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Preface

The goal of this book is to understand the geometry of metric spaces X which have the
structure of trees of hyperbolic spaces. The subject originates in the papers [BF92, BF96]
of Bestvina and Feighn, where they proved a combination theorem1, stating that under
certain conditions such X itself is hyperbolic:

Theorem 0.1. Suppose X = (π : X → T ) is a tree of hyperbolic metric spaces, where
vertex-spaces and edge-spaces are uniformly hyperbolic, incidence maps of edge spaces
into vertex-spaces are uniformly quasiisometric and which satisfies the hallway flaring
condition. Then X is a hyperbolic metric space.

In Chapter 2 we give definitions clarifying the result. Informally, the hallway flaring
condition means that two K-quasiisometric (K-qi) sections of X over a geodesic interval
I in T “diverge at a uniform exponential rate" as we move along I in one of the two di-
rections. The original proof of this theorem was by verifying that X satisfies the linear
isoperimetric inequality. In the book we give a new (and longer) proof under a weaker
flaring assumption than the one made by Bestvina and Feighn; we name the weakened
condition uniform (or, in another version, proper) flaring. Informally speaking, instead of
requiring the exponential divergence of sections, we only require some rate of divergence,
given by a uniform proper function of the arc-length parameter of I. We refer the reader to
Theorem 2.62 and Corollary 2.63 for the precise statements.

The main benefit of our proof is that it is done by constructing a slim combing of
X by paths c = cxy in X. These paths will be uniform quasigeodesics connecting points
x, y ∈ X. The description of the paths c is a 6-step induction summarized in Chapter 7,
starting with paths in the trees of spaces of the simplest kind that we call narrow carpets:
These are metric interval-bundles over geodesics in T such that one of the interval-fibers
has uniformly bounded length. We hope that our method of proof of Theorem 0.1 has a
potential to generalize this theorem to complexes of hyperbolic spaces.

The combing paths c in X are mostly concatenations of K-quasiisometric sections of
X over geodesics in T . Thus, we obtain (up to a uniformly bounded error) a description of
geodesics in X in terms of its structure as a tree of spaces, i.e. vertex-spaces and sections.

We also refer the reader to the related work of Gautero describing uniform quasi-
geodesics in groups obtained via the combination theorem in a special case in [Gau03]
and in [Gau16] for trees of relatively hyperbolic spaces. Unfortunately, we were unable to
follow Gautero’s proof. We note, furthermore, that various forms of the Bestvina–Feighn
combination theorem for relatively hyperbolic groups and spaces were proven by Dahmani
[Dah03], Alibegović [Ali05], Gautero and Lustig [GL04, GL07] and, in greatest general-
ity, by Mj and Reeves [MR08]. In the book we did not attempt to describe (quasi)geodesics

1Subsequently, alternative proofs of the group-theoretic version of this theorem were given by Kharlampov-
ich and Myasnikov in [KM98] and Gautero in [Gau03], under certain extra assumptions.

vii



viii PREFACE

in the trees of relatively hyperbolic spaces. However, we proved the existence of Cannon–
Thurston maps for subtrees of relatively hyperbolic spaces Y ⊂ X in Chapter 9 using
techniques of proof of the existence of Cannon–Thurston maps for subtrees of spaces in
trees of hyperbolic spaces.

Summary of the main results of the book. The central results of the book are the
four theorems below. To state these results we will need some definitions. A tree of spaces
X = (π : X → T ) comes equipped with a simplicial tree T and a collection of vertex- and
edge-spaces (Xv, dXv ), (Xe, dXe ) associated with the vertices and edges of T . These spaces
are general geodesic metric spaces, it suffices to think of these as (connected) metric graphs
equipped with graph-metrics. For every edge e = [v,w] of T we have incidence maps
fev : Xe → Xv, few : Xe → Xw, which are uniformly proper Lipschitz maps. Again, in
the context of graphs, it suffices to think of combinatorial incidence maps (they will be
automatically 1-Lipschitz).

Remark 0.2. For most of the book, we will, in fact, assume more, namely, that the
incidence maps are L0-quasiisometric embeddings and, moreover, that all vertex-spaces
(and, hence, edge-spaces) are δ0-hyperbolic (for some constants δ0, L0).

Given the above data, one defines a geodesic metric space X, the total space of the
tree of spaces X, and a uniformly Lipschitz projection π : X → T . In the case when vertex-
spaces and edge-spaces are graphs, the space X can be taken to be a graph, obtained from
the disjoint union of the vertex-spaces and edge-spaces by adding edges connecting each
vertex x ∈ Xe to its images fev(x) ∈ Xv and few(x) ∈ Xw. The 1-Lipschitz projection π then
sends each Xe to the midpoint of the edge e and each vertex-space Xv to the vertex v. A
K-qi section of X over a subtree S ⊂ T is a section σ of the restriction

π :
∐

v∈V(S )

Xv → V(S )

such that d(σ(v), σ(w)) ≤ K for every edge e = [v,w] of S . (Here V(S ) is the vertex-set of
the subtree S .) We will frequently conflate sections and their images.

We say that X is a tree of hyperbolic spaces if all vertex- and edge-spaces of X are
δ0-hyperbolic for a common constant δ0. Next, we give simplified forms of the definitions
of hallways and carpets in trees of spaces, which will suffice for the purpose of stating our
main results.

Definition 0.3. A K-hallway A in X consists of a pair of K-qi sections (γ1, γ2) of X
over an (oriented) interval ⟦v,w⟧ ⊂ T . A K-hallway is called a (K,C)-carpet if

dXw (γ1(w), γ2(w)) ≤ C.

A carpet is said to be bounded by a geodesic interval α = [γ1(v)γ2(v)] ⊂ Xv, in which case
we will also use the notation A = A(α).

Definition 0.4. We say that a tree of spaces X satisfies the thin bigon property for
K-hallways if there is a function R = R(K,C) such that for every K-hallway A as above,
the inequality

max
(
dXv (γ1(v), γ2(v)), dXw (γ1(w), γ2(w))

)
≤ C

implies that for every vertex t of the interval ⟦v,w⟧,

dXt (γ1(t), γ2(t)) ≤ R.
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Our proof of hyperbolicity and description of geodesics in hyperbolic trees of spaces
hinges upon a construction of a slim combing and a theorem by Brian Bowditch that we
review next.

Suppose that X is a metric space. A combing C of X is an assignment to each pair of
points x, y ∈ X of a rectifiable path cxy in X (called a combing path) parameterized by its
arc-length. A combing is called slim and proper if the following conditions are met:

1. There exist a constant δ such that for any three combing paths cxy, cyz, czx, the image
of cxy is contained in the δ-neighborhood of the union of the images of cyz and czx.

2. There exists a Lipschitz function η such that each path cxy is η-proper, i.e. for any
two points p, q in the image of cxy, the distance in X between p, q is at most η(ℓ(p, q)),
where ℓ(p, q) is the length of the subpath of cxy between p and q.

Bowditch proved that whenever a path-metric space X admits a slim combing C, then
X is δ′-hyperbolic and each combing path cxy is K-quasigeodesic, where δ′ and K depend
only on δ and η. We refer the reader to Section 1.10 for details.

The following is the central result of this book:

Theorem 0.5. Suppose that X = (π : X → T ) is a tree of δ0-hyperbolic spaces, such
that the incidence maps from the edge-spaces of X to the incident vertex-spaces are L0-
quasiisometric embeddings. Then there exists a constant K, depending only on δ0, L0, such
that the following holds. Assume, that X satisfies the thin bigon property for K-hallways.
Then there exists an explicit (in terms of the structure of the tree of spaces X) slim combing
of X.

The detailed description of the combing in Theorem 0.5 is too long and technical to
be reproduced here; it is summarized in Chapter 7. For now, we can say that there are two
key ideas used repeatedly in this description:

(1) An easy description of geodesics in quasiconvex chain-amalgamations of hyper-
bolic spaces. For instance, if X is a hyperbolic space which is the union of two qi em-
bedded geodesic subspaces A, B with intersection C (that is also a qi embedded geodesic
subspace), then the geodesic in X connecting a ∈ A, b ∈ B can be described (up to a
uniformly bounded error) as the concatenation of three geodesics: Two of these are the
geodesics in A and B connecting a, b to their nearest-point projections (taken, respectively,
in A, B) ā, b̄ ∈ C, and a geodesic in C connecting ā, b̄.

(2) Quasiisometric sections over intervals in T are quasigeodesics in X. In particular,
suppose that C ⊂ X is a quasiconvex subset (whose quasiconvexity is proven, for instance,
by constructing a coarse Lipschitz projection X → C) and x, y are points in X which can
be connected to C via quasiisometric sections γx, γy. Then a uniform quasigeodesic in
X connecting x, y can be described (analogously to (1)) as a concatenation of three paths
c(x, x̄), c(x̄, ȳ), c(ȳ, y). Here c(x, x̄), c(ȳ, y) are subpaths in γx, γy between, respectively, x, x̄
and ȳ, y, where x̄, ȳ are suitable points which are:

(i) Either both in C (up to a uniform error), in which case c(x̄, ȳ) is the geodesic in C
connecting x̄, ȳ.

(ii) Or x̄, ȳ are points in γx, γy where these sections enter the same vertex-space Xt of
X, such that the distance dXt (γx, γy) is uniformly bounded (and the vertex-space Xt is “the
first counting from x, y” where this happens). The path c(x̄, ȳ) in this case is the geodesic
[x̄ȳ]Xt in Xt connecting x̄ to ȳ.

By combining Theorem 0.5 with Bowditch’s theorem, we obtain the second main
result of the book, which is our version of the Bestvina–Feighn Combination Theorem:
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Theorem 0.6. If X = (π : X → T ) is a tree of spaces satisfying the hypothesis of
Theorem 0.5, then X is hyperbolic.

The description of combing paths in X simplifies greatly when the tree of spaces X is
(M,K, A)-acylindrical (for a suitable K depending on the parameters δ0, L0 of X and some
constants M, A), i.e. when any two K-qi sections γ1, γ2 over every interval I ⊂ T of length
≥ A satisfy the inequality

dXv (γ1(v), γ2(v)) ≤ M

for all vertices v in I. (In the setting of trees of spaces corresponding to graphs of groups,
this notion is equivalent to the acylindricity of the associated group action on the Bass–
Serre tree.) In this special case we also describe the Gromov–boundary of X in terms of
the tree T and Gromov–boundaries of the vertex-spaces and edge-spaces of X, Theorem
7.13.

We now return to the discussion of general trees of hyperbolic spaces, (π : X → T ).
Suppose that S ⊂ T is a subtree; one then obtains an induced subtree of spaces (π : Y → S )
and a natural inclusion map Y → X. If (π : X → T ) satisfies the assumptions of Theorem
0.5, then so does (π : Y → S ); in particular, Y is also hyperbolic. As an application of
our description of geodesics in X (and in Y), we prove (see Theorem 8.48) the existence
of Cannon–Thurston maps between the Gromov-boundaries ∂∞Y → ∂∞X, extending an
earlier result by Mitra [Mit98], who proved the existence of Cannon–Thurston maps for
the inclusion maps of vertex-spaces into X. Mitra’s proof (as well as the subsequent work
of Mj and Sardar, [MS09]) was, in fact, a guideline for our description of geodesics in X.
However, Mitra’s description of geodesics stopped at geodesics connecting points in the
same vertex-space (step 3 of our 6-step description), leaving much of the work to be done
in general.

The following existence theorem for Cannon–Thurston maps is the third main result
of the book:

Theorem 0.7. Suppose that (π : X → T ) is a tree of spaces satisfying the assumptions
of Theorem 0.5. Then for every subtree S ⊂ T and the corresponding induced tree of
hyperbolic spaces (π : Y → S ), the inclusion map Y → X admits a continuous extension
to a map of Gromov-boundaries, ∂Y,X : ∂∞Y → ∂∞X.

The map ∂Y,X is the Cannon–Thurston map between the ideal boundaries of Y and X.
Furthermore, we prove a relative analogue of Theorem 0.7, for trees of relatively hyper-
bolic spaces, Theorem 9.47.

Our last main result is a detailed analysis of the Cannon–Thurston laminations of the
inclusion maps Y → X. Before stating this theorem, we will need more definitions.

Definition 0.8. Suppose that X is a hyperbolic space and Y ⊂ X is a hyperbolic sub-
space, such that the inclusion map Y → X admits a Cannon–Thurston extension ∂Y,X :
∂∞Y → ∂∞X. The Cannon–Thurston lamination (CT-lamination), Λ(Y, X), of the inclu-
sion map Y → X is the set of (unordered) pairs of distinct points ξ, η in ∂∞Y such that
∂Y,X(ξ) = ∂Y,X(η). A geodesic α ⊂ Y connecting points ξ, η with {ξ, η} ∈ Λ(Y, X), is called a
leaf of the CT-lamination Λ(Y, X).

The next theorem gives a complete description of CT-laminations of the inclusion map
Y → X in the setting of Theorem 0.7:
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Theorem 0.9. Suppose that the total space X of a tree of spaces X is a proper metric
space. Then there are constants K,C depend only on the parameters δ0, L0 of X and a
function D = D(k) such that the following hold:

1. If {ξ+, ξ−} ∈ Λ(Y, X), then there exists a vertex-space Xu ⊂ Y and a complete
geodesic α : R → Xu, which is a uniform quasigeodesic in Y asymptotic to ξ±, such that
the intervals α−m,n = [α(−m)α(n)]Xu ⊂ α, bound (K,C)-narrow carpets A(α−m,n) in X for
all m > 0, n > 0.

2. Conversely, if Xu is a vertex-space of Y, α ⊂ Xu is a complete geodesic asymptotic
to distinct points ξ± ∈ ∂∞Y, such that each subinterval α−m,n as above bounds a (K,C)-
narrow carpet A(α−m,n) in X, then {ξ+, ξ−} ∈ Λ(Y, X).

3. Suppose that Xu is a vertex-space of Y, α ⊂ Xu is a complete geodesic. Then α is
not a leaf of Λ(Y, X) if and only if for some (equivalently, every) k ≥ 1, there exist points
x, y ∈ α and maximal k-qi sections Σx,Σy over, possibly different, subtrees Tx,Ty in T , such
that x ∈ Σx, y ∈ Σy and for every vertex v ∈ Tx ∩ Ty, the distance in Xv between the points
Σx ∩ Xv,Σy ∩ Xv is at least D.

We refer the reader to Theorem 8.63 for more detailed properties of ending laminations
of the inclusion maps Xv → X of vertex-spaces.

Organization of the book. In Chapter 1 we review basic facts of coarse geometry and
geometry of hyperbolic spaces. While most of the material of the chapter is standard and
well-known, we included it for the ease of reference in the rest of the book.

In Chapter 2 we discuss definitions of the theory of trees of metric spaces, state and
compare different flaring conditions in trees of spaces, formulate our main theorem (The-
orem 0.5) and prove it in some easier cases, e.g. for quasiconvex amalgamations (Section
2.6.2).

In Chapter 3 we define a certain class of subspaces Y in a tree of spaces X, called
semicontinuous families. Informally speaking, such a family is a subtree of spaces Y in X
“centered” at a specific vertex u ∈ T . As one moves along edges [v,w] away from u in T ,
the corresponding vertex-space Yw ⊂ Xw can get “much smaller” than Yv but cannot get
“much larger.” This is the semicontinuity property. Furthermore, these subspaces Y have
the property that their intersections Yv = Y ∩Xv with vertex-spaces of X are uniformly qua-
siconvex in Xv and every point in Y is connected to the intersection Yu = Y∩Xu of Y with the
distinguished vertex-space Xu, by a K-quasiisometric section of X over the interval ⟦u, v⟧
in T . We prove that the subspaces Y are coarse Lipschitz retracts of X, which is a gener-
alization of the horocyclic projections to a geodesic in the hyperbolic plane; its existence
was first proven by Mitra, [Mit98, Theorem 3.8], in the case of semicontinuous families
called flow-spaces FlK(Xu). Flow-spaces and three other types of semicontinuous fami-
lies (ladders, carpets and bundles) serve as key tools in our definition of the combing C of
X. Ladders are certain (semicontinuous) families of intervals over subtrees in X. Bundles
should be thought of as continuous families of quasiconvex subsets Qv of vertex-spaces
Xv of X with two (nonempty) vertex-spaces Qv,Qw uniformly Hausdorff-close, whenever
v and w span an edge of T . Carpets (more precisely, (K,C)-narrow carpets) form a special
class of bundles and ladders; they are interval-bundles over intervals ⟦u,w⟧ in T where the
fiber of the interval-bundle over w has length ≤ C.

Chapter 4 primarily deals with Steps 1–3 of our description of geodesics in X: We
describe combing paths in carpets, carpeted ladders and general ladders, and establish their
hyperbolicity. Hyperbolicity of flow-spaces is proven in Chapter 5, which is technically the
most difficult part of our work: We prove the slim triangle property for the combing paths
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c by analyzing triples of ladders (with the common center u) in the flow-space FlK(Xu) of
a vertex-space Xu.

Our last challenge is to connect by combing paths points in different vertex-flow-
spaces FlK(Xu), FlK(Xv). This is done in Chapter 6. The case of points in intersecting
flow-spaces FlK(Xu), FlK(Xv) is handled in Section 6.1 where we primarily analyze the
case of special intervals ⟦u, v⟧ ⊂ T , i.e. when FlK(Xu)∩ Xv , ∅. This covers Step 4 of our
description of geodesics in X and is quite technical. The main trick is to introduce a certain
generalization of flow-spaces of vertex-spaces and appeal to a special (and easy) case of
Theorem 2.62 proven earlier, the quasiconvex amalgamation, when the tree T contains a
single edge (Corollary 2.68). Once the case of special intervals is done, we complete eas-
ily Step 5 of our description of geodesics by considering points in flow-spaces FlK(XJ) for
subintervals J ⊂ T represented as unions of three special subintervals: For the proof we use
the quasiconvex amalgamation again. (A good example of such an interval J is given by
a semispecial interval ⟦u, v⟧, where the flow-spaces FlK(Xu), FlK(Xv) have nonempty in-
tersection in X.) Lastly, we conclude the 6-step description of geodesics in X by appealing
to the horizontal subdivision of geodesic intervals J in T , so that the consecutive subdivi-
sion vertices ui, ui+1 define pairwise uniformly cobounded flow-spaces FlK(Xui ), FlK(Xui+1 )
(their projections to the tree T are disjoint), while each interval ⟦ui, ui+1⟧ between ui, ui+1
is a union of three special subintervals. This uniform coboundedness property allows us
to reduce the problem of hyperbolicity of the flow-space FlK(XJ) ⊂ X to the pairwise
cobounded quasiconvex chain-amalgamation of hyperbolic spaces which is, again, a spe-
cial and easy case of Theorem 2.62 proven earlier (Theorem 2.65). The combing paths cxy

in X are then defined as geodesics in flow-spaces FlK(XJ), x ∈ Xu, y ∈ Xv, and J = ⟦u, v⟧.
Lastly, we verify the slim combing property for these paths cxy by considering flow-spaces
FlK(XS ) for geodesic tripods S ⊂ T and appealing to Theorem 2.65 (or, more precisely, its
consequence, Corollary 2.69) one last time.

In Chapter 7 we review the description of the combing paths cxy by putting together
different steps of the descriptions scattered in the earlier parts of the book. We also prove an
easy application of this description by giving a characterizations of geodesics α in vertex-
spaces of X which are quasigeodesics in X itself, in terms of carpets bounded by subinter-
vals in α. Furthermore, assuming acylindricity, we give a simplified description of uniform
quasigeodesics and quasigeodesic rays in X. We use this description to describe the ideal
boundary of X in terms of ideal boundaries of vertex-spaces and of the tree T .

In Chapter 8 we apply our description of geodesics to prove Theorem 8.48, establish-
ing the existence of Cannon–Thurston maps ∂Y,X for subtrees of spaces Y = (π : Y → S )
in a hyperbolic tree of spaces X = (π : X → T ). We begin the chapter by reviewing
the definition of Cannon–Thurston extensions (also known as Cannon–Thurston maps,
CT-maps or CT-extensions) of uniformly proper embeddings between Gromov-hyperbolic
spaces. We also prove Mitra’s criterion for the existence of CT-extensions in terms of
Gromov-products, which is critical for our proofs. The main technical result of the chapter
is Theorem 8.21 which relates quasigeodesics ϕ in X to quasigeodesics in Y via a certain
cut-and-replace procedure, replacing detour subpaths in ϕ by geodesics in vertex-spaces of
Y: If ϕ connects two points in Y but ϕ is not entirely contained in Y , then maximal subpaths
of ϕ which are not in Y are detour subpaths ζ connecting points in the same vertex-space
Xt (which is also a vertex-space of Y). The replacement procedure then amounts to replac-
ing each ζ with a geodesic ζ̂ in Xt connecting the end-points of ζ. Theorem 8.21 asserts
that the resulting modification of ϕ is a uniform quasigeodesic in Y . Along the way, we
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relate nearest-point projections to flow-spaces FlK(Xu) taken in X and in Y . We give a nec-
essary and sufficient condition for ideal boundary points to have equal images under the
Cannon–Thurston maps ∂Y,X (Theorem 8.52). In particular, such points have to belong to
the Gromov boundary of the same vertex-space of Y. In the following four sections of the
chapter we discuss Cannon–Thurston laminations for the inclusion maps Xv → X in more
detail and relate these to ending laminations. In the last section of the chapter, we prove
some group-theoretic applications of our results. In particular, we construct examples of
non-Anosov undistorted surface subgroups of PS L(2,C) × PS L(2,C) consisting entirely
of semisimple elements.

In Chapter 9 we consider trees of relatively hyperbolic spaces and, generalizing the
results of Chapter 8, prove the existence of Cannon–Thurston maps in this context and
establish some properties of the associated Cannon–Thurston laminations.

There are many constants and functions used in the book. As a general rule, we
label these using as the subscript the number of the theorem (or lemma, etc.) where these
quantities are introduced.
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CHAPTER 1

Preliminaries on metric geometry

1.1. Graphs and trees

Although we always work with unoriented metric graphs like Cayley graphs, we will
also need oriented graphs, to describe graphs of groups. The following definition is taken
from [Ser03]:

Definition 1.1. An oriented graph Γ is a pair of sets (V, E) together with two maps

E → V × V, e 7→ (o(e), t(e))

and
E → E, e 7→ ē

such that o(ē) = t(e), t(ē) = o(e) and ¯̄e = e for all e ∈ E.

We write V(Γ) for V and E(Γ) for E. We refer to V(Γ) as the set of vertices of Γ and
E(Γ) as the set of edges of Γ. We will almost always conflate a graph Γ with its underlying
space, i.e. its geometric realization as a 1-dimensional CW complex.

For an edge e of a graph we refer to o(e) as the origin and t(e) as the terminus of e;
the edge ē is the same edge e with opposite orientation. When o(e) = v, t(e) = w, we will
use the notation e = [v,w]. While for general graphs this notation is ambiguous, for graphs
which are trees (and this is the case we are mostly interested in), vertices v,w uniquely
determine the oriented edge e.

We shall denote by |e| the edge e of Γ without any orientation, regarded as a subset
of the underlying space of Γ. For each edge e in a graph we define ė to be |e| with the
end-points removed.

Given a subset W ⊂ V , we define the full subgraph of Γ spanned by W as the maximal
subgraph in Γ with the vertex-set W. The valence or degree of a vertex v ∈ V is the
cardinality of the set o−1(v) ⊂ E (equivalently, t−1(v) ⊂ E).

If Λ ⊂ Γ is a subgraph, then a vertex v ∈ V(Λ) is a boundary vertex of Λ, if there is an
edge e = [v,w] ∈ V(Γ) such that w < V(Λ). The edge e is then called a boundary edge of
Λ in Γ. We will use this notion only when Λ is a subtree of a tree Γ.

A graph-morphism, or a morphism of graphs ϕ : Γ→ Γ′ is a pair of maps ϕV : V(Γ)→
V(Γ′), ϕE : E(Γ) → E(Γ′), v 7→ v′, e 7→ e′ such that the following diagrams commute for
all oriented edges e = [v,w]:

v � e - w

v′

ϕV

?
� e′

ϕE

?
- w′

ϕV

?

where the horizontal arrows are the origin/tail maps.

1
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A tree is a simply-connected graph.

We will use both the notation uv and ⟦u, v⟧ for the (geodesic) segment, or an interval,
in Γ whose end-points are the vertices u, v. (Since we will be mostly working with graphs
which are trees, this notation is unambiguous.) Given a segment ⟦u, v⟧ in a tree, we define
⟧u, v⟦ as the maximal subtree of ⟦u, v⟧ containing all the vertices of ⟦u, v⟧ except for u and
v. Similarly, we define subsegments ⟧u, v⟧ and ⟦u, v⟦.

Convention 1.2. We will regard intervals ⟦u, v⟧ in simplicial trees as ordered sets with
u the smallest element and v the largest. Accordingly, we will talk about supremums and
infimums of subsets of ⟦u, v⟧ and sup(∅) = u, inf(∅) = v.

A metric graph is a connected graph Γ, every edge e of which is assigned a positive
real number ℓ(e) (its length). The vertex-set of Γ then has a natural pseudometric dℓ, where
the distance between vertices is defined to be the infimum of total lengths of edge-paths
connecting these vertices. The metric dℓ extends to a pseudometric on the underlying space
of Γ. Note, however, that the distance between the vertices of an edge e of Γ can be smaller
than ℓ(e) even if the vertices are distinct. If ℓ : E(Γ)→ R+ takes only finitely many values,
then (Γ, dℓ) is a complete geodesic metric space. If the function ℓ is bounded away from 0,
then dℓ is a metric, but, in general, metric graphs need not be complete nor geodesic and
the pseudometric need not be a metric.

Example 1.3. Let Γ be a graph with two vertices v,w and edges {ei}i∈N all of which
connect v to w.

1. Take the function ℓ(ei) = 1
i . Then dℓ(v,w) = 0. Hence, dℓ is not a metric in this

example.
2. Take the function ℓ(ei) = 1 + 1

i . Then dℓ is a metric but Γ contains no geodesics
between v and w.

Example 1.4. Consider the graph Γ, which is the complete graph on the set {v1, v2, v3}.
Let ℓ([v1, v2]) = ℓ([v2, v3]) = 1, ℓ([v3, v1]) = 3. Then dℓ(v1, v3) is 2 rather than 3 =
ℓ([v3, v1]).

Most of the time, unless stated otherwise, we will metrize connected graphs Γ by
declaring that every edge has unit length: The distance between vertices equals the minimal
number of edges in an edge-path connecting these vertices. We refer to the resulting metric
on Γ as the graph-metric.

1.2. Coarse geometric concepts

1.2.1. Metric notions. For a subset A of a topological space X, cl(A) will denote the
closure of A in X. By a path in a topological space X we will always mean a continuous
map I → X, where I is an interval in R. Given a path c : [a, b] → X, we denote by ⃗c the
reverse path

c(t) = c(a + b − t).
A path c in a metric space (X, d) is geodesic if it is an isometric embedding I → (X, d).

We will frequently conflate paths and their images. Since we are primarily interested in
geodesic and quasigeodesic paths, this conflation is mostly harmless. Accordingly, if x, y
are points in a path c in X, then c(x, y) will denote the subpath of c between x and y.
This notation is, of course, slightly ambiguous since c need not be injective, and a better
notation would have been c|[s,t] where c(s) = x, c(y) = t. However, in practice, it will be
always clear what the subpath c(x, y) is. We will use the notation c1 ⋆ c2 to denote the
concatenation of two paths.
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The length of a path c : I → (X, d), where I = [a, b] is a finite closed interval in R, is

length(c) = sup
n∑

i=1

d(c(ti), c(ti+1)),

where the supremum is taken over all subdivisions of interval I:

t1 = a ≤ t2 ≤ ... ≤ tn ≤ tn+1 = b.

A metric space (X, d) is called rectifiably connected if every two points in it are connected
by a path of finite length. A metric space (X, d) is called a path-metric space and the metric
d a path-metric if for all points x, y ∈ X,

d(x, y) = inf
c

length(c),

where the infimum is taken over all paths in X connecting x and y. Examples of path-metric
spaces are given by metric graphs (assuming, of course, that dℓ is a metric and not merely
a pseudometric).

A metric space (X, d) is called geodesic if any two points x, y ∈ X are connected by a
geodesic path. We will use the notation xy, or [xy]X , to denote a geodesic segment joining
x to y in X. If X is a simplicial tree and u, v are vertices, then we will also use the notation
⟦u, v⟧ for this geodesic segment.

For x, y, z ∈ X we shall denote by ∆xyz a geodesic triangle with vertices x, y, z which
is the union of three geodesic segments xy∪ yz∪ zx. Similarly, a geodesic quadrilateral in
X with vertices x, y, z,w, denoted □xyzw, is the union of four geodesics

xy ∪ yz ∪ zw ∪ wx.

For any rectifiably–connected subset Y in a metric space (X, d) we shall denote by dY (·, ·)
the path-metric on Y induced from X: The distance between two points in Y is the infimum
of lengths of paths in Y between these points, where the length of a path is computed using
the restriction of the metric d.

For R ≥ 0 and a subset A ⊂ X,

NX
R (A) = NR(A) := {x ∈ X : d(x, a) ≤ R for some a ∈ A}

will denote the (closed) R-neighborhood of A in X. A subset A ⊂ X is said to be an R-net
in X if

NR(A) = X.

For subsets Y,Z in a metric space X, Hd(Y,Z) ∈ [0,∞] denotes the Hausdorff distance
between Y and Z:

Hd(Y,Z) = inf{R : Y ⊂ NR(Z),Z ⊂ NR(Y)}.
We will use the notation

d(Y,Z) = inf{d(y, z) : y ∈ Y, z ∈ Z}

for the minimal distance between Y and Z. (Note that, unlike the Hausdorff distance, the
minimal distance, in general, fails to satisfy the triangle inequality.) We will sometimes
add the subscript X in this notation to emphasize that the distances and neighborhoods are
taken in X.

For two maps f , g : X → Y between metric spaces, we define the distance between
f , g as

d( f , g) = sup{d( f (x), g(x)) : x ∈ X}.
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1.3. Group actions

Throughout the book, we will be only considering left group actions of groups on sets.
The notation for such an action is G × X → X or G↷ X. For instance, if X is a group and
G is a subgroup of X then the action of G on X via left-multiplication

Lg(x) = gx

is a left action of G on X.
Given a G-action on a set X and a point x ∈ X, one defines the orbit map for the action

to be the map ox : G → X, by ox(g) = gx. We will be primarily interested in isometric
actions of discrete groups on metric spaces. Such an action is said to be metrically1 proper
if for each bounded subset B ⊂ X the subset

{g ∈ G : gB ∩ B , ∅}

is finite. In other words, preimages of bounded subsets under orbit maps are finite. An
isometric action is said to be cobounded if there exists a bounded subset B ⊂ X such
that

⋃
g∈G gB = X. An isometric action is said to be geometric if it is both proper and

cobounded.

Remark 1.5. Geometric actions frequently refer to proper. cocompact, isometric ac-
tions in the literature. Clearly if the underlying space is proper then these two notions
coincide. See [Kap23] for discussion on related issues.

Suppose that we are given an isometric action G ↷ X and a subset Y ⊂ X. The
stabilizer of Y in G, denoted GY , is the subgroup of G consisting of elements preserving Y
set-wise. By the G-orbit of Y we will mean the collection of translates {gY : g ∈ G} of Y
under the G-action and we will denote it by GY .

Definition 1.6. One says that the G-orbit GY of Y is locally finite if for each x ∈ X
and r ∈ R+, there exists a finite subset {g1, ..., gn} ⊂ G such that

gY ∩ B(x, r) , ∅ ⇒ g ∈ giGY

for some i = 1, ..., n.

In order to see that this condition is natural, observe that for h ∈ GY ,

gY ∩ B(x, r) , ∅ ⇐⇒ ghY ∩ B(x, r) , ∅.

Lemma 1.7. Suppose that X is a finitely-generated group equipped with the word-
metric and Y < X is a subgroup. Then for each G < X, we have GY = G ∩ Y and the
G-orbit GY is locally finite.

Proof. The first statement is obvious. For the second, without loss of generality, we
may assume that x = 1. Since the ball B(1, r) is finite, there exist a finite set of pairs (gi, yi),
i = 1, ..., n, gi ∈ G, yi ∈ Y , such that whenever y ∈ Y , g ∈ G satisfy dX(gy, 1) ≤ r, we have
gy = giyi for some i. Then

h = g−1
i g = yiy−1 ∈ G ∩ Y = GY

and, hence, gY = gihY = giY as required. □

Corollary 1.8. Suppose that X is a geodesic metric space, G′ ↷ X is a geometric
action, Y ⊂ X is a nonempty subspace whose G′-stabilizer G′Y also acts geometrically on
Y. Then for each subgroup G < G′, the G-orbit GY is locally finite.

1we will omit the adjective “metrically” in what follows
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1.4. Length structures and spaces

Let X be a topological space. A length structure (see [BBI01, Chapter 2]) on X is a
collection P of admissible paths (defined on closed intervals in R) in X, together with a
map

ℓ : P → R+
(called a length function) satisfying the following axioms:

1. P is closed under restrictions: The restriction of a path c ∈ P to a subinterval again
belongs to P.

2. P is closed under concatenations.
3. P is closed under linear reparameterizations.
4. ℓ(c1 ⋆ c2) = ℓ(c1) + ℓ(c2).
5. ℓ is invariant under linear reparameterizations.
6. For each c : [a, b]→ X, c ∈ P, the length ℓ(c|[a,b]) depends continuously on a.
7. The length function ℓ is consistent with the topology of X in the sense that for each

x ∈ X and each neighborhood U of x

inf
c∈P(x,X−U)

ℓ(c) > 0

where P(x, X − U) consists of all paths c ∈ P, c : [a, b]→ X, c(a) = x, c(b) ∈ X − U.
8. For each pair of points x, y ∈ X the subset Px,y consisting of paths c ∈ P connecting

x to y is nonempty.

A length space is a topological space equipped with a length structure. Each length
space (X,P, ℓ) has a canonical metric d = dℓ defined by

d(x, y) = inf
c∈Px,y

ℓ(c).

The topology defined by this metric is finer than the one of X; the metric dℓ is a path-metric
(see Proposition 2.4.1 in [BBI01]).

1.5. Coarse Lipschitz maps and quasiisometries

Below, we let X, Y,Z denote metric spaces and let L ≥ 1, ϵ ≥ 0.
(1) Suppose Z is a set. A map f : Z → Y is said to be D-coarsely surjective if

Y = ND( f (Z)), i.e. f (Z) is a D-net in X.
(2) Suppose {Zα} and {Yα} are, respectively, a family of sets and a family of metric

spaces. A family of maps fα : Zα → Yα is said to be uniformly coarsely surjective
if there is a constant D ≥ 0, such that for all α, Yα = ND( fα(Zα)).

(3) A map f : X → Y is said to be (L, ϵ)-coarsely Lipschitz (or coarse Lipschitz) if
∀x1, x2 ∈ X we have

dY ( f (x1), f (x2)) ≤ LdX(x1, x2) + ϵ.

A map f is coarsely Lipschitz if it is (L, ϵ)-coarsely Lipschitz for some L ≥ 1, ϵ ≥
0. When ϵ = L, we say that f is L-coarsely Lipschitz.

(4) Let η : R+ → R+ be an increasing function such that η(1) ≥ 1. A map of
metric spaces f : X → Y is called (η, L)-proper if f is L-coarsely Lipschitz and
d( f (x1), f (x2)) ≤ R implies that d(x1, x2) ≤ η(R). The function η is a distortion
function of f . We will frequently suppress the coarse Lipschitz constant L (it
will be often equal to 1) and simply say that f is η-proper. For instance, if Y ⊂ X
is a rectifiably connected subset of a path-metric space (X, dX), we say that Y is
η-properly embedded in X if the inclusion map (Y, dY )→ (X, dX) is η-proper.
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(5) Similarly, suppose that fα : (Xα, dXα ) → (Yα, dYα ), is a family of maps between
metric spaces. If these maps are (η, L)-proper for some η and L, then we will say
that this family of maps is uniformly proper.

(6) A map f : X → Y is said to be an (L, ϵ)-quasiisometric embedding if ∀x1, x2 ∈ X
one has

1
L

dX(x1, x2) − ϵ ≤ dY ( f (x1), f (x2)) ≤ LdX(x1, x2) + ϵ.

(7) A map f : X → Y will be simply referred to as a quasiisometric embedding if it
is an (L, ϵ)-quasiisometric embedding for some L ≥ 1 and ϵ ≥ 0.

(8) An (L, L)-quasiisometric embedding will be referred to as an L-quasiisometric
embedding.

(9) A map f : X → Y is said to be a (L, ϵ)-quasiisometry if it is an (L, ϵ)-quasiisomet-
ric embedding, which is also ϵ-coarsely surjective. If ϵ = L then we will refer to
such f as an L-quasiisometry.

(10) We will use the abbreviation qi for the word quasiisometric.
(11) An (L, ϵ)-quasigeodesic (resp. an L-quasigeodesic) in a metric space X is a

(L, ϵ)-quasiisometric embedding (resp. a L-quasiisometric embedding) γ : I →
X, where I ⊆ R is an interval.

(12) Given two maps f : X → Y and g : Y → X, we say that g is an ϵ-coarse left
inverse of f if d( f ◦ g, idY ) ≤ ϵ. Similarly one defines an ϵ-coarse right inverse.
If g is both ϵ-coarse left and right inverse then it is called an ϵ-coarse inverse of
f .

(13) If A ⊂ X and i : A → X is the inclusion map, then an (L, ϵ)-coarse retraction of
X to A is a (L, ϵ)-coarsely Lipschitz map g : X → A such that g|A = idA.

Remark 1.9. More generally, one can define an (L, ϵ)-coarse retraction by requiring
that

d(idA, g ◦ i) ≤ ϵ.

However, in the book we only use the more restrictive definition.

Example 1.10. 1. Let G,H be finitely-generated groups equipped with word metrics
and ϕ : G → H is a homomorphism. Then ϕ is a coarse Lipschitz map. If ϕ has finite
kernel, then it is also uniformly proper.

2. Suppose that G is a finitely-generated (discrete) group, G↷ X is a proper isometric
action on a metric space. Then for each x ∈ X, the orbit map ox : G → X is uniformly
proper where G is equipped with a word metric.

Definition 1.11. One says that a finitely-generated subgroup G of a finitely generated
group H has distortion at most η if the inclusion map G → H is η-proper (when G,H are
equipped with word metrics as above).

Thus, a subgroup G of a group H is at most linearly distorted if and only if it is qi
embedded in H. In this case, one says that G is undistorted in H. One can make the
notion of distortion independent of a generating set by working with a suitable equivalence
relation on distortion functions. For instance, one can talk about polynomial distortion,
exponential distortion, etc. We refer the reader to [DK18] for further details.

We next discuss quasiisometries and qi embeddings of metric spaces. The following
lemma is a direct calculation which we omit:
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Lemma 1.12. 1. Suppose that f1 : X1 → X2 and f2 : X2 → X3 are, respectively, (L1, ϵ1)
and (L2, ϵ2)-coarse Lipschitz. Then their composition is (L1L2, L2ϵ1 + ϵ2)-coarse Lipschitz.

2. Suppose that f1 : X1 → X2 and f2 : X2 → X3 are, respectively, (L1, ϵ1) and
(L2, ϵ2)–qi embeddings. Then their composition is an (L1L2, L2ϵ1 + ϵ2)–qi embedding.

Lemma 1.13. Let f : X → Y be an L-quasiisometry. Then f admits a coarse 3L2-
inverse which is a 3L2-quasiisometry Y → X.

Proof. For y ∈ Y define g(y) = x such that d(y, f (x)) ≤ L. Then

L−1d(y, y′) − 3 ≤ d(g(y), g(y′)) ≤ Ld(y, y′) + 3L2

and
d( f ◦ g(y), y) ≤ L, d(g ◦ f (x), x) ≤ 2L2. □

Lemma 1.14. Let fi : Xi → Y be k-qi embeddings such that

Hd(Im( f1), Im( f2)) ≤ r.

Define a map
g : X1 → X2

sending x1 ∈ X1 to a point x2 ∈ X2 such that d( f1(x1), f2(x2)) ≤ r. Then g is a K =
K1.14(r, k)-quasiisometry.

Proof. Let x1, y1 ∈ X1. Then

−k +
1
k

dX1 (x1, y1) ≤ dY ( f1(x1), f1(y1)) ≤ k + kdX1 (x1, y1).

Setting x2 := g(x1) and y2 := g(y1) ∈ X2, we obtain

dY ( f1(x1), f2(x2)) ≤ r and dY ( f1(y1), f2(y2)) ≤ r.

It follows that

|dY ( f1(x1), f1(y1)) − dY ( f2(x2), f2(y2))| ≤ dY ( f1(x1), f2(x2)) + dY ( f1(y1), f2(y2)) ≤ 2r.

Hence, we get

−k − 2r +
1
k

dX1 (x1, y1) ≤ dY ( f2(x2), f2(y2)) ≤ 2r + k + kdX1 (x1, y1).

Since f2 is a k-qi embedding, we have

−k +
1
k

dX2 (x2, y2) ≤ dY ( f2(x2), f2(y2)) ≤ k + kdX2 (x2, y2).

Using these two sets of inequalities we obtain

−
2r + 2k

k
+

1
k2 dX1 (x1, y1) ≤ dX2 (x2, y2) ≤ 2k2 + 2rk + k2dX1 (x1, y1).

Since g(x1) = x2, g(y1) = y2, it follows that g is a (2rk + 2k2)-qi embedding.
Also, given any x′2 ∈ X2, there is an x′1 ∈ X1 such that dY ( f1(x′1), f2(x′2)) ≤ r. If

x′′2 = g(x′1). Then dY ( f1(x′1), f2(x′′2 )) ≤ r. Hence,

dY ( f2(x′′2 ), f2(x′2)) ≤ dY ( f1(x′1), f2(x′2)) + dY ( f1(x′1), f2(x′′2 )) ≤ 2r.

Since f2 is a k-qi embedding it follows that dX2 (x′2, x
′′
2 ) ≤ 2rk + k2 < 2rk + 2k2. Hence g is

a K = (2rk + 2k2)-quasiisometry. □

Lemma 1.15. Suppose f : X → Y and g : Y → X are (L, ϵ)-coarsely Lipschitz maps
between metric spaces such that d(idX , g ◦ f ) ≤ R and d(idY , f ◦ g) ≤ R. Then f as well as
g is an (L, ϵ + 2R)-quasiisometry.
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Proof. The proof of this lemma follows easily from definitions. We refer to [MS09,
Lemma 1.1] for details. □

The next lemma follows immediately from definitions:

Lemma 1.16. Suppose that (Y, dY ) is a metric space, X ⊂ Y is a subset equipped with
a metric dX such that the inclusion map (X, dX)→ (Y, dY ) is L-coarse Lipschitz and admits
an L-coarse Lipschitz retraction (Y, dY ) → (X, dX). Then the inclusion map X → Y is an
L-qi embedding.

Remark 1.17. 1. Few categorical remarks are in order at this point. It is natural
to consider the coarse category C, where objects are metric spaces and morphisms are
equivalence classes of coarse Lipschitz maps (more generally, correspondences). Here
two maps are declared to be equivalent if they are bounded distance apart. Isomorphisms
in this setting are precisely quasiisometries of metric spaces. Monomorphisms or monic
morphisms in this category are uniformly left-cancellative morphisms, meaning that f :
X → Y is monic if for each pair of (L, ϵ)-coarse Lipschitz maps gi : Z → X, i = 1, 2, if
d( f ◦ g1, f ◦ g2) ≤ D then d(g1, g2) ≤ C(L, ϵ,D). (Note the need for the uniform control on
distances!) It is easy to verify that monic morphisms are precisely (equivalences classes
of) uniformly proper maps; hence, monomorphisms are more general than qi embeddings.
Epimorphisms are precisely the coarsely surjective maps. Most important examples of
these, besides quasiisometries, are given by coarse retractions to subsets of metric spaces.
The coarse retractions frequently used in the book are Mitra’s projections (in the setting
of subtrees of hyperbolic spaces) and nearest-point projections to quasiconvex subsets of
hyperbolic spaces.

2. An even more general formalism of coarse structures is developed by John Roe in
[Roe03].

3. The above categorical notions, unfortunately, are not quite satisfactory for our
purpose, since most of the time we have to keep track of various quantities such as dis-
tances between equivalent maps, coarse Lipschitz constants and distortion functions. For
instance, when defining a graph (even a tree) of metric spaces, it is not quite enough to
say that this is a functor from a graph (regarded as a category) to the category C, sending
origin/terminus maps to monic morphisms of metric spaces: We will need uniform control
of coarse Lipschitz constants and distortion functions. For a tree of hyperbolic spaces,
we will need even more control, bounding hyperbolicity constants. For this reason, we
will adopt a more pedestrian (and traditional) approach, and mostly refrain from using the
categorical language.

Lemma 1.18. Suppose Y is a path-metric space, and let X ⊂ Y be an η-properly
embedded subset equipped with the induced path-metric from Y such that X is also an R-
net in Y. Then the inclusion map ι : X → Y is an L-qi embedding with L = η(2R + 1).
Consequently ι is a quasiisometry.

Proof. Take x, x′ ∈ X, let c = cϵ : I = [0,T ]→ Y be an arc-length parameterized path
in Y connecting x to x′ whose length T is ≤ d(x, x′) + ϵ. Subdivide the interval I into n + 1
subintervals [ti, ti+1], t0 = 0, such that ti+1 − ti = 1 except for i = n, 0 ≤ r = tn+1 − tn < 1.
Let P : Y → X be a nearest-point projection map. We apply P to the sequence of points
yi = c(ti) and get a sequence x0 = x, x1 = P(y1), ..., xn = p(yn), xn+1 = x′ such that

dY (xi, xi+1) ≤ 2R + 1, i = 0, ..., n.

Hence, dX(x, x′) ≤ L(n + 1), L = η(2R + 1). Therefore,

dX(x, x′) ≤ L(dY (x, x′) + 1),
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i.e. ι is an L-qi embedding. □
Very similar arguments prove the following more general lemma:

Lemma 1.19. Suppose Y is a path-metric space and X is any metric space and f : X →
Y is an L-coarsely Lipschitz, η-proper embedding which is also R-coarsely surjective. Then
there is a constant K = K1.19(L,R, η) such that f is a K-quasiisometry.

Lemma 1.20. Given a function η : R+ → R+ and R ≥ 0, there is a constant K =
K1.20(η,R) such that the following holds.

Suppose Z is a metric space and Z1,Z2 are two rectifiably-connected subsets in Z such
that both Z1 and Z2 are η-properly embedded in Z. Assume Hd(Z1,Z2) ≤ R and suppose
f : Z1 → Z2 is any map that such that dZ(z, f (z)) ≤ R for all z ∈ Z1. Then f is a
K-quasiisometry.

Proof. Since Hd(Z1,Z2) ≤ R clearly there is a similar map g : Z2 → Z1. We note that
dZ(z, g ◦ f (z)) ≤ 2R for all z ∈ Z1. Hence, dZ1 (z, g ◦ f (z)) ≤ η(2R) for all z ∈ Z1, since Z1 is
η-properly embedded in Z, i.e. d(idZ1 , g ◦ f ) ≤ η(2R). Similarly, d(idZ2 , f ◦ g) ≤ η(2R).

We claim that f , g are coarsely Lipschitz. Since the proofs are similar we shall show
this only for f . Since (Z1, dZ1 ) is a path-metric space it is enough to show that if z,w ∈
Z1 and dZ1 (z,w) ≤ 1, then dZ2 ( f (z), f (w)) is bounded by a constant independent of z,w.
However,

dZ( f (z), f (w)) ≤ dZ(z, f (z)) + dZ(w, f (w)) + dZ(z,w) ≤ 1 + 2R.

Hence dZ2 ( f (z), f (w)) ≤ η(2R + 1), since Z2 is η-properly embedded in Z. Now the claim
follows from Lemma 1.15. □

Lemma 1.21. Given D ≥ 0, k ≥ 1 and η : R+ → R+, there is K = K1.21(D, k, η) with
the following property:

Suppose X is a metric space and x, y ∈ X are arbitrary points. Suppose c is a 1-
Lipschitz, η-properly embedded path in X and there is a k-quasigeodesic c1 joining x, y in
X such that Hd(c, c1) ≤ D. Then c is a K-quasigeodesic.

Proof. Let c : [0, l] → X, c1 : [0, l1] → X be the given paths. Since c is 1-Lipschitz,
for all s, s′ ∈ [0, l] we have dX(c(s), c(s′)) ≤ |s − s′|. On the other hand, there are points
t, t′ ∈ [0, l1] such that dX(c1(t), c(s)) ≤ D, dX(c1(t′), c(s′)) ≤ D. Without loss of generality
we may assume that t ≤ t′. Let

t1 = t ≤ t2 ≤ · · · ≤ tn ≤ tn+1 = t′

be points of [0, l1] such that ti+1 − ti = 1, 1 ≤ i ≤ n − 1, and tn+1 − tn ≤ 1. Then there are
points

s1 = s, s2, · · · , sn, sn+1 = s′

in [0, l] such that dX(c1(ti), c(si)) ≤ D. It follows that

dX(c(si), c(si+1)) ≤ 2D + dX(c1(ti), c1(ti+1)) ≤ 2D + 2k, 1 ≤ i ≤ n.

Hence, |si − si+1| ≤ η(2D + 2k) and, therefore,

|s − s′| ≤ nη(2D + 2k) ≤ η(2D + 2k) + η(2D + 2k)|t − t′|.

However,

|t − t′| ≤ k2 + kdX(c1(t), c1(t′)) ≤ k2 + 2Dk + kdX(c(s), c(s′)).

It follows that

−
1 + k2 + 2Dk

k
+

1
max{1, kη(2D + 2k)}

|s − t| ≤ dX(c(s), c(t)) ≤ |s − t|.
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Thus, we may take K = max{1, η(2D + 1), 1+k2+2Dk
k }. □

The next lemma follows immediately from the definition of a uniformly proper em-
bedding:

Lemma 1.22. Suppose that (X, dX) is a path-metric space, Y ⊂ X is rectifiably con-
nected and η-properly embedded in X, i.e. the inclusion map (Y, dY )→ (X, dX) is η-proper.
Then for every subset Z ⊂ Y and R ≥ 0 we have

NY
R (Z) ⊂ NX

R (Z) and NX
R (Z) ∩ Y ⊂ NY

η(R)(Z).

Here the R-neighborhood NY
R in Y is taken with respect to the induced path-metric dY .

In the following three lemmas, I = [a, b], I′ = [a′, b′] denote nondegenerate intervals
in R (equipped with the standard metric).

Lemma 1.23 (Lipschitz approximation). Let f : I → I′ be a coarse (L, ϵ)-Lipschitz
map. Then f is within distance 2(L + ϵ) from a piecewise-linear 2(L + ϵ)-Lipschitz map
g : I → I′.

Proof. 1. First, assume that b − a ≥ 1. We then subdivide the interval I into subinter-
vals

[a0, a1] = [a, a1], [a1, a2], . . . , [an, b] = [an, an+1]

of length at least 1/2 and at most 1. We replace the restriction of f to each subinterval
Ii = [ai, ai+1] with a linear function gi such that gi(ai) = f (ai), gi(ai+1) = f (ai+1). Since

(1.1) | f (ai) − f (ai+1)| = |gi(ai) − gi(ai+1)| ≤ L|ai − ai+1| + ϵ ≤ L + ϵ,

it is easy to see that
d( f |Ii , gi) ≤ 2(L + ϵ).

Combining the linear functions gi we obtain a piecewise-linear function g : I → I′ such
that d( f , g) ≤ 2(L + ϵ). Since ai+1 − ai ≥ 1/2, the inequality (1.1) implies that the slope of
each gi is at most 2(L + ϵ). Hence, g is 2(L + ϵ)-Lipschitz.

2. Suppose that b − a < 1. Then we let g be the constant function, equal f (b). Since
| f (s) − f (t)| ≤ L + ϵ for all s, t ∈ I, d( f , g) ≤ L + ϵ. □

Lemma 1.24 (Coarse monotonicity of quasiisometries). Set D := L(5ϵ + 4L). Suppose
that f : I → I′ is an (L, ϵ)-qi embedding. Then f is coarsely monotonic in the sense that if
r < s < t are in I and min(s − r, t − s) > D then f (s) is between f (r) and f (t).

Proof. Let g be the Lipschitz approximation of f as in Lemma 1.23. Since f is an
(L, ϵ)-qi embedding and d( f , g) ≤ 2(L + ϵ), we conclude that g satisfies

L−1|t − t′| − (5ϵ + 4L) ≤ |g(t) − g(t′)|

for all t, t′ ∈ I. Suppose that, say,

f (s) > max( f (r), f (t)).

Then
min( f (s) − f (r), f (s) − f (t)) ≥ L−1D − ϵ.

Once again since d( f , g) ≤ 2(L + ϵ) we see that

min(g(s) − g(r), g(s) − g(t)) ≥ D′ = L−1D − (5ϵ + 4L) = 0.
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For concreteness, assume that g(r) ≤ g(t). By the Intermediate Value Theorem applied to
the function g (restricted to the interval [r, s]) there exists t′ ∈ [r, s] such that g(t′) = g(t).
We have t − t′ ≥ t − s > D. Thus,

L−1D − (5ϵ + 4L) < L−1|t − t′| − (5ϵ + 4L) ≤ 0⇒ D < L(5ϵ + 4L)

which is a contradiction. If f (s) < min( f (r), f (t)) then one can apply the same proof to the
function t 7→ − f (t) to arrive at a contradiction. □

Lemma 1.25 (Approximating quasiisometries by homeomorphisms). Let I = [a, b],
I′ = [a′, b′] be nondegenerate intervals in R (equipped with the standard metric). Suppose
that f : I → I′ is a k-quasiisometry sending a to a′ and b to b′. Then there exists a
(piecewise-linear) homeomorphism f̃ : I → I′ within distance D1.25 = D1.25(k) from f
which is also a k1.25(k)-quasiisometry.

Proof. The proof is similar to that of Lemma 1.23. Set L = ϵ = k.
1. Suppose first that b − a ≥ 2D, where D = L(5ϵ + 4L) = 9k2 (as in Lemma 1.24).

We subdivide the interval I = [a, b] into subintervals

[a0, a1] = [a, a1], [a1, a2], . . . , [an, an+1] = [an, b],

each of length greater than D and at most 2D. According to Lemma 1.24, f restricted to
the subset

J = {a0, a1, ..., an, an+1}

is strictly monotonic. We then let f̃ = g : I → I′ be the piecewise-linear function equal to
f on J and linear on the complementary intervals. In particular,

f (a) = a′ = g(a), f (b) = b′ = g(b).

In view of monotonicity of f |J , the function g is also (strictly) monotonic, hence, a home-
omorphism. For s, t ∈ [ai, ai+1] we have

| f (s) − f (t)| ≤ 2DL + ϵ = 18k3 + k.

Therefore, for all t ∈ [ai, ai+1] we have

| f (t) − g(t)| ≤ | f (t) − f (ai)| + | f (ai) − g(t)| ≤

| f (t) − f (ai)| + | f (ai) − f (ai+1)| ≤ 2(18k3 + k),

since f (ai) = g(ai), f (ai+1) = g(ai+1) and g is monotonic.
2. Suppose that b − a ≤ 2D. We then let g = f̃ be the linear function equal to f on

{a, b}; g(a) = a′ < g(b) = b′. As in Case 1, d( f , g) ≤ 36k3 + 2k. Hence we can choose
D1.25 = 36k3 + 2k. Since f is a k-quasiisometry it follows that f̃ is a k1.25(k) = (k + D1.25)-
quasiisometry. □

Definition 1.26. Two subsets Y,Z of a metric space X are said to be C-Lipschitz
cobounded if there exist (L, ϵ)-coarse Lipschitz retractions X → Z, X → Y whose re-
strictions

rY,Z : Y → Z, rZ,Y : Z → Y,

satisfy:
1. rY,Z(Y) and rZ,Y (Z) have diameters DY ,DZ .
2. max(L, ϵ,DY ,DZ) ≤ C.

In Section 1.21 we will relate this definition to the more standard notion of cobounded
subsets in a Gromov-hyperbolic space.
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Lemma 1.27. If Y,Z are C-Lipschitz cobounded, then for every R there exists D =
D1.27(R,C) such that if

ai ∈ Y, bi ∈ Z, i = 1, 2

are points satisfying d(ai, bi) ≤ R, i = 1, 2, then d(a1, a2) ≤ D, d(b1, b2) ≤ D.

Proof. One can take D = 2C(R + 1) +C + 2R. □

1.6. Coproducts, cones and cylinders

In this section we discuss several purely topological notions used elsewhere in the
book. Let {Zα : α ∈ A} be an indexed collection of topological spaces. Then the coproduct
topology on the disjoint union

Z :=
∐
α∈A

Zα

is the finest topology on the disjoint union such that all the natural inclusion maps Zα → Z
are continuous. In particular, each Zα ⊂ Z is a clopen subset homeomorphic to Zα.

In the following two constructions, the unit intervals [0, 1] are sometimes replaced by
the half-intervals [0, 1/2] with 1/2 playing the role of 1.

Let X,Y be topological spaces, f : X → Y a continuous map. Then the mapping
cylinder Cyl( f : X → Y), also denoted X ∪ f Y and, sometimes, Y ∪ f X, is the quotient of
X × [0, 1] ⊔ Y (with the coproduct topology) by the equivalence relation

(x, 1) ∼ f (x), x ∈ X.

Lastly, the cone C(a, X) over a topological space X is the quotient of the product
X × [0, 1] by the subspace X × {1}. The point a, the projection of X × {1} in C(a, X), is
called the apex of the cone. The projections of the intervals {x} × [0, 1] under the quotient
map q : X × [0, 1] → C(a, X) will be called the radial line segments in C(a, X). We will
identify X with the image of X × {0} in C(a, X).

In the next section, we will metrize the cones C(a, X).

1.7. Cones over metric spaces

Let (X, d) be a path-metric space. We equip X × [0, 1/2] with the product metric.
The cone over the metric space X, denoted by C(a, X), is defined to be the quotient of
X × [0, 1/2] obtained by collapsing X × {1/2} to a point. We let q : X × [0, 1/2]→ C(a, X)
still denote the quotient map and a to be the apex of C(a, X). We metrize the cone C(a, X)
as follows. Mapping rectifiable paths

c : I = [0, 1]→ X × [0, 1/2]

into C(a, X) by q we obtain a family of admissible paths in C(a, X). For a rectifiable path c
as above, we define the length L(q(c)) to be equal to the length of c minus the total length
of the intersection c(I) ∩ X × {1/2}. In other words, the length of the path q ◦ c is the total
length of c|J , where J = I \ (q ◦ c)−1({a}). For instance, the radial line segment connecting
any x ∈ X × {0} to a has length 1/2. Using this notion of length we path-metrize the cone
C(a, X). We leave it to the reader to check that this metric, denoted d̂, metrizes the topology
of C(a, X) and that for each x ∈ X,

d̂(x, a) = 1/2.
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1.8. Approximation of metric spaces by metric graphs

In this section we discuss a generalization of path-metric spaces, called quasi-path
metric spaces.

Definition 1.28. A finite r-path in a metric space (X, d) is a map

c : [m, n] ⊂ Z→ X

such that d(c(i), c(i + 1)) ≤ r for all m ≤ i ≤ n − 1. The length of such c is defined as

length(c) =
n−1∑
i=m

d(c(i), c(i + 1)).

The finite path c is said to connect the point x = c(m) to the point y = c(n).
A metric space (X, d) is called an r-quasi-path metric space for a constant r > 0 if

for every pair of points x, y ∈ X there exists a finite r-path c connecting x to y such that
length(c) ≤ d(x, y) + r.

For instance, every path-metric space is an r-quasi-path metric space for every r > 0.

Lemma 1.29. Any r-quasi-path metric space is (1, 3r)-quasiisometric to a path-metric
space.

Proof. Suppose X is an r-quasi-path metric space. We construct a metric graph Z
with the vertex set V(Z) = X such that x, y ∈ X are connected by an edge e iff x , y and
dX(x, y) ≤ r, where the edge is assigned the length ℓ(e) = dX(x, y).

Consider the inclusion map ι : X → Z. Suppose x, y ∈ X are arbitrary points. Then
there is an r-path x = x0, x1, · · · , xn = y in X joining x to y in X. By the definition of the
graph Z, xi’s also form a sequence of vertices connected by edges in Z. Hence,

dZ(x, y) ≤
∑

i

dZ(xi, xi+1) ≤
∑

i

dX(xi, xi+1) ≤ dX(x, y) + r.

Thus, ι is (1, r)-coarse Lipschitz. Let ρ : Z → X be the following map. The restriction
of ρ on V(Z) is simply the identity map and interiors of edges are mapped to one of the
vertices. Let α : I → Z be any piecewise-linear path (see [BH99], Chapter I.1, Section
1.9). Then clearly, length(α) and the length of the r-path ρ ◦ α differ by at most 2r. Hence,
ρ is (1, 2r)-coarsely Lipschitz. Moreover, it is clear that d(idX , ρ◦ι) ≤ r and d(idZ , ι◦ρ) ≤ r.
Hence, by Lemma 1.15, the maps ι, ρ are both (1, 3r)-quasiisometries. □

Definition 1.30 (Rips graph). Let (Y, d) be a metric space. For R ≥ 0 the R-Rips graph
of (Y, d) is the graph ZR with the vertex-set Y and edges [y1, y2] for all pairs of distinct
points y1, y2 ∈ Y such that d(y1, y2) ≤ R. We will equip Z with its graph-metric (each edge
has unit length).

Note that for a general metric space Y , the graph ZR is disconnected and the distance
between points in different connected components is infinite. However, if Y is a path-metric
space, then each graph ZR is connected.

Definition 1.31. A metric space (Y, d) is said to be coarsely connected if there exists
R < ∞ such that the corresponding Rips graph ZR is connected.

The following fundamental result of geometric group theory is usually stated for
proper metric spaces Y and properly discontinuous actions, but, when the notion of metri-
cally proper actions is used, properness of Y is not needed and the proof is the same as in
the proper case, cf. [DK18]:
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Lemma 1.32 (Milnor–Schwarz Lemma). Suppose that (Y, d) is a (nonempty) metric
space, G is a discrete group and G↷ Y is a geometric2 action. Then:

1. If Y is coarsely connected, then G is finitely generated.
2. If Y is a quasi-path metric space, then for one (equivalently, every) y ∈ Y the orbit

map G → Gy ⊂ Y is a quasiisometry.

Lemma 1.33. For a path-metric space X, let Z = Z1 be the 1-Rips graph of X. Then
the inclusion map ι : X → Z is a (1, 1)-quasiisometry with a (1, 3)-qi inverse ρ : Z → X.

Proof. The proof is very similar to that of the previous lemma: We let the map ρ :
Z → X be identity on the V(Z) = X, etc. Given x, y ∈ X, we join them in X by an arc-
length parametrized path γ : [0, l] → X such that l ≤ dX(x, y) + ϵ, where ϵ > 0 is chosen
in such a way that dX(x, y) < m + 1 where m is the nonnegative integer determined by
m ≤ d(x, y) < m+1. Since length(γ) < m+1, it follows that dZ(x, y) ≤ m+1 ≤ dX(x, y)+1.
Suppose x, y ∈ X such that dZ(x, y) = n. Let x = x0, x1, · · · , xn = y the consecutive vertices
on a geodesic in Z joining x, y. Then we know that dX(xi, xi+1) ≤ 1. Thus,

dX(x, y) ≤
n∑

i=1

dX(xi−1, xi) ≤ n

and we get dX(x, y) ≤ dZ( f (x), f (y)) ≤ dX(x, y) + 1.
Finally, ι(X) is a 1-net in Z, and, hence, ι is coarsely 1-surjective. This proves the

first statement of the lemma. The remaining parts of the proof follow from similar simple
calculations and we leave details to the reader. □

Corollary 1.34. Suppose X is an r-quasi-path metric space. Then there is a (con-
nected) graph X′ equipped with the graph-metric and a (1, 3r+1)-quasiisometry ι : X → X′

with a (1, 3r+3)-qi inverse ρ : X′ → X such that ρ(X′) = X. In particular, each quasi-path
metric space is (1, ϵ)-quasiisometric to a geodesic metric space.

Proof. This is a straightforward consequence of Lemma 1.29 and Lemma 1.33. □

Lemma 1.35 (Local-to-global principle for coarse Lipschitz maps from quasipath met-
ric spaces). Suppose that (X, dX) is an r-quasi-path metric space, (Y, dY ) is any metric
space and f : X → Y is a map such that for all x1, x2 ∈ X, dX(x1, x2) ≤ r implies that
dY ( f (x1), f (x2)) ≤ r′ for some r′ independent of x1, x2. Then f is ( 2r′

r , 3r′)-coarse Lipschitz.

Proof. Take x, y ∈ X. Suppose n ∈ N is the smallest integer such that there is a finite
sequence x0 = x, x1, · · · , xn = y in X with dX(xi, xi+1) ≤ r for all i = 0, ..., n − 1 and∑n−1

i=0 dX(xi, xi+1) ≤ d(x, y) + r. Then dX(xi, xi+2) > r for 0 ≤ i ≤ n − 2. It follows that
r(n − 1)/2 < dX(x, y) + r. Hence, n < 3 + 2

r dX(x, y). On the other hand

dY ( f (x), f (y)) ≤
n−1∑
i=0

dY ( f (xi), f (xi+1)) ≤ nr′ < 3r′ +
2r′

r
dX(x, y). □

Let Y be a D-net in metric space (X, d) with the inclusion map ρ : Y → X. Given
R > 0 we let Z = ZR be the full subgraph of the R-Rips graph of (X, dX) with the vertex set
Y; we equip Z with its graph-metric. We extend the map ρ to the rest of Z, (the extension
is still denoted by ρ), by taking an arbitrary orientation on Z and sending all points of any
open directed edge [v,w]\{w} = [v,w) in Z to the point v ∈ Y ⊂ X. The next lemma (which
is a form of the Milnor–Schwarz Lemma for metric spaces, cf. Theorem 8.52 in [DK18])

2i.e. isometric, metrically proper and cobounded



1.8. APPROXIMATION OF METRIC SPACES BY METRIC GRAPHS 15

shows that, under some conditions, the graph Z is connected and the map ρ is a uniform
quasiisometry Z → X. This result generalizes Lemma 1.33.

Lemma 1.36. Suppose (X, dX) is an r-quasi-path metric space and Y ⊂ X is a D-
net in X. If R ≥ r + 2D, then Z, as defined above, is a connected graph and the map
ρ : (Z, dZ)→ X is a (K1.36(r,R), ϵ1.36(r,R))-quasiisometry.

Moreover, there is a (1 + r)-coarse inverse ι : X → Z to ρ such that ι(x) = x for all
x ∈ Y which is also a (K1.36(r,R), ϵ1.36(r,R))-quasiisometry.

Proof. 1. Consider vertices y, y′ ∈ Y . Since (X, d) is a r-quasi-path metric space, there
exists an r-path

y = x0, x1, ..., xnxn+1 = y′

in X from y to y′. Since Y ⊂ X is a D-net in X, there exist points y1, ..., yn ∈ Y satisfying

dX(xi, yi) ≤ D, i = 1, ..., n.

By the triangle inequality, dX(yi, yi+1) ≤ r + 2D ≤ R for i = 0, ..., n where yn+1 = y′, which
implies that the vertices x0 = y, y1, ..., yn, y′ are on an edge path in Z. This proves that Z is
connected.

Suppose z , z′ ∈ Z are any two points. Let ρ(z) = y, ρ(z′) = y′ and let z, y0, · · · , yn, z′

be a geodesic in Z joining z, z′ where yi ∈ Y . We note that dZ(y, y0) ≤ 1, dZ(yn, y′) ≤ 1 and
|dZ(z, z′) − n| ≤ 2. Now,

dX(ρ(z), ρ(z′)) ≤ dX(y, y0) + dX(yn, y′) +
n∑

i=0

dX(yi, yi+1) ≤

2R + nR ≤ 2R + R(dZ(z, z′) + 2) = 4R + RdZ(z, z′).

Hence the map ρ : Z → X is (R, 4R)-coarse Lipschitz.
Next, we define a coarse inverse map ι to ρ by defining it to be the identity map on Y

and sending x ∈ X \ Y to a point ι(x) = y ∈ Y such that dX(x, y) ≤ D. Then dX(x, x′) ≤ r
implies that dX(ι(x), ι(x′)) ≤ r + 2D ≤ R, i.e. dZ(ι(x), ι(x′)) ≤ 1. Since (X, d) is a r-quasi-
path metric space, the map ι is (2/r, 3)-coarse Lipschitz by Lemma 1.35.

By the construction,

d(ι ◦ ρ(t), t) ≤ 1, d(ρ ◦ ι(x), x) ≤ r.

Hence, by Lemma 1.15 we can take

K1.36(r,R) = max{R, 2/r}, ϵ1.36(r,R) = max{4R, 3} + 2 max{1, r}. □

Since Z constructed in this lemma is a complete geodesic metric space and since we are
interested in coarse geometric properties of metric spaces, we can always replace quasi-
path metric spaces with appropriate metric graphs. We will be using this in Section 2.2
when constructing total spaces of trees of spaces.

Similar to the approximation of coarse Lipschitz maps of line segments by piecewise-
linear maps, one has a uniform approximation of coarse Lipschitz maps of metric (sim-
plicial) graphs by simplicial maps, i.e. maps sending every edge linearly to an edge or a
vertex.

Lemma 1.37. Fix numbers R, L, ϵ. Let X,Y be connected metric graphs with the same
edge-length R. Then, after subdividing edges of X in at most n(R, L, ϵ) equal length sub-
segments, every (L, ϵ)-coarse Lipschitz map f : X → Y is within distance D1.37(L, ϵ,R)
from a simplicial map f∗ : X → Y.

Proof. The proof is similar to that of Lemma 1.23 and we omit it. □
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1.9. Hyperbolic metric spaces

Hyperbolic metric spaces are coarsifications of the classical hyperbolic n-space Hn

and are characterized by a form of thin triangle condition. The most common notions of
hyperbolicity for metric spaces are the one due to Rips (for geodesic metric spaces) and
one due to Gromov (for general metric spaces). One drawback of Gromov’s definition
is that his notion of hyperbolicity is not qi invariant, although it is invariant under (1, ϵ)-
quasiisometries. One of the features (or bugs, depending on the perspective) of metric
hyperbolicity is that it is stable under changes in metric below certain scale δ and that,
accordingly, nothing can be said about general hyperbolic spaces below that scale. This
also points to a limitation of Rips’ notion of hyperbolicity since it applies only to geodesic
metric spaces. This becomes somewhat important in the context of this book since metric
spaces that we consider are frequently only path-metric spaces. One source where hyper-
bolicity along the lines of Rips definition is developed for path-metric spaces X is Väisälä’s
paper [V0̈5]: Instead of geodesics he considers h-short paths, which are rectifiable paths
between points x, y ∈ X whose length is at most d(x, y) + h. A drawback is that one is
forced to carry an extra constant. Another possible approach is to extend Rips’ definition
to the class of quasi-path metric spaces. We will give basic definitions in Section 1.9.3
but will not pursue this direction much further beyond proving that such metric spaces are
(1, ϵ)-quasiisometric to geodesic metric spaces and, hence, Gromov’s notion of hyperbol-
icity in the context of quasi-path metric spaces is preserved by general quasiisometries,
see Section 1.9.4. Yet, another possible approach is to work with path-metric spaces but
instead of geodesics, work with sequences of paths whose lengths approximate distances
between points. All the arguments appearing in the book will go through with constants
unchanged comparing to the ones for geodesic metric spaces. A drawback is that this ap-
proach lengthens the proofs (which are already long and technical in chapters 3, 4, 5 and
6). Thus, for most of the book, we work with geodesic metric spaces. In this section we
present various notions of hyperbolicity starting with the most familiar ones.

We assume that the reader is familiar with the basic definitions and facts about hyper-
bolic metric spaces that can be found for instance in [BH99], [CDP90], [DK18], [Gro87],
[Gd90], [ABC+91], [V0̈5]. In this section we collect some of these to fix the notions and
for later use.

1.9.1. Hyperbolicity in the sense of Gromov.

Definition 1.38 (Gromov product). Let X be a metric space. Given points x, y, z ∈ X,
the Gromov product of y, z with respect to x, denoted (y.z)x, is defined as

1
2

(d(x, y) + d(x, z) − d(y, z)) .

Definition 1.39. A metric space X is said to be δ-hyperbolic in the sense of Gromov
or simply δ-Gromov-hyperbolic if all x, y, z,w ∈ X satisfy the inequality

(x.y)w ≥ min{(x.z)w, (y.z)w} − δ.

A metric space X is said to be hyperbolic in the sense of Gromov if it is δ-Gromov-
hyperbolic for some δ ∈ [0,∞).

A finitely-generated group G is called hyperbolic if the metric space (G, dG) is hyper-
bolic in the sense of Gromov, where dG is the word metric on G for some finite generating
set.
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Example 1.40. ([DK18, Example 11.36]) Consider the graph G ⊂ R2 of the function
y = |x|. We equip G with the restriction of the standard Euclidean metric on R2. For n ∈ N
consider points

o = (0, 0), p = (−n, n), q = (n, n), z = (2n, 2n).

Then (p, q)o = (
√

2 − 1)n, (p, z)o = 2
√

2n, (q, z)o =
√

2n. The difference

(p.q)o −min{(p.z)o, (q.z)o} = (
√

2 − 1)n −
√

2n = −n

diverges to −∞ as n→ ∞. Thus, G is not hyperbolic in the sense of Gromov. On the other
hand, G is qi to the real line via the map x 7→ (x, |x|) and the real line is 0-hyperbolic.

Thus, Gromov-hyperbolicity is not preserved by quasiisometries even for quasigeo-
desic metric spaces, i.e. metric spaces where all points are connected by uniform quasi-
geodesics. On the other hand, the following lemma is straightforward from the definition
of Gromov-hyperbolicity:

Lemma 1.41. Suppose X,Y are metric spaces and f : X → Y is a (1, ϵ)-quasiisometry
for some ϵ ≥ 0. Then X is Gromov-hyperbolic iff Y is. More precisely, if X δ-hyperbolic in
the sense of Gromov, then Y is δ + 3ϵ-hyperbolic in Gromov’s sense.

1.9.2. Hyperbolicity in the sense of Rips. Suppose now that X is a geodesic metric
space.

Definition 1.42. Consider a geodesic triangle ∆ = ∆x1x2x3 ⊂ X with the vertices x1,
x2, x3, and let δ ≥ 0.

(1) The triangle ∆ is said to be δ-slim if each side of ∆ is contained in the δ-
neighborhood of the union of the other two sides.

(2) For all i , j , k , i, let ck ∈ xix j be such that d(xi, c j) = d(xi, ck). The points ci

are called the internal points of ∆. Note that, for all i , j , k , i,

d(xi, c j) =
1
2

(
d(xi, x j) + d(xi, xk) − d(x j, xk)

)
= (x j.xk)xi .

(3) If X is a tree, then p = c1 = c2 = c3 and in this case we shall refer to the point p
as the center of the ∆.

(4) The diameter of the set {c1, c2, c3} will be referred to as the insize of the triangle
∆.

(5) The triangle ∆ is said to be δ-thin if for all i , j , k , i and p ∈ xic j ⊂ xixk,
q ∈ xick ⊂ xix j with d(p, xi) = d(q, xi), one has

d(p, q) ≤ δ.

The next lemma is clear from the definitions:

Lemma 1.43. If ∆ is δ-thin, then it is also δ-slim and its insize is ≤ δ.

Definition 1.44 (Rips hyperbolicity). A geodesic metric space X is said to be δ-
hyperbolic in the sense of Rips if each geodesic triangle in X is δ-slim. A geodesic metric
space is said to be Rips-hyperbolic if it is δ-hyperbolic in the sense of Rips for some δ < ∞.

