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Abstract

We consider sequences of discrete subgroups I'; = p;(I') of a rank 1 Lie
group GG, with I finitely generated. We show that, for algebraically convergent
sequences (I';), unless I';’s are (eventually) elementary or contain normal finite
subgroups of arbitrarily high order, their algebraic limit is a discrete nonelemen-
tary subgroup of G. In the case of divergent sequences (I';) we show that the
resulting action I' ~ T  on a real tree satisfies certain semistability condition,
which generalizes the notion of stability introduced by Rips. We then verify
that the group I' splits as an amalgam or HNN extension of finitely generated
groups, so that the edge group has an amenable image in Isom(7).

1 Introduction

One of the basic questions about discrete subgroups of Lie groups is to understand
limiting behavior of sequences of such groups. In this paper, we consider finitely
generated discrete subgroups of a rank 1 semisimple Lie group G, i.e., generalizations
of the classical Kleinian groups. Given a finitely generated group I' and a sequence
of subgroups I'; = p;(I") C G, one says that this sequence converges algebraically
to a subgroup I'y C G if the sequence of homomorphisms p; : ' — G converges
(pointwise) to an epimorphism po., : I' = 'y C G.

More generally, one can consider algebraic convergence of G—equivalence classes of
the representations p;, where p;’s are replaced with their projections to the character
variety X(I', G). Sequences p; which do not subconverge even in this sense, are called
divergent. Every divergent sequence (p;) yields a nontrivial action I' ~ T" of the group
I on a real tree T. One can regard such action as a generalization of the algebraic
limit of the sequence I';.

If the groups I'; are discrete and the representations p; are faithful then the limiting
behavior is completely understood due to the following theorems:

Theorem 1.1. Suppose that the group ' is not virtually nilpotent and the sequence
I'; converges algebraically to U's,. Then the algebraic limit Ty is discrete and pso 1S

faithful.

The above theorem is due to V. Chuckrow [7], N. Wielenberg [28], T. Jorgenesen
[12], G. Martin [18], in different degrees of generality, see [18] for the most general
statement.



Remark 1.2. Historically, it was H. Poincaré [23] who first (unsuccessfully) tried to
prove Theorem 1.1 for Fuchsian subgroups of SL(2,R) as a part of his first attempt
on proving the Uniformization Theorem (via the continuity method).

Theorem 1.3. Suppose that the group I" is not virtually nilpotent and the sequence
(pi) is divergent (in the character variety). Then the limiting group action on the tree
' ~ T s such that:

1. ' T 1s small, i.e. arc stabilizers are virtually solvable.

2. The action I' ~ T 1is stable. The group I" splits as I' =Ty xg 'y or I' = I'1xpg
with the edge group E amenable.

The first part is due to J. Morgan and P. Shalen [20], J. Morgan [19], M. Bestvina
[4] and F. Paulin [21] in the case when G = SO(n,1). The proof in the case of
other rank 1 Lie groups follows, for instance, by repeating the argument using the
ultralimits which can be found in [14, Chapter 10]. The second part, for finitely-
presented groups, is mostly due to I. Rips; see [25, 5, 10, 22, 14] for the proofs. The
theorem was recently extended to the case when I' is merely finitely generated by
V. Guirardel [11].

The main goal of this paper is to analyze the case when the groups I'; are dis-
crete but the representations p; are not necessarily faithful. As far as convergent
sequences of discrete groups, the best one can hope for is to show that 'y, is discrete
and nonelementary, provided that the groups I'; are also discrete and nonelementary.
This was proven by T. Jorgensen and P. Klein [13] in the case when G = SL(2,C) by
methods specific to the 3-dimensional hyperbolic geometry. G. Martin [17] observed
that already for the hyperbolic 4-space, discreteness of 'y, can fail. His example
consisted of groups I'; = T, x ®;, where each I'; preserves a hyperbolic plane H? C H*
and the groups ®; are finite cyclic groups, so that the generators of ®; converge to
a rotation of infinite order about H?. Martin proved in [17] for G = SO(n, 1) and
in [18] for isometry groups of negatively pinched Hadamard manifolds, that I'y, is
discrete and nonelementary provided that the groups I'; have uniformly bounded tor-
sion. (See also [14, Proposition 8.9], and [2] for the proofs of discreteness of geometric
limits, under the same assumption of uniformly bounded torsion and [27] for another
variation on the bounded torsion condition.) The uniform bound on torsion allows
one to reduce the arguments to analyzing certain torsion-free elementary subgroups
of G; such groups have the following property:

If Ay, Ay are torsion-free discrete elementary subgroups of GG, so that A; N Ay is
nontrivial, then A;, Ay generate an elementary subgroup of G.

It is easy to see that this property fails for subgroups with torsion and this is where
the arguments of [17, 18, 14, 2] break down in the presence of unbounded torsion.

Our first result is

Theorem 1.4. Suppose that I's is an algebraic limit of a sequence of discrete nonele-
mentary subgroups I'; C G. Then:

1. T s nonelementary.

2. If ' is nondiscrete, then for every sufficiently large i, each I'; preserves a
proper symmetric subspace X; C X. The kernel ®; of the restriction map I'; —
Isom(X;) is a finite subgroup whose order D; diverges to infinity as i — 00.

3. Every element 7y of ker(p,) either belongs to ker(p;) for all sufficiently large i,
or pi(y) € ®;, where ®; is as in 2.



