p|—2D

when |g — p| > 2D, and hence F' is contained in the e-neighborhood of 2,. Observe
that the angle of the cone 2, converges to zero as |¢| — oo. This implies that the
family of subspaces R(q — p) C R™ converges to a line Rv as |¢| — oo. Indeed,
otherwise for some ¢y, gs € F, the cones Q,,, (), would have intersection only at p; it
follows that

diam(Ne(€g,) N Ne(€2,)) < €,
where € := max(e(q1), €(g2)). However the intersection N(§2g,) N Nc(€2g,) contains the
fiber ' whose diameter is infinite. Contradiction.
Let L be the line {p +tv | t € R}, the limit of the lines Ly, g/ — co. Observe

that for every divergent sequence x; € F' the segments pT; converge to a ray in the

line L. Indeed, for each ¢ € F' as above, the limit of every convergent subsequence of
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segments (PT;);en would have to belong to the cone €,. Since these cones converge
to the line L as |g| — oo, the claim follows. Thus, in particular,
(8.11) p+ lim B0 =P

j—oo i

€ L.

We now claim that F C Nyp(L). If there exists ¢ € F'\ Nyp(L), then (by the
triangle inequality)
d(zi(q), L) 2 d(p+j(g —p), L) — l(p+ (g — p)) — z;(q)],
the latter is
> d(q, L)j —2Dj = j(d(q,L) — 2D)
by (8.8). Hence
d(z;(q), L)

lim inf -
j—oo i

>0

which is a contradiction with (8.11). This proves the claim.

Since F is a line which is quasi-isometrically embedded in Nop (L), we clearly have
dy(F,L) < oo. Translation invariance then implies that every fiber in F is within
uniformly bounded Hausdorff distance from a translate of L. O

We now consider the case of Nil geometry. Let Nil denote the Heisenberg group
endowed with a left invariant Riemannian metric. We will use the notation Z for the
center of the group Nil, recall that Z is isomorphic to R. Let 7 : Nil - R? ~ Nil /Z
be canonical epimorphism, and endow R? with the submersion metric, so that = has
Lipschitz constant 1. Let G ~ Nil be a cobounded quasi-action by left translations
which preserves a coarse fibration F of Nil by lines.

Lemma 8.12. There is a constant C' such that every fiber is a Hausdorff distance at
most C from a cosetl of the center Z.

Proof. Pick F € F,p € F. Let D be the constant given by Lemma 8.2 with x = p
and ' = ¢, and for every ¢ € F, let {x;(¢)}, {9:(¢)} be the sequences provided by
that lemma. Set y;(q) := 7(z;(q))-

We now suppose that diam(r(F)) > 2D, and will derive a contradiction. Pick
p,q € F such that |7 (p) — 7(q)| > 2D.

The quasi-action G ~ Nil covers a quasi-action GG A R by translations. Hence
we can repeat the calculations of the previous lemma, to get that for all 1 < j € Z,

[(yi(q) —yi(q)) — (4 — i) (m(q) — 7(p))| <2D(j — 1),

and

(8.13) lyi(a) —vi(g)| > (4 —;2(|7T(CI) —m(p)| —2D).



Since |7(¢) —7(p)| > 2D, the map i — y;(q) is a bilipschitz embedding, by combining
this with Corollary 8.5 we conclude that the map ¢ : 7 — z;(q) is also a bilipschitz
embedding. Observe that (8.13) also implies that diam(w(F)) = oco. Moreover,
{zi(q)} is a net in F, and y;(q) is a net in 7(F). Repeating arguments from Lemma

8.6, we conclude that 7(F') C Nop(L) for some line L C R? passing through 7 (p).