Lemma 1.45 (Proposition 2.1 in [ABC+91]). Suppose X is a δ-hyperbolic metric space
in the sense of Rips. Then the following hold:

(1) All the geodesic triangles in X have insize at most 4δ.
(2) All the geodesic triangles in X are 6δ-thin.
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It follows that a geodesic metric space is hyperbolic in the sense of Rips if and only if
all geodesic triangles in X are uniformly thin.

The following lemmata are also very standard and follow easily from definitions, see
for instance [DK18], [ABC+91], or [V0̈5]:

Lemma 1.46. A geodesic metric space is Rips-hyperbolic if and only it is Gromov-
hyperbolic. More precisely:

(1) If a metric space X is δ-hyperbolic in the sense of Rips, then X is 3δ-hyperbolic
in Gromov’s sense.

(2) If X is geodesic and δ-hyperbolic in Gromov’s sense, then X is 2δ-hyperbolic in
the sense of Rips.

In view of this lemma, when talking about hyperbolicity for geodesic metric spaces,
we will always mean hyperbolicity in the sense of Rips.

For geodesic hyperbolic spaces, the Gromov-product (y.z)x “almost equals” the dis-
tance from x to the geodesic yz:

Lemma 1.47. Suppose that X is a δ-hyperbolic space in the sense of Rips. Then for
each triple x, y, z ∈ X,

(y.z)x − 2δ ≤ d(x, yz) ≤ (y.z)x.

Lemma 1.48. Every geodesic quadrilateral □ = xyzw in a δ-hyperbolic metric space
X is 2δ-slim, i.e. the side xy of □ is contained in the 2δ-neighborhood of the union of the
other three sides of □. Similarly, each geodesic n-gon in X is (n − 2)δ-slim.

1.9.3. Hyperbolicity for path-metric spaces. The form of Rips-hyperbolicity dis-
cussed in this section is a mild generalization of Rips-hyperbolicity for geodesic metric
spaces. We refer the reader to [V0̈5] for a more general discussion.

Definition 1.49. A rectifiable path c connecting x to y in a metric space X is called
ϵ-short if

length(c) ≤ d(x, y) + ϵ.

Definition 1.50 (Triangles formed by paths). Suppose X is any metric space. Given
any three points x, y, z ∈ X and three (continuous or finite) paths c(x, y), c(x, z), c(y, z) join-
ing these points, the triangle formed by these paths is the set {c(x, y), c(x, z), c(y, z)} and the
members of this set will be called the sides of the triangle.

Definition 1.51 (Slimness constant for a path-family). (1) Suppose X is a metric space
and x, y, z ∈ X. We shall say that a triangle formed by three paths c(x, y), c(x, z), c(y, z) is δ-
slim for some δ ≥ 0, if each side of the triangle is contained in the union of δ-neighborhoods
of the remaining two sides.

(2) Suppose C is a family of paths in a metric space X such that for all x, y ∈ X there
is at least one path in C joining x, y. Then we define the slimness constant of C as

δs(C) := sup
c(x1,x2),c(x2,x3),c(x3,x1)∈C

inf{r : the triangle {c(x1, x2), c(x2, x3), c(x3, x1)} is r-slim}

where xi ∈ X, i = 1, 2, 3 and c(xi, x j) are paths in C joining xi, x j.

We are now ready to define a form of Rips-hyperbolicity for path-metric spaces:

Definition 1.52 (Rips hyperbolicity of path-metric spaces). Suppose (X, d) is a path-
metric space, and ϵ ≥ 0. For all x, y ∈ X let Fϵ(x, y) be the family of all ϵ-short paths in X
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joining x to y. We say that X is δ-hyperbolic in the sense of Rips if (1) Fϵ(x, y) , ∅ for all
x, y ∈ X and ϵ > 0, and

(2) lim sup
ϵ→0+

δs(Fϵ) ≤ δ.

Remark 1.53. (1) (X, d) is a geodesic metric space if and only if F0(x, y) , ∅
for all x, y ∈ X. Elements of Fϵ are (1, ϵ)-quasigeodesics in X.

(2) For a geodesic metric space, Definition 1.52 is equivalent to the standard notion
of δ-hyperbolicity in the sense of Rips (with a slightly different hyperbolicity
constant). There, a space is δ0-hyperbolic (in the sense of Rips) if δ(F0) = δ0.

(3) If for a path-metric space X we have δ(Fϵ) < ∞ for some ϵ ≥ 0, then X is
δ(Fϵ)-hyperbolic in the sense of Rips.

1.9.4. Stability of quasigeodesics and qi invariance of hyperbolicity. One of the
most fundamental facts about hyperbolic spaces is that quasigeodesics are uniformly close
to geodesics. This fact is also known as the (hyperbolic) Morse lemma, as it first appeared
in a work of Morse on geodesics in the hyperbolic plane, [Mor24]. Morse did not have
the notion of quasigeodesics and he was interested in how geodesics on a surface change
with a change of its hyperbolic metric. Since changing a Riemannian metric on a compact
manifold results in a quasiisometric change of the metric on its universal cover, Morse’s
result can be interpreted as stability of quasigeodesics. Morse’s proof was quite general
and most modern proofs of stability of quasigeodesics follow the same line of reasoning.

The next lemma is a converse to Lemma 1.21 in the setting of hyperbolic spaces.

Lemma 1.54 (Morse Lemma or stability of quasigeodesics). There is a function
D1.54 = D1.54(δ, k) defined for δ ≥ 0 and k ≥ 1, such that the following holds:

Suppose X is a δ-hyperbolic geodesic metric space. Then for every k-quasigeodesic
ϕ : [a, b]→ X, the Hausdorff distance between the image of ϕ and that of any geodesic ϕ∗

connecting the end-points of ϕ, is ≤ D1.54.
More precisely, according to [GS19], for a (k, ϵ)-quasigeodesic ϕ in X,

Hd(ϕ, ϕ∗) ≤ 92k2(ϵ + 3δ).

Thus, for a k-quasigeodesic one can take

D1.54(δ, k) = 92k2(k + 3δ).

With minor modifications, the proofs go through for path-metric spaces, when geode-
sics are replaced with η-short paths ϕ∗η (cf. [V0̈5]). One obtains an estimate D1.54(δ, k, η)
and, hence,

D1.54(δ, k) = lim
η→0+

D1.54(δ, k, η).

As a consequence:

Lemma 1.55. There exists a function D = D1.55(δ, k, r) ≥ r such that the following
holds. If X is a δ-hyperbolic geodesic space, and ϕi : Ii = [ai, bi]→ X are k-quasigeodesics
satisfying

d(x1, x2) ≤ r, d(y1, y2) ≤ r, xi = ϕi(ai), yi = ϕi(bi), i = 1, 2,

then the images ϕ1(I1), ϕ2(I2) are D-Hausdorff close.

Proof. Let ϕ∗i be geodesics connecting the end-points xi, yi of ϕi, i = 1, 2. Then, since
quadrilaterals in X are 2δ-slim,

Hd(ϕ∗1, ϕ
∗
2) ≤ 2δ + r.
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Applying Lemma 1.54, we conclude that

Hd(ϕ1, ϕ2) ≤ D1.55(δ, k, r) = max(2D1.54(δ, k) + δ,D1.54(δ, k) + δ + r).

More explicitly, since D1.54(δ, k) = 92k2(k + 3δ), we get:

D1.55(δ, k, r) = max(184k2(k + 3δ) + δ, 92k2(k + 3δ) + δ + r). □

Lemma 1.56. Suppose that Y, X are path-metric spaces, X is δ-Rips-hyperbolic and
f : Y → X is a (K, ϵ)-qi embedding. Then Y is also δ1.56(δ,K, ϵ)-hyperbolic.

In particular, (Rips) hyperbolicity is qi invariant among path-metric spaces:
If f : Y → X is a (K, ϵ)-quasiisometry and Y is δ-hyperbolic in the sense of Rips, then X
is δ′1.56(δ,K, ϵ)-hyperbolic in the sense of Rips.

Proof. Consider a triple of points x, y, z ∈ Y and let η ≥ 0. Consider the triangle ∆η in
Y formed by η-short arc-length parameterized paths c(x, y), c(y, z), c(z, x) connecting these
points. These paths are (1, η)-quasigeodesics in Y .

Then f (c(x, y)), f (c(x, z)), f (c(y, z)) are (K, ϵ′)-quasigeodesics in X, for

ϵ′ = K(1 + η) + ϵ,

see Lemma 1.12. Hence, by Lemma 1.54, the quasigeodesic triangle formed by the quasi-
geodesic paths f (xy), f (xz), f (yz) is D = (2 · 92K2(ϵ′ + 3δ) + δ)-slim. This implies that the
triangle ∆η is K(D+ ϵ)-slim. Sending η to 0, we conclude that Y is δ1.56(δ,K, ϵ)-hyperbolic
for

δ1.56(δ,K, ϵ) = K(184K2(K + ϵ + 3δ) + δ + ϵ).
The second statement of the lemma follows from the first, combined with Lemma 1.13. □

Remark 1.57. For ϵ = K we will use then notation δ1.56(δ,K, ϵ) = δ1.56(δ,K) and
δ′1.56(δ,K, ϵ) = δ′1.56(δ,K). Thus, for δ1.56(δ,K) we can take the number

K(184K2(2K + 3δ) + δ + K).

Lemma 1.56 combined with Lemma 1.46 immediately imply:

Corollary 1.58. Hyperbolicity is qi invariant among path-metric spaces.

Corollary 1.59. Gromov-hyperbolicity is quasiisometry invariant among quasi-path
metric spaces.

Proof. Suppose that X,Y are quasiisometric quasi-path metric spaces and X is a Gro-
mov–hyperbolic space. By Corollary 1.34, there are metric graphs X′,Y ′ which are ge-
odesic metric spaces, and are (1, ϵ)-quasiisometric to X and Y respectively for a suitable
ϵ ≥ 0. Thus:

(1) by Lemma 1.41 X′ is Gromov hyperbolic.
(2) X′,Y ′ are quasiisometric geodesic metric spaces.
However, then by Corollary 1.46, X′ is Rips-hyperbolic since it is a geodesic metric

space. Then, by Lemma 1.56, Y ′ is also Rips hyperbolic. Since Y ′ is a geodesic metric
space, again by Lemma 1.46, it is also Gromov-hyperbolic. Finally, Y is also Gromov-
hyperbolic by Lemma 1.41. □

As another corollary we get:

Corollary 1.60. Suppose that Y is a path-metric space, X ⊂ Y is a rectifiably con-
nected R-net in Y, equipped with a path-metric such that the inclusion map X → Y is η-
uniformly proper, and X is δ-hyperbolic. Then Y is δ1.60(δ, η(2R+1),R) = δ1.56(δ, η(2R+1))-
hyperbolic.
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Proof. According to Lemma 1.18, the inclusion map X → Y is an L-qi embedding,
L = η(2R + 1), hence, an L-quasiisometry. Now the corollary follows immediately from
Lemma 1.56. □

1.10. Combings and a characterization of hyperbolic spaces

One of the key tools in our work is a characterization of hyperbolicity in terms of
slim combings due to Bowditch (see [Bow14, Proposition 3.1]). See [MS13, Theorem
3.15], [Ham05, Lemma 3.3] and [DDLS23, Proposition 2.2] for similar characterizations
obtained by other authors. The idea is that if X is a δ-hyperbolic geodesic metric space, then
for each pair of points we have a (typically non-unique) geodesic path xy between these
points and these paths satisfy the δ-slim triangle property. Bowditch’s characterization
reverses this definition.

Let P(X) denote the space of paths in a topological space X.

Definition 1.61. 1. Two paths in a metric space are said to Hausdorff D-fellow-travel
if their images are D-Hausdorff-close.

2. A combing C of a metric space X is a map

c : X0 × X0 → P(X)

sending each pair (x, y) ∈ X2
0 to a path cx,y in X (also frequently denoted c(x, y)) connecting

x to y, where X0 ⊂ X is a D-net for some D.
3. For a function C = C(r), a combing C is said to satisfy the C(r)-Hausdorff fellow-

traveling property if for every triple of points x, y, z ∈ X0 with d(y, z) ≤ r,

Hd(cx,y, cx,z) ≤ C(r)

and diam(cx,x) ≤ C(0).
4. A combing C is said to be an η-proper combing for a function η : R≥0 → R≥0 if

each path cx,y ∈ C is an η-proper embedding into X.
A combing C will be called a proper combing if it is an η-proper combing for some

function η : R≥0 → R≥0.
More generally, if D ⊂ C then we say that D is proper if there is a function η : R≥0 →

R≥0 such that each path in D is an η-proper embedding.
5. A combing C will be called a D-slim combing for some constant D ≥ 0 if δS (C ) ≤

D as per Definition 1.51.
A combing C will be called a slim combing if δS (C ) < ∞.

While we define combings as maps, we will think of each combing as a subset C =
c(X2) ⊂ P(X).

The following characterization of hyperbolicity is due to Bowditch, [Bow14, Proposi-
tion 3.1].

Theorem 1.62. Given h ≥ 0, there is k = k1.62(h) < ∞ with the following property.
Suppose that X is a connected graph, and that for all x, y ∈ V(X), we have associated a
connected subgraph, Yxy ⊂ X containing both x and y, satisfying the following properties.

(1) For all x, y ∈ V(X) with d(x, y) ≤ 1, the diameter of Yxy in X is at most h.
(2) For all x, y, z ∈ V(X), Yxy ⊂ Nh(Yxz ∪ Yzy).
Then X is k-hyperbolic. In fact, we can take any k ≥ (3m − 10h)/2, where m is any

positive real number satisfying 2h(6 + log2(m + 2)) ≤ m. Moreover, for all x, y ∈ V(X), the
Hausdorff distance between Yxy and any geodesic from x to y is bounded above by m − 4h.
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In the book we will be using the following corollary of Bowditch’s characterization.
Note that Property (2) below amounts to the condition that the family C is D2-slim, i.e.
δs(C ) ≤ D2, see Definition 1.51. However, a similar characterization is to be found in
[DDLS23, Proposition 2.2] also.

Corollary 1.63. Given D0 ≥ 0, D1 > 0, D2 > 0 and a Lipschitz function η : R≥0 →

R≥0 there are δ = δ1.63(D0,D1,D2) ≥ 0, and R = R1.63(D0,D1,D2) ≥ 0 such that:
Suppose X is a path-metric space and X0 ⊂ X is a D0-net such that for each pair of

points x, y ∈ X0 we are given a rectifiable path c(x, y) in X joining x, y with the following
properties.

Property (1). For all x, y ∈ X0 with d(x, y) ≤ 1 + 2D0, the length of c(x, y) in X is at
most D1.

Property (2). For all x, y, z ∈ X0, c(x, y) ⊂ ND2 (c(x, z) ∪ c(z, y)).
Then X is δ-hyperbolic in the sense of Rips. Moreover, for all x, y ∈ X0 and all 1-
quasigeodesics γxy in X joining x, y, Hd(γxy, c(x, y)) ≤ R.

Proof. Let R = 1 + 2D0. Since path metric spaces are 1-quasi-path metric spaces, by
Lemma 1.36 there is a (K1.36(1,R), ϵ1.36(1,R))-quasiisometry ι : Z → X0 ⊂ X which is the
identity on the vertex set of Z, where Z is the full subgraph of the R-Rips graph of X with
the vertex set X0. Also there is coarse inverse ρ : X → Z to ι which is the identity map
when restricted to X0 and and which is also a (K1.36(1,R), ϵ1.36(1,R))-quasiisometry. Let
k0 = K1.36(1,R) + ϵ1.36(1,R). Then ι and ρ are k0-quasiisometries.

Now we shall verify that Z satisfies the conditions of Proposition 1.62 by finding
a suitable set of edge-paths joining each pair of vertices. Since hyperbolicity of path-
metric spaces is invariant under quasiisometry it will then follow that X itself is uniformly
hyperbolic. Suppose x, y ∈ V(Z) and α : [0, l]→ X is the arc-length parametrization of the
path c(x, y). Let n = ⌊l⌋. Consider the points yi = α(i), 0 ≤ i ≤ n and yn+1 = α(l) = y if
l > nD0. For each i, there is a point xi ∈ X0 = V(Z) such that dX(yi, xi) ≤ D0. Then

dX(xi, xi+1) ≤ 1 + 2D0.

In particular, there is an edge in Z joining xi, xi+1 for 0 ≤ i ≤ n. This defines an edge-path
β = β(x, y) in Z joining x, y ∈ V(Z) and the length of β(x, y) is at most l + 1.

We take the subgraph Yxy ⊂ Z to be the image of the path β(x, y). This is clearly a
connected subgraph in Z. We now verify the conditions of Proposition 1.62 for this family
of subgraphs.

(1) Suppose x, y ∈ V(Z) with dZ(x, y) ≤ 1. This implies dX(x, y) ≤ R. Hence the length
of c(x, y) is at most D1 by property (1). Thus the diameter of Yxy is at most D1 + 1.

(2) If V(β) denotes the vertex set {xi} of β then we note that

Hd(c(x, y),V(β)) ≤ 1 + D0.

Thus, clearly, for all x, y, z ∈ V(Z), we have

βxy ⊂ N2+D0+D2 (βxz ∪ βzy).

Thus if we take h = max{D1+1, 2+D0+D2}, then Z is k1.62(h)-hyperbolic in the sense
of Rips. Since ρ : X → Z is a k0-quasiisometry, X is δ = δ1.56(k1.62(h), k0)-hyperbolic in
the sense of Rips by Lemma 1.56.

For the second part of the corollary we set m to be the least positive number satisfying
2h(6 + log2(m + 2)) ≤ m. Let x , y ∈ X0 be arbitrary points. Then by Theorem 1.62
any geodesic γxy in Z joining x, y we have Hd(γxy, βxy) ≤ m − 4h. Suppose αxy is a 1-
quasigeodesic joining x, y in X. Then clearly ρ(αxy) is a 2k0-quasigeodesic in Z. Thus,
Hd(γxy, ρ(αxy)) ≤ D1.54(k1.62(h), 2k0).
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Hence, Hd(βxy, ρ(αxy)) ≤ m − 4h + D1.54(k1.62(h), 2k0) and, therefore,

Hd(V(βxy), ρ(αxy)) ≤ 1 + m − 4h + D1.54(k1.62(h), 2k0) = R0.

But V(βxy) = ρ(V(βxy)) since ρ is the identity map when restricted to X0. Hence,

Hd(ρ(V(βxy)), ρ(αxy)) ≤ R0.

Since ρ is a k0-qi embedding we have Hd(V(βxy), αxy) ≤ k0(R0 + k0). The inequality
Hd(c(x, y),V(βxy)) ≤ D0 +1 implies Hd(c(x, y), αxy) ≤ 1+D0 + k0(R0 + k0). Hence we may
set R = 1 + D0 + k0(R0 + k0). □

Corollary 1.64. Given D0 ≥ 0, D > 0, and a coarse Lipschitz function η : R≥0 →

R≥0, there are δ = δ1.64(D0,D, η) ≥ 0, and K = K1.64(D0,D, η) < ∞ such that:
Suppose X is a path-metric space and X0 ⊂ X is a D0-net such that for each pair of

points x, y ∈ X0 we are given a rectifiable arc-length parametrized path c(x, y) in X joining
x, y with the following properties:

Property (1). For all x, y ∈ X0 the path c(x, y) is η-proper.
Property (2). For all x, y, z ∈ X0, c(x, y) ⊂ ND(c(x, z) ∪ c(z, y)).

Then X is δ-hyperbolic in the sense of Rips and moreover, the paths c(x, y) are K-quasigeo-
desics in X.

Proof. This follows from Corollary 1.63. Property 1 of Corollary 1.63 is verified
with D1 = η(2D0 + 1) and property 2 is verified with D2 = D. Thus we can take δ =
δ1.64(D0,D, η) = δ1.63(D0, η(2D0 + 1),D).

For the second part of the corollary suppose γxy is an arc-length parametrized path in
X joining x, y ∈ X0 such that length(γxy) ≤ 1+ d(x, y). Then clearly it is a 1-quasigeodesic.
By the second part of Corollary 1.63 we have

Hd(γxy, c(x, y)) ≤ R1.63(D0, η(2D0 + 1),D) = R.

Then, by Lemma 1.21, the paths c(x, y) are K1.21(R, 1, η)-quasigeodesics. □

Remark 1.65. 1. In the proofs of hyperbolicity of various spaces given in this books,
based on Corollary 1.64, we first verify the uniform properness of the paths c(x, y) and,
frequently, also verify that they satisfy the Hausdorff fellow-traveling condition, before
proving that (2) holds.

2. In our proofs, instead of using arc-length parameterizations of the paths c(x, y) we
will be using some uniformly quasiisometric reparameterizations of these paths. Clearly,
uniform properness of one implies uniform properness of the other.

3. We will refer to a family of paths c satisfying the assumptions of the corollary as a
proper slim combing of X.

Lastly, we generalize this corollary to the case of discrete paths c : [m, n] ∩ Z → X.
We will be using the extension c̃ of maps c to the real interval [m, n] defined by sending
the open interval (i, i + 1) to c(i).

Corollary 1.66. Given r > 0, D0 ≥ r, D1 > 0, and a function η : R≥0 → R≥0 there
are δ = δ(D0,D1, η) ≥ 0, and K = K(D0,D1, η) ≥ 1 such that:

(a) Suppose X is a r-quasi-path metric space and X0 ⊂ X is a D0-net such that for
each pair of points x, y ∈ X0 we are given a discrete r-path c(x, y) in X joining x, y with the
following properties:

Property (a1). For all D ≥ 0 and x, y ∈ X0 with d(x, y) ≤ D, the length of c(x, y) in X
is at most η(D).

Property (a2). For all x, y, z ∈ X0, c(x, y) ⊂ ND1 (c(x, z) ∪ c(z, y)).
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Then X is δ-hyperbolic in the sense of Gromov.
(b) Moreover, if paths c(x, y) are η-proper, then each map c̃ is a K-quasigeodesic in X.

Proof. By Corollary 1.34, there is a (1, ϵ)-quasiisometry ι : X → X′, where X′ is
a metric graph all whose each edges are of length r and ϵ = ϵ1.34(r). Therefore, X′ is a
geodesic metric space. Now, define X′0 = ι(X0). We take any map g : X′0 → X0 such that
x = ι(g(x)) for all x ∈ X′0. Then for all x, y ∈ X′0 we define a path c′(x, y) as follows. Let
cxy : Ixy ∩ Z → X be the parametrization of c(g(x), g(y)). For any two consecutive points
s, t ∈ Ixy ∩ Z we join ι ◦ cxy(s), ι ◦ cxy(t) by a geodesic in X′. Concatenation of these forms
a path c′(x, y). We leave it to the reader to verify that the two properties of Corollary 1.63
hold for this family of paths in X′. This implies that X′ is uniformly Rips-hyperbolic and,
hence, uniformly Gromov-hyperbolic by Lemma 1.46. Since X is (1, ϵ)-qi to X′, it is also
uniformly Gromov-hyperbolic by Lemma 1.41. The last part of the corollary follows from
Lemma 1.21. □

We note that if the assumption in Part (b) of the above corollary holds. Then clearly
the condition (a1) necessarily holds as well.

1.11. Hyperbolic cones

Suppose that (Z, dZ) is a path-metric space. In this section we define the hyperbolic
cone or a horoball Zh over Z. This definition will be used in Chapter 9 when discussing
relatively hyperbolic spaces

As a topological space, Zh is the product Z × [1,∞), where we identify Z with Z × {1}.
We equip Zh with the length structure (imitating the description of the hyperbolic metric
on horoballs in the real-hyperbolic space): Paths in this length structure are concatenation
of vertical and horizontal path, with respect to the product decomposition of Zh. Given
two points y1, y2 ∈ [1,∞), and z ∈ Z, we let the length of the interval between (z, y1), (z, y2)
in {z} × [1,∞) equal | log(y2/y1)|. We let the length of each horizontal path, contained in
the “horosphere” Z × {y} equal y−1 times the length of the corresponding path in Z. This
length structure defines a path-metric on Zh. It is easy to verify that for all z ∈ Z the map
t 7→ (z, et) is a geodesic in this space.

Remark 1.67. We refer the reader to the book of Roe [Roe03, 2.5] and the paper
by Bowditch [Bow12] for alternative definitions of hyperbolic cones. For instance, Roe’s
construction works for general metric spaces (Z, dZ).

Proposition 1.68. The metric space Zh is δ-hyperbolic for some uniform constant δ.

Proof. We will describe a proper slim combing on Zh. Each combing path will be a
concatenation of at most two vertical paths and at most one horizontal path. Consider two
points x1 = (z1, y1), x2 = (z2, y2) in Zh. If z1 = z2 then the map c(x1, x2) connecting x1 to x2
will be the unique vertical interval connecting these points. Suppose that y1 ≤ y2. Find the
smallest y ≥ y2 such that

y−1dZ(z1, z2) ≤ 1/2.
Set x′i := (zi, y), i = 1, 2. Then c(x1, x2) is the concatenation

[x1x′1] ⋆ [x′1x′2] ⋆ [x′2x2],

where the first and the last segments are vertical intervals between xi, x′i , i = 1, 2, and the
middle segment [x′1x′2] is any path in Z × {t} connecting x′1 to x′2 and having length ≤ 1.

We now verify the proper slim combing properties of the paths c, as required by Corol-
lary 1.64.
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Figure 1. Combing of hyperbolic cone

1. Uniform properness. First we make a few observation.
(1) Consider the coordinate projection π1 : Zh → Z, i.e. π1(z, y) = z for all (z, y) ∈ Zh.

Then the composition log ◦π2 is 1-Lipschitz. Consequently for all w1,w2 ∈ Z and t ∈ [1,∞)
dZh ((w1, t), (w2, t)) ≤ R implies dZ(w1,w2) ≤ eR.

(2) Any subpath of c(x1, x2) is again a path in this path family. Thus it is enough to
bound the length of c(x1, x2) in terms of dZh (x1, x2).

(3) Suppose D = dZh (x1, x2) and ϵ > 0 and α is a path in Zh connecting x1, x2 which is
a concatenation of finitely many vertical and horizontal paths such that l(α) ≤ D+ ϵ. Then
the sum of lengths of the vertical segments in α is at most D + ϵ. Since this is true for all
ϵ > 0 it follows that dZh ((z1, y1), (z1, y2)) ≤ D. Let x3 = (z1, y2).

Thus dZh (x3, x2) ≤ 2D. Hence by observation (1) we obtain the following:

(1.2) dZh (x1, x2) ≤ D⇒ dZ(z1, z2) ≤ e2D.

Since y is determined by dZ(z1, z2) the proof follows.

2. Slim triangle condition. Consider three points xi = (zi, yi) ∈ Zh, i = 1, 2, 3. We let
yi j denote the maximum of π2 ◦ c(xi, xi), i , j. After relabeling the points, we can assume
that

y12 ≤ y23 ≤ y31.

Define x′1 := (z1, y12) and x′2 := (z2, y12).
Replacing the points x1, x2, respectively, with x′1 = (z1, y12) and x′2 = (z2, y12) we see

that the c(x1, x2), c(x2, x3), c(x3, x1) is δ-slim if and only if the triangle formed by the paths
c(x′1, x

′
2), c(x′2, x3), c(x3, x′1) is δ-slim. Thus, without loss of generality, x′1 = x1, x′2 = x2

and the path c(x1, x2) is horizontal, of length ≤ 1. We claim that in this situation, the paths
c(x1, x3), c(x2, x3) are uniformly Hausdorff-close, which, of course, will imply the uniform
slimness. Denoting

x′′i := (zi, y23), i = 1, 2, 3,

we see that the parts Hd(c(x1, x′′1 ), c(x2, x′′2 )) ≤ 1, while the parts between x′′3 and x3 of
c(x1, x3), c(x2, x3) are equal. Thus, we need to bound the Hausdorff distance between
c(x′′1 , x

′′
3 ), c(x′′2 , x

′′
3 ).
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We have:
1 ≥ y−1

12 d(z1, z2) ≥ y−1
23 d(z1, z2).

Applying the triangle inequality in (Z, dZ), we obtain

2 = 1 + 1 ≥ y−1
23 (d(z1, z2) + d(z2, z3)) ≥ y−1

23 d(z3, z1).

It follows that y23 ≤ y31 ≤ 2y23. Hence,

d(x′′1 , (z1, y31)) ≤ log(2).

It follows that the length of c(x′′1 , x
′′
3 ) is ≤ 1+ 2 log(2), while the length of c(x′′2 , x

′′
3 ) is ≤ 1.

Clearly, these path are at the Hausdorff-distance ≤ 2 + 2 log(2). □

Remark 1.69. By Corollary 1.64, the slim combing paths c(x1, x2) in Zh defined in
this proof are k-quasigeodesics in Zh with the quasigeodesic constant k independent of Z.

Lemma 1.70. Suppose that z ∈ Z is within distance ≤ C from a segment [z1z2]Zh with
the end-points z1, z2 in Z. Then dZ(z, {z1, z2}) ≤ C′, where C′ depends only on C.

Proof. The combing path c(z1, z2) is uniformly Hausdorff-close to [z1z2]Zh . Hence, it
suffices to prove the lemma with [z1z2]Zh replaced by the combing path c(z1, z2). Then the
inequality dZh (z, c(z1, z2)) ≤ C implies that

dZh (z, {z1, z2}) ≤ 2C + 2.

□
We note that in the course of the proof of Proposition 1.68 we have shown the follow-

ing.

Proposition 1.71. The inclusion map Z → Zh is η-uniformly proper, where η(t) =
a exp(at) and a is a universal constant.

Proof. The proposition follows from the proof of equation 1.2.
□

1.12. Geometry of hyperbolic triangles

Informally speaking, triangles in hyperbolic spaces resemble triangles in trees, i.e.
tripods. The comparison map to trees makes this precise and allows one to reduce proofs
of various statements about hyperbolic triangles to statements about tripods in trees. Below,
by a tree we mean a regular simplicial tree T of valence ≥ 3, equipped with the standard
graph-metric. However, any real tree (a 0-hyperbolic geodesic metric space) not isometric
to an interval, will work just as well. For any three numbers a1, a2, a3 satisfying the triangle
inequalities ai ≤ a j + ak, {i, j, k} = {1, 2, 3}, there exists a triangle ∆ ⊂ T with the side-
lengths a1, a2, a3. Accordingly, for each triangle ∆ = ∆x1x2x3 in a metric space X, we
define its comparison triangle

∆̄ = ∆x̄1 x̄2 x̄3

in T , as a triangle in T such that

d(xi, x j) = dT (x̄i, x̄ j), 1 ≤ i, j ≤ 3.

For each point p in the side xix j of ∆, define its comparison point p̄ ∈ x̄i x̄ j ⊂ ∆̄ by the
condition

d(p, xi) = dT (p̄, x̄i).
Thus, we get the comparison map θ : ∆ → ∆̄, θ(p) = p̄, which restricts to an isometry on
each side of ∆. The internal points of ∆ are the points of the θ-preimage of the center of ∆̄.
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A triangle ∆ is δ-thin if and only if the diameters of all fibers of θ are ≤ δ. For each pair of
points p, q ∈ ∆ in a δ-thin triangle ∆ ⊂ X, triangle inequalities imply:

d(p, q) − 2δ ≤ dT ( p̄, q̄) ≤ d(p, q) + δ.

Thus, the map θ is a (1, 2δ)-quasiisometry ∆→ ∆̄ for δ-thin triangles ∆ ⊂ X.

Definition 1.72. Let (X, d) be a metric space. A point p ∈ X is said to be a C-center
of a geodesic triangle ∆ if p lies within distance C from all three sides of the triangle. A
0-center is simply called a center of ∆. We will use this definition when (X, d) is a tree, in
which case the 0-center is obviously unique.

However, we have the following.

Lemma 1.73. Suppose (X, d) is a metric space and∆ is a geodesic triangle with vertices
x, y, z. If ∆ has a 0-center then it is unique.

Proof. Suppose p is a 0-center of ∆. It follows that d(x, p)+d(p, y) = d(x, y), d(y, p)+
d(p, z) = d(y, z) and d(z, p) + d(p, x) = d(z, x). It follows that d(z, p) = (x.y)z. Since p is
on the geodesic [y, z], d(z, p) = (x.y)z uniquely determines p. □

Note that if a geodesic metric space X is δ-hyperbolic, every geodesic triangle ∆ in X
has a δ-center, e.g. a point on one side of ∆, within distance δ from the two other sides.
The internal points of a δ-thin triangle are mapped via the comparison map θ to the center
of the comparison triangle in the tree and each internal points is a δ-center of ∆.

Definition 1.74. A C-tripod in X is the union Tp(xyz) of three geodesic segments
px∪ py∪ pz, where p is a C-center of a geodesic triangle ∆xyz. The points x, y, z are called
the extremities of the tripod and the segments px, py, pz are the legs of the tripod. If X is a
tree and C = 0 then by a tripod in X we mean a 0-tripod and the center of a tripod means
its 0-center.

As noted above, if a triangle ∆ = ∆xyz is δ-slim, then there exists a point p ∈ xy such
that the union px ∪ py ∪ pz is a δ-tripod.

The next lemma follows immediately from the definitions:

Lemma 1.75. If X is δ-hyperbolic in the sense of Rips, then each C-tripod Tp(xyz) ⊂ X
is (C + δ)-Hausdorff close to the triangle ∆xyz.

Lemma 1.76. If X is δ-hyperbolic in the sense of Rips, then for each C-tripod Tp(xyz),
the point p is a C + 2δ-center of every triangle ∆x′y′z′, where x′ ∈ px, y′ ∈ py, z′ ∈ pz.

Proof. Consider a point u ∈ xy within distance C from p. By the 2δ-slimness of the
quadrilateral xx′y′y, either there exists a point u′ ∈ x′y′ at distance ≤ 2δ from u, or there is
a point v ∈ xx′ ∪ yy′ at distance ≤ δ from u. In the latter case, for some u′ ∈ {x′, y′}, we get
d(p, u′) ≤ C + δ. Thus, in each case, there is u′ ∈ x′y′ within distance C + 2δ from p. □

Lemma 1.77. Suppose that X is a δ-hyperbolic geodesic metric space. If p, q are C-
centers of the same geodesic triangle, then d(p, q) ≤ D1.77(δ,C).

Proof. We will use the comparison map θ : ∆ → ∆̄. Since X is δ-hyperbolic, the
triangle ∆ will be 6δ-thin (Lemma 1.45) and, hence, θ : x 7→ x̄ satisfies the inequalities

d(a, b) − 12δ ≤ dT (ā, b̄) ≤ d(a, b) + 6δ,

a, b ∈ ∆. We now prove the lemma. Let p1, p2, p3 be the points on the sides of ∆ within
distance C from p. Then d(pi, p j) ≤ 2C, 1 ≤ i < j ≤ 3. We will estimate the distances
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from the points pi to the internal points ci of ∆, where we label the points so that pi, ci lie
on the same side of ∆. Let c̄ ∈ ∆̄ denote the center of ∆̄, c̄ = θ(ci), i = 1, 2, 3. Then

dT (θ(pi), θ(p j)) ≤ 2C + 6δ.

It is easy to see that all three points θ(pi) cannot lie on the same leg of the tripod ∆̄,
unless one of them equals to the center of ∆̄. Thus, there exists i such that dT (θ(pi), c̄) ≤
1
2 (2C + 6δ) = C + 3δ. Since θ is an isometry on each side of ∆, we then obtain

d(pi, ci) ≤ C + 3δ

and, hence, d(p, ci) ≤ 2C + 3δ for one of the internal points ci of ∆. Since the internal
points are distance ≤ 6δ apart, we conclude that for any two C-centers p, q of ∆

d(p, q) ≤ D1.77(δ,C) := 4C + 12δ. □

Lemma 1.78. Suppose that X is δ-hyperbolic. For a geodesic triangle ∆xyz suppose
that x′ ∈ xz, y′ ∈ yz are equidistant from z and satisfy the inequality d(x′, y′) > 2δ. Then
the path xx′ ⋆ x′y′ ⋆ y′y is C1.78(δ)-quasigeodesic in X.

Proof. First we show that x′ ∈ Nδ(xy). By δ-hyperbolicity of the ∆xyz, x′ ∈ Nδ(xy ∪
yz). If possible suppose d(w, x′) ≤ δ for some w ∈ yz. Then |d(z,w) − d(x′, z)| ≤ d(w, x′) ≤
δ. This implies d(y′,w) ≤ δ, since d(z, x′) = d(z, y′). It follows that d(x′, y′) ≤ d(w, x′) +
d(w, y′) ≤ 2δ, a contradiction. Hence, x′ ∈ Nδ(xy). Let x′′ ∈ xy be any point with
d(x′, x′′) ≤ δ.

Next we claim that y′ ∈ N5δ(x′′y). Since the quadrilateral □x′x′′yz is 2δ-slim,

y′ ∈ N2δ(x′x′′ ∪ x′′y ∪ x′z).

If y′ ∈ N2δ(x′x′′) then clearly d(x′′, y′) ≤ 3δ. As in the previous paragraph, if y′ ∈ N2δ(x′z)
then d(x′, y′) ≤ 4δ and thus d(y′, x′′) ≤ 5δ. If neither of these happen then y′ ∈ N2δ(x′′y).
This proves our claim. Let y′′ ∈ x′′y be any point such that d(y′, y′′) ≤ 5δ.

Let α : [0, l] → X be the arc-length parametrization of xx′ ∗ x′y′ ∗ y′y. Suppose
s, t ∈ [0, l] and s < t. Let x1 = α(s), y1 = α(t). We already have d(x1, y1) ≤ t − s.

If both x1, y1 are on the same segment then there is nothing to prove. So assume
otherwise. Suppose x1 ∈ xx′ and y1 ∈ x′y′. Since the quadrilateral □x′y′y′′x′′ is 2δ-slim,
there is a point y′1 ∈ x′′y′′ such that d(y1, y′1) ≤ 7δ. Also by the δ-slimness of ∆xx′x′′, there
is a point x′1 ∈ xx′′ such that d(x1, x′1) ≤ 2δ. It follows that

d(x1, y1) ≥ d(x′1, y
′
1) − d(x1, x′1) − d(y1, y′1) ≥

d(x′1, x
′′) + d(x′′, y′1) − 9δ ≥

d(x1, x′) − d(x,x′1) − d(x′, x′′) + d(x′, y1) − d(x′, x′′) − d(y1, y′1) − 9δ ≥

d(x1, x′) + d(x′, y1) − 20δ = t − s − 20δ.

In the same way, if x1 ∈ x′y′, y1 ∈ y′y we have d(x1, y1) ≥ t − s − 20δ. Next suppose
x1 ∈ xx′ and y1 ∈ y′y. Then there are points x′1 ∈ xx′′ and y′1 ∈ y′′y such that d(x1, x′1) ≤ 2δ
and d(y1, y′1) ≤ 6δ by the δ-slimness of the triangles ∆xx′′x′ and ∆y′y′′y respectively. It
follows that

d(x1, y1) ≥ d(x′1, y
′
1) − d(x1, x′1) − d(y1, y′1) ≥

d(x′1, x
′′) + d(x′′, y′′) + d(y′′, y′1) − 8δ ≥

d(x1, x′) − d(x1, x′1) − d(x′, x′′) + d(x′, y′) − d(x′, x′′)−

d(y′, y′′) + d(y′, y1) − d(y′, y′′) − d(y1, y′1) − 8δ ≥

d(x1, x′) + d(x′, y′) + d(y′, y1) − 28δ = t − s − 28δ.
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Hence, the arc-length parametrization of xx′ ⋆ x′y′ ⋆ y′y is a (1, 28δ)-quasigeodesic.
In particular, we can take C1.78(δ) = 1 + 28δ. □

As an application of the lemma we will prove that two geodesics xz, zy either are
uniformly close to each other on “long subintervals” x′z, y′z, or their concatenation xz⋆ zy
is a uniform quasigeodesic in X:

Lemma 1.79. Suppose that R ≤ min(d(x, z), d(y, z)) is such that points x′ ∈ xz, y′ ∈ yz
at the distance R from z satisfy d(x′, y′) > 2δ. Then the concatenation xz ⋆ zy is an
L1.79(R, δ)-quasigeodesic in X.

Proof. According to the previous lemma, the concatenation xx′ ⋆ x′y′ ⋆ y′y is a
C1.78(δ)-quasigeodesic in X. We regard xz ⋆ zy, xx′ ⋆ x′y′ ⋆ y′y as paths c, c′ on in-
tervals [0,T ], [0,T ′], parameterized by arc-length and connecting x to y. We note that
T ′ ≤ T ≤ T ′ + 2R and for each t ∈ [0,T ′]

d(c(t), c′(t)) ≤ 2R.

Since c′ is a C1.78(δ)-quasigeodesic, Lemma follows. □

The next lemma is a consequence of Lemma 1.25, but we will give a direct proof:

Lemma 1.80. Suppose that ∆xyz is a geodesic triangle in a δ-hyperbolic space X and
d(y, z) ≤ C. Then there is a monotonic map f : xz→ xy such that d( f , id) ≤ 2(δ +C).

Proof. We define f as follows.
1. Points p ∈ xz such that d(x, p) ≤ min(d(x, z), d(x, y)), will be sent to p̄ ∈ xy such

that d(x, p̄) = d(x, p).
2. Points p such that d(x, p) > d(x, y) will be all sent to y.

Thus, the map f : xz → xy is monotonic and continuous. We next estimate the distances
d(p, f (p)). Since X is δ-hyperbolic, there exists a point p′ ∈ xz∪ yz within distance δ from
p.

Case 1: p′ ∈ xy and d(x, p) < min(d(x, y), d(x, z)). Then by the triangle inequalities,

d(x, p) − δ ≤ d(x, p′) ≤ d(x, p) + δ.

In particular, d(p′, p̄) ≤ δ and, thus, d(p, f (p)) ≤ 2δ.
Case 2: d(x, p) ≥ min(d(x, z), d(x, y)), which implies that d(p, z) ≤ C, d(p, y) ≤ 2C.

Thus, d(p, f (p)) ≤ 2C.
Case 3. p′ ∈ yz and d(x, p) < min(d(x, y), d(x, z)). Since p′ ∈ yz and d(y, z) ≤ C, we

get d(p, y) ≤ δ +C. By the same argument as in Case 1,

d(x, p̄) −C − δ ≤ d(x, y) ≤ d(x, p̄) + δ +C,

with the point y playing the role of p′ in Case 1. Thus, d(y, p̄) ≤ δ +C, which implies

d(p, f (p)) ≤ 2(δ +C). □

We will apply this construction in the following situation. Let ∆ = ∆x1x2x3 be a
geodesic triangle in X, z be its δ-center, y ∈ x1x2 a point within distance δ from z. We then
use the maps f1 : x1z → x1y, f2 : x2z → x2y as in the lemma. These maps combine to
define a map f : x1z ∪ zx2 → x1x2. We parameterize concatenation α = x1z ⋆ zx2 by its
arc-length. Then the map f is monotonic (with respect to the parameterization), fixes the
endpoints of α and satisfies

d(p, f (p)) ≤ 4δ, p ∈ α.
We, thus, obtain:
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Corollary 1.81. Suppose that z is a δ-center of a geodesic triangle ∆ = ∆x1x2x3 in a
δ-hyperbolic space X. Then there exists a monotonic map

f : x1z ⋆ zx2 → x1x2

such that d( f , id) ≤ 4δ.

1.13. Ideal boundaries

In the book we will be mostly working with Gromov’s notion of ideal boundary
(Gromov-boundary) ∂∞Z of a space Z which is hyperbolic in the sense of Gromov. The
elements of ∂∞Z are equivalence classes [zn] of Gromov-sequences (zn) in Z (see e.g.
[DK18, V0̈5]):

A sequence (zn) in Z is called a Gromov-sequence if

lim
m,n→∞

(zm.zn)z = ∞

for some z ∈ Z.

Remark 1.82. It is easy to see that for any metric space X and u, v,w, x ∈ X we have
|(u.v)w − (u.v)x| ≤ d(w, x). Thus in the above definition if z′ ∈ Z were another point then
limm,n→∞(zm.zn)z = ∞ iff limm,n→∞(zm.zn)z′ = ∞. Hence, whether a sequence (zn) is a
Gromov sequence or not does not depend on the base point z. The same remark applies to
the next definition too.

Two Gromov-sequences (wm), (zn) are equivalent if

lim
m,n→∞

(wm.zn)z = ∞.

One extends the definition of the Gromov-product to the elements ξ, ζ of the Gromov-
boundary (equivalence classes of Gromov-sequences) ξ, ζ by

(ξ.ζ)z := inf lim inf
m,n→∞

(wm.zn)z,

where the infimum is taken over all sequences (wn), (zn) representing ξ, η. (Here we follow
the definition in [CDP90, ABC+91, V0̈5], which differs (by ≤ 2δ) from the one in [BH99]
and [Gd90], where the supremum is taken instead of the infimum.)

Similarly, one defines
(w.ζ)z := inf lim inf

n→∞
(w.zn)z,

for w ∈ Z, ζ ∈ ∂∞Z. One topologizes the space Z̄ := Z ∪ ∂∞Z so that a neighborhood basis
of z ∈ ∂∞Z in Z̄ is given by the subsets (with fixed p ∈ Z)

Uz,ϵ = {w ∈ Z ∪ ∂∞Z : (z.w)p > ϵ}.

In particular, a sequence (zn) in Z converges to ζ ∈ ∂∞Z if and only if (zn) is a Gromov-
sequence representing ζ.

Definition 1.83. Suppose that Z is a Gromov-hyperbolic metric space. We will use
the notation ∂∞Z for the Gromov-boundary of Z, equipped with the above topology. For a
subset Y ⊂ Z, we will use the notation

∂∞(Y,Z)

for the accumulation set of Y in ∂∞Z, the relative ideal boundary of Y in Z.
We also define ∂(2)

∞ Z ⊂ (∂∞Z × ∂∞Z)/τ, the set of unordered pairs of distinct elements
of ∂∞Z: The involution τ swaps the two factors of ∂∞Z × ∂∞Z.
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Another common definition of the visual boundary of a hyperbolic geodesic metric
space Z uses equivalence classes of geodesic rays in Z: Two rays are equivalent if they are
at finite Hausdorff distance from each other. The two definitions agree if Z is a proper met-
ric space, see e.g. [BH99, III.H.3]. For non-proper spaces one can also use quasigeodesic
rays, see e.g. [BS00, Section 5], [V0̈5].

For our purpose, it suffices to observe that if γ : R+ → Z is a quasigeodesic ray
in a geodesic hyperbolic space Z, then for each sequence (tn) in R+ diverging to ∞, the
sequence (γ(tn)) is a Gromov-sequence in Z; and any two such sequences are equivalent.
This is a simple consequence of stability of quasigeodesics (Lemma 1.54). Thus, γ defines
a point ξ ∈ ∂∞Z. We will say that γ is asymptotic to ξ and that γ joins p = γ(0) and ξ.
We will use the notation γ = pξ if γ is a geodesic ray joining p and ξ. If γ is a biinfinite
quasigeodesic, then it defines two quasigeodesic rays γ± (the restrictions of γ to R+ and
to R−) and these are asymptotic to points ξ±, also denoted γ(±∞). A hyperbolic space Z
is said to be a visibility space if any two distinct ideal boundary points are connected by
a biinfinite geodesic. For instance, each proper geodesic hyperbolic space is a visibility
space. Even if Z is a non-proper geodesic metric space, each point in X can be joined to
each point in ∂∞Z by a quasigeodesic ray and any two distinct points in ∂∞Z are connected
by a biinfinite quasigeodesic, see e.g. [BS00, Section 5].

A generalized geodesic triangle in a δ-hyperbolic geodesic metric space Z is defined
by taking a triple of points z1, z2, z3 ∈ Z̄ (such that no two ideal boundary points in this
triple are equal) and connecting them by geodesics in Z, the sides of the triangle ∆z1z2z3.
An ideal triangle is a generalized triangle with all three vertices in ∂∞Z.

The next lemma is an application of the slim triangle property in Z, cf. [DK18, section
11.11]:

Lemma 1.84 (Slim generalized triangle property). Suppose that Z is a δ-hyperbolic
geodesic metric space. Then:

1. Every generalized geodesic triangle ∆ in Z with two non-ideal vertices is 2δ-slim:
Each side of ∆ is contained in the 2δ-neighborhood of the union of the two other sides.

2. Every generalized geodesic triangle ∆ in Z with one non-ideal vertex is 3δ-slim.
3. Every ideal triangle in Z is 4δ-slim.

Proof. 1. Let ∆ = ∆xyζ, where x, y ∈ Z, ζ ∈ ∂∞Z. Take diverging sequences pn ∈ xζ,
qn ∈ yζ, where xζ, yζ are the infinite sides of ∆, such that d(pn, qn) ≤ C, where C is a
constant. Since the quadrilateral xpnqny is 2δ-slim (Lemma 1.48), it follows that for each
point z ∈ yζ, if n is sufficiently large, then z ∈ yqn and, furthermore, d(z, xpn ∪ xy) ≤
2δ. (The point z can be 2δ-close to the side pnqn only for finitely many values of n.) In
particular, z lies in the 2δ-neighborhood of xy ∪ xζ. The same argument proves that each
point z ∈ xy also lies in the 2δ-neighborhood of xy ∪ xζ.

2. Suppose that ∆ = ∆xηζ, where η, ζ are in ∂∞Z and x ∈ Z. As before, consider
diverging sequences pn ∈ xη, qn ∈ xζ. Find points p′n ∈ ηζ, q′n ∈ ηζ within distance C
from pn, qn respectively. Since the pentagon with the vertices x, pn, p′n, q

′
nqn is 3δ-slim, it

follows that each point z ∈ xζ lies in the 3δ-neighborhood of the union ηζ ∪ xη.
3. The proof for ideal triangles is similar (we use 4δ-slimness of hexagons in X) and

is left to the reader. □

Lemma 1.85. Suppose that Z is a δ-hyperbolic geodesic metric space, γi : R+ → Z, i =
1, 2, are geodesic rays within finite Hausdorff distance from each other. Then there exist
T1,T2 (depending on γ1, γ2) such that

Hd(γ1([T1,∞)), γ2([T2,∞))) ≤ 4δ
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and, moreover, d(γ1(T1), γ2(T2)) ≤ 2δ.

Proof. Since the rays are at finite Hausdorff distance, γ1(∞) = γ2(∞) = ξ for some
ξ ∈ ∂∞Z. Set p := γ(0), D := d(p1, p2). Consider the generalized geodesic triangle ∆ in Z
with the vertices p1 = γ1(0), p2 = γ2(0) and the third vertex at infinity, ξ. Then by the slim
triangle property, every point xi ∈ γi(R+) is within distance 2δ from γ3−i(R+) ∪ p1 p2, i =
1, 2.

Take T1 := D+ 2δ. The triangle inequality implies that x1 := γ1(T1) is within distance
2δ from some point x2 = γ2(T2). Since the generalized triangle with the vertices x1, x2, ξ
is 2δ-slim, it follows that every point of γ1([T1,∞)) is within distance 4δ from a point of
γ2([T2,∞)) and vice versa. □

Corollary 1.86. Suppose that c1, c2 are k-quasigeodesic rays in Z such that c1(∞) =
c2(∞). Then there exist T1,T2 such that

Hd(γ1([T1,∞)), γ2([T2,∞))) ≤ 4δ + 2D1.54(δ, k).

Moreover, d(γ1(T1), γ2(T2)) ≤ 2δ + 2D1.54(δ, k).

A similar result holds for biinfinite quasigeodesics:

Lemma 1.87. Suppose that X is a δ-hyperbolic space, α, β are biinfinite L-quasigeo-
desics in X such that

ξ± = α(±∞) = β(±∞) ∈ ∂∞X

Then Hd(α, β) ≤ D1.87(L, δ).

Proof. Using the above corollary, we find subrays α± in α and β± in β which are
asymptotic to ξ± respectively, such that the respective initial points x± (of α±) and y± (of
β±) satisfy

d(x±, y±) ≤ r := 2δ + 2D1.54(δ, k).

Removing the above rays from the quasigeodesics α, β, we are left with two finite quasi-
geodesic subsegments α0 ⊂ α (between the points x±) and β0 ⊂ β (between the points y±).
Now, applying Lemma 1.55 to α0, β0, we get:

Hd(α0, β0) ≤ D1.55(δ, L, r).

Hence, taking D1.87(L, δ) = max(r,D1.55(δ, L, r)), concludes the proof of the lemma. □
Each qi embedding f : X → Y of geodesic hyperbolic spaces has an extension to a

map of Gromov-boundaries, a topological embedding ∂∞ f : ∂∞X → ∂∞Y . The combined
map

f ∪ ∂∞ f : X ∪ ∂∞X → Y ∪ ∂∞Y

is continuous at each point of ∂∞X, see e.g. [DK18, Exercise 11.109]. In Chapter 8 we
will discuss the existence of such an extension in the case of more general coarse Lipschitz
maps of hyperbolic spaces.

1.14. Quasiconvex subsets

Definition 1.88 (Quasiconvex subset). Let X be a geodesic metric space, Y ⊆ X and
let λ ≥ 0. We say that Y is λ-quasiconvex in X if every geodesic with end-points in Y is
contained in the λ-neighborhood of Y . A subset Y ⊂ X is said to be quasiconvex if it is
λ-quasiconvex for some λ ≥ 0.
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This definition generalizes in the setting of path-metric spaces where Y ⊂ X is λ-
quasiconvex if there is a function η : R+ → R+ converging to 0 as ϵ → 0+, such that each
ϵ-geodesic γ ⊂ X with end-points in Y , satisfies

γ ⊂ Nλ+η(ϵ)(Y).

Convex subsets of, say, Hadamard spaces, have several characteristic properties such as:

• Intersections of convex subsets are again convex.
• The nearest-point projection to a nonempty closed convex subset is well-defined

and 1-Lipschitz.

Below we discuss analogues of these properties for quasiconvex subsets of geodesic
hyperbolic spaces.

The following two lemmata are straightforward and we omit the proofs:

Lemma 1.89. Every geodesic triangle in a δ-hyperbolic geodesic metric space is δ-
quasiconvex.

Lemma 1.90. 1. Suppose that A is a λ-quasiconvex subset of a δ-hyperbolic space X.
Then the R-neighborhood NR(A) is (R + 2δ + λ)-quasiconvex in X.

2. Suppose that A is a λ-quasiconvex subset of a δ-hyperbolic space X and B ⊂ X is
such that Hd(A, B) ≤ R. Then B is (2R + 2δ + λ)-quasiconvex in X.

We next discuss the relation between the quasiconvexity and qi embeddings.

Lemma 1.91. If A is a λ-quasiconvex subset of a geodesic hyperbolic metric space
(X, d), then:

1. The metric space (Nλ(A), d) is a quasi-path metric space.
2. When we equip Nλ(A) with the path-metric dp induced from X, the inclusion map

Nλ(A)→ X is a (1, 4λ)-qi embedding.

Proof. If λ = 0, then (A, d) is actually a geodesic metric space isometrically embedded
in (X, d) and there is nothing to prove. Thus, we assume that λ > 0.

1. Consider points x, y ∈ Nλ(A) and a ∈ A, b ∈ A be points within distance λ from
x, y respectively. Let γ = ab be a geodesic in X contained in Nλ(A). Then divide γ into
subsegments xixi+1, 1 ≤ i ≤ n − 1 of equal length ≤ λ. Then the finite sequence

x = x0, a = x1, x2, ..., xn = b, xn+1 = y

is a λ-path connecting x to y and
n∑

i=0

d(xi, xi+1) ≤ d(x, y) + 4λ.

2. By the same argument, for any two points x, y ∈ Nλ(A),

dp(x, y) ≤ d(a, b) + 2λ ≤ d(x, y) + 4λ.

Therefore, the inclusion map (Nλ(A), dp)→ (X, d) is a (1, 4λ)-qi embedding. □

Lemma 1.92. Suppose that Y, X are geodesic metric spaces, X is δ-hyperbolic and
f : Y → X is a K-qi embedding. Then f (Y) is λ1.92(δ,K) = D1.54(δ,K)-quasiconvex in X.
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Proof. For a geodesic γ = y1y2 ⊂ Y , f (γ) is a K-quasigeodesic in X connecting
xi = f (yi), i = 1, 2. Therefore, by Lemma 1.54,

Hd( f (γ), x1x2) ≤ λ = D1.54(δ,K) = 92K2(K + 3δ),

which implies that x1x2 ⊂ Nλ( f (Y)), i.e. f (Y) is λ-quasiconvex. □

The following is a converse to Lemma 1.92:

Lemma 1.93. Suppose that (X, d) is hyperbolic, Y is a geodesic metric space and f :
Y → X is a uniformly proper map with quasiconvex image. Then f is a qi embedding.

Proof. By Lemma 1.91, if A := f (Y) is λ-quasiconvex, then (Nλ(A), dp) is qi embed-
ded in X. Since f is uniformly proper, Lemma 1.18 then implies that f : Y → (Nλ(A), dp)
is a quasiisometry. Therefore, f : Y → X is a qi embedding as a composition of two qi
embeddings. □

1.15. Quasiconvex hulls

A common source of quasiconvex subsets in hyperbolic spaces is given by quasiconvex
hulls which we discuss in this section.

Definition 1.94. For a subset U , ∅ of a geodesic metric space X we define the
quasiconvex hull Hull(U) as the union of all geodesics in X connecting all pairs of points
in U. The ϵ-quasiconvex hull Hullϵ(U) of U in X is defined as the closed ϵ-neighborhood
of the quasiconvex hull Hull(U). Thus, cl(Hull(U)) = Hull0(U).

Lemma 1.95. Suppose that X is a δ-hyperbolic geodesic metric space. Then for every
Y ⊂ X we have the following:

1. Hull(Y) is a 2δ-quasiconvex in X.
2. Hullϵ(Y) is 4δ-quasiconvex in X for all ϵ ≥ 0.

Proof. 1. Suppose x1, x2 ∈ Hull(Y). Then there are a1, b1, a2, b2 ∈ Y such that x1 ∈

a1b1, x2 ∈ a2, b2. Since the quadrilateral a1b1b2a2 is 2δ-slim (1) follows.
2. If z1, z2 ∈ Hullϵ(Y) then there are y1, y2 ∈ Hull(Y) such that d(zi, yi) ≤ ϵ, i = 1, 2.

Using the 2δ-slimness of the quadrilateral y1z1z2y2 we have z1z2 ⊂ N2δ(y1z1 ∪ y1y2 ∪ y2z2).
However, yizi ⊂ Hullϵ(Y), i = 1, 2 and y1y2 ⊂ N2δ(Hull(Y)) by the first part of this lemma.
Hence, z1z2 ⊂ N2δ(Hullϵ(Y)). □

By the construction, if U is λ-quasiconvex, then

(1.3) Hullϵ(U) ⊂ Nϵ+λ(U).

Lemma 1.96. If X is a δ-hyperbolic geodesic metric space, then for any nonempty
subset U of X, the inclusion map Y = Hullδ(U) → X is a (1, ϵ)-quasiisometric embedding
with ϵ = 6δ and Y equipped with the path-metric induced from X.

Proof. Suppose first that y1, y2 ∈ Hull(U) belong to geodesics a1b1, a2b2 with ai, bi ∈

U, i = 1, 2. The proof is divided into two cases.
Case 1. Suppose a1 = a2 or b1 = b2, i.e. the quadrilateral a1b1b2a2 is degenerate.

Without loss of generality, assume that a1 = a2. Consider the δ-slim triangle ∆a1b1b2.
If y1 ∈ Nδ(a1b2) or y2 ∈ Nδ(a1b1) then dY (y1, y2) ≤ dX(y1, y2) + 2δ. Otherwise, y1, y2 ∈

Nδ(b1b2). In this case, clearly dY (y1, y2) ≤ dX(y1, y2) + 4δ.
Case 2. a1 , a2 and b1 , b2.

We consider the triangle ∆a1b1b2. There are two possibilities. (i) If there is z1 ∈ a1b2 with
d(y1, z1) ≤ δ then z1, y2 are on two sides of the triangle ∆a1a2b2. Then by Case 1 we have
dY (z1, y2) ≤ dX(z1, y2) + 4δ whence dY (y1, y2) ≤ dX(y1, y2) + 6δ. (ii) Otherwise there is a
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point z2 ∈ b1b2 with d(y1, z2) ≤ δ. Then z2, y2 are on two sides of the triangle ∆a2b1b2 and
as in (i) we have dY (y1, y2) ≤ dX(y1, y2) + 6δ. □

Corollary 1.97. Suppose X is a δ-hyperbolic geodesic metric space, U ⊂ X is a
λ-quasiconvex subset and R ≥ λ + δ. Then the inclusion map NR(U)→ X is a (1, 6δ + R)-
quasiisometric embedding, where NR(U) equipped with the path-metric induced from X.

Lemma 1.98. Let X be δ-hyperbolic geodesic metric space; assume that U,V ⊂ X are
λ-quasiconvex subsets with nonempty intersection. Then:

1. For every R ≥ λ the subset

Y = NR(U ∪ V) ⊂ X

is 2δ-quasiconvex.
2. Furthermore, for each R ≥ λ + 3δ, the inclusion map Y → X is a (1, 6δ + R)-

quasiisometric embedding where we equip Y with the path-metric induced from X.

Proof. 1. Suppose x ∈ NR(U), y ∈ NR(V). Then there exist a ∈ U, b ∈ V with
d(x, a) ≤ R, d(b, y) ≤ R. Let c ∈ U ∩ V . By δ-slimness of triangles xy ⊂ Nδ(xc ∪ yc).
Similarly, xc ⊂ Nδ(xa ∪ ac) and yc ⊂ Nδ(yb ∪ bc). Thus xy ⊂ N2δ(xa ∪ ac ∪ yb ∪ bc).
However we note that xa ∪ ac ∪ yb ∪ bc ⊂ Y . Thus xy ⊂ N2δ(Y).

2. Observe that
NR(U ∪ V) = NR−λ(Nλ(U ∪ V)).

Thus, by the first of this lemma in combination with Corollary 1.97 it follows that the
inclusion map Y → X is a (1, 6δ + R − λ)-qi embedding. In particular it is a (1, 6δ + R)-qi
embedding. □

1.16. Projections

We now discuss properties of quasiconvex subsets in hyperbolic metric spaces. For a
(complete) metric space (X, d), a closed subset Y ⊂ X and a point x0 ∈ X, we denote by x̄0
a nearest point of Y from x0, if it exists. When this is the case for every point x ∈ X then
there is a map X → Y , x 7→ x̄ and such a map will be called a nearest point projection map.

Remark 1.99. (1) If X is a proper metric space and Y is a closed subspace or X is a
metric graph where each edge of length 1 and Y is a subgraph then a nearest point projec-
tion map always X → Y exists. However, a nearest point projection x̄ ∈ Y of x in the above
situation is not unique in general; and it is easy to find such an example where X is a metric
graph and Y is a subgraph.

(2) On the other hand in the absence of the properness a nearest point may not exist as
the example below suggests.

(3) However, for us the assumptions that X is complete or proper or that Y is closed
are all essentially irrelevant: If they fail, then instead of nearest-point projections x̄ ∈ Y of
x ∈ X, we can use ϵ-nearest point projections, i.e. points x̄ ∈ Y such that for all y ∈ Y ,

d(x, y) ≥ d(x, x̄) − ϵ.

Since we are interested in coarse-geometric aspects of metric spaces, such “almost” near-
est point projections will work just as well. In what follows, we, therefore, will use the
same fudge as for path-metric spaces: We will talk about nearest point projections with-
out imposing the assumption that a subset is closed and the ambient space is complete or
proper.

Example 1.100. Suppose X is the metric graph with vertex set V = ({0, 1} × N) ⊔ {p}.
Suppose that there is an edge of length 1 joining the following pairs of points:
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• (a, i) and (a, i + 1) for each a ∈ {0, 1}, i ∈ N.
• (0, i) and (1, i) for each i ∈ N.
• (1, i) and p for each i ∈ N.

This defines X as a metric graph. Now, for Y we take the union of the subgraph of X
spanned by the vertices {0} ×N and the ball of radius 1− 1/i centered at (0, i) for all i ∈ N.
Then clearly X is a complete geodesic space and Y is a closed subspace but a nearest point
projection of p on Y does not exist.

Notation for nearest point projections: Suppose that Y is a closed subset in a com-
plete metric space X. We shall denote by PX,Y or PY (when the choice of X is clear) or
sometimes simply by P (when the choices of X and Y are clear) a nearest-point projection
X → Y . We will see below (Lemma 1.102) that in hyperbolic spaces, nearest-point projec-
tions to quasiconvex subsets are “coarsely well-defined,” thus, justifying the notation.

Lemma 1.101. Suppose that X is a geodesic metric space, Y ⊂ X, x ∈ X and x̂ ∈ Y
is such that each geodesic xy, y ∈ Y, passes within distance r from x̂. Then d(x̄, x̂) ≤ 2r,
where x̄ = PY (x).

Proof. We take y = x̄ and let z ∈ xy be a point within distance r form x̂. Since
d(x, x̂) ≥ d(x, y), it follows that r ≥ d(z, x̂) ≥ d(z, y). Therefore, d(x̂, y) ≤ 2r. □

We now turn to quasiconvex subsets of hyperbolic spaces.

Lemma 1.102 (See e.g. Lemma 11.53 in [DK18]). For each λ ≥ 0 there is a constant
L1.102 = L1.102(δ, λ) such that the following holds:

If X is a δ-hyperbolic metric space and Y is a λ-quasiconvex subset, then the projection
map P = PX,Y : X → Y is coarsely L1.102(δ, λ)-Lipschitz, i.e. for all x, y ∈ X we have
dX(P(x), P(y)) ≤ L1.102(δ, λ)(dX(x, y) + 1). In particular, P is coarsely well-defined: For
different choices x̄1, x̄2 of points in Y nearest to x we have dX(P(x), P(y)) ≤ L1.102(δ, λ).

Remark 1.103. We will frequently use this lemma when Y is a geodesic in X, in which
case λ = δ and d(P(x), P(y)) ≤ d(x, y)+12δ, i.e. L1.102(δ, δ) = 12δ, compare Lemma 1.123.
In general:

L1.102(δ, λ) = max(2, 2λ + 9δ),
see Lemma 11.53 in [DK18].

The next lemma is a converse to Lemma 1.102:

Lemma 1.104. Suppose that a metric space (X, dX) is δ-hyperbolic, Y ⊂ X is a rectifi-
ably connected subset (equipped with the induced path-metric dY ) such that there exists a
k-coarse-Lipschitz retraction

P : X → Y.
Then Y is λ = λ1.104(k, δ)-quasiconvex in X.

Proof. The inclusion map i : (Y, dY ) → (X, dX) is 1-Lipschitz. Combining this with
the existence of the retraction P, we conclude that i is a k-quasiisometric embedding. For
each ϵ > 0 any two points y1, y2 ∈ Y can be connected by a path α whose length is ≤
dY (y1, y2) + ϵ, in particular, α is (1, ϵ)-quasigeodesic. We will take ϵ = 1. The composition
i ◦ α in X is L = k(1 + ϵ)-quasigeodesic. By the Morse Lemma (Lemma 1.54), the image
of i ◦ α is within distance λ = D1.54(δ, L) from a geodesic γ = y1y2 in X connecting y1 to
y2. Hence, γ is contained in the λ-neighborhood of Y . □

Lemma 1.105 below is a converse to Lemma 1.101 in the context of hyperbolic spaces;
it will be used repeatedly in the book:
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Lemma 1.105. Suppose that X is δ-hyperbolic geodesic metric space, Y ⊂ X is a λ-
quasiconvex subset of X. Let x̄ ∈ Y be a nearest-point projection of x ∈ X to Y and let
y ∈ Y be an arbitrary point. Then:

(i) x̄ lies within distance λ + 2δ from (any) geodesic xy ⊂ X.
(ii) Hd(xy, xx̄ ∪ x̄y) ≤ λ + 3δ.
(iii) The concatenation xx̄ ⋆ x̄y is a 2(λ + 2δ)-quasigeodesic.

Proof. (i) We consider a geodesic triangle ∆xx̄y. Since this triangle is δ-slim, there
exist points z ∈ xy, z′ ∈ xx̄, z′′ ∈ yx̄ such that d(z, z′) ≤ δ, d(z′, z′′) ≤ δ. Then d(z′′,Y) ≤ λ.
Since x̄ is a nearest point to x in Y , it follows that d(z′, x̄) ≤ λ + δ, hence, d(x̄, z) ≤ λ + 2δ.

(ii) As in the proof above, let z ∈ xy be such that d(x, z) ≤ λ + 2δ. Then by δ-
hyperbolicity of X, it is clear that Hd(x̄y, zy) ≤ λ+ 3δ and Hd(xx̄, xz) ≤ λ+ 3δ. From these
it follows that Hd(xy, xx̄ ∪ x̄y) ≤ λ + 3δ.

(iii) Taking z ∈ xy as above, we see that

d(x, y) ≤ d(x, x̄) + d(x̄, y) + 2(λ + 2δ).

Hence, xx̄ ⋆ x̄y is a (1, 2(λ + 2δ))-quasigeodesic. □

Below are several corollaries of the lemma:

Corollary 1.106. If Y is a geodesic in X, then x̄ lies within distance 3δ from (any)
geodesic xy ⊂ X. In particular, for each geodesic triangle ∆ = ∆xyz in X, the projection
Pyz(x) is a 3δ-center of ∆.

Corollary 1.107 (Almost nearest-point projection). Suppose that Y is a geodesic in
X and y ∈ Y satisfies

d(x, y) ≤ d(x, x̄) +C.
Then d(x̄, y) ≤ C + 2λ + 4δ.

Proof. Let z ∈ xy be a point within distance λ + 2δ from x̄ and let D denote d(y, z).
Then

d(x, x̄) +C − D ≥ d(x, y) − D = d(x, z) ≥ d(x, x̄) − (λ + 2δ),
which implies that D ≤ C + λ + 2δ. Hence, d(x̄, y) ≤ d(x̄, z) + d(y, z) ≤ C + 2λ + 4δ. □

Corollary 1.108. Let U,V ⊂ X be a pair of closed λ-quasiconvex subsets such that
Hd(U,V) ≤ D. Then d(PU , PV ) ≤ D1.108(δ, λ,D).

Proof. Let u ∈ U, v ∈ V denote PX,U(x) and PX,V (x) respectively. Since Hd(U,V) ≤ D,
there exist points u′ ∈ V, v′ ∈ U such that

d(u, u′) ≤ D, d(v, v′) ≤ D.

Hence,
d(x, u′) − D ≤ d(x, u) ≤ d(x, v′) ≤ d(x, v) + D

By Corollary 1.107, d(v, u′) ≤ 2D+ 2λ+ 4δ. Hence, d(u, v) ≤ D1.108(δ, λ,D) := 3D+ 2λ+
4δ. □

Corollary 1.109. Suppose that Y ⊂ X is a λ-quasiconvex subset of a δ-hyperbolic
space X and x, x̂ are points in X,Y respectively connected by a geodesic c = xx̂ such that:

There exists a function R 7→ R̂ satisfying y ∈ Y, d(y, c) ≤ R⇒ d(y, x̂) ≤ R̂.
Then d(x̂, PY (x)) ≤ λ̂ + 2δ.

Proof. Let x̄ = PY (x). Then, by Lemma 1.105(1), d(x̄, c) ≤ λ + 2δ =: R. It then
follows that d(x̄, x̂) ≤ R̂ = λ̂ + 2δ. □



38 1. PRELIMINARIES ON METRIC GEOMETRY

Corollary 1.110. Suppose that V ⊂ U ⊂ X are two λ-quasiconvex subsets of X. Then

d(PX,V , PU,V ◦ PX,U) ≤ C1.110(δ, λ).

Proof. The proof is by repeated use of Lemma 1.105. For x ∈ X set x1 := PU(x), x2 :=
PV (x), x3 := PV (x1). Consider the triangle ∆xx1x2. By Lemma 1.105(i), there is a point
x′1 ∈ xx2 such that d(x1, x′1) ≤ λ + 2δ because x2 ∈ U and x1 is a nearest point projection
of x to U. Now we note that x2 is a nearest point projection of x′1 on V . Hence there is a
point x′2 ∈ x′1x3 such that d(x2, x′2) ≤ λ + 2δ. Since d(x1, x′1) ≤ λ + 2δ and the ∆x1x′1x3 is
δ-slim, there is a point x′3 ∈ x1x3 such that d(x′2, x

′
3) ≤ λ + 3δ. Hence,

d(x2, x′3) ≤ d(x2, x′2) + d(x′2, x
′
3) ≤ 2λ + 5δ.

Finally, we note that x3 is a nearest point projection of x′2 on V too. Hence, d(x′3, x3) ≤
d(x′3, x2) ≤ 2λ + 5δ. Thus

d(x2, x3) ≤ C1.110(δ, λ) := d(x2, x′3) + d(x′3, x3) ≤ 4λ + 10δ. □

The following variation on this corollary will be used in the proof of Corollary 1.136
and Theorem 3.3:

Lemma 1.111. Suppose that X is δ-hyperbolic, U,V ⊂ X are, respectively, λ and µ-
quasiconvex subsets. Set ϵ := µ + 2δ. Then for every r ≥ r1.111(λ, µ, δ) = ϵ + δ + λ,
if W = Nr(U) ∩ V is nonempty, then the distance between the restrictions to V of the
projections PX,W , PX,U , is at most ϵ + δ + r.

Proof. Take x ∈ V and consider points x̄ = PX,W (x), x̂ := PX,U(x). Since x̄ ∈ Nr(U),
there exists a point x′ ∈ U such that d(x′, x̄) ≤ r. By Lemma 1.105, there exists a point
y ∈ xx′ ∩ B(x̂, ϵ). Since the triangle △xx′ x̄ is δ-slim, the point y is within distance δ either
from a point z ∈ x̄x′ or from a point z ∈ x̄x. In the former case,

d(x̄, x̂) ≤ ϵ + δ + r,

as claimed. Suppose, therefore, that z ∈ x̄x. Since V is λ-quasiconvex, there exists w ∈ V
within distance λ from z. Thus,

d(x̂,w) ≤ ϵ + δ + λ.

The assumption that r ≥ ϵ + δ + λ implies that w ∈ Nr(U) ∩ V = W. In particular,

d(x,w) ≥ d(x, x̄).

Setting t = d(x, z), s = d(z, x̄), we obtain d(x, x̄) = t + s and, hence,

t + s = d(x, x̄) ≤ d(x,w) ≤ t + λ.

It follows that s ≤ λ and, therefore, d(x̂, x̄) ≤ ϵ + δ+ s ≤ ϵ + δ+ λ ≤ r. Thus, in both cases,
d(x̄, x̂) ≤ ϵ + δ + r. □

Below is another variation on Corollary 1.110 and Lemma 1.105(iii):

Lemma 1.112. Let X be a δ-hyperbolic space, and let Y1 ⊃ Y2 ⊃ ... ⊃ Yn be a
chain of λ-quasiconvex subsets of X. For a point x ∈ X define inductively points y1 =

PX,Y1 (x), ..., yn = PYn−1,Yn (yn−1). Then:
1. The concatenation

xy1 ⋆ .... ⋆ yn−1yn

is an L1.112(δ, λ, n)-quasigeodesic in X.
2. dX(PX,Yn (x), xn) ≤ D1.112(δ, λ, n).
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Proof. The proof is by induction on n. If n = 1, there is nothing to prove. Suppose
that the claim holds for n − 1, we will prove it for n.

By Lemma 1.105(iii), the concatenation xy1 ⋆ y1yn is a 2(λ + 2δ)-quasigeodesic in
X. By the induction hypothesis, the concatenation y1y2 ⋆ ... ⋆ yn−1yn is a L(δ, λ, n − 1)-
quasigeodesic. Now, Part 1 follows from the stability of quasigeodesics in hyperbolic
spaces.

