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Abstract We prove that for every finitely-presented group G there exists a 2-
dimensional irreducible complex-projective variety W with the fundamental
group G, so that all singularities of W are normal crossings and Whitney
umbrellas.

1 Introduction

It is well-known that fundamental groups of compact Kähler manifolds satisfy
many restrictions, see e.g. [1]. On the other hand, C. Simpson proved in [23]
that every finitely-presented group G appears as the fundamental group of
a (singular) irreducible complex-projective variety. In the same paper Simp-
son asked the following question which is a variation on a problem about
fundamental groups of irreducible projective varieties originally posed by
D. Toledo:

Question 1.1 Is it true that every finitely-presented group G is isomorphic
to the fundamental group of a irreducible complex-projective variety whose
singularities are normal crossings only?

In our previous paper with János Kollár [17] we proved that the answer to
this question is positive provided one does not require irreducibility. Although
we do not know how to answer Simpson’s original question, in this paper we
prove
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Theorem 1.2 Let G be a finitely-presented group. Then there exists a 2-
dimensional irreducible complex-projective variety W with the fundamental
group G, so that the only singularities of W are normal crossings and Whit-
ney umbrellas. Furthermore, if G is isomorphic to the fundamental group of
a compact 3-dimensional hyperbolic manifold with (possibly empty) convex
boundary, then all singularities of W are normal crossings.

In other words, we get W with “controlled” singularities (unlike the ones
which appear in Simpson’s proof in [23]). The proof of Theorem 1.2 is a
blend of hyperbolic and algebraic geometry. The key tools in our proof are the
recent “universality” theorem by Petrunin and Panov, and a certain genericity
result for Dirichlet fundamental domains of discrete isometry groups of the
hyperbolic 3-space.

Theorem 1.3 (D. Panov, A. Petrunin [20]) Let G be a finitely-presented
group. Then there exists a discrete cocompact subgroup Γ < PO(3,1) so
that:

1. The only nontrivial finite subgroups of Γ are isomorphic to Z2 or Z2×Z2.
2. For each order 2 element of Γ its fixed-point set in the hyperbolic 3-space

has dimension 0 or 1.
3. The fundamental group of the quotient M :=H

3/Γ is isomorphic to G.

Note that M is a 3-dimensional complex which is a manifold away from a
finite subset, where the singularities are cones over projective planes. We will
need a minor variation on their construction:

Theorem 1.4 Let G be a finitely-presented group. Then there exists a discrete
nonelementary subgroup Γ̃ < PO(3,1) so that:

1. All nontrivial finite subgroups of Γ̃ are isomorphic to Z2, each has a single
fixed point in H

3. In other words, every nontrivial finite subgroup of Γ̃ is
generated by a Cartan involution of H

3.
2. The group Γ̃ is convex-cocompact (every convex fundamental domain in

H
3 of Γ̃ has only finitely many faces and Γ̃ contains no parabolic ele-

ments).
3. The fundamental group of the quotient H

3/Γ̃ is isomorphic to G.

We will refer to the class of subgroups of PO(3,1) satisfying property 1 in
this theorem as class K and to the class of groups satisfying properties 1 and
2 as the class K2.

For a discrete subgroup Γ < PO(3,1) and a point x ∈ H
3 (not fixed by

any nontrivial element of Γ ) we define the Dirichlet tiling Dx of H
3 to be the

Voronoi tiling of H
3 corresponding to the orbit Γ · x. The tiles of Dx are the
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Dirichlet fundamental domains

Dγx =
{
p ∈H

3 : d(p, γ x)≤ d
(
p,α(x)

)
,∀α ∈ Γ \ {γ }}.

Conjecture 1.5 For Γ < PO(3,1) of class K, for generic choice of x the
tiling Dx simple, i.e., the dual cell-complex to Dx is a simplicial complex.

Conjecture 1.5 was stated as a theorem (for torsion-free groups Γ ) in the
paper by Jorgensen and Marden [15]. However, their proof has a serious gap
noted by Diaz and Ushijima in [9]: The trouble with [15] is confusion be-
tween algebraic and semi-algebraic sets. In [15] one of the key claims (Corol-
lary 3.1) is that certain semi-algebraic sets in H

3 have empty interiors, while
all what is proven is that these are proper subsets of H

3. (The sets in question
are subsets E (A) ⊂ H

3 consisting of points x such that quadruple intersec-
tions of bisectors

4⋂

i=1

Bis(x,Aix),

are transversal in H
3. Here A = {A1, . . . ,A4}, where Ai ∈ Γ are fixed pair-

wise distinct and nontrivial elements.) We will actually see in Sect. 7 that
some of the sets E (A) could have non-empty interiors. The paper [9] proves
an analogue of Conjecture 1.5 for torsion-free orientation-preserving discrete
subgroups of PO(2,1). We do not know how to prove Conjecture 1.5 either.
Nevertheless, we will prove a weaker result that will suffice for our purposes:

Theorem 1.6 Suppose that Γ < PO(3,1) is a subgroup of class K. Then:
(1) for a generic choice of x ∈H

3 the Dirichlet tiling Dx is simple away from
its vertex set D(0)

x . Moreover, (2) only points in the interiors of 2-dimensional
faces of Dx can be fixed by Cartan involutions in Γ .

Once Theorems 1.4 and 1.6 are established, the proof of Theorem 1.2 fol-
lows closely the arguments in [17], by complexifying a certain hyperbolic
polyhedral complex C (obtained by taking a quotient of Dx \ D(0)

x ) and then
blowing up “parasitic subspaces” of the complexification. Using C one con-
structs a (reducible) projective variety X and a finite group Θ acting on X,
so that the only singularities of X are normal crossings, the projective vari-
ety V =X/Θ is irreducible and π1(V )∼=G. Irreducibility of V comes from
the fact that all facets of Dx are equivalent under the Γ̃ -action (unlike the
Euclidean polyhedral complexes used in [17] which have many facets). The
projective surface W is obtained by applying Lefschetz hyperplane section
theorem to V . Whitney umbrella singularities of W correspond to the fixed
points of the action on CP

3 of Cartan involutions in Γ̃ .
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2 Preliminaries

Notation 2.1 Throughout the paper we will use the topologist’s convention:
Z2 = Z/2Z.

Let R
n,1 denote the Lorentzian space, it is R

n+1 equipped with nondegen-
erate inner product x · y of the signature (n,1). We will be mostly interested
in the case n= 3, but our proofs are more general. We will refer to the inner
product x · x as the Lorentzian norm of x. The light cone L of R

n,1 consists
of vectors of negative Lorentzian norm. This cone has two components, we
fix one of these components L↑; we will refer to L↑ as the future light cone.
We let C denote the boundary of L↑ and C+ the closure of L↑. The future (or
the “upper”) sheet of the hyperboloid

{x|x · x =−1}
is the intersection H of this hyperboloid with L↑. Then H is the Lorentzian
model of the hyperbolic n-space H

n: Restriction of the Lorentzian inner prod-
uct to the tangent bundle of H is a Riemannian metric of the sectional cur-
vature −1 on H . For a subset E ⊂ R

n+1 we let PE denote its projection to
RP

n. We will identify H
n with the projectivization PH of H (and of L↑).

The projectivization PC+ of the cone C+ is the standard compactification of
H

n: PC+ =H
n ∪ Sn−1, where Sn−1 = PC. For a subset X of H

n we define
its ideal boundary ∂∞X by:

P
(
cl(X)∩C

)
.

In other words ∂∞X is the accumulation of X on the boundary sphere Sn−1

of H
n.

For x, y ∈ H we let d(x, y) denote their hyperbolic distance. Then (see
e.g. [21])

x · y =− cosh
(
d(x, y)

)
. (1)

In particular, x · y =−1 iff x = y.

Lemma 2.2 Let u, v,w ∈ H . Then for any t, s ∈ R such that st �= 0, s +
t �= 0,

su+ tv �= (s + t)w

unless u= v =w.

Proof Note that it suffices to show that u = v (since s + t �= 0). Computing
the Lorentzian norms of both sides of the equation

su+ tv = (s + t)w
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we get:

uv =−1.

Since u, v ∈ H , it follows that u = v. Since t + s �= 0, it follows that u =
v =w. �

For x, y ∈H
n the bisector Bis(x, y) is the hyperplane

Bis(x, y)= {
p ∈H

n : d(x,p)= d(y,p)
}

In view of (1), bisectors are described by

Bis(x, y)= {p ∈H : x · p = y · p}.
We extend this definition to the entire R

n,1, then the extended bisector
B̃is(x, y) is the hyperplane

B̃is(x, y)= {
p ∈R

n+1 : p · (x − y)= 0
}= (x − y)⊥.

Recall that extended bisectors B̃is(x, yi), i = 1, . . . , k are transversal if and
only if their intersection has codimension k in R

n+1. Thus, these bisectors are
transversal if and only if the normal vectors (x− yi), i = 1, . . . , k are linearly
independent.

Isometry group We let O(n,1) < GL(n,R) denote the automorphism group
of R

n,1. This group has index 2 subgroup O(n,1)↑ preserving the future light
cone L↑. Thus,

O(n,1)=O(n,1)↑ ×Z2

where Z2 = {±I } and I ∈ GL(n + 1,R) is the identity matrix. In particu-
lar, O(n,1)↑ is isomorphic to PO(n,1), the isometry group of H

n. This iso-
morphism will allow us to identify subgroups of PO(n,1) with subgroups of
O(n,1).

Classification of nontrivial elements of PO(n,1) 1. An element A ∈
O(n,1)↑ is elliptic if it has a fixed vector in H . If this fixed vector is unique
and n= 3, then A necessarily has order 2 and reverses orientation. Regarding
H =H

3 as a symmetric space, such elliptic elements are Cartan involutions
in H

3. For arbitrary n, Cartan involutions are characterized by the property
that each has a unique fixed point in H

n (and order 2). If A ∈ PO(n,1) has
finite order, it is necessarily elliptic.

2. An element A ∈O(n,1)↑ is parabolic if it has a unique, up to a multiple,
(nonzero) fixed vector p ∈ C+ and, furthermore, p belongs to C.



M. Kapovich

3. The rest of the isometries of H
n are loxodromic. These elements A ∈

O(n,1)↑ are characterized by the property that each has exactly two (up to
multiple) eigenvectors e+, e− in C and the corresponding eigenvalues λ,λ−1

are different from 1. The span of these eigenvectors is a plane EA ⊂ R
n+1

invariant under A. The intersection EA ∩ H is a hyperbolic geodesic L in-
variant under A, it is called the axis of A. The restriction of A to its axis is a
nontrivial translation. The eigenvectors e± project to the points in PC ∼= Sn−1

fixed by A. (These are the only fixed points that A can have.)
There is a finer classification of loxodromic isometries. Every loxodromic

A ∈ O(n,1)↑ preserves the orthogonal complement E⊥A of EA. The restric-
tion of the Lorentzian inner product to E⊥A is necessarily positive-definite. If
A fixes E⊥A pointwise, it is called hyperbolic; otherwise, it is called strictly
loxodromic. For n = 3, this can be described more precisely: Each strictly
loxodromic element acts on E⊥A as a nontrivial rotation Rθ (by the angle θ )
or a reflection (in case A reverses orientation on H ). The angle θ is the an-
gle of rotation of A. Intrinsically, in terms of the geometry of H

n, hyperbolic
isometries are characterized as compositions τ1 ◦ τ2 of distinct Cartan involu-
tions. It we trivialize the normal bundle of the axis L by parallel vector fields,
then each hyperbolic isometry acts on the normal bundle as the translation
along the axis, while a strictly loxodromic element is a composition of the
translation and a (nontrivial) orthogonal transformation of a normal plane.

Discrete subgroups Suppose that Γ < PO(n,1) is a discrete subgroup. If
A1,A2 ∈ Γ are loxodromic which share a common fixed point in Sn−1 = PC,
i.e., they have a common eigenvector e+ ∈ C. Then A1,A2 share the other
eigenvector e− in C as well (see e.g. [21, Theorem 5.5.4]) and, hence, have
the common axis L in H

n, the unique geodesic connecting the common fixed
points of A1,A2. If A1,A2 ∈ SO(3,1) then they necessarily commute in this
situation, otherwise, they (typically) do not commute. However, if they do not
commute, then the group 〈A1,A2〉 generated by A1,A2 does not act faithfully
on L, i.e., it contains a nontrivial elliptic element [A1,A2] fixing L pointwise.
Thus, such noncommuting pairs of loxodromic elements with common axis
cannot belong to a group Γ < PO(n,1) of the class K.