Now consider the net {z;(¢)} C F for some ¢ € F with |7(q) — 7(p)| > 2D. Pick
g € G such that Wge(g)(L) # L. Since Ug:(g) : R? — R? is a translation, its
displacement equals to some 6 € R, and hence (by (8.13)):

(8.14) d(g(xi(9)), 2;(q)) = d(Vr2(9)(4i(9)), y; ()
> |7 = il(I(q) = 7(p)| = 2D) - 6.
On the other hand, the displacement function d, : Nil — R of g is constant on fibers
of 7, and unbounded on 7~'(L). Hence d(g(zi(q)), zi(¢)) is unbounded in i. By
assumption, dg(g(F), F) < ¢ < oo, hence (since {z;(¢)} is a net in F') there exists
j = j(7) such that
d(9(zi(q), zj(9) < c
Since, d(g(xi(q)), xi(¢)) is unbounded in 4, the function |j(¢) —4| is unbounded as well.
However then (8.14) implies that
Zliglo d(9(zi(q)), zj(i)(q)) = oo

Contradiction. 0

We now turn to Solv geometry. We view Solv as R® endowed with the metric h =
(e*)?dz® 4 (e7*)*dy* 4 dz*. Let R, and R?, denote the 2z and yz planes respectively,
endowed with the hyperbolic metrics (e*)?dz? + dz? and (e™%)2dy? + dz?, respectively,
so that both R, and R?_ are isometric to H”. The projections m, : Solv = R* — RZ_,

Ty. : Solv =R® — R are 1-Lipschitz. Let 7, denote the projection of Solv = R® to
the z-axis.

Lemma 8.15. Let G ~ Solv be an isometric (cocompact) action of a lattice on Solv
by left translations, and let F be a G-invariant coarse fibration of Solv. Then F is at
finite Hausdorff distance from a foliation of Solv ~ R® by lines parallel to the x-axis
or by lines parallel to the y-axis.

Proof. We first note that without loss of generality we can assume that the lattice G
is generated by a lattice H acting on the Euclidean plane Rﬁy by translations and an
isometry

7 (2,y,2) = (e 'm,ey, 2+ 1).
Hence the foliation £ of Solv by lines parallel to the z-axis or y-axis is an example of
a standard coarse fibration.

Pick F' € F, p € F, and as before, for each ¢ € F, we apply Lemma 8.2 to get

sequences {z;(¢)} C F, {gi(q)} € G. .



Suppose that for some q € F, |7,(q) — 7,(p)| > 2D. Since the map 7, : Solv — R
is equivariant with respect to a translation action G ~ R, we can obtain estimates
similar to (8.13) for the sequence {m,(z;(q))} € R, which in turn implies that the
sequences {7y, (7i(q)) ez, {7y (7i(q))}icz are bilipschitz embeddings of Z in RZ, and
]RZZ respectively. Moreover, the mapping i — 7,(x;(q)) is a quasi-isometry Z — R.
Recall that according to Morse Lemma, each (L, A)-quasi-geodesic in a hyperbolic
space is within Hausdorff distance < C(L, A) from a geodesic. Therefore, by the
Morse Lemma applied to the hyperbolic planes R2_, ]Riz, there are vertical lines L, C
RZ,, L, C R2, such that

du (74 (F), Ly) < 00,  dp(my,(F), L,) < cc.
For all g € G, we have dy (g(F), F) < oo, which forces ¥,,(g)(Ly) = Ly, ¥,.(g)(L,) =
L, for all g € G, where G ~ R2, is the action on RZ, covered by G ~ Solv, and
likewise G % R?, is the action on R?, covered by G A Solv. Clearly this contradicts

the cocompactness of G A~ Solv.

Hence each fiber F' € F lies in the 2D neighborhood of a horizontal plane. Therefore
F induces a coarse fibration of each horizontal plane. The stabilizer of the plane
{z = ¢} in G is the subgroup H which acts cocompactly on {z = ¢} by translations.
Applying Lemma 8.6, we conclude that the induced coarse fibration of {z = ¢} is
at finite Hausdorff distance from a fibration by parallel lines. Unless the lines are
parallel to the z-axis or y-axis, an element g € G'\ H will move a fiber F to a set at
infinite Hausdorff distance from F, contradicting the G-invariance of F. O

9. COARSE FIBRATIONS OF HYPERBOLIC GROUPS

The main result of this section is the following

Theorem 9.1. Suppose that G is a Gromov hyperbolic group which admits a G-
inwvariant coarse fibration F by lines. Then G is elementary, i.e. it is either finite or
it 1s commensurable to 7.