Part 2 of the lemma follows from the inductive application of Corollary 1.110. □

We conclude the section with two technical lemmata that will be used in Section 3.3.1.
The lemmata generalize the obvious fact that if Z ⊂ Y ⊂ X are inclusions of subsets in a
metric space X such that Z is convex in X, then Z is also convex in Y , while if Z is convex
in Y and Y is convex in X then Z is convex in X.

Lemma 1.113. Suppose that Z ⊂ Y ⊂ X are inclusions of metric spaces such that Y is a
δ-hyperbolic geodesic metric space, X is a geodesic metric space, Z ⊂ X is λ-quasiconvex,
and the inclusion map Y → X is an L-quasiisometric embedding, where λ ≥ 3

2δ. Then
Z ⊂ Y is λ′-quasiconvex with λ′ = 1500(Lλ)3.

Proof. Pick any pair of points p, q ∈ Z, let pq be a geodesic in X contained in Nλ(Z),
let γ : I = [a, b]→ X be its arc-length parameterization. Pick a maximal finite sequence of
1-separated points xi = γ(ti) and project these points to a sequence zi = PZ(xi) ∈ Z. Then
the maps [ti, ti+1) → {zi} define a k = 2Lλ-quasigeodesic β : I → Z ⊂ Y . Let β∗ denote a
geodesic in Y connecting p to q. By Theorem 1.54,

Hd(β, β∗) ≤ 92k2(k + 3δ) ≤ 92 · 16(Lλ)3 ≤ 1500(Lλ)3. □

Remark 1.114. One can give a faster proof of the lemma using the restriction to Y of
the coarse Lipschitz retraction PX,Z (and quoting Lemma 1.104), but we prefer to get an
explicit estimate.

Lemma 1.115. Suppose that Z ⊂ Y ⊂ X are inclusions of metric spaces such that X,Y
are geodesic metric spaces (with the path-metric on Y is induced by that of X), X,Y are δ1
and δ2-hyperbolic respectively, Y is λ1-quasiconvex in X, Z ⊂ Y is λ2-quasiconvex, then Z
is λ1.115(λ1, λ2, δ1, δ2)-quasiconvex in X.

Proof. The projections P1 = PX,Y : X → Y, P2 = PY,Z : Y → Z are L1.102(δi, λi)-coarse
Lipschitz retractions, i = 1, 2. Hence, their composition P2 ◦ P1 : X → Z is an k-coarse
Lipschitz retraction with

k = L1.102(δ1, λ1) · L1.102(δ2, λ2).

Therefore, by Lemma 1.104, Z ⊂ X is λ-quasiconvex for

λ = λ1.104(k, δ1). □

1.17. Images and preimages of quasiconvex subsets under projections

In this section we discuss the extent to which images and preimages of projections of
quasiconvex subsets to quasiconvex subsets are again quasiconvex.

Lemma 1.116. Let α = xy ⊂ X be a geodesic in a δ-hyperbolic geodesic metric space,
Y ⊂ X a λ-quasiconvex subset and x̄ = PY (x), ȳ = PY (y). Then ᾱ = PY (α) is D1.116(δ, λ)-
Hausdorff close to the geodesic x̄ȳ.
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Proof. i. Take z ∈ α. Then z lies within distance 2δ from a point w ∈ xx̄ ∪ x̄ȳ ∪ ȳy. If
w ∈ x̄ȳ then d(z,Y) = d(z, z̄) (z̄ = PY (z)) satisfies d(z,Y) ≤ λ + 2δ. In particular, d(z̄,w) ≤
4δ + λ. Suppose that w ∈ xx̄. Then, d(w,Y) = d(w, x̄) and, without loss of generality,
PY (w) = x̄. Lemma 1.102 implies that d(PY (z), x̄) = d(PY (z), PY (w)) ≤ (2δ + 1)L1.102(δ, λ).
The case w ∈ yȳ is handled by relabelling x and y. To conclude:

ᾱ ⊂ ND(x̄ȳ), D = max((2δ + 1)L1.102(δ, λ), 4δ + λ).

ii. Consider a point z ∈ x̄ȳ. The point z is within distance 2δ from some w ∈ xy∪xx̄∪yȳ.
If w ∈ xy then d(w, PY (w)) ≤ 2δ+λ and, hence, d(z, PY (w)) ≤ 4δ+λ. Suppose that w ∈ xx̄.
First note that d(w,Y) ≤ d(w, z) + d(z, z̄) ≤ 2δ + λ. Then d(z, x̄) ≤ d(z,w) + d(w, x̄) =
d(z,w) + d(w,Y) ≤ 4δ + λ. Similarly in case w ∈ yȳ we have d(z, ȳ) ≤ 4δ + λ. Hence, in
either case, we have d(z, ᾱ) ≤ 4δ + λ ≤ D.

To conclude, for

D = D1.116(δ, λ) := max((2δ + 1)L1.102(δ, λ), 4δ + λ),

the geodesic x̄ȳ and the set ᾱ are D-Hausdorff close. □

Corollary 1.117. If d(x̄, ȳ) ≤ D then diam(ᾱ) ≤ 2D1.116(δ, λ) + D.

Remark 1.118. If δ ≥ 1, then

D1.116(δ, λ) ≤ 3δ(2λ + 9δ).

Corollary 1.119. Let X be a δ-hyperbolic space, Y ⊂ X a λ-quasiconvex subset and
γ ⊂ X be a K-quasigeodesic connecting points x and y and P = PX,Y . Then P(γ) is
C1.119(δ, λ,K)-Hausdorff close to the geodesic segment P(x)P(y).

Proof. This corollary follows from the Morse Lemma, Lemmata 1.102 and 1.120.

As another application of the lemma, we obtain:

Lemma 1.120. Suppose that Y,Z are λY , λZ-quasiconvex subsets respectively in a δ-
hyperbolic space X. Then the projection PY (Z) is D1.120(δ, λY , λZ)-quasiconvex in X.

Proof. Take points yi = PY (zi), zi ∈ Z, yi ∈ Y, i = 1, 2. By Lemma 1.116,

Hd(y1y2, PY (z1z2)) ≤ D1.116(δ, λY ).

Thus, for every y ∈ y1y2 there exists x ∈ z1z2 such that d(y, PY (x)) ≤ D1.116(δ, λY ). Since Z
is λZ-quasiconvex in X, there exists z ∈ Z such that d(x, z) ≤ λZ . By Lemma 1.102,

d(PY (x), PY (z)) ≤ (λZ + 1)L1.102(δ, λY ).

Putting together these inequalities, we obtain:

d(y, PY (Z)) ≤ d(y, PY (z)) ≤ D1.120(δ, λY , λZ) :=
(λZ + 1)L1.102(δ, λY ) + D1.116(δ, λY ).□

Remark 1.121. If δ ≥ 1, λ ≥ 1 then

D1.120(δ, λ, λ) ≤ (2λ + 3δ)(2λ + 9δ).

Thus, projections (to uniformly quasiconvex subsets) in hyperbolic spaces send uni-
formly quasiconvex subsets to uniformly quasiconvex subsets. The next lemma, which we
add only for the completeness of the picture and which is not used elsewhere otherwise,
establishes a similar statement for preimages. We need to warn the reader that preimages
of quasiconvex subsets under projections need not be quasiconvex, the true statement is
more subtle.
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Lemma 1.122. Suppose that X is geodesic, δ-hyperbolic, Y,Z are λY , λZ-quasiconvex
subsets in X respectively, such that Z ⊂ Y. Then

Hull(P−1
Y (Z)) ⊂ P−1

Y (ND(Z))

for some D = D1.122(δ, λY , λZ).

Proof. Take two points x, y ∈ P−1
Y (Z) and a geodesic α = xy ⊂ X connecting these

points. Then, for x̄ = PY (x), ȳ = PY (y), by Lemma 1.116, PY (α) is D1.116(δ, λY )-Hausdorff
close to the segment β = x̄ȳ. Since x̄, ȳ are in Z and Z is λZ-quasiconvex in X, β ⊂ NλZ (Z).
Thus,

α ⊂ P−1
Y (ND(Z)), D = D1.122(δ, λY , λZ) = D1.116(δ, λY ) + λZ . □

For a pair of λ-quasiconvex subsets U,V in a hyperbolic space X there is a basic
dichotomy: Either PU(V) has uniformly bounded diameter (in terms of λ and δ) or it is
uniformly close to a quasiconvex subset of V . We will discuss this and related issues in
more detail in Sections 1.19 and 1.21; for now, we prove this statement in the context of
projections of geodesics to geodesics:

Lemma 1.123. For any δ ≥ 0 and λ ≥ 0 there is are constants D = D1.123(δ, λ)
R = R1.123(δ, λ) such that the following holds:

1. Suppose X is a δ-hyperbolic geodesic metric space and Y ⊂ X is λ-quasiconvex. Let
x, y ∈ X and let x̄, ȳ ∈ Y be respectively their nearest-point projections to Y. If d(x̄, ȳ) ≥ D
then x̄ȳ ⊂ NR(xy). One can take D = 2λ + 7δ and R = λ + 5δ.

2. When Y is a geodesic, λ = δ and we can take: D1.123(δ, δ) = 8δ, R1.123(δ, δ) = 6δ.

Proof. We prove Part (1) and leave computations in Part (2) (as a special case) to the
reader. By Lemma 1.105(i) there is a point z ∈ xȳ such that d(x̄, z) ≤ λ + 2δ. Now we
consider the geodesic triangle ∆xyȳ. Then z ∈ Nδ(xy ∪ yȳ). Suppose z ∈ Nδ(yȳ) and let
w ∈ yȳ such that d(z,w) ≤ δ. Then d(w, x̄) ≤ λ + 3δ. Since ȳ is a nearest point of Y
from w it follows that d(w, ȳ) ≤ λ + 3δ. Thus it follows that d(x̄, ȳ) ≤ 2λ + 6δ. Hence,
if d(x̄, ȳ) ≥ δ + 2λ + 6δ then x̄, ȳ ∈ Nλ+3δ(xy). Since geodesic quadrilaterals in X are 2δ-
slim, in that case it follows that x̄ȳ ⊂ Nλ+5δ(xy). Hence, we may take D = 2λ + 7δ and
R = λ + 5δ. □

1.18. Modified projection

In Section 5.1 we will need a minor modification of the projection PX,Y to quasiconvex
subsets Y ⊂ X in the setting when Y = T = Tp(xyz) is a C-tripod and also in the setting of
quasigeodesic tripods.

Definition 1.124. Suppose that T is a tripod as above in a δ-hyperbolic geodesic space
X. For a subset U ⊂ X, we define its modified projection P̄X,T (U) = P̄T (U) ⊂ T as

(1.4) P̄T (U) = Hull0(PT (U)),

where the (closed) hull is taken with respect to the intrinsic path-metric of T .

If the nearest-point projection were continuous and U were compact, then, of course,
P̄T (U) = PT (U).

Lemma 1.125. Suppose that U is a λ-quasiconvex subset of a δ-hyperbolic space X,
T = Tp(xyz) ⊂ X is a C-tripod. Then

HdX(PT (U), P̄T (U)) ≤ C1.125(δ, λ,C) = D1.120(δ, δ, λ) +C + 3δ.
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Proof. First of all, each tripod T ⊂ X is δ-quasiconvex. Therefore, according to
Lemma 1.120, the projection PT (U) is a λ′ = D1.120(δ, δ, λ)-quasiconvex subset of X.
Hence, for points x′ ∈ xp, y′ ∈ yp which belong to PT (U), the segment x′y′ ⊂ X is con-
tained in the λ′-neighborhood of PT (U). Since p is a C + 2δ-center of the tripod Tp(x′y′z)
(Lemma 1.76), the geodesic segment γ ⊂ T connecting x′ to y′ is C + 3δ-Hausdorff close
to x′y′. Thus, each point u ∈ γ is within distance C + 3δ from some u′ ∈ x′y′ and, by the
λ′′-quasiconvexity of PT (U), there exists v ∈ PT (U) such that d(v, u′) ≤ λ′. By the triangle
inequality, d(u, v) ≤ λ′ +C + 3δ. Thus, P̄T (U) ⊂ Nλ′+C+3δ(PT (U)). Since PT (U) ⊂ P̄T (U),
lemma follows. □

Remark 1.126. Assuming that δ ≥ 1, we can take:

C1.125(δ, λ,C) = C + 3δ + (L1.102(δ, δ) + 1)λ + D1.116(δ, δ) ≤

C + 3δ + (12δ + 1)λ + 3δ(2λ + 9δ) ≤ C + 30δ2 + 19δλ.

Remark 1.127. As a special case, we will use the modified projection when the tripod
T is a single geodesic segment and U is also a geodesic segment. The estimate on the
Hausdorff-distance in this situation is better; we leave it to the reader to verify (analogously
to the proof of Lemma 1.123) that

C1.125(δ, δ, 0) = 4δ.

This estimate will be used in Section 5.2.

We will need a generalization of P̄ and the lemma in the following setting: We let Y
be a union of three rectifiable arcs α∪ β∪ γ in X, connecting points x, y, z in X to a certain
point p ∈ X and parameterized by their arc-length. Thus, Y , equipped with its intrinsic
path-metric dY , is an abstract tripod. We assume that the inclusion map (Y, dY ) → X is a
K-qi embedding. Note that if α, β, γ are all geodesics in X and Y is a C-tripod T , then the
inclusion map (T, dT ) → X is a 4δ-qi embedding. As before, for U ⊂ X we define P̄Y (U)
as the closed convex hull of PY (U) with respect to the metric dY . The next lemma follows
from the fact that Y is uniformly Hausdorff-close to the geodesic tripod T = Tp(xyz); we
leave a proof of the reader:

Lemma 1.128. Suppose that U is a λ-quasiconvex subset of a δ-hyperbolic space X.
Then

HdX(PT (U), P̄T (U)) ≤ C1.128(δ, λ,K).

1.19. Projections and coarse intersections

A basic fact of convex geometry is that intersections of convex subsets are again con-
vex. In the context of quasiconvex subsets U,V of a hyperbolic space, one needs to modify
the notion of intersection. The most esthetically pleasing way to do so is to intersect
R-neighborhoods of U and V . However, most useful for us will be asymmetric coarse in-
tersections NR(U)∩ V . In this section we discuss these in conjunction with the projections
PU(V) and PV (U).

Lemma 1.129 (Coarse intersections of quasiconvex subsets are quasiconvex). Suppose
that Yi ⊂ X are λi-quasiconvex subsets in a δ-hyperbolic space X, i = 1, 2. Then for every
ϵ ≥ λ1 + λ2 + 2δ, the intersection

Y = Nϵ(Y1) ∩ Y2

is λ1.129(ϵ, δ)-quasiconvex, with λ1.129 = ϵ + 2δ.
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Proof. Take two points x, y ∈ Y and let x1, y1 ∈ Y1, be points within distance ϵ from
x, y respectively. In view of the 2δ-slimness of quadrilaterals in X, for each z ∈ xy either
d(z, x1y1) ≤ 2δ or d(z, x) ≤ 2δ + ϵ or d(z, y) ≤ 2δ + ϵ. In the last two cases, z ∈ N2δ+ϵ(Y).
Suppose, therefore, that d(z, x1y1) ≤ 2δ. By the λi-quasiconvexity of Yi, there exist points
zi ∈ Yi, such that d(z, z1) ≤ λ1+2δ and d(z, z2) ≤ λ2. In particular, d(z1, z2) ≤ λ1+λ2+2δ ≤
ϵ, i.e. z2 ∈ Y . Since

d(z, z2) ≤ λ2 ≤ ϵ + 2δ,

we conclude that Y is (ϵ + 2δ)-quasiconvex. □

The next lemma will be used in the proof of Theorem 3.3:

Lemma 1.130. Define the function

R′ := R1.130(R, λ, δ) = 2λ + 3δ + R.

Let U1,U2 be λ-quasiconvex subsets of a δ-hyperbolic space X such that d(U1,U2) ≤ R.
Then

PU2 (U1) ⊂ NR′ (U1) ∩ U2

and
Hd(PU1 (U2), PU2 (U1)) ≤ R′.

Proof. The key is to show that for every a ∈ U1 its nearest-point projection b = PU2 (a)
lies in the R′-neighborhood of U1.

Suppose a1 ∈ U1, b1 ∈ U2 are such that d(a1, b1) ≤ R. By Lemma 1.105, there exists
a point c ∈ ab1 within distance λ + 2δ from b. Since d(a1, b1) ≤ R, the δ-slimness of the
triangle ∆aa1b1 implies existence of a point c1 ∈ aa1 within distance R+ δ from c. In view
of the λ-quasiconvexity of U1, c1 belongs to the λ-neighborhood of U1. Thus,

b ∈ N2λ+3δ+R(U1) = NR′ (U1).

Therefore, the distance from b to PU1 (b) is at most R′, verifying the inclusion

PU2 (U1) ⊂ NR′ (PU1 (U2)).

The reverse inclusion is proven by switching the roles of U1 and U2. □

Continuing with the notation of the lemma:

Corollary 1.131. If d(U1,U2) ≤ R, then

Hd(PU1 (U2),NR′ (U2) ∩ U1) ≤ 2R′ and Hd(NR′ (U1) ∩ U2,NR′ (U2) ∩ U1) ≤ R′.

Proof. 1. According to the lemma, PU1 (U2) ⊂ NR′ (U2) ∩ U1. Conversely, given
x ∈ NR′ (U2) ∩ U1, there exists y ∈ U2 with d(x, y) ≤ R′. Hence, d(y, PU1 (U2)(y)) ≤ R,
implying

d(x, PU1 (U2)(y)) ≤ 2R′.

2. The second claim is clear and holds for arbitrary R′ ≥ 0 and arbitrary subsets of arbitrary
metric spaces. □

Thus, we proved that if d(U1,U2) ≤ R, then all four subsets

PU1 (U2), PU2 (U1),NR′ (U1) ∩ U2,NR′ (U2) ∩ U1

are within Hausdorff distance 2R′ from each other.
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1.20. Quasiconvex subgroups and actions

In this section we discuss quasiconvexity in the context of subgroups of hyperbolic
groups and, more generally, group actions.

Definition 1.132. A subgroup H of a hyperbolic group G is said to be quasiconvex if it
is a quasiconvex subset of a Cayley graph of G for a finite generating set. More generally, a
(metrically) proper isometric action of a discrete group H on a geodesic hyperbolic metric
space X is quasiconvex if one (equivalently, every) H-orbit in X is a quasiconvex subset in
X.

Lemma 1.133. If the action of H on X is quasiconvex then H is finitely generated, the
orbit map H → H · x ⊂ X is a qi embedding and H is a hyperbolic group.

Proof. 1. Quasiconvexity of Hx ⊂ X implies that Hx is coarsely connected. Hence,
by the Milnor–Schwarz Lemma, H is finitely generated. We, thus, equip H with a word
metric corresponding to a finite generating set.

2. Metric properness of the action implies that the orbit map ox : H → Hx ⊂ X is
uniformly proper. Since the image of this map is a quasiconvex subset of X, the orbit map
is a qi embedding (see Lemma 1.93).

3. Since X is assumed to be hyperbolic, in view of Lemma 1.56, the existence of a qi
embedding ox implies hyperbolicity of H. □

We now discuss the notion of coarse intersection in relation to quasiconvex subgroups
and actions.

For general quasiconvex subsets U,V of hyperbolic spaces X, coarse intersections
NR(U)∩V might not be Hausdorff-close to the actual intersections U∩V: For instance, U∩
V might be empty while for some R > 0 the intersection NR(U) ∩ V might be unbounded.
As a specific example, consider X = R (which is 0-hyperbolic) and 1-quasiconvex subsets
U,V consisting of odd/even integers respectively. Then N1(U) ∩ V = V , while U ∩ V = ∅.
Nevertheless, in the group-theoretic setting we have

Lemma 1.134. Let G be a hyperbolic group, U,V be quasiconvex subgroups in G with
W := U ∩ V. Then for every r > 0 there exists R = R1.134(G, r) such that

W ⊂ Wr := V ∩ Nr(U) ⊂ NR(W).

Proof. The proof is quite standard, cf. [Gro93, pp. 164-165] or Lemma 2.6 in
[GMRS98]. Suppose that u ∈ U, v ∈ V satisfy dG(u, v) ≤ r, i.e. u−1v ∈ BG(1, r). Since the
ball BG(1, r) is finite, there exists a finite set of pairs (ui, vi), i = 1, ..., n such that for any
pair u ∈ U, v ∈ V within distance r from each other, the product u−1v equals u−1

i vi for some
i ∈ {1, ..., n}. We have

u−1v = u−1
i vi ⇒ uu−1

i = vv−1
i = w ∈ W = U ∩ V.

Hence, u = wui, v = wvi and, therefore, for

R := max{|vi| : i = 1, ..., n}

we have dG(v,W) ≤ R. □
As an immediate consequence we obtain the standard result on intersections of quasi-

convex subgroups of hyperbolic groups (see e.g. [Sho91] or [BH99, Proposition 4.13]):

Corollary 1.135. If G is a hyperbolic group and U,V are quasiconvex subgroups of
G, then U ∩ V is also a quasiconvex subgroup of G, H and V.

Proof. This is a combination of Lemmata 1.134, 1.129 and 1.90(2). □
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Corollary 1.136. In the setting of Lemma 1.134, the distance between the restrictions
to V of the projections PX,W , PX,U , is at most C1.136(G, δ, λ), where δ is the hyperbolicity
constant of G and λ is the maximum of the quasiconvexity constants of U,V in G.

Proof. We take r := r1.111(λ, λ, δ). According to Lemma 1.111, the restrictions to V
of the projections

PG,Wr , PG,U

are within distance µ+3δ+r. By Lemma 1.134, the subsets W,Wr ⊂ X are R = R1.134(G, r)-
Hausdorff-close. Therefore, by Corollary 1.108, the distance between the projections
PG,Wr , PG,W is ≤ D1.108(δ, λ,R). Thus, we can take

C1.136(G, δ, λ) := D1.108(δ, λ,R) + µ + 3δ + r. □

Essentially the same proofs as above work in the more general setting, when we have
a quasiconvex metrically proper action of a hyperbolic group G on a δ-hyperbolic geo-
desic metric space X, and Y ⊂ X is a quasiconvex subset with locally finite G-orbit (see
Definition 1.6).

Proposition 1.137. Let H < G denote the stabilizer of Y in G, x ∈ Y. Then:
a. There exists a function R = R1.137(x, r) such that

Hx ⊂ Gx ∩ Nr(Y) ⊂ NR(Hx)

b. Hx is a quasiconvex µ-subset of X, µ = µ1.137(x, δ, λ), where λ is the maximum of
quasiconvexity constants (in X) of Gx and Y.

c. H is a quasiconvex subgroup of G.
d. The restrictions of PX,Y and PX,Hx to the orbit Gx ⊂ X are within distance C =

C1.137(x, δ, λ).

Proof. a. Suppose that dX(gx,Y) ≤ r for some g ∈ G; equivalently, g−1Y∩B(x, r) , ∅.
Due to local finiteness of the G-orbit GY , there exists S ⊂ G- a finite subset depending only
on x and r, such that g−1Y = giY for some gi ∈ S . Thus ggiY = Y and so ggi ∈ H. It follows
that d(gx,Hx) ≤ d(gx, ggix) = d(x, gix). Therefore, if we let R = R(x, r) be the maximum
of the distances d(x, gi(x)) taken over all gi ∈ S . Then d(gx,Hx) ≤ R. This proves (a).

b. We take r := 2λ + 2δ. By Lemma 1.129, the coarse intersection Gx ∩ Nr(Y) is
λ1.129(r, δ)-quasiconvex in X. On the other hand, by Part (a),

Hd(Hx,Gx ∩ Nr(Y)) ≤ R.

Therefore, by Lemma 1.90(2), the subset Hx is µ-quasiconvex in X with

µ = 2R + 2δ + λ1.129(r, δ).

c. Since the actions of G and H on X are quasiconvex, the orbit maps ox : G → X,
ox : H → X are qi embeddings (see Lemma 1.133). From this, we conclude that H is qi
embedded and, hence, is quasiconvex in G.

d. The proof of this part is identical to that of Corollary 1.136 and we omit it. □

We assume now that X is hyperbolic and that for each point x ∈ X and each ideal
boundary point ξ ∈ ∂∞X, there exists a geodesic ray xξ connecting x to ξ (e.g. X is a
proper geodesic metric space).

Definition 1.138. Suppose that G acts isometrically and properly on X. A point ξ ∈
∂∞X is called a limit point of this action (or, simply, a limit point of G) if there exists
a sequence gi ∈ G such that for some (equivalently, every) x ∈ X, the sequence (gi(x))
converges to ξ. A limit point ξ is called conical if the sequence (gi) can be chosen so that
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for some (equivalently, all) x ∈ X, y ∈ X, there exists a constant R such that d(giy, xξ) ≤ R
for all i.

The proof of the following result (a Beardon–Maskit criterion for quasiconvexity) can
be found for instance in Swenson’s paper [Swe01] (cf. also [Bow95, Bow99, Tuk98]); we
will only need the easier direction (every limit point of a quasiconvex action is conical):

Theorem 1.139. Suppose that X is a proper geodesic hyperbolic metric space. Then a
proper isometric action of a discrete group G↷ X is quasiconvex if and only if every limit
point of G is conical.

1.21. Cobounded pairs of subsets

Recall that in Definition 1.26 we defined Lipschitz-cobounded pairs of subsets of
general metric spaces. Informally in a metric space X two subspaces Y,Z are Lipschitz
cobounded if there are coarse Lipschitz retractions rY : X → Y and rZ : X → Z such
that the diameters of rY (Z) and rZ(Y) are small. Below, we establish a characterization of
cobounded pairs in hyperbolic spaces.

Proposition 1.140 (Characterizations of cobounded pairs). The following are equiva-
lent for λ-quasiconvex subsets Y,Z ⊂ X in a δ-hyperbolic geodesic metric space X:

(1) Y,Z are C1-Lipschitz cobounded.
(2) For every R there exists D = D(R) such that if

ai ∈ Y, bi ∈ Z, i = 1, 2,

satisfy d(ai, bi) ≤ R, i = 1, 2, then d(a1, a2) ≤ D, d(b1, b2) ≤ D.
(3) The diameters of nearest-point projections PX,Y (Z), PX,Z(Y) are ≤ C2.

Moreover, once a constant Ci (or a function D(R)) in one of the items is chosen, this,
together with δ and λ, determines the constant/function in the other two items.

Proof. The implication (1)⇒(2) is proven in Lemma 1.27 for arbitrary subsets of
arbitrary metric spaces, with

D = 2C1(R + 1) +C1

For the implication (2)⇒(3), consider points ai ∈ Y, bi ∈ Z such that ai ∈ PX,A(bi), i =
1, 2. By Lemma 1.123, if d(a1, a2) ≥ D1.123(δ, λ) then there exists R = R1.123(δ, λ) such that

a1a2 ⊂ NR(b1b2).

In that case, there are points b′i ∈ Z within distance ≤ R + λ from ai, i = 1, 2. Then, by (2),

d(a1, a2) ≤ D(R + λ).

Hence, we can take C2 = max{D1.123(δ, λ),D(R + λ)}.
For the implication (3)⇒(1), we can take the retractions

rA := PX,A, rB := PX,B. □

In view of this proposition, for quasiconvex subsets of hyperbolic spaces we will adopt
the following terminology:

Definition 1.141. A pair of subsets Y,Z ⊂ X in a hyperbolic space X is C-cobounded
if the diameters of the projections PX,Y (Z), PX,Z(Y) are ≤ C.
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Lemma 1.142. Given δ ≥ 0 and λ ≥ 0 there are constants R = R1.142(δ, λ) and D =
D1.142(δ, λ) such that the following holds:

Suppose X is a δ-hyperbolic metric space and Y,Z ⊂ X are two λ-quasiconvex and
R-separated subsets. Then Y,Z are D-cobounded. In fact, one can take D = 2λ + 7δ and
R = 2λ + 5δ.

Proof. We will show that the choice of D = D1.123(δ, λ) = 2λ + 7δ and

R = λ + R1.123(δ, λ) = 2λ + 5δ

works. Let R1 = R1.123(δ, λ), so that R = λ + R1. Suppose the diameter of PX,Z(Y) is
greater than or equal to D. Let x, y ∈ Y be such that d(PX,Z(x), PX,Z(y)) ≥ D. Then by
Lemma 1.123 PX,Z(x) ∈ NR1 (xy). But Y is λ-quasiconvex and x, y ∈ Y . It follows that
PX,Z(x) ∈ NR(Y). Thus if Y,Z are R-separated then the diameter of PX,Y (Z) and PX,Z(Y) are
both less than D. □

A consequence of this lemma allows one to simplify the verification that two subsets
are cobounded; namely, it suffices to check only that one projection is bounded:

Corollary 1.143. Suppose that U,V ⊂ X are λ-quasiconvex subsets in a δ-hyperbolic
space.

1. If diam(PU(V)) ≤ D, then diam(PV (U)) ≤ C = C1.143(λ, δ,D), where D ≤ C. In
particular, the pair (U,V) is C-cobounded.

2. If the pair U,V ⊂ X is not D1.142(δ, λ)-cobounded then

Hd(PU(V), PV (U)) ≤ D1.143(δ, λ) = R1.143(δ, λ) = 2λ + 3δ + R1.142(δ, λ).

Proof. 1. There are two cases to consider:
(i) If d(U,V) ≥ R = R1.142(δ, λ), then the pair (U,V) is D1.142(δ, λ)-cobounded by

Lemma 1.142.
(ii) Suppose that d(U,V) ≤ R = R1.142(δ, λ). Then by Lemma 1.130,

Hd(PU(V), PV (U)) ≤ R′ = 2λ + 3δ + R.

Since diam(PU(V)) ≤ D, it follows that

diam(PV (U)) ≤ D + R′.

Taking C := max(D + R′,D1.142(δ, λ)), concludes the proof of a.

Remark 1.144. Note that C = max(D + 4λ + 8δ,D1.142(δ, λ)) = D + 4λ + 8δ.

2. By the argument in Part a1, since the pair U,V ⊂ X is not D1.142(δ, λ)-cobounded,
d(U,V) < R = R1.142(δ, λ). Thus, as in Part a2,

Hd(PU(V), PV (U)) ≤ R′ = 2λ + 3δ + R = 2λ + 3δ + R1.142(δ, λ). □

Remark 1.145. If U1,U2 are geodesics in X, λ = δ and, by Lemma 1.123, one can
take D1.142(δ, δ) = 8δ and R1.143(δ, λ) = 12δ.

Another application of Lemma 1.142 is:

Corollary 1.146. Suppose that λ-quasiconvex subsets U1,U2 ⊂ X are not D =

D1.142(δ, λ)-cobounded. Then

PU2 (U1) ⊂ N4λ+8δ(U1) ∩ U2.
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Proof. By Lemma 1.142, since U1,U2 are not D-cobounded, then

d(U1,U2) ≤ R = R1.142(δ, λ) = 2λ + 5δ.

According to Lemma 1.130,

PU2 (U1) ⊂ NR′ (U1) ∩ U2,

where R′ = 2λ + 3δ + R = 4λ + 8δ. □

Lemma 1.147. Given δ ≥ 0, λ ≥ 0 and C ≥ 0, there exists a constant D = D1.147(δ, λ,C)
such that the following holds:

Suppose X is a δ-hyperbolic metric space and U,V ⊂ X are two nonempty λ-quasicon-
vex and C-cobounded subsets. Then there are points x0 ∈ U0 = PU(V) ⊂ U, y0 ∈ V0 =

PV (U) ⊂ V, such that x0y0 ⊂ ND(xy), for all x ∈ U and y ∈ V.

Proof. Since the pair (U,V) is C-cobounded,

diam(V0) ≤ C, diam(U0) ≤ C.

Choose any pair of points x0 ∈ U0, y0 ∈ V0. Take x ∈ U, y ∈ V and consider the points
x̄ = PV (x) ∈ V0, ȳ = PU(y) ∈ U0. By Lemma 1.105, the points x̄, ȳ are within distance
λ + 2δ from xy. Therefore,

max(d(x0, xy), d(y0, xy)) ≤ λ + 2δ +C

and, hence, we can take D = λ + 4δ +C. □

Corollary 1.148. Given δ ≥ 0 and λ ≥ 0, there are constants R = R1.148(δ, λ) and
D = D1.148(δ, λ) such that the following holds:

Suppose X is a δ-hyperbolic metric space and U,V ⊂ X are two λ-quasiconvex and
R-separated subsets. Then there are points x0 ∈ U, y0 ∈ V such that x0y0 ⊂ ND(xy), for all
x ∈ U and y ∈ V.

Proof. By Lemma 1.142, there exists R = R1.142 such that the pair (U,V) is C =
D1.142-cobounded whenever U,V are R-separated. Now, the claim follows from Lemma
1.147. □



CHAPTER 2

Graphs of groups and trees of metric spaces

2.1. Generalities

We presume that the reader is familiar with the Bass–Serre theory. However, we briefly
recall some of the concepts that we shall need. For details we refer the reader to Section
5.3 of Serre’s book [Ser03]. Recall that graphs were defined in Section 1.1, see Definition
1.1. In particular, recall that for an edge e of a graph, o(e), t(e) refer to the origin and the
terminus of e, and ē refers to the same edge with opposite orientation. Following Serre, we
shall denote by |e| the edge e without orientation, so that |e| = |ē|. Formally one could let
|e| = {e, ē}. Let |E(Γ)| denote the set of all unoriented edges of a graph Γ.

Definition 2.1 (Graph of groups). A graph of groups (G,Γ) consists of the following
data:

(1) A connected graph Γ.
(2) An assignment to each vertex v ∈ V(Γ) (and edge e ∈ E(Γ)) of a group Gv (respec-

tively Ge) together with injective homomorphisms ϕe,o(e) : Ge → Go(e) and ϕe,t(e) : Ge →

Gt(e) for all e ∈ E(Γ), such that the following conditions hold:
(i) Ge = Gē,
(ii) ϕe,o(e) = ϕē,t(ē) and ϕe,t(e) = ϕē,o(ē).

We shall refer to the maps ϕe,v as the canonical maps of the graph of groups. We shall
refer to the groups Gv and Ge, v ∈ V(Γ) and e ∈ E(Γ) as vertex groups and edge groups
respectively. For topological motivations of graph of groups and the following definition
of the fundamental group of a graph of groups one is referred to [SW79] or [Hat02]. In the
terminology of [BH99], a graph of groups is a covariant functor from the graph Γ (regarded
as a small category with set of objects E ⊔ V and the set of morphisms consisting of the
maps o and t) to the category of groups, sending morphisms o, t to group-monomorphisms.
Functorially, in the case when Γ is a tree, one can define the group G, the fundamental
group of (G,Γ), or the pushout of the diagram G, by a universal property. Namely, there
exist monomorphisms Ge → G,Gv → G such that the diagrams

Ge - Gv

G
?

-

49
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commute, and, whenever we have a group H and a compatible collection of homomor-
phisms Ge → H,Gv → H forming commutative diagrams

Ge - Gv

H
?

-

there is a unique homomorphism G → H forming commutative diagrams

Ge - G

H
?

-

and

Gv - G

H
?

-

The general definition, i.e. when the graph is not a tree, is more complicated:

Definition 2.2 (Fundamental group of a graph of groups). Suppose (G,Γ) is a graph
of groups and let S ⊂ Γ be a maximal (spanning) subtree. Then the fundamental group
G = π1(G,Γ, S ) of (G,Γ) is defined in terms of generators and relators as follows:

The generators of G are the elements of the disjoint union of the generating sets of the
vertex groups Gv, v ∈ V(Γ) and the set E(Γ) of oriented edges of Γ.

The relators are of four types:
(1) Those coming from the vertex groups;
(2) ē = e−1 for all edge e;
(3) e = 1 whenever |e| is a unoriented edge of S ;
(4) eϕe,t(e)(a)e−1 = ϕe,o(e)(a) for all oriented edges e and a ∈ Ge.

The group G does not depend on the choice of S and it will be denoted G = π1(G) in
what follows. We will also frequently suppress the letter Γ in the notation of a graph of
groups.

Definition 2.3 (Bass–Serre tree of a graph of groups). Suppose (G,Γ) is a graph of
groups and let S be a maximal tree in Γ as in the above definition. Let G = π1(G,Γ, S ) be
the fundamental group of this graph of groups. The Bass–Serre tree, denoted T , is the tree
with the vertex set ∐

v∈V(Γ)

G/Gv

and the edge set ∐
e∈E(Γ)

G/Ge
e

where Ge
e = ϕe,t(e)(Ge) < Gt(e). The origin/terminus maps are given by

t(gGe
e) = gGt(e), o(gGe

e) = gGo(e).

Note that whenever |e| is a unoriented edge of S , then we have e = 1 in G. The group G
acts on T via left multiplication.



2.1. GENERALITIES 51

Conversely, given an action without inversions1 of a group G on a tree T , there exists
a graph of groups G with π1(G) � G such that T is equivariantly isomorphic to the Bass–
Serre tree of G, see [Ser03].

Since our main motivation comes from geometric group theory and, hence, finitely
generated groups, we observe that for G = π1(G,Γ, S ) to be finitely generated, it suffices
(not necessary!) to assume that each vertex group Gv is finitely generated and the graph
Γ is finite. On the other hand, the edge groups Ge need not be finitely generated. Natural
examples of the latter situation are given by amalgams

G = Gv ⋆Ge Gw,

where Ge is an infinite rank free subgroup in two finitely-presented groups Gv,Gw: Such
groups G are finitely generated but not finitely presentable. In the context of combination
theorems for hyperbolic groups, one assumes that the graph Γ is finite, each vertex/edge
group is hyperbolic and the monomorphisms ϕ are qi embeddings, i.e. have quasiconvex
images.

Returning to the general setting with finitely generated vertex groups and finite graph
Γ, we note that while it is meaningless to assume that the canonical maps ϕ are uniformly
proper (as edge-groups do not have canonical qi classes of metrics), nevertheless, if we
equip Ge with the pull-back word metric from Go(e), while Gt(e) has a word metric coming
from a finite generating set, then the monomorphism Ge → Gt(e) is uniformly proper. Since
the graph Γ is finite, we conclude that each edge group has a left-invariant proper metric,
such that the homomorphisms ϕe,o(e) and ϕe,t(e) are (η, L)-proper for some uniform function
η and a constant L.

A morphism of graphs of groups, Ψ : G → G′, consists of a morphism of the underly-
ing graphs ψ : Γ→ Γ′ together with a collection of group homomorphisms

Ψv : Gv → Gψ(v), v ∈ V(Γ), Ψe : Ge → Gψ(e), e ∈ E(Γ)

such that the following diagrams are commutative for v = o(e) and w = t(e) and their
respective images v′ = ψ(v),w′ = ψ(w), e′ = ψ(e):

Ge - Ge′

Gv

ϕe,v

?
- Gv′

ϕe′,v′

?

,

Ge - Ge′

Gw

ϕe,w

?
- Gw′

ϕe′,w′

?

Given a graph of groups (G′,Γ′) and a graph-morphism ψ : Γ → Γ′ from a connected
graph Γ, there is a canonical pull-back graph of groups (G,Γ) and a morphism of graphs
of groups Ψ : G → G′, such that the underlying morphism of graphs Γ → Γ′ equals ψ. In
the special case when Γ is a connected subgraph of Γ′, the graph of groups (G,Γ) is called
the restriction of G′ to Γ (see [Bas93, 2.15]). In this case, the Bass–Serre tree T of (G,Γ)
admits a G = π1(G)-equivariant embedding in the Bass–Serre tree T ′ of (G′,Γ′) and G
equals the stabilizer of T ⊂ T ′ in G′. We refer the reader to [Bas93] for further discussion
of morphisms of graphs of groups.

In the book, on several occasions we will use the following definition from the theory
of group actions on trees:

1which means that if g ∈ G preserves an edge [v,w] of T , then it also fixes both v and w
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Definition 2.4. An action of a group G on a tree T is said to be k-acylindrical if
whenever a nontrivial2 element g ∈ G fixes element-wise an interval J ⊂ T , then J has
length ≤ k.

This terminology originates in Sela’s paper [Sel97]. The definition of acylindrical
actions on trees was later coarsified and generalized by Bowditch in [Bow08]; we will not
use his generalization.

2.2. Trees of spaces

Each graph of groups yields a “tree of metric spaces” over its Bass–Serre tree; this
was first formalized and used by Bestvina and Feighn in [BF92]. Below is our version of
their definition.

We start with the simpler concept of a tree of topological spaces. One can regard
a (simplicial) tree T (or a general graph) as a small category with object sets equal to
V(T ) ⊔ E(T ) and morphisms given by origin/terminus arrows. Then a tree of topological
spaces over a tree T is a functor X from T to the category of topological spaces. More
explicitly:

Definition 2.5. A tree of topological spaces over a tree T is a collection X of nonempty
topological spaces (vertex and edge spaces) Xv, v ∈ V(T ), Xt, t ∈ |E(T )|, together with the
following gluing data: Let E+(T ) ⊂ E(T ) be such that for any e ∈ E(T ) exactly one of e or
ē is in E+(T ). Then for each oriented edge e = [v.w] there are continuous incidence maps
ftv : Xt → Xv and ftw : Xt → Xw, where t = |e|. The total space X of X is the mapping
cylinder of the collection of these incidence maps, i.e. the quotient of the disjoint union∐

v∈V(T )

Xv ⊔
∐

t∈|E(T )|

Xt × [0, 1]

by the equivalence relation

(x, 0) ∼ ftv(x), (x, 1) ∼ ftw(x), e = [v,w] ∈ E+(T ), t = |e|.

We note that the topology and the metric, as will be relevant later, of X is independent
of the choice of E+(T ). We will use trees of topological spaces in Section 8.9. For most of
the book, we will work with trees of metric spaces defined below.

Convention 2.6. In what follows for any oriented edge e we shall abuse notation and
use Xe to denote X|e| and follow the convention that feo(e) = f|e|o(e), fet(e) = f|e|t(e). Note that
from this convention it follows that fēo(ē) = fet(e) and fēt(ē) = feo(e). Moreover, a choice of
E+(T ) will be made implicitly whenever the total space is constructed.

Again, regarding a tree T as a small category, to some degree, a tree of metric spaces
X over a tree T is a functor from T to the coarse category C, see Remark 1.17. The actual
definition is somewhat more restrictive:

Definition 2.7 (Abstract tree of spaces). An abstract tree of (metric) spaces X over
a simplicial tree T , is a collection of nonempty metric spaces (vertex and edge-spaces)
Xv, v ∈ V(T ), Xe, e ∈ E(T ), together a collection of ψ-uniformly proper coarse L-Lipschitz
incidence maps fev : Xe → Xv defined for each oriented edge e = [v,w]. The constant L
and the function ψ are the parameters of the abstract tree of spaces X. The tree T is the
base of X.

2In the literature, acylindricity is sometimes defined by requiring only that G-stabilizers of intervals of
length ≥ k are finite, rather than trivial, subgroups.
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We remark that it follows from the Convention 2.6 that for the edge ē = [w, v] we have
fēv = fev and fēw = few. Throughout the book, we will be assuming that all vertex-spaces
Xv are path-metric spaces.

In view of the approximation lemmata (Lemma 1.36 and Lemma 1.37), one can re-
place general path-metric spaces Xv and incidence maps fev by (connected) metric graphs
(equipped with graph-metrics) and simplicial incidence maps. Below we define the total
space X of a tree of spaces and a projection π : X → T . Thus, we will frequently refer to
trees of spaces as X = (π : X → T ), since the map π records the most important information
about X.

In important class of trees of spaces consists of metric bundles. We refer to [MS09]
for the general definition; for the purpose of this book the following will suffice:

Definition 2.8. An abstract tree of spaces X = (π : X → T ) is a metric bundle if the
incidence maps fev are uniform quasiisometries, i.e. there exists ϵ ≥ 0 such that for each
edge e = [v,w] ∈ E(T ), the image fev(Xe) (and, hence, few(Xw), by reversing the orientation
on e) is ϵ-dense in Xv.

We note that in Definition 2.8, equivalence of fev being uniform quasiisometries with
their being uniformly coarsely dense follows from Lemma 1.19. However, while the main
motivation for trees of spaces comes from graphs of groups, the main group-theoretic ex-
amples of metric bundles over trees are short exact sequences

1→ K → G → H → 1,

where K is a finitely generated group and H is a free group of finite rank.

Definition 2.9. The total space, or the push-out, of a tree of spaces X is a metric space
X admitting a collection of L′-coarse Lipschitz maps Xe → X, e ∈ E(T ), Xv → X, v ∈
V(T ), and satisfying the following universal property: For every metric space Y and a
compatible collection of L1-coarse Lipchitz maps Xe → Y, Xv → Y , there exists a unique,
up to a uniformly bounded error, L2-coarse Lipschitz map X → Y forming diagrams which
commute up to a uniform error C:

Xe - X

Y
?

-

and

Xv - X

Y
?

-

Here L2 and C depend on L1.

This definition implies uniqueness (up to a quasiisometry) of the total space X. We
will prove the existence of X below (Theorem 2.15).

Definition 2.10. An abstract tree of spaces is said to be retractible (or retractive), if
there exists a collection of (uniformly) L-coarse Lipschitz maps (retractions) fve : Xv →

Xe defined for oriented edges e = [v,w], which are uniformly coarse left-inverses to the
incidence maps fev, i.e.

dist( fve ◦ fev, idXe ) ≤ ϵ,
for some uniform constants L ≥ 1, ϵ ∈ [0,∞).

Under the retractibility assumption, the incidence maps are not only uniformly proper
but are also uniformly quasiisometric embeddings. While the definition is general, in this
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book, vertex and edge-spaces mostly will be uniformly hyperbolic, images of edge-spaces
in vertex-spaces will be uniformly quasiconvex and the retractions fve will be given by
nearest-point projections PXv,Xe : Xv → Xev.

Morphisms. Let X,X′ be abstract trees of spaces over trees T,T ′ respectively with
the respective vertex/edge spaces Xv, X′v′ , Xe, X′e′ . A morphism of abstract trees of spaces
X → X′ is a graph-morphism T → T ′, v 7→ v′, e 7→ e′, together with a collection of
uniformly coarse Lipschitz maps, between respective vertex and edge-spaces

hv : Xv → X′v′ , he : Xe → X′e′

such that the diagrams (where the horizontal arrows are the incidence maps)
Xe - Xv

X′e′

he

?
- X′v′

hv

?

commute up to uniformly bounded errors. An isomorphism of abstract trees of spaces is an
invertible morphism, equivalently, it is an isomorphism of trees T → T ′ and a collection
of uniform quasiisometries Xv → X′v′ , Xe → X′e′ .

Remark 2.11. In this book we will be only considering monic morphisms of trees
of spaces, i.e. ones for which the graph-morphism T → T ′ is injective and the maps
Xv → Xv′ , Xe → X′e′ are ζ-proper for some uniform function ζ.

Example 2.12. The most common examples of morphisms of trees of spaces used in
this book are subtrees of spaces. Namely, suppose S ⊂ T is a subtree, X is a trees of spaces
over T . Then the pull-back of X over S is a tree of spaces Y such that Yv = Xv,Ye = Xe,
v ∈ V(S ), e ∈ E(S ). The collection of identity maps Yv → Xv,Ye → Xe defines a morphism
of trees of spaces Y → X. We will use the notation XS for the total space of the tree of
spaces Y. In the case when S is an interval (resp. tripod) in T , we will refer to XS as an
interval-space (resp. tripod-space).

While the above definition is the main definition used in this book, we now connect
the notion of an abstract trees of spaces to the notion of a tree of spaces as defined by Mitra
in [Mit98]. According to Mitra’s definition, a tree of metric spaces is a path-metric space
equipped with a certain auxiliary data, such as a map to a simplicial tree and a collection
of maps to X from certain spaces. Below, we use the ℓ1-metric on Xe × [v,w]. Recall that
for edges e of T , ė denotes the edge minus its end-points; below we will use the notation
m(e) for the midpoint of e.

Definition 2.13 (Tree of spaces). A tree of metric spaces, denoted by X, is a path-
metric space (X, d) equipped with a 1-Lipschitz surjective map π : X → T onto a simplicial
tree T , such that there is a constant L > 0 and a function η : [0,∞) → [0,∞) satisfying
η(t) ≥ t for all t ∈ [0,∞), with the following properties:

(1) For each v ∈ V(T ), the corresponding vertex-space Xv := π−1(v) ⊂ X is rectifi-
ably connected.

(2) For every edge e ∈ E(T ), the edge-space Xe := π−1(m(e)) is rectifiably con-
nected. Every oriented edge e = [v,w] comes equipped with an L-Lipschitz,
η-proper map

fe : Xe × [v,w]→ X,
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such that fe(Xe × (v,w)) = π−1((v,w)) and that the diagram below commutes:

Xe × [v,w]
fe
- π−1([v,w])

[v,w]

pr2

?�

π

where pr2 denotes the second coordinate projection.
(3) We will use the notation fev for the composition

Xe → Xe × {v}
fe
−→ Xv

and Xev := fev(Xe). We also assume that for an oriented edge e = [v,w] we have
fev = fēv and few = fēw.

By abusing the notation, we will denote a tree of spaces by π : X → T .

Remark 2.14. (1) The Lipschitz condition is absent in Mitra’s paper [Mit98],
but it holds in all natural examples. On the other hand, Mitra assumes that each
restriction fe|Xe×ė is an isometry onto π−1(ė), equipped with its path-metric in-
duced from X. We find this assumption unnecessarily restrictive.

(2) Mitra also assumes that inclusion maps Xv → X to be ζ-proper for some function
ζ. We will see below that this is a consequence of uniform properness of the maps
Xe → Xv.

Observe that each tree of spaces X yields naturally an abstract tree of spaces Xab, the
abstraction of X, with the incidence maps fev. The next theorem is a converse to this
abstraction procedure.

Theorem 2.15 (An existence theorem for trees of spaces). For each abstract tree of
spaces X over a tree T , there exists a (unique up to an isomorphism) tree of spaces (π :
X → T ), called a concretization of Y, such that X is isomorphic to the abstraction Xab of
(π : X → T ). The total space X of X satisfies the universal property in the Definition 2.9.

Proof. Our proof mimics the definition of the underlying topological space (equipped
with the weak topology) of a cell complex, where the latter is defined via an inductively
defined collection of attaching maps. We let X denote the topological space obtained by
attaching the products Xe × [0, 1] to the disjoint union

X =
∐

v∈V(T )

Xv

via the attaching maps fev : Xe × {v} → Xv, few : Xe × {w} → Xw, e = [v,w] ∈ E(T ). In
other words, X is the mapping cylinder

Cyl( f : XE → XV )

of the map

f : XE :=
∐

e∈E(T )

Xe → XV :=
∐

v∈V(T )

Xv,

given by the collection of incidence maps fev. For each edge e of T we will identify Xe × ė
with its image in X.
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We define admissible paths in X (see Section 1.4) to be the continuous maps c :
[a, b] → X which are concatenations of vertical paths, which are rectifiable (with re-
spect to the metrics on vertex-spaces) paths contained in the vertex-spaces of X and hor-
izontal paths, which are rectifiable paths contained in the intervals of the form x × [0, 1],
x ∈ Xe, e ∈ E(T ).3 For every admissible path c, we let length(c) be the sum of measures
of lengths of its vertical and horizontal components. We leave it to the reader to verify that
this defines a length-structure on X and, hence, a path-metric d. We retopologize X using
this path-metric. By the construction, each inclusion map Xe × ė → X is an isometry to
its image, each vertex-space is rectifiably–connected in X, each inclusion map Xv → X is
1-Lipschitz and the projection map

π : X → T

is 1-Lipschitz as well. The verification that the space X satisfies the universal property
is rather straightforward. Given a collection of compatible coarse L-Lipschitz maps hv :
Xv → Y, he : Xe → Y to a metric space Y , we define a map h : X → Y by sending each open
interval {x} × (0, 1) ⊂ Xe × (0, 1) to the point he(x). The uniqueness of h (up to a bounded
error) follows from the fact that the union∐

v∈V(T )

Xv ⊔
∐

e∈E(T )

Xe

forms a 1/2-net in X. We will leave it to the reader to check that X is isomorphic to the
abstraction of (π : X → T ). □

Remark 2.16. 1. A definition similar to our abstract tree of spaces and a construction
analogous to the one in the proof of Theorem 2.15 appear in the work of Cashen and Martin
[CM17, 2.4]. However, they work in the category of proper metric spaces and the metric
spaces they produce do not satisfy all the properties in Definition 2.13 and, hence, we
cannot directly use their work.

2. Throughout the book, we will work with geometric realizations of trees of spaces
constructed in the proof of Theorem 2.15. In particular, the inclusion maps

Xv → X

are 1-Lipschitz. For every edge e = [u, v] ∈ E(T ) we will be frequently using the path-
metric spaces

Xuv = X⟦u,v⟧ = π−1(⟦u, v⟧).
The inclusion maps Xu → Xuv ← Xv are also 1-Lipschitz.

3. One drawback of our construction is that even if vertex and edge-spaces are com-
plete and geodesic, the tree of spaces we construct in the proof of Theorem 2.15 is a only
a path-metric space and, a priori, is not a geodesic metric space and need not be complete.
There are two ways to rectify this issue which we describe below.

a. In the book, when we say “a geodesic" we really mean a path which is ϵ-short
for a suitably chosen sufficiently small ϵ > 0. Similarly, when dealing with nearest-point
projections, we frequently project to non-closed subsets. Then a nearest-point projection
of x ∈ X to Y ⊂ X is a point x̄ ∈ Y such that for a suitable chosen, sufficiently small ϵ > 0,

d(x, x̄) ≤ d(x,Y) + ϵ.

b. For a reader uncomfortable with such a fudge, we describe an alternative approach
to rectifying the issue with geodesics and nearest-point projections.

3Our usage of the vertical/horizontal terminology is opposite to the one in [Gau16].
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First of all, as we noted earlier (Lemmata 1.36, 1.37) without loss of generality, we
may assume that all vertex-spaces and edge-spaces Xv, Xe are connected graphs equipped
with standard graph-metrics. We will replace each Xe with its vertex set. Then the space
X defined in the proof of Theorem 2.15 is a connected graph and the path-metric on this
graph defined in the proof is the standard graph-metric. The drawback of this approach is
the need to keep track of combinatorial issues which, are, ultimately, irrelevant.

From now on, we will work with abstract trees of spaces X and their concretizations
π : X → T . The metric space X is the total space of X. There is nothing particularly
canonical about our choice of X in this construction, it is just something we find convenient
to work with. The reader could alternatively work for instance with, say, the ℓ1-metric
coming from the products Xe × [v,w] in the mapping cylinder X. In fact, most of our
arguments deal with vertex-spaces and pull-backs Xvw: We will be using the fact that the
natural inclusion maps Xv → Xvw ← Xw are 1-Lipschitz and either uniformly proper or, for
trees of hyperbolic spaces, uniform qi embeddings.

Example 2.17. One motivation for our construction of X comes from Cayley graphs
of fundamental groups G of graphs of groups. We assume that (G,Y) is a finite graph of
finitely generated groups, S ⊂ Y is a spanning tree, and G = π1(G,Y, S ) is the fundamental
group. We will identify S with a subtree in the Bass–Serre tree T of (G,Y). Then form a
graph Γ using the generators of G as described in Definition 2.2, except:

(a) We fix an orientation of the edges of Y and use only one generator for each edge
(not two).

(b) We use the given generating sets of the vertex-groups Gv instead of the entire Gv.
Thus, in the graph Γ there are vertical edges (corresponding to translates Γv, v ∈ V(T ),

of Cayley graphs of vertex groups) and horizontal edges (corresponding to the generators
coming from the edges of Y). The vertex-spaces Xv are, then the graphs Γv. The edge-
spaces are the translates of the edge-groups, gGe, g ∈ G, e ∈ E(Y). The incidence maps
fev, few for the oriented edges e = [v,w] in S come from the monomorphisms ϕe,o(e) and
ϕe,t(e). For general edges e of T (which are translates of the edges e′ ∈ S ), the incidence
maps are obtained by composing with the action of G by left multiplication. Thus, we
obtain a tree of spaces X over T with vertex-spaces isometric to Cayley graphs of the
vertex-groups Gv, v ∈ V(Y), and edge-spaces isometric to edge-groups Ge, e ∈ E(Y), with
metrics obtained via pull-backs of word-metrics on the incident vertex-groups Gv, v = t(e).
Note that in the Cayley graph of G there are no edges corresponding to generators of the
edge-groups. This is consistent to our use of only horizontal paths over the edges of T in
the construction of the total space X in the proof of Theorem 2.15. We leave it to the reader
to check that the Cayley graph Γ as above is G-equivariantly isometric to the total space X
of the tree of spaces X defined in the proof of Theorem 2.15.

Proposition 2.18. There exists a continuous function η2.18 depending on the param-
eters of an abstract tree of spaces X, such that for every subtree S ⊂ T, the inclusion
map

XS → X
is an η2.18-uniformly proper embedding.

Proof. The key case to understand is when T has a single edge e = [u, v] and S = {u}.
We let Y denote the total space of the corresponding tree of spaces. It suffices to estimate
(from below, in terms of dXu (x, x′)) lengths of paths c in Y connecting x = x1, x′ = xn ∈ Xu,
such that c is a concatenation of the form

c(x1, y1) ⋆ c(y1, z1) ⋆ c(z1, z2) ⋆ c(z2, y2) ⋆ c(y2, x2) ⋆ c(x2, x3) ⋆ ... ⋆ c(yn, zn),
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where xi = feu(yi), zi = fev(yi) and paths c(xi, yi), c(yi, zi) are horizontal, while the paths
c(x j, x j+1), c(zk, zk+1) are vertical geodesics in the vertex-spaces Xu, Xv. The lengths of this
path is

length(c) =
∑

i=even
dXu (xi, xi+1) + n +

∑
j=odd

dXv (z j, z j+1).

Assume that length(c) ≤ D. Then n ≤ D and dXv (z j, z j+1) ≤ D for each odd index j. We
have (for j odd):

L−1dXu (x j, x j+1) ≤ dXe (y j, y j+1) ≤ ψ(dXv (z j, z j+1))

and, hence,
dXu (x j, x j+1) ≤ Lψ(dXu (z j, z j+1)) ≤ Lψ(D).

Thus, the concatenation cu of vertical geodesics [xixi+1]Xu connecting x to x′ has total
length length(cu) satisfying

dXu (x, x′) ≤ length(cu) =
∑

j=odd
dXu (x j, x j+1) +

∑
i=even

dXu (xi, xi+1) ≤

L
∑

j=odd
ψ(D) +

∑
i=even

dXu (xi, xi+1) ≤ LDψ(D) + D.

It follows that dXu (x, x′) ≤ LDψ(D)+D and, hence, the inclusion map Xu → Xuv is η-proper,
for η(D) := D(Lψ(D) + 1).

Remark 2.19. Assuming that the map fev : Xe → Xv is an L-qi embedding (which will
be eventually our assumption for trees of hyperbolic spaces), we obtain a better estimate:

dXu (x, x′) ≤ length(cu) =
∑

j=odd
dXu (x j, x j+1) +

∑
i=even

dXu (xi, xi+1) ≤

∑
i=even

dXu (xi, xi+1) + L2
∑

j=odd
dXv (z j, z j+1) + L3n ≤ L3 length(c).

Thus, we conclude that each inclusion map Xu → Xuv in this case is an (L3, 0)-qi embed-
ding.

We now deal with the general case. Consider an admissible path β : [0, 1] → X
connecting x, y ∈ XS . The projection π ◦ β is a path p in T connecting π(x) to π(y) whose
length is ≤ length(β). Without loss of generality, we may assume that π(x), π(y) are vertices
in S and p is a simplicial path in T . We now construct inductively a sequence of paths

β0 = β, β1, ..., βn

in X with simplicial projections to T , all connecting x to y, such that:
(1) βn is a path in XS .
(2) The length of π ◦ βi+1 is at most length(π ◦ βi) − 2.
(3)

length(βi+1) ≤ η(length(βi))
where η(D) := D(Lψ(D) + 1) as above.

Assume that βi is defined. If this path is contained in XS , then n = i we are done.
Otherwise, there exists an edge e = [v,w] in the tree πβi([0, 1]) such that β contains a
subpath β′ connecting points x′, y′ ∈ Xv and contained in the subspace Xvw. We then replace
β′ with a geodesic in Xv connecting the end-points x′, y′ of β′. By the above estimate in
Xvw,

dXv (x′, y′) ≤ η(length(β′))
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and, hence, the new path βi+1 satisfies the required conditions.
Clearly, n ≤ length(β), hence,

length(βn) ≤ η(n)(length(β)),

where η(n) is the n-fold iteration of the function η. Therefore, for η2.18 = η
(n),

n = ⌈dX(x, y)⌉

we obtain
dXS (x, y) ≤ η2.18(dX(x, y)). □

Applying the arguments of the proof of the proposition with the linear estimate in
Remark 2.19 we obtain:

Corollary 2.20. If each incidence map fev is an L-qi embedding, then each XS is
at most exponentially distorted in X, i.e. is η-uniformly properly embedded in X with
η(t) = exp(at) for some a ≥ 1 depending only on L.

We omit the proof of this corollary since it is straightforward and the result is not used
elsewhere.

Definition 2.21. Let X = (π : X → T ) be a tree of spaces.
(1) By a K-qi section over a subtree S ⊂ T (or a K-qi lift of S ) we mean a map

σ : S → X such that for each vertex v ∈ S , σ(v) ∈ Xv, for any pair of adjacent
vertices u, v ∈ S , we have dXuv (σ(u), σ(v)) ≤ K and the restriction of σ to the
interval uv is a parameterization of a geodesic σ(u)σ(v) in Xuv.

(2) K-qi lifts of geodesic segments of T will be referred to as K-qi leaves in X and
denoted by γ or γx or γxy, provided they start at x and end at y. We will refer to
such γ’s as horizontal paths in X.

(3) A vertical path in X is a path contained in one of the vertex-spaces.
(4) If Y is a subset of X and r ≥ 0 then the fiberwise r-neighborhood of Y in X

(denoted N f ib
r (Y)) is the union⋃

v∈V(T )

Nr(Y ∩ Xv),

where the latter neighborhood is taken with respect to the (intrinsic) metric of
Xv.

Let X be an abstract tree of spaces. A subtree of spaces in X = (π : X → T ) is a
tree of spaces X′ = (π′ : X′ → T ′) whose base tree is a subtree T ′ ⊂ T , and vertex/edge
spaces X′v, X

′
e are rectifiably connected uniformly properly embedded subsets of Xv, Xe re-

spectively, so that the incidence maps of X′ are uniformly close to restrictions of incidence
maps of X.

2.3. Coarse retractions

In this section we prove a general existence theorem of coarse Lipschitz left-inverses
(retractions) for morphisms of trees of spaces.

Let T ′ be a subtree of T and let X = (π : X → T ), X′ = (π′ : X′ → T ′) be trees of
spaces. We say that a morphism h : X′ → X of these trees of spaces is a relative K-qi
embedding for some constant K ≥ 1, if for each v ∈ V(T ′), e ∈ E(T ′) incident on v, the
maps hv : X′v → Xv, he : X′e → Xe are K-qi embeddings. Similarly, one can define a
relatively retractible morphism of trees of spaces to be a morphism h such that for some
constant L ≥ 0, for each v ∈ V(T ′), e ∈ E(T ′) incident on v, the maps hv : X′v → Xv, he :
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X′e → Xe admit L-coarse Lipschitz left-inverses h
′

v : Xv → X′v, h
′

e : Xe → X′e. If X,X′

are trees of δ-hyperbolic spaces then the two notions are equivalent and, moreover, the
subspaces hv(X′v) ⊂ Xv, he(X′e) ⊂ Xe are λ-quasiconvex for λ = λ1.104(L, δ). Our goal is to
prove that, under some conditions, a relatively retractive morphism is absolutely retractive,
i.e. admits a coarse left-inverse h′ : X → X′. (Recall that the morphism h′ is a collection
of maps h′v : Xv → X′v, h

′
e : Xe → X′e satisfying certain compatibility properties.) This

result is motivated by Mitra’s construction of a coarse retraction in [Mit98, Theorem 3.8].
For relatively retractible morphisms of trees, by abusing the notation, we will identify the
vertex/edge spaces X′v, X

′
e of X′ with their images hv(X′v) ⊂ Xv and he(X′e) ⊂ Xe respectively.

The following theorem is inspired by Mitra’s coarse retraction theorem in [Mit98,
Theorem 3.8] and its proof closely follows Mitra’s argument. The next theorem and the
corollary following it give sufficient conditions for the image of a retractive morphism of
tree of spaces to be a coarse Lipschitz retract.

Theorem 2.22 (Existence of a retraction). Suppose that for some constants C,D, a rel-
atively retractive morphism of trees of spaces h : X′ → X satisfies the following conditions:

(i) For every boundary edge e of T ′, e = [v,w], v ∈ V(T ′),w ∈ V(T ) − V(T ′),

diamX′v (h
′
v ◦ fev(Xe)) ≤ D.

(ii) For every edge [v,w] = e ∈ E(T ′)

distX′v (h
′
v ◦ fev, f ′ev ◦ h′e) ≤ C.

Then the map h : X′ → X admits a coarse L2.22-Lipschitz retraction h′ : X → X′ whose
restriction to Xv equals h′v for each v ∈ V(T ′). Here L2.22 depends only on C,D, coarse
Lipschitz constants of the maps h′v, h

′
e, and the parameters of trees of spaces X,X′.

Proof. We let L denote the maximum of Lipschitz constants of the projections π :
X → T, π′ : X′ → T ′. For each v ∈ V(T ′) then we let h′(x) := h′v(x). Let p : T → T ′

denote the nearest-point projection.
Suppose x ∈ Xw, w ∈ V(T ) \ V(T ′); then v = p(w) ∈ T ′ is the vertex nearest to w. Let

e ∈ E(T ) be the edge incident to v and contained in the geodesic wv. Thus, e is a boundary
edge of the subtree T ′ ⊂ T . By the assumption (i), the projection h′v(Xev) ⊂ X′v has the
diameter ≤ D. We let h′(x) be any point x′ of this projection (we will use the same point
x′ for all vertices w in each component of T − T ′).

In order to verify that h′ is (uniformly) coarse Lipschitz it suffices to find a uniform
upper bound on distances d(h′(x), h′(y)) for points

x, y ∈ X =
∐

v∈V(T )

Xv

which are within distance 1 from each other. If x, y belong to the same vertex-space Xv,
then d(h′(x), h′(y)) ≤ L, the upper bound for coarse Lipschitz constants of the maps h′v :
Xv → X′v. Suppose that x, y belong to Xv, Xw, v,w ∈ V(T ′) are vertices spanning an edge
e ∈ E(T ′). Then, necessarily,

x ∈ Xev, y ∈ Xew, x = fev(z), y = few(z)

for some z ∈ Xe. The condition (ii) then implies the estimates

d(h′v(x), f ′ev ◦ h′e(z)) ≤ C, d(h′w(y), f ′ew ◦ h′e(z)) ≤ C,

hence d(h′(x), h′(y)) ≤ 2C.
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If v,w ∈ V(T ) − V(T ′) then the inequality dT (v,w) ≤ 1 implies that p(v) = p(w) = u ∈
V(T ′) and there is a common boundary edge e of T ′ contained in the geodesics uv, uw ⊂ T .
In particular, both h′(x), h′(y) belong to the subset

h′u ◦ feu(Xe) ⊂ X′u

and, hence, d(h′(x), h′(y)) ≤ D by the condition (i).
Lastly, consider the case when x ∈ Xv, y ∈ Xw, where v ∈ V(T ′),w ∈ V(T )−V(T ′) and

v,w span a boundary edge e of T ′. Since d(x, y) ≤ 1, it follows that x ∈ Xev, y ∈ Xew. Then
p(w) = v and, by the definition of h′, h′(x), h′(y) ∈ h′v(X′ev) and, therefore,

dX′v (h
′(x), h′(y)) ≤ D. □

An easy corollary of Theorem 2.22 is:

Corollary 2.23. Suppose that X = (π : X → T ) is a retractive tree of spaces. For
every edge e = [u, v] ∈ E(T ) there exists an r = r2.23-coarse retraction Xuv → Xu, where r
depends only on the parameters of X and its retractivity constant.

Proof. We have a retractive tree of spaces Y = (π : Xuv → ⟦u, v⟧). In Y we have a
subtree of spaces π′ : Y′ = (Y ′ → ⟦u, v⟧), whose vertex-spaces are Y ′u = Yu = Xu,Y ′e =
Ye = Xe,Y ′v = Xe, f ′ev = id, f ′eu = feu, and the morphism h : Y′ → Y is defined by using
id : Y ′u → Yu and fev : Y ′v → Yv. Since X is retractive, the morphism h is relatively
retractive. Hence, by Theorem 2.22, the identity map Xu → Xu and the retraction Xv → Xe

define a coarse Lipschitz retraction Xuv → Y ′. Since Y ′ is Hausdorff-close to Xu, we
obtain a coarse Lipschitz retraction Y

′

= Yuv → Xu. The reader will verify that the coarse
Lipschitz bound for this retraction depends only on the parameters of X and its retractivity
constant. □

Another useful application of Theorem 2.22 is in the setting of trees of hyperbolic
spaces (which we will discuss in more detail in the next section):

Corollary 2.24. Suppose that the trees of spaces X,X′ and a morphism X′ → X which
is a fiberwise L-qi embedding, have the following properties:

1. For some δ, all vertex and edge-spaces Xv, Xe are δ-hyperbolic. (Accordingly, the
images vertex and edge-spaces hv(X′v) ⊂ Xv, h′e(X′e) ⊂ Xe are λ-quasiconvex subsets in
Xv, Xe respectively, where λ = λ1.56(δ, L).)

2. The retractions h′v, h
′
e are “nearest-point projections” in the sense that

h′v = PXv,X′v ◦ hv, h′e = PXe,X′e ◦ he.

3. There is constant K such that for every edge e = [v,w] ∈ T ′ the Hausdorff distances
HdX′ (X′v, X

′
e) and HdX′ (X′w, X

′
e) are ≤ K.

4. T ′ = T.
Then the fiberwise nearest point projections h′v, h

′
e extend to an L2.24(δ, L,K)-coarse

retraction h′ : X → X′, where (without loss of generality)

L2.24(δ, L,K) ≥ max(L,K).

Proof. For vertices v in T incident to an edge e, the images hv(X′v), fev ◦ he(X′e) are
uniformly Hausdorff-close to each other. Therefore, the nearest-point projections (in Xv) to
these uniformly quasiconvex subsets are also uniformly close to each other (see Corollary
1.108). Now, the claim follows from Theorem 2.22. □
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2.4. Trees of hyperbolic spaces

We now introduce hyperbolicity conditions for trees of spaces.

Definition 2.25. A tree of spaces X satisfies Axiom H if there are constants δ0 and L0
such that:

(1) Each vertex/edge space Xv, Xe of X is a δ0-hyperbolic geodesic metric space.
(2) Each incidence map fev : Xe → Xv is an L0-qi embedding.

We will refer to such X as a tree of hyperbolic spaces.
A finite graph of finitely generated groupsG satisfies Axiom H if the the corresponding

tree of spaces does. In other words, all vertex and edge-groups have to be hyperbolic and
edge-groups are quasiconvex in the incident vertex-groups.

A word of caution: Our terminology does not mean that a tree of hyperbolic spaces
X = (π : X → T ) has δ-hyperbolic total space X. Simple examples are given by Euclidean
plane and Cayley complexes of Baumslag–Solitar groups. One needs to add a suitable
flaring condition on X to ensure hyperbolicity of X, as discussed in Section 2.5. Note also
that our terminology requires not only uniform hyperbolicity of vertex and edge-spaces but
also uniform qi embedding condition for the incidence maps.

Definition 2.26. We will refer to δ0 and L0 as the primary parameters of a tree of
hyperbolic spaces X.

In general, throughout the book, we will suppress the dependence of various constants
and functions on the parameters of X.

Definition 2.27. Suppose that X is a tree of hyperbolic spaces. Let A, B ⊂ X with
π(A) ⊂ π(B). If Xv ∩ A and Xv ∩ B are uniformly quasiconvex in Xv for all v ∈ π(A), we
define the nearest projections in Xv of A ∩ Xv to B ∩ Xv. This gives us a map A → B. We
refer to this map as the fiberwise projection of A to B.

It is immediate that for every tree of hyperbolic spaces, for every edge e = [v,w] ∈
E(T ), the subset Xev ⊂ Xv is λ0 = λ1.92(δ0, L0)-quasiconvex. In particular, every tree of
hyperbolic spaces is retractive (see Definition 2.10) with retractions

fve : Xv → Xe, e = [v,w],

given by the nearest-point projections P = PXv,Xev to the quasiconvex subsets

Xev = fev(Xe) ⊂ Xv.

More precisely: fve(x) is defined to be an arbitrary point in f −1
ev (P(x)).

As an application of Remark 2.19 or, alternatively, of Corollary 2.23, we obtain:

Lemma 2.28. Suppose that X is a tree of hyperbolic spaces with the primary parame-
ters δ and L. Then for every edge e = [u, v] ∈ E(T ), the inclusion maps Xu → Xuv, Xv →

Xuv are L′0 = L2.28(δ, L)-qi embeddings where L′0 is the maximum of 2 and of the coarse
Lipschitz constant for a retraction Xuv → Xv (see Corollary 2.23).

Remark 2.29. In this lemma we ensured that L′0 ≥ 2. This, somewhat artificial, con-
vention will be used in the proof of Lemma 2.38 below.

Suppose that X′ = (π : X′ → T ) is a tree of hyperbolic spaces, G < Isom(X′) is a
subgroup acting by automorphisms of X′, such that the quotient graph T/G is finite and for
every vertex v ∈ V(T ) (resp. edge e ∈ E(T )) the action of the corresponding stabilizer Gv <
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G (resp. Ge < G) on X′v (resp. X′e) is quasiconvex (see Definition 1.132). Thus, the group
G also has structure of a graph of finitely generated groups G (with the underlying graph
T/G); in particular, G is finitely generated. (Note that we are not assuming hyperbolicity
of the space X.)

Since G acts via automorphisms of X′, for each edge e = [v,w] ∈ E(T ) the subspace
X′ev ⊂ X′v is Ge-invariant. We will also assume that for each v ∈ V(T ) the Gv-orbit of
X′ev is locally finite in X′v (see Definition 1.6). Note that the local finiteness assumption is
automatic for instance if there exists a larger discrete group G′v (containing Gv) acting on
X′v geometrically (Lemma 1.7).

Proposition 2.30. Under the above assumptions, there exists a coarse Lipschitz re-
traction X′ → Gx for each G-orbit in X′. In particular, each orbit map G → Gx ⊂ X′ is a
qi embedding.

Proof. The proof is similar to that of Corollary 2.24. Let X = (π : X → T ) denote the
tree of hyperbolic spaces corresponding to the graph of groups G. The isometric action of
G via automorphisms of X′ defines a morphism of trees of spaces X→ X′. This morphism
is relatively retractive in view of the quasiconvexity assumption for the actions Gv ↷
X′v,Ge ↷ X′e. In view of Proposition 1.137(4), the local finiteness assumption implies that
for y ∈ X′v, the restriction to X′e of the nearest-point projection PX′v,Gvy is within uniformly
bounded distance from the projection PX′ev,Gey. Thus, Theorem 2.22 applies and the coarse
Lipschitz retractions X′v → Xv, X′e → Xe together give rise to a coarse Lipschitz retraction
X′ → X. Since G acts cocompactly on X, we, thus, obtain a coarse Lipschitz retraction
X′ → Gx. □

Corollary 2.31. Suppose that G′ is a finite, connected graph of hyperbolic groups
satisfying Axiom H, with π1(G′) = G′ and let T be the Bass–Serre tree of G′. Let G < G′

be a subgroup such that:
1. For every vertex v (resp. edge e) of T , the G-stabilizer Gv < G of v (resp. the G-

stabilizer Ge < G of e) is a quasiconvex subgroup of the G′-stabilizer G′v < G′ of v (resp.
of the G′-stabilizer G′e < G′ of e).