Fundamental domains Let D be a closed convex domain in H
n and Γ a dis-

crete group of isometries of H
n. Then D is said to be a fundamental domain

of Γ if the following hold:

(1) Γ ·D =H
n.

(2) For every γ ∈ Γ \ {1}, γD ∩D �= ∅ unless γD ∩D is contained in the
boundary of D.

(3) The covering {γD,γ ∈ Γ } of H
n is locally finite, i.e., every compact in

H
n intersects only finitely many domains γD.
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In particular, if D1,D2 are fundamental domains of Γ and D1 ⊂D2 then
D1 =D2.

The key example of a fundamental domain is the Dirichlet fundamental
domain with the center at x ∈H

n, where x is not fixed by any γ ∈ Γ \ {1}:
Dx :=

{
p ∈H

n : d(p, x)≤ d
(
p,γ (x)

)
,∀γ ∈ Γ

}
.

The fundamental domain Dx and its images Dγx under γ ∈ Γ form a Γ -
invariant tiling Dx(Γ ) of H

n, called the Dirichlet tiling.

Convex-cocompact subgroups A discrete subgroup Γ < PO(n,1) is called
convex-cocompact if the following holds:

(a) Γ contains no parabolic elements.
(b) One (equivalently, every) Dirichlet fundamental domain Dx of Γ is a

polyhedral domain in H
n with finitely many faces.

The reader can find detailed discussion and alternative characterizations of
convex-cocompact subgroups of PO(n,1) in [4, 6].

Classes K and K2 We say that a subgroup Γ < PO(n,1) belongs to the
class K if it is discrete and every elliptic element of Γ is a Cartan involu-
tion. We define the class K2 to consists of all convex–cocompact discrete
subgroups Γ < PO(n,1) which belong to the class K.

Elementary and nonelementary groups A subgroup Γ < PO(n,1) is called
elementary if it either has a fixed point in the compactification H

n ∪ Sn−1

of H
n (this compactification is the projectivization PC+ of C+) or has an in-

variant geodesic in H
n. Clearly, elementary groups can have nontrivial center,

e.g., we can take Γ to be abelian. Furthermore, if Γ is discrete and elemen-
tary then it is virtually abelian, i.e., contains an abelian subgroup of finite
index.

Lemma 2.3 If Γ is nonelementary and belongs to the class K, then Γ has
trivial center.

Proof Let γ ∈ Γ be a nontrivial central element. Then Γ preserves the fixed-
point set Fix(γ ) of γ in PC+. If this fixed set is finite, then Γ is elementary.
Otherwise, Fix(γ ) has to contain a hyperbolic geodesic, so γ is an elliptic
element that cannot be a Cartan involution. Contradiction. �

3 Hyperbolic polyhedral complexes

This section essentially repeats the definitions given in [17] in the context of
Euclidean polyhedral complexes except that we weaken one of the axioms of
the polyhedral complex.
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A convex polyhedral cone in R
n+1 is a set given by finitely many strict and

non-strict linear inequalities. A convex (real) projective polytope in RP
n is a

projectivization of a convex polyhedral cone in R
n+1.

A (convex) hyperbolic polyhedron is a subset P of H
n given as the inter-

section of finitely many open and closed hyperbolic half-spaces. Equivalently,
if we identify H

n with the upper sheet H of the hyperboloid in R
n,1, then P is

given as the intersection of H with some convex polyhedral cone P̃ ⊂R
n+1.

Projectivizing P̃ we obtain a convex projective polytope P̂ ⊂ RP
n. Note,

however, that P̂ could have faces which are completely disjoint from the pro-
jection of H to RP

n. Since we would like to preserve combinatorics of our
polyhedra, the solution is to remove from P̂ all the faces which are disjoint
from the projection of H . Let P̌ denote the resulting convex projective poly-
tope. Thus we obtain a map

P �→ P̃ �→ P̂ �→ P̌

from the set of convex hyperbolic polyhedra P ⊂ H
n to the set of convex

projective polytopes P̌ ⊂RP
n.

The real-projective span SpanR(P ) of a convex projective polytope P of
a hyperbolic polyhedron P is the smallest projective subspace in RP

n con-
taining P or P̂ respectively. The dimension of P is its topological dimension,
which is the same as the dimension of its projective span SpanR(P ).

A face of P is a subset of P which is given by converting some of these
non-strict inequalities to equalities. Define the set Faces(P ) to be the set
of faces of P . The interior Int(P ) of P is the topological interior of P in
SpanR(P ). Again, Int(P ) is a hyperbolic polyhedron. We will refer to Int(P )

as an open polyhedron.
In the paper we will be also using complex span SpanC(P ) of con-

vex projective and hyperbolic polytopes P ; the complex-projective space
SpanC(P ) is the complexification of SpanR(P ). To simplify the notation, we
set Span(P ) := SpanC(P ).

An (isometric) morphism of two hyperbolic polyhedra is an isometric map
f : P →Q so that f (P ) is a face of Q. Similarly, a projective morphism f :
P →Q of two convex projective polytopes is a restriction of an (invertible)
projective transformation which sends P to a face of Q.

Definition 3.1 A hyperbolic (resp. projective) polyhedral complex is a small
category C whose objects are convex hyperbolic (resp. projective) polyhedra
and morphisms are their isometric morphisms (resp. projective morphisms)
satisfying the following axioms:

Axiom 1 For every c1 ∈ Ob(C) and every face c2 of c1, c2 ∈ Ob(C), the in-
clusion map ι : c1 → c2 is a morphism of C .
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Axiom 2 For every c1, c2 ∈ Ob(C) there exists at most one morphism f =
fc2,c1 ∈Mor(C) so that f (c1)⊂ c2.

Objects of a polyhedral complex C are called faces of C and the morphisms
of C are called incidence maps of C . A facet of C is a face P of C so that
for every morphism f : P → Q in C , f (P ) = Q. A vertex of C is a zero-
dimensional face. The dimension dim(C) of C is the supremum of dimensions
of faces of C . A polyhedral complex C is called pure if the dimension function
is constant on the set of facets of C ; the constant value in this case is the
dimension of C . A subcomplex of C is a full subcategory of C . If c is a face of
a complex C then ResC (c), the residue of c in C , is the minimal subcomplex
of C containing all faces c′ such that there exists an incidence map c→ c′.
For instance, if c is a vertex of C then its residue is the same as the star of c

in C ; however, in general these are different concepts.

Example 3.2 Consider C which consists of two edges e1, e2 and three vertices
v1, v2, v3, so that e1 = [v1, v2], e2 = [v2, v3]. Then star of the edge e2 in C
is the entire complex C (since every facet of C has nonempty intersection
with e2), while the residue of e2 is just the edge e2 (and its vertices, of course).

We generate the equivalence relation ∼ on a polyhedral complex C by
declaring that c ∼ f (c), where c ∈Ob(C) and f ∈Mor(C). This equivalence
relation also induces the equivalence relation ∼ on points of faces of C .

If C is a polyhedral complex, its poset Pos(C) is the partially ordered set
Ob(C) with the relation c1 ≤ c2 iff c1 ∼ c0 so that ∃f ∈Mor(C), f : c0 → c2.

We can associate to a hyperbolic polyhedral complex C , a projective poly-
hedral complex Č as follows. Given a face c of C , we define the convex pro-
jective polytope č as above; complex-projective spans of the polytopes c and
č are, of course, the same. In particular, (isometric) morphisms c→ c′ extend
uniquely to (projective) morphisms č→ č′; thus C yields a projective poly-
hedral complex Č whose objects are convex projective polytopes č. It is clear
that C and Č have isomorphic posets.

We define the topological pushout (also known as the underlying space or
amalgamation) C = |C| of a polyhedral complex C as the topological space
which is obtained from the disjoint union

�c∈Ob(C) c

by identifying points using the equivalence relation: ∼. We equip |C| with the
quotient topology.
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Definition 3.3 If C is a polyhedral complex and B is its subcomplex. For
c ∈Ob(C) define the polyhedron

cB := c
∖ ⋃

b≤c,b∈B
f (b), where f : b→ c, f ∈Mor(C).

For a morphism f ∈Mor(C), f : c1 → c2, we set f B : cB
1 → cB

2 be the restric-
tion of f . We define the difference complex C−B as the following polyhedral
complex:

Ob(C −B)= {
cB : c ∈Ob(C)

}
,

Mor(C −B)= {
f B : cB

1 → cB
2 , where f ∈Mor(C), f : c1 → c2

}
.

A complex C is said to be finite it has only finitely many objects and mor-
phisms. A complex C is locally finite if for every face a ∈ Ob(C) the sets of
morphisms

{
f : a→ b, b ∈Ob(C)

}

is finite. The key example of a hyperbolic polyhedral complex used in this
paper (the Dirichlet tiling of H

n) will be infinite but locally finite. In this
paper we will be exclusively interested in locally finite complexes.

Definition 3.4 Let C be a pure n-dimensional polyhedral complex. The nerve
Nerve(C) of C is the simplicial complex whose vertices are facets of C (the
notation is v = c∗, where c is a facet of C ); distinct vertices v0 = c∗0, . . . , vk =
c∗k or Nerve(C) span a k-simplex if there exists an n − k-face c of C and
incidence maps c → ci , i = 0, . . . , k. The simplex σ = [v0, . . . , vk] then is
said to be dual to the face c.

Similarly to [17] we have:

Lemma 3.5 If C is locally finite then |C| is homotopy-equivalent to
|Nerve(C)|.

Definition 3.6 A polyhedral complex C is simple if:

(1) C is pure and dim(C)= n,
(2) For k = 0, . . . , n and every k-face c of C , Nerve(ResC (c)) is isomorphic

to the complex C(
n−k).

For a polyhedral complex C we define its k-skeleton, to be the subcomplex
C(k) consisting of faces of dimension ≤ k. For a pure n-dimensional complex
C we define its punctured complex C′ by: C′ := C − C(n−3). (In this paper
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we will only be using this construction for n = 3, when C′ is obtained from
C by removing vertices.) We say that C is weakly simple if the punctured
complex C′ is simple. In other words, every n−2-dimensional face is incident
to exactly 3 facets and every n− 1-dimensional face is incident to exactly 2
facets.

The point of considering punctured complexes is that if |C| is a manifold
at every point of C(n−3), then

π1
(|C|)∼= π1

(∣∣C′
∣
∣).

Thus, in this situation, passing to the punctured complex does not change the
fundamental group, while proving simplicity for the punctured complex is
much easier than for the original one.

Voronoi tiling of H
n

Definition 3.7 Let Y ⊂ H
n be a locally finite subset (i.e., every compact in

H
n contains only finitely many points of Y ). The Voronoi tiling V(Y ) of H

n

associated with Y is defined by: For each y ∈ Y take the Voronoi cell

V (y) := {
x ∈H

n : d(x, y)≤ d
(
x, y′

)
,∀y′ ∈ Y

}
.

Thus, each cell V (y) is given by the collection of non-strict linear inequali-
ties d(x, y)≤ d(x, y′). Then each cell V (y) is a closed (possibly unbounded)
polyhedron in H

n. The union of Voronoi cells is the entire H
n. Assuming that

each V (y) has only finitely many faces, we thus obtain the polyhedral com-
plex, called the Voronoi complex, V(Y ) using the polyhedra V (y) as facets
and faces of facets as faces of V(Y ).

A special case of this construction is given by orbits of a discrete convex-
cocompact subgroup Γ < PO(n,1): If x ∈ H

n is a point not fixed by any
γ ∈ Γ \ {1}, then the Dirichlet tiling Dx(Γ ) is the same as Voronoi tiling
with respect to the set Y := Γ · x. We will use the same notation Dx(Γ ) for
the associated hyperbolic polyhedral complex, the Dirichlet complex. (Recall
that, since Γ is convex-cocompact, every Dγx is a convex hyperbolic poly-
hedron in our sense since it has only finitely many faces.)

We note that if c is a face of Dx =Dx(Γ ), then its stabilizer in Γ has to
be finite, otherwise Dx would fail to be a fundamental domain. In particular,
the stabilizer of c consists entirely of elliptic elements.