Proof. We will identify coarse fibration of G' with a coarse fibration of its Cayley
graph X. Without loss of generality we may assume that GG preserves orientation of
the fibers of F.

Lemma 9.2. There ezists a constant C so that for each fiber F € F and each infinite
normal subgroup G' C G there is an element g € G' \ {1} so that duy(F,g(F)) < C.

Proof. Consider the coarse base B of the coarse fibration F. Without loss of generality
we will assume that B has bounded geometry and F' € B; we have a quasi-action
p: G ~ B. The constant C will depend only on the constants (L, A) of the quasi-
action p. Since G ~ X is cocompact, there exists a sequence of distinct elements

g; € G so that the sequence p(g;) converges to the identity uniformly on compacts in
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B. Let h € G' be an element of infinite order. If [h,g;] = 1 for all i > iy, then the
elements g;, i > iy, belong to a maximal elementary subgroup E(h) of G containing
h. If this is the case we replace h with a hyperbolic element A’ € G’ so that the
maximal elementary subgroups E(h), E(h') have finite intersection; then [g;, h'] # 1
for all but finitely many #’s. Passing to a subsequence, we conclude that there exists
a hyperbolic element h € G' and a sequence of distinct elements g; € G so that p(g;)
converges to the identity uniformly on compacts in B and [h, g;] # 1 for all i.

Now pick R € R, so that p(g;)|Br(F) = Id and R > dy(F,h(F)) + 2A. Then,
since p is a quasi-action with constants (L, A),

d(p(lg; ', 7", p(g; ") 0 p(h™1) 0 p(gs) © p(h)) < 4A,

du(F, p(g; ) o p(h™") 0 p(gi) o p(h)(F)) < 24,
hence
du(F, p(lg; ', A )F) < C:=6A. O

Lemma 9.3. For each nonelementary hyperbolic group G there exists a sequence of
infinite normal subgroups G; C G with trivial intersection.

Proof. Consider a sequence of hyperbolic elements g; € G whose translation length
diverges to infinity. Then take G; to be the normal closure of (g;) in G. O

We will need the following variant of Lemma 8.2:

Lemma 9.4. There exists a constant D (which depends only on the coarse fibration
F), so that given any constant R > 0 and a fiber F' € F, there erists an element
g € G and a subset (z;);cz € F which is a D-pseudo-orbit of g, i.e.,

d(@it1,9(x:)) < D
for alli € Z. In addition, the translation length of g is at least R.

Proof. Using Lemma 9.3 we find an infinite normal subgroup G’ C G such that the
translation length of each nontrivial element of G’ is at least R. By Lemma 9.2 there
exists D (independent of G') and a nontrivial element g € G’ so that dy (F,gF) < D.
Pick a point 7y € F. Then there exists z; € F so that d(g(z¢),z1) < D. The point
g(x1) will lie within distance < D of some point z, € F, etc. In the same fashion we
get points x; for ¢ < 0. O

Observe that we can assume that R > 0 and hence the element ¢ in the above
lemma has infinite order, i.e. is hyperbolic. Let 7, ( be fixed points of g in 0,,X; let ~y
denote the union of all geodesics in X asymptotic to & and 7. Then 7 is a g-invariant
(Lo, Ap)-quasi-geodesic with (Lg, Ag) independent of g. The quasi-geodesic 7 is called
an azis of g.
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We let a : v — R be a quasi-isometry with the coarse inverse a. Let f: R — X
denote a uniformly proper map whose image is F; let f : F' — R be a coarse inverse
of f. Let 7 : X — v denote the nearest-point projection to ~.

We choose t; € R so that z; = f(t;), i € Z. Then g determines an (L, A) quasi-
isometry ¢(g) := fogo f: R — R with (L, A) independent of R. Observe that
there exists Dy = D;(D, L, A) so that {t;,i € Z} is a D;-pseudo-orbit of 1)(g). The
isometry g : 7 — 7 also induces a quasi-isometry ¢(g) : R — R defined by

b(g) = aogoa

Lemma 9.5. Suppose that h : R — R is an (L, A) quasi-isometry which preserves

the orientation on R. Then h is coarsely increasing, i.e. there exists a number
C = C(L, A) such that if t —t' > C then h(t) — h(t') > L7'C — A > 0.