2. The quotient-graph T/G is finite.
There exists a coarse Lipschitz retraction G′ → G. In particular, the subgroup G is qi

embedded in G′.

Example 2.32. Let H = π1(S 1)⋆π1(S 2), where S 1, S 2 are closed connected hyperbolic
surfaces, and let ϕi : π1(S i) → π1(S i), i = 1, 2, be automorphisms. Then ϕ1, ϕ2 define an
automorphism ϕ : H → H and we obtain subgroups Gi = ϕ1(S i)⋊ϕi Z in G′ = H ⋊ϕ Z. The
subgroups Gi < G′ clearly satisfy the assumptions of the corollary (where T is the line)
which implies that they are coarse Lipschitz retracts of G′. Note, furthermore, that if ϕ1, ϕ2
are induced by pseudo-Anosov homeomorphisms of the surfaces S 1, S 2, then the group
G′ is isomorphic to the amalgam of hyperbolic groups G1 ⋆Z G2, where Z is a malnormal
subgroup of both G1,G2. Hence, the group G′ is hyperbolic (see Corollary 2.57 below)
and the subgroups G1,G2 are quasiconvex in G′.

Below, H is a quasiconvex subgroup of G′v for some vertex v in T .

Lemma 2.33. For each edge e and vertex w in T ′, the H-stabilizer of e (resp. w) is a
quasiconvex subgroup of both H and G′e (resp. G′w).

Proof. Consider first an edge e = [v,w]. Then He = H ∩ G′e is the intersection of
two quasiconvex subgroups of G′v, hence, is quasiconvex in G′v, G′e and H (see Corollary
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1.135). The general case follows from induction on the length of the edge-path connecting
e (resp. w) to v. □

Lemma 2.34. Suppose, in addition, that the H-stabilizers of edges incident to v are all
finite. Then for each R ≥ 0, x ∈ X′v and all the edges e incident to v, the coarse intersections
intersections Hx ∩ NR(X′ev) are uniformly bounded, with bound independent of e. In other
words, the pairs Hx, X′e are uniformly cobounded.

Proof. By properness of the action, there exists an edge e incident to v such that the
diameter of the intersection Hx ∩ NR(X′ev) is maximal. The subset X′ev is Hausdorff-close
to the orbit G′ex. According to Proposition 1.137, the coarse intersection Hx ∩ NR(X′ev) is
Hausdorff-close to the orbit Hex, where He = H ∩ G′e. Since, by the hypothesis of the
lemma, the subgroup He is finite, the coarse intersection Hx ∩ NR(X′ev) is bounded. □

Corollary 2.35. If the pair Hx, X′e is not cobounded then the intersection H ∩ G′e is
infinite.

We will prove in Corollary 2.69 that there exists a function δ(n) (depending also on
the constants δ0 and L0) such that for each interval J of length n, the pull-back space X′J
(with its intrinsic path-metric) is δ(n)-hyperbolic. Thus, we can talk about cobounded pairs
of subspaces in vertex-spaces X′v, X

′
w, v,w ∈ V(J).

Continuing with the notation of Lemma 2.34, and applying Corollary 2.35 inductively
(with Lemma 2.33), we obtain:

Lemma 2.36. Suppose that for some vertex w ∈ T, x ∈ X′v, the subsets Hx, X′w are not
cobounded in X′J , J = ⟦v,w⟧. Then the H-stabilizer of the segment J is an infinite subgroup
of H.

Below are few more easy consequences of Axiom H for trees of spaces.

Lemma 2.37. Assume that X is a tree of hyperbolic spaces. Then for every edge e =
[v1, v2] of T , if αi = [xiyi]Xvi

⊂ Xvi are vertical geodesics such that

dXv1v2
(x1, x2) ≤ C, dXv1v2

(y1, y2) ≤ C,

then the Hausdorff distance between these vertical geodesics in Xv1v2 is at most C1 =

C2.37(C).

Proof. Geodesics x1x2, y1y2 in XJ , J = ⟦v1, v2⟧, have to cross Xe (separating Xvw) at
some points x, y ∈ Xe. Lemma 1.55 applied to the geodesic αi and the L0-quasigeodesic
α′i = fevi ([xy]Xe ) implies that

HdXvi
(αi, fevi (α)) ≤ D = D1.55(δ0, L0,C).

Since
HdXv1v2

(α, fevi (α)) ≤ 1,
we conclude:

HdXv1v2
(α1, α2) ≤ 2(1 + D). □

Lemma 2.38. Let I = ⟦v,w⟧ ⊂ T be a subinterval, we denote its consecutive vertices
v0 = v, v1, ..., vn = w. Let γ0, γ1 be K-qi sections over I. Then the function

ℓ(i) := dXi (γ0,k(vi), γ1,k(vi)), i ∈ [0, n] ∩ Z,

satisfies

ℓ(n) ≤ anℓ(0) +
an − 1
a − 1

b < an(ℓ(0) + b),

where a = L′0, b = 2L′0K + L′0.
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Proof. Consider an edge e = [vi, vi+1] ⊂ I. The points

γ0(vi+1), γ1(vi+1) ∈ Xvi

are connected by a path of length ≤ 2K + ℓ(i) in X⟦vi,vi+1⟧, obtained by concatenating a
vertical geodesic [γ0(vi)γ1(vi)]Xvi

with two geodesics of length ≤ K. Since Xvi+1 is L′0-qi
embedded in X⟦vi,vi+1⟧, we have

ℓ(i + 1) ≤ L′0(2K + ℓ(i)) + L′0.

Then

ℓ(n) ≤ anℓ(0) + (an−1 + . . . + 1)b = anℓ(0) +
an − 1
a − 1

b < an(ℓ(0) + b). □

Corollary 2.39. If ℓ(0) ≥ a(M + b), then for all

n ∈ [0,N],N =
⌊
loga

(
ℓ(0)

M + b

)⌋
,

we have
ℓ(n) > M.

Proof. We first reverse the role of ℓ(0) and ℓ(n) and obtain from the lemma that

ℓ(n) < a−nℓ(0) − b, n ∈ N.

The inequality ℓ(n) > M then follows from

n ≤ N ≤ loga

(
ℓ(0)

M + b

)
.

The assumption that ℓ(0) ≥ a(M + b) ensures that N ≥ 1. □

Another corollary (or, rather, a special case of the lemma) is

Corollary 2.40. For every edge e = [u, v] in T , any pair points x, y ∈ Xu, and a pair
of K-qi sections γ0, γ1 over the interval uv, we have

dXv (γ0(v), γ1(v)) ≤ D2.40(K, dXu (x, y)) = L′0(2K + dXu (x, y)).

The following construction of metric interval bundles determined by two qi sections
of X will be used often in what follows. Let S ⊂ T be a subtree and Π = (γ0, γ1) is a pair
of K-qi sections of X over S . We form a tree of spaces YΠ = Y = (Y → S ) as follows:

The vertex-spaces Yv of Y are geodesic segments in Xv joining γ0(v), γ1(v), v ∈ V(S ).
The edge-spaces Ye, e = [v,w], of Y are geodesic segments in Xe with end-points within
distance K from the respective end-points of Yv. The incidence maps of Y are obtained by
composing the incidence maps of fev, v ∈ V(J), composed with the nearest-point projec-
tions to Yv (taken in Xv).

Lemma 2.41. 1. Y is a metric bundle over S .
2. For every point x ∈ Yu, u ∈ V(S ), there exists a K2.41(K)-qi section γ of Y over the

tree S , passing through x, where the qi constant is defined with respect to the metrics Xvw,
[v,w] ∈ E(S ).

Proof. We orient edges e = [v,w] of S away from u and define γ(w) inductively,
assuming that γ(v) is defined. Since the quasigeodesic quadrilateral in Xvw formed by the
paths Yv,Yw and geodesics [γ0(v)γ1(v)]Xvw , [γ0(w)γ1(w)]Xvw (of lengths ≤ K) are uniformly
slim (with respect to the metric of Xvw), the point γ(v) ∈ Yv is K2.41(K)-close to a point
γ(v) ∈ Yv. This proves both claims of the lemma. □
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2.5. Flaring

Geodesics (and, hence, uniform quasigeodesics) in hyperbolic spaces diverge (expo-
nentially fast). Since k-qi leaves in hyperbolic trees of spaces π : X → T are uniform
quasigeodesics, they should also diverge if X is hyperbolic. In this section we discuss sev-
eral divergence conditions, called flaring conditions4, one can impose on qi-leaves in trees
of spaces. These conditions involve pairs Π = (γ0, γ1) of k-sections γ0, γ1 over a common
geodesic segment J = ⟦t−n, tn⟧ ⊂ T of length 2n and prescribe the nature of growth of the
vertical distances

dXvi
(γ0(vi), γ1(vi))

for i > 0 or i < 0. The girth Π0 of the pair (γ0, γ1) is the vertical distance

Π0 = dX0 (γ0(0), γ1(0)).

Remark 2.42. Π0 need not be equal to

min
v∈V(J)

dXv (γ0(v), γ1(v)).

We will frequently use the notation Πmax for the maximal separation of the ends of the
pair Π = (γ0, γ1),

Πmax := max
(
dXt−n

(γ0(t−n), γ1(t−n)), dXtn
(γ0(tn), γ1(tn))

)
,

describing the rate of growth of the above vertical distances (in one of the directions).

Figure 2. Flaring.

2.5.1. Proper and uniform flaring conditions. The uniformly proper flaring condi-
tion requires qi sections over the same geodesic in T to diverge at some uniform rate in at
least one direction. More precisely:

Definition 2.43 (Uniformly proper flaring). A tree of spaces X = (π : X → T ) is said
to satisfy the uniformly proper κ-flaring condition if there exists mκ ≥ 0 and a positive
proper function ϕκ : N → R+ such that for every pair Π of κ-qi sections γ0, γ1 of girth
> mκ, over an interval of length 2n in T , we have

Πmax ≥ ϕκ(n).

4Flaring conditions do not require Axiom H.
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In other words, κ-sections have to diverge uniformly fast but the rate of divergence is
allowed to be, say, sublinear (unlike the the Bestvina–Feighn flaring condition where one
has an exponential rate of flaring).

It is clear from the definition that if X satisfies the uniformly proper K-flaring condi-
tion, then it also satisfies the uniformly proper κ-flaring condition for all κ ∈ [1,K]: We
simply take ϕκ := ϕK and mκ := mK . Note also that it would be too much to ask for

Πmin = min
(
dX−n (γ0(−n), γ1(−n)), dXn (γ0(n), γ1(n))

)
≥ ϕκ(n),

for all n ∈ N and all pairs of κ-qi sections Π = (γ0, γ1) for some (uniform) proper function
ϕκ.

Definition 2.44. We will say that a pair Π = (γ0, γ1) of sections over an interval
⟦−N,N⟧ in T is flaring in the positive/negative direction if, respectively,

dXn (γ0(n), γ1(n)) ≥ ϕκ(n),

or
dX−n (γ0(−n), γ1(−n)) ≥ ϕκ(n)

for all n ∈ N ∩ [1,N].

We will see in Lemma 2.59 and Corollary 2.61, that uniformly proper flaring (for all
κ ≥ 1) implies uniformly proper flaring in positive or negative direction (after a possible
change of the function ϕκ).

Below is a minor variation on the definition of uniformly proper flaring. For fixed κ
and Π0 define the function

ϕκ,Π0 (n) := inf{Πmax(n)}
where the infimum is taken over all κ-qi sections (γ0, γ1) over length 2n intervals in T such
that Π0(γ0, γ1) = Π0.

Definition 2.45 (Proper κ-flaring). A tree of spaces X = (π : X → T ) is said to satisfy
the proper κ-flaring condition if there exists mκ such that for each Π0 ≥ mκ each function
ϕκ,Π0 (n) is proper.

Clearly, uniformly proper flaring implies proper flaring. The next lemma (which will
not be used elsewhere) shows that the converse is also true, provided that we are willing to
change the qi constant:

Lemma 2.46. There exists a function K = K2.46 = K2.46(κ) such that if X satisfies the
proper K-flaring condition, then it also satisfies the uniformly proper κ-flaring condition.

Proof. Let Π = (γ0, γ1) be a pair of κ-qi sections over an interval J ⊂ T of length 2n,
such that Π0 ≥ mκ. Consider a point x ∈ [γ0(0)γ1(0)]X0 at the distance mk from γ0(0). By
Lemma 2.41, there exists a K = K2.41(κ)-section γ over the interval J such that γ(0) = x.
In view of the proper flaring assumption (up to interchanging the end-points of J), the pair
of sections (γ0, γ) satisfies

dXn (γ0(n), γ(n)) ≥ ϕκ,mK (n).
It follows that

Πmax(γ0, γ1) ≥ dXn (γ0(n), γ(n)) ≥ ϕκ,mK (n). □

In the book we will be mostly using an alternative form of the proper flaring condition
established in the next proposition. For the ease of the notation, in this section we will
identify a geodesic, say ⟦v,w⟧, of length ℓ in T , where v,w ∈ V(T ) with an interval [a, b] ⊂
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R of length ℓ, where a, b ∈ Z through an implicit isometry [a, b] → ⟦v,w⟧; this means, in
particular, that integers correspond to the vertices in ⟦v,w⟧.

Proposition 2.47. The following are equivalent:
1. A tree of spaces X = (π : X → T ) satisfies the uniformly proper κ-flaring condition.
2. There exist Mκ such that for all D ≥ 0, there is τ = τ2.47(κ,D) satisfying the

following:
For every pair Π of κ-qi sections γ0, γ1 over a geodesic interval [−m, n] ⊂ T (m, n ∈

N), if
dXi (γ1(i), γ2(i)) > Mκ,∀i ∈ [−m + 1, n − 1],

and
Πmax = max

(
dX−m (γ0(−m), γ1(−m)), dXn (γ0(n), γ1(n))

)
≤ D,

then
n + m ≤ τ.

Proof. First of all, we leave it to the reader to check that if (2) holds for all m = n then
it holds for all m, n ∈ N. Therefore, in what follows, in (2) we will be always assuming
that n = m.

i. Assume that the uniformly proper flaring condition holds. Take Mκ := mκ and
consider a pair Π = (γ0, γ1) of κ-qi sections over an interval [−n, n] ⊂ T as in part (2). In
particular, girth of (γ0, γ1) is > Mκ. By the uniformly proper flaring condition, we have

D ≥ Πmax ≥ ϕκ(n).

Since ϕκ(t) is proper, the preimage ϕ−1
κ ([0,D]) is contained in an interval [0, tκ,D]. Then we

take
τ(κ,D) := 2tκ,D.

ii. Conversely, suppose that (2) holds but the uniform proper flaring fails. Then there
exist a constant D > 0 and a sequence Πm of pairs of κ-qi sections γm

0 , γ
m
1 over some

intervals ⟦sm, tm⟧ ⊂ T of length 2nm with the midpoint vertex rm such that Πm
0 → ∞, nm →

∞, but
Πm

max = max
(
dXtm

(γm
0 (tm), γm

1 (tm)), dXsm
(γm

0 (sm), γm
1 (sm))

)
≤ D.

We will isometrically parameterize the geodesic [sm, tm] by the interval [−nm, nm] ⊂ Z so
that rm corresponds to 0. Set τ := τ(κ,M) where

M = max(D,Mκ).

Define the function

ℓm(i) := dXi (γ
m
0 (i), γm

1 (i)), i ∈ [−nm, nm]; ℓm(0) = Πm
0 .

Then for sufficiently large m we have

Πm
0 = ℓm(0) > a(M + b); a = L′0, b = 2L′0κ,

and, hence, according to Corollary 2.39, for all n ∈ [−Nm + 1,Nm − 1], we have

ℓm(n) > M.

Here

Nm =

⌊
loga

(
Πm

0

M + b

)⌋
.

Observe that the right hand side diverges to infinity as m → ∞. Therefore, for sufficiently
large m, Nm > τ/2. Thus, we obtain a contradiction with (2). □
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While the (uniformly) proper flaring condition is quite natural, it is the condition (2)
in Proposition 2.47 that we will use throughout the book.

Definition 2.48. We will say that a tree of spaces X satisfies the uniform κ-flaring
condition with the parameter Mκ if the condition (2) in the proposition holds.

Convention 2.49. In what follows, unless indicated otherwise, κ-flaring always means
uniform κ-flaring.

Lemma 2.50. Suppose that X = (π : X → T ) is a tree of hyperbolic spaces with
δ-hyperbolic total space X. Then X satisfies the uniform κ-flaring condition for all κ ≥ 1.

Proof. As noted earlier, it suffices to consider the case n = m. Since γ0, γ1 are κ-
quasigeodesics in X, they are within Hausdorff distance D1.54(δ, κ) from geodesics γ∗i in
X connecting the endpoints of γ0, γ1 respectively. Take x0 = γ0(0) and x∗0 ∈ γ

∗
0 a point

within distance D1.54(δ, κ) from x0. The projections to T of the geodesics [γ0(−n)γ1(−n)]X ,
[γ0(n)γ1(n)]X each have length ≤ D. Thus,

d(x∗0, [γ0(±n)γ1(±n)]X) ≥ D.

Suppose for a moment that n − D > 2δ. By the slim quadrilateral property, there is
a point x∗1 ∈ γ

∗
1 within distance 2δ from x∗0. (A priori, this could have been a point on

one of two other sides of the geodesic quadrilateral with the vertices γi(±n), i = 0, 1, but
this possibility is ruled out by our assumption that n − D > 2δ.) Thus, we find a point
x1 ∈ γ1 ∩ Xv, within distance

D0 = 2(δ + D1.54(δ, κ)) + κ

from x0. While v need not be equal to the vertex 0 ∈ ⟦−n, n⟧ ⊂ T , we still have

dT (0, v) ≤ D0.

In particular,

dX0 (γ0(0), γ1(0)) = Π0 ≥ dX(γ0(0), γ1(0)) ≤ D1 = D0(κ + 1).

We, therefore, set
Mκ = D1

and τ(κ,D) = δ + 1
2 D. Since in the uniform κ-flaring property, it is assumed, in particular,

that
dX0 (γ0(0), γ1(0)) > Mκ,

we obtain a contradiction with the above estimates, unless the inequality n − D ≥ 2δ is
violated, i.e. unless n ≤ D + 2δ, equivalently, the length of the interval ⟦−n, n⟧ is at most
τ, as required. □

The uniform flaring condition has an immediate consequence that we will use on few
occasions:

Lemma 2.51 (Three flows lemma). Suppose that π : X → T satisfies the uniform K-
flaring condition. Suppose that γ1, γ2, γ3 are K-qi sections of π : X → T over an interval
⟦s, t⟧ such that for all r ∈⟧s, t⟦,

dXr (γ1(r), γ3(r)) > MK

while
max

i, j
dXs (γi(s), γ j(s)) ≤ C, max

i, j
dXt (γi(t), γ j(t)) ≤ C.

Then the length of the interval ⟦s, t⟧ is uniformly bounded, i.e is ≤ τ2.51(K,C).
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Definition 2.52. (1) Given K ≥ 1 and C ≥ 0, by a (K,C)-bigon we will mean a pair
of K-qi sections Π = (γ1, γ2) such that Πmax ≤ C. Such a bigon said to be D-thin for some
D ≥ 0 if

∀t ∈ V(I), dXt (γ1(t), γ2(t)) ≤ D.

Here, as before,

Πmax = max
(
dXv (γ1(v), γ2(v)), dXw (γ1(w), γ2(w))

)
.

(2) Given K ≥ 1, C ≥ 0, we say that a tree of spaces X satisfies the (K,C)-thin bigon
property if there is a constant R = R(K,C) such that any (K,C)-bigon is R-thin.

The next corollary will be used quite often in our book:

Corollary 2.53. There is a function R(K,C) = R2.53(K,C) defined for K ≥ 1,C ≥ 0
such that the following holds:

A tree of spaces X = (X → T ) satisfies the uniform K-flaring condition if and only
if for every C ≥ 0, each (K,C)-bigon in X is R(K,C)-thin, or, equivalently, X satisfies the
(K,C)-thin bigon property.

Proof. 1. Assume that X satisfies the uniform K-flaring condition. Consider a pair of
K-qi sections over an interval I ⊂ T . If for every vertex t ∈ I, dXt (γ1(t), γ2(t)) ≤ MK , then
we are done. Otherwise, let I′ = ⟦v′,w′⟧ ⊂ ⟦v,w⟧ be a maximal subinterval such that for
all vertices t ∈ I′ we have

dXt (γ1(t), γ2(t)) > MK .

Then there are edges [v′′, v′], [w′,w′′] in I (not contained in I′) such that

dXs (γ1(s), γ2(s)) ≤ C′ := max(MK ,C, 3δ0), s ∈ {v′′,w′′}.

By Lemma 2.51 applied to K-qi sections γ1, γ2 = γ3, restricted to I′′ := ⟦v′′,w′′⟧, we
obtain:

dT (v′′,w′′) ≤ τ := τ2.51(K,C′).

By Lemma 2.38, we get that for all t ∈ V(I′),

dXt (γ1(t), γ2(t)) ≤ R2.53(K,C) := aτ
(
C′ +

b
a − 1

)
,

with a = L′0, b = 2L′0K. (Recall that L′0 ≥ 2.)

2. We argue as in the proof of Proposition 2.47. Suppose that the uniformly proper κ-
flaring fails. Then there exist a constant D > 0 and a sequence Πm of pairs of κ-qi sections
γm

0 , γ
m
1 over some intervals Jm = ⟦sm, tm⟧ ⊂ T of length 2nm with the midpoint vertex rm

such that Πm
0 → ∞, nm → ∞, but

Πm
max = max

(
dXtm

(γ0,m(tm), γ1,m(tm)), dXsm
(γ0,m(sm), γ1,m(sm))

)
≤ D.

Setting C := D, the hypothesis in Part 2 of the corollary means that

dXt (γ1(t), γ2(t)) ≤ R(K,C)

for all vertices t ∈ Jm. This contradicts Πm
0 → ∞. □
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2.5.2. Acylindrical trees of spaces. An easy, and frequently occurring, sufficient
condition for uniform κ-flaring is acylindricity:

Definition 2.54. Fix constants κ ≥ 1 and τ ≥ 1. A tree of spaces (π : X → T ) is
(M, κ, τ)-acylindrical if for every pair of κ-sections γ0, γ1 over an interval J ⊂ T of length
≥ τ, we have

dXv (γ0(t), γ1(t)) ≤ M,∀t ∈ V(J).

We give a few geometric examples of acylindrical trees of spaces in Section 2.6.2. In
order to see that acylindrical trees of spaces satisfy uniform flaring, we take Mκ := M and
τ(κ,D) := τ + 2. Then, regardless of D, if Π = (γ0, γ1) is a pair of κ-qi sections over an
interval J = ⟦u, v⟧ ⊂ T and

dXi (γ1(i), γ2(i)) > M, i ∈ V(⟧u, v⟦),

then the length of ⟧u, v⟦ is < τ and, hence, J has length < τ(κ,D) = τ + 2.
The terminology acylindrical has its origin in 3-dimensional topology: A compact ori-

ented 3-dimensional manifold with incompressible boundary M is called (homotopically)
acylindrical if every map of an annulus (A, ∂A)→ (M, ∂M) is homotopic (rel. ∂A) to a map
A → ∂M. Algebraically speaking, this condition means that if two elements of π1(∂M,m)
are conjugate in π1(M,m), then they are conjugate in π1(∂M,m). If one glues two connected
acylindrical 3-manifolds M1,M2 along their boundary surfaces to form a 3-manifold M,
then every subgroup of π1(M) isomorphic to Z2 is contained (up to conjugation) in π1(M1)
or in π1(M2). Algebraically speaking, topological acylindricity corresponds to acylindric-
ity in the sense of group actions on trees (Definition 2.4) as follows. The decomposition
M = M1 ∪ M2 yields graph-of-groups decomposition of the fundamental G = π1(M). Let
G × T → T denote the action of G on the Bass–Serre tree T corresponding to this decom-
position of G. Then the action of G on T is 1-acylindrical if and only if both manifolds
M1,M2 are acylindrical. The proof of this is straightforward and is similar to the proof of
Corollary 2.57. However, since the proof is irrelevant for the rest of the book, we omit
it. Suppose again that G is the fundamental group of a finite graph of finitely generated
groups (G,Y); let G × T → T be the corresponding G-action on the Bass–Serre tree and
X = (X → T ) the tree of spaces with X equal to the Cayley graph of G as discussed in
Example 2.17. We will see in Proposition 2.55 that in this setting the tree of spaces X is
(κ, τ)-acylindrical provided that the action of G on T is k-acylindrical for suitable values of
κ, τ and k.

2.5.3. Group-theoretic examples. The following proposition was proved by Ilya
Kapovich [Kap01]; below, we give a different proof.

Proposition 2.55. Suppose (G,Y) is a finite graph of hyperbolic groups satisfying
Axiom H and G := π1(G). If the G-action on the Bass–Serre tree T of G is R-acylindrical
in the sense of Sela [Sel97], then for all κ ≥ 1 there is a constant Mκ such that the induced
tree of metric spaces X = (π : X → T ) is (Mκ, κ,R)-acylindrical. In particular, in view
Theorem 2.62, G is hyperbolic.

Proof. The first part of the proof follows by the arguments in [Sar18, Section 3]. We
will need some properties of the tree of spaces X listed below.

(1) The vertex-spaces of X are metric graphs which are isometric copies of various
cosets of Gy’s in G, where y ∈ V(Y). The map π : X → T is G-equivariant. The G-
action on X is proper and cocompact, and the stabilizer of each v ∈ V(T ) acts on V(Xv)
transitively.
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(2) Suppose that Γ is a Cayley graph of G with respect to a finite generating set. Let
f : G → X be an orbit map. We know that for each y ∈ V(Y) and g ∈ G, gGy is a vertex of
T . We have Hd(Xgy, f (gGy)) ≤ D, where D is a constant independent of g ∈ G, y ∈ V(Y).

Suppose that the claim of the proposition fails for some κ. Then there is a sequence of
pairs of κ-qi sections γ0,n, γ1,n over geodesic intervals

βn : [0,R + 1]→ T

of length R + 1, such that for some integer t ∈ [0,R + 1] we have

dXβn (t) (γ0,n(t), γ1,n(t)) ≥ n, ∀n ∈ N.

Note that for all integers s ∈ [0,R + 1]

dX(γ0,n(s), γ1,n(s)) ≥ dX(γ0,n(t), γ1,n(t)) − dX(γ0,n(s), γ0,n(t)) − dX(γ1,n(s), γ1,n(t)).

Since γ0,n, γ1,n are κ-qi sections, we have

dX(γ0,n(s), γ1,n(s)) ≥ dX(γ0,n(t), γ1,n(t)) − 2κ|s − t| − 2κ ≥
dX(γ0,n(t), γ1,n(t)) − 2(R + 1)κ − 2κ.

Since vertex-spaces of X are uniformly properly embedded in the ambient space X we see
that dX(γ0,n(t), γ1,n(t)) → ∞ as n → ∞. Thus, dX(γ0,n(t), γ1,n(t)) → ∞, which in turn
implies that dXβn (s) (γ0,n(s), γ1,n(s)) → ∞ for all s ∈ [0,R + 1]. Thus, passing to subse-
quence, if necessary, we may assume that dXβn (s) (γ0,n(s), γ1,n(s)) ≥ n for all n ∈ N and
s ∈ [0,R + 1]. Also, since the group G acts on T cocompactly, we can assume, by passing
to subsequence if necessary, that βn(0) is a fixed vertex v and γ0,n(0) is a fixed point x ∈ Xv.
Since X is quasiisometric to G, by passing to a further subsequence, if necessary, we may
assume that βn is a fixed geodesic vw in T , where dT (v,w) = R + 1. We note that since
dX(γ0,n(v), γ1,n(w)) ≤ κ + κR, by Lemma 2.37 we have

Hd([γ0,n(v)γ1,n(v)]Xv , [γ0,n(w)γ1,n(w)]Xv ) ≤ C2.37(κ + (R + 1)κ).

Now, by (2) above we have a constant D1 and y, y′ ∈ V(Y), g, g′ ∈ G such that
(i) v = gGy, w = g′Gy′ and
(ii) the diameter of ND1 (gGy) ∩ g′Gy′ is infinite in Γ.

The rest of the argument is borrowed from [Mit04, Theorem 4.6]. Let {hn} ⊂ gGy and
{h′n} ⊂ g′Gy′ be sequences of distinct elements such that dΓ(hn, h′n) ≤ D1 for all n ∈ N.
Hence, dΓ(1, h−1

n h′n) ≤ D1. But there are only finitely many elements of G inside B(1; D1).
Hence, passing to a subsequence, we may assume that the sequence {h−1

n h′n} is constant.
Let x = h−1

n h′n. Consider the equations x = h−1
m h′m = h−1

n h′n; whence hmx = h′m, hnx = h′n.
Thus, we have

x−1h−1
m hnx = h′−1

m h′n ⇒ h−1
m hn = xh′−1

m h′nx−1

⇒ hm(h−1
m hn)h−1

m = (hmx)h′−1
m h′n(hmx)−1 = h′m(h′−1

m h′n)h′−1
m .

Clearly, h−1
m hn ∈ Gy and, hence, hm(h−1

m hn)h−1
m ∈ hmGyh−1

m = gGyg−1, since hm ∈ gGy.
Similarly, h′m(h′−1

m h′n)h′−1
m ∈ g′Gy′g′−1. This implies that

hm(h−1
m hn)h−1

m = h′m(h′−1
m h′n)h′−1

m ∈ gGyg−1 ∩ g′Gy′g′−1.

However, gGyg−1 is the stabilizer of the vertex v = gGy and g′Gy′g′−1 is the stabilizer
of w = g′Gy′ . Since {hn} and {h′n} are sequences of distinct elements in gGy and g′Gy′

respectively, the intersection Gv ∩Gw is infinite. Since dT (v,w) = R+1 this contradicts the
R-acylindricity of the G-action. □
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Remark 2.56. 1. The proof of Proposition 2.55 also works even if we assume that
Gv ∩Gw finite whenever dT (v,w) ≥ k + 1.

2. In fact, to conclude hyperbolicity of G in the proposition, one does not need the
full power of the Combination Theorem, Theorem 2.62, one can derive the result from the
cobounded quasiconvex chain-amalgamation, Theorem 2.65.

For the next corollary, we recall that a subgroup H in a group G is weakly malnormal
if for every g ∈ G \ H the intersection

gHg−1 ∩ H

is finite.

Corollary 2.57. ([KM98, Theorem 2]) If G1,G2 are hyperbolic groups and H is a
common quasiconvex subgroup which is weakly malnormal either in G1 or in G2, then
G = G1 ∗H G2 is hyperbolic.

Proof. We claim that the action of G on the Bass–Serre tree for the given amalgam
decomposition is 3-acylindrical. Without loss of generality, let us assume that H < G1 is
weakly malnormal. If T is the Bass–Serre tree and v,w ∈ V(T ) with dT (v,w) ≥ 4, then
there are is a sequence of consecutive vertices on vw of the form v1 = xG2, v2 = yG1, v3 =

zG2, where x, y, z ∈ G. Then Gv1 ∩Gv3 is equal to the intersection of the stabilizers of the
two edges:

(i) one edge connecting v1, v2, and
(ii) the one edge connecting v2, v3.
However, these are two distinct conjugates of H in the stabilizer of v2 = yG1, i.e. they

are of the form ygHg−1y1, yg′Hg′−1y−1 in yG1y−1 where g, g′ ∈ G1. Since

ygHg−1y1 ∩ yg′Hg′−1y−1 = y(gHg−1 ∩ g′Hg′−1)y−1

(weak) malnormality of H in G1 proves our claim. Then the hyperbolicity follows from
Proposition 2.55. □

An example analogous to the situation of the corollary above in the context of a tree
of spaces is discussed in Section 2.6.2.

2.5.4. Exponential flaring (Bestvina–Feighn flaring condition).

Definition 2.58 (Exponential flaring condition). We say that a tree X of metric spaces
π : X → T satisfies the Bestvina–Feighn κ-flaring condition or the exponential κ-flaring
condition, if there exist λκ > 1,Mκ > 0 and nκ ∈ N such that the following holds:

For every pair Π = (γ0, γ1) of κ-qi sections of X over a length 2nκ geodesic interval
⟦−nκ, nκ⟧ ⊂ T , if the girth Π0 of the pair (γ0, γ1) is ≥ Mκ, then

λκ · Π0 ≤ Πmax.

A form of this flaring condition first appeared in the paper [BF92] of Bestvina and
Feighn. Actually, the original Bestvina–Feighn flaring condition was a bit different from
the exponential flaring condition above as they required not just two qi sections but a 1-
parameter family of κ-qi sections interpolating these two, i.e. a κ-hallway, see Definition
3.15. The existence of such a family (with a different but uniform qi constant κ′) follows
from [MS09]. It will be also proven in Lemma 3.17(b).

We will see below that the exponential flaring implies proper flaring with an expo-
nential function ϕκ and that if X is hyperbolic, then X satisfies the exponential κ-flaring
condition for all κ ≥ 1. Note that while in their first paper [BF92] Bestvina and Feighn
imposed the exponential flaring condition for all κ ≥ 1, in the addendum [BF96] to their



74 2. GRAPHS OF GROUPS AND TREES OF METRIC SPACES

paper, the flaring condition was required only for some value of κ, cf. the statement of our
main result, Theorem 2.62.

Lemma 2.59. Bestvina–Feighn κ-flaring implies exponential proper κ-flaring. More-
over, the proper flaring condition holds either in the negative or in the positive direction
(see Definition 2.44).

Proof. We fix κ and set n := nκ, λ := λκ. Suppose that Π = (γ0, γ1) is a pair of
κ-qi sections over a geodesic interval I of length N = sn and of girth Π0 ≥ Mκ. For
concreteness, we assume that

dXn (γ0(n), γ1(n)) ≥ λdX0 (γ0(0), γ1(0)) = Π0.

Then, applying the flaring inequality to the subinterval in I of length 2n centered at n, we
obtain

max(dX2n (γ0(2n), γ1(2n)),Π0) ≥ λdXn (γ0(n), γ1(n)).
Since λ > 1, the maximum in this inequality is attained by dX2n (γ0(2n), γ1(2n)) and, thus,

dX2n (γ0(2n), γ1(2n)) ≥ λdXn (γ0(n), γ1(n)).

Applying this argument inductively, we obtain:

λs
κ · Π0 ≤ dXsn (γ0(sn), γ1(sn)) ≤ Πmax(sn).

By reducing λ to µ > 1 if necessary and using Lemma 2.38, we also get

Πmax(m) ≥ dXm (γ0(m), γ1(m)) ≥ µmΠ0,∀m ≥ n.

Since the function m 7→ µm,m ∈ N, is proper, the exponential proper κ-flaring condition
for X follows. □

Proposition 2.60. If X satisfies the proper κ-flaring condition for all κ ≥ 1, then X
also satisfies satisfies an exponential κ-flaring condition for all κ ≥ 1. In particular, if X is
hyperbolic, then X satisfies satisfies an exponential κ-flaring condition for all κ ≥ 1.

Proof. Since X is hyperbolic, the tree of spaces X = (X → T ) satisfies both the proper
κ-flaring and the property obtained in Corollary 2.53 for all κ ≥ 1. We will use both of these
in the proof. The proof is inspired by, but is conceptually simpler than [MS09, Proposition
5.8]. For each K ≥ 1, we inductively define K0 := K and Ki := max{Ki−1,C2.37(Ki−1)},
i ≥ 1. Given κ ≥ 1 we set

L := η2.18(2κ3), ϵ = 3η2.18(2κ3), R := max{1,mκ3 , L(5ϵ + 4L)}

and D := max{R,R2.53(κ3,R)}. Let n = nκ be any integer such that ϕκ3 (n) ≥ 12D; set
λκ := 2 and Mκ := D + 1.

If Π = (γ0, γ1) is a pair of κ-qi sections over an interval J = [−n, n] ⊂ T , Π0 ≥ Mκ,
then we form an interval bundle Y = (Y → J) (see the construction preceding Lemma
2.41).

After that, the idea is to first decompose this interval bundle into a finite number of
subbundles by constructing qi sections in Y (cf. [MS09, Proposition 3.14], also Proposition
4.14), where the subbundles intersect along the qi sections. We then use uniformly proper
flaring to prove that the qi sections bounding each of the subbundles flare in at least one
direction. Finally, as in the last step of the proof of [MS09, Proposition 5.8], we verify that
at least half of these will flare in the same direction to finish the proof.

Step 1: Construction of qi sections in Y . We note that through any point of the
metric bundle formed by two Ki−1-qi sections over J, there is a Ki-qi section, i ≥ 1 (see
Lemma 2.41). Let αi = Y ∩ Xi, i ∈ V(J). For two consecutive integers i, j we have a map
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hi j : αi → α j such that for all x ∈ αi, dXi j (hi j(x), x) ≤ κ3. This map is clearly η2.18(2κ3)-
coarsely Lipschitz, with a similarly defined η2.18(2κ3)-coarse inverse h ji : α j → αi, which
is also an η2.18(2κ3)-coarsely Lipschitz map. Hence, by Lemma 1.15, the maps hi j, h ji

are both (η2.18(2κ3), 3η2.18(2κ3))-quasiisometries. By Lemma 1.24, if x, y, z ∈ αi and y is
between x, z with dXi (x, y) ≥ L(5ϵ + 4L), and dXi (y, z) ≥ L(5ϵ + 4L), then hi j(y) is between
hi j(x) and hi j(z). In particular, this is true if dXi (x, y) ≥ R and dXi (y, z) ≥ R by the choice of
R.

Suppose l(α0) = l and let α0 also denote the parametrization of this geodesic in X0 so
that α0(0) = γ0(0), α0(l) = γ1(0). Next, we inductively construct a sequence of numbers
s0 = 0, · · · , sn = l and a sequence of κ1-qi sections γ0 = β0, β1, · · · , βn = γ1 in Y such that
each βi+1 is contained in the metric bundle formed by βi and βn, 0 ≤ i ≤ n − 2 as follows.
Suppose s0, · · · , si are chosen and so are β0, · · · , βi and si < l. To construct si+1 and βi+1
consider the subset S ⊂ (si, l] consisting of s such that there is a κ2-qi section β through s
satisfying

min
j

dX j (β( j), βi( j)) ≤ R.

If S = ∅ then define si+1 = sn = γ1. Assume now that S is nonempty. Suppose there
is s ∈ S and a κ1-qi section β in Y through α0(s) such that min j dX j (β( j), βi( j)) = R. In this
case, if s , l, then define si+1 = s, βi+1 = β. Otherwise, if s = l, then we define si+1 = sn = l
and βn = γ1. Suppose there is no such s ∈ S . Then let si+1 = min{l, 1 + sup S }. If si+1 , l,
then let βi+1 be any κ1-qi section in Y passing through si+1. Otherwise, define sn = si+1 and
βi+1 = γ1. We note that si+1 − si ≥ R unless si+1 = sn.

Step 2: Verification of properties of qi sections. Let Πi = (βi, βi+1) and let Y i denote
the interval-bundle over J formed by these qi sections. We claim that Y i ∩ Y j = ∅, unless
|i− j| ≤ 1, and Y i ∩Y i+1 = βi+1 for all permissible i. Both claims follow from Lemma 1.24,
cf. Lemma 3.12 of [MS09].

Step 3: Flaring of Πi = (βi, βi+1). We know that there is a κ2-qi section β̄i through
either si+1 or si+1 − 1 inside the subbundle Y i, such that

dX j (βi(ui), β̄i(ui)) ≤ R

for some ui ∈ V(J). Without loss of generality, we may assume that ui < 0. Now we
construct a new set of κ3-qi sections inside the bundle formed by βi and β̄i as follows. Let
r = ⌊(si+1 − si − 1)/D⌋. Let β′j, 0 ≤ j ≤ r be arbitrary κ3-qi sections in the bundle formed
by βi, β̄i such that β′0 = βi, and for j , 0 β′j passes through α0(si + jD). It follows from
Lemma 2.53 that for all j, k ≥ 0 dX j (β

′
k( j), β′k+1( j)) ≥ R and, thus, as in step 2, by Lemma

1.24 we see that
βi( j) = β′0( j), · · · , β′m(0), βi+1( j)

is a monotonic sequence in the geodesic interval [βi( j)βi+1( j)]X j for all j ≥ 0. Thus,

dXn (βi(n), βi+1(n)) ≥
r−1∑
j=0

dXn (β′j(n), β′j+1(n)) ≥

r−1∑
j=0

12D =
r−1∑
j=0

12dX0 (β′j(0), β′j+1(0)) = 12dX0 (β′0(0), β′r(0))

by the uniformly proper flaring and by the choice of n. However,

dX0 (βi(0), βi+1(0)) = dX0 (β′0(0), β′r(0)) + dX0 (β′r(0), βi+1(0)),
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where dX0 (β′r(0), βi+1(0) ≤ D + 1. It follows that

dXn (βi(n), βi+1(n)) ≥
12D

2D + 1
dX0 (βi(0), βi+1(0)) ≥ 4dX0 (βi(0), βi+1(0)),

since D ≥ 1.

Step 4: Exponential flaring of γ0, γ1. We know that each pair Πi = (βi, βi+1) expo-
nentially flares in at least one direction (say, in the positive direction) by Step 3. Then there
is a subset of induces I ⊂ {1, 2, ...}, such that∑

i∈I

Πi
0 ≥

1
2
Π0.

It follows that Π flares exponentially in the positive direction with λκ = 2. □

Corollary 2.61. If X satisfies the (uniformly) proper κ-flaring condition for all κ ≥ 1,
then (again, for all κ ≥ 1) it satisfies the (uniformly) proper flaring either in positive or in
the negative direction.

2.6. Hyperbolicity of trees of hyperbolic spaces

2.6.1. The combination theorem. We are now ready to state our version of the com-
bination theorem of Bestvina and Feighn [BF92]:

Theorem 2.62. There exist K∗ = K2.62(δ0, L0) and δ∗ = δ2.62(δ0, L0), depending only on
δ0 and L0, such that the following holds. Suppose X = (π : X → T ) is a tree of hyperbolic
spaces (with primary parameters δ0, L0) satisfying the uniform K∗-flaring condition. Then
X is a δ∗-hyperbolic metric space.

The constants K∗ and δ∗ are computable. In Remark 6.12 we will give a formula for
K∗, which is inductive in nature, as it relies upon earlier computations of various constants
and functions scattered throughout the book. (We will not attempt to write a formula for
δ∗.) The reader unwilling to keep track of such computations, can simply assume that X
satisfies the uniform κ-flaring condition for all κ ≥ 1.

Corollary 2.63. There exist K = K2.63(δ0, L0) and δ = δ2.63(δ0, L0), depending only
on δ0 and L0, such that the following holds. Suppose X = (π : X → T ) is a tree of hyper-
bolic spaces (with primary parameters δ0, L0) satisfying one of the following conditions:

(1) The uniformly proper K-flaring condition (Definition 2.43).
(2) The proper K-flaring condition (Definition 2.45).
(3) The Bestvina–Feighn K-flaring condition (Definition 2.58).
(4) The R(K,C)-bigon-property for some C (Definition 2.52).

Then X is a δ-hyperbolic metric space.

Proof. This is a direct consequence of Theorem 2.62, Propositions 2.47, 2.46, 2.60
and Corollary 2.53. □

2.6.2. Cobounded quasiconvex chain-amalgamation. In the book we will be fre-
quently using the following very special case of Theorem 2.62 which is much easier to
prove, see e.g. [MS09, Proposition 1.51]. This special case was motivated by a result of
Hamenstadt, [Ham05, Lemma 3.5]. Although Hamenstadt used much stronger assump-
tions, it is clear that the proof of Hamenstadt goes through with the weaker hypothesis
as well. We include a proof along the lines of Hamenstadt’s arguments for the sake of
completeness and also since we want a description of geodesics.
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We assume that X is a geodesic metric space that can be represented as a union of a
finite chain of rectifiably-connected subsets equipped with induced path-metrics

X = Q0 ∪ Q1 ∪ ... ∪ Qn,

such that for some constants C and δ the following hold:
(1) Each Qi is δ-hyperbolic geodesic metric space (with respect to the induced length

metric from X).
(2) For each i < n the intersection Qi,i+1 = Qi ∩ Qi+1 is rectifiably connected and

L-qi embedded in Qi,Qi+1. We assume these spaces also to be geodesic metric
space (with respect to the induced length metric from X).

(3) Each Qi,i+1 separates (in Y) Qi from Qi+1 in the sense that every path c in X
connecting Qi to Qi+1 has to cross Qi,i+1.

(4) Each pair of intersections Qi−1,i,Qi,i+1 is C-cobounded in Qi.
(5) dQi (Qi−1,i,Qi,i+1) ≥ 1.

We will say that such X is a cobounded quasiconvex chain-amalgam of Qi’s. If n = 1,
we will refer to X = Q0 ∪ Q1 simply as a quasiconvex amalgam.

Remark 2.64. (1) We could also work with a path-metric space X satisfying the above
conditions, since we can always replace X with its graph approximation (see Lemma 1.33).

(2) Clearly, the collection Qi’s in a cobounded quasiconvex chain-amalgam gives X
structure of a tree of hyperbolic spaces with vertex-spaces Qi and edge-spaces Qi,i+1, such
that the tree T is isometric to the interval J of length n + 1 in R with integer vertices.
Conversely, consider a tree of hyperbolic spaces X over an interval T such that for each
vertex v with the incident edges e±, the corresponding subsets Xe±v are C′-cobounded in
Xv. Then X yields a cobounded quasiconvex chain-amalgam with subsets Qi = Qv, v = vi,
equal to the unions

Xe− ×

[
1
2
, 1

]
∪ fe−v Xv ∪ fe+v Xe+ ×

[
0,

1
2

]
,

Qi−1,i = Xe− ×
1
2
,

see Section 1.6 for the definition of mapping cylinders.

However, for each i pick points

x−i ∈ NC′ (PQi,Qi−1,i (Qi,i+1)) ∩ Qi−1,i, x+i ∈ NC′ (PQi,Qi,i+1 (Qi−1,i)) ∩ Qi,i+1,

where the C′-neighborhoods are taken with respect to the metric of Qi,Qi. Since both
projections of Qi−1,i to Qi,i+1 and of Qi,i+1 to Qi−1,i have diameters ≤ C, we obtain

(2.1) dQi (Qi−1,i,Qi,i+1) ≤ dQi (x−i , x
+
i ) ≤ dQi (Qi−1,i,Qi,i+1) + 2(C +C′),

i.e. the pair of points x−i , x
+
i “almost” realizes the minimal distance in Qi between the

subsets Qi−1,i, Qi,i+1.
We will simultaneously prove hyperbolicity of X and describe uniform quasigeodesics

connecting points in X. For this description, given points x ∈ Qi−1, x′ ∈ Qk+1, it will be
convenient to name their nearest-point projections (in Qi−1,Qk+1) to Qi−1,i,Qk,k+1 as x̄, x̄′,
respectively. Suppose, furthermore, that

c(x+i , x
−
i+1),

are L′-quasigeodesic paths in Qi,i+1 connecting x+i to x−i+1 and

c(x−i , x
+
i ), c(x, x̄), c(x̄′, x′)
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are L′-quasigeodesic paths in Qi connecting x−i to x+i , etc. We let c∗(·, ·) denote the corre-
sponding geodesics paths in Qi,i+1, Qi, connecting the respective points.

Theorem 2.65. Under the above assumptions, X is δ2.65(δ, L, L′,C,C′)-hyperbolic.
Moreover, the following paths c(x, x′) are K = K2.65(δ, L,C,D, L′)-quasigeodesics in X
connecting x ∈ Qi−1, x′ ∈ Qk+1, i ≤ k:

1. If x, x′ belong to Q′i = Qi \ (Qi−1,i ∪ Qi,i+1) for some i, then we assume that c(x, x′)
is an L′-quasigeodesic in Qi connecting x to x′.

2. Otherwise,

c(x, x′) = c(x, x̄) ⋆ c(x̄, x−i ) ⋆ c(x−i , x
+
i ) ⋆ c(x+i , x

−
i+1) ⋆ ... ⋆ c(x+k , x̄

′) ⋆ c(x̄′, x′).

Proof. This theorem is proven by verifying the assumptions of Corollary 1.64, i.e.
axioms of a slim combing.

(a1) We will need to estimate the length of c(x, x′) in terms of d(x, x′). First of all,

length(c(x, x′)) ≤ L′(length(c∗(x, x′)) + 1),

hence, it suffices to get an estimate for c∗.
Let γ be any geodesic in X connecting x to x′. In view of the separation property (3)

in the theorem, for each i ≤ j ≤ k, γ will contain subpaths γ j ⊂ Q j (necessarily a geodesic
in Q j) connecting a point p−j ∈ Q j−1, j to some p+j ∈ Q j, j+1.

Let P−, P+ denote the projections Q j → Q j−1, j, Q j → Q j, j+1 respectively. According
to Lemma 1.105, γ j contains points y±j satisfying

dQ j (y
±
j , P±(p∓j )) ≤ 2δ + λ,

hence,

dQ j (y
±
j , x
±
j ) ≤ D := C +C′ + 2δ + λ,

where λ = λ1.92(δ, L) is the quasiconvexity constant of Q j, j±1 in Q j. Thus,

length([p−j x−j ]Q j ⋆ [x−j x+j ]Q j ⋆ [x+j p+j ]Q j ) ≤ length(γ j) + 4D.

Since Q j−1, j,Q j, j+1 are L-qi embedded in Q j we also obtain

(2.2) length(c(p−j , p+j )) ≤ L · length(γ j) + 4D(L + 1).

Since

length(γ) ≥ d(x, p−i ) +
k∑

j=i

length(γ j) + d(p+k , x
′),

by combining the inequalities (2.2), we get:

length(c∗(x−i , x
+
k )) ≤ length(c(p−i , p+k )) ≤ L

k∑
j=i

length(γ j) + 4D(L + 1)(k − i + 1).

To estimate the term 4D(L + 1)m, m = k − i + 1, note that d(x, y) ≥ m (in view of the
assumption 5 in the theorem). Thus,

length(c∗(x−i , x
+
k )) ≤ Ld(x, x′) + 4D(L + 1)d(x, x′) = (L + 4D(L + 1))d(x, x′).
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Lastly, we deal with d(x, x−i ) and d(x′, x+k ). Recall that the metric space (Qi, dQi ) is
η-properly embedded in X (Proposition 2.18). We obtain:

length c∗(x, x−i ) = dQi (x, x̄) + dQi−1,i (x̄, x−i ) ≤

dQi−1 (x, x̄) + L + LdQi−1 (x̄, x−i+1) ≤ L + 2D + LdQi−1 (x, x−i ) ≤

L + 2D + Lη(d(x, x−i )) ≤

L + 2D + Lη(d(x, y−i ) + D) ≤ L + 2D + Lη(d(x, x′) + D).

Similarly,
length c∗(x′, x+k ) ≤ L + 2D + Lη(d(x, x′) + D).

Combining the inequalities, we obtain:

length(c∗(x, x′)) = length c∗(x, x−i ) + length(c(x−i , x
+
k ) + length c∗(x′, x+k ) ≤

η2.65(d(x, x′)) := 2(L + 2D + Lη(d(x, x′) + D)) + (L + 4D(L + 1))d(x, x′).

(a2) Consider a triple of points x ∈ Qi, y ∈ Q j, z ∈ Qk, i ≤ j ≤ k, and the “triangle”

∆c = c(x, y) ∪ c(y, z) ∪ c(z, x).

By the definition of the paths c in X, the paths c(x, y), c(y, z) coincide away from Q j, the
same applies to the pair of paths c(y, z), c(z, x). Therefore, it suffices to consider the case
when i = j = k.

We will use the notation pq for geodesics in Qi. Our goal is to verify that each of the
paths c(p, q) connecting points p, q ∈ Qi are uniformly Hausdorff-close to a geodesic pq:
Once we are done with this, then uniform slimness of ∆c will follow from δ-hyperbolicity
of Qi.

If both p, q are in Q′i or in Qi,i+1 or in Qi−1,i, there is nothing to prove. Hence, up to
permutation of the points p, q and reversing the order in the interval [0, n], there are two
cases to consider, depending on the position of the points p, q with respect to the subsets
Qi−1,i,Qi,i+1:

Case 1. Suppose that p < Qi−1,i and q ∈ Qi,i+1. We will be using the notation p̄ =
PQi,Qi,i+1 (p). Then

c(p, q) = c(p, p̄) ∪ c( p̄, p)
Since Qi,i+1 is L-qi embedded in Qi, this path is D1.54(δ, LL′)-Hausdorff close to the union
pp̄ ∪ p̄q. According to Lemma 1.103,

HdQi (pp̄ ∪ p̄q, pq) ≤ λ + 2δ,

concluding the proof in this case.
Case 2. Suppose that p ∈ Qi−1,i and q ∈ Qi,i+1. In view of the assumption that

Qi−1,i,Qi,i+1 are L-qi embedded in Qi, we will work with Qi-geodesics connecting pairs of
points points in Qi−1,i and pairs of points in Qi,i+1 instead of the c-paths in Qi−1,i and Qi,i+1.
Continuing with the notation of Case 1,

HdQi (pq, pp̄ ∪ p̄q) ≤ λ + 3δ

(see Lemma 1.105) and
d( p̄, x+i ) ≤ C.

Thus,
HdQi (pq, px+i ∪ x+i q) ≤ C + λ + 4δ.

Similarly,
HdQi (px+i , px−i ∪ x−i x+i ) ≤ C + λ + 4δ.
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Combining the inequalities, we obtain

HdQi (pq, px+i ∪ x−i x+i ∪ x+i q) ≤ 2(C + λ + 4δ). □

Remark 2.66. The flexibility of working with concatenations of quasigeodesics points
x±i uniformly close to nearest-point projections will be critical in several places in the book,
e.g. in Chapter 8.

Corollary 2.67. Assuming that X → T is a tree of hyperbolic spaces satisfying the
assumptions of Theorem 2.65, for every subinterval S ⊂ T, the inclusion map

XS → X

is an L2.67(δ, L,C)-qi embedding.

Proof. This is an immediate consequence of the of the fact that for any pair of points
x, y′ ∈ S X , the path cXS (x, x′) equals the path cX(x, x′) where the subscript denotes the
space in which we define the combing. □

Corollary 2.68. Suppose that X = (π : X → T ) is a tree of spaces satisfying Axiom
H. Then, for every edge e = [v,w] of T the space Xvw equipped with its natural path-
metric, is δ′0-hyperbolic with the hyperbolicity constant δ′0 depending only on the primary
parameters of the tree of hyperbolic spaces X.

We now return to the general quasiconvex chain-amalgamation and relate this class of
trees of spaces to acylindrical trees of spaces. Suppose that γ is a κ-qi section of the tree
of spaces X = (π : X → J), defined on an interval I ⊂ J. Thus, for each integer i we have
a point xi ∈ Qi and dY (xi, xi+1) ≤ K for some K depending on κ. If the length of I is ≥ 3,
it follows that for each triple of indices i − 1, i, i + 1 the point xi is within uniform distance
D = D(K) from both Qi−1,i and Qi,i+1: There exist y−i ∈ Qi−1,i, y+i ∈ Qi,i+1 such that

d(xi, y±i ) ≤ K.

Such a point xi might not even exist, which would mean that each κ-qi section γ of X is
defined only on an interval of length ≤ 2, and that would definitely ensure acylindricity of
X. In general, one can say that

d(PQi,Qi−1,i (y
+
i ), x−i ) ≤ 2K, d(PQi,Qi,i+1 (y−i ), x+i ) ≤ 2K,

and, hence,
d(xi, x±i ) ≤ 3K.

It follows that any two κ-qi sections γ0, γ1 defined on I satisfy

d(γ0(i), γ1(i)) ≤ 6K, i ∈ V(I),

thereby ensuring (6K, κ, 3)-acylindricity of X.

2.6.3. Hyperbolicity of finite trees of hyperbolic spaces. We will also need the fol-
lowing version of Theorem 2.65 in the situation when the coboundedness condition is
dropped:

Corollary 2.69. Suppose that T is a finite tree, X = (π : X → T ) is a tree of hyperbolic
spaces (satisfying Axiom H). Then X is δ-hyperbolic with

δ = δ2.69(δ0, L0, |V(T )|),

i.e. δ depends only on the parameters of X and the cardinality of |V(T )|.
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Proof. The proof is induction on |V(T )|. For |V(T )| = 1, there is nothing to prove.
For n = 2, the corollary is nothing but Theorem 2.65 for the quasiconvex amalgam of
pairs. We, thus, assume that the corollary holds for all trees S with |V(S )| = n ≥ 2. Let
X = (π : X → T ) be a tree of hyperbolic spaces with |V(T )| = n+1. Pick a valence 1 vertex
w of T and let e = [v,w] be the incidence edge. Set Yv := Xvw. We then form a new tree
of spaces Y = (Y → S ), where S is obtained from T by removing w and e, hence, S has
one less vertex than T . For vertices of S which are distinct from v and edges which are not
incident to v, we use the same incidence maps for Y as we had for X. For edges ei = [vi, v]
incident to v we use incidence maps Yei = Xei → Yv = Xvw equal to the corestrictions of
the incidence maps Xei → Xv. The new tree of spaces still satisfies the assumptions of the
corollary since Yv = Xvw is δ1 = δ(δ0, L0, 2)-hyperbolic and incidence maps

feiv : Xei → Yv = Xvw

are L1 = L0·L′0-qi embeddings, where L′0 = L2.28(δ, L0). Now, δ = δ(δ0, L0, n)-hyperbolicity
of X follows from the induction hypothesis. □

2.6.4. Secondary parameters of trees of hyperbolic spaces. In addition to the pri-
mary parameters of trees of hyperbolic spaces X = (X → T ), we will be frequently using
secondary parameters, which are functions of the primary parameters. Since these sec-
ondary parameters are used so often, we will give them special names. First of all, we recall
some constants defined earlier, namely, λ0, the quasiconvexity constant of the images Xev

of incidence maps Xe → Xv and L′0 ≥ 2, the quasiisometry constant for the inclusion maps
Xv → Xvw, where e = [v,w] runs over all edges of T (Lemma 2.28). Also, δ′0 is the supre-
mum of hyperbolicity constants of the spaces Xuv = X⟦u,v⟧ (Corollary 2.68). Let λ′0 denote
an upper bound on the quasiconvexity constants for the images in Xvw of 4δ0-quasiconvex
subsets in Xv, Xe (in particular, each Xv, Xe is λ′0-quasiconvex in Xvw). Explicitly, one can
take

λ′0 = 92(L′0)2(L′0 + 3δ′0).
We will also use the notation L′1 for an upper bound of coarse Lipschitz constants of pro-
jections P = PXuv,Xv : Xuv → Xv, L′1 = (L′0 + 1) ·D1.102(δ′0, λ

′
0) (Lemma 1.102). Last, but not

least, we define the constant

(2.3) K0 := (15(2λ′0 + 5δ′0)L′0)3.

The importance of this constant will become clear in Chapter 3 during the discussion of
flows of quasiconvex subsets of vertex-spaces of X. This constant will be critical in com-
puting the flaring constant K∗ in Theorem 2.62.

2.7. Flaring for semidirect products of groups

The purpose of this section is to illustrate the concept of flaring in the case of semidi-
rect products of groups, G = H ⋊ Z.

Suppose H is a nonelementary finitely generated group (which we will eventually
assume to be hyperbolic) with a finite generating set S and the corresponding word-metric
dH . Recall that the word-length of an element h ∈ H, denoted |h|H or |h|S , when the
generating set is to be stressed, is related to dH by |h|H = dH(1, h).

Let f : H → H be an automorphism and G = H ⋊ f ⟨t⟩ the corresponding semidirect
product. Let S G = S ∪{t} be a generating set of G, where t is the stable letter corresponding
to the infinite cyclic factor in the semidirect product. Let X be the Cayley graph Γ(G, S );
define the linear tree T = Γ(Z, 1). Then we have a tree of metric spaces π : X → T , where
the vertex-spaces are various left cosets Xi := tiH, i ∈ Z, of H in G. (Strictly speaking, X is
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only quasiisometric to the 2-dimensional complex which is the total space of the abstract
tree of spaces whose vertex-spaces are isometric copies of the Cayley graph of H.) We
shall denote the standard metric on X by dG and the metrics on the left cosets tiH ⊂ G by
dtiH; the latter are isometric to the word-metric on H corresponding to the generating set
S .

Given m ∈ Z, n ∈ N, a κ-qi section over the interval ⟦m− n,m+ n⟧ in T is a sequence5

{hiti}, m ≤ i ≤ n, such that for each i ∈ [m−n,m+n]∩Z, dXi,i+1 (hiti, hi+1ti+1) ≤ κ, where we
identify integers i ∈ [m − n,m + n] with the corresponding vertices of T . This inequality is
satisfied, in particular, when dXi (hiti, hi+1ti) ≤ κ − 1. Since the vertex-spaces Xi, Xi+1 are qi
embedded in Xi,i+1, after changing κ if necessary, we can (and will) identify κ-qi sections
with sequences {hiti} satisfying the inequality

dXi (hiti, hi+1ti) = dH(1, t−ih−1
i hi+1ti) = dH(1, f −i(h−1

i hi+1)) = | f −i(h−1
i hi+1)|H ≤ κ,

equivalently,

(2.4) dH( f −i(hi), f −i(hi+1)) ≤ κ.

Here is an explicit example:

Example 2.70. Fix h ∈ H. Then i 7→ hti, i ∈ Z, is a 1-qi section over T .

Now, let us see what, respectively, exponential and proper flaring conditions in this
context mean in group-theoretic terms. Suppose γ, γ′ are two κ-qi sections over ⟦m −
n,m + n⟧, where m, n ∈ Z, given by maps i 7→ aiti and i 7→ biti. Then for each integer
i ∈ [m − n,m + n], the fiber-distance equals

dtiH(γ(i), γ′(i)) = dtiH(aiti, biti) = dH(t−iaiti, t−ibiti) = dH(1, t−ia−1
i biti) = | f −i(a−1

i bi)|H .

If we denote the pair of sections (γ, γ′) by Π, then

Πmax = max{| f −m+n(a−1
m−nbm−n)|H , | f −m−n(a−1

m+nbm+n)|H}.

In the special case, when m = 0, n = 1,

(2.5) Πmax = max{| f (a−1
−1b−1)|H , | f −1(a−1

1 b1)|H}.

Example 2.71. If γ, γ′ are given by the maps i 7→ ti and i 7→ hti respectively, where
h ∈ H, then

Πmax = max{| f −m+n(h)|H , | f −m−n(h)|H}.

Since G acts on itself isometrically via the left multiplication, in order to formulate
flaring conditions, without loss of generality, we may assume that the qi sections γ, γ′ are
defined over intervals of the form ⟦−n, n⟧ (i.e. m = 0) and γ(0) = 1.

One can also reformulate the above conditions and quantities using the notion of
pseudo-orbits coming from the theory of dynamical systems.

Definition 2.72. Let (Y, d) be a metric space and ϕ : (Y, d) → (Y, d) be a homeomor-
phism. For a number K, a K-pseudo-orbit of ϕ in Y is a biinfinite sequence (yi)i∈Z in Y
such that for each i

d(yi+1, ϕ(yi)) ≤ K.
For instance, if K = 0 then 0-pseudo-orbits are just orbits of ϕ (or, more precisely, the
cyclic group generated by ϕ) in Y . The element yi is called the i-th member of the pseudo-
orbit (yi)i∈Z.

5For further computations, we find it notationally convenient to write elements of tiH as hiti, hi ∈ H, which
is possible since H is normal in G.
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A partial K-pseudo-orbit is the restriction of a K-pseudo-orbit sequence to an interval
in Z.

Given an automorphism f of the group H, set ϕ := f −1. We will use (H, dH) as our
metric space (Y, d). For a section γ, γ(i) = hiti, we define gi := ϕi(hi+1). In particular,
g0 = h1. Then the inequality (2.4) is equivalent to

dH(ϕ(gi), gi+1) ≤ κ,

the κ-pseudo-orbit condition. In other words, instead of working with κ-sections, we can
work with (partial) κ-pseudo-orbits. The case of a 1-qi section corresponds to the case when
(gi) is the (partial) ϕ-orbit of g0. Given two sections γ, γ′, we note that the corresponding
partial pseudo-orbit sequences (gi), (g′i), satisfy

dtiH(γ(i), γ′(i)) = dH(ϕ(gi), ϕ(g′i)).

In particular, for fixed ϕ, a uniform bound on dtiH(γ(i), γ′(i)) is equivalent to a (possibly
different) uniform bound on dH(ϕ(gi), ϕ(g′i)).

We can now restate various flaring conditions:

(1) The linear (Bestvina–Feighn) κ-flaring condition is equivalent to:
There exist constants Mκ ≥ 0, λκ > 1 and nκ ∈ N such that for every pair of maps

i 7→ ai ∈ H and i 7→ bi ∈ H, i ∈ [−nκ, nκ] ∩ Z, satisfying:
(a) a0 = 1, |b0|H ≥ Mκ,
(b) dH( f −i(ai), f −i(ai+1)) ≤ κ, dH( f −i(bi), f −i(bi+1)) ≤ κ, i ∈ [−n, n],
we have

max{dH( f n(a−n), f n(b−n)), dH( f −n(an), f −n(bn))} ≥ λ|b0|H .

(2) The proper κ-flaring condition is equivalent to:
There exists a constant Mκ ≥ 0 and a proper function ϕκ : N→ R+ such that for every

pair of maps i 7→ ai ∈ H and i 7→ bi ∈ H, i ∈ Z, satisfying:
(a) a0 = 1, |b0|H ≥ Mκ,
(b) dH( f −i(ai), f −i(ai+1)) ≤ κ, dH( f −i(bi), f −i(bi+1)) ≤ κ, i ∈ [−n, n],
we have

max{dH( f n(a−n), f n(b−n)), dH( f −n(an), f −n(bn))} ≥ ϕκ(n).

It is also useful to spell out the negation of the proper κ-flaring condition, which is
most apparent as the negation of the bigon property from Corollary 2.53:

There exists elements g, h ∈ H and pairs sequences of partial κ-pseudo-orbits (gi,n)n∈N,
(g′i,n)n∈N of f in H defined for i ∈ [0,Nn], such that:

(a) For all n, g0,n = 1, g′Nn,n
= g, g′Nn

= hgNn .
(b) limn→∞maxi∈[0,Nn] dH(gi,n, g′i,n) = ∞.
Note that, by possibly increasing κ to K := κ+C, where C = max{|g|, |h|}, and working

with partial K-pseudo-orbits, we can even ensure that g = 1, h = 1 and, hence, g′0,n = 1,
gNn,n = g′Nn,n

.

We next relate flaring to hyperbolicity properties of the automorphism f .

Definition 2.73. (Bestvina, Feighn, [BF92]) Suppose H is a finitely-generated group
and S is finite generating set for H. Suppose f : H → H is an automorphism. We say that
f is weakly hyperbolic if there is m ∈ N, λ > 1 and a finite subset E ⊂ H, such that for all
h ∈ H \ E we have

λ|h| ≤ max{| f m(h)|, | f −m(h)|}.
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We say that E is the exceptional subset. An automorphism is called hyperbolic if the above
inequality holds with E = ∅.

Some remarks are in order regarding this definition.

Remark 2.74. (1) The notion of hyperbolicity of an automorphism was intro-
duced by Bestvina and Feighn in [BF92] (the exceptional subset E was absent).
They also proved hyperbolicity of semidirect products H ⋊ f ⟨t⟩ of hyperbolic
automorphisms of hyperbolic groups, see Corollary in [BF92, section 5]. How-
ever, the original Bestvina–Feighn definition is too restrictive if the purpose is
to conclude hyperbolicity of semidirect products. Lemma 2.77 below (which
is already present in Gersten’s paper [Ger98, Corollary 6.9]) shows that hyper-
bolicity of the semidirect product is equivalent to the weak hyperbolicity of the
automorphism.

(2) If f : H → H is a weakly hyperbolic automorphism, then for any nontrivial
finite group H1, the automorphism f ′ = f × id of H′ = H × H1 is also weakly
hyperbolic but fixes the subgroup H1 element-wise and, hence, is not hyperbolic.

(3) In Corollary 2.79 we will prove that for automorphisms of torsion-free hyper-
bolic groups weak hyperbolicity is equivalent to hyperbolicity.

(4) The only hyperbolic groups which admit weakly hyperbolic automorphisms are
the ones commensurable to free products of surface groups and free groups, as
follows for instance from [RS94].

(5) The hyperbolicity inequality trivially holds for the trivial element h = 1 ∈ H.
Suppose that the exceptional subset E is a ball B(1, r) ⊂ H and that (with λ > 1)
for h < E, | f m(h)| ≥ λ|h|. Then f m(h) < E and, thus, we can apply the same
hyperbolicity inequality to f m(h). Clearly,

| f 2m(h)| = max{| f 2m(h)|, | f −m+m(h)|} ≥ λ2|h|.

Repeating this argument, we see that for each i ≥ 1,

| f im(h)| ≥ λi|h|.

Lemma 2.75. Hyperbolicity and weak hyperbolicity of an automorphism f : H → H
are independent of the finite generating set of H.

Proof. We will verify the claim for the weak hyperbolicity property since the proof
for hyperbolicity is identical (with E = ∅).

Suppose f is weakly hyperbolic with respect to a finite generating set S , i.e. there
exist m ∈ N, λ > 1 and a finite subset E ⊂ H such that

λ|h|S ≤ max{| f m(h)|S , | f −m(h)|S }

for all h ∈ H \ E.
Suppose S ′ is another finite generating set of H. For any h ∈ H let |h|S and |h|S ′ denote

the word-lengths of h with respect to S and S ′ respectively. Then there is a constant C > 0
such that 1

C |h|S ≤ |h|S ′ ≤ C|h|S for all h ∈ H. Also, we note that for all r ∈ N we have
λr |h|S ≤ max{| f mr(h)|S , | f −mr(h)|S } for all h ∈ G \ Er where

Er =
⋃

−(r−1)≤i≤r−1

f im(E).

Hence,

λr |h|S ′ ≤ Cλr |h|S ≤ C max{| f mr(h)|S , | f −mr(h)|S } ≤ C2 max{| f mr(h)|S ′ , | f −mr(h)|S ′ }
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for h ∈ H \ Er. It follows that C−2λr |h|S ′ ≤ max{| f mr(h)|S ′ , | f −mr(h)|S ′ } for h ∈ H \ Er.
Thus, if we choose r = r1 large enough, we get λ1 = C−2λr1 > 1 and setting m1 = r1m, we
obtain

λ1|h|S ′ ≤ max{| f m1 (h)|S ′ , | f −m1 (h)|S ′ }
for all h ∈ H \ Er1 . Whence f is weakly hyperbolic with respect to the generating set
S ′. □

Example 2.76. (1) Suppose H = π1(Σ) where Σ is a closed connected hyperbolic
surface. Then an automorphism f of H is hyperbolic if and only if it is induced by a
pseudo-Anosov automorphism of Σ, if and only if it has no nontrivial periodic conjugacy
classes, if and only if the semidirect product H ⋊ f Z is hyperbolic. (The equivalence
of the last three properties is due to William Thurston, see e.g. [CB88, Ota01]. The
equivalence with hyperbolicity of f can be seeing either as a consequence of the pseudo-
Anosov property or of the combination of Lemma 2.77 and Corollary 2.79.)

(2) If H = Fn, n ≥ 2, then any automorphism f ∈ Aut(H) with no periodic conjugacy
classes is hyperbolic (in the sense of Bestvina–Feighn). See Theorem 5.1 in [BFH97].

We refer the reader to [Bri00, DT18, Mut21] for other results in this direction.

Lemma 2.77 ([BF92, Ger98]). If f is weakly hyperbolic, then the tree of metric spaces
X = Γ(H ⋊ f Z, S G) → T = Γ(Z, 1)— as constructed in the beginning of this subsection—
satisfies the Bestvina–Feighn flaring condition. The converse is also true.

Proof. 1. Suppose f is weakly hyperbolic. Let R = max{dH(1, h) : h ∈ E} where
E ⊂ H is a finite exceptional subset as in Definition 2.73. Then for all x ∈ H with |x|H > R
we have

λ|x| ≤ max{| f m(x)|, | f −m(x)|}.
First of all, since the Bestvina–Feighn flaring condition is equivalent to hyperbolicity of G
and the latter is equivalent to the hyperbolicity of the semidirect product H ⋊ f m Z (com-
mensurable to the original group G), it suffices to consider the case when m = 1. We will
also assume that in the definition of a weakly hyperbolic automorphism the maximum is
attained by ϕ = f −1 rather than f (otherwise, we replace f with f −1). Then the weak
hyperbolicity inequality reads

(2.6) λ|x| ≤ |ϕ(x)|

for all x ∈ H \ E.
Take κ ≥ 1. As we noted earlier, it suffices to verify the Bestvina–Feighn flaring

condition for pairs of κ-qi sections Π = (γ, γ′) defined over intervals of the form ⟦−m,m⟧,
satisfying γ(0) = 1, h := γ′(0), where, as above, m = 1, such that Π0 = |h| ≥ Mκ for a
suitable uniform constant Mκ. Pick any λ′ in the open interval (1, λ); for concreteness, we
take λ′ = 1

2 (λ + 1). We claim that

λ′|h| = dH(γ(0), γ′(0)) ≤ dtH(γ(m), γ′(m)).

Set γ(1) = h1t, γ′(1) = h′1t. Then (as we noted earlier, after changing κ) the κ-qi section
condition for γ, γ′ over the interval [−1, 0] is equivalent to the inequalities

(2.7) dH(ϕ(h1), 1) ≤ κ, dH(ϕ(h), ϕ(h′1)) ≤ κ.

We will estimate from below the distance (in H) between γ(1), γ′(1); according to the
computation in (2.5), we need to estimate from below the distance

dH(ϕ(h1), ϕ(h′1)).
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By the triangle inequality, combined with the inequalities (2.6) and (2.7), we have

dH(ϕ(h1), ϕ(h′1)) ≥ dH(1, ϕ(h)) − 2κ ≥ λ|h| − 2κ.

Then the desired inequality λ′|h| ≤ dtH(γ(1), γ′(1)) is equivalent to

(λ − λ′)|h| ≥ 2κ

By out choice of λ′, this amounts to

|h| ≥
2κ
λ − 1

.

Therefore, taking Mκ equal to the maximum of 2κ
λ−1 and 1 + diamH(E), we ensure the

Bestvina–Feighn flaring condition.

2. For the converse one applies the flaring condition to κ = 1-qi sections. More
precisely, we work with pairs of sections as in Example 2.71. We take the finite set in the
definition of weak hyperbolicity to be E = {h ∈ H : |h|H ≤ M1}. The rest is straightforward
and hence left as an exercise for the reader. □

Lemma 2.78. Suppose that H is a hyperbolic group, f : H → H is weakly hyperbolic.
Then the exceptional subset of E can be chosen to contain only finite order elements.

Proof. Let E ⊂ H be an exceptional subset of f , i.e. there exist m ∈ N, λ > 1 such
that

λ|h| ≤ max{| f m(h)|, | f −m(h)|}
for all h ∈ H \E. After replacing f with f m, we can assume that λ|h| ≤ max{| f (h)|, | f −1(h)|}
unless h ∈ E. After enlarging E is necessary, we can assume that it equals to the ball of
certain radius r in H (centered at 1 ∈ H). We define E′ ⊂ E, the subset consisting of
infinite order elements.

Suppose that h ∈ E is such that for infinitely many values of m ≥ 1,

| f m(h)| ≤ r.

We claim that h has finite order. Indeed, then there exist two numbers n > m ≥ 1 such that

f m(h) = f n(h), f n−m(h) = h.

It follows that in the group G = H ⋊ f Z we have

tn−mh = htn−m.

Since f is weakly hyperbolic, the semidirect product G is a hyperbolic group, see Lemma
2.77. Hence, the abelian subgroup A < G generated by tn−m and h is virtually cyclic, i.e. h
has finite order.