Therefore, the example of G. Martin described above is, in a sense, the only
way the group I'y, may fail to be discrete. (See remarks in the end of section 5 in
[17].) In Corollary 4.4 we generalize Theorem 1.4 to geometric limits of algebraically
convergent sequences [;.

Our second result deals with the group actions on trees. Suppose that I is finitely
generated, the groups I'; are discrete and the sequence (p;) diverges in the character
variety. In general, there is no reason to expect the action I' ~ T to be stable. In
Section 6 we introduce the notion of semistable actions to remedy this problem. This
notion requires stabilization not of sequences of arc stabilizers

Fh C F[2 C ...
(as in the Rips’ notion of stability) but stabilization of their algebraic hulls
A(Ty) C A(Ty,) C ... (1)

which are certain solvable subgroups of Isom(7") canonically attached to I';, . In the
case at hand, the subgroups A(I';,) are connected algebraic subgroups of a certain
nonarchimedean Lie group G(F), for which 7" is the Bruhat-Tits tree. Stabilization of
the sequence (1) then comes from the fact that the dimensions of the groups A(I';,)
eventually stabilize.

Remark 1.5. M. Dunwoody in his recent preprint [9] proposed another way to elimi-
nate the stability assumption for group actions on trees with slender arc stabilizers. (A
group is called slender if every subgroup is finitely generated.) However, both slender
assumption is too restrictive (for instance, it forces the kernel of the action ' ~ T to

be slender) and the conclusion that Dunwoody obtains is not as strong as one would
like.

We then verify that semistability is sufficient for the Rips theory to work. As the
result we obtain:

Theorem 1.6. Let p : I' T be the limiting action arising from a divergent sequence
(pi). Then:

1. The action on T of the image group T := p(T") C Isom(T) is small.

2. The action p: I' ~ T is semistable.

3. Assume that I is finitely-presented. Then I' splits as ' = T'1xgly or I' = T'1xg,
where p(E) is a virtually solvable subgroup of Isom(T), and the groups T'y,T's, E are
finitely generated.

In Propositions 5.4 and 5.6, we also describe the kernel of the action I' ~ T'.

The key technical ingredient in the proof of Theorems 1.4 and 1.6 is the definition
of the algebraic hull A(A) for amenable subgroups A C G = G(L), where G is a reduc-
tive algebraic group and L is a field of cardinality continuum and zero characteristic.
The group A(A) is a (Zariski) connected algebraic solvable subgroup of G so that the
intersection

A(N) :=AAN)NA
is a subgroup of uniformly bounded index in A. (The bound depends only on G.)



The results of this paper probably generalize to sequences of isometric group
actions p; : I' ~ X;, where X, are Hadamard manifolds of fixed dimension with fixed
pinching constants. However, at the moment, I am not sure how to establish such a
generalization, as the concept of algebraic hull is missing in this context.
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2 Preliminaries

For a CAT(0) space X we let 0,,X denote its visual boundary. We let Zy C X denote
the geodesic segment between points x,y € X.

Let G be a Lie group. Then there exists a neighborhood U of 1 in G, called
Zassenhaus neighborhood, so that for every discrete subgroup I' C G, generated by
elements from U, it follows that I' is nilpotent. See e.g. [24].

Let X be a negatively pinched Hadamard manifold, i.e. a complete simply-
connected Riemannian manifold whose sectional curvature is bounded by two negative
constants:

—a® < Ky < —1.

Then there exists a constant p (called Margulis constant) which depends only on a
and the dimension of X so that the following holds. For every point x € X and a
discrete subgroup I' of Isom(X) generated by elements v; so that d(z,v;(z)) < p, it
follows that the group T is virtually nilpotent. See e.g. [1].

Let X be a negatively pinched Hadamard manifold. A discrete subgroup A C
Isom(X) is called elementary if one of the following equivalent conditions is satisfied:

a. A is amenable.

b. A contains no free nonabelian subgroups.

c. A is virtually nilpotent.

d. A cither fixes a point in X = X U 0,,X, or preserves a geodesic in X.

We refer the reader to [3] for a detailed description of the structure and quotient
spaces X/A for such subgroups.

3 Amenable subgroups of algebraic groups

Let G = G(C) be a connected reductive complex-algebraic Lie group, where G is
defined over Q. We will consider amenable subgroups A C G.

Theorem 3.1. There exists a number d = d(G) so that the following holds. For
every amenable subgroup A C G there exists a canonical (Zariski) connected solvable
algebraic subgroup A(A) C G (the algebraic hull of A) so that:

1. |A(A) - A| < d(G), where A(A) := A(A)NA.

2. A(A) is canonical in the following sense:
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a. [f Al C A2 then A(Al) C A(Ag)
b. For every automorphism ¢ of G (either algebraic, or coming from Gal(C)),

PA(A) = A(pA).
c. For every g € G, if gA(A)g=' C A(A), then gA(A)g™' = A(A).

Proof: We first, for the sake of being concrete, define A(A) in the case G = SL(2,C).
Amenable subgroups A C G are classified as follows:

1. A is finite of order < 120; we then let A(A) := {1}.

2. A is finite of order > 120; it then contains an abelian subgroup A(A) of index
< 2. The group A(A) is contained in a unique maximal torus C* = T C G. We then
let A(A) :=T.

We now assume that A is infinite.

3. The subgroup A is diagonalizable. Then it is contained in a unique maximal
torus T C G (which has to be unique). Set A(A) := T.

4. A is contained in the index 2 extension of a maximal torus T C G. We then
let A(A) :=T.

5. A has a unique fixed point € in S? = 9, ,H3. We then let A(A) be the full sta-
bilizer of £ in G. Up to conjugation, this group consists of upper—triangular matrices
in GG and is, therefore, solvable.