Lemma 3.8 Let Dx(Γ ) be the Dirichlet complex of a convex-cocompact
group Γ < PO(n,1). Then Γ contains a finite-index torsion-free normal sub-
group Γ ′ so that (Dx(Γ ))/Γ ′ is a hyperbolic polyhedral complex.
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Proof First, since Γ is convex-cocompact, it is also finitely-generated, see
e.g. [6]. Hence, by Selberg’s Lemma [22], Γ contains a torsion-free sub-
group Γ1 of finite index. One could now take the quotient (Dx(Γ ))/Γ1: It
satisfies all properties of a polyhedral complex, except Axiom 2 could fail: If
c̃1 ≤ c̃2 are incident faces of Dx(Γ ), we could have some γ ∈ Γ1 \ {1} such
that γ (c̃1)≤ c̃2. Dividing by Γ1 we then would have more than one morphism
c1 → c2, where ci is the projection of c̃i , i = 1,2. We will see below how to
eliminate such elements γ by passing to a further finite index subgroup in Γ1.

Since Dx has only finitely many faces, there are only finitely many nontriv-
ial elements γi ∈ Γ1, i = 1, . . . ,m, so that γiDx ∩Dx �= ∅. Since Γ1 is residu-
ally finite, it contains a finite-index subgroup Γ2 so that γi /∈ Γ2, i = 1, . . . ,m.
Lastly, we take Γ ′ < Γ2 a finite index subgroup which is normal in Γ . Then
for each γ ∈ Γ ′ \ {1}, γDx ∩Dx = ∅. By normality of Γ ′ in Γ , we also have

γDαx ∩Dαx = ∅
for all α ∈ Γ . This implies that Axiom 2 holds for the quotient complex
(Dx(Γ ))/Γ ′. �

Weak simplicity criterion for Dirichlet complexes

Lemma 3.9 The Dirichlet tiling Dx(Γ ) is weakly simple provided that for
every y ∈ ∂Dx ⊂H

n and every collection of elements γ1, . . . , γk ∈ Γ so that

dim

(
k⋂

i=1

Bis(x, γix)

)

= n− 2,

and

y ∈
k⋂

i=1

Bis(x, γix),

we have k = 2.

Proof Since Γ acts transitively on the facets of the tiling Dx(Γ ), it suffices
to prove weak simplicity of Dx(Γ ) along codimension 2 cells E contained in
the boundary of Dx . Let γ0 := 1, γ1, . . . , γk ∈ Γ be the elements of Γ such
that E is contained in γi(Dx), i = 0, . . . , k. Weak simplicity of Dx then means
that k = 2. We relabel the elements γi above so that

γi+1Dx ∩ γiDx

is a codimension 1 face Fi for i = 0, . . . , k, where i is taken modulo k. Then
Fi is contained in the bisector Bis(γix, γi+1x), i = 0, . . . , k. Therefore, for
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every y ∈E,

d(y, γix)= d(y, x),

that is,

y ∈
k⋂

i=1

Bis(x, γix)

and, hence,

E ⊂
k⋂

i=1

Bis(x, γix). �

Remark 3.10 The same proof, of course, yields the simplicity criterion
for Dx(Γ ): It is simple if and only if for every y ∈ ∂Dx , the bisectors
Bis(x, γi(x)) passing through y are have transversal intersection in H

n.

Linear algebra problems Let F be a field. For a subset A= {A1, . . . ,Ak} ⊂
Matn,n(F ), k ≤ n, we define the map

B = BA : Fn→Matn,k(F ) (2)

by

x �→ (B1x, . . . ,Bkx)

where Bi = Ai − I , i = 1, . . . , k and we regard vectors Bix as columns of
the matrix BA. We say that the map B and the set A are singular if for ev-
ery x ∈ Fn, rank(B(x)) < k. We note that the image of the map B is a lin-
ear subspace of Matn,k(F ). The problem of describing linear subspaces of
Matn,k(F ) consisting of matrices of rank < k ≤ n has a long history, see [18]
for a survey.

If we do not make any restrictions on the matrices Ai , then the problem
of describing singular k-tuples A is essentially equivalent to the problem of
describing linear subspaces of Matn,k(F ) and is hopelessly complicated. Sup-
pose, however, one takes Ai from an algebraic subgroup G < GL(n,F ), e.g.,
G=O(n,F ).

Problem 3.11 Let F = R. Describe singular k-tuples A of matrices Ai ∈
O(n,1)↑. In particular, suppose that no matrices in Ai share a common eigen-
vector. Is it true that in this case A is nonsingular?

A positive answer would be a key step towards proving

Conjecture 3.12 Suppose that Γ < PO(n,1) is a discrete subgroup of the
class K. Then for generic x ∈H

n the Dirichlet complex Dx(Γ ) is simple.
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Note that the linear maps B = BA : Fn → Matn,k(F ) are injective pro-
vided that the linear transformations Ai do not have a common fixed vector.
In this case, Problem 3.11 becomes a special case of the problem of describ-
ing k-dimensional linear subspaces of Matn,k(F ) (with k ≤ n) consisting of
matrices of rank < k. Rank of such a subspace is the maximal rank of a matrix
which belongs to this subspace.

Linear subspaces of Matn,k(F ) of rank 1 are easy to describe. Classifi-
cation of subspaces of ranks 2 and 3 was given in [3, 11]. It is easy to see
that the classes of primitive subspaces of rank ≤ 3 described in [3, 11] (with
F = C) do not appear as images of maps BA, where A = {A1,A2,A3,A4}
are in O(4,C). However, it is unclear how to deal with the non-primitive
subspaces. For instance, it is unclear if there are (pairwise noncommuting)
elements Ai of O(4,C) so that the matrices Bi are linearly dependent as ele-
ments of Mat4,4(C). Such quadruples would correspond to the case when

⋂

x∈F 4

Ker
(
B(x)

) �= 0.

4 Complexes of varieties

Our discussion here closely follows [17].

Definition 4.1 Let V denote either the category of varieties (over a fixed
field k) or the category of topological spaces.

Let C be a finite hyperbolic polyhedral complex. A V-complex based on
C is a functor Φ from C to V so that morphisms ci → cj go to closed em-
beddings φij :Φ(ci)→Φ(cj ). By abuse of terminology, we will sometimes
refer to the image category im(Φ) as a V-complex based on C . We will use the
notation Xi for Φ(ci). The varieties Xi will be called strata of the complex
of varieties im(Φ).

We call the functor Φ strictly faithful if the following holds:
If xi ∈ Φ(ci), xj ∈ Φ(cj ) and φik(xi) = φjk(xj ) for some k then there is

an � and x� ∈Φ(c�) such that φ�i(x�)= xi and φ�j (x�)= xj .
The relation xi ∼ φij (xi) for every i, j and xi ∈ Xi generates an equiva-

lence relation on the points of �i∈IΦ(ci), also denoted by ∼.

In the category of topological spaces, the direct limit (or push-out)
limΦ(C) of the diagram Φ(C) exists and its points are identified with
(�i∈IΦ(ci))/∼.

For example, suppose that Φtaut is the tautological functor which identifies
each face of C with the corresponding underlying topological space. Then
limΦtaut (C) is nothing but |C|.

As in [17] we have:
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Lemma 4.2 Suppose that Φ is strictly faithful and Φ(C) consists of cell com-
plexes and cellular maps of such complexes. Then π1(limΦ(C)) ∼= π1(|C|)
provided that each Φ(c), c ∈Ob(C) is 1-connected.

The following result was proven in [17], Proposition 31 for Euclidean poly-
hedral complexes, but the same proof applies to hyperbolic complexes:

Proposition 4.3 Let Φ : C → V be a complex of varieties based on a finite
hyperbolic polyhedral complex. Assume that for each k and each J ⊂ I the
subvariety

⋃
j∈J im(φjk)⊂Xk is seminormal. For instance, this assumption

holds if this union is a divisor with normal crossings. Then the direct limit
limΦ(C) exists in the category of varieties. Furthermore, as a topological
space, limΦ(C) is homeomorphic to the topological push-out limΦtop(C).

For convenience of the reader, here is the definition of a seminormal vari-
ety:

Definition 4.4 Recall that a complex space X is called normal if for every
open subset U ⊂ X, every bounded meromorphic function on U is holo-
morphic. A complex space X is called seminormal if for every open subset
U ⊂X, every continuous meromorphic function on U is holomorphic.

Example 4.5 The subvarieties (x2 = y3) ⊂ C
2 and (x3 = y3) ⊂ C

2 are nor-
mal but not seminormal (by taking functions x/y and x2/y respectively). On
the other hand, the subvariety (x2 = y2)⊂C

2 is seminormal.

Complex of projective spaces Let C be a finite simple projective polyhedral
complex; we set C := |C|. As in [17], we define the functor Φ : C →V which
sends each c to the complex-projective space Pc := Span(c)× {c} and each
morphism ci → cj to the linear map of the complex-projective spaces Fcj ,ci

:
Pci
→ Pcj

which restricts to the original morphism ci → cj . We let P = P C
denote im(Φ).

Remark 4.6 The point of using Pc = Span(c)×{c} rather than Pc = Span(c),
is that we want to stress the fact that for different c1, c2, the spaces Pci

are
regarded as disjoint projective spaces, even in the case of faces ci of the same
cell c.

The following definition is taken from [17]:
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Definition 4.7 (Parasitic subspaces) Let σ := (c1, c2, . . . , ck) be a tuple of
faces incident to a face c of C . Consider the intersections

Ic,σ :=
k⋂

i=1

Fc,ci
(Pci

)⊂ Pc

such that there is no face c0 such that Ic,σ = Fc,c0(Pc0) and c0 is incident
to all the c1, c2, . . . , ck . Then the subspace Ic,σ ⊂ Pc is called a parasitic
intersection in Pc.

Remark 4.8 1. Instead of projective polytopes one can work directly with
hyperbolic polyhedra c =H

n ∩ č (see beginning of Sect. 3 for the definition
of projective polytope č associated with the hyperbolic polyhedron c); here
we embed H

n in RP
n using Klein model of the projective space. The notion

of parasitic intersection will be the same. We have chosen to work with the
projective polytopes to keep the discussion as close to [17] as possible.

2. Here is an explanation why parasitic intersections cause problems. Our
goal is to glue projective spaces Pc using the morphisms Fcj ,ci

. Let P be the
result of gluing (which, at the moment, we treat just as a topological space).
We would like π1(P ) to be isomorphic to π1(C). If parasitic intersections do
not exist (this happens, for instance, if C is a simplicial complex), then nerve
of the covering of P by the maximal spaces Pc, c ∈ Ob(C), is isomorphic to
the nerve of the covering of C by the facets. In this case, π1(P ) ∼= π1(C).
However, in presence of parasitic intersections, the two nerve are isomorphic
and fundamental groups could be non-isomorphic as well. For instance, in the
example of Fig. 1, the complex C consists of 3 facets ci which are squares
each of which misses two edges and all vertices. The three non-missing
edges ei are pairwise disjoint. However, their projective spans intersect in the
common point v which is the parasitic intersection. Then π1(C) ∼= Z, while
π1(P )= 1.

The way to deal with parasitic intersections is to below them up. However,
we have to ensure that as the result of blow-up we still have a complex of
varieties. In general, this may not be the case, since this collection of parasitic
intersections in spaces Pc, c ∈Ob(C), is not stable under applying morphisms
Fc′,c and taking preimages under these morphisms. We thus have to saturate
the collection of parasitic intersections using the morphisms Fc,c′ . This is
done as follows. Let T denote the push-out of the category im(Ptop), where
we regard each Pb, b ∈Ob(C), as a topological space, so the push-out exists.
Then for each a ∈Ob(C) we have the (injective) projection map ρa : Pa → T .
For each parasitic intersection Ic,σ ⊂ Pc, we define

Ic,σ,a := ρ−1
a ρc(Ic,σ ).
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Fig. 1 The nerve N of
push-out P of the complex
P consisting of projective
spaces Pei , Pci (i = 1,2,3)
and v, is isomorphic to the
face-complex of the
2-simplex and, hence, is
simply-connected

We call such Ic,σ,a a primary parasitic subspace in Pa . It is immediate that
each primary parasitic subspace in Pa is a projective space linearly embedded
in Pa . With this definition, the collection of parasitic subspaces Ic,σ,a is stable
under taking images and preimages of the morphisms Fc,c′ .