Thus, as noted above, for each h ∈ E′ there exists a smallest natural number n = nh

such that | f n(h)| > r, which, in particular, implies that f n(h) < E′. Thus,

max{| f ◦ f n(h)|, | f −1 ◦ f n(h)|} ≥ λ| f n(h)| ≥ λ|h|.

Since nh was chosen to be smallest, it follows that the above inequality holds for f ◦ f n(h) =
f n+1(h). By the same argument as in the proof of Lemma 2.59, we see that for each
m ≥ max{nh : h ∈ E′}, and h ∈ E′,

λ|h| ≤ | f m(h)|.

Since the hyperbolicity inequality holds for all h ∈ H \ E, we conclude that f satisfies the
hyperbolicity condition except for the subset E′′ ⊂ E consisting of torsion elements. □

Lemma 2.78 immediately implies:
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Corollary 2.79. If H is torsion-free then each weakly hyperbolic automorphism of H
is hyperbolic.





CHAPTER 3

Carpets, ladders, flow-spaces, metric bundles and their
retractions

In this chapter we introduce and analyze four classes of subtrees of spaces in hyper-
bolic trees of spaces:

• Ladders
• Metric bundles
• Carpets
• Flow-spaces

These spaces play key role in proving hyperbolicity and describing geodesics in trees
of spaces (π : X → T ): Uniform quasigeodesics in X will be inductively described as
concatenations of uniform quasigeodesics in carpets, ladders and flow-spaces. The main
result of this and the next chapter is that all ladders, carpets and flow-spaces are hyperbolic
and admit coarse Lipchitz retractions from X. We note that our definitions of ladders and
flow-spaces are inspired by the ladder construction of Mitra, [Mit98], while the notion of
metric bundles is adapted from [MS09]. We conclude the chapter with some examples
illustrating the above concepts.

3.1. Semicontinuous families of spaces

All four classes of spaces discussed in this (and the next) chapter are special cases of
semicontinuous families of spaces, which are certain subtrees of spaces Y ⊂ X. In what
follows, given a subtree of spaces Y = (π : Y → S ) ⊂ X = (π : X → T ), it will be
notationally convenient to extend Y to a tree of spaces (still denoted Y) over the entire tree
T by declaring Yv = ∅,Ye = ∅ for each v ∈ V(T ) − V(S ) and e ∈ E(T ) − E(S ).

Definition 3.1. Suppose that X = (π : X → T ) is a tree of hyperbolic spaces. Fix
constants λ ∈ [0,∞), E,K ∈ [1,∞),D ∈ [0,∞]. We will say that a subtree of spaces
Y = (π : Y → S ), S ⊂ T , in X forms a (K,D, E, λ)-semicontinuous family, relative to a
vertex u ∈ V(S ), called the center of Y, if the following conditions hold:

1. Each vertex/edge space Yv ⊂ Xv,Ye ⊂ Xe, v ∈ V(S ), e ∈ E(S ), is λ-quasiconvex.
2. Each y ∈ Y is connected to Yu by a K-leaf γy in Y .
3. For each edge e = [v,w] ∈ E(T ) we define the (possibly empty!) projection

(3.1) Yv
w := PXvw,Xw (Yv) ⊂ Xw.

We require that whenever e = [v,w] ∈ E(S ) is oriented away from u,

(3.2) HdXvw (Yv
w,Yw) ≤ E

and

(3.3) HdXvw (Yw,Ye) ≤ K

89
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4. For every edge e = [v,w] such that v ∈ V(S ),w < V(S ), we require the pair of
quasiconvex subsets (Yv, Xw) in Xvw to be D-cobounded.

Figure 3. A semicontinuous family

Remark 3.2. i. Condition 2 implies that Yw ⊂ Ne
K(Yv), hence, Yw ⊂ Nη0(2K)(Yv

w) with
respect to the metric of Xw. (Recall that η0 is the distortion function of Xv in X, hence, in
Xuv.)

ii. Condition 2 in this definition ensures that Yw cannot be “much larger” than Yv,
while Condition 3 ensures a certain lower bound on Yw. Thus, as we move away from Xu,
vertex-spaces of Y can shrink substantially (even disappear) but they cannot substantially
increase.

iii. In most examples in our book, λ = 4δ0, hence, we will be suppressing the depen-
dence on this parameter and record only the triple of numbers (K,D, E).

iv. To ensure uniform coboundedness of the pairs (Yv, Xw) in Axiom 4, it suffices to get
a uniform upper bound C on the diameters of Yv

w: It will then follow that the pair (Yv, Xw)
is D-cobounded for some D = D(δ′0, λ

′
0,C), see Corollary 1.143.

v. We do not insist on the converse implication in Axiom 4: There will be important
situations when we have to consider Y’s with uniformly bounded fibers over non-boundary
vertices of S .

vi. Axioms 3 and 4 will be needed in order to have a uniform coarse Lipschitz retrac-
tion X → Y , see Theorem 3.3.

vii. The edge-spaces Ye of are largely irrelevant for our discussion.
viii. The projections PXvw,Xw restricted to Xv are at uniformly bounded distance (as

measured in Xvw) from the projections PXv,Xev . The same, of course, applies to restrictions
of the projections PXvw,Xv . However, we decided to work with the projections PXvw,Xw as
computations tend to be simpler in this setting.

Theorem 3.3. Suppose that Y is a (K,D, E, λ)-semicontinuous family of spaces with
D < ∞. Then there exists an L3.3(K,D, E, λ)-coarse Lipschitz retraction ρY : X → Y.

Proof. We will verify that the subtree of spaces Y is (uniformly) retractible; we use
Theorem 2.22 as follows.
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(i) We let h′v : Xv → Yv denote the restriction of the nearest-point projections PXvw,Yv .
According to Theorem 2.22(i), we need to bound the diameter of the image of Xev in Yv

under h′v. However, Xev is contained in the unit neighborhood of Xw (taken in Xvw); thus,
we need to bound the diameter of the projection (in Xvw) of Xw to Yv, which is the content
of Axiom 4 of the definition of a semicontinuous family of spaces: This diameter is ≤ D.

(ii) Assuming that e = [v,w] is an edge of S oriented away from u, we need to get a
uniform bound

distX′v (h
′
v ◦ fev, f ′ev ◦ h′e) ≤ Const.

The subsets Yev,Ye ⊂ Xvw are within unit Hausdorff distance, while

HdXvw (Ye,Yw) ≤ E and HdXvw (Yv
w,Yw) ≤ E.

Since dXvw (Yw, Xv) ≤ K, by applying Lemma 1.130 to the subsets U1 = Xv,U2 = Yw in Xvw,
we conclude that

HdXvw (PXvw,Yv (Xw), PXvw,Xw (Yv)) ≤ 2λ′0 + 3δ′0 + K.

Taking into account that the projection PXvw,Yv is uniformly coarse Lipschitz, we conclude
that Yev is uniformly close to the image of Xe under the nearest-point projection PXvw,Yv and,
accordingly, the nearest-point projection h′e : Xe → Ye is uniformly close to the restriction
of the nearest-point projection Xvw → PXv,Yv (Xe) (see Lemma 1.111). Taking also into
account that the map f ′ev moves points by distance ≤ K in Xvw, we can replace f ′ev ◦ h′e with
the restriction of the projection Xvw → PXv,Yv (Xe) to Xe. Similarly, the map fev moves points
distance ≤ 1 in Xvw and, hence (in view of the uniform coarse Lipschitz property of h′v),
we can replace the composition h′v ◦ fev with the restriction of the nearest-point projection
PXvw,Yv to Xe. But now, the projections Xvw → PXv,Yv (Xe) and PXvw,Yv are uniformly close to
each other according to Corollary 1.110 applied to the λ′0-quasiconvex subsets Yv and Xe

in the ambient hyperbolic space Z = Xvw. □

Corollary 3.4. If Y = (π : Y → S ) is a (K,D, E, λ)-semicontinuous family of spaces
with D < ∞, then the inclusion map Y → X is an L3.3(K,D, E, λ)-qi embedding.

We next describe a class of semicontinuous subtrees of spaces, called metric bundles.
The theory of metric bundles was developed in [MS09] in a more general setting when the
base is allowed to be an arbitrary geodesic metric space but we will not need that in our
book. The following definition of metric bundles is adapted from [MS09] in a form suitable
for our purposes. It is easy to verify that the two definitions (ours and that of [MS09]) are
equivalent when the base is a tree. The reader should also compare this definition with the
notion of an abstract metric bundle given in Definition 2.8: Each metric bundle defined
below is also an abstract metric bundle.

Definition 3.5 (Metric bundles). A subtree of spaces Y = (π : Y → S ) ⊂ X = (π :
X → T ) is called a K-metric bundle if:

1. Every vertex/edge space of Y is λ-quasiconvex in the respective vertex/edge space
of X.

2. For every vertex u ∈ V(S ) and edge e = [v,w] ∈ E(S ) (directed away from u), and
x ∈ Yw, x ∈ Ye, there exist K-qi sections γx in Y on ⟦w, u⟧, such that γx(w) = x.

It follows immediately that each K-metric bundle forms a (K,∞, E, λ)-semicontinuous
family of spaces in X (relative to any vertex u ∈ S ), with E = η0(2K). The reader uncom-
fortable with using D = ∞ here can simply restrict X to S , then one can take D = 0.
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While Theorem 3.3 does not directly apply to metric bundles Y ⊂ X (unless S = T ),
we will see in Corollary 3.63 that under certain extra assumption weakening condition 4 in
Definition 3.1, these too admit uniform coarse Lipschitz retraction from X.

3.2. Ladders

Ladders are certain semicontinuous subtrees of spaces L = (π : L → S ) ⊂ X whose
fibers are geodesic segments. However, in addition to the properties of a semicontinuous
family of spaces, we will impose a certain extra structure on L.

Each ladder L = (π : L→ S ) comes equipped with certain parameters and two pieces
of extra data: An orientation of the fibers (hence, ladders generalize oriented line bundles)
and a canonical choice of a maximal K-qi section Σx ⊂ L through each point x ∈ L. The
choice of Σ• can be regarded as a “connection” on L. Thus, ladders can be regarded as
“oriented line semi-bundles equipped with connections.”

We will be primarily interested in ladders such thatL is contained in the 4δ0-fiberwise
neighborhood of a k-flow space F lk(Qu) ⊂ X (these will be defined in Section 3.3). For the
ease of notation, we will be ignoring the flow-spaces for now; formally speaking, one can
regard the flow-space Flk(Qu) as a tree of hyperbolic spaces satisfying a uniform flaring
condition.

We now begin with an axiomatic definition of ladders. Let X = (π : X → T ) be a tree
of hyperbolic spaces satisfying Axiom H. Fix positive numbers K,D, E and a vertex u ∈ T ;
these are the parameters of a ladder L. A ladder with these parameters (a (K,D, E)-ladder
centered at u) is a subtree of oriented geodesic intervals in X, L = (π : L → S ), S = π(L)
which satisfies further axioms described below. Each fiber Lv := L ∩ Xv, v ∈ V(T ), Le =

L ∩ Xe, e ∈ E(T ), of L is an oriented geodesic segment denoted [xvyv]Xv or [xeye]Xe .
Furthermore, we fix once and for all a family Σ• of maximal partial K-qi sections Σx

of π : L → S , whose domains Tx are subtrees in S containing the vertex u (and π(x),
of course). Maximality here is understood in the sense that if Σ′x is another partial K-qi
section containing Σx, then Σx = Σ

′
x. The subscript x in Σx indicates that x ∈ Σx. We will

assume that x belongs to a vertex-space of X.

Axiom L0. We will require the family of sections Σ• to be consistent in the sense that
whenever v = π(y) is between u and w = π(x), the sections Σy and Σx agree on the interval
⟦u, v⟧ ⊂ T .

Definition 3.6. Let L be a ladder centered at the vertex u, Lu = [xuyu]Xu . We will refer
to the subsets Σxu = bot(L),Σyu = top(L) as, respectively, the bottom and the top of the
ladder L.

Thus, Σ• defines a family of maps

Πw,v : Lw → Lv,

for every vertex v ∈ V(S ) between u and w ∈ V(S ):

Πw,v(x) = Σx ∩ Lv, x ∈ Lw.

(Note that this intersection is nonempty since π(Σx) is a subtree containing both w and
u, hence, also containing v.) These maps can be regarded analogues of parallel transport
maps in the conventional theory of connections on bundles. Consistency of sections implies
the following semigroup property:

Πw1,w3 = Πw2,w3 ◦ Πw1,w2
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whenever w2,w3 belong to the interval ⟦u,w1⟧ and appear there in the following order:

u ≤ w3 ≤ w2 ≤ w1.

As we will see below, axioms of a ladder require each map Πw,v to be either constant or an
orientation-preserving topological embedding. The maps Πw,v need not be surjective; for
every oriented edge e = [v,w] in S (oriented away from u) we have an oriented subsegment

L′v = [x′vy′v]Xv := Πw,v(Lw)

in Lv. Here x′v = Πw,v(xw), y′v := Πw,v(yw). The orientation of the segment L′v is then
consistent with that of Lv (since Πw,v is orientation-preserving). Observe also that the mere
existence of K-qi sections Σx implies some semicontinuity of the ladder L: For every edge
e = [v,w] ⊂ S (oriented away from u)

(3.4) Lw ⊂ Ne
K(L′v) ⊂ Ne

K(Lv),

where the K-neighborhood is taken in the subspace Xvw (which is what the superscript e
indicates). However, Lw can be much smaller than Lv.

For L (equipped with Σ•) to be a ladder, it has to satisfy three further axioms listed
below. Note, however, that the assumption that the fibers Lv, Le of L are geodesic segments
ensures Property 1 in Definition 3.1 with λ = δ0, while Axiom L1 implies Property 2 in
that definition, thus making Axiom L3 somewhat redundant.

We now fix K ∈ [1,∞), E ≥ 1 and D ∈ [0,∞]. While all other two parameters in the
triple (K,D, E) are real numbers, as with general semicontinuous subtrees of spaces, it is
convenient to allow for infinite values of the parameter D.

Figure 4. Ladder

Ladder Axioms:

• L1 Each x ∈ L belongs to some Σx.
• L2 Each map Πw,v is either constant or is an orientation-preserving topological

embedding.
• L3 L is a (K,D, E, δ0)-semicontinuous family of spaces.
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Remark 3.7. In general, π(top(L)) and π(bot(L)) are smaller than the base S . If

π(top(L)) = π(bot(L)) = S

then L will be a K-metric bundle. This will happen in the important case of carpets.

Definition 3.8. A (K,D, E)-ladder in X is a subtree of spaces

L = (π : L→ S ) ⊂ X = (π : X → T )

whose vertex and edge-spaces are oriented geodesic segments, equipped with a family of
K-qi sections Σ• and satisfying Axioms L0—L3.

Example 3.9. Let x be a point in Xu and let Σx be a K-qi section of π : X → T defined
over a subtree S ⊂ T such that x ∈ Σx. Then L = Σx is the total space of a (K, 0, η0(2K))-
ladder.

Definition 3.10. A subladder in L is a ladder L′ = L(α′) ⊂ L = L(α) with the same
center u as L, such that the sections Σ′• of L′ are restrictions of the sections Σ• of L. In
particular, top and the bottom of L′ are contained in sections of L through the end-points
of α′.

In what follows, given a ladder L = LK(α), α ⊂ Xu, for each point x ∈ L let γx ⊂ Σx ⊂

L denote the section over the interval ⟦u, π(x)⟧, connecting x to a point in α. Similarly,
given two points x, y ∈ L, if Σx∩Σy , ∅ and the restriction of π to Σx∪Σy is 1-1, then there
exists a unique K-leaf γx,y in Σx ∪ Σy ⊂ L connecting x to y.

We omit a proof of the next lemma as it is straightforward:

Lemma 3.11 (Bisecting a ladder). Suppose u ∈ V(T ), α = [xy]Xu ⊂ Xu and we are
given a ladder L = LK,D,E(α). Then for every point z ∈ [xy]Xu the K-qi section Σz ⊂ L

decomposes L into two (K,D, E)-subladders L+,L− such that
(1) L+u = [zy]Xu ⊂ α, L−u = [xz]Xu ⊂ α,
(2)

top(L−) = Σz = bot(L+).

Applying this lemma twice, we obtain:

Corollary 3.12 (Trisecting a ladder). Suppose u ∈ V(T ), α = [xy]Xu ⊂ Xu and we are
given a ladder L = LK,D,E(α). Then for every subsegment α′ = [x′y′]Xu ⊂ α there exists a
subladder L′ = LK,D,E(α′) ⊂ L bounded by the K-qi sections Σx′ ,Σy′ ⊂ L (its bottom and
top respectively).

Since a (K,D, E)-ladder L = (π : L → S ) is a (K,D, E, δ0)-semicontinuous subtree of
spaces in X, as an application of the retraction Theorem 3.3 we obtain:

Corollary 3.13 (Retraction to ladders). For every (K,D, E)-ladder L = (π : L → S )
there exists a L3.3(K,D, E, δ0)-coarse Lipschitz retraction ρL : X → L.

We next define carpets which are both ladders and metric bundles. While in Axiom L3
of a ladder we assume that fibers over all boundary vertices of S have uniformly bounded
diameter when projected to adjacent vertex-spaces Xw,w < V(S ), in the definition of car-
pets (where the base S is an oriented interval ⟦u,w⟧) we will allow one of the boundary
vertices of S (namely the vertex u) to violate this property (which is why D = ∞). How-
ever, instead, we will add a stronger requirement on the other boundary vertex w and a
requirement on the top and the bottom.
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Definition 3.14. A (K,∞, η0(2K))-ladder A = (π : A → S ) ⊂ X is called a (K,C)-
narrow carpet or just a (K,C)-carpet if:

1. S is an interval ⟦u,w⟧ and, furthermore, the top and the bottom of A connect the
two end-points of Au to that of Aw, i.e.

π(top(A)) = π(bot(A)) = S .

In this case, we will say that A is bounded by the K-qi sections γ1 = bot(L), γ2 = top(L)
of the carpet. We will refer to β = Aw as the (narrow) end of the carpet and will say that A
is from α = Au to β = Aw.

2. Aw has length ≤ C.
We will use the notation A = AK(α) for such carpets to indicate the two key parameters.

Definition 3.15. A (K,∞)-carpet is called a K-hallway.

Remark 3.16. 1. Every K-hallway is a K-metric bundle.
2. The pair of sections γ1, γ2 determines a hallway A “coarsely uniquely”: The ambi-

guity in the definition comes from the choice of the vertical geodesics At, t ∈ V(S ), and,
hence, is uniformly controlled. Therefore, in what follows, we will ignore this ambiguity.

The next lemma establishes existence of ladder and hallway structures on subsets in X
which are unions of vertical geodesic segments.

Lemma 3.17. Suppose that X is a tree of hyperbolic spaces. There exists a function
K′ = K′3.17(K) such that the following holds:

a0. Suppose that L ⊂ X is a subset whose projection to T is the vertex-set of a subtree
S ⊂ T containing a vertex u satisfying:

a1. Every fiber Lv = L∩ Xv, v ∈ V(S ), is an oriented geodesic segment [xvyv]Xv in Xv.
a2. L satisfies Property 4 of a semicontinuous family of spaces with the parameter D.

Furthermore, in line with Property 3, for every edge e = [v,w] ∈ E(S ) which is oriented
away from u, HdXvw (Lv

w, Lw) ≤ E, where, as before,

Lv
w = PXvw,Xw (Lv) ⊂ Xw.

a3. Points xw, yw are within distance K (in Xvw) from points x′v, y
′
v ∈ Lv respectively, so

that
xv ≤ x′v ≤ y′v ≤ yv

on the oriented segment Lv.
Then L ⊂ X is the union of vertex-spaces of a (K′,D, E)-ladder L ⊂ X centered at u.
b0. Suppose that A ⊂ X is a subset whose projection to T is the vertex-set of an

interval S = ⟦u,w⟧ ⊂ T such that:
b1. Every fiber Av, v ∈ V(S ), ofA, is an oriented geodesic segment [xvyv]Xv in Xv.
b2. For every edge [v1, v2] in S , dXv1v2

(xv1 , xv2 ) ≤ K, dXv1v2
(yv1 , yv2 ) ≤ K.

ThenA is the union of vertex-spaces of a K′-hallway A ⊂ X.

Proof. Our first goal is to define the function K′.
We let r′ := D1.55(δ′0, L

′
0,K) be given by Lemma 1.55. For k = K1.14(r′, L′0) given by

Lemma 1.14, we let λ′ = k1.25(k) be given by Lemma 1.25. Lastly, set

K′ := r′ + D1.25(k).

We now prove the lemma.
a. We define inductively the projections Πv1,v2 (where e = [v1, v2] is an edge in S

oriented away from u), as well as the edge-spaces Le.
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Suppose that for the subtree Bn ⊂ S , which is the closed n-ball centered at u, we
defined (partial) K-qi sections Σ and maps Π satisfying all the requirements of a ladder
with respect to the parameter K′.

We extend the definitions of these sections and maps to the vertices in the ball Bn+1 ⊂ S
as follows. Let e = [v1, v2] be an edge of S with v1 ∈ Bn, v2 < Bn. Let L′v1

denote the
oriented subsegment of Lv1 bounded by x′v1

, y′v1
respectively. Similarly, we define the edge-

space Le as the oriented geodesic segment in Xe spanned by the nearest-point projections
of the end-points xv2 , yv2 of Lv2 .

According to Lemma 1.55, we have

HdXv1v2
(L′v1

, Lv2 ) ≤ r′ = D1.55(δ′0, L
′
0,K) ≤ K′,

HdXv1v2
(Le, Lv2 ) ≤ r′.

These conditions ensure Property 3 of Definition 3.1, i.e. Axiom L3 of a ladder.
Using Lemma 1.14, we extend the map xv2 7→ x′v1

, yv2 7→ y′v1
to a k = K1.14(r′, L′0)-

quasiisometry of geodesic segments q : Lv2 → L′v1
, which moves each point distance ≤ r′

(with respect to the metric of Xv1v2 ). Applying Lemma 1.25, we can replace the quasiisom-
etry q by an increasing homeomorphism q̃ (or a constant function) within distance D1.25(k)
from q, such that q̃ is a k1.25(k)-quasiisometry.

Since q was moving every point of Lv2 at most distance r′, it follows that q̃ moves
every point within distance K′ = r′ + D1.25(k) in Xv1v2 . We set

Πv2,v1 := q̃.

Thus, we obtain maps Πw,v : Lv2 → Lv1 for oriented edges [v1, v2] of the tree S = π(L),
such that dXv1v2

(x,Πv2,v1 (x)) ≤ K′, x ∈ Lv2 . For vertices v1, v2 of S such that v1 is between
u and v2 we define the map Πv2,v1 : Lv2 → Lv1 as the composition of maps defined for the
sequence of edges connecting v2 to v1. If Πv2,v1 is injective, then for z ∈ L′v1

we define the
section Σz ∩ Lv2 as

Π−1
v2,v1

(z).

If the map is not injective, i.e. constant, we choose an arbitrary point in Lv2 as Σz ∩ Lv2 .
b. The proof of this part is exactly the same as of Part a, except that we use x′v1

=

xv1 , y
′
v1
= yv1 . □

3.3. Flow-spaces

3.3.1. K-flow spaces and Mitra’s retraction. Suppose that X = (π : X → T ) is a
tree of hyperbolic spaces. We fix a vertex u ∈ T , the center of the flow and orient all edges
e = [v,w] of T so that v is closer to u than w. For each 4δ0-quasiconvex subset Qu ⊂ Xu

we will define the K-flow-space

FlK(Qu) = (π : FlK(Qu)→ S ) ⊂ X,

which, unlike ladders and carpets, depends only on Qu and on K, and which will be a
(K,D, E, 4δ0)-semicontinuous family of spaces (relative to the vertex u), with the parame-
ter E depending only on K and D = D0, where

(3.5) D0 = D1.142(δ′0, λ
′
0)

is independent of K.
However, for the construction to work, the parameter K has to be sufficiently large,

specifically, K ≥ K0, where K0 (which depends only on the parameters of the tree of
spaces X) is given by the equation (2.3). As before, we will use F lK(Qu) to denote the
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union of vertex-spaces of FlK(Qu). We first compute the auxiliary parameter E and a
certain parameter R (depending on K) which will be used to define the K-flow.

Suppose that λ ≥ 3
2δ0. Recall (Lemma 1.113) that if the image of a subset Q of Xv is

λ-quasiconvex in Xvw then Q is λ̂-quasiconvex in Xv with

(3.6) λ̂ = 1500(L′0λ)3.

Take

(3.7) R ≥ R0 := max(2(λ′0 + δ
′
0),R1.148(δ′0, λ

′
0)) = 2λ′0 + 5δ′0.

Set (cf. (3.6))

(3.8) λ′ := 1500(L′0(R + 2δ′0))3,

(3.9) E := 2(2λ′0 + 3δ′0 + R) + (λ′ + δ0).

While our proofs will work whenever

(3.10) K ≥ R + λ′ + δ0,

concretely, we will use

(3.11) K = R∧ := (15L′0R)3, i.e. R = K∨ :=
1

15L′0
K1/3

(The reader will verify that this K satisfies the inequality (3.10).) Thus, the inequality (3.7)
translates into the inequality

(3.12) K ≥ K0 = 153(2λ′0 + 5δ′0)3(L′0)3.

Note also that (3.9) makes E a function of K

(3.13) E = E3.13(K),

and R also becomes a function of K.
We inductively define 4δ0-quasiconvex subsets Qv ⊂ Xv,Qe ⊂ Xe, v ∈ V(T ), e ∈ E(T ),

and, at the same time, verify conditions of Definition 3.1 for the collection of subsets
Qv,Qe, aiming eventually to prove Theorem 3.20. Assuming that for v ∈ V(T ) a 4δ0-
quasiconvex subset Qv ⊂ Xv is defined, for the oriented edge e = [v,w] of T (oriented
away from u) we set

Qv
w := PXvw,Xw (Qv), Q′w := Ne

R(Qv) ∩ Xw.

According to Corollary 1.131,

HdXvw (Qv
w,Q

′
w) ≤ 2(2λ′0 + 3δ′0 + R).

Note that both Xw,Qv are λ′0-quasiconvex in Xvw.
Furthermore, by Lemma 1.129, since R ≥ R0 ≥ 2λ′0 + 2δ′0, the intersection Q′w :=

Ne
R(Qv)∩Xw is λ1.129 = R+2δ′0-quasiconvex in Xvw. Hence, Q′w is λ′ = ̂R + 2δ′0-quasiconvex

in Xw, where
λ′ = 1500(L′0(R + 2δ′0))3,

see Lemma 1.113.
Therefore, by (1.3), the δ0-hull, taken in Xw,

Qw := Hullδ0 (Q′w)

is (λ′ + δ0)-Hausdorff close to Q′w, thus,

HdXvw (Qv
w,Qw) ≤ E = 2(2λ′0 + 3δ′0 + R) + (λ′ + δ0),



98 3. CARPETS, LADDERS AND FLOW-SPACES

verifying the condition (3.2) in Part 3 of a semicontinuous family of spaces (in the case
when Q′w , ∅, equivalently, Qw , ∅).

We define the edge-space Qe as the δ0-hull (in Xe) of the projection

PXvw,Xe (Qv).

Thus,
HdXvw (Qv

w,Qe) ≤ δ0 + 1.

At the same time, since each point of Q′w is within distance R from Qv, each point of Qw is
within distance

R + λ′ + δ0

from Qv, where both distances are computed in Xvw. Since

K = (15L′0R)3 ≥ R + λ′ + δ0,

we conclude that each point of Qw is within distance K from Qv. From this, since Qe was
defined as the projection of Qw to Xe, it also follows that HdXvw (Qw,Qe) ≤ K. Thus, we
verified Part 3 of Definition 3.1 (for the edge e). Since the subsets Qw,Qe were defined as
δ0-hulls in δ0-hyperbolic spaces, we conclude that Qe ⊂ Xe,Qw ⊂ Xw are 4δ0-quasiconvex,
verifying Part 1 of Definition 3.1.

Lastly, we turn to Part 4 of Definition 3.1. As we noted earlier, Qw = ∅ if and only
if Q′w = Ne

R(Qv) ∩ Xw = ∅. In other words, the λ′0-quasiconvex subsets Qv, Xw ⊂ Xvw are
R-separated. Since R was chosen to satisfy

R ≥ R0 = R1.148(δ′0, λ
′
0) = 2λ′0 + 5δ0,

Corollary 1.148 implies that subsets Qv, Xw ⊂ Xvw are D = D1.148(δ′0, λ
′
0)-cobounded. This

verifies Part 4 of Definition 3.1.

Definition 3.18. We define the K-flow space FlK(Qu) of Qu as the subtree of spaces
in X as follows. The nonempty subsets Qv,Qe defined by the inductive procedure above
will be the vertex/edge spaces of FlK(Qu). The incidence maps gev of FlK(Qu) are the
compositions of the incidence maps fev with fiberwise nearest-point projections in Xv to
Qv. The vertex and edge-spaces of FlK(Qu) are equipped with path-metrics induced from
the ambient path-metrics on vertex and edge-spaces of X. We let FlK(Qu) ⊂ X denote
the total space of FlK(Qu), set S := π(FlK(Qu)); we will use the notation F lK(Qu) for the
disjoint union ∐

v∈V(S )

Qv,

which is the union of vertex-spaces of FlK(Qu). We will equip FlK(Qu) with the standard
path-metric of a tree of spaces.

Sometimes it will be convenient to restrict flow-spaces to subtrees T ′ ⊂ T . We will
denote such “subflows” by

FlT
′

K (Qu).

Remark 3.19. 1. The δ0-neighborhoods in the definition of flow-spaces are taken
in order to ensure that the each inclusion map Qw → Xw is a (1,C1.96(δ0))-quasiisometric
embedding, where Qw is equipped with the path-metric induced from Xw, see Lemma 1.96.

2. In general, it is not true that for Hausdorff-close subsets A, B ⊂ Xu, the K-flow
spaces of A and B are Hausdorff-close to each other. However, if

B ⊂ N f ib
r (Qu) ⊂ Xu
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then (by the very definition of a flow-space)

FlK(B) ⊂ FlK+r(Qu).

Similarly,
N f ib

r (FlK(Qu)) \ N f ib
r (Qu) ⊂ FlK+r(Qu).

The discussion preceding the definition of flow-spaces proves:

Theorem 3.20. For every K ≥ K0, the flow-space FlK(Qu) is a (K,D, E)-semicontinu-
ous family of spaces in X, where D = D0 = D1.142(δ′0, λ

′
0) and E = E3.20(K) is given by

the equation (3.9). In particular, every x ∈ FlK(Qu) belongs to a K-leaf γx in FlK(Qu)
connecting x to Qu.

Combining with with the existence of uniform coarse Lipschitz retractions to semi-
continuous subtrees of spaces (Theorem 3.3), we conclude:

Theorem 3.21 (Mitra’s Retraction). Suppose that X is a tree of hyperbolic spaces.
Then for each K ≥ K0, there exists an L3.21(K)-coarse Lipschitz retraction, called Mitra’s
retraction, ρ = ρFlK (Qu) : X → FlK(Qu), where

L3.21(K) = L3.3(K,D0, E3.20(K), 4δ′0).

Below we collect several consequences of Theorem 3.21.

Corollary 3.22. The inclusion map FlK(Qu)→ X is an L3.21(K)-qi embedding.

Corollary 3.23 (M. Mitra, [Mit98]). If X were a hyperbolic metric space then for
all u ∈ V(T ) and 4δ0-quasiconvex subsets Qu ⊂ Xu, the flow-spaces FlK(Qu) would be
uniformly quasiconvex subsets in X.

Corollary 3.24. If π(FlK(Xu1 )) ∩ π(FlK(Xu2 )) = ∅, then the flow-spaces FlK(Xu1 ),
FlK(Xu2 ) are L3.21(K)-Lipschitz-cobounded in X (cf. Definition 1.26).

Proof. We will be using Mitra’s projections

ρi = ρFlK (Xui ), i = 1, 2.

Since these projections are L3.21(K)-coarsely Lipschitz, it suffices to show that diameters
of ρi(FlK(Xu3−i )), i = 1, 2, are uniformly bounded. Let vi ∈ π(FlK(Xui )), i = 1, 2, denote
the vertices realizing the minimal distance between these subtrees of T . Let e1 = [v1,w1],
e2 = [v2,w2] be the edges incident to v1, v2 and contained in the interval ⟦v1, v2⟧ (it is
possible that w1 = v2, w2 = v1). Then, by the definitions of Mitra’s projection (see the
proof of Theorem 2.22) and the K-flow, for i = 1, 2,

ρ3−i(FlK(Xui )) ⊂ ρ3−i(Xvi ) = {x3−i} ⊂ FlK(Xu3−i ) ∩ Xv3−i ,

i.e., ρ3−i(FlK(Xui )) is the singleton {x3−i}. Thus, the flow-spaces FlK(Xu1 ), FlK(Xu2 ) are
L3.21(K)-Lipschitz-cobounded in X, see Definition 1.26. □

Example 3.25. One can realize the hyperbolic plane as the total space (up to a quasi-
isometry) of a metric line bundle over a line. Namely, let T = R, where the vertices are the
integer points. We will identify T , via an isometry, with the y-axis in the upper half-plane
model of the hyperbolic plane (of course, we parameterize the y-axis in H2 by the hyper-
bolic arc-length). The projection π : H2 → T is given by the y-coordinate of the points in
H2. Examples of 1-qi sections of the bundle π : H2 → T are given by hyperbolic geodesics
in H2 which are vertical rays in the half-plane model. For K = 1, the K-flow space of a
singleton Qu = {q} is then such a hyperbolic geodesic through this point. Mitra’s retraction
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to L = FlK(Qu) in this example is within finite distance from the horocyclic projection
H2 → L. While it is 1-Lipschitz, it is not close to the nearest-point projection H2 → L. For
a general K ≥ 1, the K-flow of a singleton Qu = {q} is Hausdorff-close to a geodesic in H2,
equivalently, to a K-qi section through q.

3.3.2. Basic properties of flow-spaces. Most of the time, besides Mitra’s retractions
and the fact that each flow-space forms a semicontinuous subtree of spaces in X, instead of
the definition of flow-spaces we will use their properties summarized in the next proposi-
tion (we recall the equations (3.7) and (3.11) defining the constants K0,R0 and the function
R 7→ R∧ = K):

Proposition 3.26. Suppose that Qu ⊂ Xu is a 4δ0-quasiconvex subset.

(1) Suppose that a vertex w lies between vertices u and v. Then for every r ≥ 0, and
all K ≥ K0,

(3.14) N f ib
r (FlK(Xu)) ∩ N f ib

r (FlK(Xv)) ⊂ N f ib
r (FlK(Xw)),

and

(3.15) Nr(FlK(Xu)) ∩ Nr(FlK(Xv)) ⊂ Nr(FlK(Xw)).

(2) Suppose that R ≥ R0 and let γ is a R-qi leaf in X emanating from some γ(u) ∈ Qu.
Then γ ∩ X is contained in F lK(Qu), where K = R∧.

(3) For all K ≥ R0 and Qv := FlK(Qu) ∩ Xv, we have

Qu ⊂ FlK∧ (Qv).

(4) For every boundary edge e = [v,w] of S = π(FlK(Qu)), the subsets Qv, Xw are
D0-cobounded in Xvw, where D0 is given by (3.5).

Proof. (1) The first containment follows from the inductive nature of the definition
of flows. We now prove the second inclusion. Let x ∈ FlK(Xu), y ∈ FlK(Xv) and z ∈
B̄(x, r) ∩ B̄(y, r) ⊂ X. Up to relabeling, there are two cases:

a. w lies in the geodesic segment π(y)v ⊂ T . Then y ∈ FlK(Xw) (according to (3.14)
with r = 0), which implies that z ∈ Nr(FlK(Xw)).

b. The vertex w is not in uπ(x) ∪ vπ(y), hence, w separates π(x), π(y) in T . Therefore,
after relabeling, w separates π(x) from π(z). In particular the geodesic xz ⊂ X crosses Xw

and, hence, z ∈ Nr(Xw) ⊂ Nr(FlK(Xw)).
(2) The proof is by induction on the distance from vertices of π(γ) to u. We will use

the notation Let Qv,Q′w, etc. as in the definition of the flow-space FlK(Qu).
The base of induction (for the vertex u) is clear. Suppose that e = [v,w] is an edge in

π(γ) oriented away from u such that x = γ(v) ∈ Qv, y = γ(w) ∈ Xw. Arguing inductively,
we assume that the claim holds for the point x, i.e.

x ∈ Qv = F lK(Qu) ∩ Xv.

Since γ is an R-qi leaf in X,
dXvw (x, y) ≤ R,

i.e. by the definition of the function R 7→ R∧ = K,

y ∈ Ne
R(Qv) ∩ Xw = Q′w ⊂ Qw.

Part (3) is an immediate consequence of (2). □
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Notation 3.27. In what follows, we will refer to K-qi leaves in FlK(Qu) as leaves in
FlK(Qu) and denote them by γ with some subscripts. We will use the notation γx, γx,y for
such leaves provided that γ has x as one of its end-points (in the former case) or γ connects
x and y.

Lemma 3.28. Given any point x ∈ FlK(Xu), there is a maximal1 K-qi section Σx in
FlK(Xu) over a subtree Tx of T such that x ∈ Σx and u ∈ Tx.

Proof. Let w = π(x). By Theorem 3.20, there exists a K-qi section Σ⟦u,w⟧,x over the
geodesic ⟦u,w⟧ ⊂ T connecting u and w such that x ∈ Σ⟦u,w⟧,x. We define a poset consisting
of K-qi sections ΣS ,x over subtrees S ⊂ T and containing Σ⟦u,w⟧,x. Define the partial order
ΣS ,x ≤ ΣS ′,x if the qi section ΣS ′,x extends ΣS ,x. This poset is clearly nonempty. The
existence of a maximal element in this poset follows from Zorn’s lemma. □

In chapter 8 we will also use the following property of flow-spaces:

Lemma 3.29. Suppose that Qw = FlK(Xu) ∩ Xw , ∅. Then NR(FlK(Xu)) ∩ Xw is
contained in

N f ib
D (Qw),

where D = D3.29(R,K).

Proof. Let x ∈ NR(FlK(Xu)) ∩ Xw and let y ∈ FlK(Xu) such that d(x, y) ≤ R. Let γ be
a geodesic in X joining x, y. Let ρ : X → FlK(X) denotes the Mitra’s projection. We know
that ρ is an L3.21(K)-coarse Lipschitz retraction. We note that ρ(x) ∈ Qw and ρ(y) = y.
Hence, we have d(ρ(x), y) ≤ (R + 1)L3.21(K). Therefore,

d(x, ρ(x)) ≤ d(x, y) + d(ρ(x), y) ≤ R + (R + 1)L3.21(K).

Finally, since the vertex-spaces are uniformly properly embedded in X, we have a uniform
bound on dXw (x, ρ(x)) which proves the lemma. □

3.3.3. Generalized flow-spaces. In this section we discuss several generalizations
of flow-spaces and retractions to these, generalizing Mitra’s projection. We recall (see
Definition 3.18) that superscript in the form of a subtree S ⊂ T in the notation of a flow-
space, means that the flow-space is taken in the subtree of spaces XS ⊂ X over the subtree
S ⊂ T .

Definition 3.30. Assume that K ≥ K0.
1. We define flow-spaces of quasiconvex subsets Qe ⊂ Xe of edge-spaces, e = [v,w].

Define subtrees Tv (resp, Tw) in T as the maximal subtree in T containing v (resp. w) and
disjoint from w (resp. v). We define the flow-space FlK(Qe) of such Qe so that its union of
vertex-spaces is

F lK(Qe) := F lTv
K (Hullδ0 fev(Qe)) ∪ F lTw

K (Hullδ0 few(Qe)).

2. Similarly, we define flow-spaces in X of XS ⊂ X, where S ⊂ T is a subtree. For
each w ∈ V(S ) we define the maximal subtree Tw ⊂ T whose intersection with S equals
{w}. We then define the K-flow-space FlK(XS ) in X so that XS ⊂ FlK(XS ) and the union of
vertex-spaces of FlK(XS ) equals

(3.16) F lK(XS ) =
⋃

v∈V(S )

F lTv
K (Xv).

1Here maximal means we can not find a K-qi section Σ′x over a subtree T ′x ⊂ T containing Tx such that
Σx ⊊ Σ

′
x.
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Corollary 3.31. For oriented edges e = [u, v] of T the inclusion maps

FlK(Xe)→ FlK(Xu)

are uniformly quasiisometric embeddings.

Proof. Apply Theorem 3.21 to the δ0-quasiconvex hull of Qu := feu(Xe) and observe
that FlK(Xe) ⊂ FlK(Qu) ⊂ FlK(Xu). □

Proposition 3.32. There exists L = L3.32(K) such that for every subtree S ⊂ T and
K ≥ K0, the flow-space FlK(XS ) is L-qi embedded in X.

Proof. We continue with the notation introduced in Definition 3.30. For each w ∈
V(S ) we define Mitra’s retraction ρw = ρXw : XTw → FlTw

K (Xw). Hence, the collection of
maps ρw is uniformly coarsely Lipschitz. We then obtain a (uniformly) coarse Lipschitz
retraction

X → FlK(XS )

whose restriction to π−1(S ) is the identity and whose restriction to each XTw equals ρw. □

We now define flow-spaces of metric bundles. Let S ⊂ T be a subtree and let

Q = (π : Q→ S )

be a metric K1-bundle in X whose vertex-spaces Qv ⊂ Xv are 4δ0-quasiconvex subsets.
Let Q =

⋃
v Qv denote the union of vertex-spaces of Q. For each vertex v ∈ V(S ), as

above, we have the associated subtree Tv ⊂ T , which is the maximal subtree in T such that
Tv ∩ S = {v}. Accordingly, we have subtrees of spaces XTv ⊂ X.

For each vertex v ∈ S we take the K2-flow-space

Fv := F lK2 (Qv) ∩ XTv

inside XTv . Lastly, set

F lK2 (Qu) :=
⋃

v∈V(S )

Fv.

Then, as in the case when Q was the union of vertex-spaces Xv, v ∈ V(S ) (see in Definition
3.30(2)), F lK2 (Qu) is the union of vertex-spaces of a tree of spaces FlK2 (Q).

Definition 3.33. We will refer to Flk(Q) (and its total space Flk(Q)) as a generalized
k-flow-space, or the k-flow-space of a metric bundle.

The following is an extension of Mitra’s theorem to such generalized flow-spaces:

Theorem 3.34. For every K2 ≥ K0, there exists an L = L3.34(K1,K2)-coarse Lipschitz
retraction X → FlK2 (Q).

Proof. The proof is similar to that of Proposition 3.32. Over subtrees Tw, w ∈ V(S ),
we use Mitra’s retractions XTw → FlK2 (Q) ∩ XTw . The fact that these maps define a uni-
formly coarse Lipschitz retraction XS → Q (over the three S ) follows from the assumption
that Q = (π : Q→ S ) is a K1-bundle, cf. Corollary 2.24. □

This theorem will be used in Section 6.1.2.
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3.3.4. Boundary flows. In this section we will define ideal boundary flows, which
are ideal counterparts of flow-spaces discussed above. Ideal boundary flows will be used
only in chapters 7 (specifically, Section 7.3) and 8. The definition of boundary flows given
below was latent in [Sar18, Definition 4.3].

Fix a vertex u ∈ V(T ) and consider a subset Zu ⊂ ∂∞Xu. We will define the flow-space
Fl(Zu) of Zu in ∂∞X, analogously to the definition of flow-spaces FlK(Qu) of quasiconvex
subsets Qu ⊂ Xu given in Section 3.3. Each Fl(Zu) = Z will be a tree of topological spaces
over a subtree S ⊂ T , with vertex-spaces Zv ⊂ ∂∞Xv and edge-spaces Ze ⊂ ∂∞Xe.

Our definition of subsets Zv ⊂ ∂∞Xv, Ze ⊂ ∂∞Xe, is inductive on dT (u, v), analogously
to the definition of FlK(Qu) ⊂ X. We assume that subsets Zv, Ze are defined for all vertices
and edges of T contained in the ball (in T ) of radius n centered at u. Consider an edge
e = [v,w] in T oriented away from u, such that dT (u, v) = n. We have qi embeddings
fev : Xe → Xv and few : Xe → Xw. They induce topological embeddings (boundary maps)

∂∞ fev : ∂∞Xe → ∂∞Xv, ∂∞ few : ∂∞Xe → ∂∞Xw,

see Section 1.13. Define

Ze := (∂∞ fev)−1(Zv), and Zw := ∂∞ few(Ze).

The boundary maps ∂∞ fev, ∂∞ few provide incidence maps Ze → Zv,Ze → Zw. We continue
inductively. Define S as the subtree in T spanned by the vertices v ∈ T such that Zv , ∅.
Thus, we obtain a tree Z = (Z → S ),Z = Fl(Zu), of topological spaces with the vertex-
spaces Zv, v ∈ V(S ), the edge-spaces Ze, e ∈ E(S ) and incidence maps ∂∞ fev as above,
see Definition 2.5. We will use the notation F l(Zu) for Z, the union of vertex-spaces of
Z. Note that since the maps ∂∞ fev are 1-1, the set F l(Zu) breaks as a disjoint union of
flow-spaces F l({z}) of singletons {z} ⊂ Zu. For each v ∈ V(T ), the intersection

Flv({z}) := F l({z}) ∩ ∂∞Xv

is either empty or is a singleton. Similarly, for each edge e = [v,w] ∈ E(T ), the intersection
Fle({z}) := Fl({z})∩ Ze is either empty or is a singleton. In view of the inductive definition
of Fl(Zu), if Flw({z}) , ∅ for a vertex w, then for every vertex v ∈ uw, Flv({z}) = {z′} is also
nonempty and we have

Flv({z′}) = Flw({z}).

Furthermore, for each edge e in the interval uv, Fle({z}) is nonempty as well. For z ∈
∂∞Xu we define a tree Tz ⊂ S such that V(Tz) consists of vertices v for which Flv({z}) is
nonempty.

The next lemma is partially proven in [Sar18, Lemma 4.4]; we include a proof for the
sake of completeness:

Lemma 3.35. Suppose that X = (π : X → T ) is a tree of hyperbolic spaces. Consider
a point z ∈ ∂∞Xu and a geodesic ray αu ⊂ Xu asymptotic to z. Then for a vertex v ∈ V(T )
the following are equivalent:

1. Flv({z}) is nonempty.
2. There is a geodesic ray αv ⊂ Xv such that Hd(αu, αv) < ∞. In this case Flv({z}) =

{αv(∞)}.
3. αu is Hausdorff-close to a subset of Xv.

Proof. It suffices to prove the equivalence in the case when u, v span an edge e = [v,w]
in T (the general case is proven by induction on dT (u, v)). As we noted earlier, Flv({z}) =
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{zv} , ∅ if and only if Fle({z}) = {ze} , ∅. The latter holds if and only if there is a geodesic
ray αe in Xe such that αe(∞) = ze and

∂∞ feu(ze) = z, ∂∞ fev(ze) = zv.

The paths feu(αe), fev(αe) are quasigeodesic rays in Xu and Xv respectively, which are
asymptotic, respectively, to the points {z}, {zv}. By the stability of quasigeodesics we have
Hd(αu, feu(αe)) < ∞ and there is a geodesic ray αv in Xv Hausdorff-close to fev(αe). This
proves the equivalence of (1) and (2).

The implication (2) ⇒ (3) is clear. If (3) holds, then the image of αu under the pro-
jection P = PXuv,Xv is again a quasigeodesic in Xv (which is Hausdorff-close to αu). By the
stability of quasigeodesics, P(αu) is Hausdorff-close to a geodesic αv in Xv. □

Corollary 3.36. The following is an equivalence relation on
∐

v∈V(T ) ∂∞Xv:
Two points zi ∈ ∂∞Xui , i = 1, 2 are related iff Flu2 ({z1}) = {z2}.

We next relate boundary flow-spaces to the flow-spaces in X.

Lemma 3.37. There is a constant K depending on the parameters of X such that the
following holds:

(1) If αu ⊂ Xu is a geodesic ray asymptotic to z ∈ ∂∞Xu, then

Flv({z}) = ∂∞(FlK(αu) ∩ Xv, Xv)

for all v ∈ V(Tz).
(2) Flv(∂∞Xu) = ∂∞(FlK(Xu) ∩ Xv, Xv) for all v ∈ V(T ).

Proof. (1) The inclusion ∂∞(FlK(αu) ∩ Xv, Xv) ⊂ Flv({z}) is clear, we will prove the
opposite inclusion. Suppose first that v1, v2 are vertices in the tree of Tz satisfying

dT (u, v2) = dT (u, v1) + 1,

and let αi ⊂ Xvi , i = 1, 2, be geodesic rays such that Flvi ({z}) = {αi(∞)}, i = 1, 2. According
to Lemma 3.35,

HdXv1v2
(α1, α2) < ∞.

Since Xv1v2 is δ′0-hyperbolic and α1, α2 are L′0-quasigeodesics in Xv1v2 , it follows that
there are subrays in α′1 ⊂ α1, α

′
2 ⊂ α2 which are R-Hausdorff close in Xv1v2 , where R

depends only on the parameters of X (see Corollary 1.86). Set K := R∧. Then, if α1 is
contained in FlK(αu), then so does α′2 (see Proposition 3.26(2)). Now, Part (1) of lemma
follows by induction on dT (u, v).

Part (2) follows immediately from (1). □

3.3.5. Geometry of the flow-incidence graph. In this section we will assume that
K ≥ K0. We will analyze (to some degree) the intersection pattern of projections to T of
the flow-spaces FlK(Xu), u ∈ V(T ). Some of these results will be important (specifically,
Subdivision Lemma and its corollary, Corollary 3.45) in Chapter 6.

Definition 3.38. An interval J = ⟦u, v⟧ ⊂ T is special (more precisely, K-special) if
one of its end-points (say, u) has the property that J ⊂ π(FlK(Xu)). In this case, the vertex
u is said to be special in J.

For instance, for every edge e = [u, v] ∈ E(T ), the interval J = ⟦u, v⟧ is special.

Remark 3.39. The notion of a special interval can be refined and one can say that
an oriented interval J = ⟦u, v⟧ ⊂ T is special if J ⊂ π(FlK(Xu)). We will not need this
refinement.
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The importance of special intervals comes from the following simple fact:

Lemma 3.40. Suppose that u, v ∈ V(T ) are such that π(FlK(Xu))∩π(FlK(Xv)) contains
a vertex t. Then the center w of the triangle ∆tuv subdivides the interval I = ⟦u, v⟧ in two
special subintervals

J = ⟦u,w⟧, J′ = ⟦w, v⟧.

Proof. Since w separates u and v from t, Proposition 3.26(1) implies that

J ⊂ π(FlK(Xu)), J′ ⊂ π(FlK(Xv)). □

Of prime importance for us will be whether intersections as in the lemma are empty
or not, since empty intersection will imply that the pair of subsets FlK(Xu), FlK(Xv) of
X is L3.21(K)-Lipschitz cobounded, see Corollary 3.24. This observation motivates the
following definition:

Definition 3.41. For each K we define the flow-incidence graph Γ = ΓK . Its vertex-
set is V(T ). Two vertices u, v of Γ are connected by an edge e ∈ E(Γ) if and only if
π(FlK(Xu)) ∩ π(FlK(Xv)) , ∅.

Lemma 3.40 implies:

Corollary 3.42. dΓ(u, v) ≤ 1 if and only if the interval ⟦u, v⟧ is the union of two
special subintervals.

While the graph Γ is not necessarily a tree, we will see that it is a quasi-tree. Recall
that a geodesic metric space Y is called a quasi-tree (see Manning’s paper [Man05]) if it
is quasiisometric to a simplicial tree. According to [Man05], Y is a quasi-tree if and only
if there exists a constant r such that for every geodesic segment xy ⊂ Y , the (closed) ball
B(m, r) centered at the midpoint m of xy separates x and y. (Here and below, separation is
understood in the sense that every path connecting x and y has to pass through B(z, r).) Al-
ternatively, one characterizes quasi-trees by the existence of r such that for every geodesic
segment xy ⊂ Y and every z ∈ xy, the ball B(z, r) separates x and y.

Lemma 3.43. Suppose that p is a point2 in an interval J = ⟦u, v⟧ ⊂ T. Then:
1. The closed unit ball BΓ(p, 1) ⊂ Γ separates u and v.
2. dΓ(u, v) ≥ dΓ(u, p).

Proof. Both parts of the lemma are proven by the same argument. Suppose that w0 =

u,w1, ...,wn,wn+1 = v is a vertex-path in Γ connecting u to v. Since p separates u from v,
there exists i ≤ n such that wi,wi+1 are separated by p in T and, of course, dΓ(wi,wi+1) = 1.
Lemma 3.40 implies that

dΓ(wi, p) ≤ 1, dΓ(wi+1, p) ≤ 1.
This proves Part (1) of the lemma. To prove Part (2) we take the above vertex-path to be
geodesic in Γ and observe that

dΓ(p, u) ≤ dΓ(p,wi) + dΓ(wi, u) ≤ 1 + dΓ(u,wi) ≤ dΓ(u, v). □

Lemma 3.43 thus implies that for every K and a tree of hyperbolic spaces spaces X,
the graph Γ = ΓK is a quasi-tree with the constant r = 1.

We are now ready to prove the horizontal subdivision lemma, which will play an im-
portant role in Chapter 6, when we establish uniform hyperbolicity of K-flows of interval-
spaces XJ in X.

2not necessarily a vertex
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Figure 5. Horizontal subdivision

Lemma 3.44 (Horizontal subdivision lemma). For any pair of distinct vertices u, v ∈ T,
the interval J = ⟦u, v⟧, can be subdivided into nondegenerate subintervals

J = ⟦u0, u1⟧ ∪ .... ∪ ⟦un−1, un⟧ ∪ ⟦un, un+1⟧, u = u0, v = un+1,

and each Ji = ⟦ui, ui+1⟧ can be further subdivided into subintervals (some of which could
be degenerate),

⟦ui, u′′i ⟧ ∪ ⟦u
′′
i , u

′
i+1⟧ ∪ ⟦u

′
i+1, ui+1⟧,

so that the following hold for all i ≤ n:
(1)

π(FlK(Xui )) ∩ Ji = ⟦ui, u′′i ⟧,
(i.e. the interval ⟦ui, u′′i ⟧ is special) and

u′′i < π(FlK(Xui+1 )),

unless i = n in which case we could have u′′i ∈ π(FlK(Xui+1 )).
(2) The interval ⟦u′′i , u

′
i+1⟧ is special, it is contained in π(FlK(Xu′i+1

)).
(3) The interval ⟦u′′i , u

′
i+1⟧ is nondegenerate unless i = n.

(4) dT (u′i+1, ui+1) ≤ 1, thus, each interval ⟦u′i+1, ui+1⟧ is special.

Proof. We find the subdivision vertices inductively. Set u0 := u. Inductively, we
assume that ui is defined. If ui = v, we set n + 1 = i and terminate the induction. Suppose,
therefore, that this is not the case. We then define u′′i , u′i+1 and ui+1:

We choose a vertex u′′i ∈⟧ui, v⟧ to be the farthest from ui such that

FlK(Xui ) ∩ Xu′′i , ∅.

Note that such a vertex always exists since for the edge [ui, vi] ∈ E(⟦ui, v⟧) we have

FlK(Xui ) ∩ Xvi , ∅.

If it so happens that u′′i = v, we set n = i, and u′i+1 := ui+1 = v; this will conclude the
induction. Suppose that this is not the case.

Then consider the vertices s ∈⟧u′′i , v⟧ such that

FlK(Xs) ∩ Xu′′i = ∅.

If such a vertex does not exist, then we set n = i, u′i+1 = u′′i and ui+1 = v, and again conclude
the subdivision process. Assume that this is not the case. Then we define ui+1 ∈⟧u′′i , v⟧ to
be the closest vertex to u′′i such that FlK(Xui+1 ) ∩ Xu′′i = ∅. We define u′i+1 in this case to be
the vertex in Ji = ⟦ui, ui+1⟧ adjacent to ui+1, i.e. dT (u′i+1, ui+1) = 1. Then, by the definition
of ui+1,

FlK(u′i+1) ∩ Xu′′i , ∅.

Hence, the vertices u′′i , u
′
i+1, ui+1 satisfies requirements of the lemma and we continue in-

ductively. □
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Corollary 3.45. 1. Each interval Ji as above is the union of (at most) three special
intervals and the sequence

...ui, u′i+1, ui+1, ...

is a vertex-path in Γ.
2. For any two consecutive vertices ui, ui+1, i ≤ n − 1,

dΓ(ui, ui+1) = 2,

while 1 ≤ dΓ(un, un+1) ≤ 2.
3. For each pair of indices i, j, if 0 ≤ i + 1 < j , n, then

dΓ(ui, u j) ≥ 2.

In particular, if |i − j| ≥ 2, the flow-spaces FlK(XJi ), FlK(XJ j ) are L3.21(K)-Lipschitz
cobounded in X.

3.4. Retractions to bundles

The main goal of this section is to prove Theorem 3.49, which is an analogue of
Theorem 3.21, constructing coarse Lipschitz retractions from flow-spaces to certain K′-
metric bundles Y = (π : Y → S ) ⊂ X with λ-quasiconvex fibers Yv ⊂ Xv. In Theorem
3.49 we will impose a stronger assumption on X, namely the κ-uniform flaring condition
for a certain constant κ ≥ K (see (3.19) for the definition of this constant, which depends
on K,K′, on a quasiconvexity constant λ of Yv ⊂ Xv, and on a constant D which is an
upper bound on the diameter of Yw for some w ∈ V(S )), that was not needed in Theorem
3.21. While the κ-flaring condition implies k-flaring for all k ∈ [1, κ], it will be notationally
convenient to also have the constants Mk, k ≤ κ, at our disposal, hence, we will be assuming
the uniform k-flaring condition for all k ∈ [1, κ].

The retractions ρY : FlK(Qu) → Y will be defined on flow-spaces FlK(Qu) whose
4δ0-fiberwise neighborhoods contain Y , but composing ρY with Mitra’s retraction ρ : X →
FlK(Qu), we then obtain retractions defined on the entire X. In the special case, when
FlK(Qu) is δ-hyperbolic, the retraction ρY will be uniformly close to the nearest-point
projection FlK(Qu) ⊃ Y (see Proposition 3.62). We recall that Y denotes the union of all
the vertex-spaces in Y .

Remark 3.46. 1. The condition that ρY is a retraction should be understood coarsely
since Y is not quite contained in FlK(Qu): We can only guarantee that ρY fixes all points in
Y ∩ F lK(Qu); the rest of the points of FlK(Qu) lie in the max(K, 4δ0)-neighborhood of Y
and ρY can move them only by a uniformly bounded amount.

2. In the case when Y is a K′-carpet, which is of the main interest, λ = δ0.

Lemma 3.47. Fix λ and K′. Suppose that a subtree of spaces Y ⊂ X is a K′-metric
bundle over a subtree S = π(Y) ⊂ T. Assume also that vertex-spaces Yv = Y ∩ Xv, v ∈
V(S ), are λ-quasiconvex in Xv. Then the fiberwise nearest-point projection XS → Y is
a D3.47(λ,K′)-coarse Lipschitz retraction. In particular, if γ is a C-qi section over some
interval J ⊂ S , then the fiberwise projection γ̄ of γ to Y is a K3.47(λ,K′,C) = CD3.47(λ,K′)-
qi section over J, where

K3.47(λ,K′,C) ≥ max(C,K′).

Proof. The lemma is an immediate corollary of Corollary 2.24. □
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Notation 3.48. 1. For the rest of this subsection we will use the notation K̄ for
K3.47(λ,K′,K). We also set ¯̄K := K3.47(δ0,K′3.17(K), K̄). Note that

¯̄K ≥ max(K̄,K′3.17(K)).

In these notation we suppress the dependence on λ and K′: In the most useful for us case,
when Y is a K-carpet, we will have λ = δ0.

2. Define

(3.17) r := r3.17 = 3δ0 + λ + R2.53( ¯̄K, 1) + R2.53(K̄,MK̄)

(3.18) k = K′ + R2.53(K̄, r)

(3.19) κ := κ3.19(λ,K,K′) := max(k, ¯̄K)

Observe that κ ≥ ¯̄K ≥ K̄ ≥ K. The proof of the following theorem will need uniform
¯̄K-flaring (in numerous places) as well as the uniform (K′ + R2.53(K̄, ri))-flaring for some

numbers r1, r2, r3 (subcases (i), (ii) and (iii) respectively in the proof of Proposition 3.51);
the constant r above is chosen to be the maximum of the numbers r1, r2, r3. We recall that
X is the union of all the vertex-spaces in X. Also, below we haveY = X∩Y andZ = X∩Z.

Theorem 3.49. Fix constants K,K′ and λ and assume that, Y = (π : Y → S ) ⊂ X is a
K′-metric bundle with λ-quasiconvex fibers. We assume, furthermore, that

1. There exists a vertex w ∈ S such that diamXw (Yw) ≤ D′.
2. The tree of spaces X satisfies the uniform flaring condition for all parameters in

the interval [1, κ], in particular, for K̄,K′ and ¯̄K; see (3.19) for the definition of κ which
depends on K,K′ and λ.

3. We assume that Y is either a (K′,D′)-carpet A(α′) contained in a K-ladder3 Z =

LK(α),
α′ ⊂ α ⊂ Xu, length(α′) ≥ length(α) − MK̄ ,

or Y is a general K′-metric bundle contained in the fiberwise 4δ′0-neighborhood of a K-
flow-space Z = FlK(Qu), such that Yu = Qu.

In both cases, we let Z denote the total space of Z andZ := Z ∩ X.
Then there exists a coarse L3.49(λ,K,K′,D′)-Lipschitz retraction ρ = ρY : Z → Y.

Proof. The proof of this theorem is quite long and technical; it occupies most of the
rest of this section.

Step 1: Construction of the map ρ : Z → Y.
For each x ∈ Z with v = π(x) ∈ V(T ), we fix a K-qi section γx of π : Z → π(Z) ⊂ T

over ⟦u, v⟧, connecting x to some point in Zu once and for all.
Let b = bx be the nearest point projection of v to S in T . We define the following

important points:
• We let t = tx ∈ ⟦u, b⟧ be the vertex farthest from u such that there exists a point

x̃ ∈ γx(t) for which
dXt (x̃,Yt) ≤ MK̄ .

(Note that it is possible that t = u and x̃ ∈ Zu.)
• Let x̄ ∈ Yt be a nearest-point projection to x̃ to Yt in the vertex-space Xt.

Thus,

(3.20) dXtx
(x̃, x̄) ≤ MK̄

and if x ∈ Yv, then tx = v and x̄ = x̃ = x.

3The other two parameters, D, E, of L play no role in this theorem.
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Figure 6. Projection to a bundle which is a carpet

Definition 3.50. 1. We define the retraction ρ = ρY : Z → Y by ρ(x) := x̄. We extend
this map to Z using the fact that Z is a K-net in Z (to define the extension we compose a
nearest-point projection map Z → Z with ρ). See Figure 6.

2. We define a path cx = cx,Y connecting x ∈ Z to ρ(x) ∈ Y as the concatenation

γx,x̃ ⋆ [x̃x̄]Xt ,

where t = tx, and
γx,x̃ = γx|⟦v,t⟧,

is the subpath of γx connecting x to x̃. We will refer to γx,x̃ as the horizontal part of cx.
The vertical part of cx is the geodesic [x̃x̄]Xt ; it is a path of uniformly bounded length (see
(3.20)) connecting x̃ to x̄ and contained in the 4δ0-neighborhood of Zt = Z ∩ Xt.

Step 2: Verification of the properties of ρ. It suffices to verify the coarse Lipschitz
property for the restriction of ρ to Z. We note further that it is enough to get a uniform
upper bound on d(ρ(x), ρ(y)) for two types of pairs (x, y):

a. x, y ∈ Zv, dXv (x, y) ≤ 1.
b. The vertices v1 = π(x), v2 = π(y) span an edge in T and dXv1v2

(x, y) ≤ K.
These two cases are treated in Proposition 3.51 and Lemma 3.58 respectively. The former
is the longest and hardest part of the proof.

For the following proposition we observe that, according to the 3rd assumption of
Theorem 3.49, X satisfies the uniform k-flaring condition for

k = K′ + R2.53(K̄, r),

where

r = max(MK̄ , 6δ0 + λ + R2.53( ¯̄K, 1), 3δ0 + λ + R2.53( ¯̄K, 1) + R2.53(K̄,MK̄)),

whence
r = 3δ0 + λ + R2.53( ¯̄K, 1) + R2.53(K̄,MK̄),

since R2.53(K̄,MK̄) ≥ max(3δ0,MK̄).

Proposition 3.51. Suppose that x, y ∈ Z ∩ Xv. If x, y are within distance 1 from each
other in Xv, then dX(ρ(x), ρ(y)) ≤ C3.51(λ,K,K′,D′). The bound is independent of the
choice of the paths γx, γy as above.

The proof of this proposition is long and is done through analyzing several cases and
subcases. We use the notation preceding Definition 3.50 and note that in the setting of the
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proposition, bx = by (the projection in T of v = π(x) = π(y) to S ); we will denote the vertex
bx = by simply by b.

Now we define certain auxiliary objects and make general remarks to be used in the
proof, especially in Cases 2 and 3 below. We let b̄ denote the nearest point projection (in
T ) of b to ⟦u,w⟧, i.e. b̄ is the center of the triangle ∆uwb.

Remark 3.52. (1) For each vertex s ∈ T , every geodesic α ⊂ Xs is δ0-quasicon-
vex in Xs. Hence, the nearest-point projection (in Xs) to the geodesic α is
coarsely L1.102(δ0, δ0)-Lipschitz.

(2) We let γ̄x and γ̄y denote the fiberwise projections (to Y) of the restrictions to
⟦b, u⟧ of γx and γy respectively. These are K̄-qi sections over ⟦b, u⟧. (See Lemma
3.47 and Notation 3.48.) Then, by the definition of tx, ty,

dXs (γx(s), γ̄x(s)) > MK̄ ,∀s ∈ V(⟧tx, b⟧), dXtx
(γx(tx), γ̄x(tx)) ≤ MK̄ ,

dXs (γy(s), γ̄y(s)) > MK̄ ,∀s ∈ V(⟧ty, b⟧), dXty
(γy(ty), γ̄y(ty)) ≤ MK̄ .

(3) Since K̄ ≥ K and γx(u) = γ̄x(u), by Corollary 2.53 we have

dXs (γx(s), γ̄x(s)) ≤ R2.53(K̄,MK̄),

for all s ∈ V(⟦tx, u⟧) and, similarly,

dXs (γy(s), γ̄y(s)) ≤ R2.53(K̄,MK̄), ∀s ∈ V(⟦ty, u⟧).

(4) The carpet A bounded by γx and γy (with the narrow end [γx(v)γy(v)]Xv ) is a
K′3.17(K)-carpet over ⟦u, v⟧; in particular, it is a K′3.17(K)-metric bundle whose
fibers are δ0-quasiconvex in the corresponding vertex-spaces. We let ¯̄γx and ¯̄γy

denote, respectively, the fiberwise projections of γ̄x and γ̄y to A. Thus, by Lemma
3.47, both ¯̄γx and ¯̄γy are ¯̄K = K3.47(δ0,K′3.17(K), K̄)-qi sections over ⟦u, b⟧.

(5) Since A is a K′3.17(K)-carpet, we can join the points ¯̄γx(b) and ¯̄γy(b) to some
points of [xy]Xv in A via K′3.17(K)-qi sections over ⟦v, b⟧. Since ¯̄K ≥ K′3.17(K),
the concatenation of these qi sections with sections ¯̄γx and ¯̄γy (over ⟦u, b⟧) are
both ¯̄K-qi sections over ⟦u, v⟧, joining γx(u) and γy(u) to some points of [xy]Xv .
We retain the notation ¯̄γx and ¯̄γy for these concatenations.

(6) Notice that ¯̄γx(u) = γ̄x(u) = γx(u) and ¯̄γy(u) = γ̄y(u) = γy(u). At the same time,
the other pair of end-points (namely, points in [xy]Xv ) of γx and ¯̄γx, respectively,
of γy and ¯̄γy, are within distance ≤ 1 in Xv. Therefore, by Corollary 2.53, we
have

dXs (γx(s), ¯̄γx(s)) ≤ R2.53( ¯̄K, 1),∀s ∈ V(⟦v, u⟧)
and

dXs (γy(s), ¯̄γy(s)) ≤ R2.53( ¯̄K, 1),∀s ∈ V(⟦v, u⟧).

Before proving the proposition we will need a technical lemma:

Lemma 3.53. Suppose that r is such that X satisfies the uniform k-flaring condition
with

k = k3.53 = K′ + R2.53(K̄, r).
Then the following holds.

Suppose that there are vertices v1 ∈ ⟦tx, b⟧ ∩ ⟦b̄, b⟧ and v2 ∈ ⟦ty, b⟧ ∩ ⟦b̄, b⟧ such that

(3.21) dXv1
(γx(v1), γ̄x(v1)) ≤ r and dXv2

(γy(v2), γ̄y(v2)) ≤ r.

Then:
(i) dT (v1, v2) ≤ τ3.53 = τ3.53(K, r,D′).



3.4. RETRACTIONS TO BUNDLES 111

Figure 7. Projections γ̄x, γ̄y, ¯̄γx, ¯̄γy.

(ii) d(γx(v1), γy(v2)) ≤ R3.53 = R3.53(K, r,D′).
(iii)

dXs (γx(s), γy(s)) ≤ R2.53(k,max(1,D′)),∀s ∈ ⟦v, b̄⟧.

Proof. (i) Taking into account the fact that K ≤ K̄ ≤ κ, γx(u) = γ̄x(u), γy(u) = γ̄y(u),
as well as the inequalities (3.21), we see that Corollary 2.53 applied to γx|⟦u,v1⟧ and γ̄y|⟦u,v2⟧

and the vertex b̄ ∈ ⟦u, v1⟧ ∩ ⟦u, v2⟧, implies that

dXb̄
(γx(b̄), γ̄x(b̄)) ≤ R2.53(K̄, r)

and
dXb̄

(γy(b̄), γ̄y(b̄)) ≤ R2.53(K̄, r).
We join γ̄x(b̄) and γ̄y(b̄) to Yw by two K′-qi sections over ⟦b̄,w⟧ contained in Y , γx,1

and γy,1 respectively.
We let b̄1 denote the vertex in ⟦z,w⟧ adjacent to b̄, assuming that b̄ , w. We connect

γx(b̄) and γx,1(b̄1) by a geodesic path γ1,b̄,b̄1
in Xb̄b̄1

, similarly, connect γy(b̄) and γy,1(b̄1) by
a geodesic path γ2,b̄,b̄1

in Xb̄b̄1
. Both paths have length ≤ k = K′ + R2.53(K̄, r).

Then we get that the concatenations

γ′x := γx|⟦v,b̄⟧ ⋆ γ1,b̄,b̄1
⋆ γx,1|⟦b̄1,w⟧

and
γ′y := γy|⟦v,b̄⟧ ⋆ γ2,b̄,b̄1

⋆ γy,1|⟦b̄1,w⟧.

These are k-qi sections over ⟦v,w⟧. (See the bold paths in Figure 8.) Their end-points are
at a distance at most max(1,D′) of the respective vertex-spaces (since dXv (x, y) ≤ 1 and Yw

has diameter ≤ D′).
Hence (since X is assumed to satisfy the uniform k-flaring condition), by Corollary

2.53,
dXs (γ

′
x(s), γ′y(s)) ≤ R2.53(k,max(1,D′)),∀s ∈ ⟦v,w⟧

and, restricting to the subinterval ⟦v, b̄⟧, we obtain

(3.22) dXs (γx(s), γy(s)) ≤ R2.53(k,max(1,D′)),∀s ∈ ⟦v, z⟧.

In the case b̄ = w, we will use the paths

γ′x := γx|⟦v,b̄⟧, γ
′
y := γy|⟦v,b̄⟧
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and obtain the same inequality (3.22).
Thus, we established Part (iii) of the lemma.
Since the fiberwise projection to Ys, s ∈ ⟦b, b̄⟧ is L1.102(δ0, λ)-Lipschitz, we get

(3.23) dXs (γ̄x(s), γ̄y(s)) ≤ L1.102(δ0, λ)(R2.53(k,max(1,D′)) + 1),∀s ∈ ⟦b, z⟧.

Without loss of generality (by switching the roles of x and y if necessary), we may assume
that v2 is a vertex in ⟦v1, b⟧.

Combining the second inequality in (3.21) with the inequalities (3.22), (3.23) applied
to s = v2, by the triangle inequality in Xv2 we obtain:

dXv2
(γx(v2), γ̄x(v2)) ≤

R1 := r + R2.53(k,max(1,D′)) + L1.102(δ0, λ)(R2.53(k,max(1,D′)) + 1).
(3.24)

Hence, by taking into account the fact that

dXs (γx(s), γ̄x(s)) > MK̄

for all vertices s of ⟧tx, b⟧ (and the reverse inequality at tx and the inequality (3.24)) and
using the K̄-uniform flaring property of the sections γx, γ̄x over the interval ⟦tx, v2⟧, we
obtain

dT (v1, v2) ≤ dT (tx, v1) ≤ τ3.53(K, r,D′) := τ2.47(K̄,R1).

This concludes the proof of Part (i).

(i)⇒(ii): d(γx(v1), γy(v2)) is bounded by the length of the concatenation of the paths
γx|⟦v1,v2⟧ (whose length is estimated by (i)) and [γx(v2)γy(v2)]Xv2

(whose length is estimated
by (3.22) since v2 ∈ ⟦b, z⟧) is which therefore at most

R3.53(K, r,D′) := K · τ3.53(K, r,D′) + R2.53(k,max(1,D′)). □

Figure 8. Illustration of the proof of Lemma 3.53

We will be using this lemma in the proof of Proposition 3.51 with r = r1, r = r2, r = r3
(defined below), where r2 is the largest of the three parameters. The uniform flaring condi-
tion made in the statement of the Proposition ensures that the uniform k-flaring condition
in the lemma is satisfied for r = r2 and, hence, for the two other (smaller) values of r.

Proof of Proposition 3.51. There are several cases to consider depending on mutual
position of various vertices in T .
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Case 1: Suppose v ∈ V(⟦u,w⟧), in which case b = v. Without loss of generality, we
may assume that ty ∈ V(⟦tx, v⟧).

Consider the subset

W = {s ∈ V(⟦ty, v⟧) : dXs (γ̄x(s), γ̄y(s)) ≥ D′1.123(δ0, δ0)}.

If W , ∅, let v1 be the farthest vertex from ty in W. If W = ∅ then define v1 to be ty. In
other words, v1 = sup W in the (oriented) interval ⟦ty, v⟧.

Claim 3.54. All three distances

dXv1
(γx(v1), γy(v1)), dXv1

(γx(v1), γ̄x(v1)), dXv1
(γy(v1), γ̄y(v1))

are bounded above by

C3.54 = 2R2.53( ¯̄K, 1)+

max(MK̄ + δ0(21 + 72δ0), 9δ0(1 + D2.40(K̄, 9δ0))).

See the bold curves in Figure 9.

Proof. The proof is divided into two subcases.
Subcase (i): Suppose that W = ∅, thus, v1 = ty ∈ ⟦u, v⟧. In this case

dXv1
(γ̄x(v1), γ̄y(v1)) < D1.123(δ0, δ0).

By Remark 3.52(1),

dXv1
( ¯̄γx(v1)), ¯̄γy(v1)) ≤ L1.102(δ0, δ0)(1 + D1.123(δ0, δ0)).