We now discuss the general case.

1. Let ® C G be a finite subgroup. Then (up to conjugation) ® is contained in
the maximal compact subgroup K C G. According to the Jordan Theorem, see e.g.
[24, Theorem 8.29], there exists a canonical torus T = T(®) C K, so that the abelian
subgroup T(®) = ® N T(P) has index < a(G) in &. We then let A(P) C G be the
complexification of the torus T.

Let A C G be an infinite amenable subgroup. Then, by the Tits alternative, the
Zariski closure H := A C G has to be virtually solvable.

2. Suppose that H is an infinite reductive subgroup of G, i.e., its Zariski com-
ponent of the identity is a nontrivial torus Ty C H. (This torus is not necessarily
maximal.) Since H has only finitely many components, the quotient A/(A N Ty) is
finite. The torus Ty is contained in the unique smallest torus T which is the inter-
section of maximal tori in G. The torus T corresponds under the exponential map to
a face of a Weyl chamber of GG. Therefore, the number of conjugacy classes of such
tori T C G is finite.

The group A is contained in N(T), the normalizer of the torus T in G. Let Z(T)
denote the centralizer of the torus T in GG. Recall that

N(T)/Z(T) = Wr

is the Weyl group associated with the torus T. Hence, its order is bounded from
above by a constant b = b(G). Therefore, A contains a subgroup A’ of index < b, so
that A’ C Z(T). The quotient A’/(A’NT) is a finite subgroup ® of the Lie group
Q = Z(T)/T. Since the number of conjugacy classes of the tori T C G is finite, the
number of components of ) is bounded from above by some ¢ = ¢(G). Therefore (by
Case 1), there exists a canonical torus A(®) C @ so that

@2 A(P)] < a(@Q),
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where A(®) = A(®) N ®. The sequence
1-T—2Z(T) —Q — 1
splits and we obtain
AN :=NNTxA®),|A: N <d:=a(Q)b(G).
We then set A(A) :=T x A(D).

3. Suppose that H = A is a non-reductive subgroup of G. Let U C H be
the unipotent radical of H, so M := H/U is reductive. Let m : H — M denote
the canonical projection. The subgroup U is solvable and is canonically defined. The
Levi subgroup M C G is again algebraic. Therefore, we apply Case 2 to the subgroup
m(A) C M. Then we set

AA) = 71 (A(r(A)).

Since A(A) = U - A(w(A)) is the semidirect product of two solvable groups, it is
solvable itself.

Lastly, we verify the fact that A(A) is canonical. Property (a) and invariance under
algebraic automorphisms of G follow from the construction. Consider invariance
under the automorphisms ¢ of G induced by o=! € Gal(C). It suffices to treat the
case when G is an affine algebraic group (i.e., GL(n,C)). Let E C G be a subset
and f € C[G] be a polynomial function vanishing on E. Then f? vanishes on ¢(FE).
Moreover, if the ideal generated by the functions f determines an algebraic subgroup
H of GG, the same is true for the ideal generated by the functions f?. The subgroup
H is solvable and connected iff the corresponding subgroup H? is.

To check property (c) note that gA(A)g~" C A(A) implies that the above groups
have the same Lie algebra. Then the equality follows from the connectedness of
A(A). O

Corollary 3.2. Let F be a field of characteristic zero and cardinality continuum,
G = G(F) be an algebraic group. Then there exists a constant d = d(G) so that the
following holds. Let A C G be an amenable subgroup. Then there exists a canonical
(Zariski) connected solvable algebraic subgroup A(A) C G so that: |[A(A) : Al < d(G),
where A(A) := A(A) NA.

Proof: Let F denote the algebraic closure of F. Then F 2 C since both are extensions
of QQ, algebraically closed and have the same cardinality. Therefore, we may regard
A as a subgroup of G(C). Let A(A) denote the algebraic hull of A C G(C). Then,
since A(A) is canonical, for every o € Gal(C/F), we have

o(A(A)) = A(A)

We set

A(A) :=AN)NG.
Then A(A) is again solvable and Zariski connected. The rest of the properties follow
from Theorem 3.1. [

We will apply the above corollary in the following cases: F = R and G is a real Lie
group of rank 1; F is a complete nonarchimedean valued field of zero characteristic
and G has rank 1.



4 Algebraic limits of sequences of discrete groups

In this section we prove Theorem 1.4. Let X be a negatively curved symmetric space;
its isometry group is isomorphic to a (real) rank 1 algebraic group G defined over Q.
For instance, the reader can think of G = SO(n,1) and X = H". Let p; : I' —» G
be a sequence of discrete (but not necessarily faithful) representations of a finitely
generated group I'. We let I'; denote the image of p;. Suppose that lim; p; = p» and
I = poo(l') is the algebraic limit of the sequence (I';). In the “generic” case, the
group 'y, 1= poo(I) is a discrete nonelementary subgroup of G. The theorem below
describes what happens in the exceptional cases.

Theorem 4.1. 1. If ', is discrete and elementary, then for sufficiently large @, each
I'; is elementary.

2. If ' is nondiscrete, then either:

a. For every sufficiently large i, each T'; is elementary, or

b. For every sufficiently large i, each I'; preserves a proper symmetric subspace
X; C X. The kernel ®; of the restriction map I'; — Isom(X;) is a finite subgroup
whose order D; diverges to infinity as i — oo.