For the purposes of this paper, we will need an equivariant version of the
above definition. Each Pc embeds in |P|, the push-out of Φtop(P). By abus-
ing the notation we retain the notation Pc for the image in |P|. Let Θ be a
group acting faithfully and isometrically on C . This action extends to a faith-
ful (linear) action Θ � P . For θ ∈Θ \{1}, consider the fixed-point set Fix(θ)

of θ in |P|. For each point p ∈ Fix(θ) we take the smallest face c= c(p) such
that p ∈ Pc. By minimality, θ(c)= c. We then let Fixc(θ) := Fix(θ) ∩ Pc, it
is a finite union of disjoint projective subspaces in Pc. We obtain a set of pro-
jective spaces Pci

(in the example we are mostly interested in this is a single
projective space) so that

∀i, θ(ci)= ci, and Fix(θ)⊂
⋃

i

Fixci
(θ).

Assumption 4.9 For every θ ∈Θ \{1}which does not act freely on C, θ2 = 1
and, moreover, for every ci as above, Fixci

(θ) = {pi} � p⊥i , where p⊥i is a
codimension 1 projective subspace in Pci

so that

ci ∩ p⊥i = ∅.
Furthermore, each pi belongs to exactly three faces of C : Two facets ai, bi

and one θ -invariant codimension 1 face ci incident to ai, bi . Note that we do
not assume that C is finite here.

Thus, p⊥i ⊂ Pci
= Pai

∩ Pbi
. However, a priori, p⊥i ⊂ |C| could intersect

other strata as well. We would like to eliminate these intersections. (Notice
that we will be ignoring parasitic subspaces of Pci

which could cross p⊥i .)
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Namely, for each face ci we consider strata Pei
⊂ Pci

, where ei ’s are proper
faces of ci . For each ei define Qei,pi

:= Pei
∩ p⊥i provided that this inter-

section is nonempty. We would like to get rid of the subspaces Qei,pi
, so we

declare the intersections Qei,pi
∈ Pci

to be secondary parasitic subspaces.
We saturate the collection of secondary parasitic subspaces as we did in the
primary case.

Remark 4.10 The case we are mostly interested in is when dim(C) = 3, so
each ei is an edge and each secondary parasitic subspace Qei,pi

is just a point.

We now assume that C and Θ are both finite. We proceed as in [17] and
blow up all the parasitic subspaces: We first blow up all primary parasitic sub-
spaces (by induction on dimension) and then blow up all secondary parasitic
subspaces (again, by induction on dimension). The construction is canonical,
so the group Θ continues to act on the blow-up bP . By applying Proposi-
tion 4.3, we conclude that the Θ-equivariant push-out X := |bP| exists in
the category of projective varieties and is equivariantly homeomorphic to the
topological push-out. The same arguments as in [17, Sect. 5] show that the
variety X is projective. As in [17], the variety X has only normal crossing
singularities.

Furthermore, by the construction, in view of the Assumption 4.9:

Lemma 4.11 1. θ ∈Θ has a fixed point in C if and only if θ has a fixed point
in X. Such θ has order 2.

2. For every θ ∈Θ \ {1} which does not act freely on X, every component
of Fix(θ)⊂X is contained in the intersection of exactly two top-dimensional
strata (of dimension n) intersecting normally. The local models for the action
of θ are described below.

Let y1, . . . , yn+1 be coordinates on C
n+1. Then:

1. Near an isolated fixed point pi :

y1y2 = 0, θ(y1, y2, . . . , yn+1)= (y2, y1,−y3,−y4, . . . ,−yn+1).

2. Along the n − 2-dimensional component bFixc(θ), (the blow-up of
Fixc(θ)), where dim(c)= n− 1 :

y1y2 = 0, θ(y1, y2, y3, . . . , yn+1)= (y2, y1,−y3, y4, . . . , yn, yn+1).

The case we are mostly interested in is when n = 3, so the latter action
becomes:

y1y2 = 0, θ(y1, y2, y3, y4)= (y2, y1,−y3, y4).
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We will refer to these singularities together with the Z2-actions as (Y1,0)

and (Y2,0) respectively. Notice that if we blow up the origin in (Y1,0), then
we obtain singularity of the 2nd type.

Notice that Y2 splits equivariantly as the product Y ×C, where

Y = {
(y1, y2, y3) ∈C

3 : y1y2 = 0
}
, θ(y1, y2, y3)= (y2, y1,−y3)

and the action of θ on the remaining factor C is by the identity. Hence,
Y2/Z2 ∼= Y/Z2 × C. The variety Y/Z2 is a normal crossing along the line
y1 = y2 = 0 away from the origin. I am grateful to János Kollár for providing
the proof of the following:

Lemma 4.12 The germ of Y/Z2 at the origin is isomorphic to the Whitney
umbrella u2 =wv2.

Proof The ring of invariants C[y1, y2, y3]Θ is generated by the polynomials
y1y2, y1 + y2, y3(y1 − y2), y

2
3 subject to the equation

(
y3(y1 − y2)

)2 = y2
3

(
(y1 + y2)

2 − 4y1y2
)
.

Dividing this ring by the ideal generated by y1y2 we obtain the ring Q with
the generators u := y1+y2, v := y3(y1−y2),w := y2

3 subject to the equation

(
y3(y1 − y2)

)2 = y2
3(y1 + y2)

2.

Equivalently, Q is generated by u, v,w subject to the equation

v2 =wu2.

However, this is the quotient ring of the Whitney umbrella. �

As in [17], the blow-up bP is strictly faithful and, hence, π1(X)∼= π1(C),
where C = |C|. We let N denote the group π1(X)= π1(C).

Proposition 4.13 Suppose that N has trivial center. Then π1(X/Θ) ∼=
π1(C/Θ).

Proof We have a Θ-equivariant isomorphism of fundamental groups π1(C)

→ π1(X). Thus, considering the quotient–orbihedra OC := C/Θ and OX :=
X/Θ , we obtain group extensions

1→N → π1(OC)→Θ → 1, 1→N → π1(OX)→Θ → 1
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where the homomorphisms ψi :Θ → Out(N) associated with the actions of
Θ on π1(C) and π1(X) are the same. Since N has trivial center, by Corol-
lary 6.8 in [7, Chap. IV], the group extensions above are naturally isomor-
phic. Define normal subgroups FC,FX of the groups π1(OC),π1(OX) to be
the normal closures of the elements of the respective groups, which do not act
freely on the universal covers of the orbihedra OC and OX . By Armstrong’s
theorem [2], the fundamental groups of C and X are obtained from the or-
bihedral fundamental groups π1(OC),π1(OX) by dividing by the subgroups
FC,FX. We claim that the isomorphism π1(OC)→ π1(OX) carries FC to FX

isomorphically.
Indeed, let C̃ → C and X̃ → X denote the universal covers of C and X

respectively. The space C̃ has a natural structure push-out of a polyhedral
complex C̃ , while X̃ has a natural structure of push-out of a complex of vari-
eties P̃ based on C̃ . The strata of X̃ project isomorphically to the strata of X

since the latter are simply-connected.
Suppose now that, say, θ̃ ∈ π1(OC) \ {1} is a lift of θ ∈Θ has a fixed point

p̃ in the universal cover of C. The isomorphism π1(C)→ π1(X) is induced
by the natural embedding of the universal covers ι : C̃→ X̃. Therefore, such
θ̃ also fixes the point ι(p) ∈X. Conversely, if θ̃ ∈ π1(OX) \ {1} fixes a point
q̃ in the universal cover of X, then q̃ belongs to a minimal stratum X̃i of X̃,
which corresponds to a face c̃i of C̃ . Then θ̃ has to preserve X̃i and, hence, c̃i .
The projection X̃i →Xi ⊂X is an isomorphism conjugating the action of θ̃

to the action of θ . Since θ was fixing a point in ci ∈ Ob(C) (where ci is the
image of c̃i under the projection C̃ → C), we conclude that θ also fixes a
point in c̃i . Proposition follows. �

Dimension reduction Let V be the variety obtained from X/Θ as follows:
We first equivariantly blow up in X all isolated fixed points of involutions
θ ∈Θ and then divide the resulting variety by Θ . The quotient has only nor-
mal crossing singularities and singularities of the 2nd type, more precisely,
of the type Y2/Z2. These singularities split as the product Y/Z2 ×C, where
Y/Z2 is a Whitney umbrella. We now embed V in the projective space and in-
tersect it with a generic hyperplane. The result is a projective surface V whose
singularities are only normal crossings and Whitney umbrellas. Furthermore,
by Lefschetz Hyperplane section theorem π1(V ) ∼= π1(W), see [12, p. 27].
Since V was irreducible, so is W : Take an open dense nonsingular subvariety
W ◦ ⊂W ; by Lefschetz Hyperplane section theorem W ◦ is again connected.
Thus, V is also irreducible since it contains an irreducible open dense subva-
riety W ◦.

5 Generic transversality of triples of bisectors in H
n

The main result of this section is
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Theorem 5.1 Let A1,A2,A3 ∈O(n,1)↑ be distinct nontrivial elements of a
group Γ < O(n,1) of the class K, n≥ 2. Assume also that A1,A2,A3 do not
generate a cyclic group. Then for generic x ∈H , the vectors

Bi(x)=Ai(x)− x, i = 1,2,3

are linearly independent.

Proof Recall that in (2), we defined the matrix-valued map x �→ BA(x).
Linear dependence of the vectors Bi(x) is equivalent to the condition that
rank(BA(x))≤ 2, which, in turn, is expressed in terms of vanishing of deter-
minants of 3× 3 minors of the (n+ 1)× 3 matrix BA(x). Therefore, the set
of x ∈H such that rank(BA(x))≤ 2 is an algebraic subset. Hence, this set is
either the entire H or it is a closed set with empty interior.

We suppose therefore, that for every x ∈ H the vectors Bi(x), i = 1,2,3
are linearly dependent. Then, by linearity, the same is true for all x ∈ L↑.
Since L↑ is Zariski dense in R

n+1, the same conclusion holds for all
x ∈R

n+1.
We let Ω ⊂ C+ ⊂ R

n+1 denote the set of x ∈ C+ such that rank(BA(x))

= 2. Our first goal is to understand the complement of Ω , i.e., the set of
x ∈ C+ such that all the three vectors Bi(x) are multiples of each other. We
will consider a (seemingly) larger set

Σ =Σ12 ∪Σ23 ∪Σ31 ⊂ C+

where Σij = {x ∈ C+ : dim(Span(Bi(x),Bj (x)))≤ 1}.
Lemma 5.2 Let x ∈ C+ be a nonzero vector. Then x ∈ Σ12 iff one of the
following holds:

1. A1x = x or A2x = x or A1x = A2x, i.e., x is fixed by A−1
2 A1. This can

happen only if x /∈ C.
2. x is a common eigenvector of A1,A2. This can happen only if x ∈ C.

Proof If Bi(x) = 0 then Ai(x) = x. We, thus, will assume that Bi(x) �= 0,
i = 1,2.

The condition x ∈Σ12 then is equivalent to

B1(x)= μB2(x), μ �= 0.

In other words,

A1x −μA2x = (1−μ)x.

1. If μ= 1 then A1x = A2x, A−1
2 A1x = x. Furthermore, every x satisfying

these properties belongs to Σ12 (by taking μ= 1).
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2. Suppose now that μ �= 1.
a. If x · x �= 0, Lemma 2.2 then implies that Aix = x, i = 1,2, contradict-

ing our assumption Bi(x) �= 0, i = 1,2.
b. Suppose that x · x = 0. Then linear dependence of the vectors x,

A1x, A2x (which belong to the conic C) implies that they belong to
a common line in R

n+1. In particular, x is a common eigenvector of
A1,A2. �

Corollary 5.3 The set Σij is a finite union of lines. In particular, Σ does not
separate C+ and, thus, the open set Ω is connected.