By combining this inequality with the two inequalities in Remark 3.52(6), we obtain (by
the triangle inequality in Xv1 )

dXv1
(γx(v1), γy(v1)) ≤ 2R2.53( ¯̄K, 1) + L1.102(δ0, δ0)(1 + D1.123(δ0, δ0)) =

2R2.53( ¯̄K, 1) + 12δ0(1 + 9δ0),
(3.25)

c.f. Remark 1.103 and Lemma 1.123(2).
Since v1 = ty,

(3.26) dXv1
(γy(v1), γ̄y(v1)) ≤ MK̄

and it follows from the triangle inequality applied to the quadrilateral in Xv1 with the ver-
tices

γx(v1), γy(v1), γ̄y(v1), γ̄x(v1),
that

dXv1
(γx(v1), γ̄x(v1)) ≤ 2R2.53( ¯̄K, 1) + L1.102(δ0, δ0)(1 + D1.123(δ0, δ0)) + MK̄

+D1.123(δ0, δ0) =

2R2.53( ¯̄K, 1) + MK̄ + δ0(21 + 72δ0)

(see Remark 1.103). By combining this inequality with (3.26) and (3.25), we obtain the
upper bound

max{dXv1
(γx(v1), γy(v1)), dXv1

(γx(v1), γ̄x(v1)), dXv1
(γy(v1), γ̄y(v1))} ≤

2R2.53( ¯̄K, 1) + MK̄ + δ0(21 + 72δ0) ≤ C3.54.

This proves the inequality in the claim in the subcase (i).

Subcase (ii): Suppose W , ∅; hence,

dXv1
(γ̄x(v1), γ̄y(v1)) ≥ D1.123(δ0, δ0) = 9δ0.
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By Lemma 1.123,

max
(
dXv1

(γ̄x(v1), ¯̄γx(v1)), dXv1
(γ̄y(v1), ¯̄γy(v1))

)
≤ R1.123(δ0, δ0) = 6δ0.

Combining this inequality with Remark 3.52(6) and the triangle inequality, we obtain

dXv1
(γ̄x(v1), γx(v1)) ≤ dXv1

(γ̄x(v1), ¯̄γx(v1)) + dXv1
( ¯̄γx(v1), γx(v1))

≤ 6δ0 + R2.53( ¯̄K, 1)

and, similarly,
dXv1

(γ̄y(v1), γy(v1)) ≤ 6δ0 + R2.53( ¯̄K, 1) ≤ C3.54.

This establishes two out of three bounds in the claim.
Lastly, we get a bound on dXv1

(γx(v1), γy(v1)). If v1 = v then the bound definitely holds
since dXv (γx(v), γy(v)) = dXv (x, y) ≤ 1 by the assumption of the proposition.

Otherwise, by the definition of v1, if v2 is the vertex in ⟦v1, v⟧ adjacent to v1, then

dXv2
(γ̄x(v2), γ̄y(v2)) < 9δ0 = D1.123(δ0, δ0).

Hence, by Corollary 2.40, we have dXv1
(γ̄x(v1), γ̄y(v1)) ≤ D2.40(K̄, 9δ0). By Remark 3.52(1)

dXv1
( ¯̄γx(v1)), ¯̄γy(v1)) ≤ 9δ0(1 + D2.40(K̄, 9δ0)).

Hence, using Remark 3.52(6), we obtain

dXv1
(γx(v1), γy(v1)) ≤ 2R2.53( ¯̄K, 1) + 9δ0(1 + D2.40(K̄, 9δ0)) ≤ C3.54.

This completes the proof of the claim. □

Figure 9. Case 1.

We now prove the proposition in Case 1. By Corollary 2.53 applied to the K̄-qi sec-
tions γx and γ̄x over the interval ⟦tx, v1⟧, in view of the bound in Claim 3.54, since

MK̄ ≤ C3.54,

we obtain:
dT (tx, v1) ≤ R2.53(K̄,C3.54)

and
dT (ty, v1) ≤ R2.53(K̄,C3.54).
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By the triangle inequality, dX(ρ(x), ρ(y)) is bounded by

dXtx
(ρ(x), γx(tx)) + dX(γx(tx), γx(v1)) + dXv1

(γx(v1), γy(v1))+
dX(γy(v1), γy(ty)) + dXty

(γy(ty), ρ(y)).

This, in turn, is bounded by

MK̄ + KdT (tx, v1) + KdT (ty, v1) + dXv1
(γx(v1), γy(v1)) + KdT (tx, v1) + MK̄ ≤

2(MK̄ + R2.53(K̄,C3.54)) +C3.54.

This concludes the proof of the proposition in Case 1.
Case 2: Assume that v < ⟦u,w⟧. Let b̄ denote the nearest point projection of b to

⟦u,w⟧ in T . There are three subcases to be dealt with.

Subcase (i): Suppose tx, ty ∈ ⟦b, b̄⟧. Letting v1 = tx, v2 = ty and applying Lemma
3.53(ii) with r = r1 = MK̄ we obtain

d(γx(tx), γy(ty)) ≤ R3.53(K,MK̄ ,D
′),

and, hence,
d(ρ(x), ρ(y)) ≤ 2MK̄ + R3.53(K,MK̄ ,D

′).
Observe that we need uniform k-flaring for

k = k3.53 = K′ + R2.53(K̄, r1), r1 = MK̄ .

Subcase (ii): Suppose tx ∈ ⟦u, b̄⟧ and ty ∈ ⟦b, b̄⟧, or vice versa.
Without loss of generality, we may assume that tx ∈ ⟦u, b̄⟧ and ty ∈ ⟦b, b̄⟧. We first get

a uniform upper bound on dXb̄
(γ̄x(b̄), ¯̄γx(b̄)).

By Lemma 1.105, since Yb̄ is λ-quasiconvex in Xb̄, γ̄x(b̄) lies in the (λ+2δ0)-neighbor-
hood of [γx(b̄)γ̄y(b̄)]Xb̄

in Xb̄.

Figure 10. Case 3(ii)

Since
dXb̄

(γy(b̄), γ̄y(b̄)) ≤ R2.53(K̄,MK̄),
by Remark 3.52(3), it follows from the δ0-hyperbolicity of Xb̄ that the Hausdorff distance
between the geodesics [γx(b̄)γy(b̄)]Xb̄

and [γx(b̄)γ̄y(b̄)]Xb̄
in Xb̄ is at most δ0 +R2.53(K̄,MK̄).

Combining this with the earlier observation that

γ̄x(b̄) ∈ N f ib
λ+2δ0

([γx(b̄)γ̄y(b̄)]Xb̄
),
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we conclude that γ̄x(b̄) belongs to the (3δ0+λ+R2.53(K̄,MK̄))-neighborhood of the segment
[γx(b̄)γy(b̄)]Xb̄

in Xb̄. Therefore,

dXb̄
(γ̄x(b̄), ¯̄γx(b̄)) ≤ 3δ0 + λ + R2.53(K̄,MK̄).

Since, by Remark 3.52(6),

dXb̄
(γx(b̄), ¯̄γx(b̄)) ≤ R2.53( ¯̄K, 1),

by triangle inequality we obtain

dXb̄
(γx(b̄), γ̄x(b̄)) ≤ r2 := R2.53( ¯̄K, 1) + 3δ0 + λ + R2.53(K̄,MK̄).

We will apply Lemma 3.53(ii) with r = r2 and v1 = b̄, v2 = ty.

Remark 3.55. Note that in order to apply Lemma 3.53(ii) we need the uniform k-
flaring condition for

k = k3.53 = K′ + R2.53(K̄, r2), r2 = 3δ0 + λ + R2.53( ¯̄K, 1) + R2.53(K̄,MK̄),

which is ensured by the choice of the constant r in (3.17), k in (3.18) and the uniform
κ-flaring assumption in Theorem 3.49.

In view of the K̄-uniform flaring condition, applied to γx, γ̄x, we have dT (tx, b̄) ≤
τ2.47(K̄, r2). Hence,

(3.27) d(γx(tx), γx(b̄)) ≤ Kτ2.47(K̄, r2).

Since
dXty

(γy(ty), γ̄y(ty)) ≤ MK̄ ≤ r2

and
dXb̄

(γx(b̄), γ̄x(b̄)) ≤ r2,

we can apply Lemma 3.53(ii) with v1 = b̄, v2 = ty and obtain:

d(γx(b̄), γy(ty)) ≤ R3.53(K, r2,D′).

Combining this estimate with the inequality (3.27) we get

d(γx(tx), γy(ty)) ≤ Kτ2.47(K̄, r2) + R3.53(K, r2,D′)

This, in turn, implies that

d(ρ(x), ρ(y)) ≤ Kτ2.47(K̄, r) + R3.53(K, r) + 2MK̄ .

Subcase (iii): Suppose tx, ty ∈ ⟦u, b̄⟧. Without loss of generality, after swapping x
and y if necessary, we may assume that ty ∈ ⟦tx, b̄⟧, see Figure 11. We will show that
dXb̄

(γx(b̄), γy(b̄)) is uniformly bounded in this subcase.
Suppose first that

dXb̄
( ¯̄γx(b̄), ¯̄γy(b̄)) ≥ 9δ0 = D1.123(δ0, δ0).

Then (by Lemma 1.123) both points ¯̄γx(b̄), ¯̄γy(b̄) belong to the 6δ0 = R1.123(δ0, δ0)-neighbor-
hood of [γ̄x(b̄)γ̄y(b̄)]Xb̄

in Xb̄.
However, by Remark 3.52(6),

dXb̄
( ¯̄γx(b̄), γx(b̄)) ≤ R2.53( ¯̄K, 1) and dXb̄

( ¯̄γy(b̄), γy(b̄)) ≤ R2.53( ¯̄K, 1).

Thus, since Yb̄ is λ-quasiconvex in Xb̄ and both endpoints of [γ̄x(b̄)γ̄y(b̄)]Xb̄
are in Yb̄, the

above inequalities imply:

dXb̄
(γx(b̄),Yb̄) ≤ r3 := λ + R2.53( ¯̄K, 1) + 6δ0,
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Figure 11. Case 3(iii)

and
dXb̄

(γy(b̄),Yb̄) ≤ r3.

Since γ̄x(b̄) is a nearest-point projection (in Xb̄) of γx(b̄) to Yb̄, it follows that

dXb̄
(γx(b̄), γ̄x(b̄)) ≤ r3,

and, similarly,
dXb̄

(γy(b̄), γ̄y(b̄)) ≤ r3.

We are now again in position to apply Lemma 3.53(iii) with r = r3, v1 = v2 = b̄ and
conclude that

dXb̄
(γx(b̄), γy(b̄)) ≤ R2.53(k,max(1,D′)),

where k = K′ + R2.53(K̄, r3).

Remark 3.56. Observe that in order to apply Lemma 3.53(iii), we need the uniform
k-flaring condition for this k and

r3 := λ + R2.53( ¯̄K, 1) + 6δ0,

which is ensured by the choice of the parameter r in (3.17) and the uniform κ-flaring as-
sumption in Theorem 3.49.

The uniform K̄-flaring condition in X applied to the pairs of K̄-qi sections (γx, γ̄x),
(γy, γ̄y), then implies the inequality

max(dT (tx, b̄), dT (ty, b̄)) ≤ τ2.47(K̄, r3).

Hence,
max(d(ρ(x), γx(b̄)), d(ρ(y), γy(b̄))) ≤ K̄τ2.47(K̄, r3) + MK̄ .

By the triangle inequality we get

d(ρ(x), ρ(y)) ≤ 2(K̄τ2.47(K̄, r3) + MK̄) + R2.53(k,max(1,D′)).

This concludes the argument in subcase (iii) and, hence, the proof of Proposition 3.51. □

The following is an immediate corollary of the proposition:

Corollary 3.57. For each vertex v ∈ ⟦u,w⟧ the restriction of the retraction ρ to the
subspace Zv is C3.51(λ,K,K′,D′)-coarse Lipschitz. This bound is independent of the choice
of the paths γx, γy as above.
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Lemma 3.58. If π(x) = v1, π(y) = v2, dT (v1, v2) = 1 and dXv1v2
(x, y) ≤ K, then

d(ρ(x), ρ(y)) ≤ C3.58(λ,K,K′,D′).

Proof. Without loss of generality, we may assume that d(u, v2) = d(u, v1) + 1. Let
y1 = γy(v1). Since d(x, y1) ≤ 2K, we also have

dXv1
(x, y1) ≤ η0(2K).

Applying Corollary 3.57 to the points x, y1 ∈ Xv1 , we obtain:

d(ρ(x), ρ(y1)) ≤ C3.51(λ,K,K′,D′)(η0(2K) + 1).

We next note that, without loss of generality we may assume that γy1 is chosen to be
the restriction of γy to the subinterval ⟦u, v1⟧ since the Lipschitz bound in Corollary 3.57
holds regardless of the choice of the sections γy. Hence,

d(ρ(x), ρ(y)) ≤ C3.51(λ,K,K′,D′)(η0(2K) + 1). □

This completes the proof of Theorem 3.49. □

The next corollary is immediate from Theorem 3.49:

Corollary 3.59. The map ρ in Theorem 3.49 is “coarsely independent” of the choice
of paths γx used in its construction. More precisely, if ρ, ρ′ are two projections defined
using different choices of paths γx, then

d(ρ(x), ρ′(x)) ≤ L3.49(λ,K,K′,D′).

Recall that for x ∈ Z we defined a path cx in Z connecting x to ρ(x), see Definition
3.50.

Corollary 3.60. Under the assumptions of Theorem 3.49, for any two points x, y ∈ Z
within distance C from each other, the Hausdorff distance between the paths cx, cy is ≤
D3.60(λ,K,K′,D′,C).

Proof. As in the proof of Theorem 3.49, it suffices to verify the claim in two cases:
Case 1: Suppose that x, y ∈ Zv and d(x, y) ≤ C. Without loss of generality we may

assume that ty ∈ ⟦tx, v⟧. By Theorem 3.49 we have

dT (π(tx), π(ty)) ≤ d(ρ(x), ρ(y)) ≤ L3.49(λ,K,K′,D′) · (C + 1).

Hence, the length of the portion of cx between γx(ty) and ρ(x) is at most

MK̄ + K · L3.49(λ,K,K′,D′) · (C + 1).

It follows that

dX(γx(ty), γy(ty)) ≤ R1 := L3.49(λ,K,D′) + 2MK̄ + K · L3.49(λ,K,K′,D′) · (C + 1).

Since Xty is η0-uniformly properly embedded in X, we also obtain

dXty
(γx(ty), γy(ty)) ≤ R2 := η0(R1).

By Corollary 2.53, we obtain that for all vertices s ∈ V(⟦ty, v⟧)

dXs (γx(s), γy(s)) ≤ R3 := R2.53(K,max(R2,C)).

By combining this with the earlier estimate on the length of the portion of cx between γx(ty)
and ρ(x), we obtain that the Hausdorff distance between cx, cy is at most

R4 := MK̄ + K · L3.49(λ,K,K′,D′) · (C + 1) + MK̄ + R3.

This concludes the proof in Case 1.
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Remark 3.61. This argument also proves that if in the definition of ρ(x) and cx we use
different K-qi sections γ′x, γ

′′
x , then the resulting paths c′y, c

′′
y are within Hausdorff distance

R4 from each other.

Case 2: Suppose that π(x) = v1, v2 = π(y), dT (v1, v2) = 1 and d(x, y) ≤ K. Without
loss of generality we may assume that d(u, v2) = d(u, v1)+1. Setting y1 := γy(v1), according
to Case 1 and the above remark, we obtain the bound R4 on the Hausdorff distance between
cx and cy1 . It follows that the Hausdorff distance between cx and cy is ≤ K + R4. □

Proposition 3.62. Under the assumptions of Theorem 3.49, assuming, in addition,
that Z is δ-hyperbolic, there exists C = C3.62(δ, λ,K,K′,D′) such that d(ρY , P) ≤ C, where
P = PZ,Y is the nearest-point projection in Z.

Proof. By Theorem 3.49, there exists a coarse L = L3.49(λ,K,K′,D′)-Lipschitz re-
traction ρ : Z → Y . By Lemma 1.104, the subset Y is λ′ = λ1.104(L, δ)-quasiconvex in
Z.

By the construction of ρ, the path cx connecting x ∈ Qv to x̄ = ρY (x) is the concate-
nation of the K-qi section γx,x̃ and the vertical geodesic [x̃x̄]Xt of length ≤ MK̄ , t = tx.
Hence, considering the geodesic triangle ∆xx̃x̄ in Z and using the δ-hyperbolicity of Z, we
conclude that

HdZ(γx,x̃, [xx̄]Z) ≤ δ + MK̄ + D1.54(δ,K).
Therefore, since Y is λ′-quasiconvex in Z, in order to prove the proposition, according to
Corollary 1.109, it suffices to verify that there exists a function R 7→ R′ (depending on
δ, λ′) such that for all v ∈ V(π(Z)), x ∈ Qv, y ∈ Y

dZ(y, γx,x̃ ∩ X) ≤ R⇒ dY (y, x̄) ≤ R′.

Our goal then is to define such a function.
Take y ∈ Y such that dZ(y, γx,x̃) ≤ R. Pick a point

x′ ∈ γx,x̃ ∩ Xv′ , v′ ∈ ⟦u, v⟧,

such that dZ(y, x′) ≤ R. In particular, dT (v′, π(y)) ≤ R.

Figure 12. Tripod ∆v′π(y)u in T .

Let b denote the center of the tripod ∆v′π(y)u ⊂ T ,

b ∈ ⟦u, v′⟧ ⊂ ⟦u, v⟧,

see Figure 12. Then

(3.28) dT (v′, b) + dT (b, π(y)) = dT (v′, π(y)) ≤ R.

Set x′′ := γx(b) (this point is defined since b ∈ ⟦u, v⟧ and γx is a section over that interval)
and let γ′′ denote γx′′,x̃, the restriction of γx to ⟦b, t⟧. (Note that the order in which the
vertices t, b appear in the interval ⟦u, v′⟧ is unclear.)
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Let γ̄′′ denote the fiberwise projection of γ′′ toYtb; without loss of generality, γ̄′′(b) =
x̄. Then γ̄ is a K̄-qi leaf in Y connecting x̄ to x̄′′ = PXb,Yb (x′′).

Furthermore, let γy be a K′-qi section in Y over ⟦π(y), u⟧, connecting y to Yu and let γ′′y
be its restriction to the interval ⟦π(y), b⟧ (recall that b ∈ ⟦π(y), u⟧). Set y′′ := γy(b) = γ′′y (b).

Now, consider the quadruple of points x′′, x′, y, y′′: We have a K-qi section γx′′,x′ con-
necting x′′ to x′, a geodesic [x′y]Z in Z connecting x′ to y and the K′-qi section γ′′y con-
necting y to y′′. Therefore,

dZ(y, y′′) ≤ K′dT (π(y), b)

and
dZ(x′′, y′′) ≤ KdT (b, v′) + R + K′dT (π(y), b).

Taking into account the inequality (3.28), we obtain

dZ(x′′, y′′) ≤ R +max(K,K′)dT (π(y), v′) ≤

R + R max(K,K′) = R(1 +max(K,K′)),
(3.29)

(3.30) dZ(y, y′′) ≤ K′dT (π(y), v′) ≤ K′R.

Since x′′, y′′ ∈ Xb, we also get

(3.31) dXb (x′′, y′′) ≤ η0R(1 +max(K,K′))).

Since y′′ ∈ Yb and x̄′′ is the projection of x′′ to Yb, it follows that

(3.32) dXb (x′′, x̄′′) ≤ η0(R(1 +max(K,K′))).

The uniform K̄-flaring condition applied to the restrictions of γ′′ and γ̄ to ⟦t, b⟧, and
the inequalities

dXb (γ′′(b), γ̄′′(b)) ≤ η0(R(1 +max(K,K′))),

dXt (γ
′′(t), γ̄′′(t)) = dXt (x̃, x̄) ≤ MK′ ,

(3.33)

imply that
dT (t, b) ≤ τ2.47(K̄,max(η0R(1 +max(K,K′))),MK′ ).

In particular,

(3.34) d(x̄, x̄′′) ≤ K̄τ2.47(K̄,max(η0R(1 +max(K,K′))),MK′ ).

Putting together the inequalities (3.34), (3.32), (3.31), (3.30), by the triangle inequal-
ity, we get:

dZ(x̄, y) ≤ dZ(x̄, x̄′′) + dZ(x̄′′, x′′) + dZ(x′′, y′′) + dZ(y′′, y) ≤

R′ :=

K̄τ2.47(K̄,max(η0R(1 +max(K,K′))),MK′ )+

η0R(1 +max(K,K′))+

R(1 +max(K,K′)) + K′R.

This proves the proposition. □

Combining Theorem 3.49 with the existence of uniformly coarse Lipschitz retractions
X → Z, where Z = FlK(Qu) or Z = LK(α), (Theorem 3.21, Corollary 3.13), we obtain:

Corollary 3.63. Suppose that Y ⊂ N f ib
4δ0

(FlK(Qu)) ⊂ X or AK′,D′ (α′) ⊂ L = LK,D,E(α)
satisfy the assumptions of Theorem 3.49 with parameters λ,K,D, E,K′ and D′. Then there
exists a coarse L3.63(λ,K,K′,D,D′, E)-Lipschitz retraction ρY : X → Y.
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Remark 3.64. 1. It follows that if X were hyperbolic, then the total space A of each
(K′,D′)-carpet AK′,D′ (α′) would be uniformly quasiconvex in X.

2. Unlike the existence theorem for coarse Lipschitz retractions to semicontinuous
subtrees of spaces, in order to get a uniform coarse Lipschitz retractions to carpets (and to
bundles) we do not need lower bounds on K besides the obvious inequality K ≥ 1.

3.5. Examples

In this section we give several examples of metric bundles, carpets, ladders, flow-
spaces. We will describe (up to a quasiisometry) total spaces (which will be always hyper-
bolic) and vertex-spaces in these examples. We will leave it to the reader to verify that these
examples indeed satisfy the claimed properties (this verification will be straightforward).

1. Metric bundles. The concept of a metric bundle is, probably, the easiest one to
illustrate.

Example 3.65. As we noted in Section 2.2, the main motivating example comes from
short exact sequences

1→ K → G → H → 1,

where K is a finitely generated group (for concreteness, a free group) and H is a free group
of finite rank, see [Mos97] for a proof of existence of hyperbolic groups G of this type.
The tree T is the Cayley graph of the free group H. Since H is free, the sequence splits
and, thus, we obtain a semidirect product decomposition G = K ⋊H. Accordingly, we will
identify H with a subgroup of G via splitting of the exact sequence. We equip G with a
finite generating set which is the union of free generating sets of K and H. The total space
of the bundle will be G (more precisely, a Cayley graph of G) and vertex-spaces will be the
cosets Kh ⊂ G, h ∈ H, more precisely, isometric copies of the Cayley graph of K: Since
K is a normal subgroup, each coset Kh = hK is an isometric left-translate of K, which
allows us to equip each Kh with a word metric isometric to the one of K (with respect to
the free generating set of K). We suppress the description of the edge-spaces of our metric
bundle since they are isometric copies of K and observe that for each free generator s of
H we obtain a map of cosets Kh1 → Kh2s given by the right multiplication; we use these
maps in lieu of the incidence maps of the tree of spaces. See also the proof of Lemma 2.77
where we discuss in more detail the case when H is infinite cyclic.

Hyperbolic plane.

Example 3.66. A geometric example is given by the hyperbolic plane X in the upper
half-plane model, where the tree T is the y-axis, where the vertex-set is given by {2n : n ∈
Z}. The vertex-space of Xv, v = 2n is the horizontal line {(x, 2n) : x ∈ R} (a hyperbolic
horocycle) equipped with the induced path-metric (thus, each Xv is isometric to the real
line). Of course, the vertex-spaces in this example are exponentially distorted in X.

Example 3.67. A slight variation on the first example is obtained gluing (via an isom-
etry) of two copies X′ = H2 × {p′}, X′′ = H2 × {p′′} of the hyperbolic plane H2 (fibered
over the y-axis as before) over a closed horodisk. More precisely, let B ⊂ H2 denote the
closed horodisk given by the inequality y ≥ 1. We have natural isometric inclusion maps
B→ X′, B→ X′′ defined via z 7→ (z, p′), z 7→ (z, p′′). We then let X denote the pushout of
the diagram

X′ ← B→ X′′
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with the natural path-metric. Accordingly, we amalgamate the base-trees (actually, lines,
T ′,T ′′) of X′, X′′ over a common ray, which we denote R (the projection of the common
horodisk). The result is a tree of spaces X → T , where T is the union of three rays meeting
at a common vertex u. This tree of spaces is a metric bundle over T . Topologically, of
course, X is just the product T × R.

We return to the hyperbolic plane example, Example 3.66. Note that typical qi sections
(flow-lines) of the hyperbolic plane (as a bundle over the y-axis) are given by vertical half-
lines, which are, of course, hyperbolic geodesics in X. Given x ∈ R, we have the section
y 7→ γx(y) = (x, y). For x1, x2 ∈ R, the sections converge as y→ ∞:

lim
y→∞

dX(γx1 (y), γx2 (y)) = 0.

Figure 13. Hyperbolic plane as a metric bundle

Flipped hyperbolic plane. This is another variation on the hyperbolic plane example.

Example 3.68. Consider the hyperbolic quarter-planes X± = {(x, y) : y > 0,±x ≥ 0}
with their hyperbolic metrics. Now, glue X± via the isometric map y 7→ y−1 of their
boundary half-lines. Call the resulting metric space X′. It still has a natural projection
π′ to the y-axis T and the structure of a metric bundle. While, as a metric space, X′ is still
isometric to the hyperbolic plane X, the metric bundle structure is quite different. From
the view point of the hyperbolic geometry, each vertex-space of X′ → T is the union of
two halves of hyperbolic horocycles and each X′v has two limit points in ∂∞X′ which are
the same as the limit points of the geodesic given by the y-axis. (See Figure 14 where
we use the unit disk model of the hyperbolic plane and where the vertical line represents
the y-axis.) Note that each vertex-space is still exponentially distorted in X′ due to the
exponential distortion of half-horocycles. Given two qi sections γx1 , γx2 of π′ : X′ → T we
observe the following convergence/divergence behavior:

lim
y→∞

dX(γx1 (y), γx2 (y)) = 0, if x1x2 > 0,

lim
y→±∞

dX(γx1 (y), γx2 (y)) = ∞, if x1x2 < 0.

Flow-spaces.

Example 3.69. Let X → T be the metric bundle corresponding to a short exact se-
quence as in Example 3.65, where H is the infinite cyclic group (the latter assumption will
simplify the description of flow-spaces). Then G = K ⋊ϕ Z, where ϕ is an automorphism
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of the free group K. Take a quasiconvex subset Q ⊂ K, say, a finitely generated subgroup
Q < K. Let u ∈ V(T ) be the vertex corresponding to 0 ∈ H = Z. Then Qu = Q. For
v±1 ∈ (T ) corresponding to ±1 ∈ Z take Qv±1 equal to the translate (in G) of the convex
hulls (in K) of ϕ±1(Q); these are the same as the quasiconvex hulls Hull(ϕ±1(Q)). For v±2
corresponding to ±2 ∈ Z take Qv±2 equal to the translates of the convex hulls (in K) of,
respectively, ϕ±1(Hull(ϕ±1(Q))). And so on.

Example 3.70. To get examples of flow-spaces in the hyperbolic plane (regarded as a
metric bundle over the y-axis), fix two real numbers a < b and take the following subset

{(x, y) : a ≤ x ≤ b, y > 0}

of the upper half-plane. This will be a flow-space of the interval {(x, y) : a ≤ x ≤ b, y =
1} ⊂ Xu ⊂ X, where u = 1. This flow-space is bounded by two qi sections γa, γb which,
of course, converge to each other as y → ∞. The same flow-space example works for
the flipped hyperbolic plane metric bundle X′ = (X′ → T ) discussed above. The main
difference is that the boundary lines γa, γb of the flow-space in X′ will diverge from each
other in both directions.

Figure 14. Flipped hyperbolic plane as a metric bundle

Carpets.

Example 3.71. Consider the hyperbolic plane regarded as a metric bundle over the
y-axis. Take two qi sections γxi , i = 1, 2 over an interval ⟦u,w⟧ ⊂ T , u < w, where the
sections are vertical line segments in the upper half-plane. The Euclidean rectangle defined
by these line segments is a carpet A = A(α) with the narrow end β. See Figure 15. The
same example works in the flipped hyperbolic plane as long as x1x2 > 0.

Example 3.72. To get a group-theoretic example, take a semidirect product as in a
flow-space example, G = K ⋊ϕ H, H � Z. Start with a geodesic line segment α ⊂ K, con-
necting two elements x1, x2 of the free group K such that dK(ϕn(x1), ϕn(x2)) > dK(x1, x2) =
C for all n > 0. Take vertices u,w in T corresponding to the integers N > 0 and 0 re-
spectively. Take α to be the translate (in Xu) of the geodesic segment [ϕN(x1)ϕN(x2)]K

and, respectively, β the geodesic segment [x1x2]K ⊂ Xu. Furthermore, take qi sections
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Figure 15. A carpet in the hyperbolic plane

γxi , i = 1, 2, of π : G → H, where γxi (n) = xin lies in the vertex-space Xvn corresponding to
the vertex vn = n ∈ ⟦u,w⟧. (For the notation xin, recall that we identify H with a subgroup
of G.) Then the qi sections γxi , i = 1, 2, define a carpet A = A(α) with the C-narrow end
β. The vertex-spaces of the carpet are geodesic segments in the cosets nK (n ∈ [0,N])
connecting nϕn(x1), nϕn(x2) ∈ nK.

Ladders.

Example 3.73. Start with the example (Example 3.67) of a metric bundle π : X → T
which is the union of two hyperbolic planes X′, X′′ glued isometrically over a horodisk.
The vertex-space Xu of X corresponding to the boundary of the common horodisk is a
horocycle. Take a segment α = [x1x2] ⊂ Xu and consider (as in the example of a carpet,
Example 3.71) two qi sections of X′ → T ′, X′′ → T ′′, which are geodesics γ′xi

, γ′′xi
in the

hyperbolic planes X′, X′′, passing through the points x1, x2. Combining these sections we
obtain sections γ1, γ2 of X → T . These sections intersect each vertex-space Xv in two
points γi(v), i = 1, 2. We then obtain a collection of intervals [γ1(v)γ2(v)]Xv , v ∈ V(T ).
Together, all these intervals define a ladder L in X.

Note that the sections γ1, γ2 in this example converge along the ray R (the projection
to T of the common horodisk):

lim
t→∞

dXt (γ1(t), γ2(t)) = 0,

where t diverges to infinity in the ray R. Thus, we can obtain a carpeted subladder in L as
follows. Pick a number C and assume that dXu (x1, x2) > C. Then, in view of convergence
of the sections over the ray R, there exists a vertex w in R such that dXw (γ1(w), γ2(w)) ≤ C.
The points γ1(w), γ2(w) ∈ Xw bound an interval β ⊂ Xw. Now, remove from T the open
subray of R emanating from w. The result is a subtree S ⊂ T ; taking its preimage Y in the
space X we obtain a bundle Y → S . Intersection of L with this bundle is a carpeted ladder
LY in Y , it contains the carpet A bounded by the intervals α ⊂ Xu, β ⊂ Xw, where β has
length ≤ C. The top and the bottom boundary paths of A are the restrictions of the sections
γ1, γ2 to the interval ⟦u,w⟧.

One gets a group-theoretic example of ladders by working with semidirect products
K ⋊ H, where H is a free group of finite rank ≥ 2. Then one proceeds as in Example
3.72, except instead of acting repeatedly by the automorphism corresponding to just one
generator of H, one acts on K by all the generators of H.



CHAPTER 4

Hyperbolicity of ladders

In this chapter we prove uniform hyperbolicity of (K,D, E)-ladders in X. The proof
is divided in three main steps. We first prove (section 4.1) hyperbolicity of carpets by
exhibiting slim combings of carpets (combings satisfying the conditions of Corollary 1.66).
We use these paths, in conjunction with the retractions to carpets (see Corollary 3.63) to
construct combings of carpeted ladders, which are ladders L(α) containing carpets A(α′)
with α′ ⊂ α whose length almost equals that of α. This is done in Section 4.2. Lastly,
in Section 4.3 we prove hyperbolicity of general ladders subdividing these (a “vertical
subdivision”) into carpeted ladders and then using quasiconvex amalgamation to prove
hyperbolicity. Hyperbolicity of ladders is a key step for proving hyperbolicity of flow-
spaces, which is done in the next chapter.

4.1. Hyperbolicity of carpets

The proof of the following simple proposition will serve as a model for more complex
proofs of hyperbolicity of certain subspaces of X.

Proposition 4.1. For every K ≥ 1, every (K,C)-narrow carpet A = (π : A → ⟦u,w⟧)
in X, equipped with its intrinsic metric, is δ4.1(K,C)-hyperbolic, provided that X satisfies
the uniform K-flaring condition.

Proof. SetA = A ∩ (∪v∈V(T )Xv). Let β = A ∩ Xw denote the C-narrow end of A. For
each x ∈ A we have the K-qi section γx ⊂ Σx of π : A→ ⟦u,w⟧ over ⟦π(x),w⟧, connecting
x to β. Suppose x, y ∈ A. Without loss of generality we can assume that π(y) ∈ ⟦w, π(x)⟧.
Now, let txy ∈ V(⟦w, π(y)⟧) denote the supremum of the set

{t ∈ V(⟦w, π(y)⟧) : dXt (γx(t), γy(t)) ≤ MK},

unless the set is empty in which case we let txy = w. Set t0 := txy. We then define a
path c(x, y) as the concatenation of the section γx restricted to ⟦π(x), t0⟧ with the vertical
segment [γx(t0)γy(t0)]Xt0

, followed by the concatenation with the restriction of the section
γy to the subinterval ⟦t0, π(y)⟧. The assumption that A is (K,C)-narrow implies that the
length of [γx(t0)γy(t0)]Xt0

is at most max (C,MK).
We claim that this family of paths in A satisfies the conditions of Corollary 1.66 with

constants depending only on K and C. The assumption that the paths c(x, y) are uniformly
coarse Lipschitz follows from the fact that each path c(x, y) is a concatenation of K-qi
sections and of vertical geodesics.

Lemma 4.2. The family of paths c(x, y) is uniformly proper in A, with distortion func-
tion depending only on K and C.

Proof. Let x, y ∈ A be such that d(x, y) ≤ r. Set v1 := π(x), v2 := π(y). Then
dT (v1, v2) ≤ r as well. Without loss of generality, on the oriented interval ⟦w, u⟧ we have

w ≤ txy ≤ v1 ≤ v2 ≤ u.

125
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Let y1 ∈ Av1 be the intersection point with γy. Then the subpath γyy1 in γy between y, y1
has length ≤ Kr and d(y1, x) ≤ r1 = r(K + 1). Furthermore, dXv1

(y1, x) ≤ η0(r1). By the
uniform K-flaring condition,

dT (v1, txy) ≤ τ2.47(K,max(MK ,C, η0(r1))).

Therefore, the overall length of c(x, y) is

≤ max(MK ,C) + 2Kτ2.47(K,max(MK ,C, η0(r1))) + Kr. □

Remark 4.3. This lemma is the only place where the constant C plays any role in the
proof of the proposition.

We next verify the condition (a2) of Corollary 1.66 for the family of paths c(x, y). The
following remark and lemma are new.

Remark 4.4. For the proof of slimness of triangles formed by the paths c(x, y) it is
helpful to prove the Hausdorff fellow traveling property, i.e. if x, x′ are nearby and y, y′ are
nearby then the Hausdorff distance of c(x, y) and c(x′, y′) is uniformly small. However, to
show this, it is enough to consider the case y = y′. Then again it is enough to consider the
two cases π(x) = π(x′) and d(π(x), π(x′)) = 1. This reduction arguments appear a number
times later.

Lemma 4.5. Given D ≥ 0 there is D′ ≥ 0 such that the following holds:
If d(y, z) ≤ D then Hd(c(x, y), c(x, z)) ≤ D′.

Proof. Clearly, it is enough to prove the lemma for the two cases (1) π(y) = π(z)
and (2) d(π(y), π(z)) = 1, π(z) ∈ ⟦π(y),w⟧. However, clearly (2) follows from (1) and
the case (2’) where d(π(y), π(z)) = 1, π(z) ∈ ⟦π(y),w⟧ and z ∈ γy. On the other hand,
even when we are in case (1) or (2’) there are two possibilities; either π(x) ∈ ⟦π(y),w⟧ or
π(y) ∈ ⟦π(x),w⟧. We shall assume that π(x) ∈ ⟦π(y),w⟧ leaving the other one for the reader
since that is analogous.

Case 1. In this case, we have π(y) = π(z) and π(y) ∈ ⟦π(x),w⟧. By Corollary 2.53 it
follows that portions of γy and γz over ⟦π(y),w⟧ are at a uniformly bounded Hausdorff
distance. Since γx is chosen independent of y, z it is enough to show that d(txy, txz) is
uniformly small. Without loss of generality, we may assume that txz ∈ ⟦txy,w⟧. Set t1 =
txy, t2 = txz. The rest of the argument follows from the uniform flaring (see Proposition
2.47) applied to γx and γz over ⟦txy, txz⟧.

Case 2′. In this case, we have d(π(y), π(z)) = 1, π(z) ∈ ⟦π(y),w⟧ and z ∈ γy and
π(y) ∈ ⟦π(x),w⟧. In this case, we note that γy = γz. Then there are two possibilities: If
txy ∈ ⟦π(z),w⟧ then txz = txy are done. Otherwise, txy = π(y) in which case the lemma is
immediate. □

Consider now three points x, y, z ∈ A and the triangle ∆ formed by the paths c(x, y),
c(y, z), c(z, x) connecting them. After relabelling the points x, y, z we can assume that the
vertices txy, tyz, tzx appear in the interval ⟦u,w⟧ in the following order:

u ≤ txy ≤ tyz ≤ tzx ≤ w.

Case 1. Suppose first that t := txy < w. Then

dXt (γx(t), γy(t)) ≤ MK .

Therefore, we replace x, y with x′ := γx(t), y′ := γy(t) respectively; dXt (x′, y′) ≤ MK , i.e.
the length of the path c(x′, y′) is ≤ MK . Thus, δ4.1(K)-slimness of the triangle ∆′ = ∆x′y′z
formed by the paths c(x′, y′), c(y′, z), c(z, x′) follows from the uniform fellow-traveling
property of the paths c in A. Since, without loss of generality we may assume that
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c(y′, z), c(z, x′) are subpaths in c(y, z), c(z, x), we conclude the δ4.1(K)-slimness of the orig-
inal triangle ∆.

Case 2. It remains to consider the case txy = tyz = tzx = w. Then, as in Case 1, we
replace the points x, y, z with the points x′ := γx(w), y′ := γy(w), z′ = γz(w). The triangle
∆′ formed by the paths c(x′, y′), c(y′, z′), c(z′, x′) is contained in the geodesic segment β;
hence ∆′ is δ0-slim. We conclude that ∆ is δ4.1(K)-slim as well. □

Remark 4.6. Lemma 4.2 establishes that the paths c(x, y) are uniformly proper (with
distortion depending only on K and C). Hence, by Corollary 1.66(b), the paths c(x, y) are
uniformly (in terms of K and C) close to geodesics in A.

4.2. Hyperbolicity of carpeted ladders

Definition 4.7. Let K̄ be defined as in Notation 3.48, with K′ = K, λ = δ0,

(4.1) K̄ := K3.47(δ0,K,K).

Set

(4.2) κ := κ4.7(K) = κ3.19(δ0,K,K).

A (K,D, E)-ladder L(α) containing a (K,C)-carpet A = AK,C(α′), α′ ⊂ α, as a subladder1,
satisfying

length(α′) ≥ length(α) − MK̄ ,

will be called carpeted.

In this section, we will prove that carpeted ladders are uniformly hyperbolic. Only the
parameters K and C will play a role in the proof, the parameters D and E will be irrelevant,
just as in the proof of the existence of a coarse Lipschitz retraction LK(α)→ AK,C(α′).

Theorem 4.8 (Hyperbolicity of carpeted ladders). Carpeted ladders in X are hyper-
bolic. More precisely: Fix K ≥ 1 and suppose that that X satisfies the uniform κ-flaring
condition, where κ = κ(K) is as in Definition 4.7, (4.2). Let L = LK(α) be a K-ladder con-
taining a (K,C)-carpet A(α′) as in Definition 4.7. Then LK(α) (with its intrinsic metric) is
δ4.8(K,C)-hyperbolic.

Proof. The proof of this theorem is divided in two steps: We first define a family
of paths c(x, y) in LK(α) connecting points x, y ∈ L, using the family of uniform quasi-
geodesics for the carpet A as a blackbox, and then check that these paths satisfy the con-
ditions of Corollary 1.66. We let ⟦u,w⟧ ⊂ S ⊂ T denote the base-interval of the carpet A,
where S = π(LK(α)) is the base of L = (π : LK(α) → S ). Then u is the center of both A
and L, α′ = Au and β = Aw is the narrow end of A.

For each x ∈ L we let bx ∈ V(T ) denote the center of the triangle ∆uwπ(x) ⊂ T .

According to Theorem 3.49, there exists ρ = ρL,A : L → A, a coarsely k-Lipschitz
retraction with

k = L3.49(δ0,K,K,C).

We first review some facts about ρ(x). The point ρ(x) = x̄ belongs to the interval
As ⊂ A, for a certain vertex

s ∈ ⟦u, π(x)⟧ ∩ ⟦u,w⟧,

1see Definition 3.10
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such that x̄ is within vertical distance MK̄ (in the vertex-space Xs) from a point x̃ = γx(s) ∈
Xs. Here γx ⊂ Σx is the K-section in L over ⟦u, π(x)⟧ connecting x to α. (Such point x̄
always exists in view of the assumption on the length of α′.)

The paths γ′x = γxx̃ ⋆ [x̃x̄]Xs defined in the proof of Theorem 3.49, connecting x to x̄,
satisfy the Hausdorff fellow-traveling property with respect to variations of x (see Corollary
3.60). Here γxx̃ is a subpath of γx connecting x to x̃.

Figure 16. Up to relabeling x, y there are two possible configurations of
the points u,w, π(x), π(y).

Step 1: Definition of the paths cx,y = c(x, y).
For x, y ∈ L we let b = bxy be the center of the triangle △uπ(x)π(y) ⊂ T . There are

two cases to consider, depending on which we get two types of paths c(x, y).

Paths of type 1: There exists t ∈ V(⟦π(x), π(x̄)⟧ ∩ ⟦π(y), π(ȳ)⟧) ⊂ V(⟦u, b⟧) such that

dXt (γx(t), γy(t)) ≤ MK̄ ,

i.e. the paths γx, γy “come sufficiently close” in some common vertex-space.

Figure 17. Paths of type 1: t = tx,y.

Let txy be the maximal vertex in ⟦u, b⟧ with this property. Then define c(x, y) to be the
concatenation of the portions of γx and (the reverse of) γy over ⟦txy, π(x)⟧ and ⟦tx,y, π(y)⟧
respectively with the subsegment of Ltxy joining their end points.
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Paths of type 2: Suppose t as in type 1 does not exist, i.e. the paths γx, γy “stay far
apart” in every vertex-space they both enter.

Then define c(x, y) to be the concatenation of γ′x and the reverse of γ′y with a geodesic
[x̄ȳ]A in A = A(K,C)(α′) connecting x̄ to ȳ.

Remark 4.9. More precisely, instead of geodesics [x̄ȳ]A one should use uniform quasi-
geodesic paths in A defined in the previous section. Since the two families are uniformly
close to each other, we will work with geodesics for the ease of the notation. We will do
the same repeatedly later in the book.

We observe that each path of type 1 is a concatenation of (at most) three uniformly
quasigeodesics paths (the middle one of which has) uniformly bounded length ≤ MK̄ , while
each path of type 2 is a concatenation of (at most) five uniformly quasigeodesics paths (two
of which have uniformly bounded lengths ≤ MK̄).

Our next task is to establish a uniform Hausdorff fellow-traveling property of the fam-
ily of paths c(x, y) (Lemma 4.10). Even though this property is not required by Corollary
1.66, it will play key role in verifying the other conditions of the corollary.

Figure 18. Case 1-1.

Lemma 4.10. The paths c(x, y) satisfy the Hausdorff fellow–traveling property, i.e. if
y, z are uniformly close to each other (in the total space L of the ladder L), so are the
images of the paths c(x, y), c(x, z). More precisely, there is a function D4.10(C,K, r) such
that if dL(y, z) ≤ r, then

Hd(cx,y, cx,z) ≤ D4.10(C,K, r),

Proof. As in the proof of Theorem 3.49, (see also Remark 4.4) there are two cases to
consider: π(y) = π(z) (see part of the proof covered in Proposition 3.51) and d(π(y), π(z)) =
1 (see part of the proof covered in Lemma 3.58). The second case follows from the first
one just as in the proof of Lemma 3.58, so we assume that π(y) = π(z). There are three
cases to check depending on the types of the paths c(x, y), c(x, z).

Case 1-1: Both paths c(x, y), c(x, z) have type 1. The paths c(x, y), c(x, z) agree over
the interval ⟦t, π(x)⟧ where t ∈ {txy, txz} is the vertex closer to bxy; after swapping the roles
of y and z we may assume that t = txz, see Figure 18.
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Define the points

x1 := γx(txy), y1 := γy(txy), x2 := γx(txz), y2 = γy(txz), z2 := γz(txz).

They satisfy the inequalities

dXtxy
(x1, y1) ≤ MK̄ , dXtxz

(x2, z2) ≤ MK̄

Except for the point y2, these are the points where the paths c(x, y), c(x, z) switch from
vertical to horizontal. The points x1, y1, y2 lie in the image of c(x, y), while the points x2, z2
lie in the image of c(x, z).

We will show that the length of the interval ⟦txy, txz⟧ is uniformly bounded (in terms
of r and the other parameters in the theorem). Since

dXtxy
(x1, y1) ≤ MK̄ ,

it will follow, according to Lemma 2.38 that the part of c(x, y) lying between x2 and y2
is uniformly Hausdorff-close to the vertical segment [x2y2]Xtxz

. In particular, the length
of that segment will be uniformly bounded. However, the points x2 and z2 are within
vertical distance MK̄ from each other. Hence, the vertical distance between z2 and y2 is also
uniformly bounded. Since dL(y, z) ≤ r, by Corollary 2.53, it will follow that the vertical
distance between γy, γz over the interval ⟦txz, π(y)⟧ is also uniformly bounded, thereby,
concluding the proof. Thus, it remains to bound the length of the interval ⟦txy, txz⟧.

By the definition of the projection ρ : L → A,

ρ(x1) = ρ(x2) = x̄, ρ(y1) = ȳ, ρ(z2) = z̄.

Since ρ is k-coarse Lipschitz, we have

dA(x̄, ȳ) ≤ k(MK̄ + 1), dA(x̄, z̄) ≤ k(MK̄ + 1), dA(ȳ, z̄) ≤ k(r + 1).

Lemma 2.51 now implies that

dT (txy, txz) ≤ τ2.51(K,max(k(MK̄ + 1), k(r + 1))).

This concludes the proof in Case 1-1.

Case 1-2: The path c(x, y) is of type 1 while c(x, z) is of type 2.
Since c(x, y) has type 1, we define the vertex

t = txy ∈ ⟦u, π(x)⟧ ∩ ⟦u, v⟧, v = π(y) = π(z).

At this vertex

(4.3) dXt (γx(t), γy(t)) ≤ MK̄ .

All three paths γx, γy, γz enter the same vertex-space Xt, t = txy at points x1, y1, z1 respec-
tively.

Since ρ is k-coarse Lipschitz, and x̄ = ρ(x) = ρ(x1), ȳ = ρ(y) = ρ(y1), we have

dA(x̄, ȳ) ≤ k(MK̄ + 1).

Similarly, since dL(y, z) ≤ r, we obtain

dA(ȳ, z̄) ≤ k(r + 1).

Define vy := π(ρ(y)), vz := π(ρ(z)). Thus,

dT (vy, vz) ≤ k(r + 1)

d(γy(vy), γz(vz)) ≤ k(r + 1) + MK̄ .
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Let v̄ ∈ {vy, vz} denote the vertex further away from u. Thus,

d(γy(v̄), γz(v̄)) ≤ k(r + 1) + 2MK̄ + 2kK(r + 1).

By Corollary 2.53, the fiberwise distance between γy, γz over the interval ⟦v̄, v⟧ is at most

τ2.53(K,max(r, k(r + 1) + 2MK̄ + 2kK(r + 1))) = τ2.53(K, k(r + 1) + 2MK̄ + 2kK(r + 1)).

In particular, this inequality holds at the vertex t since it belongs to the interval ⟦v̄, v⟧:

dXt (γy(t), γz(t)) ≤ τ2.53(K, k(r + 1) + 2MK̄ + 2kK(r + 1)).

Hence, by (4.3),

dXt (γx(t), γz(t)) ≤ MK̄ + τ2.53(K, k(r + 1) + 2MK̄ + 2kK(r + 1)).

Define a vertex v′ by
⟦π(x̄), t⟧ ∩ ⟦π(z̄), t⟧ = ⟦v′, t⟧.

Since the path c(x, z) has type 2, for all s ∈ V(⟦v′, t⟦) we have the inequality

dXs (γx(s), γz(s)) > MK̄ .

Therefore, as in Case 1-1, Lemma 2.51 implies a uniform upper bound in the lengths of the
intervals ⟦π(x̄), t⟧, ⟦π(z̄), t⟧. Thus, just as in Case 1-1, we obtain a uniform upper bound
on the distances d(x̄, x1), d(z̄, z1) and, hence, the paths c(x, y), c(x, z) uniformly Hausdorff
fellow-travel.

Case 2-2: Both paths c(x, y), c(x, z) have type 2. The points ȳ, z̄ ∈ A are within
distance ≤ k(r + 1) from each other and, hence, by Corollary 2.53, the paths γ′y, γ

′
z uni-

formly fellow–travel. The same holds for geodesics [ȳx̄]A, [z̄x̄]A since A is δA = δ4.1(K,C)-
hyperbolic. Hence, the paths c(x, y), c(x, z) uniformly fellow-travel as well. □

The proof of the next lemma is very similar to that of Lemma 4.10 and we omit it.

Lemma 4.11. There are functions ξ4.10(C,K, r, τ) (which is linear in the variable τ) and
ν4.10(C,K, r) satisfying the following:

Suppose that c = c(x, y) has domain [0,D] and x′, y′ ∈ L are such that dL(x′, c(s)) ≤
r, dL(x′, c(t)) ≤ r for some s, t ∈ [0,D]. Then:

1. length(c(x′, y′)) ≤ ξ4.11(C,K, r, length(c|[s,t])).
2. Hd(c(x′, y′), c([s, t])) ≤ ν4.11(C,K, r).

As a consequence, we obtain:

Lemma 4.12. The paths c(x, y) are uniformly proper. More precisely, there is a func-
tion ζ4.12(r,K,C) such that for each path c(x, y) defined above, for any two points x′, y′

on c(x, y), if dL(x′, y′) ≤ r then the length of the portion of c(x, y) between x′, y′ is ≤
ζ4.12(r,K,C).

Proof. In view of Lemma 4.11, it suffices to consider the case x = x′, y = y′. Consider
a geodesic xy in L of length dL(x, y) and subdivide it into subsegments [xixi+1] of length
≤ 1, i = 1, ...,N. The number N of these subsegments is at most r. Each pair of points
xi, xi+1 project to the same vertex or edge of the tree T . By the the definition of the path
c(xi, xi+1), it is has length bounded from above by a constant R depending only on the
parameters of X. We will apply this to i = 1. Consider the paths ci := c(x1, xi), i = 2, ...,N.
By Lemma 4.11,

length(ci+1) ≤ ξ4.11(C,K, 1, length(ci)), i = 1, ...,N.
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Applying these inequalities inductively and taking into account that length(c1) ≤ R, we
obtain the lemma. □

Step 2: We shall now check that the paths c defined on Step 1 satisfy the conditions
of Corollary 1.66 to conclude the proof of the theorem.

Condition (a1): This is an immediate consequence of Lemma 4.12.

Condition (a2): The verification of the condition of uniform slimness of the triangle ∆
in X formed by the paths c(x, y), c(y, z), c(z, x) is broken into several cases depending on the
relative positions of the three points x, y, z and the types of the paths c(x, y), c(y, z), c(z, x)
(type 1 or type 2). The trick is to reduce the proof to a simpler case by replacing x, y, z with
some other suitable points, analogously to the proof of Proposition 4.1 and then appeal
to Proposition 4.8. For instance, suppose that there is a constant r = r(K,C) such that a
triangle ∆ as above is r-thin, i.e. there exists a point x ∈ X within distance r from all three
sides of ∆. Then the Hausdorff-fellow-traveling condition (Lemma 4.10) will imply that ∆
is D4.10(C,K, 2r)-thin.

Case 1: Suppose all three paths are of type 2. Then we replace x, y, z by their ρ-
projections to A: The points x̄, ȳ, z̄ respectively. The subtriangle in ∆ = c(x, y) ∪ c(y, z) ∪
c(z, x) which is the union ∆̄ = c(x̄, ȳ) ∪ c(ȳ, z̄) ∪ c(z̄, x̄) ⊂ A is δA-hyperbolic, where δA
(depending only on K and C) is a uniform bound on the hyperbolicity constant of the
carpet A (Proposition 4.1). Thus, ∆′ is r = δA-thin, therefore, as we noted above, ∆ itself
is D4.10(C,K, 2r)-slim.

Case 2: Suppose we have a triangle ∆ formed by three paths exactly two of which are
of type 2; say, c(x, y), c(y, z) are of type 2 and c(x, z) is of type 1. Since c(x, z) has type 1,
the vertex t = txz satisfies the inequalities

dT (π(x), π(x̄)) ≥ dT (π(x), t), dT (π(z), π(z̄)) ≥ dT (π(z), t).

Thus, we can replace the points x, z by x′ := γx(t) and z′ := γz(t) respectively (as they
belong to c(x, y) and c(z, y) respectively). Now, by the definition of t = txz,

d(x′, z′) ≤ dXt (x′, z′) ≤ MK̄ .

Hence, the subtriangle ∆′ ⊂ ∆ formed by the paths c(x′, y), c′(y, z′), c(z′, x′) is r = MK̄-thin,
which, in turn, implies that ∆ is D4.10(C,K, 2r)-slim.

Figure 19. Three centers

Case 3: Suppose we have a triangle ∆ formed by three paths exactly one which, say,
c(x, y) is of type 2. After swapping x and y we can assume that on the interval ⟦u, π(z)⟧ the
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following vertices appear in this order:

u ≤ π(z̄) ≤ tyz ≤ txz ≤ π(z).

(Since c(y, z), c(z, x) are of type 1, the vertex π(z̄) is closer to u than both tyz, txz.) As in
Case 2, for t = tx,z we replace x, z by the points

x′ := γx(t), z′ := γz(t)

respectively. This defines a subtriangle ∆′ ⊂ ∆ formed by the paths c(x′, y), c(y, z′),
c(z′, x′). By the definition of type 1 paths, dXt (x′, z′) ≤ MK̄ . Thus, again, the subtrian-
gle ∆′ ⊂ ∆ is r = MK̄-thin and, therefore, ∆ is D4.10(C,K, 2r)-slim.

Case 4: Suppose all three paths c(x, y), c(y, z), c(z, x) forming a triangle ∆ are of type
1. This is the most interesting of the four cases.

Without loss of generality we may assume that in the tree T ,

(π(x).π(y))u ≤ (π(y).π(z))u.

In particular,
bx,y = bx,z,

see Figure 19.

Figure 20. Triangles ∆,∆′

Consider the points

x′ ∈ c(x, z) ∩ Xbx,z , y
′ ∈ c(x, y) ∩ Xbx,y , z

′ ∈ c(x, z) ∩ Xby,z

which are closest to, respectively, x, y, z along the above paths, see Figure 20. The point z′

then equals the point of the intersection

c(y, z) ∩ Xby,z

which is closest to z along the path c(y, z).
Moreover, again by the definition of the paths c, the triangle ∆ := c(x, y) ∪ c(y, z) ∪

c(z, x) is obtained from ∆′ := c(x′, y′) ∪ c(y′, z′) ∪ c(z′, x′) by attaching (to its vertices) the
following segments of the K-flow-lines:

γx,x′ ⊂ γx, γy,y′ ⊂ γy, γz,z′ ⊂ γz.

Hence, the r-slimness of the triangle ∆′ will imply r-slimness of the triangle ∆.
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Thus, after replacing x → x′, y → y′, z → z′, it suffices to consider the case when
v′ = π(x) = π(y) and v′ ∈ ⟦u, π(z)⟧. Below, we will not be using the property that π(x) =
π(y), only that all three projections π(x), π(y), π(z) belong to a common oriented interval
J = ⟦u, u′⟧ ⊂ T . Therefore,

{tzy, tyx, txz} ⊂ J.

After a permuting the points x, y, z, we can assume that

tzy ≤ tyx ≤ txz

on the oriented interval J. Therefore, all three paths γx, γy, γz contains the subpaths
γxx′′ , γyy′′ , γzz′′ with x′′, y′′, z′′ ∈ Xt, t = txz and these subpaths are in the respective sides
c(x, y), c(y, z), c(z, x) of ∆, see Figure 21.

Figure 21. Triangles ∆′,∆′′.

Thus, we perform one more reduction, replacing the triangle ∆ with the subtriangle
∆′′ formed by the paths c(x′′, y′′), c(y′′, z′′), c(z′′, x′′), such that x′′, y′′, z′′ ∈ Xt, t = txz. By
the definition of the vertex txz,

dXt (x′′, z′′) ≤ MK̄ .

Thus, the triangle ∆′′ is MK̄/2-thin, which concludes the proof in Case 4. This also com-
pletes the proof of Theorem 4.8. □

Remark 4.13. Since the paths c(x, y) are uniformly proper (Corollary 4.12), by Part (b)
of Corollary 1.66, up to a reparameterization, they are uniform quasigeodesics in LK(α).

4.3. Hyperbolicity of general ladders

In this section we prove that all ladders contained in X are uniformly hyperbolic. The
idea is to decompose the given ladder as a union of subladders, each of which is carpeted
and then make use of the quasiconvex chain-amalgamation, Theorem 2.65.

We define K̄ and κ as in the previous section, Definition 4.7, (4.1) and (4.2). Recall
that each K-ladder comes equipped with a family of K-sections Σ•. These are the sections
which will be used in the next proposition.
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Proposition 4.14 (Vertical subdivision of general ladders). Fix numbers K and C such
that MK̄ ≤ C, and suppose that X satisfies the uniform κ-flaring condition. Consider a
(K,D, E)-ladder2 L = LK(α) over a subtree S ⊂ T, where α = [xuyu]Xu .

Then the geodesic segment α can be subdivided into subsegments α1, ..., αn of lengths
l1, ..., ln, with the end-points x0 = xu, x1, ..., xn = yu such that the following hold:

(1) The K-qi sections Σxi ⊂ L = LK(α) through the points xi for i = 0, ..., n, are
such that each pair (Σxi ,Σxi+1 ), i = 0, ..., n − 1, bounds a (K,D, E)-subladder
Li = LK,D,E(αi) ⊂ L. These subladders satisfy

Li ∩ Li+1 = Σxi .

(2) Each ladder Li, i = 0, ..., n − 1, contains a (K,C)-narrow carpet Ai = AK(α′i),
where α′i ⊂ αi contains xi and

0 ≤ li − length(α′i) ≤ MK ≤ MK̄ ,

if i < n − 1, while α′n = αn.
(3) N f ib

C/2(Li) ∩ N f ib
C/2(L j) = ∅ provided that |i − j| > 1.

(4) In each ladder Li, the pair of sections (Σxi ,Σxi+1 ) is B = B4.14(K,C)-cobounded,
for i = 0, · · · , n − 2. Moreover, the projection of Σxi+1 to Σxi is uniformly close to
the point xwi , where

[xwi ywi ]Xwi
= Awi

is the narrow end of the carpet Ai.

Proof. We will orient the interval α from xu to yu and, will use the corresponding
natural order on α.

Suppose x j ∈ α have been chosen and xi < y. To choose xi+1 consider the subset

Ωi+1 := {x ∈ α, x > xi : dXb (Σx ∩ Lb,Σxi ∩ Lb) > C, ∀b ∈ V(π(Σx) ∩ π(Σxi ))}.

In other words, Ωi+1 consists of points x > xi in α such that the sections Σx and Σxi are
fiberwise C-separated.

Now there are two possibilities. If Ωi+1 = ∅ then define n = i + 1, xi+1 = yu. This will
conclude the induction.

Otherwise, pick xi+1 ∈ Ωi+1 such that

xi+1 − inf(Ωi+1) < MK/2.

According to Corollary 3.12, Σxi ,Σxi+1 bound a (K,D, E)-subladder Li := LK,D,E(αi) ⊂
L, where αi = [xixi+1]Xu ⊂ α. By the construction, Li ∩ Li−1 = Σxi .

In order to construct a (K,C)-narrow carpet Ai = AK(α′i) ⊂ L
i, we take a subsegment

α′i = [xix′i+1]Xu ⊂ αi = [xixi+1]Xu such that

x′i+1 < Ωi+1, dXu (x′i+1, xi+1) < MK .

Since x′i+1 < Ωi+1, by the definition of Ωi+1, the sections Σ = Σxi ,Σ
′ = Σx′i+1

contain
points y, y′ ∈ Xw (for some w ∈ V(S )), such that

dXw (y, y′) ≤ C.

Among such vertices v ∈ T we choose one which is closest to u (there might be several).
The K-sections Σ,Σ′ contain subsections γy, γy′ (over the interval ⟦u, v⟧) connecting

y, y′ to xi, x′i+1 respectively.

2The parameters D and E of the ladder play no role in the proposition.



136 4. HYPERBOLICITY OF LADDERS

Since MK ≤ C and w was chosen to be closest to u, we have that for every vertex
t ∈ ⟦u, v⟦,

dXt (γy(t), γy′ (t)) > C ≥ MK .

Thus, the sections γy, γ
′
y form the top and the bottom of a C-narrow K-carpet AK,C(α′i) in

Li with the narrow end βi = Lw ∩ A
i.

This proves parts 1 and 2 of the proposition.
We next prove part 3. Suppose that i + 1 < j. By the construction, for each vertex

v ∈ π(Li) ∩ π(L j) the length of the subsegment in Lv between Σxi+1 ,Σx j is > C. Hence, the
minimal fiberwise distance between Li ∩ Xv,L

j ∩ Xv is > C as well. Part 3 follows since
Lv is a geodesic segment in Xv.

Finally to prove (4) we will use the description of the paths c(x, y) constructed for the
proof Theorem 4.8 which are uniform quasigeodesics in the subladder Li = LK(αi).

First of all, we observe that, the difference in the lengths of α′i , αi is at most MK and
α′i bounds a (K,C)-narrow carpet Ai in Li. In other words, Li is a carpeted ladder and
Theorem 4.8 applies in our case.

The carpet Ai = (π : Ai → ⟦u,wi⟧) is bounded by horizontal paths γi ⊂ Σxi , γ
′
i ⊂ Σx′i+1

and the vertical paths α′i , βi (where βi has length ≤ C).
Consider points zi ∈ Σxi and zi+1 ∈ Σxi+1 . Since the fiberwise vertical separation be-

tween Σxi and Σxi+1 is > C ≥ MK̄ , we conclude that the path c(zi, zi+1) has to be of type 2 in
the terminology of the proof Proposition 4.8.

In other words, c(zi, zi+1) is the concatenation of five (actually, four) subpaths: Two of
these subpaths (containing zi, zi+1 respectively, connect zi to z̃i, zi+1 to z̃i+1 and are contained
in, respectively, γi, γi+1. The point z̃i+1 is within vertical distance ≤ MK̄ from a point
z̄i+1 ∈ top(Ai), while the point z̃i actually equals z̄i. The vertical geodesic

[z̄i+1z̃i+1]Lvi+1
, vi = π(z̃i+1),

is contained in c(zi, zi+1). The path c(zi, zi+1) contains one more subpath, namely,

cAi (z̄i, z̄i+1),

a path in the combing of Ai constructed in the proof of Proposition 4.1. By the construction
of Ai, each vertex-space Av of Ai has length ≥ C ≥ MK̄ > MK . Thus, by the definition of
cAi (z̄i, z̄i+1) in the proof of Proposition 4.1 this path is a concatenation of subpaths contained
in the top and the bottom of Ai and, most importantly, the narrow end βi = [xwi ywi ]Lwi

.
In particular, each uniform quasigeodesic path c(zi, zi+1) contains the point x−i := xwi ∈

Ai
wi
∩ Σxi

According to Lemma 1.101, it follows that the nearest-point projections (taken in Li)
of Σxi+1 to Σxi is contained in the R-neighborhoods of xwi , where R = R(K,C). Hence, by
Corollary 1.143, the pair of sections Σi,Σi+1 is B(K,C)-cobounded in Li. This concludes
the proof of the proposition. □

In Section 7.1 (when describing uniform quasigeodesics in ladders) we will need a
bit more detailed information about the uniformly cobounded pair (Σxi ,Σxi+1 ). Let x−i ∈
Σxi , x

+
i ∈ Σxi+1 be a pair of points realizing the minimal distance between these subsets in

the ladder Li. According to Part (4) of the proposition, x−i is uniformly close (in terms of K
and C) to the point xwi . We will also need to identify the other point, x+i , up to a uniformly
bounded error.

Let ui+1 ∈ ⟦u,wi+1⟧ benote the maximum (in the oriented interval ⟦u,wi+1⟧) of the
subset

{t ∈ V(⟦u,wi+1⟧) : dXt (Σxi+1 ∩ Xt), At) ≤ MK̄}.
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For each vertex v ∈ ⟦u, ui+1⟧ we observe that the top-most point y′v of the segment Av

divides Li
v in two subsegments:

Av ∪ A′v, A′v = [y′vyv]Xv ,

where
yv = top(Li

v).
The first part of the next lemma will be used in Section 7.1, while second part will be

used in Section 8.3 (proof of Lemma 8.30).

Lemma 4.15. 1.
d(yui+1 , x

+
i ) ≤ D4.15(K,C).

2. For each v as above, the length of A′v is ≤ R4.15(K).

Proof. 1. Take a point y ∈ Σxi+1 ∩ Xv. Then, as we noted in the proof of the last part
of the proposition, since each path c(x, y) connecting (any) x ∈ Σxi to y has type 2, it has
to pass through a point of the segment A′ui+1

, and the latter has length ≤ MK̄ . Thus, c(x, y)
passes within distance MK̄ from yui+1 . It follows that d(yui+1 , x

+
i ) is uniformly bounded in

terms of K and C.
2. This part is an application of uniform flaring. We have two K-qi sections γ0, γ1 over

the interval J = ⟦u, ui+1⟧, defined by restricting top(Ai) and Σi+1. The vertical separation
between these sections at the end-points of J is ≤ MK̄ . Thus, by Corollary 2.53, the vertical
separation between these sections elsewhere in the interval is ≤ τ2.53(K,MK̄). Hence, we
can take

R4.15(K) = τ2.53(K,MK̄). □

Theorem 4.16. For each K and a hyperbolic tree spaces X satisfying the uniform
κ = κ4.7(K)-flaring assumption as in Proposition 4.8, and arbitrary D and E, there exists
δ = δ4.16(K) such that every (K,D, E)-ladder L = LK(α) ⊂ X has δ-hyperbolic total space
L with respect to the intrinsic metric of the ladder.

Proof. Set C = MK̄ . By Proposition 4.14 we have a subdivision x0 = xu, x1, ..., xn = yu

of the segment α = [xuyu]Xu . The K-qi sections Σi := Σxi in L passing through xi’s decom-
pose the ladder L into subladders Li := LK([xi−1xi]Xu ) containing (K,C)-narrow carpets Ai.
Hence, by Proposition 4.8, each Li (the total space of Li) is δ4.8(K,C)-hyperbolic. By the
construction,

Li ∩ Li+1 = Σi, i = 1, ..., n − 1.
The subsets Σi are K-sections, hence, are λ1.92(δ4.8(K,C),K)-quasiconvex in Li, Li+1. Fur-
thermore, by Proposition 4.14, each pair of ladders Li−1,Li+1, i ≥ 1, is B4.14(K,C)-coboun-
ded. Thus, arbitrary ladder L = LK(α) is uniformly hyperbolic by Theorem 2.65. □





CHAPTER 5

Hyperbolicity of flow-spaces

In this chapter we shall prove that the k-flow-spaces (for k in a suitable range) of each
vertex-space Xu ⊂ X, are uniformly hyperbolic (with hyperbolicity constant depending
on k) provided that X is a hyperbolic tree of spaces satisfying a certain uniform flaring
condition. The strategy of the proof is to show that:

(a) Every pair of points x, y in Flk(Xu) belong to a common (K,D, E)-ladder Lx,y (es-
sentially contained in Flk(Xu)), where D is a sufficiently large number, K depends only on
k, and E depends on k and D. This is done in Section 5.1. Actually, in Section 5.1 we prove
a stronger result, the existence of tripods of ladders connecting points x1, x2, x3 ∈ Flk(Xu)
such that in each vertex-space of Flk(Xu) the three geodesics of these ladders form a geo-
desic tripod. Hyperbolicity of total spaces of such tripods of ladders is almost immediate;
see Section 5.3.

(b) Since ladders are uniformly hyperbolic (as it was proven in the previous chapter),
this appears to yield a preferred family of paths c(x, y) connecting points of Flk(Xu); these
paths are obtained (from uniform quasigeodesics in ladders) by applying vertex-space-
wise projections from the corresponding ladders to Flk(Xu). Hyperbolicity of tripods of
ladders should then yield the uniform slimness condition for the family of paths c(x, y).
The trouble, however, is that Lx,y is far from canonical, and, thus, it is far from clear why
the paths c(x, y) satisfy the fellow-traveling condition. If different ladders L1

x,y, L
2
x,y were

at uniformly bounded minimal distance from each other in each fiber-space where both
ladders are nonempty, one could use hyperbolicity of the union of these two ladders. Un-
fortunately, it is unclear why there should be a uniform bound on such minimal distance.
To resolve the problem, we use the construction of a coarse projection of the ladder L1

x,y to
L2

x,y defined in Section 5.2. This projection is used in Proposition 5.18 to construct a uni-
formly hyperbolic subspace Z in X containing the two ladders. The coarse independence
of the paths c(x, y) on the choice of Lx,y is then almost immediate; see Corollary 5.19.

This, in turn, will conclude the verification of hyperbolicity of flow-spaces, Theorem
5.17.

5.1. Ubiquity of ladders in Flk(Xu)

In this section we prove that for all (sufficiently large) D and k, and all x, y ∈ Flk(Xu),
there is a (K,D, E)-ladder L containing x, y, where K = K(k), E = 3k + D. Furthermore, L
will be contained in the fiberwise 4δ0-neighborhood of FlK(Xu). We will actually prove a
stronger result, about the existence of a tripod of ladders containing given three points in
FlK(Xu).

In the next definition and in what follows, i is taken modulo 3.

Definition 5.1. A (K,D, E)-tripod of ladders in X is a semicontinuous (K,D, E)-
family Y over a subtree S ⊂ T , which is a union of three (K,D, E)-ladders Li = (Li →

S i), i = 1, 2, 3, such that:

139
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1. There exists a K-section Ξ defined over the subtree

S 123 := S 1 ∩ S 2 ∩ S 3

and called the center-section of Y, such that for each v ∈ V(S 123) and i ∈ {1, 2, 3}, Ξ(v) =
top(Li) ∩ Xv.

2. For each v ∈ V(S 123), e ∈ E(S 123), the vertex- and edge-space Yv,Ye of Y is a
δ0-tripod in Xv, Xe

Yv =

3⋃
i=1

[xi
vzv]Xv ,Ye =

3⋃
i=1

[xi
eze]Xe , zv = Ξ(v), Li

v = [xi
vzv]Xv , L

i
e = [xi

eze]Xe .

3. If v ∈ V(S i) \ V(S 123), then Li+1
v = Li−1

v = ∅ (two legs of the tripod are missing) and
Li

v = Lv = [xvyv]Xv (we, thus, omit the superscript i in this situation). The same applies to
the edges.

We will refer to the union of bottoms of the ladders Li as the bottom (denoted bot(Y))
of the tripod of ladders Y.

A tripod of ladders Y is said to be degenerate if for some i ∈ {1, 2, 3}, Li+1 = Li−1 = Ξ

and, thus, Y is reduced to a single ladder, Li.

In the following proposition, D0 = D1.142(δ′0, λ
′
0),

C = 2(λ′0 + 2δ′0 + D1.54(δ′0, L
′
0)) +C1.110(δ′0, λ

′
0),

D1 := max(D0,C1.143(λ′0, δ
′
0,C)),

(5.1) D = D5.2 := D1 +max(3δ0, 2δ0 + 2(λ′0 + 2δ′0)).

Assume also that k = r∧ = (15L′0r)3 ≥ K0 and r satisfies the inequality

r ≥ r1 = max(2λ′0 + 5δ′0, λ + 4λ′0 + 8δ′0 + 5δ0),

where
λ = C1.128(δ′0, λ

′
0, L

′
0).

In other words,

(5.2) k ≥ k5.2 = K1 := max(K0, (15L′0r1)3).

Note that, in particular, k ≥ λ + 4λ′0 + 8δ′0 + 5δ0.
In the proposition we will be also using the function κ′ = K′3.17(κ) defined in Lemma

3.17.

Proposition 5.2 (Existence of tripods of ladders). Let X = (π : X → T ) be a tree of
spaces satisfying Axiom H1. Then for k and D as above, there exist constants

K = K5.2(k), E = E5.2(k)

such that the following holds.
For points xi, i = 1, 2, 3 in F lk(Xu), we let γi := γxi denote k-sections in Flk(Xu) over

⟦u, π(xi)⟧, connecting xi to Xu.
Then:
(i) There exists a (K,D, E)-tripod of ladders Y = L1∪L2∪L3, centered at u such that:
1. Y ⊂ N f ib

5δ0
F lk(Xu), while bot(Y) ⊂ F lk(Xu).

2. γi ⊂ bot(Li), i = 1, 2, 3, thus, γi ⊂ bot(Y).
3. If, for some i, γi−1 = γi+1, then the tripod of ladders Y is degenerate and the section

γi−1 = γi+1 is contained in the center-section Ξ of Y.
(ii) There exist (K,D, E)-ladders Li j containing xi, x j, such that top(Li j) ⊂ bot(L j),

bot(Li j) ⊂ bot(L j), and Li j is contained in δ0-fiberwise neighborhood of Li ∪ L j.
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Proof. We first note that, according to Lemma 3.28, given x ∈ Flk(Xu), there exist
a maximal K-section Σx ⊂ Flk(Xu) through x, intersecting Xu and containing γx. Thus,
we define the maximal k-sections Σxi , i = 1, 2, 3 through points xi, intersecting Xu, and
containing γi (if it is given), otherwise, chosen arbitrarily. (Note that these sections Σxi

need not be disjoint and, in general, they have different domains in T .) In line with Part 3
of the proposition, if γi−1 = γi+1, we require Σxi−1 = Σxi+1 . We define tripods Yv, v ∈ V(T )
inductively, by induction on the distance from v to u.

As the base of induction, we define xi
u as γi(u) and Li

u as a geodesic segment [xi
uzu]Xu ,

where zu is a δ0-center of the geodesic triangle ∆u = ∆x1
ux2

ux3
u in Xu.

We then proceed inductively as in the proof of Lemma 3.17 to which we refer the
reader for the notation used below. Namely, assume that segments Li

v are defined for ver-
tices of the subtree Bn ⊂ T ,

Li
v = [xi

vzv]Xv , v ∈ V(Bn),Yv = L1
v ∪ L2

v ∪ L3
v ,

where zv is a δ0-center of the geodesic triangle ∆v = ∆x1
v x2

v x3
v . (In order to simplify the

notation, we allow for empty vertex and edge-spaces in ladders.) We let dYv denote the
intrinsic path-metric on Yv. Then the inclusion map (Yv, dYv ) → Xvw is an L′0(2δ0)-qi em-
bedding for each edge [v,w] ∈ E(T ), v ∈ Bn, directed away from u. We will be also
assuming (inductively) that the extremities xi

v of Yv belong to Qv = Flk(Xu)∩ Xv and, thus,
Yv is contained in the 5δ0-neighborhood of Qv taken in Xv.