Proof. Note that |h(t) — h(t')| > L7'|t — ¢| — A. Hence we only have to show that
h(t) > h(t') for an appropriate C. If h(t) < h(t') for some t,t' satisfying t —t' > C
then h([t,00)) N Na(h((—o0,t'])) = @ implies that A([t,oc0)) C [h(t'), —occ), which
contradicts the assumption that A preserves the orientation on R. O

Lemma 9.6. For each sufficiently large R, t; 11 > t; for all i € Z.
Proof. Recall that |t; 11 — ¥ (g)(t;)| < D;, where D; is independent of R. Thus

lim min [t; — t;—1| = oo.
R—o00 1

Now the assertion follows from the previous lemma with h := (g). O
We set Ij = [tjatj—l—l]a ] € 7.

Corollary 9.7. There exists a constant Dy depending only on the coarse fibration F
so that the following holds: The set of intervals {I;,j € Z} is a Dy-pseudo-orbit of

g, i.e.,
du (111, 9(9)()) < Dy
forall j € Z.
Proof. We again use Lemma 9.5 with h := ¢ (g). For C := C(L, A) we have:
tiv1 — D1 < h(t;) < h(t) < h(tjy1) < tjro+ Dy
for all j € Z and all t € (t; + C,t;11 — C). Therefore for D, := LC' + A+ D; we have:
h(I;) C Np,(Lj11)-
The inclusion ;1 C Np,(h(l;)) is clear as well. O
Set Jy :=aomo f(Iy), k € Z.

Corollary 9.8. There exists D3 € R, independent of R so that the collection of
bounded subsets {Jx,k € Z} of R forms a Ds-pseudo-orbit of ¢(g) : R — R.
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Proof. The assertion follows from the previous corollary since both maps f, 7 and «
are (L, A)-coarse Lipschitz for L and A depending only on the geometry of X and
F. O

Recall that the displacement of g : X — X is at least R. We choose R so large that
(9.9) inf ¢(g)(y) —y > 2D;.
yeR

The subset Jy C R is contained in a finite interval [7_,7';]. We define H,, H_ C X
to be the inverse images of the rays [T_,+o0) and (—oo, T ] respectively, under the
map ao7: X — R. Although H, is not necessarily quasi-convex in X, there exists
T < T, so that H, is contained in the quasi-convex hull H of a o 77}((—o0, T]);
moreover

m(H) C (=00, T"]
for some 7" < T, see [9]. In particular, the ideal boundary 0., H, of H, is a proper
subset of 0,,X:
OscH_ C 0.0H

and the d,,H does not contain one of the ideal points 7, ¢ of the quasi-geodesic 7.
Set F'y := f([to, +00)), F_ := f((—00, to]).
Lemma 9.10. F, C H, and hence 0, F, is a proper subset of 0xo X = 05G.

Proof. The subset Jy C R is contained in an interval [T_,T.]. Let’s verify that for
each i > 0 the interval J; is also contained in [T, 4+00). We argue by induction:

Suppose that Jy C [T, 4+00). Then, by (9.9),
¢(9)(Jx) C [T- + 2Dy, +00),
where Dj is as in Corollary 9.8. Since dg(é(g)Jk, Jx11) < Ds, we get:
Jes1 C [T- +2D;3 — D3, +00) C [T, 400).
Thus the union U;>J; is contained in [T", +00). It follows that
F, =Upsof (I;) C Hy.

Since 0, H, is a closed subset of 0, X disjoint from one of the ideal points of the
quasi-geodesic 7y the assertion follows. (Il

Note that the same conclusion O, F_ C 0o H_ holds for 05 F, but we do not need
this for our argument.

We now can finish the proof of Theorem 9.1. Recall that for each h € G, h(FY) is
Hausdorff-close to F, (since G preserves the orientation on the fibers of F). Hence

Therefore the entire group G preserves a proper closed subset of 0,,G. This is im-

possible unless the group G is elementary. O
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Question 9.11. Is it true that no nonelementary hyperbolic group admits a coarse
fibration by copies of the Euclidean n-space?
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