Proof We need to observe two things: First, Γ does not contain elliptic ele-
ments besides Cartan involutions. Hence, fixed-point sets and eigenspaces of
A1,A2,A

−1
2 A1 in C+ are at most lines. Secondly, since n ≥ 2, no line can

separate C. Now, the statement follows from Lemma 5.2. �

Recall that we are assuming that for all x ∈ C+, the vectors Bi(x),
i = 1,2,3 are linearly dependent. Thus, there exist (possibly multivalued and
discontinuous) functions αi(x), i = 1,2,3 so that for all x ∈C+

3∑

i=1

αi(x)Bi(x)= 0. (3)

If for x ∈ C+ one can take αk(x) = 0, then x ∈ Σij , {i, j, k} = {1,2,3}. In
particular, for each x ∈Ω all the quantities αi(x) are nonzero. Hence, we can
select (say, by setting α1(x) ≡ 1) nonvanishing continuous functions αi(x),
i = 1,2,3, x ∈Ω , so that (3) holds. We fix these functions from now on.

Lemma 5.4 Σ12 =Σ23 =Σ31 =Σ = C+ \Ω .

Proof The following argument is borrowed from [9]. Set V = R
n+1. For

i �= j consider the rational maps Φij : [x] ∈ PV → P(Λ2V ), given by pro-
jectivization of the correspondence

x �→ Bi(x)∧Bj(x)

It is clear that the domain of Φij in C+ is C+ \ Σij and Φij does not ex-
tend continuously to any point of Σij . The assumption that the vectors Bi(x),
i = 1,2,3 are linearly dependent for all x implies that Φ12 = Φ23 = Φ31.
Therefore, their sets of indeterminacy Σ12,Σ23,Σ31 are also equal. In par-
ticular, for every x ∈Σ , rank(BA(x))= 1. �

We now begin the actual proof of Theorem 5.1.
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Case 1 (The generic case) Ai , i = 1,2,3 are all loxodromic and no two of
them have a common eigenvector in C. In particular, in view of Lemma 5.2,
every eigenvector x ∈ C of Ai , i = 1,2,3, belongs to Ω .

Let x1 ∈ C be an eigenvector of A1 with the eigenvalue λ1 > 1. Then for
x = x1, (3) implies:

[
α1(x)(λ1 − 1)− α2(x)− α3(x)

]
x + α2(x)A2(x)+ α3(x)A3(x)= 0.

Note that all three vectors x,A2(x),A3(x) belong to the cone C. If these
vectors were to span a plane P , then P would intersect the quadric C along
three distinct lines, which is absurd. Thus, the vectors

[
α1(x)(λ1 − 1)− α2(x)− α3(x)

]
x, α2(x)A2(x), α3(x)A3(x)

belong to the same line. Since x ∈Ω , the last two vectors are nonzero.

a. Suppose that [α1(x)(λ1 − 1)− α2(x)− α3(x)] �= 0. Then x is a common
eigenvector for A2,A3 contradicting the assumptions of Case 1.

b. Thus, [α1(x)(λ1 − 1)− α2(x)− α3(x)] = 0 and

α2(x)A2(x)+ α3(x)A3(x)= 0.

Then, since A2(x),A3(x) ∈ C+ (the future light cone), it follows that α2(x),
α3(x) have to have opposite signs. By applying the same argument to the
eigenvectors xi of Ai , i = 2,3, we obtain:

αi(xk)αj (xk) < 0,

for all choices of pairwise distinct i, j, k ∈ {1,2,3}.
It immediately follows that there is an index i ∈ {1,2,3} such that the

function αi(x) changes its sign on the set Ω ∩ C. However, Ω is connected
and αi(x) �= 0 on Ω . Contradiction.

Case 2 Suppose that Ai , i = 1,2,3 are all loxodromic and A1,A2 share a
common eigenvector in C.

Then discreteness of Γ implies that A1,A2 share both eigenvectors in C

(see Sect. 2). Let P12 be the plane spanned by these eigenvectors. If α3(x)= 0
for some x ∈H ∩ P12, then (by (3)) we get

α1(x)A1(x)+ α2(x)A2(x)= (
α1(x)+ α2(x)

)
x.

By Lemma 2.2, it follows that A1(x) = A2(x) = x, contradicting the as-
sumption that A1,A2 are loxodromic. Thus, α3(x) �= 0 for all x ∈ H ∩ P12.
Then for all x ∈ H ∩ P12, (3) implies that A3(x) is a linear combination of
A1(x),A2(x), x which all belong to P12. It then follows that A3 preserves
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L = H ∩ P12, i.e., A1,A2,A3 have a common axis in the hyperbolic plane.
Consider the group 〈A1,A2,A3〉 generated by A1,A2,A3. This group acts
discretely on L (since is a subgroup of the discrete group Γ < PO(3,1)).
If the action of 〈A1,A2,A3〉 on L were not faithful, this group would con-
tain an elliptic element fixing L pointwise. This contradicts our assump-
tion that all elliptic elements of Γ are Cartan involutions. Hence, the group
〈A1,A2,A3〉 acts faithfully on L as a discrete group of translations. There-
fore, 〈A1,A2,A3〉 ∼= Z, contradicting the hypothesis of Theorem 5.1.

Case 3 A1, A2 are loxodromic and A3 = J is elliptic (a Cartan involu-
tion). Let p ∈ H be the unique fixed vector of A3. Then p = p3 ∈Σ13 (see
Lemma 5.2). By Lemma 5.4, it follows that p ∈Σ12. Since p is not an eigen-
vector of Ai , i = 1,2, it follows (by Lemma 5.2) that A1(p) = A2(p), i.e.,
A−1

2 A1(p) = p. Thus, A−1
2 A1 is elliptic fixing p. Since Γ belongs to the

class K, A−1
2 A1 is a Cartan involution. Therefore, A−1

2 A1 = J =A3 (since a
Cartan involution is determined by its fixed point).

Our goal is to obtain a contradiction. Let x±i ∈ C be the eigenvectors of Ai ,
i = 1,2 with eigenvalues λ±1

i , i = 1,2. Let x = x±1 . Note that x cannot be an
eigenvector of J .

Lemma 5.5 Either x is an eigenvector of A2, or J (x) is a multiple of A2(x).

Proof Our proof is similar to the argument in Case 1. We will assume that
x is not an eigenvector of A2. Then, by Lemma 5.2, x ∈ Ω . In particular,
αi(x) �= 0, i = 1,2,3. We have:

[
α1(x)

(
λ±1

1 − 1
)− α2(x)− α3(x)

]
x + α2(x)A2(x)+ α3(x)J (x)= 0.

As before, the vectors x,A2(x),A3(x) belong to the cone C. Thus, the vectors

[
α1(x)(λ1 − 1)− α2(x)− α3(x)

]
x, α2(x)A2(x), α3(x)A3(x)

belong to the same line and the last two vectors are nonzero.

a. Suppose that [α1(x)(λ±1
1 − 1) − α2(x) − α3(x)] �= 0. Then x is a com-

mon eigenvector of A2,A3 contradicting our assumption that A3 = J is a
Cartan involution.

b. Thus, α2(x)α3(x) �= 0 and [α1(x)(λ±1
1 − 1)− α2(x)− α3(x)] = 0. Hence,

A2(x), J (x) are multiples of each other. �

The same argument, of course, applies to the eigenvectors of A2.
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Corollary 5.6 One of the following holds:

a. A1,A2 have a common axis and commute.
b. For each i = 1,2, Ci =A−1

i+1J and Ai generate a cyclic group (i is taken
modulo 2).

Proof If A1,A2 has a common eigenvector in C, then, by discreteness of Γ ,
they share both eigenvectors in C and, hence, have a common axis in H

3.
Since A1,A2 ∈ Γ and Γ is in the class K, it follows that A1,A2 com-
mute. Thus, suppose that [A1,A2] �= 1. Then, by Lemma 5.5, for x = x±i ,
Ci = A−1

i+1J (x) is a multiple of x. Hence, the elements Ai,Ci share both
eigenvectors in C. Therefore, they have the same axis in H

n and, since Γ is
in the class K, these elements have to generate a cyclic group. �

Note that, since A3 = J = A−1
2 A1, it follows that in the case (a) of this

corollary, all three elements A1,A2,A3 commute. This is impossible since
A1,A2 are loxodromic and J is a Cartan involution. Thus, (b) holds for both
i = 1,2 and Ai,Ci =A−1

i+1J generate a cyclic group.
Combining the equations

A2 =A1J, A2 = JC−1
1 ,

we obtain

JA1J = C−1
1 . (4)

Therefore, J preserves the axis L1 of A1 in H
n. Since J is a Cartan involution,

it has to reverse orientation on L1. We write A1 = AR, where A is a hyper-
bolic element with the axis L1 and R is an elliptic element fixing L1 point-
wise. In particular, RJ = JR. Then, C−1

1 =A−1R and C1 =AR−1 =A1R
−2

and

A1C
−1
1 =R2.

Since A1,C1 ∈ Γ , we also have R2 ∈ Γ . By our assumptions on elliptic ele-
ments of Γ , R2 = 1. Thus, C1 = A1. For the same reason, C2 = A2. Hence,
by (4), J anticommutes with both A1,A2. In particular, the fixed point of J

belongs to L1 ∩L2 and J preserves both L1 and L2.
However, A2 = A1J and, since A1, J preserve L1, it follows that A2 also

preserves L1 as well, i.e., A1,A2 are loxodromic isometries with the common
axis L = L1 = L2. But then the composition J = A−1

2 A1 has to be either
loxodromic or elliptic fixing L or the identity. This contradicts the assumption
that J is a Cartan involution.
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Case 4 A2,A3 are (distinct) elliptic of order 2, so Ai = A−1
i , i = 2,3. (We

make no assumptions about A1 apart from A1 �= A2,A1 �= A3.) The same
arguments as in Case 3 (considering fixed points p2,p3 of A2,A3) show that
A2A1 =A−1

2 A1 =A3,A3A1 =A−1
3 A1 =A2. Thus,

A2 =A1A3 =A3A1

and, hence A1,A3 commute. Since A3 is a Cartan involution and A1 is loxo-
dromic or Cartan, it follows that A1 =A3, which contradicts the assumption
that the elements A1,A2,A3 are all distinct.

This concludes the proof of Theorem 5.1. �

Remark 5.7 After completing this paper I received the preprint [24] by
A. Ushijima where Theorem 5.1 is proven for triples of loxodromic elements
of the group SO(3,1)↑ ∼= PSL(2,C). The arguments in [24] are different from
the ones used in our proof.

6 Dirichlet domains of cyclic loxodromic groups

In this section we discuss the exceptional case of triples of elements of cyclic
loxodromic groups. The following result is implicit in the work of T. Drumm
and J. Poritz [10, Sects. 5, 7], who analyzed Dirichlet fundamental domains
of cyclic subgroups of SO(3,1)↑ in great detail:

Theorem 6.1 Let 〈A〉 < SO(3,1)↑ ∼= PSL(2,C) be a cyclic loxodromic
group. Then the Dirichlet tiling Dx of 〈A〉 in H

3 is simple for every choice of
x ∈H

3.

Conjecture 6.2 The same conclusion holds for all cyclic loxodromic sub-
groups of PO(n,1), n≥ 3.

Proof of Theorem 6.1 We will be using notation and terminology of [10]. In
particular, we will use the notation Xn = Bis(x,Anx), n �= 0, for the bisectors.
We will be using the notation 
 :=Dx for a fixed Dirichlet domain, and Fn

for Xn ∩
, provided that this intersection is 2-dimensional. We also use the
notation Sn for the intersections of the ideal boundaries of Xn and 
, provided
that this intersection is 1-dimensional (an edge of the circular polygon ∂∞
).

1. Let v ∈H
3 be a vertex of 
=Dx . According to the conclusion on the

bottom of page 177 of [10], the vertex v is splendid, i.e., it belongs to exactly
three faces Fi,Fj ,Fi+j of 
. If Dx is not simple at v, by Lemma 3.9 and
the following remark, v belongs to a bisector Xn so that Xn ∩
 is not a 2-
face. By Proposition 7.6 of [10], Xn ∩
 �= v. By Proposition 7.7 of [10], Xn

cannot contain a finite edge E of 
 incident to v. By Proposition 7.8 of [10],
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Xn cannot contain an infinite edge E of 
 incident to v. Thus, Dx is simple
at v.