Next, we apply the modified projection P̄Xvw,Yv to Xw. The image Ȳv is the closed con-
vex hull of PXvw,Yv (Xw) in the tripod Yv (with respect to the path-metric of Yv). Specifically,
if Ȳv , ∅, then it is the convex hull (taken in Yv) of three points x̄i

v, i = 1, 2, 3, such that x̄i
v

is the nearest-point projection (taken in (Yv, dYv )) of xi
v to Ȳv.

Note that it is entirely possible for the center zv not to belong to Ȳv, in which case Ȳv

is a segment contained in the relative interior of one of the legs of Yv. It even can happen
that Ȳv is empty, if Qw = ∅. Our next task is to analyze implications of the containment
Ȳv ⊂ Li

v.

Lemma 5.3. Suppose that Ȳv is contained in Li
v, dT (u, v) = n and e = [v,w] is an edge

of T oriented away from u. Then for j = i ± 1 we have

PXvw,L
j
v
(Xw) ⊂ Be(zv,C),

where Be(zv,C) is the ball with respect to the metric of Xvw and C = C5.3.

Proof. According to Corollary 1.110, for the λ′0-quasiconvex subsets V = L j
v,U = Yv

in Xvw we have
dXvw (PXvw,V , PU,V ◦ PXvw,U) ≤ C1.110(δ′0, λ

′
0).

Here all the projections are taken with respect to the restriction of the metric on Xvw. Thus,
we need to prove that PU,V (Li

v) is uniformly close to the point zv. This is obviously true for
the intrinsic nearest-point projection P′U,V (Li

v) (taken with respect to the metric dYv ), since
P′U,V sends Li

v to {zv}. Therefore, we need to compare the intrinsic projection Yv → L j
v and

the extrinsic projection, with respect to the metric of Xvw.
Take some x ∈ Li

v and let x̄ = PXvw,V (x). According to Lemma 1.105, the geodesic
α∗ = [xzv]Xvw passes within distance λ′0 + 2δ′0 from the point x̄. Since the segment α =
[xzv]Xv is an L′0-quasigeodesic in Xvw, it follows that

HdXvw (α, α∗) ≤ D1.54(δ′0, L
′
0).
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Hence, α∗ contains a point y satisfying

dXvw (y, zv) ≤ λ′0 + 2δ′0 + D1.54(δ′0, L
′
0).

Since
dXvw (x, x̄) ≤ dXvw (x, zv),

we get
dXvw (x̄, zv) ≤ 2(λ′0 + 2δ′0 + D1.54(δ′0, L

′
0)).

Combining this estimate with Corollary 1.110, and the hypothesis that PXvw,U(Xw) ⊂ Li
v,

we conclude that for each point q ∈ Xw, PXvw,U(q) = x ∈ Li
v and

dXvw (PXvw,L
j
v
(q), zv) ≤ C5.3 :=

2(λ′0 + 2δ′0 + D1.54(δ′0, L
′
0)) +C1.110(δ′0, λ

′
0). □

Combining the lemma with Corollary 1.143, yields:

Corollary 5.4. If Ȳv is contained in Li
v, then for j = i ± 1, the pair (L j

v, Xw) is
C1.143(λ′0, δ

′
0,C)-cobounded in Xvw, where C = C5.3.

Remark 5.5. The assumption D ≥ D1 made in the proposition ensures that D ≥

C1.143(λ′0, δ
′
0,C). Thus, Ȳv ⊂ Li

v implies that the pair (L j
v, Xw) is D1-cobounded in Xvw,

hence, D-cobounded.

We now return to the construction of a family of tripods. Let e = [v,w] be an edge
directed away from u, v ∈ Bn ⊂ T,w < Bn. There are several things which can now happen,
primarily depending on the coboundedness of Yv and Xw, but also on intersections of the
sections Σxi with Xw.

Case 1: Suppose that the tripod Yv and Xw are D1-cobounded (in Xvw) and all three
sections Σxi are disjoint from Xw. Then we set Yw = ∅.

Remark 5.6. Observe that if the pair (Yv, Xw) is D1-cobounded, so are the pairs (Li
v, Xw),

i = 1, 2, 3.

Case 2: Suppose that the tripod Yv and Xw are not D1-cobounded. We will also assume
that the tripod Yv has “all its legs,” i.e. Li

v , ∅, i = 1, 2, 3. According to Lemma 1.128,

(5.3) Ȳv ⊂ Nλ(PXvw,Yv (Xw)),

where, as before,
λ = C1.128(δ′0, λ

′
0, L

′
0).

We now use the fact that D1 ≥ D0 = D1.142(δ′0, λ
′
0). Since Yv and Xw are not D1-cobounded,

by Corollary 1.146,
PXvw,Yv (Xw) ⊂ Ne

4λ′0+8δ′0
(Xw) ∩ Yv,

hence,
Ȳv ⊂ Ne

λ+4λ′0+8δ′0
(Xw) ∩ Yv.

However, Yv ⊂ N f ib
5δ0

(Qv), by the inductive hypothesis. Hence, each point x ∈ Xw within
distance (in Xvw)

λ + 4λ′0 + 8δ′0 + 5δ0

from Ȳv, belongs to Q′w = Ne
r (Qv)∩Xw, r = k∨ (see the definition of flow-spaces in Section

3.3). Since, by the assumption of the proposition,

k∨ > λ + 4λ′0 + 8δ′0 + 5δ0,
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we see that
Ȳv ⊂ Ne

λ+4λ′0+8δ′0
(Qw) ∩ Yv.

Since the extremities x̄i
v, i = 1, 2, 3, of the (possibly degenerate) tripod Ȳv are at the dis-

tance 4λ′0+8δ′0+5δ0 from Qw, we take points x̃i
w ∈ Qw which are nearest-point projections

of x̄i
v, i = 1, 2, 3, and, thus,

(5.4) dXvw (x̄i
v, x̃

i
w) ≤ 4λ′0 + 8δ′0 + 5δ0.

(If x̄i
v = x̄ j

v then x̃i
w = x̃ j

w.) Similarly, if zv belongs to Ȳv then there exists z̃w ∈ Qw satisfying

dXvw (zv, z̃w) ≤ λ + 4λ′0 + 8δ′0 + 5δ0.

In this case, we define the tripod Ỹw ⊂ Xw centered at z̃w and with the legs [z̃w x̃i
w]Xw .

The actual tripod Yw, as we will see, is uniformly Hausdorff-close to Ỹw. For now, we
observe that, according to Lemma 1.55:

(5.5) HdXvw (Ỹw, Ȳv) ≤ D1.55(δ′0, L
′
0, 4λ

′
0 + 8δ′0 + 5δ0).

Depending on the intersections Σxi ∩ Xw, the points x̃i
w might be the vertices of the

tripod Yw. Specifically, there are four subcases:
(a) If for some i, Σxi ∩ Xw = {xi

w}, then we use the point xi
w as one of the vertices of

∆w. Thus,
dXvw (xi

v, x
i
w) ≤ k

in this subcase.
(b) If for some i, Ȳv is disjoint from (necessarily both) Li±1

v and Σxi+1 ∩ Xw = ∅, Σxi−1 ∩

Xw = ∅, we set Li±1
w = ∅. Thus, in this subcase the tripod Yw will be missing two legs. This

degenerate tripod will be equal the oriented geodesic segment Li
w = Lw = [xwyw]Xw , where

xw = x̃i±1
w and yw will be either x̃i

w (if Σxi ∩ Xw = ∅) or, as in subcase (a), Σxi ∩ Xw = {yw}.
In this situation, by the construction, for

x̂v := x̄i±1
v

dXvw (xw, x̂v) ≤ 4λ′0 + 8δ′0 + 5δ0,

while
dXvw (yw, ŷv) ≤ max(k, 4λ′0 + 8δ′0 + 5δ0) = k.

Here ŷv = x̄i
v (if Σxi ∩ Xw = ∅) or ŷv = xi

v (otherwise).

Remark 5.7. In this subcase, due to our assumptions on D1, both pairs (Li±1
v , Xw) will

be D1-cobounded, see Remark 5.5.

(c) If for some i, Ȳv is disjoint from (necessarily both) Li±1
v and for exactly one element

j ∈ {i ± 1}, the section Σx j intersects Xw, then we discard the point x̄i±1
v and let zw = xi−1

w =

xi+1
w be that point of intersection. We let xi

w either be equal to the intersection point of Σxi

and Xw (if the intersection is nonempty) or equal to x̃i
w. Thus,

dXvw (zw, x̄
j
v) ≤ k,

while either
dXvw (xi

w, ŷv) ≤ max(4λ′0 + 8δ′0 + 5δ0, k) = k,

where, as in the subcase (b), ŷv = x̄i
v, or ŷv = xi

v.
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(d) In the “generic” case (i.e. when zv ∈ Ȳv), for each i such that Σxi ∩ Xw = ∅, we
set xi

w = x̃i
w. (Of course, if Σxi ∩ Xw is nonempty, we use this intersection point as xi

w, see
subcase (a).) As above, we obtain:

dXvw (xi
w, {x̄

i
v, x

i
v}) ≤ max(4λ′0 + 8δ′0 + 5δ0, k) = k, i = 1, 2, 3.

Except for the subcase (b), we, thus, obtain three points x1
w, x

2
w, x

3
w spanning a (possibly

degenerate) geodesic triangle ∆w = ∆x1
wx2

wx3
w ⊂ Xw. We let zw be a δ0-center of this trian-

gle. (The subcase (c) above does not cause trouble because the triangle ∆w is degenerate
and one of its sides equals the point zw, which is, therefore, the center of ∆w.) Accordingly,
we define geodesic segments

Li
w := [xi

wzi
w]Xw

and the tripod Yw = L1
w ∪ L2

w ∪ L3
w.

The subcase (b) requires a separate discussion since the tripod Yw is missing two out
of its three legs. In this situation, by the definition of the point xw,

dXvw (xw, x̄i±1
v ) ≤ λ + 4λ′0 + 8δ′0 + 5δ0 ≤ k,

by the assumption on k made in the proposition.

Case 3. We still assume that Yv and Qw are not D1-cobounded, but consider the case
that Yv is degenerate and has only one leg, Li

v = Lv = [xvyv]Xv : The other two legs are
empty. We treat this case exactly the same way as we treated the subcases (2b) and (2c)
above: The tripod Ȳv has empty intersection with the empty legs Li±1

v of Yv. The points
xw, yw ∈ Xw define the oriented segment Lw = [xwyw]Xw and the points xw, yw are within
distance k, respectively, from points x̂v, ŷv, where (as in subcase (2b)) x̂v ∈ {x̄v, xv}, ŷv ∈

{ȳv, yv},
Ȳv = [x̄vȳv]Xv ⊂ Lv

By the definition, the points x̂v, ŷv satisfy

xv ≤ x̂v ≤ ŷv ≤ yv

in the oriented segment [xvyv]Xv . (Compare Lemma 3.17(a3).)

This concludes the construction of the segments Li
w. We just note that since Qw ⊂ Xw

is 4δ0-quasiconvex and xi
w ∈ Qw for all i, we get:

Yw ⊂ N f ib
5δ0

(Qw).

These are the inductive assumptions we made earlier. We set

Li :=
⋂

v∈V(T )

Li
v, i = 1, 2, 3.

We define a subtree of spaces Y ⊂ X using the tripods Yv,Ye as, respectively, vertex and
edge-sets. The incidence maps Ye → Yv will be compositions of restrictions of incidence
maps of X with nearest-point projections Xv → Yv.

We, are done with the induction but it remains to verify that each Li satisfies the
properties required by Lemma 3.17: This lemma is used to promote the unions of geodesics
segments in vertex-spaces of X to the union of vertex-spaces of a ladder. We also have to
show that Y is a (κ1,D1, E1)-semicontinuous family in X, as required by the definition of a
tripod of ladders, for suitable constants κ1, E1.

As we observed in the discussion of subcases, points xi
w satisfy

(5.6) dXvw (x̂i
v, x

i
w) ≤ k,
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where x̂i
v ∈ {x

i
v, x̄

i
v}.

We next turn our attention to the center zw of Yw. Except for the generic subcase (d)
above, the tripod Yw is degenerate and zw is one of its extremities, i.e. equals to one of the
points x̃ j

w. Hence, apart from the generic case, as we observed while discussing nongeneric
cases,

(5.7) dXvw (zw, x̄
j
v) ≤ k.

Note that the point zw is within uniformly bounded (in terms of k) distance from zv in
subcase (2c) but might be quite far from zv in the subcase (b). The next lemma allows us
to control the position of zw in the generic subcase (d).

Lemma 5.8. Suppose that we are in the generic subcase (d). Then

dXvw (zv, zw) ≤ C5.8(k).

Proof. We define the geodesic triangles (in Xv, Xw) ∆̂v := ∆x̂1
v x̂2

v x̂3
v . ∆w := ∆x1

wx2
wx3

w
and corresponding geodesic triangles in Xvw:

∆̂∗v := ∆Xvw x̂1
v x̂2

v x̂3
v , ∆∗w := ∆Xvw x1

wx2
wx3

w.

Then the points zv, zw are, respectively, a 3δ0-center of ∆̂v and δ0-center of ∆w. Since
the sides of ∆̂v are L′0-quasigeodesics in Xvw, stability of quasigeodesics implies that zv

is within distance 3δ0 + D1.54 (δ′0, L
′
0) from all three sides of ∆̂∗v. Since the respective end-

points of the geodesic sides of the triangles ∆̂∗v,∆
∗
w are within distance k in X, it follows

that zv is within distance 3δ0 + D1.54(δ′0, L
′
0) + δ′0 + k from all the sides of ∆∗w, i.e. zv is a

3δ0 + D1.54(δ′0, L
′
0) + δ′0 + k-center of ∆∗w.

Similarly, the point zw is a δ0 +D1.54(δ′0, L
′
0)-center of the triangle ∆∗w in Xvw. Thus, by

Lemma 1.77,
dXvw (zw, zv) ≤ D1.77(δ0, 3δ0 + D1.54(δ′0, L

′
0) + δ′0 + k).

Setting C5.8(k) := D1.77(δ0, 3δ0 + D1.54(δ′0, L
′
0) + δ′0 + k) concludes the proof. □

Corollary 5.9. For every edge e = [v,w] (pointing away from u), we have

HdXvw ([zv x̄i
v]Xv , L

i
w) ≤ D5.9(k) = D1.55(δ′0, L

′
0,C5.8(k)),

unless Li
w = ∅. In any case,

HdXvw (Ȳv,Yw) ≤ D5.9(k).

Proof. In the generic subcase (d) the first claim is an immediate application of Lemma
1.55 and Lemma 5.8. In other subcases, both tripods Ȳv,Yw are degenerate, equal to ge-
odesic segments whose respective end-points are within distance k in Xvw, e.g. Yw = Li

w.
Therefore, we similarly conclude that

HdXvw ([zv x̄i
v]Xv , L

i
w) ≤ D1.55(δ′0, L

′
0, k).

Observing that
k ≤ C5.8(k),

we obtain the first claim in other subcases as well. The second claim is an immediate
corollary of the first one. □

We are now ready to verify that Y satisfies axioms of a (K,D, E)-semicontinuous fam-
ily and that each Li is the vertex set of a (κ1,D1, E1)-ladder. The constants κ1 and E1 will
be computed in the end of the proof of the proposition.
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In line with the proof of Lemma 3.17, for the edges e = [v,w] (oriented away from u)
we define tripods Ye ⊂ Xe as

Tze (x1
e x2

e x3
e)

where xi
e is a nearest-point projection of xi

w to Xe in Xvw, while ze is a δ0-center of the
geodesic triangle ∆x1

e x2
e x3

e ⊂ Xe. Thus, by the construction, each Yv,Ye is a δ0-quasiconvex
subset of the respective vertex and edge-space of X.

According to Corollary 5.9, every point x ∈ Yw is within distance

(5.8) κ1 := D5.9(k)

from a point y ∈ Ȳv ⊂ Yv. Thus, every point of Y is connected to Xu by a κ1-qi section.
Similarly, we get the inequality HdXvw (Yw,Ye) ≤ κ1. Let’s verify the inequality (3.2) (see
Definition 3.1) for a suitable value of the parameter E, i.e. get a uniform bound on the
Hausdorff distance between Yw and the projection of Yv to Xw. First of all, since

dXvw (Yv, Xw) ≤ k = max(4λ′0 + 8δ′0 + 5δ0, k),

using Lemma 1.130 we obtain

HdXvw (PYv (Xw), PXw (Yv)) ≤ R1.130(k, λ, δ′0) =

2λ′0 + 3δ′0 + k

Thus, we need to estimate the Hausdorff distance between PYv (Xw) and Yw. According to
(5.3),

HdXvw (Ȳv, PYv (Xw)) ≤ λ.
Combining these inequalities with Corollary 5.9, we get:

(5.9) HdXvw (PXw (Yv),Yw) ≤ E1 := D5.9(k) + λ + (2λ′0 + 3δ′0 + k).

For Axiom 4 of a semicontinuous family we observe that, by the construction, if Yw = ∅

then Yv and Xw are D1-cobounded. We conclude:

Lemma 5.10. Y is a (κ1,D1, E1)-semicontinuous family containing sections γ1, γ2, γ3

and Y ⊂ N f ib
5δ0

(F lk(Xu)).

Next, consider the families of intervals Li, i = 1, 2, 3 (Li is the union of geodesic
intervals Li

v, v ∈ V(S )). We will be verifying the conditions of Lemma 3.17 for each Li.
The easiest thing to check is the first part of condition (a2) of the lemma, dealing with
Property 4 of a semicontinuous family of spaces. Namely, by the definition of Li

w, it is
empty only when Li

v and Xw are D2 = D1-cobounded in Xvw, see Remarks 5.6 and 5.7.
Next, consider the condition (a3) of the lemma. Suppose Li

w is nonempty, equals the
oriented segment [xi

wzw]Xw . There are several cases to consider, for instance, suppose we
are in the generic subcase (2d). Then there exists a point x̂i

v ∈ [xi
vzv]Xv = Li

v within distance
k from xi

w, while according to Lemma 5.8

dXvw (zv, zw) ≤ C5.8(k).

Of course, in this case, in the oriented interval Li
v, we have

xi
v ≤ x̂i

v ≤ zv ≤ zv.

In all nongeneric cases, there are points x̄i±1
v , x̂i

v ∈ Li
v within distance k from zw, xi

w (subcase
(2c)) or points x̂v, ŷv ∈ Li

v (or Lv) within distance k from xw, yw (subcase (2c) or case 3),
and these points appear in the oriented interval Li

v (or Lv) in the correct order.
This verifies condition (a3) of Lemma 3.17 with the constant

(5.10) k2 = max(k,C5.8(k)) = C5.8(k)
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playing the role of K in Lemma 3.17.

Lastly, we analyze the projection of Li
v to Xw. As in case of the projection of Yv to Xw,

we have:
dXvw (Li

v, Xw) ≤ k

and, thus,

(5.11)
HdXvw (PLi

v
(Xw), PXw (Li

v)) ≤ R1.130(k, λ, δ) =

2λ′0 + 3δ′0 + k.

In other words, the projection of Li
v to Xw is uniformly Hausdorff-close to the projection of

Xw to Li
v. Therefore, we analyze the latter using the arguments from the proof of Lemma

5.3. We have four projections:

PXvw,Yv , PXvw,Li
v
, PYv,Li

v
, P′Yv,Li

v

where the first three are nearest-point projections with respect to the metric of Xvw, while
the last one is the intrinsic nearest-point projection with respect to the metric of Yv. We
have, of course,

P′Yv,Li
v
◦ PXvw,Yv (Xw) = PXvw,Yv (Xw) ∩ [x̄i

vzv]Xv ⊂ P′Yv,Li
v
(Ȳv) = [x̄i

vzv]Xv .

According to Lemma 1.128,

(5.12) HdXvw (PXvw,Yv (Xw) ∩ [x̄i
vzv]Xv , [x̄i

vzv]Xv ) ≤ λ.

As in the proof of Lemma 5.3,

dXvw (PXvw,Li
v
, PYv,Li

v
◦ PXvw,Yv ) ≤ C1.110(δ′0, λ

′
0),

while for x ∈ Yv,

dXvw (PYv,Li
v
(x), P′Yv,Li

v
(x)) ≤ 2(λ′0 + 2δ′0 + D1.54(δ′0, L

′
0)).

Combining the two inequalities, we obtain that for each q ∈ Xw,

dXvw (P′Yv,Li
v
◦ PXvw,Yv (q), PXvw,Li

v
(q)) ≤

C5.3 = C1.110(δ′0, λ
′
0) + 2(λ′0 + 2δ′0 + D1.54(δ′0, L

′
0))

Thus, taking into account (5.12),

HdXvw (PXvw,Li
v
(Xw), [x̄i

vzv]Xv ) ≤ C5.3 + λ.

Combined with the inequality (5.11), we get:

HdXvw (PXw (Li
v), [x̄i

vzv]Xv ) ≤ R1.130(k, λ, δ′0) +C5.3 + λ.

Recall that by Corollary 5.9

HdXvw ([zv x̄i
v]Xv , L

i
w) ≤ D5.9(k).

Thus,

(5.13) HdXvw (PXw (Li
v), Li

w) ≤ E2 := D5.9(k) + R1.130(k, λ, δ′0) +C5.3 + λ.

This concludes verification of the conditions of Lemma 3.17 and we obtain:

Lemma 5.11. For k2 given by the equation (5.10), κ2 = k′2 = K′3.17(k2), E2 as in (5.13),
and λ = C1.128(δ′0, λ

′
0, L

′
0), each Li defined earlier is the vertex-set of a (κ2,D2, E2)-ladder

Li in X. Each ladder Li contains the section γi.
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This concludes the proof of part (i) of the proposition. We now prove part (ii). The
goal, of course, is to verify the conditions of Lemma 3.17 for the family of segments
Li j

v , v ∈ V(S ), j = i + 1. We define the monotonic map

fi j : Li
v ∪ L j

v → Li j
v = [xi

vx j
v]Xv ,

using Corollary 1.81. According to Lemma 5.11, the map moves each point distance ≤ 4δ0.
The points

x′v := fi j(x̂i
v), y′v := fi j(x̂ j

v).
satisfy

xi
v ≤ x′v ≤ y′v ≤ x j

v

in the oriented interval Li j
v . Since

max(dXvw (x̂i
v, x

i
w), dXvw (x̂ j

v, x
j
w)) ≤ k2,

we obtain

(5.14) max(dXvw (x′v, x
i
w), dXvw (y′v, x

j
w)) ≤ k3 := k2 + 4δ0.

Next: Since Li j
v ⊂ N f ib

2δ0
(Yv)),

diam(PXw (Li j
v )) ≤ L′1 · 3δ0 + diam(PXw (Yv)) ≤ 3δ0 + D1.

Since

(5.15) HdXv (L
i
v ∪ L j

v, L
i j
v ) ≤ 2δ0,

dXvw (PLi
v∪L j

v
, PLi j

v
) ≤ 2δ0 + 2(λ′0 + 2δ′0).

Therefore,

diam(PLi j
v
(Xw)) ≤ diam(PLi

v∪L j
v
(Xw)) + 2δ0 + 2(λ′0 + 2δ′0) ≤(5.16)

diam(PYv (Xw)) + 2δ0 + 2(λ′0 + 2δ′0) ≤ D1 + 2δ0 + 2(λ′0 + 2δ′0).(5.17)

Therefore, for
D3 := D1 +max(3δ0, 2δ0 + 2(λ′0 + 2δ′0)),

for every boundary edge e = [v,w] of S , the subsets Li j
v , Xw ⊂ Xvw are D3-cobounded.

Lastly, we estimate the Hausdorff distance between the projection of Li j
v to Xw and Li j

w
for every edge e = [v,w] ∈ S . We again use the inequality (5.15) and the coarse Lipschitz
property of the projection PXvw,Xw :

Hd(PXw (Li
v ∪ L j

v), PXw (Li j
v )) ≤ L′1 · 3δ0.

Therefore, the inequality (5.13), implies that

Hd(PXw (Li j
v ), Li j

w) ≤ E3 := L′1 · 5δ0 + E2.

It follows (in view of Lemma 3.17) that Li j is the union of vertex-sets of a (κ3,D3, E3)-
ladder, κ3 = k′3. Taking

K := max(κ1, κ2, κ3),D := max(D1,D3), E := max(E1, E2, E3),

concludes the proof of the proposition. □

Corollary 5.12. For k,K,D, E as in the proposition, any two points x, y ∈ Flk(Xu) be-
long to a (K,D, E)-ladder L centered at u and contained in the fiberwise 4δ0-neighborhood
of Flk(Xu). Furthermore, if we are given two k-leaves γx, γy in Flk(Xu) connecting x, y to
Xu, the ladder L can be chosen to satisfy:

γx ⊂ bot(L), γy ⊂ top(L).
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5.2. Projection of ladders

In this section we discuss an important projection procedure which converts a pair of
ladders Li = (π : Li → S i), i = 1, 2, with the common center u into a pair of subladders L̄i ⊂

Li, i = 1, 2 (with the same center u, but possibly a different set of qi sections Σ̄•), within
uniformly bounded (fiberwise) Hausdorff distance from each other. This construction will
be used in Section 5.4 to show the coarse independence of a combing path c(x, y) in a
ladder Lx,y containing the given points x, y on the choice of a ladder Lx,y.

The intersection π(L1)∩ π(L2) = S 1 ∩ S 2 is a subtree S ⊂ T . This subtree will contain
(but, in general will be different from) the tree S̄ which is the common base of the ladders
π : L̄i → S̄ . For each v ∈ V(S ) we let

L̄1
v := P̄Xv,L1

v
(L2

v) ⊂ L1
v , L̄

2
v := P̄Xv,L2

v
(L1

v) ⊂ L2
v ,

see Definition 1.124 for the definition of the modified fiberwise projection P̄. In the defi-
nition of ladders L̄i below, the segment L̄i

v will equal the fiber L̄i
v of L̄i, unless v < V(S̄ ).

By Lemma 1.142 and Corollary 1.143 we have the dichotomy:
i. Either the pair of geodesic segments L1

v , L
2
v ⊂ Xv is 7δ0-separated (i.e. dXv (L

1
v , L

2
v) >

7δ0), in which case this pair is D1.142(δ, δ) = 9δ0-cobounded.
ii. Or dXv (L

1
v , L

2
v) ≤ 7δ0 and

HdXv (PL1
v
(L2

v), PL2
v
(L1

v)) ≤ 12δ0.

According to Remark 1.127, in this case

HdXv (PL1
v
(L2

v), L̄1
v) ≤ 4δ0

and
HdXv (PL2

v
(L1

v), L̄2
v) ≤ 4δ0.

Combining the inequalities, we get that in the second case,

(5.18) HdXv (L̄
1
v , L̄

2
v) ≤ 20δ0.

Accordingly, for each vertex v ∈ S such that the pair of geodesic segments L1
v , L

2
v ⊂ Xv

is 7δ0-separated, we remove from V(S ) all the vertices (and edges) w , v such that v is
between u and w; we let S̄ denote the subtree of S spanned by the remaining set of vertices
of S . Note that if v = u, S̄ = {u}.

We define
L̄i :=

⋃
v∈V(S̄ )

L̄i
v.

Thus, apart from the boundary vertices v of S̄ , the intervals L̄1
v , L̄

2
v are fiberwise Hausdorff

20δ0-close, while for some boundary vertices v of S̄ , both L̄1
v , L̄

2
v have length ≤ 9δ0. We

will prove (Claim 5.15) that even for the boundary vertices of S̄ , the Hausdorff distance
between the intervals L̄1

v , L̄
2
v is also uniformly bounded.

Remark 5.13. By the construction, both L̄i contain the intersection L1 ∩ L2.

Thus, we obtain subsets L̄i ⊂ X which are unions of geodesic segments in vertex-
spaces Xv, v ∈ V(S̄ ). Our next goal it to prove that these subsets are unions of vertex-spaces
of ladders in X.

Recall that L′1 is a coarse Lipschitz constant for the composition of the inclusion map
Xv → Xvw with the nearest-point projection PXvw,Xw : Xvw → Xw, cf. Notation 2.6.4. Set

ϵ = ϵ5.14(E) = E + (2E + 21δ0L′1) + L1.102(δ0, δ0)(2E + 21δ0L′1 + 1),

k := 2(2K + ϵ + 20δ0) + K + ϵ + 20δ0,
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K̃ = K̃5.14(K, E) = K′3.17(k),

Ẽ := Ẽ5.14(K, E) = 2k,

D̃ := D̃5.14(D) = max(10δ0 · L′1,D,C1.143(λ′0, δ
′
0, 21δ0L′1)).

Proposition 5.14 (Projections of pairs of ladders). If L1,L2 are (K,D, E)-ladders cen-
tered at u, then L̄i = (π : L̄i → S̄ ), i = 1, 2, constructed above, are (K̃, D̃, Ẽ)-ladders cen-
tered at u (where K̃ = K̃5.14(K, E), D̃ = D̃5.14(D), Ẽ = Ẽ5.14(K, E)), such that L̄i = L̄i ∩ X

is the union of vertex-spaces of L̄i.

Proof. As with tripods of ladders, we will prove the proposition by verifying the con-
ditions of Lemma 3.17. Below, e = [v,w] is an edge of T oriented away from u, with
v ∈ V(S̄ ).

1. We first check part 1 of the condition (a2) in Lemma 3.17, i.e. that for every
boundary edge e of S̄ , e = [v,w] < E(S̄ ), v ∈ V(S̄ ), both pairs of subsets L̄i

v, Xw ⊂ Xvw are
D̃-cobounded, i = 1, 2.

(i) It can happen that e = [v,w] < E(S̄ ) because the pair L1
v , L

2
v ⊂ Xv was 7δ0-separated,

i.e. both L̄1
v , L̄

2
v have length ≤ 9δ0. Since the projection PXvw,Xw : Xvw → Xw is L′1-coarse

Lipschitz, diameters of the projections PXvw,Xw (L̄i
v) ⊂ Xw are at most 10δ0 · L′1 ≤ D̃. (Recall

that δ0 ≥ 1.)
(ii) If the pair L1

v , L
2
v ⊂ Xv was not 7δ0-separated then the Hausdorff distance in Xv

between L̄1
v , L̄

2
v is ≤ 20δ0. After swapping the labels of 1 and 2 we may assume that there

is an edge e = [v,w] < E(S 1). Then, because L1 was a (K,D, E)-ladder, the pair L1
v , Xw is

D-cobounded in Xvw. The same, of course applies to the pair L̄1
v , Xw, since L̄1

v ⊂ L1
v . We

need to get a coboundedness estimate for the pair L̄2
v , Xw. Since

(5.19) HdXv (L̄
1
v , L̄

2
v) ≤ 20δ0

and the projection PXvw,Xw : Xv → Xw is coarse L′1-Lipschitz, the diameter the projection of
L̄2

v to Xw is at most
L′1(20δ0 + 1) ≤ 21δ0L′1 ≤ D̃.

The estimate
diamXvw (PXvw,L̄2

v
(Xw)) ≤ C1.143(λ′0, δ

′
0, 21δ0L′1)

follows from Corollary 1.143.
This verifies part 1 of the condition (a2) in Lemma 3.17.

2. We assume now that e = [v,w] is an edge of S̄ , in particular, L̄1
v , L̄

2
v are 20δ0-

Hausdorff close in Xv. Since L1,L2 satisfy the (K,D, E)-ladder axioms, for P = PXvw,Xw ,
P(Li

v) and Li
w are E-Hausdorff close in Xvw, i = 1, 2. Our goal is to estimate the Hausdorff

distance between Li
w and the projection of Li

v to Xw (i = 1, 2). In this part of the proof we
will get only half of the estimate, we will get the other half in Part 4 of the proof.

Pick x ∈ L̄1
v . Then there exists y ∈ L̄2

v such that dXv (x, y) ≤ 20δ0; we also have

dXw (P(x), L1
w) ≤ E, dXw (P(y), L2

w) ≤ E.

Thus, there exist x′ ∈ L1
w and y′ ∈ L2

w such that

(5.20) dXw (P(x), x′) ≤ E, dXw d(P(y), y′) ≤ E,

which in turn implies the inequality

(5.21) dXw (x′, y′) ≤ 2E + 21δ0L′1.
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We next estimate the distance dXw (y′, L̄2
w). Since the projection P′ : Xw → L2

w is
L1.102(δ0, δ0)-coarse Lipschitz, we have

dXw (P′(x′), y′) ≤ L1.102(δ0, δ0)(dXw (x′, y′) + 1) ≤ L1.102(δ0, δ0)(2E + 21δ0L′1 + 1).

Since x′ ∈ L1
w, P′(x′) ∈ L̄2

w, and we obtain:

(5.22) dXw (y′, L̄2
w) ≤ L1.102(δ0, δ0)(2E + 21δ0L′1 + 1).

Switching the roles of x and y we similarly obtain:

(5.23) dXw (x′, L̄1
w) ≤ L1.102(δ0, δ0)(2E + 21δ0L′1 + 1).

Combining the equations (5.20) and (5.23) we obtain

dXw (P(x), L̄1
w) ≤ E + L1.102(δ0, δ0)(2E + 21δ0L′1 + 1)

and, similarly, combining (5.20) and (5.22) we obtain

dXw (P(y), L̄2
w) ≤ E + L1.102(δ0, δ0)(2E + 21δ0L′1 + 1).

At the same time, combing the equations (5.20), (5.21) and (5.22) we get:

dXw (P(x), L̄2
w) ≤ E + (2E + 21δ0L′1) + L1.102(δ0, δ0)(2E + 21δ0L′1 + 1) ≤ Ẽ.

Similarly,

dXw (P(y), L̄1
w) ≤ ϵ = E + (2E + 21δ0L′1) + L1.102(δ0, δ0)(2E + 21δ0L′1 + 1).

Thus, we proved:
P(L̄1

v) ∪ P(L̄2
v) ⊂ Ne

ϵ (L̄1
w) ∩ Ne

ϵ (L̄2
w),

which gives us half of the estimate on HdXvw (P(L̄i
v), L̄i

w), but also gives an upper bound on
the minimal distance between L̄1

w and L̄2
w, something which was not a priori clear from the

construction. We will derive the other half of the estimate on HdXvw (P(L̄i
v), L̄i

w) in Part 4 of
the proof. Before proceeding with Part 3 of the proof we establish:

Claim 5.15. For every vertex w ∈ V(S̄ )

HdXvw (L̄1
w, L̄

2
w) ≤ C5.15(E) = ϵ + 20δ0.

Proof. There are two cases to consider according to the definition of the projections
L̄i:

(i) Suppose that the pair of geodesic segments L1
w, L

2
w is 7δ0-separated, hence, each

segment L̄i
w, i = 1, 2 has length ≤ 9δ0. As we observed in the end of the Part 2 of the proof,

there exists z ∈ Xw which lies in the intersection

Ne
ϵ (L̄1

w) ∩ Ne
ϵ (L̄2

w).

Therefore,
HdXvw (L̄1

w, L̄
2
w) ≤ ϵ + 9δ0.

(ii) Suppose that the pair of geodesic segments L1
w, L

2
w is not 9δ0-cobounded. Accord-

ing to (5.18),
HdXv (L̄

1
v , L̄

2
v) ≤ 20δ0. □

We now return to the proof of the proposition.

3. We next verify the condition (a3) in Lemma 3.17.
Since Li, i = 1, 2 were K-ladders, each xi ∈ L̄i

w is within distance K (measured in Xvw)
from some point in Li

v. Thus, setting yi := PXvw,Li
v
(xi),

dXvw (xi, yi) ≤ 2K, i = 1, 2.
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According to Claim 5.15, given x1 ∈ L̄1
w we can find x2 ∈ L̄2

w such that

dXvw (x1, x2) ≤ ϵ + 20δ0.

Thus,
dXvw (y1, y2) ≤ 2K + ϵ + 20δ0.

Let ȳi denote a nearest-point projection of yi to L3−i
v , i = 1, 2. Then the above inequality

implies that
dXvw (ȳi, yi) ≤ 2(2K + ϵ + 20δ0).

However, by the construction, ȳi belongs to L̄3−i
v . Hence, by the above estimates:

dXvw (x1, L̄1
v) ≤ dXvw (x1, ȳ2) ≤ k := 2(2K + ϵ + 20δ0) + K + ϵ + 20δ0.

Similarly, for each x2 ∈ L̄2
w we have

dXvw (x2, L̄2
v) ≤ k = 2(2K + ϵ + 20δ0) + K + ϵ + 20δ0.

This verifies the condition (a3) in Lemma 3.17.

4. By Part 3, each x ∈ L̄i
w is within distance k from some y ∈ L̄i

v, i = 1, 2. Therefore,

dXvw (x, PXvw,Xw (y)) ≤ 2k.

In other words,
L̄i

w ⊂ Ne
2k(PXvw,Xw (L̄i

v)).
Combining this with the estimate in the end of Part 2, we obtain:

HdXvw (P(L̄i
v), L̄i

w) ≤ max(2k, ϵ) = 2k = Ẽ.

Since we defined Ẽ to be 2k, we are done with the proof of the proposition. □

5.3. Hyperbolicity of tripods families

Proposition 5.16 (Tripod families are hyperbolic). Suppose that X is a tree of hy-
perbolic spaces satisfying the uniform κ4.7(K)-flaring condition. Then for each (K,D, E)-
tripod family Y = (π : Y → S ) in X, the total space Y is δ5.16(K)-hyperbolic.

Proof. The total space Y of Y is the union of total spaces Li of the ladders Li, i =
1, 2, 3. The pairwise intersections of these ladders equal their triple intersection, namely,
the K-qi section Ξ, which is, intrinsically, a tree. Thus, Y has a structure of a tree of spaces
with the vertex-spaces Li, i = 1, 2, 3, and Ξ. According to Theorem 4.16 each ladder Li

is δ4.16(K)-hyperbolic (this is where we need the κ4.7(K)-flaring condition), the space Y is
δ5.16(K)-hyperbolic according to Corollary 2.69. □

5.4. Hyperbolicity of flow-spaces

In the following theorem, we fix k ≥ k5.2, K = K5.2(k).

Theorem 5.17. Suppose that k, K are as above, X is a tree of hyperbolic spaces satis-
fying the uniform κ4.7(K)-flaring condition. Then there is a function δ = δ5.17(k) such that
for each u ∈ v(T ), the flow space Flk(Xu) is δ-hyperbolic.

Proof. According to Corollary 5.12, whenever k ≥ k5.2, K = K5.2(k), D = D5.2,
E = E5.2, for any two points x, y ∈ F lk(Xu) there exists a (K,D, E)-ladder L = Lx,y centered
at u and containing x, y, such that L is contained in the fiberwise 5δ0-neighborhood of
F lk(Xu).

Recall that the total space Lx,y of the ladder L is L3.4(K,D, E, δ0)-qi embedded in X.
Define c(x, y) to be a projection to Flk(Xu) of a geodesic in Lx,y connecting x to y. We note
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that the definition of c(x, y) depends on the choice of Lxy which is far from canonical. Our
first task is to prove that different choices lead to uniformly Hausdorff-close paths.

Proposition 5.18. Let L1 = L1
x,y,L

2 = L2
x,y be (K,D, E)-ladders containing x, y. Then

L1
x,y ∪ L2

x,y is contained in a δ5.18(K,D, E)-hyperbolic subspace Z in X.

Proof. We let L̄i ⊂ Li denote the (K̃, D̃, Ẽ)-subladders obtained by the projection
construction described in Section 5.2; see also Proposition 5.14. Note that K̃ ≥ K, Ẽ ≥
E, D̃ ≥ D. Also, note that the subladders L̄i are nonempty since they both contain x and y.

The subladders L̄i have equal projection to T , which is a subtree S̄ ⊂ S 1∩S 2. As usual,
we extend these ladders over the rest of the tree S 1 ∪ S 2 by empty fibers. According to
Claim 5.15, the ladders L̄1, L̄2 are fiberwise C5.15(E)-Hausdorff close. Therefore, for each
v ∈ V(S̄ ) the union L̄1

v ∪ L̄2
v is C5.15(E) + δ0-quasiconvex in Xv. For each vertex v ∈ V(S )

we set
Z0

v := Hullδ0 (L̄1
v ∪ L̄2

v),

Zi
v := Li

v ∪ Z0
v , i = 1, 2,

and Zv := Z1
v ∪ Z2

v . Thus, Z j
v ( j = 0, 1, 2) and Zv are rectifiably connected 4δ0-quasiconvex

subsets of Xv (see Lemma 1.95). By (1.3),

HdXv (Z
0
v , L̄

1
v ∪ L̄2

v) ≤ C5.15(E) + 2δ0

and, hence,

(5.24) HdXv (Z
0
v , L̄

i
v) ≤ 2C5.15(E) + 2δ0, i = 1, 2.

Accordingly,
HdXv (Z

i
v, L

i
v) ≤ 2C5.15(E) + 2δ0, i = 1, 2.

We repeat the same construction (and estimates) for all edges e ∈ E(S̄ ). We, thus, obtain
four subtrees of spaces Z j ( j = 0, 1, 2) and Z in X whose vertex-spaces are, respectively
Z j

v ( j = 0, 1, 2) and Zv, v ∈ V(S ). The total space Z of Z contains both ladders L1, L2. We
equip Z j’s and Z with natural path-metrics dZ j , dZ ; the goal is to show that Z is uniformly
hyperbolic. The space Z is the union of subsets Z1,Z2 whose intersection is Z0. According
to Corollary 3.4, the ladders Li, L̄i, i = 1, 2 are L3.4(K̃, D̃, Ẽ, δ0)-qi embedded in X. In view
of (5.24), the inclusion Z0 → Z is an (L3.4(K̃, D̃, Ẽ, δ0), 2C5.15(E) + 2δ0)-qi embedding.

Thus, Z = Z1 ∪ Z2 satisfies the assumptions of Theorem 2.65 and, therefore, is δ-
hyperbolic for some δ which depends only on K,D, E. □

Corollary 5.19. Let Li
x,y, i = 1, 2 be two (K,D, E)-ladders containing x, y and ci(x, y)

be projections to Flk(Xu) of geodesics [xy]i ⊂ Li
x,y. Then

HdX(c1(x, y), c2(x, y)) ≤ C5.19(K,D, E).

Proof. The paths ci(x, y) are uniformly close to the geodesic segments [xy]i ⊂ Li
x,y, i =

1, 2; hence, it suffices to bound the Hausdorff distance between these segments. Since both
[xy]i are contained in a δ5.19(K,D, E)-hyperbolic space (Z, dZ) and are L3.4(K,D, E, δ0)-
quasigeodesics in Z with common end-points, by Lemma 1.55, we get:

HdX([xy]1, [xy]2) ≤ HdZ([xy]1, [xy]2) ≤(5.25)
D1.55(δ5.19(K,D, E), L3.4(K,D, E, 0)).(5.26)

Corollary follows. □

We now check that the family of paths c satisfies the conditions of the Corollary 1.64,
characterizing hyperbolic spaces; this will conclude the proof of the theorem.
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Condition a1: This follows from the fact that c(x, y) is within uniformly bounded
distance from a geodesic in Lx,y and that Lx,y is L3.4(K′,D, E, δ0)-qi embedded in X.

Condition a2: Consider points x, y, z ∈ F lk(Xu). According to Proposition 5.2, there
exists a (K,D, E)-tripod familyY = (π : Y → S ) contained the fiberwise 5δ0-neighborhood
of F lk(Xu) and containing the points x, y, z. Moreover, according to Part (ii) of Proposition
5.2, there are (K,D, E)-ladders Lx,y,Ly,z,Lz,x contained in the fiberwise δ0-neighborhood
of Y and containing the respective pairs of points x, y, etc. By Proposition 5.16, Y is
δ5.16(K,D, E)-hyperbolic. The paths c(x, y), c(y, z), c(z, x) are uniformly close to geodesics
[xy]Lx,y , [yz]Ly,z , [zx]Lz,x , which are κ-quasigeodesics in Y , where κ depends only on K,D and
E. Therefore, by the δ5.16(K,D, E)-hyperbolicity of Y , for

ϵ = 2D1.54(δ5.16(K,D, E), κ) + δ5.16(K,D, E)

we have
[xy]Lx,y ⊂ NY

ϵ ([yz]Ly,z ∪ [zx]Lz,x ) ⊂ Nϵ([yz]Ly,z ∪ [zx]Lz,x ),
where the first neighborhood is taken in Y and the second is taken in X. Condition (a2)
follows.

Lastly, by the construction, each c(x, y) is uniformly close to an L3.4(K′,D, E, δ0)-
quasigeodesic in X. □

In the next corollary illustrates an application of Theorem 5.17 to proving hyperbol-
icity of various subspaces of X. As in Theorem 5.17, we assume that k ≥ k5.2, but set
K := K5.2(k∧). We will use similar arguments in Section 6.1.2 to prove hyperbolicity of
unions of pairs of flow-spaces. We refer to Definition 3.33 for the notion of a generalized
flow-space, Flk(Q), used below.

Corollary 5.20 (Hyperbolicity of generalized flow-spaces). Suppose that X satisfies
the uniform κ4.7(K)-flaring condition. Then for every k-bundle Q = (π : Q → S ) ⊂ X, the
k-flow space Flk(Q) is δ5.20(k)-hyperbolic.

Proof. Pick u ∈ V(S ). Observe that every x ∈ Flk(Q) is connected to Flk(Q) ∩ Xu by
a k-leaf γx. This leaf is contained in Flk∧ (Qu) (see Proposition 3.26(2)). Therefore,

Flk(Q) ⊂ Flk∧ (Qu).

In view of the uniform flaring condition of the corollary, Theorem 5.17 applies to Flk∧ (Qu)
and, hence, the latter is δ5.17(k∧)-hyperbolic. According to Theorem 3.34, Flk(Q) is an
L3.34(k, k)-coarse Lipschitz retract of X. Hence Flk(Q) is λ(k)-quasiconvex in Flk∧ (Qu)
and, therefore (in view of hyperbolicity of the latter), is δ5.20(k)-hyperbolic. □



CHAPTER 6

Hyperbolicity of trees of spaces: Putting everything
together

In this chapter we finish the proof of Theorem 2.62, establishing hyperbolicity of trees
of hyperbolic spaces, satisfying the uniform K-flaring condition for suitable values of K.
The key is to show hyperbolicity of flow-spaces FlK(XJ) for intervals J ⊂ T , Theorem
6.17. This is done in three steps:

Step 1. Hyperbolicity of FlK(XJ) for special intervals J (Theorem 6.14). This is the
hardest part of the chapter, we deal with it in Section 6.1. An outline of this part of proof
is given in the introduction to Section 6.1.

Step 2. Hyperbolicity of FlK(XJ), when J is the union of three special subintervals
(Proposition 6.15).

Step 3. Hyperbolicity of FlK(XJ) for general intervals, which is done by subdivid-
ing J as the union of subintervals Ji, each of which is a union of (at most) three special
subintervals, and then using quasiconvex chain-amalgamation (Theorem 2.65).

Once we are done with Theorem 6.17, applying quasiconvex amalgamation (Corollary
2.69) one more time, in Proposition 6.18 we will prove that flow-spaces FlK(XS ) are uni-
formly hyperbolic, whenever S is a tripod in T . We then conclude the proof of Theorem
2.62 by appealing to Corollary 1.64 one last time, by constructing a slim combing in X via
geodesics in flow-spaces of interval-spaces, see Section 6.3.

6.1. Hyperbolicity of flow-spaces of special interval-spaces

This section deals with Step 1 described in the introduction to the chapter. Recall that
in Section 3.3.5 we defined an interval J = ⟦u, v⟧ ⊂ T to be special (more precisely, K-
special) if one of its end-points (say, u) has the property that J ⊂ π(FlK(Xu)). The main
result of this section is Theorem 6.14, where we prove that the flow-space FlK(XJ) of every
special interval J ⊂ T is uniformly hyperbolic with hyperbolicity constant depending only
on K. The fact that this is true is not at all surprising since, assuming that X is hyperbolic,
a uniform neighborhood of two intersecting uniformly quasiconvex subsets is uniformly
qi embedded in X and, hence, is uniformly hyperbolic. However, at this stage we did not
yet prove hyperbolicity of X and, furthermore, we are interested in describing uniform
quasigeodesics in X. The most difficult part of the proof is to show that for each special
interval J, a certain uniform (depending on K) neighborhood in X of the union FlK(Xu) ∪
FlK(Xv) is uniformly properly embedded in X and uniformly hyperbolic (Corollary 6.11).
The idea is to:

(i) embed such union in a larger “modified” flow-space

FlK(Xu) ∪ FlK(Xv) ∪ FlR(H)

(for a certain R = R(K) and a metric bundle H over the interval J = ⟦u, v⟧),
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(ii) prove uniform hyperbolicity of a uniform neighborhood of this triple union using
quasiconvex amalgamation (Theorem 2.65),

(iii) lastly, use the fact that a uniform neighborhood of the union of intersecting quasi-
convex subsets of a hyperbolic space is again uniformly quasiconvex and hyperbolic.

We then use quasiconvex amalgamation to prove the same result for the union of three
flow-spaces

FlK(Xu) ∪ FlK(Xw) ∪ FlK(Xv),
where each subinterval ⟦u,w⟧, ⟦w, v⟧ is special. Theorem 6.14 is then proven by verifying
that the family of paths in FlK(XJ) which are geodesics in pairwise unions ND(FlK(Xs) ∪
FlK(Xt)), s, t ∈ V(J), satisfy the slim combing axioms from Corollary 1.64.

6.1.1. Proper embeddings of unions of pairs of intersecting flow-spaces. Assum-
ing that FlK(Xu) ∩ Xv , ∅, we will show that a certain uniform neighborhood of the union
of two flow-spaces FlK(Xu) ∪ FlK(Xv) is uniformly properly embedded in X. We first deal
with the following easier case when T is an interval, which we will identify with an interval
[0, n] ⊂ R, n ∈ N, and that the vertex-set of T equals to the set of integer points in the in-
terval. Recall that Mk is the parameter from the definition of uniform k-flaring (Definition
2.48).

Lemma 6.1. Suppose X = (π : X → T ) is a tree of hyperbolic spaces, such that the
tree T is an interval T = [0, n], K ≥ K0 and X satisfies the uniform k-flaring condition for
k = (L + 1)2K, where L = L3.21(K). Assume, moreover, that for vertices u, v ∈ V(T ), and a
4δ0-quasiconvex subset Q = Qu ⊂ Xu, we have FlK(Q) ∩ Xv , ∅.

Then the fiberwise Mk-neighborhood of FlK(Q) ∪ FlK(Xn) is uniformly properly em-
bedded in X, with the distortion function depending only on K.

Proof. It suffices to show that for each D > 0 and x, y ∈ F lK(Q) ∪ F lK(Xv) with
d(x, y) < D, the intrinsic distance between x and y in the Mk-fiberwise neighborhood U of
FlK(Q) ∪ FlK(Xv) is bounded by a constant depending on D,K only.

Claim 6.2. The statement of the lemma holds for v = n.

Proof. Without loss of generality x ∈ F lK(Q) \ F lK(Xn) and y ∈ F lK(Xn) \ FlK(Q).
(Otherwise, the claim follows from Theorem 3.21.) In the proof we will be repeatedly
using Mitra’s retractions ρ defined in Theorem 3.21.

Reduction 1. We first reduce to the case where x, y are in the same vertex-space and,
moreover, x = ρFlK (Q)(y).

Observe that, since T is an interval with an extremal vertex n, y ∈ FlK(Xn) and
FlK(Xu) ∩ Xn , ∅, π(y) ∈ π(FlK(Q)). In particular, by the definition of Mitra’s retrac-
tion ρFlK (Q),

x′ := ρFlK (Q)(y) ∈ Xπ(y) ∩ F lK(Q).
We also apply Mitra’s retraction ρFlK (Q) : X → FlK(A) to xy, a geodesic in X connect-

ing x to y. The image ρFlK (Q)(xy) is a path of length ≤ D1 := (D + 1)L3.21(K) in FlK(Q)
joining x to x′. Thus,

dFlK (Q)(x, x′) ≤ D1,

while d(x′, y) ≤ d(x, y) + d(x′, x) ≤ D + D1. Hence, it is enough to bound the distance
of x′ and y in U in terms of D + D1. This proves Reduction 1. Note that π(x) , n since
x ∈ FlK(Q) \ FlK(Xn).

We, therefore, assume from now on that j = π(x) = π(y) and x = ρFlK (Q)(y) and
d(x, y) ≤ D.
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Reduction 2. We next reduce to the case when both x, y are connected by k-qi leaves
to the same point of Xn, where k is as in the statement of lemma.

Let γy be a K-qi in FlK(Xn) leaf joining y to some z ∈ Xn. In view of the assumption
that x = ρFlK (Q)(y), the path

γ̄x := ρFlK (Q)(γy) ⊂ FlK(Q)

connects x to z1 = γ̄x(n) = ρFlK (Q)(z) ∈ Xn. For y1 = ρFlK (Xn)(x), the path

γy1 := ρFlK (Xn) ◦ ρFlK (Q)(γy) ⊂ Xn

also connects y1 to z1. Since both Mitra’s retractions that we used are L = L3.21(K)-coarse
Lipschitz, the paths γ̄x, γy1 are k-qi leaves for k = (L + 1)2K.

Observe that since projections of FlK(Q) and FlK(Xn) to T both contain the interval
⟦ j, n⟧, both Mitra’s retractions restricted to the vertex-spaces Xi, i ∈ ⟦ j, n⟧, amount to
fiberwise nearest-point projections to respective flow-spaces. In particular, y1 ∈ X j.

We next estimate dX j (y, y1). Since ρFlK (Xn) is L-coarse Lipschitz, ρFlK (Xn)(y) = y,
ρFlK (Xn)(x) = y1 and d(x, y) ≤ D, we obtain

dFlK (Xn)(y, y1) ≤ (L + 1)D.

At the same time, d(x, y1) ≤ d(x, y)+d(y, y1) ≤ 2D. Therefore, it suffices to prove the claim
for the pair of points x, y1: Both are connected to z1 ∈ Xn by k-leaves γ̄x ⊂ FlK(Q), γy1 ⊂

FlK(Xn) respectively. This proves Reduction 2.

Thus, we consider the case of points x, y ∈ X j such that d(x, y) ≤ D, x ∈ FlK(Q) ∩
X j, y ∈ FlK(Xn) ∩ X j and there exist k-qi leaves γx, γy in FlK(Q), FlK(Xn), respectively,
connecting x, y to a point z ∈ Xn. Let t ∈ ⟦ j, n⟧ be the minimal vertex such that

dXt (γx(t), γy(t)) ≤ Mk.

(Such t exists since dXn (γx(n), γy(n)) = 0.) Recall that the vertex-spaces of X are η0-
uniformly properly embedded in X; in particular, dX j (x, y) ≤ η0(D).

If dX j (x, y) ≤ Mk, we will be done by taking

D6.1(K) := Mk,

since the intrinsic distance between x and y in U := N f ib
Mr

(FlK(Q) ∪ FlK(Xn)) would be
≤ dX j (x, y) ≤ η0(D).

Otherwise (if dX j (x, y) > Mk), by the uniform k-flaring condition, the length of the
interval ⟦ j, t⟧ is at most τ2.47(k,max(η0(D),Mk)). Therefore, the intrinsic distance between
x, y in U is at most

kτ2.47(k,max(η0(D),Mk)) + Mk.

This concludes the proof of the claim. □

We return to the proof of the lemma and consider the general case, when v need not be
equal to the extreme vertex n of T = ⟦0, n⟧. Let x ∈ Xu0 , y ∈ Xv0 be points within distance
D, u0, v0 ∈ V(T ). There are two cases to consider, depending on the order of the vertices
v, u0 in ⟦0, n⟧.

1. Suppose that v lies in the interval ⟦u, u0⟧ (or ⟦u0, u⟧). Since x ∈ FlK(Xu) ∩ Xu0

Proposition 3.26 (specifically, (3.14) with r = 0) implies that x ∈ FlK(Xv). Thus, x, y
both belong to FlK(Xv) and we conclude using the fact that flow-spaces are uniformly
quasiisometrically embedded in X.
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2. Suppose that v does not lie in the interval between u, u0 in T . Without loss of
generality (reversing the orientation on T if necessary), with respect to the order on the
interval T ,

max(u, u0) < v.

If v0 ≤ v then we can shorten the tree T replacing it with the subinterval ⟦0, v⟧ and reduce
the problem to the one solved in the claim above. Thus, we can assume that

0 ≤ max(u, u0) < v < v0 ≤ n.

In particular, dT (u0, v0) = dT (u0, v)+ dT (v, v0). By projecting a geodesic xy in X to the tree
T , we see that dT (u0, v0) ≤ D and, therefore,

max (dT (u0, v), dT (v, v0)) ≤ D.

Hence, a K-qi leaf γy in FLK(Xv) connecting y to y1 ∈ Xv has length ≤ KD, which implies
that

d(y, y1) ≤ dFLK (Xv)(y, y1) ≤ (K + 1)D.

Consider the subtree S = ⟦0, v⟧ in T . According to Lemma 2.18, the inclusion
XS → X is an η = η2.18-uniformly proper map (where the function η depends only on
the parameters of the tree of spaces X). In particular,

dXS (x, y1) ≤ D1 := η((K + 1)D).

Thus, it suffices to estimate the distance dX1 (x, y1) in the fiberwise Mk-neighborhood of
FlK(Q)∪ FLK(Xv)∩ XS . Since v is an extreme vertex of S , this is done in the claim above.
Lemma follows. □

Lastly, we consider the case of a general tree T :

Proposition 6.3. Suppose X = (π : X → T ) is a tree of hyperbolic spaces, K ≥ K0 and
X satisfies the uniform k-flaring condition, where, as in the lemma,

k = k6.3(K) = (L + 1)2K, L = L3.21(K).

Assume, moreover, that for some 4δ0-quasiconvex subset Q = Qu ⊂ Xu, we have FlK(Q) ∩
Xv , ∅. Then the Mk-neighborhood of Y = FlK(Q) ∪ FlK(Xv) in X is η6.3,K-properly
embedded in X.

Proof. Suppose
x ∈ FlK(Xu) ∩ Xu0 , y ∈ FlK(Xv) ∩ Xv0

satisfy d(x, y) ≤ D. We need to show that there is a constant constant D1 > 0 depending
only on D and K such that the distance between x, y in NMk (Y) is at most D1.

If both x, y are either in FlK(Xu) or FlK(Xv) then certainly this is true since K-flows of
vertex-spaces are uniformly quasiisometrically embedded in X.

Suppose, therefore, that

(6.1) x ∈ F lK(Xu) \ F lK(Xv) and y ∈ F lK(Xv) \ F lK(Xu)

If u, v span an edge in T then our assumptions on the location of x and y imply that the set
of vertices {u0 = π(x), v0 = π(y), u, v} is contained in a common interval in T and, hence,
the claim follows from Lemma 6.1. Thus, we assume that dT (u, v) ≥ 2. More generally,
we can assume that u0, v0, u, v do not belong to a common interval in T .

The same assumption (6.1) implies that the center of ∆u0uv ⊂ T is in ⟦u, v⟦ and the
center of ∆v0uv is in ⟧u, v⟧, and if these centers are equal, then they are in ⟧u, v⟦.

The proof of the proposition is broken in three cases:
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Case 2

Case 3

Figure 22. Cases 2 and 3

Case 1: Suppose x, y are in the same vertex-space Xt; we let w denote the center of
∆uvt. As noted before, w ∈⟧u, v⟦. Let Q = Qw = FlK(Xu) ∩ Xw; this is a 4δ0-quasiconvex
subset of Xw.

For the interval S = ⟦v, t⟧ consider the subtree of spaces XS ⊂ X. The points x, y
belong to the K-flow-spaces FlK(Q), FlK(Xv) in XS , and

∅ , FlK(Xu) ∩ Xv ⊂ FlK(Q) ∩ Xv.

We also have dXS (x, y) ≤ η(D), where η = η2.18. Thus, the conclusion follows from Lemma
6.1 applied to the tree of spaces XS over the interval S .

Case 2: Suppose the triangles ∆u0uv and ∆v0uv have the common center w, see Figure
22. Let t denote the center of the triangle ∆wu0v0. Without loss of generality, we may
assume that dT (π(x), t) ≤ dT (π(x), π(y)). Since d(x, y) ≤ D, we also obtain dT (v0, t) ≤ D.
Let γx, γy denote, respectively, K-qi leaves in FlK(Xu), FlK(Xv) connecting x, y to Xu, Xv.
Then, for x1 = γx(t) and y1 = γy(t) we have

dFlK (Q)(x, x1) ≤ KD and dFlK (Xv)(y, y1) ≤ KD.

In particular d(x1, y1) ≤ (1 + 2K)D and x1, y1 belong to the same vertex-space Xt. This
reduces the proof to that of Case 1.

Case 3: Suppose the triangles ∆u0uv and ∆v0uv have distinct centers u1 and v1 respec-
tively. These centers necessarily belong to the interval ⟦u, v⟧, see Figure 22. As in Case 2
we first we take two K-qi leaves γx, γy in FlK(Xu), FlK(Xv), connecting x, y respectively to
Xu and Xv. Since d(x, y) ≤ D, we also have dT (u0, u1) ≤ D, d(v0, v1) ≤ D.

We then replace x with x1 = γx(u1) and replace y with y1 = γy(v1), which are within
distance KD from x, respectively y, in FlK(Xu), FlK(Xv). Furthermore,

d(x1, y1) ≤ D(1 + 2K).

Since x1, y1 belong to the subtree of spaces Xuv = π−1(uv), analogously to Case 1, we
conclude the proof by applying Lemma 6.1. □
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Corollary 6.4. Suppose X = (π : X → T ) is a tree of hyperbolic spaces, K ≥ K0 and
X satisfies the uniform k-flaring condition for

k = k6.3(K).

Assume also that for a 4δ0-quasiconvex subset Q = Qu ⊂ Xu, we have FlK(Q) ∩ Xv , ∅.
Then for each r ≥ Mk, the r-neighborhood of FlK(Q)∪FlK(Xv) in X is η6.4,K,r-properly

embedded in X.

6.1.2. Hyperbolicity of the union of two flow-spaces in the case of special inter-
vals. The goal of this section is to prove that a uniform neighborhood of FlK(Xu)∪FlK(Xv)
in X is uniformly hyperbolic, with the hyperbolicity constant depending only on K, pro-
vided that FlK(Xu) ∩ Xv , ∅ and X satisfies a suitable uniform flaring condition.

Here is the idea of the proof. Recall that FlK(Xu) and FlK(Xv) are (uniformly) hyper-
bolic and are (uniformly) qi embedded in X. If X were hyperbolic, it would follow (since
FlK(Xu) ∩ FlK(Xv) , ∅) that a uniform neighborhood of FlK(Xu) ∪ FlK(Xv) is uniformly
hyperbolic. Hyperbolicity of X, of course, is not yet proven, so instead, we will find (see
the proof of Corollary 6.4) a larger subset U = Ur1 containing FlK(Xu) ∪ FlK(Xv), which
is uniformly hyperbolic and uniformly properly embedded in X (Proposition 6.10). Thus,
a suitable uniform neighborhood of FlK(Xu) ∪ FlK(Xv) in U is uniformly hyperbolic and
uniformly properly embedded in U. From this (since U is uniformly properly embedded
in X), we will conclude that a suitable uniform neighborhood of FlK(Xu)∪ FlK(Xv) in X is
also uniformly hyperbolic and uniformly properly embedded in X.

Lemma 6.5. For all D ≥ 0,K ≥ K0 there is a constant K6.5 = K6.5(K) ≥ K such that
the following holds:

Let u, v ∈ T be vertices such FlK(Xu) ∩ Xv , ∅. Then for each

x ∈ ND(F lK(Xu)) ∩ ND(F lK(Xv)),

there is a vertex t ∈ V(T ) and a K6.5-qi section Σ of π : X → T over the tripod (triangle)
S = ∆tuv such that

x ∈ N3D′ (Σ ∩ Xt)

where D′ = D + DL3.21(K) and
Σ ⊂ FlK(Xu)

Proof. Suppose that y1 ∈ FlK(Xu) and y2 ∈ FlK(Xv) satisfy d(x, yi) ≤ D. Let αi =

π([xyi]X), i = 1, 2. Let T1 = π(FlK(Xu)) and T2 = π(FlK(Xv)). Then we know that at least
one of the αi’s will contain a point t ∈ T1∩T2. Suppose that t ∈ α1. Let xt ∈ Xt∩[xy1]X . Let
x1 = ρFlK (Xu)(xt) and x2 = ρFlK (Xv)(xt). As both flow spaces FlK(Xu), FlK(Xv) intersect Xt,
the corresponding Mitra’s projections restricted to Xt are merely nearest point projections
in Xt to FlK(Xu) ∩ Xt and FlK(Xv) ∩ Xt respectively. Hence x1 ∈ FlK(Xu) ∩ Xt and x2 ∈

FlK(Xv)∩Xt. On the other hand, since the Mitra’s projections are L3.21(K)- coarse Lipschitz
retractions, we have d(yi, xi) ≤ DL3.21(K), i = 1, 2. Thus, d(x, xi) ≤ D + DL3.21(K) = D′

for i = 1, 2.
Let γ2 be a K-qi leaf in FlK(Xv) connecting x2 to Xv. We apply Mitra’s projection

ρ = ρFlK (Xu) to γ2; call the result γ′2. Since, by the assumption of the lemma,

S ⊂ π(FlK(Xu)),

ρ restricted to XS amounts to the fiberwise projection to FlK(Xu). In particular, π(γ′2) =
⟦v, t⟧. Hence, γ′2 is a K6.5 := KL3.21(K)-qi section over ⟦v, t⟧ whose image is contained in
FlK(Xu).
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Let w ∈ uv denote the center of the triangle S . Since γ′2 is contained in FlK(Xu), the
point γ′2(w) can be joined to Xu by a K-qi leaf γ′1 inside FlK(Xu). Clearly, the union of
these two qi leaves γ′1 ∪ γ

′
2 forms a K6.5-qi section Σ over the tripod S .

Lastly, we have
dXt (x2, γ

′
2(t)) ≤ dXt (x1, x2) ≤ 2D′,

d(x, x2) ≤ D′, d(x, γ′2(t)) ≤ 3D′.

Lemma follows. □

Set

(6.2) k = K6.5(K)

and define S = Sk,J , the set of all k-qi sections over the interval J = ⟦u, v⟧.
Assuming that FlK(Xu) ∩ Xv , ∅ (which is the standing assumption of the previous

and this section), S is nonempty since k ≥ K and we are assuming that

FlK(Xu) ∩ Xv , ∅.

For each vertex w ∈ V(J), let Hw denote the (fiberwise) δ0-hull of the subset {γ(w) : γ ∈ S}
in Xw. Define

H :=
⋃

w∈V(J)

Hw.

Each Hw, of course, is a 4δ0-quasiconvex subset of Xw. Then Lemma 3.17(b) implies that
H is the union of vertex-spaces of a k′ = K′3.17(k)-metric bundle H = Hk,J over the interval
J, see Definition 3.5.

As in Section 3.3.3, we define the generalized κ-flow-spaces Flκ(H) of the metric bun-
dle H. From the definition, we recall that with each vertex w ∈ V(J) we associate a subtree
Tw ⊂ T equal to the maximal subtree in T containing w and disjoint from all other vertices
of the interval J.

Below we will frequently use the function

κ 7→ κ∧ = (15L′0κ)
3,

defined in (3.11).
Recall that FlK(Xu) ∩ Xv , ∅.

Lemma 6.6. For D ≥ 0,K ≥ K0 set k = K6.5(K), k′ = K′3.17(k). Then the following
hold:

(1) Suppose that
x ∈ ND(F lK(Xu)) ∩ ND(F lK(Xv)).

Then there exists a vertex t ∈ V(T ) with

d(x,F lK(Xu) ∩ F lK(Xv) ∩ Xt) ≤ D,

such that the center w of ∆uvt satisfies

x ∈ N3D(Flk∧ (Hw) ∩ XTw ).

In other words, we have

ND(F lK(Xu)) ∩ ND(F lK(Xv)) ⊂
⋃

w∈V(⟦u,v⟧)

N3D(Flk∧ (Hw) ∩ XTw ).
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(2) For each κ ≥ k′ and each vertex w ∈ V(⟦u, v⟧) we have

Flκ(Hw) ∩ XTw ⊂ Flκ∧ (Xu) ∩ Flκ∧ (Xv).

In other words,

Flκ(H) ⊂ Flκ∧ (Xu) ∩ Flκ∧ (Xv).

Proof. (1) By Lemma 6.5 there is a k = K6.5(K)-qi section Σ over a tripod uv ∪ wt
such that

d(x,Σ) ≤ 3D.
In particular, Σ restricted to J = ⟦u, v⟧ is a k-qi section over J hence, belongs to Sk,J .
Therefore, by the definition ofH , for the vertex w ∈ V(J), the intersection Σ∩ Xw belongs
to Hw.

Since Σ(w) is in Hw, the restriction of Σ to the interval ⟦t,w⟧ is a k-qi leaf connecting
Σ ∩ Xt to Hw and, by Proposition 3.26(2),

Σ ∩ Xt ∈ Flk∧ (Hw).

Thus,
x ∈ N3D(Flk∧ (Hw)) ∩ Xt.

This proves Part (1) for fiberwise neighborhoods. The proof for neighborhoods taken in X
is identical and we omit it.

(2) Given x ∈ F lκ(Hw)∩ XTw , pick a κ-qi leaf γx in the flow-space Flκ(Hw) connecting
x to Hw.

Since z = γx(w) ∈ Hw, and H is a k′-metric bundle over the interval J = ⟦u, v⟧, there
exists a k′-qi leaf γz in this bundle (over ⟦w, v⟧) connecting z to Xv. Thus, since κ ≥ k′,
the point x can be connected to both Xu and Xv by κ-qi leaves. According to Proposition
3.26(2),

x ∈ Flκ∧ (Xu) ∩ Flκ∧ (Xv). □

For the rest of this section (until Corollary 6.4) we will be working under the following
assumption (which is stronger than the one we had earlier):

• We assume that Xv ∩ FlK(Xu) , ∅, Xu ∩ FlK(Xv) , ∅.

Remark 6.7. 1. This assumption implies that for all vertices w ∈ V(⟦u, v⟧),

Xw ∩ FlK(Xu) , ∅, Xw ∩ FlK(Xv) , ∅.

2. The stronger assumption we are now making is not too far from the condition that
Xv ∩ FlK(Xu) , ∅ made earlier, since

Xu ∩ FlK∧ (Xv) , ∅,

see Proposition 3.26(2). We will be using this fact in the proof of Corollary 6.4.

We now fix some K ≥ K0, set, k = K6.5(K) and take some R ≥ k∧. For an interval
J = ⟦u, v⟧ ⊂ T , set H := Hk,J and Y0 := FlR(H). Since FlR(H) is a generalized flow-space
with the parameters K1 = k′ and K2 = R ≥ K0, the next lemma is a corollary of Theorem
3.34:

Lemma 6.8. The inclusion map Y0 → X is a L3.34(k′,R)-qi embedding.

We also define the unions Y1 = FlK(Xu) ∪ FlR(H), Y2 = FlK(Xv) ∪ FlR(H) and their
neighborhoods U i

r := Nr(Y i), i = 1, 2, taken in X.



6.1. HYPERBOLICITY OF FLOW-SPACES OF SPECIAL INTERVAL-SPACES 163

Lemma 6.9. For every r ≥ 0,

FlR(H) ⊂ U1
r ∩ U2

r ⊂ N3r(FlR(H)),

i.e. the intersection is uniformly (in terms of r,R and K) Hausdorff-close to FlR(H).

Proof. Consider x ∈ U1
r ∩ U2

r . Thus, there exist points x1 ∈ FlK(Xu) ∪ FlR(H),
x2 ∈ FlK(Xv) ∪ FlR(H) at distance ≤ r from x. If one of these points is in FlR(H) then
d(x, FlR(H)) ≤ r. Therefore, assume that x1 ∈ FlK(Xu), x2 ∈ FlK(Xv). By Lemma 6.6(1),
d(x, FlR(H)) ≤ 3r, as required. □

Recall that K ≥ K0, k = K6.5(K). Set R := k∧. In the next proposition, N′ indicates a
metric neighborhood of Y1 or Y2 taken inside FlR∧ (Xu) or FlR∧ (Xv) respectively. The most
useful part of the proposition is (2): Part (1) is used only to prove (2).

Proposition 6.10. Assume that K ≥ K0 and X satisfies the uniform κ-flaring condition
for

κ = max(k6.3(K), κ4.7(R∧)).
Then there exist δ′6.10 = δ

′
6.10(K,C), δ6.10 = δ6.10(K), L′6.10 = L′6.10(K,C), C6.10 = C6.10(K),

and a function η6.10 = η6.10,K such that the following hold.
(1) For each C ≥ C6.10, both U′1 = N′C(Y1) and U′2 = N′C(Y2), equipped with the

induced path-metrics, are δ′6.10(K,C)-hyperbolic and L′6.10(K,C)-qi embedded in
X.

(2) For
r := max(C6.10,Mk6.3(K)),

the union
Ur := U1

r ∪ U2
r

equipped with the induced path-metric, is δ6.10(K,R)-hyperbolic and η6.10-unifor-
mly properly embedded in X.

Proof. (1) We will only prove the claim for U′1 since the proof for U′2 is obtained by
relabelling. Recall that

Y1 = FlK(Xu) ∪ Y0.

Since R ≥ k′, the definition of Y0 and Lemma 6.6(2) imply that

Y0 = FlR(H) ⊂ FlR∧ (Xu).

Furthermore, since R∧ ≥ R ≥ k ≥ K, FlK(Xu) ⊂ FlR∧ (Xu). Thus,

Y1 ⊂ FlR∧ (Xu).

Recall that we are assuming that X satisfies the uniform κ4.7(R∧)-flaring condition. There-
fore, Theorem 5.17 applies and the flow-space FlR∧ (Xu) is δ = δ5.17(R∧)-hyperbolic.

By Lemma 6.8, Y0 is L3.34(k′,R)-qi embedded in X, while FlK(Xu) is L3.22(K)-qi em-
bedded in X according to Corollary 3.22.

Hence, for
L := 2 max(L3.34(k′,R), L3.22(K))

and
λ = λ1.92(δ, L),

both Y0 and FlK(Xu) are λ-quasiconvex in FlR∧ (Xu). Moreover, these subsets have nonemp-
ty intersection (containing at least Hu). Thus, their union is λ+ δ-quasiconvex in FlR∧ (Xu).

By Lemma 1.98(1), since
C ≥ C6.10 ≥ λ + δ,
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the C-neighborhood U′1 of Y1 = FlK(Xu) ∪ Y0 in FlR∧ (Xu) (equipped with the induced
path-metric) is δ +C-quasiconvex in FlR∧ (Xu).

Furthermore, by Part (2) of the same lemma, since C was taken to be ≥ 2λ + 4δ, the
inclusion map U′1 → FlR∧ (Xu) is a (1, 6δ + C)-quasiisometric embedding, where U′1 is
equipped with the induced path-metric. Thus, U′1 is δ1.56(δ, 6δ+C)-hyperbolic, see Lemma
1.56. Moreover, the inclusion map U′1 → X is an L′6.10-qi embedding with

L′6.10 = L3.22(R∧)(6δ +C).

This proves Part (1), where we use:

δ = δ5.17(R∧), L = 2 max(L3.34(k′,R), L3.22(K)),

λ = λ1.92(δ, L),C6.10 = 2λ + 4δ, δ′6.10 = δ1.56(δ, 6δ +C).