Proof: Let U C G denote the Zassenhaus neighborhood of 1 € G. Let g1,..., 9m
denote the generators of I'. We can assume that I' is free on the generators g1, ..., gp,.

We will need

Lemma 4.2. Let v € ker(ps,). Then for all but finitely many i either
(a) pi(y) =1, or
(b) T; is elementary, or
(c) T'; preserves a proper symmetric subspace X; C X, which is fixed pointwise by

pi(7)-

Proof: We assume that (a) does not occur. Let K C I denote the normal closure of
{7}. Exhaust K by finitely generated subgroups

K, CK,C ..

so that
nglg;l C Kl+17 VZJVJ = 17 “eey T (2)

Without loss of generality, we may assume that v € K. It is standard that if (h;) is
a sequence of nontrivial elements in a Lie group converging to 1, then the orders of
h; (regarded as elements of NU {oo}) converge to infinity.

Therefore, since p;(7y) # 1 but lim; p;(7) = 1, the order of p;(7y) diverges to infinity
as © — oo for each j = 1,...;s. It follows that the order of p;(K;) diverges to infinity
as 1 — 00. In particular, without loss of generality, we may assume that for each i,
the hull A(p;(K7)) is a nontrivial connected solvable subgroup of G.

For every g € K, there exists i, so that for all i > i, pi(g) € U. Therefore,
without loss of generality, we may assume that for all ¢, the groups

pl<Kl)7l = 17 SAS) D= lel(G),



are elementary, where dim(G) is the dimension of G. Hence, for each i, there exists
a pair of groups A(p;(K})), A(pi(Ki41)) (for some 0 < I < D — 1 depending on 1)
which have the same dimension, and, hence, are equal. These groups are necessarily
nontrivial.

Since Ay = A(p;(K))) is canonical, in view of (2) we obtain

pi(95)Aupi(g;) " = Ajgry = A, Vi =1, ...,m. (3)

If the group A; is noncompact, then it either has a unique fixed point in 0, X or
an invariant geodesic. This point or a geodesic are invariant under I'; according to
(3). Therefore, it follows that I'; is elementary in this case.

We next assume that Ay is compact for each ,[. By (3), the group I'; preserves
the fixed—point set X; C X of A;;, which is a symmetric subspace in X. Since

[pi(K1) A N pi(KY)| < d(G),

we have

pi(7)" € An
for some 1 < ¢ < d(G). Hence, p;(7)|X; is an element of order < d(G) of Isom(X;).
Since p;(y)|X; converge to 1 as i — oo, it follows that p;(7) restrict trivially to X; for

all sufficiently large i, j = 1, ..., k. Therefore, X; is a proper subspace in X invariant
under I';. O

We now continue with the proof of Theorem 4.1.

1. Suppose that ', is discrete and elementary. Then I' is a lattice in a nilpotent
Lie group with finitely many components. In particular, I'y, is finitely-presented. It
therefore has the presentation

<91, ...,gm|R1, ceey Rk>

where Ry, ..., Ry are words in the generators ¢y, ..., g,,. Since I' is free, we can regard
these words as elements of I'. By Lemma 4.2, for all sufficiently large ¢ one of the
following holds:

a. The group I'; is elementary.

b. X contains a symmetric subspace X; invariant under I', so that each p;(R;), j =
1,...,k restricts trivially to X;. Therefore, Ry,..., Ry belong to the kernel of the
restriction homomorphism

' =T — Isom(X;).

Therefore the homomorphism I' — Isom(X;) factors through I' — T'y,. Thus, its
image is an amenable group. Since the kernel of I'; — Isom(X;) is amenable, it
follows that I'; is itself amenable and, hence, elementary.

Case 2. Suppose that I', is nondiscrete. Our arguments are somewhat similar to
the Case 1.

Let o denote the closure of I' in G with respect to the classical topology. Then
the identity component T'% of this group is a nontrivial nilpotent group, see e.g. [14,
Proposition 8.9] or [2, Lemma 8.8]. In any case, I', contains nontrivial elements
Y = Poo(g) arbitrarily close to 1. As before, the order of such v necessarily goes to
infinity as v approaches 1.



Let V' be a neighborhood of 1 in G whose closure is contained in the Zassenhaus
neighborhood U. By choosing v sufficiently close to 1, we obtain:

1

Y, Poo(91)VPo0(95) 7 ooy Poo(95) Ppoo(g) P €V, G =1,...,m,

where D can be taken as large as we like. Consider the subgroups
Ky :={(g99;",j=1,...mt=0,..s) CT

for s =0,..., D. Then,
K()CKlC.‘.CKD

and
g}ng;t CKi,Vj=1,....m,s=0,....,D — 1.

As before, we choose D equal the dimension of G. By considering sufficiently large
1 we can assume that

pi(9;99;°) €U, j=1,...,m,s=0,..,D.

Therefore, the subgroups A;s = p;(K) generated by the above elements of I';, are
elementary for s = 0,..., D. Since v can be taken to have arbitrarily high (possibly
infinite) order, we can assume that the algebraic hull A(A;s) is nontrivial for each i
and s.