2. Let E be a bi-infinite edge of 
 such that Dx is not simple along E. By
Lemma 3.9, E =Xn∩
 for some bisector Xn. Let v,w ∈ S2 denote the ideal
boundary points of E: ∂∞E = {v,w}. Then the ideal boundary circle of Xn

passes through v,w. By Corollary 5.7 of [10], it follows that the ideal bound-
ary of 
 has exactly four sides and, by Lemma 5.5 of [10] these sides are:
Si, Sj , S−i , S−j . Without loss of generality, we can assume that v = Si ∩ Sj .
Then, by Corollary 5.7 of [10], n = i + j . Up to relabeling, there are two
options for the vertex w:

a. w = S−i ∩S−j . However, by Lemma 5.5 of [10], w ∈ ∂∞X−i−j ∩ ∂∞
.
Since the involution φ defined in [10] swaps ∂∞Xi+j ∩∂∞
 and ∂∞X−i−j ∩
∂∞
, it follows that

∂∞X−i−j ∩ ∂∞
= {v,w}.

By repeating the arguments in the proof of Proposition 4.4 of [10], we see
that −i − j = n. Hence, −i − j = n= i + j and n= 0, contradiction.

b. w = S−j ∩ Si . Then w ∈ ∂∞Xi−j ∩ ∂∞
. In this case there is no reason
to expect that {v,w} = ∂∞Xi−j ∩ ∂∞
. Nevertheless, by Proposition 4.5 of
[10], we get:

Aj−i (w) ∈A−n
({v,w}).

If Aj−i (w)=A−n(w) then (as in the proof of Proposition 4.4 of [10]) i+j =
n= j − i and, hence, i = 0, contradiction. If Aj−i (w)=A−n(v)=A−i−j (v)

then

A−2j (v)=w.

However, by looking at the fundamental domain ∂∞
 we also see that

A−j (v)=w,

thus −2j =−j and j = 0. Contradiction. �

In view of Theorem 6.1, it remains to consider cyclic subgroups of
O(3,1)↑ generated by orientation-reversing loxodromic isometries A. Such
isometries A are called glide-reflections: A is the composition A0R, where
A0 is hyperbolic and R is a reflection in a hyperplane containing the axis L

of A0.

Proposition 6.3 For every A as above, the Dirichlet tiling Dx of 〈A〉 in H
3

is simple for every choice of x ∈H
3.
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Proof One can, in principle, go through the proofs given in [10] and mod-
ify them when necessary in order to allow orientation-reversing loxodromic
elements. Instead, we will give a direct argument.

Let L ⊂ H
3 denote the axis of A. Since A is orientation-reversing, there

exists a hyperbolic plane P ⊂H
3 containing L, invariant under A, so that A

reverses orientation on P . Hence, A preserves the half-spaces bounded by P .
For a point x ∈H

3 let xP ∈ P denote the point nearest to x. The nearest-point
projection x→ xP commutes with the action of A.

Lemma 6.4 For every x ∈ H
3 and n ∈ Z \ {0}, the bisector Bis(x,Anx) is

orthogonal to P and

Bis
(
x,Anx

)= Bis
(
xP ,AnxP

)
.

Proof We set y := Anx and let p ∈ R
3,1 be such that P = p⊥ ∩H . The ex-

tended bisector B̃is(x, y)⊂ R
3,1 equals (x − y)⊥. Computing (x −Anx) · p

and using the fact that Ap = p, we obtain: (x − Anx) · p = x · p −
x · A−np = 0. Thus, p ∈ B̃is(x, y) ⊂ R

3,1. Therefore, since B̃is(x, y) =
(x − y)⊥ and P = p⊥ ∩ H , the hyperplanes β := Bis(x, y) and P in H

3

are orthogonal. Let Rβ ∈ PO(3,1) be the isometric reflection in the hyper-
plane β . Since β is orthogonal to P , Rβ preserves P . In particular, Rβ com-
mutes with the projection z→ zP , z ∈ H

3. Since Rβ(x) = y, it follows that
Rβ(xP )= yP . Therefore, β = Bis(x, y) is the bisector for xP , yP =AnxP as
well. �

In view of this lemma, Dirichlet tilings Dx and DxP
(with respect to the

group 〈A〉) are the same. Therefore, it suffices to prove simplicity of the
Dirichlet tilings DxP

of 〈A〉 on P = H
2. We, thus, assume that x ∈ P . The

isometry A of H
2 is the composition of the hyperbolic isometry A0 preserving

L and the reflection R in H
2 fixing L.

Let xL ∈ L denote the point in L nearest to x. Again, the nearest-point
projection x → xL commutes with the action of A. For n ∈ Z \ {0} we let
mn ∈ L denote the midpoint of xL,AnxL. We claim that Bis(x,Anx) passes
through mn. Indeed, similarly to Lemma 6.4,

Bis
(
An

0x, x
)= Bis

(
AnxL, xL

)
.

Hence, d(x,mn)= d(An
0x,mn), while

d
(
mn,A

n
0x

)= d
(
mn,R

nAn
0x

)= d
(
mn,A

nx
)
.

Thus, d(x,mn)= d(Anx,mn) and mn ∈ Bis(x,Anx) proving the claim.
We now consider the bisectors Bis(x,A±1x),Bis(x,A±2x). These bi-

sectors bound a convex polygon F ⊂ H
2 (of infinite area) containing x.
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Fig. 2 Bisectors for the cyclic loxodromic group 〈A〉

The vertices of this polygon are y = Bis(A−2x, x) ∩ Bis(A−1x, x), z =
Bis(A−1x, x) ∩ Bis(Ax, x) and w = Bis(A2x, x) ∩ Bis(Ax, x). We next ob-
serve that

d(y,L)= d(z,L)= d(w,L).

This follows from congruence of the triangles


(ym−2m−1), 
(m−1xLz), 
(m1xLz), 
(wm2m1).

Since A sends Bis(A−1x, x) to Bis(Ax, x) and preserves the distance to L, it
follows that

y
A−→ z

A−→w

and A2 : y→w. Thus, the polygon F is a fundamental domain for the action
of the group 〈A〉 on H

2. Since, clearly, Dx ⊂ F , we have Dx = F . Further-
more, the only vertex-cycle of the fundamental domain F is

y
A−→ z

A−→w
A−2−→ y,

which has length 3. Therefore, in the Dirichlet tiling Dx in H
2, there are

exactly three fundamental tiles adjacent to each of the y, z,w. See Fig. 2.
Hence, Dx is simple. Proposition 6.3 follows. �
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7 Two examples

Example 7.1 There exists a cyclic loxodromic subgroup 〈A〉< SO(3,1)↑ for
which there exists an open nonempty subset U ⊂H

3 so that for all x ∈U the
triple intersection of bisectors

Bis
(
A−1x, x

)∩ Bis
(
A2x, x

)∩ Bis
(
A3x, x

)⊂H
3

is non-transversal (i.e., is a hyperbolic geodesic).

Let A ∈ PO(2,1) be an orientation-reversing loxodromic isometry of H
2.

We extend A to an orientation-preserving isometry of H
3 (also denoted A).

We will consider a triple of distinct nontrivial elements A1,A2,A3 ∈ 〈A〉 such
that A1,A3 are orientation-reversing and A2 is orientation-preserving isome-
tries of H

2.
Let B : R

4 → Mat4,3 be the associated mapping x �→ (B1(x),B2(x),

B3(x)), where Bi =Ai − I , see (2).

Lemma 7.2 B is singular if and only if A2 =A1A3.

Proof We choose the basis of eigenvectors e1, e2, e3, e4 of A in R
4, where

e1, e2 ∈ C are eigenvectors with eigenvalues λ,λ−1 �= 1, e1 · e2 = −1, the
unit vectors e3, e4 are orthogonal to e1, e2 and each other and

Aei =−ei, i = 3,4.

We now consider vectors x = (x1, x2, x3, x4) ∈ R
4 so that x1x2x3x4 �= 0. Let

λi, λ
−1
i be the eigenvalues of Ai corresponding to the eigenvectors e1, e2 re-

spectively. Consider the 4× 3 matrix B(x), x ∈ R
4. The two bottom rows of

this matrix are xi[−2,0,−2], i = 3,4. Hence, rank(B(x))= 2 if and only if
the following determinant equals zero:


=
∣∣∣
∣∣∣

λ1 − 1 λ2 − 1 λ3 − 1
λ−1

1 − 1 λ−1
2 − 1 λ−1

3 − 1
1 0 1

∣∣∣
∣∣∣
.

(Hence, this is independent of x.) Computing 
 we obtain:


=
∣∣
∣∣

λ1 − 1 λ2 − 1
λ−1

1 − 1 λ−1
2 − 1

∣∣
∣∣+

∣∣
∣∣

λ2 − 1 λ3 − 1
λ−1

2 − 1 λ−1
3 − 1

∣∣
∣∣=

∣∣
∣∣

λ2 − 1 λ3 − λ1

λ−1
2 − 1 λ−1

3 − λ−1
1

∣∣
∣∣ .

This determinant equals 0 iff
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λ2 − 1

λ−1
2 − 1

= λ3 − λ1

λ−1
3 − λ−1

1

⇐⇒ λ2 = λ1λ3.

Equivalently, A2 =A1A3. �

Remark 7.3 By adopting arguments from [10], one can prove that the same
conclusion holds for all triples of loxodromic elements A= {A1,A2,A3} of
PO(n,1) generating a cyclic group: After reordering these elements if neces-
sary, A2 =A1A3 if and only if the associated map BA is singular.

To get a specific example, we will take A1 = A−1, A2 = A2,A3 = A3.
Our next goal is to find conditions on x and λ under which the Gramm ma-
trix Gr(x) of the vectors {B1(x),B2(x)} is positive-definite, i.e., when the
restriction of the Lorentzian inner product to

Span
(
B1(x),B2(x)

)⊥

is indefinite, that is, Bis(A1x, x)∩ Bis(A2x, x)∩H �= ∅. We have:

Gr(x)=
[−2(λ− 1)(λ−1 − 1)x1x2 + 4x2

3 −μx1x2

−μx1x2 −2(λ2 − 1)(λ−2 − 1)x1x2

]

where

μ= (λ− 1)
(
λ2 − 1

)+ (
λ−1 − 1

)(
λ−2 − 1

)= (λ− 1)
(
λ2 − 1

)(
1+ λ−3).

Then

det
(
Gr(x)

)=−ν2x2
1x2

2 + 8
(
λ2 − 1

)2
λ−2x1x2x

2
3 ,

where

ν = (λ− 1)
(
λ2 − 1

)− (
λ−1 − 1

)(
λ−2 − 1

)= (λ− 1)
(
λ2 − 1

)(
1− λ−3).

In addition, we have the condition x ∈ L↑, i.e., x2
3 < 2x1x2. We now fix x ∈H

such that x3 �= 0 and let λ→ 1+. Then,

(
(λ− 1)

(
λ2 − 1

)(
1− λ−3))2 ∼ (λ− 1)6 = o

((
λ2 − 1

)2
λ−2)

as λ → 1+. This means that each all λ > 1 sufficiently close to 1,
det(Gr(x)) > 0 and, hence, the open set

Uλ =
{
x ∈H : det

(
Gr(x)

)
> 0

}
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is nonempty. Hence, Bis(A1x, x)∩Bis(A2x, x)∩Bis(A3x, x)∩H �= ∅ for all
x ∈Uλ. The reader who enjoys computations will verify that for every λ with

1 < λ <
3+√5

2
≈ 2.6,

the set Uλ is nonempty. Therefore, for all such λ, there exists an open
nonempty set Uλ ⊂H

3 so that for all x ∈Uλ

Bis(A1x, x)∩ Bis(A2x, x)∩ Bis(A3x, x)⊂H
3

is a complete hyperbolic geodesic, i.e., the triple intersection of bisectors in
H

3 is nontransversal. Furthermore, the loxodromic elements Ai belong to a
cyclic group 〈A〉 of orientation-preserving isometries of H

3 that stabilize a
hyperbolic plane H

2 ⊂H
3. (The group 〈A〉 does not preserve the orientation

on H
2.)

Note that the example constructed above does not contradict Theorem 6.1:
The nontransversal triple intersections do not occur on the boundary of the
Dirichlet domain Dx . In our second example of a discrete abelian subgroup
of SO(3,1), such nontransversal intersections occur on the boundary of Dx

for an open nonempty set of x ∈H
3.