We now repeat the arguments from the proof in Case 1. For each i, there exists
0 < s < D so that

A(Ais) = A(Ai(s11))-

Therefore,

pi(g)ANis)pi(g;) ™" = AAig),j = 1, ...om. (4)
If A(A;s) is noncompact, it follows from (4) that I'; is elementary, which contradicts
our assumptions. Therefore A(A;) is compact (a torus in G); this subgroup fixes
(pointwise) a proper symmetric subspace X; C X. According to (4), this subspace
is invariant under the group I';. The kernel ®; of the restriction homomorphism
['; — Isom(X;) contains the abelian subgroup A(A;s) = A(A;s)NA;s. By construction,
the order of A(A;s) diverges to infinity as i — oo. Therefore, the order D; of ®; also
diverges to infinity as i — oo. O

Corollary 4.3. Suppose that G = PSL(2,C) and, hence, X = H3. Then:
1. Either T, := poo(I") is discrete and nonelementary, or
2. For each sufficiently large i, the group I'; is elementary.

Proof: 1t suffices to analyze Case 2b of the above theorem. Then I'; contains a
nontrivial finite normal subgroup ®; of rotations about a symmetric subspace X; C
H?3; this subspace is either a point or a geodesic. In either case, I'; is elementary. [J

Corollary 4.4. Suppose that I is a finitely generated group, homomorphisms p; :
I' = T; = pi(T) C G converge to poo : I' — T'oo = poo(l’) C G and the groups T'; are
discrete and nonelementary. Let 'Y C G be the geometric limit of the sequence of
groups I';. Then:

1. T'9° 1s nonelementary.

2. IfI'9° is nondiscrete, then each I'; contains a finite normal subgroup ®;, whose
order diverges to infinity as i — oo.



Proof: Recall that I's, C T'9° (see e.g. [14]). Since 'y, is nonelementary by Theorem
4.1, it follows that 1'% is nonelementary as well. To prove Part 2, we modify Part 2
of the proof of Theorem 4.1 as follows. Consider an element v € I'%¢°\ {1} sufficiently
close to 1 € G. Instead of using a fixed element g € I" so that p,(g) = v, we consider
a sequence h; € I' so that

lim p;(hi) = 1.

1—00

Instead of the subgroups K C I' we use
K, = (gj-higj_t,j =1,..,mt=0,..,s) CTI.

With these modifications, the proof of Part 2 of Theorem 4.1 goes through in the
context of the geometric limit. O]

5 Small actions

In this section we prove the first assertion of Theorem 1.6.

Let p : I' ~ T be an isometric action of a group I' on a metric tree 1. Let
[ := p(T') C Isom(T) denote the image of I' in Isom(T). Given an axial isometry
g € I', let A, denote the axis of g and £(g) the translation length of g. Recall that
the action I' ~ T is called nontrivial if I' does not have a global fixed point. This
action is called small if the arc stabilizers are amenable.

Suppose that (X, d) is a negatively pinched simply-connected complete Rieman-
nian manifold and I is a finitely—generated group with the generating set {g1, ..., gm }-
Given a representation p : I' — Isom(X), define

be(p) := max(d(p(g;)(z),x),i =1,...,m),
b(p) = inf ba(p).

zeX

Then a sequence of representations p; : I' — Isom(X) is divergent if and only if
lim b(p;) = 0.

Indeed, if there is a subsequence (p;;) so that b(p;;) < C, then we can conjugate p;;
by the elements h;, € G which move x;; to a base-point 0 € X. Since G is locally,
compact, it follows that the new sequence

converges in Hom(I', G).

Let w be a nonprincipal ultrafilter on N. We recall that a divergent sequence
yields a nontrivial isometric action p, : I' ~ T of I on a metric tree T', well-defined
up to scaling (given the choice of w). The tree T is the w-ultralimit of the sequence
of pointed metric spaces

d
(X7 77\ Oi)
b(p:)
where o0; € X is the point nearly realizing b(p;), i.e.,
1b(pi) — b, (pi)| < 1.
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See e.g. [14, 15] for the details.
We now assume that X is a symmetric space, i.e. its isometry group is a rank 1
algebraic group G.

The following theorem is standard in the case of sequences of discrete and faithful
representations (p;):

Theorem 5.1. Let p; : I' — Isom(X) be a divergent sequence of representations
with discrete images. Let p, : I' ~ T denote the limiting action on a tree and
I' := p,(I') C Isom(T"). Then the action I' ~ T is small.

Proof: Our proof repeats the arguments of the proof of Theorem 10.24 in [14] with
minor modifications. Let p > 0 denote the Margulis constant for X.

For a nondegenerate arc I C 7' let I'; denote the stabilizer of I in I'. Let I'; C I';
be the commutator subgroup. Exhaust I} by an increasing sequence of finitely—
generated subgroups A,, C I'.

Lemma 5.2. For each n and w—all i, the group p;(A\,) is elementary.

Proof: The arc I corresponds to a sequence of geodesic arcs I; C X. Let m; € I;
be the midpoint. Let hy,...,h; be generators of A,. Since each h; is a product of
commutators of elements of I';, the arguments of the proof of Theorem 10.24 in [14]
imply that p;(h;) moves m; by < p for w-all i. Therefore, by Kazhdan-Margulis
lemma, the group p;(A,) is elementary. [

For an elementary subgroup A C G, let A(A) C G denote the algebraic hull of A
defined in Corollary 3.2 and set A(A) := A(A) N A.