Example 7.4 Let A be a hyperbolic isometry of H
3 with the axis L and

let R ∈ PO(3,1) be the order 2 elliptic rotation around L. We consider
the abelian group Γ := 〈A,R〉 generated by these isometries. Let A1 := R,
A2 :=A, A3 :=RA. Then for all x ∈H

3\L the triple intersection of bisectors

Ix = Bis(A1x, x)∩ Bis(A2x, x)∩ Bis(A3x, x)⊂H
3

is a geodesic. Furthermore, the geodesic Ix is contained in the boundary of
the Dirichlet domain Dx of Γ .

Note that in this example, Γ preserves hyperbolic planes P ⊂H
3 contain-

ing L and x (Γ reverses the orientation on P ). We first compute the funda-
mental domain Dx for Γ : It is the solid S in H

3 containing x and bounded
by the bisectors Bis(Ax, x),Bis(A−1x),Bis(x,Rx). Indeed, clearly, S con-
tains Dx . On the other hand, S is a fundamental polyhedron for Γ which can
be easily verified using the Poincaré’s fundamental domain theorem, see e.g.
[19], [21, Sect. 6.6]. Since Dx is also a fundamental domain of Γ , it follows
that S =Dx . Next, the intersection

Ix := Bis(Ax, x)∩ Bis(Rx, x)⊂H
3

is a hyperbolic geodesic in H
3 contained in the boundary of Dx (since the

bisectors Bis(Ax, x),Bis(A−1x) are disjoint). Set Q := Bis(Rx, x). Then the
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reflection RQ in the hyperplane Q sends x to Rx and Ax to RAx and fixes Ix .
Therefore, for every y ∈ Ix , d(y, x)= d(y,Ax)= d(y,RAx). Hence,

Ix = Bis(Ax, x)∩ Bis(Rx, x)∩ Bis(RAx,x). �

8 Proof of Theorem 1.6

We now can prove Theorem 1.6. In view of Lemma 3.9, we need to prove
that for generic choice of x ∈ H

3, for every edge E ⊂ Dx = Dx(Γ ), E is
the intersection of exactly two bisectors Bis(A1x, x),Bis(A2, x, x), where
A1,A2 ∈ Γ . First, for every triple A= {A1,A2,A3} of nontrivial distinct ele-
ments of Γ which do not belong to a common cyclic subgroup, we define the
set E (A) consisting of those x ∈R

4 for which the intersection

3⋂

i=1

B̃is(Aix, x)⊂R
4

has dimension ≥ 2. In other words,

E (A)= {
x ∈R

4 : rank
(
BA(x)

)≤ 2
}
,

see Sect. 3 for the notation.
The set E (A) is clearly algebraic in R

4 and is stable under multiplication
of x by scalars. According to Theorem 5.1, E (A) is a proper algebraic subset
of R

4. In particular, its intersection with L↑ is closed and has topological
dimension ≤ 3. Since E (A) is stable under scaling, the intersection EH(A) :=
E (A)∩H is nowhere dense. Since Γ is countable, the union EH of the subsets
EH(A) (taken over all triples A of distinct nontrivial elements of Γ generating
non-cyclic groups) is nowhere dense in H = H

3. Next, consider the triples
{A1,A2,A3} of distinct nontrivial elements of Γ generating cyclic subgroups.
For such a triple, by Theorem 6.1 and Proposition 6.3,

3⋂

i=1

Bis(Aix, x)⊂H
3

is disjoint from Dx(〈A〉) for every choice of x ∈ H
3. Since Dx(Γ ) ⊂

Dx(〈A〉), it follows that such nontransversal triple intersection is disjoint from
Dx(Γ ) as well, so we can ignore such triples. Thus, we conclude that Dx is
weakly simple for all x ∈H

3 \ EH .
It remains now to show that for generic x, fixed points of Cartan involutions

in Γ do not belong to any edge of Dx .
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Lemma 8.1 Let p ∈ H , A ∈ O(3,1)↑ is an element not fixing p. Then
there exists a hyperbolic plane Qp ⊂ H such that for all x ∈ H \ Qp ,
p /∈ Bis(Ax, x).

Proof p ∈ Bis(Ax, x) if and only if:

p · (Ax − x)= 0 ⇐⇒ (Ap− p) · x = 0

Since Ap �= p, the orthogonal complement to the vector Ap − p is a hyper-
plane in R

4. For every x away from this hyperplane, p /∈ Bis(Ax, x). �

Since Γ is countable, H
3 contains only countably many fixed points pi ,

i ∈N, of Cartan involutions that belong to Γ . Therefore, for every

x ∈H
3
∖(

EH ∪
⋃

i∈N

Qpi

)
,

for every Cartan involution J ∈ Γ , the fixed point p of J in H belongs to
the unique bisector Bis(Ax, x),A ∈ Γ , namely, Bis(Jx, x). Hence, p cannot
belong to an edge of Dx(Γ ). Theorem 1.6 follows. �

9 3-dimensional hyperbolic orbifolds

The goal of this section is to prove Theorem 1.4. Our proof is a minor varia-
tion of the one in [20].

We recall that an orbihedron O is a topological space |O| (the underlying
space of O) together with an atlas where each chart is the quotient Uα/Gα

of a polyhedral complex Uα by a finite PL group action Gα � Uα , satisfy-
ing certain compatibility conditions, see e.g. [13]. An orbihedron is called an
orbifold if the polyhedral complexes above are PL manifolds. The singular
set ΣO of an orbihedron is the subset of |O| consisting of points x which are
covered by x̃ ∈ Uα with nontrivial stabilizer in Gα . The order of a singular
point x is the order of the stabilizer of x̃ in Gα . An orbifold is called a DISK,
an ANNULUS or a TORUS, if it is the quotient of a disk or an annulus or a
torus by a finite group action. (See [16].) For instance, the Moebius band is
an ANNULUS.

Notation 9.1 Suppose that S is a surface. We let S(m1, . . . ,mk), where mi =
2,3, . . . ,∞ denote the 2-dimensional orbifold with boundary obtained from
S as follows:

1. For each i with mi =∞, we remove the interior of a closed disk from S,
so that the disks are pairwise disjoint.
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2. For each i so that mi <∞, we introduce a singular point of order mi on S

(away from the disks removed and from the boundary of S).

In order to shorten the notation, if m1 = m2 = · · · = m� = m, we replace
the repeating sequence (m1, . . . ,m�) in our notation with �×m. For instance,

S2(∞,∞,2,2,2,2)= S2(2×∞,4× 2),

the annulus with four singular points of order 2.

Below we will use the notation I for the interval [−1,1].
We now review the construction given in [20]. Define a regular 2-

dimensional cell complex X obtained from RP
2 by attaching 2-cells D1,D2

to two distinct projective lines L1,L2 in RP
2. The lines L1,L2 cut RP

2 in
two 2-cells D3,D4. Next, as in [20], define the 2-dimensional orbihedron Y

by introducing 3 singular points of order 2 in the interior of each of the disks
Di , i = 1, . . . ,4. It is proven in [20] that for every finitely-presented group G

there exists a finite orbi-cover Ỹ → Y , such that π1(|Ỹ |)∼=G.
Panov and Petrunin in [20] then “thicken” Y to a compact 3-dimensional

hyperbolic orbifold Y3 with convex boundary, where each singular point pj

of Y corresponds to a singular segment pj × I (of the order 2) in Y3; in ad-
dition, Y3 constructed in [20] has an extra order 2 singular point qi for each
thickened disk Di , i = 1,2. Then, Y3 constructed in [20] is the quotient of
a closed convex subset C ⊂ H

3 by a discrete convex-cocompact group of
isometries Γ3 < PO(3,1), which contains both orientation-preserving ellip-
tic involutions (corresponding to the singular segments pj × I ) and Cartan
involutions (corresponding to the isolated singular points qi).

We now observe that instead of thickening the orbihedron Y described
above, we can thicken a slightly different one: Let Y+ be the orbihedron
obtained from Y by adding an extra order 2 singular point qi to each cell
Di , i = 3,4. (Nothing changes as far as the 2-cells D1,D2 are concerned,
they still have three order 2 singular points each.) Now, if f : Ỹ → Y is
an orbi-cover, it induces an orbi-cover f+ : Ỹ+ → Y+, which is unramified
over the points q3, q4: The orbihedron Ỹ+ is obtained from Ỹ by declaring
the points in f−1(q3) ∪ f−1(q4) to be singular points of order 2. Clearly,
π1(|Ỹ+|)= π1(|Ỹ |). Therefore, as in [20], for every finitely-presented group
G there exists a finite orbi-cover Ỹ+ → Y+, such that π1(|Ỹ+|)∼=G. We will
see below why thickening the orbihedron Y+ is better than thickening Y .

Before thickening Y+, we describe its double cover (as in [20]), which will,
hopefully, clarify the construction. Let Π : S2 → RP

2 be the 2-fold cover,
quotient by the antipodal involution τ . We let αi := L̃i , i = 1,2, D̃j , j = 3,4
denote the complete preimages of the lines and the disks under Π . Note that
each D̃3 and D̃4 consists of two copies of D3 and D4 respectively, while
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α1, α2 are circles. We lift the orbifold data accordingly, so we obtain the orb-
ifold O2 (sphere with 16 singular points of order 2) which is the 2-fold cover
of RP

2(8× 2). Now, thickening α1 ∪ α2 in S2 yields a quadruply-punctured
sphere F . Of course, the restriction Π : αi → Li is again a 2-fold cover. The
2-fold cover S1 → S1 extends to a 2-fold orbifold-cover T 2(∞)→D2(3×2)

(see below). Thus, attaching two copies of T 2(∞) (the one-holed torus) to O2

along the loops α1, α2, we obtain an orbihedron Ŷ+ which is a 2-fold orbi-
cover of Y+.

Instead of thickening Y+ we will equivariantly thicken its 2-fold cover
Ŷ+: The surface F is thickened to F × I , while both copies of T 2(∞) are
thickened to T 2(∞)×I . The 3-manifolds Zi := T 2(∞)×I are then attached
to F × I along the appropriate annuli Aαi

, i = 1,2, in F ×{±1} (thickenings
of the loops α1 × {1} and α2 × {2}), which are identified with the annuli
∂T 2(∞)× I . Lastly, the four orbi-disks in

D̃3 ∪ D̃4

will be thickened to the appropriate orbifold I -bundles Wi , i = 1,2,3,4, over
D2(4 × 2) and attached to F × I along ∂F × I . (The precise construction
of Wi will be given below.) It is then clear (e.g., from Van Kampen’s the-
orem) that the fundamental group of the resulting orbifold Ô is isomorphic
to π1(Ŷ

+). Assuming that τ extends to an involution of Ô (with isolated
fixed-points only), we obtain the 3-dimensional orbifold O = Ô/τ . By the
construction, O and Y+ have isomorphic fundamental groups.

We now explain how to construct Wi ’s and how to extend the involution τ .
Begin with the 2-torus T 2 and its elliptic involution σ : T 2 → T 2: It has 4
fixed points and the quotient T 2/σ , as an orbifold, is S2(4× 2). We extend σ

to the orientation–reversing involution

σ : T 2 × I → T 2 × I, σ (z, t)= (
σ(z),−t

)
.

The orbifold (T 2 × I )/σ has only isolated singular points (four of them).
Then the projection η : (T 2 × I )/σ → T 2/σ is the orbifold I -bundle. This
projection is the quotient of the projection if T 2 × I to the 1st factor.

Definition of Wi ’s We define W to be the suborbifold of (T 2 × I )/σ ob-
tained by removing η−1(D) ∼= D × I , where D is a nonsingular 2-disk in
S2(4 × 2). In particular, η−1(∂D) is an annulus. Then the orbifolds Wi ,
i = 1, . . . ,4 are copies of W above. They will be attached to F × I by gluing
the annuli η−1(∂D) to the annuli in ∂F × I .