Therefore, each group A;, := p;(A,) contains a canonical nilpotent subgroup
Ajn = A(Ay) of index < ¢ (where ¢ depends only on G). Since A;, is canonical, we
have

Ain C Ajtnt)

for each n and w—all 7. It follows (by taking the w-ultralimit) that each p,(A,) contains
a canonical nilpotent subgroup A, of index < ¢. Thus, the nilpotent subgroup

A::UAn

has index < ¢ in p,(A). Therefore, the group p,(I}) is virtually nilpotent. Hence,
the group p,,(I'7) fits into the short exact sequence

1l — pw(FII> — pu(I'1) = B —1

where B is abelian. Since amenability is stable under group extensions with amenable
kernel and quotient, the group p,,(I'7) is (elementary) amenable. We proved, therefore,
that I' ~ T is small. O]

Remark 5.3. The above argument also works for sequences of group actions on nega-
tively pinched Hadamard manifolds of fized dimensions with fized pinching constants.

The following two propositions describe, to a certain degree, the kernel of the
action I' T,

11



Proposition 5.4. Suppose that each T'; is nonelementary and does not preserve a
proper symmetric subspace in X. Then for every g € Ker(p,), for w-all i we have

g € Ker(p;).

Proof: We conjugate the representations p; so that o; = o for all . We will need

Lemma 5.5. For every g € Ker(p,,), we have

w-limp;(g) =1 € G.

Proof: For g € Ker(py,) set v; := pi(g). Set R; :== b(p;) and let Bg,(0) be the R;-ball
centered at o.

Then we obtain
d(z,7vi(z))
R;

w-lim

=0, VJZGBRZ.(O).
Therefore, there exists r; so that:

wlim % ¢ (0, 00)

and for each geodesic segment o C By, (0) we have
dist(o N By, (0),7(c) N B,,(0)) < €,

where
w-lime; = 0,

and dist stands for the Hausdorft distance. See Lemma 3.10 in [14].
By applying this to geodesic segments 0,7 C Bg,(0) which pass through a given
point p € B;(0) and are orthogonal to each other, we conclude that

w-lim d(v;(p), p) = 0.

Therefore,
w-limp;(g) =1. O

Let g1, ..., gm be the generators of I'. Suppose that the assertion of the Proposition
fails. Take v € ker(p,,) so that for w-all i, p;(y) # 1. By Lemma 5.5,

w-lim ord(p;(7y)) = oo

where ord stands for the order of an element of G.
We now repeat the arguments of the proof of Lemma 4.2. Let g € K = ker(p,,).
We find finitely-generated subgroups

K, CKy,C..CK,
so that g € K; and
g]Klgj_l - Kl+17j = 17 ey T

12



Lemma 5.5 implies that for each I, p;(K;) is an elementary subgroup of G for w-all i.
Set Ay == A(p;(K))). As in the proof of Lemma 4.2, the group A; is nontrivial for
w-all ¢ and each [.

Then, for w-all ¢ there exist [ so that for every j =1,...,m we have

pi(9))Aapi(g;) " = Ay.

Therefore, either I'; is elementary or preserves a proper symmetric subspace in X
(fixed by A;). In either case, we obtain a contradiction with the assumptions of
Proposition 5.4. O

The tree T contains a unique subtree 7,,;,, which is the smallest I'-invariant sub-
tree, see e.g. [14]. The kernel K of the action I' ~ T},,;,, is, a priori, larger than the
kernel of I' ~ T.

Proposition 5.6. Suppose that the tree T, is not a line and the hypothesis of
Proposition 5.4 hold. Then for every g € K, for w-all i, we have g € Ker(p;).

Proof: Since T,,;, is not a line, it contains a nondegenerate triangle x,y.,z, C Tmin-
The vertices x, y,, 2, of this triangle are represented by sequences (x;), (y;), (z;) in
X. Let m; € T;y; be a point within distance < ¢ from the other two sides of the
triangle x;y;2;, where ¢ is the hyperbolicity constant of X. For g € Ker(p,) set

Yi = pi(9)-

Lemma 5.7.
w-limd(y;(m;), m;) = 0.

Proof: Our argument is similar to that of the proof of Lemma 5.5. We again set
R; := b(p;); then

w-lim M =0, w-lim M

R; R;
R;

As in the proof of Lemma 5.5, the segment Z;3; will contain a subsegment o; := z]y!

of length r; so that m; € xly!,

=0,

w-lim = 0.

w-lim % (0, 00),

and
w-lim d(y;(2)), 03) = w-lim d(7i (1)), o) = 0.

Define points p;, ¢; € o; nearest to z;,7v;(z;) respectively. Then
w-lim d(g;,v:(p;)) = 0.
Suppose that the isometries ~; shear along the segments o, i.e.

w-lim d(~;(m;), m;) # 0.

13



Zi %'(Zz')

g;

Figure 1:

Then
w-lim d(v;(pi), pi) = w-lim d(p;, ¢;) = w-lim d(y;(m;), m;) # 0.
Since

w-lim

d(zzapl) _ d(zuupw) 7& 0, w-lim d(ZZ?fYZ(ZZ)) _ 0’

R; R;
it follows that there exists a point w; € z;y;(z;) within distance < 2§ from both

ZiDis  qivi(zi).

See Figure 1. Since

Az~ (2 (2 v
(2’17;2(21» 207 w-lim (Z}z%)zpz)

w-lim

0,
we obtain
w-lim d(w;, 0;) = oo.

Take the shortest segments p;, 7; from w; to Z;p;, ¢iv:(2;). The nearest-point projec-
tion to o; sends p; UT; onto p;q;. However, this projection is exponentially contracting
and w-lim d(w;, 0;) = co. This contradicts the assumption that

w-lim d(p;, ¢;) # 0.

Therefore,
w-lim d(v;(m;),m;) =0. O

14



Given g € K = ker(I' — Isom(7},;,)), we define the finitely-generated subgroups
K; C K in the same fashion it was done in the proof of Proposition 5.4. By Lemma
5.7, it follows that for every generator h € K; and n; := p;(h), we have

w-lim d(n;(m;), m;) = 0.