Extension of τ We extend τ to F × I by the identity to the second factor.
Then τ sends each Aαi

to itself, where Aαi
⊂ F × ∂I is an annular thick-

ening of αi × {±1}. The quotient Aαi
/τ is the Moebius band (since τ re-

verses orientation on F ). We are identifying Aαi
with the annulus Ai ⊂ ∂Zi ,
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where Zi = T 2(∞) × I and Ai = ∂T (∞) × I . Note that τ acts on the an-
nulus A = Ai = S1 × I by τ(z, t) = (τ (z),−t), where τ : S1 → S1 is an
involution. (We now drop the index i since the construction is the same for
i = 1 and i = 2.) Thus, we again take the elliptic involution σ : T 2 → T 2.
Let x ∈ T 2 be one of its four fixed points. Take a small σ -invariant 2-disk
D ⊂ T 2 around x. We then regard T 2(∞) as T 2 \ int(D). The involution σ

restricts to the involution S1 → S1 of the boundary circle of T 2(∞) which is
isotopic to τ : S1 → S1, so we identify them. Set Z := T 2(∞)× I . Now, the
map σ : Z→ Z given by

σ(z, t)= (
σ(z),−t

)

is the required extension of τ to Z = Zi , i = 1,2. Clearly, the orbifold

V = Z/τ

has only 3 singular points. This concludes the construction of Ô and the ex-
tension τ : Ô → Ô . Therefore, we obtain the 3-dimensional orbifold with
boundary O := Ô/τ which is a thickening of the orbihedron Y+. Further-
more, the singular locus of O is finite. We also have the orbifold-fibration

ζ : V →D2(2,2,2)

obtained as the quotient (by τ ) of the projection Z → T 2(∞) to the first
factor.

Topological properties of O Our goal is to show that the orbifold O is hy-
perbolizable, i.e., there exists a closed convex subset Q of H

3 and a discrete
isometry group ΓO < PO(3,1), so that the quotient-orbifold Q/ΓO is home-
omorphic to the orbifold O. In principle, this could be proven by constructing
ΓO by hand, via Maskit combination. Instead, we will show that O is hyper-
bolizable by verifying that it is irreducible and atoroidal, in which case O is
hyperbolizable by Thurston’s hyperbolization theorem, see e.g., [5, 16].

We first analyze the JSJ decomposition of the orbifold O, see e.g. [5].
Recall that O is constructed from 5 pieces: Orbifold N := (F × I )/τ , two
copies of the orbifold V := Z/τ (where Z = T 2(∞)× I ) and two copies of
the orbifold W = (T 2(∞,∞)×I )/τ . We now convert each of these orbifolds
to an orbifold pair by marking some of their boundary annuli/Moebius bands:

1. Define (N,PN), where N = F × I and PN = ∂F × I �Aα1 ×{1} �Aα2 ×{−1}. Then set (U,PU) := (N/τ,PN/τ).
2. Define (V ,PV ), where V := Z/τ and PV = ζ−1(∂D2(2,2,2)) is a single

Moebius band.
3. Define (W,PW), where PW = η−1(∂D) is a single annulus, see above for

the definition of η : (T 2 × I )/σ → T 2/σ .
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For each of the orbifolds U,V,W we define its partial boundary ∂P by:
∂P U := ∂U \ PU , etc.

By the construction, each of the orbifolds N,W,V is very good: It admits
a finite manifold-cover. Also, each of the orbifolds is strongly atoroidal, i.e.,
it contains no π1-injective TORI: Its fundamental group is virtually free and,
hence, contains no Z

2.

Lemma 9.2 The orbifold pairs (U \ ∂P U,PU), (V \ ∂V ,PV ) and (W \ ∂W ,

PW) are all irreducible, boundary-irreducible and acylindrical (see [16] for
the terminology).

Proof We will give a proof for (V \ ∂V ,PV ) since the other pairs are similar.
We first note that irreducibility and acylindricity are stable under passing to
finite covers. Now, V is finitely covered by the product M := T 2(∞) × I ,
so that PV lifts to the annulus PM := ∂T 2(∞) × I . Irreducibility of M is
clear. Boundary-irreducibility follows from the fact that the annulus PM is π1-
injective in M . To see that (M \∂P M,PM) is acylindrical, note that the image
of π1(PM) in π1(M)∼= Z � Z is a maximal cyclic subgroup of π1(M). �

Lemma 9.3 The orbifold-pair (U,PU) is acylindrical.

Proof It suffices to prove acylindricity for the 2-fold cover (N,PN) of
(U,PU). Then surface PN contains the union of the annuli in ∂F × I . Every
annulus properly embedded in F × I and disjoint from ∂F × I , is isotopic
to one of the form c × I , where c is a simple loop in F . On the other hand,
every essential simple loop c in F (i.e., a loop which does not bound a disk
and does not bound an annulus whose other boundary component is in ∂F )
has to cross either α1 or α2. Therefore, the corresponding annulus c× I either
crosses Aα1 or Aα2 . Hence, it cannot be isotopic to the annulus disjoint from
the union of circles ∂PN . Thus, (U,PU) is acylindrical. �

We now conclude that the sub-orbifolds Wi , i = 1,2 and Vi , i = 1,2 are
maximal (up to isotopy) I -bundles in O. Therefore, their union is the charac-
teristic suborbifold in O, and, hence, its splitting along the annuli and Moe-
bius bands PVi

,PWj
is its JSJ decomposition. Irreducibility of O follows from

the fact that each annulus and Moebius band PVi
,PWj

is incompressible in O
(as it is incompressible in the pieces of the JSJ decomposition). In particular,
O contains no bad suborbifolds. Atoroidality of O follows since each essen-
tial TORUS in O has to be contained in one of the characteristic suborbifolds
and they are all strongly atoroidal. We thus proved:

Proposition 9.4 The orbifold O is hyperbolizable: It can be realized as the
orbifold-quotient of a closed convex subset Q of H

3 by a discrete isometry
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group ΓO < PO(3,1). In particular, the group ΓO is a convex-cocompact
subgroup of PO(3,1).

We then observe that ΓO ∼= π1(O) contains a free nonabelian subgroup,
say, π1(F ). In particular, the group ΓO is nonelementary. We can now finish
the proof of Theorem 1.4. Given a finitely-presented group G we find a finite
index subgroup Γ̃ < π1(Y

+)= ΓO so that

G∼= Γ̃ /〈〈torsion〉〉.
The group Γ̃ is the fundamental group of some orbifold Ô (a finite cov-
ering of O). Since O is hyperbolizable, we obtain a discrete embedding
Γ̃ ↪→ PO(3,1). Since all singularities of O are isolated, so are all singu-
larities of its finite cover Ô. Thus, Γ̃ belongs to class K. Since ΓO is convex-
cocompact and Γ̃ has finite index in ΓO , it follows that Γ̃ is also convex-
cocompact. Thus, Γ̃ belongs to the class K2. Theorem 1.4 follows. �

10 Constructing projective varieties

Proof of Theorem 1.2 Let G be a finitely-presented group. By Theorem 1.4,
there exists a nonelementary group Γ̃ < PO(3,1) of class K2, so that G ∼=
π1(H

3/Γ̃ ). We let x ∈ H
3 be a generic base-point, so that the associated

Dirichlet tiling Dx(Γ̃ ) of H
3 is weakly simple. Recall that since Γ̃ is convex-

cocompact, every face of Dx(Γ̃ ) is a finitely-sided convex hyperbolic poly-
tope. However, since H

3/Γ̃ has infinite volume, so is the fundamental do-
main Dx . Therefore, unlike in [17], Dx is not a projective polytope but only
a hyperbolic polyhedron. We will see, nevertheless, that this is harmless.

We now define the locally finite hyperbolic polyhedral complex C̃ =
Dx(Γ̃ )−D(0)

x (Γ̃ ), the punctured complex of Dx(Γ̃ ) (see Sect. 3). Let Γ < Γ̃

be a torsion–free normal finite index subgroup in Γ̃ , so that C := C̃/Γ is a
simple finite hyperbolic polyhedral complex, see Lemma 3.8. Set Θ := Γ̃ /Γ .
This finite group acts naturally on C and this action is transitive on facets
(since the action of Γ̃ is transitive on facets Dγx of Dx(Γ̃ )).

Consider the manifold M := H
3/Γ , and let F ⊂M denote the finite set

which is the image of D(0)
x (Γ̃ ) in M . If m ∈ F is a vertex of Dx(Γ̃ )/Γ , it

is not fixed by any nontrivial element of Θ (since it is so for vertices of the
complex Dx(Γ̃ )). Therefore,

π1
(
(M \ F)/Θ

)∼= π1(M/Θ)= π1
(
H

3/Γ̃
)
,

which is the quotient of Γ̃ by the normal closure of the Cartan involutions
in Γ̃ .
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Next, we associate with the hyperbolic polyhedral complex C the projective
polyhedral complex Č as in Sect. 3. Note that the pushouts C and Č of C and
Č are homotopy-equivalent, since posets and, hence, nerves, of C and Č are
isomorphic. We then complexify the complex Č as in Sect. 4. The result is a
complex P of projective spaces based on Č . The action Θ � C lifts to the
action Θ � P .

Lemma 10.1 The action Θ � P satisfies the Assumption 4.9 in Sect. 4.

Proof As in Sect. 4, we consider the complex of projective spaces P̃ based
on the complex C̃ . Each stratum X̃i is the (complex-projective) span of the
corresponding face c̃i of C̃ and X̃i projects isomorphically to the correspond-
ing stratum Xi of P . Therefore, it suffices to verify that the action Γ̃ � P̃
satisfies the Assumption 4.9. Suppose that γ ∈ Γ̃ fixes a point p ∈ X̃, the
push-out of P̃ . Let X̃i be the minimal stratum of X̃ containing p. Then γ

preserves X̃i and, hence, preserves the corresponding face c̃i of C̃ . Thus, γ

is elliptic and has to be a Cartan involution since Γ̃ is in the class K. Hence,
the fixed-point set of γ in X̃i = Span(c̃i) is the disjoint union of the point p

and the dual (with respect to the Lorentzian inner product) projective space
p⊥ ⊂ Span(c̃i). Since p⊥ is disjoint from H

3, it is also disjoint from c̃i .
Lastly, the fact that p belongs to exactly 3 faces of C̃ follows immediately
from Part 2 of Theorem 1.6: Interior of every 2-face is contained in exactly
two facets of C̃ . �

We next replace P with its blowup bP and let X denote the stratified pro-
jective variety which is the push-out of bP , see Sect. 4: By construction, all
singularities of X are normal crossings. The finite group Θ acts naturally on
X, the quotient Z = X/Θ is again a projective variety, see e.g. [14, p. 126].
The action of Θ is transitive on top-dimensional strata of X (since Θ acts
transitively on facets of C ). Let Xc be one of these top-dimensional strata;
removing from Xc all sub-strata we obtain a (Zariski) open and connected
subset X◦c . Projecting X◦c to Z we get an open, connected and dense subset.
Thus, Z is irreducible.

Note that since Γ is nonelementary and torsion-free, it has trivial center,
see Lemma 2.3. Thus, by Proposition 4.13,

π1(Z)∼= π1(Č/Θ)∼= π1(C/Θ)∼= π1
(
(M \ F)/Θ

)∼= π1
(
H

3/Γ̃
)=G.

All singularities of Z are normal crossings and Z2-quotients of normal cross-
ing singularities, types Y1 and Y2 described in Sect. 4. By blowing up centers
of type 1 singularities Y1 and dividing by Θ , we get a new irreducible projec-
tive variety V where all singularities are normal crossings and their quotients
of the type Y2/Z2. As before, π1(V )∼=G. Lastly, by the argument in the end
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of Sect. 4, we replace the 3-dimensional V with irreducible projective surface
W so that π1(W)∼= π1(V )∼=G and all singularities of W are normal cross-
ings and Whitney umbrellas (corresponding to singularities of type Y2/Z2
in V ).

In order to prove the second assertion of Theorem 1.2, we note that if Γ̃ is
a torsion-free convex-cocompact subgroup of PO(3,1), then the group Θ =
Γ̃ /Γ acts freely on X and, hence, all singularities of Z = X/Θ are normal
crossings. Then one takes V := Z and proceeds as above. This concludes the
proof of Theorem 1.2. �

Remark 10.2 It was proven by Carlson and Toledo in [8] that if G is a Käh-
ler group (e.g., fundamental group of a smooth projective variety) which is
isomorphic to a nonelementary discrete subgroup Γ of PO(n,1), then G

contains a finite index subgroup isomorphic to the fundamental group of a
Riemann surface. (Note that [8] assumes that Γ is cocompact, but it is clear
from the proof that nonelementary is enough.)
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