Therefore, by Kazhdan-Margulis lemma, for each | and w-all i, the group p;(K)) is
elementary. Now, the arguments from the proof of Proposition 5.4 go through and
we obtain p;(g) = 1 for w-all i. O

6 Semistability

The purpose of this section is to weaken the notion of stability used in the Rips’
theory, so that the Rips Machine still applies. We recall

Definition 6.1. Let I' ~ T be an isometric group action on a tree. A nondegenerate
arc I C T is called stable if for every decreasing sequence of nondegenerate subarcs

I>DL DD ..
the corresponding sequence of stabilizers
I'y C Fh C F[2 C ...

1s eventually constant. The action I' ~ T is called stable if every nondegenerate arc
J C T contains a stable subarc.

M. Dunwoody [8] constructed example of a small but unstable action of a finitely
generated group ' on a tree. To remedy this, we introduce the following modification
of stability, adapted to the case of actions whose image on Isom(T") is small:

Definition 6.2. Suppose that we are given an isometric action of a group on a tree
p:I'T. We say that this action is semistable if it satisfies the following property:

For every nondegenerate arc I C T and its stabilizer I'y C I, there exists a
canonical amenable subgroup A(T'y) C Isom(T') so that:

1. If I D J then A(T'y) C A(T).

2. A(T) :== A(I'r) N p(Ty) has index < ¢ < oo in p(I'y), where ¢ = cr is a uniform
constant.

3. If a € T is such that aA(T'r)a~t C A(T'y), then aA(T))a™t = A(T)).

4. For every nondegenerate arc J C T, there exists a nondegenerate subarc I C J
so that the following holds:

If I DI, D I, D ... is a decreasing sequence of nondegenerate arcs, then the
sequence of groups

A(Ty) C A(Ty) C ...

15 eventually constant.

We say that an arc [ C T is stabilized (with respect to the action of I') if for every
nondegenerate subarc J C I, we have

A(ly) = A(Ty).

15



We let A; denote A(T'y) in this case.
Note that every semistable action is automatically small, since a finite index ex-
tension of an amenable group is also amenable.

It is easy to classify the possible amenable groups A C Isom(7"):

1. A is parabolic, i.e., it fixes a point in J,,T and does not fix any other points in
TU = 0,T.

2. A is hyperbolic, i.e., it has a unique invariant geodesic T, C T and contains a
nontrivial translation along this geodesic.

3. A is elliptic, i.e., it fixes a nonempty subtree T C T.

We now give examples of semistable actions.

~ Example 1. Consider p : I' — Isom(T), so that the action of the image group
I' = p(I') on T is small and stable. Then I' ~ T is also semistable: take A(I';) :=

p(L'r).

Example 2. Let F be a nonarchimedean valued field of zero characteristic and
cardinality continuum and G = G(F) be a group of rank 1. We then consider the
Bruhat-Tits tree T associated with the group G. The quotient group G/Z(G) acts
faithfully on 7', where Z(G) is the center of G. Let I' C G/Z(G) C Isom(T) be a
subgroup so that the associated action I' ~ T" is small.

Given an amenable subgroup A C T, consider its lift A C G, which is still an
amenable subgroup. Let A(A) C G/Z(G) denote the projection of the hull A(A) C
G, defined in Corollary 3.2. It is immediate that A(A) satisfies Properties 1-3 of
Definition 6.2. Consider Property 4.

For the amenable groups A = I';, the algebraic hulls A(I';) are Zariski connected
algebraic subgroups of G. Since the dimensions of the groups in the sequence

A(Ty) c A(Ty,) Cc A(Ty)...
are eventually constant, this sequence is eventually constant as well.

Example 3. Let p, : ' — Isom(T) be a group action on a tree associated with
a divergent sequence of representations p; : I' — Isom(X), where X is a negatively
curved symmetric space. The asymptotic cone T' = T, of X associated with this
sequence is a metric tree. According to [6, 16, 26], the asymptotic cone T is the
Bruhat-Tits tree associated with a group G(FF), where F is a certain nonarchimedean
valued complete field of cardinality continuum and characteristic zero. Moreover, the
group I" maps to Isom(7") via a homomorphism

po: ' — G(F) C Isom(T).
Remark 6.3. The field F is a subfield of the field of nonstandard reals, which is the

ultraproduct
R, = [[R/w.
ieN
The choice of the subfield and valuation depends on w and on the divergent sequence
b(pi).-
In the case X = H? and G = SL(2), we can use algebraically closed field F, which
is a subfield of the ultraproduct

C, = HC/w.

1€N
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Therefore, for each amenable subgroup A = p,(I';), we can define the algebraic
hull A(A) using Corollary 3.2 (see Example 2 above). In case X = H? and F alge-
braically closed, we can use Theorem 3.1, or, rather, the example which appears in
the beginning of the proof. In particular, by Example 2, it follows that the action
po o I' T is semistable.

Corollary 6.4. Part 2 of Theorem 1.6 holds.

Implications of semistability. We now assume that we are given a semistable
action I' ~ T" and the corresponding action I' ~ T" of the image of I' in Isom(T).
Let I C T be a stabilized arc and a € I" be an axial isometry of 7', whose axis

contains I, and so that
J=1Nnao(l)

is nondegenerate. Then
OéF[Oéil C FJ.

Since I is stabilized, follows that aA;a™! C Ay = A;. Thus aAja™! = A; (see Part
3 of Definition 6.2). Suppose that we are given two elements «, 3 € I" as above, so
that

OéA[O[_l = A[, ﬁA]ﬁ_l = A]. (5)

Case 1. A; is parabolic. Then the equalities (5) imply that o, both fix the
unique fixed point at infinity of the group A;. Since the action I' ~ T is small, it
follows that the group p(«, 5) generated by p(a), p(B) is virtually solvable, see [14,
§10.5).

Case 2. A; is hyperbolic. Then the equalities (5) imply that «, 5 preserve the
unique invariant geodesic of the group A;. Hence, the commutator subgroup of {(«a, 3)
fixes this geodesic pointwise. It again follows that p(«, ) is virtually solvable.

Case 3. A; is elliptic. Let 7" C T denote the subtree fixed by A;. Then 7" is
invariant under both o and 3. The restrictions of these isometries to 7" remain axial.

Recall that

lp(Ty) - A(Ty)| < er

for every arc J.

Assumption 6.5. We now assume in addition that n is a natural number so that

length(A, N Ap)
{(a) +£(5)
Under this assumption, for each i = 1,..,n, [, 3] € T'; C I'; for some nondegen-

erate subinterval J C I. Moreover, there exist m # n so that we have the equality of
the cosets

> 2n > 2cr.

[am’ ﬁ]AI = [Oénv ﬁ]AI

Since A; fixes T" pointwise, it follows that

@™, Bl = o, Bl

Hence,
(™" |7, Blr] = 1.
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Since o™ ™|, B are commuting nontrivial axial elements, they have to have
common axis. Therefore, «, § also have common axis. Now, analogously to the Case
2, it follows that p{c, 3) is virtually solvable.

We conclude that in each case (provided that the Assumption 6.5 holds in the
elliptic case), we have

Proposition 6.6. The group p{«, 3) is amenable.

7 Generalization of the Rips theory
to the semistable case

In this section we will finish the proof of Theorem 1.6 by verifying Part 3.
Suppose that we are given a semistable nontrivial action

p: I — Isom(7T),

of a finitely-presented I' on a tree T'. Then one can apply the arguments of the Rips
Theory (see [5] or [14, Chapter 12]) to the action I' ~ T". Note that the only place
the stability condition is used in the proof of the Rips theorem, is the analysis of the
azial pure band complex C see e.g. [14, Proposition 12.69].

In this case one deals with pairs of axial isometries a, 3 € I", so that the ratio

length(A, N Ag)
() +4(83)

can be taken as large as one wishes. Therefore, one can choose this ratio to satisfy
the Assumption 6.5 as above. The conclusion of the Rips Theory in the Axial case is
then that the action of the fundamental group m(C) of the component C' (which is
a subgroup of I') on the tree T has an invariant geodesic. It then deduced that the
action of 7 (C) factors through action of a solvable group.

In our case, Proposition 6.6 implies that the action m(C) ~ T either has an
invariant geodesic or is parabolic; in either case, it factors through action of an
amenable group.

Therefore, repeating verbatim the proof of Theorem 12.72 in [14], we obtain

Theorem 7.1. One of the following holds:
1. If the action I' ~ T is not pure then the group I' splits nontrivially as I' =
[y xg Ty or I' =Tyxg, over a subgroup E, which fits into a short exact sequence

1 Kg—-F—>Q—1,

where Kg fixes a nondegenerate arc in T and Q) s either finite or cyclic. Moreover,
the group E fizes a point in T and the groups I'1, s, E' are finitely generated.

2. If the action is pure then G belongs to one of the following types:

(a) Surface type.

(b) Azial type.

(c¢) Thin type.
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In either case, I' splits nontrivially as I' =T'y xg s or I' = I'yxg, over a subgroup
E, which fits into a short exact sequence

1-Kg—F—>Q—1,

where Kg fixes a nondegenerate arc in T and Q) is abelian. The groups I'y, Ty, E are
finitely generated.

Therefore, the image (in Isom(7")) of the edge subgroup of I' is amenable.
We now assume that the action I' ~ T arises from a divergent sequence of discrete
but not necessarily faithful representations

pi - I' = Isom(X)

where X is a negatively curved symmetric space. Then we obtain I' ~ T', where T'
is an asymptotic cone of X, which can be realized as the Bruhat-Tits tree of a rank
1 algebraic group G(F). Thus we obtain a homomorphism p, : I' — I' C G(F) C
Isom(T). Then, according to Section 5, the action I' ~ T is small. According to
Section 6, this action is also semistable. Therefore, Theorem 7.1 applies and we
obtain:

Corollary 7.2. The group I' splits nontrivially as I' =Ty xg I'y or I' = I'yxg, over a
subgroup E, so that p(E) is amenable. The groups T'1,Ts, E are finitely generated.

Remark 7.3. M. Dunwoody [9] proved another version of Rips Theorem in the case
of slender faithful actions of finitely-presented groups on trees without the stability
hypothesis. However his main theorem only yields a splitting of I' where each edge
group is either slender or fizes a point in the tree. This is not enough to guarantee
amenability of the edge groups in the resulting decomposition. Moreover, it appears
that the arc stabilizers I'y for group actions on trees associated with divergent sequences
of discrete representations, need not be slender. For instance, it seems that they can
contain infinitely generated abelian subgroups.

Since p(F) C G(F), it follows that this subgroup is virtually solvable. By com-
bining the above results, we obtain Theorem 1.6.
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