(2) In the proof of Part (1) we were using hyperbolicity of the union of two quasi-
convex subsets in a hyperbolic space. In Part (2), such ambient hyperbolic space is un-
available, so we will use hyperbolicity of pairwise quasiconvex amalgams of hyperbolic
spaces (Theorem 2.65, quasiconvex amalgamation), to prove hyperbolicity of Ur. We will
be using Part (1) with C = r. We have, of course,

Yi ⊂ U′i = N′r(Yi) ⊂ U i
r = Nr(Yi), i = 1, 2.

Since each inclusion map U′i → U i
r is an L-quasiisometry, L′ = max(L3.22(K), r), Lemma

1.56 implies that U i
r is δ′1.56(δ′6.10, L

′)-hyperbolic.
Since Y0 is L3.34(k′,R)-qi embedded in X, it is λ1.92(δ′6.10, L3.34(k′,R))-quasiconvex in

U i
r, i = 1, 2. Since Y0 is 3r-Hausdorff close to U1

r ∩U2
r (Lemma 6.9), it follows that U1

r ∩U2
r

is λ′-quasiconvex in both U1
r ,U

2
r where

λ′ = 3r + δ′6.10λ1.92(δ′6.10, L3.34(k′,R)).

Thus, we are in position to apply Theorem 2.65 (quasiconvex amalgams), and con-
clude that the union Ur = U1

r ∪U2
r is δ6.10(K,D,R)-hyperbolic. It remains to prove that Ur

is uniformly properly embedded in X, thereby proving half of (2).

Let x1, x2 be points in Ur. We need to estimate dUr (x1, x2) in terms of d(x1, x2). It
suffices to consider the case when xi ∈ U i

r, i = 1, 2, since U′1,U
′
2 are both L′6.10-qi embedded

in X and are within Hausdorff distance r from U1
r ,U

2
r respectively. Let yi ∈ Y i be points at

distance ≤ r from xi, i = 1, 2; d(y1, y2) ≤ d(x1, x2) + 2r. Since

Y1 = FlK(Xu) ∪ Y0,Y2 = FlK(Xv) ∪ Y0

using the fact that Y0 is L3.34(k′,R)-qi embedded in X, the problem reduces to the case when
y1 ∈ FlK(Xu), y2 ∈ FlK(Xv). Recall that according to Corollary 6.4 (applied to Qu = Xu),
since

r ≥ Mk6.3(K),

the r-neighborhood of the union FlK(Xu) ∪ FlK(Xv) is η6.4,K-properly embedded in X.
Therefore,

Nr(FlK(Xu) ∪ FlK(Xv)) ⊂ Nr(Y1) ∪ Nr(Y2) = Ur,

and we obtain

dUr (x1, x2) ≤ dNMk (FlK (Xu)∪FlK (Xv)) ≤ η6.3,K(d(x1, x2) + 2r).

This concludes the proof of Part (2) and, hence, of the proposition. □

We can now prove the main result of this section:
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Corollary 6.11. Suppose that K ≥ K0 and u, v are vertices in T such that FlK(Xu) ∩
Xv , ∅. Set k6.11 := K6.5(K∧), R6.11 := k∧6.11 and assume that X satisfies the uniform
κ-flaring condition for

κ = κ6.11(K) = max(k6.3(K∧), κ4.7(R∧6.11)).

Then there exist δ = δ6.11(K), D = D6.11(K), and a function η = η6.11,K such that the
following hold:

The D-neighborhood ND(FlK(Xu) ∪ FlK(Xv)) (with the induced path-metric) in X is
δ-hyperbolic and η-properly embedded in X.

Proof. According to Proposition 3.26, for K1 = K∧,

FlK1 (Xv) ∩ Xu , ∅.

Of course, we still have

FlK1 (Xu) ∩ Xv ⊃ FlK(Xu) ∩ Xv , ∅.

Therefore, Proposition 6.10(2) applies and we get that for r1 = r(K1) as in the proposition,
U = Ur1 is δ(K1)-hyperbolic and ηK1 -properly embedded in X.

Since both FlK(Xu), FlK(Xv) are L = L3.22(K)-qi embedded in X (hence, in U), they
are λ1 = λ1.92(δ(K1), L)-quasiconvex in U (Lemma 1.92). Set

D := max
(
2λ1 + 4δ(K1),Mk6.3(K)

)
.

By Lemma 1.98, the D-neighborhood V of FlK(Xu) ∪ FlK(Xv) in U is (2λ1 + 5δ(K1))-
quasiconvex in U. By the same lemma, V (equipped with its path-metric) is (10δ(K1) +
2λ1)-qi embedded in U. Hence, V is δ1.56(δ(K1), 10δ(K1) + 2λ1)-hyperbolic (see Lemma
1.56).

Note that the Hausdorff distance in X between V (the D-neighborhood of FlK(Xu) ∪
FlK(Xv) in U) and ND(FlK(Xu) ∪ FlK(Xv)) (the D-neighborhood in X) is ≤ D. Since U
is ηK1 -properly embedded in X and the inclusion map V → U is a (10δ(K1) + 2λ1)-qi
embedding, the composition V → ND(FlK(Xu) ∪ FlK(Xv)) is ζ-proper for

ζ(t) = (10δ(K1) + 2λ1)η(t) + (10δ(K1) + 2λ1)2.

Corollary 1.60 now implies that ND(FlK(Xu) ∪ FlK(Xv)) is δ6.11(K)-hyperbolic for

δ6.11(K) = δ1.56(δ1.56(δ(K1), 10δ(K1) + 2λ1), ζ(2D + 1)).

It remains to estimate the distortion of ND(FlK(Xu) ∪ FlK(Xv)) in X. Since D ≥ Mk6.3(K),
Corollary 6.4 applies and FlK(Xu)∪FlK(Xv) is η6.4,K,D-properly embedded in X. Therefore,
its D-neighborhood is η-properly embedded in X for

η6.11,K(t) = η(t) = 2D + η6.4,K,D(t + 2D). □

Remark 6.12. This corollary gives us the value of K∗ in Theorem 2.62:

(6.3) K∗ = max(k6.3(K∧), κ4.7(R∧6.11)),

where K = K0.
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6.1.3. Hyperbolicity of flow-spaces of special interval-spaces FlK(XJ). In this sec-
tion we conclude the proof of Theorem 6.14. We will also prove uniform hyperbolicity of
flow-spaces FlK(XJ), whenever J ⊂ T is a union of three special intervals.

For the next proposition, set D = D6.11(K) and κ = κ6.11(K).

Proposition 6.13. Assume that K ≥ K0 and X satisfies the uniform κ-flaring condition.
Let v0, v1, v2 be vertices of T such that v0 ∈ ⟦v1, v2⟧. We will assume that each subinterval
Ji = ⟦v0, vi⟧, i = 1, 2, is special. Then the D-neighborhood (taken in X)

Z := ND(FlK(Xu) ∪ FlK(Xv) ∪ FlK(Xw))

(equipped with the path-metric induced from X) is δ = δ6.13(K)-hyperbolic and η = η6.13,K-
properly embedded in X.

Proof. Define Yi = ND(FlK(Xvi )), Zi := ND(Y0∪Yi), i = 0, 1, 2. Thus, Z = ND(Y1∪Y2)
and, furthermore, ND(Y0) = Z0 = Z1 ∩ Z2 and Z0 separates Z1, Z2 in X: Every path c
connecting a point of Z1 to a point of Z2, has to intersect Z0, see Proposition 3.26(1).

1: Z = Z1 ∪ Z2 is hyperbolic. The hypothesis of the proposition implies that both
Z1 and Z2 satisfy the assumptions of Corollary 6.11. Thus, each Zi is δ6.11(K)-hyperbolic
and η6.11,K-properly embedded in X. Since FlK(Xv0 ) is L3.22(K)-qi embedded in X, it is
λ = λ1.92(δ6.11(K), L3.22(K))-quasiconvex in Z1,Z2. Hence, Z0 = ND(FlK(Xv0 )) is λ + D +
2δ6.11(K)-quasiconvex in Z1,Z2. Theorem 2.65 (for quasiconvex amalgams) now implies
that Z is δ = δ6.13(K)-hyperbolic.

2: Z1 ∪ Z2 is uniformly properly embedded in X. The proof is similar to that of
Proposition 6.10(2). Take points x1 ∈ Z1, x2 ∈ Z2. Then the separation property mentioned
earlier, implies that each geodesic z1z2 in X has to intersect Z0 at some z0. In particular,
max(d(z1, z0), d(z0, z2)) ≤ d(z1, z2).

By Proposition 6.3, for i = 1, 2,

dZi (zi, z0) ≤ 2D + η6.3,K(d(zi, z0)) ≤ 2D + η6.3,K(d(z1, z2)),

and, therefore,

dZ(z1, z2) ≤ η(d(z1, z2)) = η6.13,K(d(z1, z2)) := 4D + 2η6.3,K(d(z1, z2)). □

Recall that for subtrees S ⊂ T , we defined flow-spaces FlK(XS ), see (3.16). We
again assume that K ≥ K0, X satisfies the uniform κ6.11(K)-flaring condition and set D =
D6.11(K).

Theorem 6.14. The flow-space FlK(XJ) of any special interval J = ⟦u, v⟧ ⊂ T
(equipped with the intrinsic path-metric) is δ6.14(K)-hyperbolic.

Proof. It suffices to prove uniform hyperbolicity of the D-neighborhood of FlK(XJ)
in X (with the path-metric induced from X), the claim then will follow from the fact that
FlK(XJ) is uniformly qi-embedded in X (Proposition 3.32).

Note that, in view of the assumption of the theorem, for any two vertices t, s ∈ J, at
least one of the intersections is nonempty:

FlK(Xt) ∩ Xs , ∅, or FlK(Xs) ∩ Xt , ∅

(depending on which distance d(t, v), d(s, v) is larger). Thus, any triple of vertices v0, v1, v2
in J satisfies the assumptions of Proposition 6.13, and, hence,

Z = ND
(
FlK(Xv0 ) ∪ FlK(Xv1 ) ∪ FlK(Xv2 )

)
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is δ6.13(K)-hyperbolic and η6.13,K-properly embedded in X. Since each flow-space FlK(Xvi )
is L3.22(K)-qi embedded in X, it follows that the D-neighborhood of the union of any two
of these flow-spaces is λ(K)-quasiconvex in Z.

We are now in position to apply Corollary 1.64. For each pair of points x, y ∈ F lK(XI)
we define the path c(x, y) in ND(FlK(XJ)) to be a geodesic between x, y in

ND

(
FlK(Xπ(x)) ∪ FlK(Xπ(y))

)
.

In view of the uniform proper embeddedness of this union (in X) and the uniform hyper-
bolicity of the triple unions as above, this family of paths in FlK(XJ) satisfies axioms of
Corollary 1.64. □

We now deal with Step 2 outlined in the introduction to this chapter. This step is a
rather direct application of Theorem 6.14: We apply quasiconvex amalgamation of pairs
twice to show that FlK(XJ) is hyperbolic.

Proposition 6.15. Suppose that J is an interval in T , that can be subdivided as a union
of three special subintervals J = J1 ∪ J2 ∪ J3,

Ji = ⟦vi, vi+1⟧, i = 1, 2, 3.

Then FlK(XJ) (equipped with the intrinsic path-metric) is δ6.15(K)-hyperbolic.

Proof. A quick way to argue is to appeal to Corollary 2.69 since FlK(XJ) has a struc-
ture of a hyperbolic tree of spaces with the base-tree consisting of four vertices and three
edges (forming an interval of length 3), where the vertex-spaces are FlK(XJi )’s and the
edge-spaces are FlK(Xvi )’s. We will give a more explicit proof following the proof of
Corollary 2.69 since it will also provide us with a description of uniform quasigeodesics in
FlK(XJ).

We will use the quasiconvex amalgamation (see Section 2.6.2) twice:
a. We have

FlK(XJ1 ) ∩ FlK(XJ2 ) = FlK(Xv2 ).

The intersection is L3.22(K)-qi embedded in X, hence, in FlK(XI), I = J1 ∪ J2. Since both
FlK(XJ1 ), FlK(XJ2 ) are δ6.14(K)-hyperbolic, Theorem 2.65 (for quasiconvex amalgams) im-
plies ϵ6.15(K)-hyperbolicity of their union FlK(XI).

b. We have
FlK(XJ) = FlK(XI) ∪ FlK(XJ3 ),

and
FlK(XI) ∩ FlK(XJ3 ) = FlK(Xv3 ).

The intersection is L3.22(K)-qi embedded in X, hence, in FlK(XI), I = J1 ∪ J2. Since both
FlK(XI), FlK(XJ3 ) are δ-hyperbolic,

δ = max(δ6.14(K), ϵ6.15(K)),

Theorem 2.65 (for quasiconvex amalgams) implies δ6.15(K)-hyperbolicity of their union
FlK(XJ). □

The following result is never used afterwards, we include the proof for the sake of
completeness of the picture.

Corollary 6.16 (Hyperbolicity of the union of two flow-spaces: General case). For
each K ≥ K0, for D = D6.11(K), assuming that X satisfies the uniform κ6.11(K)-flaring
condition, the following holds:
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If u, v ∈ V(T ) are such that FlK(Xu) ∩ FlK(Xv) , ∅, then

ND(FlK(Xu) ∪ FlK(Xv))

is an L6.16(K)-qi embedded, δ6.16(K)-hyperbolic subspace of X.

Proof. Since FlK(Xu) ∩ FlK(Xv) , ∅, the interval J = ⟦u, v⟧ splits as the union of
two special subintervals, J1, J2, there is a vertex w in the interval I = ⟦u, v⟧ such that
Xw∩FlK(Xu) , ∅ and Xw∩FlK(Xv) , ∅ (see Lemma 3.40). Thus, ND(FlK(Xu)∪FlK(Xv)) is
contained in the D-neighborhood of the δ6.15(K)-hyperbolic subspace, FlK(XI). The result
now follows from Lemma 1.98 on unions of quasiconvex subsets of hyperbolic spaces,
combined with Proposition 6.3. □

6.2. Hyperbolicity of flow-spaces of general interval-spaces

This section deals with Step 3 outlined in the introduction to this chapter. Recall
that according to Proposition 3.32, for every subtree S ⊂ T and K ≥ K0, the flow-space
FlK(XS ) is L3.32(K)-qi embedded in X.

Theorem 6.17. For every K ≥ K0, assuming that X satisfies the uniform κ6.11(K)-
flaring condition, for each interval J = ⟦u, v⟧ ⊂ T, the flow-space FlK(XJ) is δ6.17(K)-
hyperbolic.

Proof. When u = v, the statement is established in Theorem 5.17. Therefore, we
consider the case of nondegenerate intervals J.

We apply the Horizontal Subdivision Lemma (Lemma 3.44) and its corollary (Corol-
lary 3.45) to subdivide the interval J into subintervals J0, ..., Jn such that:

(i) Each Ji is the union of three K-special subintervals.
(ii) Whenever |i − j| ≥ 2, the flow-spaces FlK(XJi ), FlK(XJ j ) are L3.21(K)-Lipschitz

cobounded in X, hence (taking restrictions of Mitra’s projections), in FlK(XJ) as well.

According to Corollary 6.15, each flow-space FlK(XJi ) is δ6.15(K)-hyperbolic.

Finally, we consider the union

FlK(XJ) =
⋃

0≤i≤n

FlK(XJi ).

By Proposition 3.26(1),

FlK(XJi−1 ) ∩ FlK(XJi ) = FlK(Xui ).

Since whenever |i − j| ≥ 2, the flow-spaces FlK(XJi ), FlK(XJ j ) are L3.21(K)-Lipschitz
cobounded in FlK(XJ) and the consecutive intersections FlK(Xui ) are L3.21(K)-qi embedded
in FlK(XJ), Theorem 2.65 applies and the flow-space FlK(XJ) is δ6.17(K)-hyperbolic. □

6.3. Conclusion of the proof

In this section we finish the proof of the main result of this book, Theorem 2.62. We
first prove that flow-spaces FlK(XS ) are uniformly hyperbolic, whenever S is a tripod in T
(Corollary 2.69). We then conclude the proof of Theorem 2.62 by appealing to Corollary
1.64 one last time by constructing a slim combing in X via geodesics in flow-spaces of
interval-spaces.
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Proposition 6.18. Assume that X satisfies the uniform κ6.11(K)-flaring condition. Sup-
pose S = Tbu1u2u3 ⊂ T is a tripod1 with the center b and three extremities u1, u2, u3. Then
for every K ≥ K0, the flow-space FlK(XS ) is δ6.18(K)-hyperbolic.

Proof. The proof is similar to that of Proposition 6.15. The tripod S is the union
of three segments (legs) Ji = ⟦ui, b⟧, i = 1, 2, 3, whose pairwise intersections equal {b}.
According to Theorem 6.17, each flow-space FlK(XJi ) is δ6.17(K)-hyperbolic. The inter-
section

3⋂
i=1

FlK(XJi ) = FlK(XJm ) ∩ FlK(XJn ) = FlK(Xb), 1 ≤ m < n ≤ 3

(see Proposition 3.26(1)) is δ5.17(K)-hyperbolic (Theorem 5.17) and L3.21(K)-qi embedded
in X. Therefore, FlK(XS ) has structure of a tripod Y of hyperbolic spaces (see Remark
2.64(2))

Y = FlK(XS )→ S ′ = Tbv1v2v3,

where the tripod S ′ has four vertices (b, v1, v2, v3) and three edges, all incident to the vertex
b. Namely, the vertex-spaces ofY are Yb = FlK(Xb), Yvi = FlK(XJi ). The three edge-spaces
are all isomorphic to Yb and have natural incidence maps (inclusion maps) to the vertex-
spaces. Now, the proposition follows from Corollary 2.69. □

We can now finish our proof of Theorem 2.62. We let K = K0 and K∗ be as Notation
2.6.4 and Remark 6.12 respectively (the constants δ′0, λ

′
0, L

′
0 used in Notation 2.6.4 are

defined in Notation 2.6.4). We assume that the tree of spaces X satisfies the uniform K∗-
flaring condition.

We will once again apply Corollary 1.64, with X0 = X, the union of vertex-spaces in
X. For each pair of vertices u, v ∈ V(T ), and points x ∈ Xu, y ∈ Xv, we define the path
c(x, y) in X to be the intrinsic geodesic in the flow-space Y = FlK(Xuv). In order to verify
the assumptions of Corollary 1.64, we observe that condition (a1) follows from the fact
that each Y is L = L3.32(K)-qi embedded in X. We also conclude that each path c(x, y) is
an L-quasigeodesic in X. Condition (a2) is immediate from Proposition 6.18. □

Corollary 6.19. Let X = (π : X → T ) be a tree of hyperbolic spaces (satisfying
Axiom H). Then the following conditions are equivalent:

1. X is hyperbolic.
2. X satisfies the uniform κ-flaring condition for all κ ∈ [K0,K∗].
3. X satisfies the Bestvina-Feighn exponential flaring condition for all κ ≥ 1.
4. Carpets in X are uniformly hyperbolic. More precisely, there exists a function

δ(K,C), such that each (K,C)-narrow carpet in X has δ(K,C)-hyperbolic total space.
5. Ladders in X are uniformly hyperbolic. More precisely, there exists a function

δ(K,D, E), such that each (K,D, E)-ladder in X has δ(K,D, E)-hyperbolic total space.

Proof. The implication 2⇒ 1 is the content of Theorem 2.62. The converse implica-
tion 1⇒ 2 is Lemma 2.50. In Proposition 2.60 we proved the implication 1⇒ 3, while the
implication 3⇒ 2 is proven in Lemma 2.59. Thus, we obtain the equivalence of 1, 2 and
3.

In order to establish equivalence of 1 with 4 and 5, observe that the uniform flaring
condition is defined in terms of separation properties of pairs of K-sections over intervals in
T and every such pair of sections is contained in a carpet, while each carpet is contained in
a ladder. Applying the implication 1⇒ 2 to trees of spaces which are carpets and ladders,

1see Definition 1.74
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we conclude that uniform hyperbolicity of carpets/ladders implies the uniform κ-flaring
condition for X for all κ ≥ 1. □



CHAPTER 7

Description of geodesics

7.1. Inductive description

Let π : X → T be a tree of hyperbolic spaces (satisfying Axiom H) with hyperbolic
total space X. We can now give a description of geodesics in X, more precisely, of uniform
quasigeodesics. This description is inductive/hierarchical. The basis of induction is the
fact that each K-qi leaf in X (i.e. the image of a K-qi section of π : X → T over a geo-
desic segment in T ) defines a uniform horizontal quasigeodesic in X. Such quasigeodesics
present one type of building blocks of geodesics in X. The second building block con-
sists of vertical quasigeodesics in X: Such quasigeodesics are certain intrinsic geodesics
in vertex-spaces Xv of X. While Xv’s (typically) are not quasiisometrically embedded in
X, some geodesics in Xv’s nevertheless are uniform quasigeodesics in X, namely, ones sat-
isfying the small carpet condition, see Proposition 7.2 below. We will see that general
geodesics in X are uniformly Hausdorff-close to alternating concatenations of horizontal
and vertical uniform quasigeodesics. In Section 7.3 we, furthermore, give a simpler de-
scription of uniform quasigeodesics in a more limited class of trees of spaces, namely,
acylindrical trees of spaces.

There are several basic classes of subtrees of spaces in X, which are used in description
of geodesics in X. All of these are special cases of semicontinuous families (of subsets of
vertex-spaces) in X, see Chapter 3, all are uniformly quasiconvex subsets of X. Here is
the list of these classes of subspaces, listed in order of increase of the complexity of their
definitions:

• Carpets A ⊂ X.
• Metric bundles H ⊂ X.
• Ladders L ⊂ X.
• Flow-spaces of vertex-spaces FlK(Xu) ⊂ X.
• Flow-spaces FlK(XS ), where S ⊂ T is a subtree and XS = π

−1(S ).
• Flow-spaces of metric bundles FlK(H) ⊂ X.

We first describe geodesics in carpets, then use those to describe geodesics in ladders,
use those to describe geodesics in flow-spaces of vertex-spaces. At the same time, flow-
spaces of metric bundles Flk(H) are uniformly quasiconvex subsets of certain flow-spaces
FlK(Xu) (form some K ≥ k) and, hence, we do not give a separate description of geodesics
in the former. After Step I.4, our description of geodesics in X only uses geodesics in flow-
spaces FlK(Xu) as building blocks. A key feature of flow-spaces is that they are uniformly
quasiconvex in X (unlike vertex-spaces themselves). Each flow-space is itself a tree of
spaces, FlK(Xu)→ S u, where S u is a subtree in T . The intersection pattern of the subtrees
S u (encoded in the flow-incidence graph ΓK) is discussed in Section 3.3.5; it will provide
a guide for describing geodesics in X in terms of geodesics in flow-spaces FlK(Xu).

We now describe (inductively) geodesics in X. Except for the two initial steps, the rest
is a repetitive use of one of the following constructions:

171
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Figure 23. Geodesics in amalgams

(a) Quasiconvex amalgams: Section 2.6.2. Given two L-qi embedded subsets Q1,Q2
in a δ-hyperbolic space Y , with nonempty L-qi embedded intersection Q12 = Q1 ∩ Q2, the
union

Q = Q1 ∪ Q2

is a quasiconvex amalgam of Q1,Q2.

Figure 24. Geodesics in chain-amalgams

(b) Pairwise cobounded quasiconvex chain-amalgamation. We refer to Section
2.6.2 for a detailed definition and description of uniform quasigeodesics in unions Q =
Q0 ∪ Q1 ∪ ... ∪ Qn defining quasiconvex chain-amalgamation. Such amalgamations (with
n ≥ 2) will be used just in two instances in our proof. Briefly, paths c in Q are alternating
concatenations of geodesics in Qi,i+1’s and Qi’s connecting points x+i , x

+
i+1 ∈ Qi,i+1 and

x−i , x
+
i ∈ Qi where latter pairs (up to a uniformly bounded error C) realize the minimal

distance between Qi−1,i,Qi,i+1 in Qi. See Figure 24.

We now begin the inductive description of uniform quasigeodesics. Regarding con-
stants C,D, E,K appearing below: Ultimately, we will take K = K∗, C = MK̄ , D = D5.2,
E = E5.2. However, for instance, the description of paths in carpets works for all K ≥ 1
and all C ≥ 0, etc.
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Part 0: Geodesics in K-qi sections of X = (π : X → T ). The basis for the entire
description of uniform quasigeodesics in X is the fact that each K-qi leaf in X is a K-
quasigeodesic in X.

Part I: Geodesics in flow-spaces of vertex-spaces FlK(Xv).
These geodesics (or, rather, uniform quasigeodesics) are described in three steps.

Step I.1. Quasigeodesics in carpets: Section 4.1, especially, Proposition 4.1.

Figure 25. Geodesics in carpets

Let A = (π : A → J) ⊂ X be a (K,C)-carpet over an interval J = ⟦u,w⟧, such that the
end Aw of A over w is C-narrow (i.e. is a geodesic of length ≤ C in Xw).

Then for x, y ∈ A we consider K-sections γx, γy over subintervals ⟦π(x),w⟧, ⟦π(y),w⟧
in J. Without loss of generality, we may assume that π(y) ∈ ⟦π(x),w⟧.

Let txy ∈ ⟦w, π(y)⟧ denote the supremum of

{t ∈ ⟦w, u⟧ : dXt (γx(t), γy(t)) ≤ MK}.

Then an L4.1(K,C)-quasigeodesic c(x, y) in A is defined as the concatenation of the sec-
tion γx restricted to ⟦π(x), t⟧ with the vertical segment γ = [γx(t)γy(t)]Xt , followed by the
concatenation with the restriction of the section γy to the subinterval ⟦t, π(y)⟧. See figure
25.

Step I.2. Quasigeodesics in carpeted ladders with narrow carpets: Section 4.2,
especially Proposition 4.8.

For a vertical geodesic segment α ⊂ Xu, we consider a carpeted ladder, a (K,D, E)-
ladder L = LK(α) = (π : A → J),which contains a (K,C)-carpet A = A(α′), where α′ ⊂ α
is a subsegment of length ≥ length(α) − MK̄ , where K̄ is defined by

K̄ := K3.47(δ0,K,K).

The definition of paths c(x, y) connecting points x, y ∈ L is a two-part process.
Part a: Retraction ρ and paths cx. In Section 3.4 we defined a retraction ρ : LK(α)→

A: This retraction is uniformly close to the nearest-point projection, see Remark 3.64. This
retraction plays a critical role in the definition of our combing of LK(α). Below is a review
of the definition of the retraction in terms of the structure of the tree of spaces.
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For a point x ∈ Lv, let γx be a canonical K-leaf in L connecting x to α: Such leaves
are a part of the definition of a ladder. Ultimately, which leaf one takes does not matter
and the paths cx change only a uniformly bounded amount if one makes a different choice.
Let t = tx ∈ ⟦u, v⟧ be the vertex farthest from u such that π(x) ∈ J and there exists a point
x̃ ∈ γx(t) for which

dXt (x̃, At) ≤ MK̄ .

(It is possible that t = u and x̃ ∈ Au = α.) Then define a path cx connecting x to ρ(x) = x̄
and equal to the concatenation

γx,x̃ ⋆ [x̃x̄]Xt .

Here t = tx, and
γx,x̃ = γx|⟦v,t⟧,

is the subpath of γx connecting x to x̃, while x̄ ∈ At is a nearest-point projection of x̃ to At in
the vertex-space Xt. Since cx is uniformly Hausdorff-close to γx,x̃, the point ρ(x) essentially
determines the path cx.

Figure 26. Geodesics in ladders: Type 1

Part b: Paths c(x, y). For x, y ∈ L we let b = bxy be the center of the triangle
△uπ(x)π(y). The path c(x, y) in LK(α) connecting x to y is defined as follows.

Paths of type 1: There exists t ∈ V(⟦π(x), π(x̄)⟧ ∩ ⟦π(y), π(ȳ)⟧) ⊂ V(⟦u, b⟧) such that

dXt (γx(t), γy(t)) ≤ MK̄ ,

i.e. the paths γx, γy “come sufficiently close” in some common vertex-space.
Then let t = tx,y be the maximal vertex in ⟦u, b⟧ with this property. Then define c(x, y)

to be the concatenation of the portions of γx and (the reverse of) γy over ⟦t, π(x)⟧ and
⟦t, π(y)⟧ respectively with the subsegment γ ⊂ Lt joining their end-points. See Figure 26.

Paths of type 2: Suppose type 1 does not happen. Then define c(x, y) to be the
concatenation of cx and the reverse of cy with a geodesic in A connecting ρ(x) to ρ(y). See
Figure 27.

Remark 7.1. The geodesic in A here is taken for granted, see Step I.1. In fact, instead
of a geodesic one should take a path c(ρ(x), ρ(y)) in A defined in Step I.1. Such inductive
arguments will be common in what follows and we will simply say “geodesic.”
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Figure 27. Geodesics in ladders: Type 2

One more thing of importance is that the vertical segments

[x̃ρ(x)]Xux
, [ρ(y)ỹ]Xuy

have length ≤ MK̄ , hence, for paths of both types we are essentially concatenating at most
three paths, two of which are horizontal subpaths of cx, cy and one which lies in the carpet
A. (The latter is also essentially a concatenation of two horizontal paths.)

Step I.3. Quasigeodesics in general (K,D, E)-ladders L(α): Section 4.3, especially
Proposition 4.14.

In this case, uniform quasigeodesics are constructed via cobounded quasiconvex amal-
gamation, amalgamating ladders LK(α1), ...,LK(αn+1) along uniformly pairwise cobounded
uniformly quasiconvex subsets Σ1 = Σp1 ,..., Σn−1 = Σpn−1 , which are canonical K-qi sec-
tions of these ladders.

We consider a ladder L = LK(α) of a vertical geodesic α = [pq]Xu and a pair of points
x, x′ ∈ LK(α), connected to the end-points p, p′ of α by K-qi leaves in LK(α).

In Proposition 4.14 we prove the existence of a Vertical Subdivision of every vertical
geodesic segment α ⊂ Xu, α = [pp′]Xu into subsegments

α1 = [p1 p2]Xu , ..., αn = [pn pn+1]Xu , p1 = p, pn+1 = p′,

such that:
(a) For each i, the segment αi defines a carpeted ladder Li = LK(αi) which is a

(K,D, E)-subladder in L containing a (K,C)-narrow carpet AK(α′i) (for C = MK̄).
(b) The canonical sections Σi,Σi+1 (in L) through the points pi, pi+1 are, respectively,

the bottom and the top sections of Li, so that

Li−1 ∩ Li = Σi

(c) The sections Σi,Σi+1 are B4.14(K,C)-cobounded unless i = n.
(d) For all i,

0 ≤ li − length(α′i) ≤ MK ≤ MK̄ .

(e) The top and bottom sections Σp,Σp′ of L pass through the points x, x′.

In particular, the ladder L is a quasiconvex amalgam of its subladders Li with pairwise
intersections Li−1 ∩ Li = Σi.

As a part of the proof of the Vertical Subdivision Proposition (Proposition 4.14), we
identify (up to a uniformly bounded error) the nearest points x−i ∈ Σi, x+i ∈ Σi+1 between
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Figure 28. Geodesics in general ladders: Vertical subdivision

these cobounded subsets. Namely, by the construction, the ladder Li contains the carpet
A(α′i) over an interval ⟦u,wi⟧, with the narrow end

Awi = [xwi ywi ]Xwi
.

Then (up to a uniformly bounded error),

x−i = xwi .

The description of the point x+i is more complicated, see Lemma 4.15.
The paths c(x−i , x

+
i ) are defined according to Step I.2 and the paths c(x+i , x

−
i+1) are de-

fined as in Part 0 (by using K-qi leaves in the K-qi section Σi). Lastly, according to Theorem
2.65,

c(x, x′) = c(x, x+1 ) ⋆ c(x+1 , x
−
2 ) ⋆ ... ⋆ c(x−n , x

+
n ) ⋆ c(x+n , x

′),

where c(x, x+1 ), c(x+n , x
′) are the uniformly quasigeodesic paths in carpeted ladders L1 and

Ln respectively as defined in Step I.2.

Conclusion of Part I: Quasigeodesics in flow-spaces Flk(Xu) of vertex-spaces. Any
two points x, x′ ∈ Flk(Xu) belong to a common (K,D, E)-ladder Lx,x′ = L(α), where α is
a certain geodesic in Xu and K,D, E depend on k. The ladder itself is uniformly close to a
uniformly quasiconvex subset of Flk(Xu). Hence, Step I.3 yields a description of uniform
quasigeodesics c(x, x′) connecting arbitrary points x, x′ ∈ Flk(Xu) (the path c(x, x′) is the
projection to Flk(Xu) of a geodesic in L(α) connecting x, x′).

Part II: Connecting points in flow-spaces Flk(XJ) for special intervals J ⊂ T . An
interval J = ⟦u, v⟧ ⊂ T is said to be special (more precisely, k-special) if some w ∈ {u, v}
has the property that J ⊂ π(Flk(Xw)); such w is called a special vertex in J. The flow-
space Flk(XJ) then is called a special flow-space (more precisely, k-special flow-space).
Similarly, an interval J ⊂ T is k-semispecial if it is the union of two special intervals
meeting at a vertex. Accordingly, for such J, the flow-space Flk(XJ) is k-semispecial.
Uniform quasigeodesics in Flk(XJ) in this setting are described using pairwise quasiconvex
amalgams of hyperbolic spaces.

Step II.4. Uniform quasigeodesics in special flow-spaces: Section 6.1.2, especially
Proposition 6.10, Corollary 6.11.

We assume that J = ⟦u, v⟧ ⊂ T is a K-special interval in T . The flow-spaces FlK(Xu),
FlK(Xv) are uniformly quasiconvex in X, hence, a uniform D-neighborhood of this union



7.1. INDUCTIVE DESCRIPTION 177

in X is hyperbolic. The constant D is defined in Corollary 6.11. On this step, we describe
uniform quasigeodesics in X connecting points of FlK(Xu) ∪ FlK(Xv) and uniformly close
to such a union.

We first define a certain metric bundle H over J. We then combine the generalized
flow-space Y0 = FlR(H) of this bundle (for some R = R(K)) with the flow-spaces FlK(Xu),
FlK(Xv) to get “modified flow-spaces” Y1 = FlK(Xu) ∪ FlR(H), Y2 = FlK(Xv) ∪ FlR(H).
The union

U = U1 ∪ U2 = ND(Y1) ∪ ND(Y2)
is uniformly qi embedded in X, while the intersection U1 ∩ U2 is uniformly quasiconvex
and uniformly Hausdorff-close to Y0. Moreover, U1,U2 are uniformly Hausdorff-close to
subsets in Z1 = FlK1 (Y1),Z2 = FlK1 (Y2) for some (computable K1 ≥ K).

Hence, we are in the setting of the quasiconvex amalgamation of a pair (Section 2.6.2).
To connect x ∈ FlK(Xu), y ∈ FlK(Xv) by a uniform quasigeodesic uniformly close to
FlK(Xu) ∪ FlK(Xv) we proceed as in Section 2.6.2:

We first project (in FlK1 (Y1), FlK1 (Y2) respectively) the points x, y to points x̄, ȳ ∈
Y0 = FlK(H) (one can also use projections in U or in X, the difference will be uniformly
bounded) and then connect x̄, ȳ in Y0. The concatenations

[xx̄]Z1 ⋆ [x̄ȳ]Y0 ⋆ [ȳy]Z2

are uniform quasigeodesics in X and are uniformly close to FlK(Xu) ∪ FlK(Xv).

Step II.5: Uniform quasigeodesics in semispecial flow-spaces: Proposition 6.13
and Theorem 6.14.

Suppose now a semispecial interval S = ⟦u, v⟧ = I ∪ J, where both I = ⟦u,w⟧, J =
⟦w, v⟧ are special intervals. Then for s ∈ V(I) and t ∈ V(J), uniform quasigeodesics in
FlK(XS ) connecting points x ∈ FlK(⟦s,w⟧), y ∈ FlK(⟦w, t⟧) are described as follows. The
union

FlK(⟦s,w⟧) ∪ FlK(⟦w, t⟧)
is a quasiconvex amalgam over the flow-space FlK(Xw). Therefore, according to the
description of uniform quasigeodesics in quasiconvex amalgams, we first project (using
nearest-point projections in Z1 = ND(FlK(Xs) ∪ FlK(Xw)), resp. in Z2 = ND(FlK(Xt) ∪
FlK(Xw))) points x (resp. y) to x̄ ∈ FlK(Xw) (resp. ȳ ∈ FlK(Xw)), and then take the con-
catenation

[xx̄]Z1 ⋆ [x̄ȳ]FlK (Xw) ⋆ [ȳy]Z2 .

The first and the last geodesics in this concatenation are from Step II.4, while the middle
one is from the conclusion of Part I.

Step II.6: Uniform quasigeodesics in triple unions of special flow-spaces: Corol-
lary 6.15.

Suppose that J is an interval in T , that can be subdivided as a union of three special
subintervals, J = J1 ∪ J2 ∪ J3,

Ji = ⟦vi, vi+1⟧, i = 1, 2, 3.

Set I := J1 ∪ J2. Then geodesics in FlK(XJ) are described by applying quasiconvex amal-
gamation of pairs twice: Once to

FlK(XI) = FlK(XJ1∪J2 ),

which is the amalgam of FlK(J1), FlK(J2) over FlK(Xv2 ), and then once more, to

FlK(XI∪J3 ),



178 7. DESCRIPTION OF GEODESICS

which is the amalgam of FlK(I), FlK(J3) over FlK(Xv3 ).

Part III: Connecting general points in X.

Step III.7: Horizontal subdivision.
Any two points x, y ∈ X belong to the interval flow-space FlK(XJ), where J = ⟦u, v⟧ ⊂

T , x ∈ Xu, y ∈ Xv. Since the flow-space FlK(XJ) is (uniformly) quasiconvex in X, it suffices
to describe a uniform quasigeodesic in FlK(XJ) connecting x to y. The key ingredient of
this part is the Horizontal Subdivision Lemma (Lemma 3.44). This lemma gives a subdivi-
sion of the interval J into subintervals Ji = ⟦ui, ui+1⟧, i = 1, ..., n, such that:

1. FlK(Ji) ∩ FlK(J j) = ∅ whenever |i − j| ≥ 2.
2. Each interval Ji is subdivided in three special subintervals.
This represents FlK(XJ) as a (uniformly) pairwise cobounded quasiconvex chain with

quasiconvex subsets Qi = FlK(XJi ), i = 1, ...., n, whose consecutive intersections

Qi−1 ∩ Qi = Qi−1,i = FlK(Xui )

separate in the union FlK(XJ) as required by a cobounded quasiconvex chain-amalgamation.
Thus, uniform quasigeodesics in FlK(XJ) are described according to Section 2.6.2, see the
discussion of quasiconvex chain-amalgamation given early in this section.

This concludes our description of uniform quasigeodesics between points of X.

7.2. Characterization of vertical quasigeodesics

In this section we use the description of uniform quasigeodesics in X to characterize
vertical geodesics in X (i.e. geodesics in vertex-spaces Xu) which are quasigeodesics in X.
We assume that X = (π : X → T ) is a tree of spaces satisfying the assumptions of Theorem
2.62, equivalently, a tree of hyperbolic spaces with hyperbolic total space X. Set K = K0
and let C = MK̄ , D = D5.2, E = E5.2.

Suppose that α is (finite or infinite) geodesic in Xu. We will say that α satisfies the
R-small carpet condition if whenever α′ ⊂ α is a subsegment which bounds a (K,C)-
narrow carpet A = A(α′) ⊂ X, A = (π : A → ⟦u,w⟧), with fiberwise distances between
top(A), bot(A) at least MK , then we have

dT (u,w) = length π(A) ≤ R.

In view of Corollary 2.39, for such α’s, the lengths of subsegments α′ ⊂ α bounding
(K,C)-narrow carpets A(α′), are uniformly bounded.

The main result of this section is that a vertical geodesic α satisfies the small carpet
condition if and only if it is quasigeodesic in X. More precisely:

Proposition 7.2. 1. Each vertical geodesic α satisfying the R-small carpet condition
is an L7.2(R)-quasigeodesic in X.

2. If α fails the R-small carpet condition for all R, then α is not a quasigeodesic in X.

Proof. 1. Let L = LK(α) denote a (K,D, E)-ladder in X based on the segment α.
Since LK(α) is uniformly qi embedded in X (see Corollary 3.13), it suffices to show that α
is a uniform quasigeodesic in LK(α). We follow the description of uniform quasigeodesics
geodesics in LK(α) given in Step I.3 in the previous section. We subdivide the segment
α = [pp′]Xv = [p1 pn+1]Xu into subsegments

αi = [pi pi+1]Xu , i = 1, ..., n.

Each αi (except for possibly i = n) contains a subsegment α′i such that

MK ≤ length(αi) − MK ≤ length(α′i)
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and there exists a (K,C)-carpet Ai = A(K,C)(αi) ⊂ L; the bottom and the top of Li are K-qi
sections Σi,Σi+1 ⊂ L

i of a subladder Li ⊂ L. Moreover, for each vertex t in the interval
π(Ai),

dXt (top(Ai)t, bot(Ai)t) ≥ MK .

For each i we mark the points x−i ∈ Σi, x+i ∈ Σi+1 which (up to a uniformly bounded
error) are the nearest points in Li between these subsets and consider geodesics

βi = [x−i x+i ]Li ,

γ−i := γx+i−1,x
−
i
= [x+i−1x−i ]Σi ⊂ Σi,

γ+i := γx+i ,x
−
i+1
= [x+i x−i+1]Σi+1 ⊂ Σi+1.

The path c(p, p′) then is (up to a uniformly bounded error) equal the concatenation

c = ... ⋆ γ−i ⋆ βi ⋆ γ
+
i ⋆ ...

Our goal is to show that the path c is uniformly Hausdorff-close to α. Because the lengths
of projections π(Ai) are uniformly bounded, the geodesics βi are uniformly close to the
vertical geodesics αi. For the same reason, the paths γ±i are uniformly short as well. Hence,
each concatenation

γ−i ⋆ βi ⋆ γ
+
i

is r = r7.2(R)-Hausdorff close to the vertical geodesic segment αi. It follows that Hd(α, c) ≤
r as well. Now, the first statement of the proposition follows from Lemma 1.21.

2. Suppose that α contains a sequence of subsegments αi each bounding a (K,C)-
carpet Ai = A(K,C)(αi) = (π : Ai → Ji = ⟦u,wi⟧), such that

lim
i→∞

dT (u,wi) = ∞,

and for each vertex t in the interval Ji,

dXt (top(Ai)t, bot(Ai)t) ≥ MK .

Therefore, the concatenation ci of the bottom of Ai, the narrow end βi and the top of Ai is
an L4.1(K,C)-quasigeodesic in Ai. Since

d(αi, βi) ≥ dT (u,wi),

the Hausdorff distances between αi and ci diverge to infinity. Morse lemma and hyperbol-
icity of X then imply that αi’s cannot be uniform quasigeodesics in X. Therefore, α is not
a quasigeodesic in X either. □

7.3. Visual boundary and geodesics in acylindrical trees of spaces

In this section we specialize our discussion of geodesics in trees of hyperbolic spaces
to the case of (M,K, τ)-acylindrical trees of hyperbolic spaces satisfying Axiom H, see
Definition 2.54; the constant K will be taken equal to K = K∗ = K2.62(δ0, L0) although,
many arguments will go through for smaller values of K. Besides uniform quasigeodesics
we will also describe the ideal boundary of X. In the group-theoretic setting, when X is
the Cayley graph of the fundamental group of an acylindrical graph of hyperbolic groups
with quasiconvex edge-subgroups, such description of the boundary is due to Dahmani,
[Dah03] (who also gave a description in the relatively hyperbolic case).

Lemma 7.3. Suppose π : X → T is a (M,K, τ)-acylindrical tree of hyperbolic spaces
satisfying Axiom H for some M and τ. Then (1) X is hyperbolic. (2) For subtrees S ⊂ T,
the subspaces XS are uniformly qi embedded in X.
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Proof. (1) Recall (see Section 2.5.2), that (M,K, τ)-acylindricity implies uniform K-
flaring, hence, by Theorem 2.62, hyperbolicity of X.

(2) Let v ∈ V(T ). Then, by Proposition 7.2, every geodesic in Xv is a uniform quasi-
geodesic in X. Thus Xv is uniformly qi embedded in X. Consequently Xv is uniformly
quasiconvex too. Then it follows that XS is also uniformly quasiconvex in X for the fol-
lowing reason. Suppose a geodesic segment β of X joining a pair of points in XS is not
entirely contained in XS . Then the closure βw of each connected component of β \ XS joins
two points of Xw for some w ∈ S . Since vertex-spaces Xw are uniformly quasiconvex in X,
the geodesic βw is uniformly close to Xw. It follows that the entire β is uniformly close to
XS .

Finally we know that XS is uniformly properly embedded in X by Proposition 2.18.
Hence, XS is uniformly qi embedded in X by Lemma 1.102 and Lemma 1.16. □

Description of quasigeodesics. Suppose that X is (M,K, τ)-acylindrical, x ∈ Xu, y ∈
Xv, u, v ∈ V(T ). Without loss of generality, τ ∈ N. Since, by the above lemma, X⟦u,v⟧ is
uniformly qi embedded in X, it suffices to describe uniform quasigeodesics connecting x, y
in X⟦u,v⟧. Hence, from now on, we will assume that the tree T is an interval ⟦u, v⟧. Let

t0 = u, t1, ..., tm = v

denote the consecutive vertices in the interval ⟦u, v⟧. Define Ai−1 := Xeiti−1 = feiti−1 (Xei ) ⊂
Xi−1 and Bi := Xeiti = feiti (Xei ) ⊂ Xti for 1 ≤ i ≤ m − 1. We inductively construct points
x+i , x

−
i ∈ Xti for 0 ≤ i ≤ m as follows.
Set x−0 = x and x+0 = PXt0 ,A0 (x). Now, suppose that x+i , x

−
i ∈ Xti are already defined

for some i < m. Then we define x−i+1 to be an arbitrary point of fei+1ti+1 ( f −1
ei+1,ti (x+i )) and

x+i+1 := PXti+1 ,Ai+1 (x−i+1). We define x+m := y.
Lastly, we define the path γ(x, y) as the concatenation of the segments [x−i x+i ]Xti

for
0 ≤ i ≤ m, and unit segments in Xtiti+1 joining each pair x+i , x

−
i+1 for 0 ≤ i ≤ m − 1.

Proposition 7.4. The path γ(x, y) is a uniform quasigeodesic in X joining x, y. More-
over, x−m is uniformly close to the nearest point projection of x to Xv.

Proof. The proof is based on several lemmata. We first prove the claim for constants
depending on m and then eliminate this dependence.

Lemma 7.5. 1. The path γ(x, y) is an L7.5(m)-quasigeodesic.
2. The distance between x−m and the projection of x to Xtm inside X⟦u,v⟧ is bounded by

D7.5(m).

Proof. In view of uniform quasiconvexity in X = X⟦u,v⟧ of vertex-spaces and of subin-
tervals of spaces X⟦ti,t j⟧, the statements follow from, respectively, Parts 1 and 2 of Lemma
1.112. □

Below we set R = R1.123(δ0, λ0) = λ0 + 5δ0 and note that K ≥ R + 1.

Lemma 7.6. Each pair of vertex-spaces Xu, Xv satisfying dT (v,w) = m ≥ τ, is C7.6(m)-
cobounded in X.

Proof. We start with a pair of points x, z ∈ Xu and inductively project them to points
x−i , z

−
i ∈ Xti , 1 ≤ i ≤ m, using the notation above.
According to Lemma 1.123(1), for each i one of two things happens, where δ0 is the

hyperbolicity constant of Xti and λ0 is the quasiconvexity constant of Ai in Xti :
(a) dXti

(x+i , z
+
i ) ≤ D1.123(δ0, λ0) = 2λ0 + 7δ0.

(b) [x+i z+i ]Xti
⊂ NR([x−i z−i ]Xti

), where, as above, R = R1.123(δ0, λ0) = λ0 + 5δ0.
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If (a) occurs for some i, then the distance between x−j , z
−
j ∈ Xt j , i + 1 ≤ j ≤ m is

uniformly bounded in terms of j, as the process of successive projections to next vertex-
spaces is clearly uniformly Lipschitz. In particular, the distance between x−m, z

−
m ∈ Xtm = Xv

is uniformly bounded as well, with bound depending on m. Suppose, therefore, that (b)
holds for every i. Then for k = R + 1, there exists a pair of k-sections γ0, γ1 over ⟦u, v⟧
such that

γ0(ti), γ1 ∈ [x−i , z
−
i ]Xti

, i = 0, ...,m.

Since, by the assumption, K ≥ k, the acylindricity condition implies that dXv (x−m, z
−
m) ≤ M.

Combining this with Lemma 7.5(2), we obtain a uniform (in terms of m) bound on the
distance between the projections of x, z to Xv. □

We are now ready to prove the proposition. We let N := ⌊m
τ
⌋ and define the subintervals

Ji = ⟦vi, vi+1⟧, vi = tiτ, i = 0, ...,N,

in ⟦u, v⟧. These subintervals cover ⟦u, v⟧ except for the subinterval JN+1 = ⟦vN+1, v⟧whose
length is < τ. Set

xi := x−iτ, i = 0, ...,N.
Since the subspaces XJi are uniformly quasiconvex in X and each pair XJi−1 , XJi+1 is uni-
formly cobounded, it follows from Theorem 2.65 on quasiconvex chain-amalgams that the
concatenation

[x0x1] ⋆ ... ⋆ [xN xN+1] ⋆ [xN+1y]
is a uniform quasigeodesic in X. Furthermore, by Lemma 7.5(1), each path

γ(xi, xi+1), i = 0, ...,N, γ(xN , y),

is also a uniform quasigeodesic. Thus, the entire path γ(x, y) is uniformly quasigeodesic as
well. □

Definition 7.7. We shall refer to the (uniform) quasigeodesics of the type described
in Proposition 7.4 as HV (horizontal-vertical) quasigeodesics in what follows.

Up to a uniform error, these HV quasigeodesics describe all finite geodesics in X. Our
next goal is to extend this description to the rays in X. We will do so under the extra
assumption that X is a proper metric space. Of course, as before, we also suppose that
π : X → T is a (M,K, τ)-acylindrical tree of hyperbolic spaces satisfying Axiom H.

Fix v0 ∈ V(T ) and x0 ∈ Xv0 . We will describe (quasi)geodesic rays in X starting from
x0. First of all, for every v ∈ V(T ) we fix, once and for all, an HV uniform quasigeodesic
γv joining to x0 to a point xv ∈ Xv where:

(1) xv is uniformly close to a nearest point projection of x0 to Xv as we obtained in
Proposition 7.4;

(2) for each w ∈ ⟦v0, v⟧ we have γw ⊂ γv.
One defines γv by induction on d(v0, v). Note that for each vertex w ∈ ⟦v0, v⟧, the

preimage of w in γv under the projection π is an interval. In this situation, we will say that
γv projects monotonically to ⟦v0, v⟧.

Armed with this, we can now describe quasigeodesic rays in X.
Rays of type 1: Let v ∈ V(T ) and ξv ∈ ∂∞Xv. Let αv be a geodesic ray in Xv joining

xv to ξv. Then ρv := γv ⋆ αv is a uniform quasigeodesic in X by Proposition 7.4.
Rays of type 2: On the other hand, suppose that c = v0η is a geodesic ray in T joining

v0 to η ∈ ∂∞T . Then the uniform quasigeodesic paths γc(n) combine to form a uniform
quasigeodesic ray γη in X which projects monotonically to c.
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Proposition 7.8. Any (quasi)geodesic ray in X starting from x0 is asymptotic to a
quasigeodesic ray of exactly one of the above two types.

Proof. Suppose that ρ is a geodesic ray in X emanating from x0. For each n ∈ N
let αn = β(x0, ρ(n)) be the arc-length parametrized HV quasigeodesic segment (discussed
after Lemma 7.3), joining x0 to ρ(n). Since X is a proper metric space, the sequence of
uniform quasigeodesic segments (αn) subconverges to a (uniform) quasigeodesic ray, say
α, asymptotic to ρ(∞).

Let T1 = π(ρ). By the stability of quasigeodesics it is clear that for all m ≥ n, αn

is contained in a uniformly bounded neighborhood of αm. Hence, the same is true for
π(αm), π(αn) for all m ≥ n. We note that these are geodesic segments in T . It then follows
that either T1 is bounded or T1 is a locally finite subtree of T containing a unique geodesic
ray of T .

Case 1. Suppose T1 is bounded. There are two possibilities: Either T1 is locally finite
or it is not. If T1 were locally finite then we can find a constant subsequence of the sequence
of geodesic segments {π(αn)}. Clearly the corresponding subsequence converges to an HV
quasigeodesic ray of type 1. Otherwise, suppose T1 has a vertex v of infinite degree. In
this case, we find a subsequence {αnk }, say, such that for all k, αnk has an initial segment
α′nk

, say, joining x0 to xv by γv followed by a geodesic segment in Xv joining xv to an edge
space Xekv, say, of Xv. We note that these edge spaces are pairwise distinct. Finally, since
X is a proper metric space, it follows that each vertex-space of X is a proper metric space
and given w ∈ V(T ), x ∈ Xw and D ≥ 0, the ball B(x; D) in Xw intersects only finitely many
edge spaces of Xw. Thus, in this case, {dXv (xv, Xekv)} is unbounded. Therefore, the geodesic
segments Xv ∩ αnk of Xv subconverges to a geodesic ray αv, say. This produces a further
subsequence of {αnk } that converges to the type 1 HV quasigeodesic ray which is simply
the concatenation of γv and αv.

Case 2. Suppose T1 is not bounded and let c = v0η be the geodesic ray in T1. Let vn be
the projection of the end point of π(αn) on c. Passing to subsequence, if necessary, we may
assume that {d(v0, vn)} is strictly increasing. It then follows that γvn is an initial segment of
αn for all n and γvn is an initial segment of γvm for all m ≥ n. From these it follows that
αn’s converge to an HV quasigeodesic ray of type 2. □

Lemma 7.9. Suppose c : [0,∞) → T is a geodesic ray with vn = c(n), n ∈ N, and
c(∞) = η. Then every sequence xn ∈ Xvn converges to γη(∞) ∈ ∂∞X.

Proof. Let γn denote the concatenation of the path γvn and the geodesic ⟦xvn , xn⟧Xvn
.

These concatenations are uniform quasigeodesics in X. Clearly, the sequence {γn} con-
verges uniformly on compacts to γη. □

Our next goal is to describe the ideal boundary ∂∞X in terms of ideal boundaries of
vertex-spaces ∂∞Xv and the ideal boundary of the tree T . Our description is similar to the
one given by Dahmani, [Dah03, section 2], in the setting of graphs of hyperbolic groups.

We set
Z̃ :=

∐
v∈V(T )

∂∞Xv

and define a relation ∼ on Z̃ as follows:
If ξu ∈ ∂∞Xu and ξv ∈ ∂∞Xv then ξu ∼ ξv iff ξu belongs to the ideal boundary flow

Fl({ξv}) of ξv in ∂∞X, see Section 3.3.4. It follows from the discussion of ideal boundary
flows in Section 3.3.4 that any two boundary flows are either equal or disjoint, hence, ∼
is an equivalence relation. We let p : Z̃ → Z := Z̃/∼ be the quotient map. We will
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topologize Z later on. For now we note that, in general, this topology is not the quotient
topology of the coproduct topology on Z̃ (cf. Lemma 7.12), but the topology will restrict
to the standard topology on each ∂∞Xv.

The spaceZ will be homeomorphic to one part of ∂∞X. The other part will be home-
omorphic to ∂∞T (with its natural topology of the ideal boundary of a tree). There are
natural maps from both ∂∞T andZ to ∂∞X defined, respectively, as follows:

1. f∂∞T : η 7→ γη(∞), η ∈ ∂∞T .
2. Since each Xv, v ∈ V(T ), is qi embedded in X, we have topological embeddings

qv : ∂∞Xv ↪→ ∂∞X.

By combining these embeddings, we obtain a map

q :
∐

v∈V(T )

∂∞Xv → ∂∞X.

Next, for two vertical geodesic rays αu in Xu and αv in Xv (u, v ∈ V(T )) we have equivalence
of the following statements:

(a) qu(αu(∞)) = qv(αv(∞)).
(b) Hd(αu, αv) < ∞.
(c) The boundary flow-space Fl({αu(∞)}) contains αv(∞).
While the equivalence of (a) and (b) is immediate, the equivalence of (b) and (c)

follows from Lemma 3.35(2).
Thus, the maps q satisfies the property that z1 ∼ z2 iff q(z1) = q(z2). In particular, the

map q descends to a map fT : Z → ∂∞X. Combining the maps f∂∞T , fT we obtain a map

f : ∂∞T ⊔Z → ∂∞X.

Lemma 7.10. The map f is a bijection.

Proof. 1. That fZ is injective is immediate from the equivalence of (a) and (c) above.
2. If η1, η2 ∈ ∂∞T are distinct, then the rays v0η1, v0η2 in T diverge, hence, their lifts

γη1 , γη2 in X diverge as well. Hence, γη1 (∞) , γη2 (∞). It follows that f∂∞T is injective.
3. Proposition 7.8 directly implies that the images of f∂∞T , fT are disjoint and their

union is the entire ∂∞X. □

We next topologize the disjoint union ofZ and ∂∞T by defining a basis of this topol-
ogy as follows. Given a vertex v ∈ T , we let the shadow S hv of v in V(T ) ∪ ∂∞T denote
the set consisting of all ξ ∈ ∂∞T and w ∈ V(T ) such that the rays v0ξ and segments v0w
contain v.

(A) Let η be a point in ∂∞T and let v be a vertex in the ray v0η. Then define

Uv,η := (S hv ∩ ∂∞T ) ⊔
⋃

w∈S hv∩V(T )

p(∂∞Xv) ⊂ ∂∞T ⊔Z.

These subsets will form a basis of neighborhoods of η in ∂∞T ⊔Z.

(B) Let [ζ] be a point inZ, R > 0. For each η ∈ ∂∞T and ζ ∈ ∂∞Xv in the equivalence
class [ζ] define the point zη ∈ Xv as xv if the ray v0η does not contain v, and so that [xvzη]Xv

is the maximal subsegment of γη contained in Xv. Similarly, define zη for points η ∈ ∂∞Xw:
If ⟦v0,w⟧ is disjoint from v, then set zη := xv, otherwise it is the maximal subsegment of
the HV ray ρη = γw ⋆ xwη contained in Xv.

(B1) We define U1
R,[ζ] as the set of points η ∈ ∂∞T such that there exists a representative

ζ ∈ ∂∞Xv of [ζ] for which (η.zv)xv > R.
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(B2) Similarly, define

U2
R,[ζ] := p({η ∈ ∂∞Xv : (ζ.zv)xv > R, ζ ∈ [ζ]}).

Here in both (B1) and (B2) where the Gromov-product is taken in Xv. Set

UR,[ζ] := U1
R,[ζ] ∪ U2

R,[ζ].

We leave it to the reader to check the following properties satisfied by the collection
of basic subsets Uv,η,UR,[ζ] defined above:

Lemma 7.11. 1. η ∈ Uv,η, [ζ] ∈ UR,[ζ] for every η, ζ, and v,R as above.
2. For every two basis subsets U′,U′′ as above containing a point ξ ∈ ∂∞T ⊔Z, there

exists another basis subset U containing ξ such that U ⊂ U′ ∩ U′′.
3. For any two distinct points ξ′, ξ′′ ∈ ∂∞T ⊔ Z, there exist disjoint basic subsets

U′,U′′ containing ξ′, ξ′′ respectively.

It follows that the collection of basic sets Uv,η,UR,ζ defines a Hausdorff topology τ on
∂∞T ⊔ Z. From now on, we will equip ∂∞T ⊔ Z with this topology. We will see soon
(Theorem 7.13) that the topology τ is compact and metrizable. The next lemma, where we
use metrizability of (Z, τ), describes some properties of (Z, τ):

Lemma 7.12. i. For every sequence of distinct vertices vn ∈ V(T ) the sequence of
compacts p(∂∞Xvn ) subconverges to a point in (∂∞T ⊔Z, τ).

ii. For every finite diameter subtree S ⊂ T, the restriction of τ to p(
∐

v∈V(S ) ∂∞Xv) ⊂ Z
is compact.

Proof. i. After extraction of a subsequence, there are two cases which may occur:
Case i1. There is a vertex v0 ∈ V(S ) such that all the edges en = [v0,wn] in the seg-

ments ⟦v0, vn⟧ are pairwise distinct. Pick a base-point x0 ∈ Xv0 . Then, again by properness
of X, the sequence of distances from x0 to Xenv0 (in Xv0 ) diverges to infinity. It follows that,
after further extraction, the sequence of subsets Xenv0 converges to a point ξ ∈ ∂∞Xv0 . By
the description of the topology τ, the sequence (xn) converges to p(ξ) ∈ Z as well.

Case i2. The sequence (vn) converges to a point η ∈ ∂∞T . Then, by the definition of
the topology τ, every sequence (xn) in Xvn converges to η.

ii. Since (Z, τ) is metrizable, it suffices to prove sequential compactness. Consider a
sequence xn ∈ Xvn where vn ∈ V(S ). There are two cases to consider:

Case ii1. Suppose that, after extraction, all the vertices vn are distinct. Then, by Part i
(Case i1), the sequence (xn) subconverges to a point in p(∂∞Xv) for some v ∈ V(S ).

Case ii2. The same vertex v appears in the sequence (vn) infinitely many times. Then,
after extraction, vn = v and the sequence (xn) subconverges to a point in ∂∞Xv (recall that
X is assumed to be proper, which implies properness of Xv). □

We can now prove the main result of this section:

Theorem 7.13. The map f : ∂∞T ⊔Z → ∂∞X is a homeomorphism.

Proof. Since ∂∞X is compact, ∂∞T ⊔ Z is Hausdorff and f is a bijection, it suffices
to prove continuity of f −1.

Case 1. Suppose that ηn ∈ ∂∞T are such that the sequence (γηn (∞)) in ∂∞X converges
to γη(∞), η ∈ ∂∞T . This implies that there exists a constant D such that for every R ≥ 0
and all sufficiently large n, the point γη(R) lies in the D-neighborhood of γηn . The same,
therefore, holds for the rays v0η, v0ηn. That implies convergence ηn → η.
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Case 2. Suppose that ξn ∈ ∂∞Xwn is a sequence converging to ξ = ρη(∞). Then, for
the same reason as in Case 1, the sequence (wn) converges to η in T ∪ ∂∞T . It then follows
by the definition of a neighborhood basis at η inZ∪ ∂∞T that ξn → η.

Case 3. Suppose that ηn is a sequence in ∂∞T such that the corresponding sequence
ξn := γηn (∞) converges to some ξ ∈ ∂∞Xv. Then, after extraction, the sequence of HV
(uniformly quasigeodesic) rays γηn converges to an HV ray γ asymptotic to ξ. This limiting
ray necessarily has the form of a concatenation ρξ′γw ⋆ αw, where αw is a geodesic ray in
a vertex-space Xw. Since the rays γ, γη are at finite Hausdorff distance from each other,
it follows that p(ξ) = p(ξ′), i.e. [ξ] = [ξ′]. Furthermore, let [xvzn]Xv is the maximal
subinterval of γηn contained in Xv. Then

lim
n→∞

(ξ′.zn)xv = ∞.

Now, it follows from the definition of a neighborhood basis of [ξ] in Z ⊔ ∂∞T (see the
description of neighborhoods U1

[ξ],R) that

lim
n→∞

ηn = [ξ]

in the topology ofZ⊔ ∂∞T .
Case 4. The proof in the last case, when ξn ∈ ∂∞Xvn is a sequence converging to

ξ ∈ ∂∞Xv in ∂∞X is similar to Case 3 and is left to the reader. □





CHAPTER 8

Cannon–Thurston maps

In this chapter, as an application of the description of uniform quasigeodesics in trees
of hyperbolic spaces, we establish an existence theorem for Cannon–Thurston maps (CT-
maps) between ideal boundaries of trees of hyperbolic spaces induced by the inclusion
maps of subtrees of spaces, XS = Y → X, Theorem 8.13. The proof of this theorem
occupies most of the chapter. Once this theorem is proven, we investigate the associ-
ated Cannon–Thurston laminations. In Section 8.7 we identify the CT-lamination Λ(Y, X),
while in Section 8.9 we relate Λ(Y, X) to the collection of ending laminations of Y in X.
We conclude the chapter with Section 8.11 where we discuss group-theoretic applications
of our results on CT-maps and CT-laminations. In particular, in Section 8.11.1 we con-
struct examples of undistorted surface subgroups of PS L(2,C) × PS L(2,C) which are not
Anosov. (The proof of non-distortion is an application of Theorem 8.21.)

8.1. Generalities on Cannon–Thurston maps

If X,Y are nonempty geodesic hyperbolic spaces and f : Y → X is a qi embed-
ding, then f induces a (continuous) embedding of Gromov-boundaries, ∂∞Y → ∂∞X: A
sequence (yn) in Y is a Gromov-sequence (see Section 1.13) if and only if ( f (yn)) is a
Gromov-sequence in X (see e.g. [V0̈5, Theorem 5.38] or [DK18, Exercise 11.109]). The
problem of existence of Cannon–Thurston maps concerns the existence of such an exten-
sion in the setting of uniformly proper maps.

The original motivation for Cannon–Thurston maps comes from the group theory:
Given a hyperbolic subgroup H of a hyperbolic group G (with the inclusion map ι = ιH,G)
or, more generally, a homomorphism with finite kernel ϕ : H → G between two hyperbolic
groups, one says that ϕ admits a Cannon–Thurston map if there exists a ϕ-equivariant
continuous map (a CT-map)

∂∞ϕ : ∂∞H → ∂∞G.
Surprisingly, CT-maps for group homomorphisms exist quite often (see [Mj14a, Mj14b,
MP11, Mj16, Mj17, BR20], etc.) but not always (see [BR13]). One of the earliest exam-
ples (justifying the terminology) of existence of CT-maps is due to Cannon and Thurston,
[CT07]: If M is a compact hyperbolic 3-manifold fibered over the circle with the fiber F,
then the natural embedding ι : π1(F)→ π1(M) admits a CT-map.

One can further generalize the setting of CT-maps to the non-equivariant one:

Definition 8.1. Let X,Y be geodesic Gromov-hyperbolic spaces and f : Y → X is a
coarse Lipschitz map. Then f is said to admit a CT-map or admits a CT-extension, if there
exists a map

∂∞ f : ∂∞Y → ∂∞X
such that f ∪ ∂∞ f : Ȳ = Y ∪ ∂∞Y → X̄ = X ∪ ∂∞X is continuous at each point of ∂∞Y .

Remark 8.2. The continuity requirement and the fact that X̄ is Hausdorff imply that if
a CT-extension exists, then it is unique.

187
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In order to connect to the group-theoretic situation, one takes X,Y to be Cayley graphs
of the groups G and H respectively (where the finite generating set of G contains that of
H), and f : Y → X the inclusion map induced by the inclusion ϕ = ι : H → G. Since f is
equivariant, the existence of a CT-extension of f would imply the existence of a continuous
equivariant map ∂∞ϕ.

In the setting when Y is a subspace of X with the induced path-metric and the identity
embedding f = ιY,X , we will use the notation ∂Y,X for the CT-map ∂∞ιY,X (if it exists). The
same notation ∂H,G will be used for the CT-map ∂∞ιH,G, where ιH,G : H ↪→ G is the identity
embedding of a hyperbolic subgroup H of a hyperbolic group G.

A criterion for the existence of CT-maps between hyperbolic metric spaces was estab-
lished by Mahan Mitra in [Mit98, Lemma 2.1]. Recall that (x.y)p denotes the Gromov-
product in a metric space.

Theorem 8.3 (Mitra’s Criterion). Let f : Y → X be a coarse Lipschitz proper map of
proper geodesic hyperbolic metric spaces. Then a Cannon–Thurston map ∂∞ f : ∂∞Y →
∂∞X exists if and only if for some (each) y0 ∈ Y the function

t 7→ inf{( f (y1). f (y2)) f (y0) : y1, y2 ∈ Y are such that (y1.y2)y0 ≥ t}

is proper.

It is also instructive (in view of the relative version of the theorem, proven in Proposi-
tion 9.36) to restate the result using distances to geodesics (since these are uniformly close
to Gromov-products):

Theorem 8.4 (Mitra’s Criterion). Let f : Y → X be a coarse Lipschitz proper map of
proper geodesic hyperbolic metric spaces. Then a Cannon–Thurston map ∂∞ f : ∂∞Y →
∂∞X exists if and only if for some (every) y0 ∈ Y there exists a function C = C(y0,D) such
that:

dX( f (y0), [ f (y1) f (y2)]X) ≤ D⇒ dY (y0, [y1y2]Y ) ≤ C
for all points y1, y2 ∈ Y and geodesics connecting them and their images.

Half of Theorem 8.3 (most relevant for us) also holds for non-proper and non-geodesic
hyperbolic spaces. The result was first proven in [KS20], we include a proof since it is quite
simple and for the sake of completeness:

Proposition 8.5. Suppose that f : Y → X is a coarse Lipschitz map of hyperbolic
spaces in the sense of Gromov, such that for each p ∈ Y and each pair of sequences
yn, y′n ∈ Y,

lim
n→∞

(yn.y′n)p = ∞ ⇒ lim
n→∞

( f (yn). f (y′n)) f (p) = ∞.

Then f admits a Cannon–Thurston map.

Proof. Note that the assumption in the proposition implies that the map f is metrically
proper: If a sequence yn ∈ Y diverges to infinity in the sense that d(p, yn) → ∞, then the
sequence f (yn) also diverges to infinity. To prove properness one takes a sequence y′n = yn.

The definition of the Cannon–Thurston extension of the map f is a natural one. The
assumption in the proposition states that the image under f of each Gromov-sequence (yn)
in Y is also a Gromov-sequence in X. Thus, one defines the extension by the formula:

∂∞ f ([yn]) = [ f (yn)],

where (yn) is a Gromov-sequence. A diagonal argument shows that this map is well defined
and, hence, is partially continuous: If a sequence yn ∈ Y converges to ζ ∈ ∂∞Y , then the
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sequence f (yn) converges to ∂∞ f (ζ). From this, by the density of Y in Ȳ , it follows that
f ∪ ∂∞ f is continuous at ∂∞Y . □

Remark 8.6. The converse to this proposition also holds if Y is proper: If a map
f : Y → X admits a CT-extension, then for every pair of sequences (yn), (y′n) in Y ,

lim
n→∞

(yn.y′n)p = ∞ ⇒ lim
n→∞

( f (yn). f (y′n)) f (p) = ∞.

The reason is that such sequences (yn), (y′n) have to subconverge to points ξ, ξ′ ∈ ∂∞Y (in
view of properness of Y). Then, necessarily, ξ = ξ′. Since f admits a CT-extension to the
points ξ, ξ′, the sequences ( f (yn)), ( f (y′n)) have to converge to ∂∞ f (ξ), implying that

lim
n→∞

( f (yn). f (y′n)) f (p) = ∞.

In the next lemma we will use the notion of the relative ideal boundary ∂∞(A, X) of a
subset A of a hyperbolic space X, see Definition 1.83.

Lemma 8.7. Suppose that Y is a proper metric space, and f : Y → X admits a CT-
extension. Then

∂∞ f (∂∞Y) = ∂∞( f (Y), X).

Proof. By the continuity of the CT-extension, if a sequence yn ∈ Y converges to
ξ ∈ ∂∞Y , then the sequence ( f (yn)) converges to ∂∞ f (ξ). Conversely, suppose that a
sequence xn = f (yn) ∈ f (Y) converges to a point η ∈ ∂∞( f (Y), X). By the properness
of Y , the sequence (yn) subconverges to some ξ ∈ ∂∞Y and, again by continuity of the
CT-extension, ∂∞ f (ξ) = η. □

Lemma 8.8 (Functoriality of CT-maps). If f : X → Y, g : Y → Z are coarse Lipschitz
maps which admit CT-extensions, then so does their composition and

∂∞(g ◦ f ) = ∂∞g ◦ ∂∞ f .

Proof. Let (xn) be a Gromov-sequence representing ξ ∈ ∂∞X. The continuity of the
CT-extension at the point ξ implies that for yn = f (xn) the sequence (yn) in Y , is also a
Gromov-sequence in Y representing the point η = ∂∞ f (ξ). Applying the same reasoning
to the map g, we conclude that (g(yn)) is a Gromov sequence in Z representing ζ = ∂∞g(η).
Thus, ∂∞g ◦ ∂∞ f defines the CT-extension of g ◦ f . □

Since for δ-hyperbolic spaces in the sense of Rips, the Gromov-product is comparable
to the distance to a suitable geodesic (see Lemma 1.47), Proposition 8.5 can be reformu-
lated as

Proposition 8.9. Suppose that f : Y → X is a coarse Lipschitz map of hyperbolic
spaces in the sense of Rips, such that for each pair of sequences yn, y′n ∈ Y,

lim
n→∞

dY (p, [yny′n]Y ) = ∞ ⇒ lim
n→∞

dX( f (p), [ f (yn) f (y′n)]X) = ∞.

Then f admits a Cannon–Thurston map.

The existence of a CT-map, of course, does not imply its injectivity, and the notion of
a Cannon–Thurston lamination (introduced by Mitra in [Mit97]) is motivated by this lack
of injectivity:

Definition 8.10. Suppose that f : Y → X is a map of hyperbolic spaces which admits
a CT-extension ∂∞ f . The Cannon–Thurston lamination (the CT-lamination) of f : Y → X
is the (closed) subset Λ( f ) of ∂(2)

∞ Y consisting of unordered pairs of distinct points {ξ, η}
such that ∂∞ f (ξ) = ∂∞ f (η). In the case when Y is a subset of X and f is the inclusion



190 8. CANNON–THURSTON MAPS

map Y → X, we will use the notation Λ(Y, X) for the CT-lamination. A geodesic α ⊂ Y
connecting points ξ, η with {ξ, η} ∈ Λ( f ), is called a leaf of the CT-lamination Λ( f ).

Note that, in view of the fact that the map ∂∞ f is continuous, the lamination Λ( f ) is a
closed subset of ∂(2)

∞ Y .

Remark 8.11. 1. The above definition of Λ( f ) requires existence of a CT-map. How-
ever, one can extend this definition to the general case as follows (see [Mit99, section 2],
[MR18, Definition 3.1]). We say that a point {ξ, ξ′} ∈ ∂(2)

∞ Y belongs to Λ( f ) if there exist
sequences (yn), (y′p) in Y converging to ξ, ξ′ respectively, such that

lim
n→∞

( f (yn). f (y′n)) f (p) = ∞.

2. As it was noted in [MR18], in the general setting, Λ( f ), a priori is not closed in
∂(2)
∞ Y . If the map f admits a CT-extension, then the two definitions of Λ( f ) agree.

3. If H is a hyperbolic subgroup of a hyperbolic group G and f is the inclusion map
H → G then Λ( f ) = ∅ if and only if H is quasiconvex in G, see [Mit99, Lemma 2.1].

Mitra proved in [Mit98] that if G is a hyperbolic group isomorphic to the fundamental
group of a finite graph G of hyperbolic groups satisfying the conditions of the Bestvina-
Feighn Combination Theorem, then for each vertex-group Gv of G, the Cannon–Thurston
map for the inclusion homomorphism Gv → G exists. More generally, he proves:

Theorem 8.12. If X → T is a tree of hyperbolic spaces with hyperbolic total space X,
then for every vertex-space Xv the inclusion map Xv → X admits a CT-map.

Later on, in the paper by Mj and Pal [MP11], this result was extended to the relatively
hyperbolic setting; we will discuss the extension in the next chapter of the book.

Our goal is to generalize Theorem 8.12 to the case of fundamental groups of subgraphs
of graphs of groups and, more generally, to inclusion maps Y → X of subtrees of spaces
in a tree of hyperbolic spaces Y ⊂ X, satisfying the conditions of Theorem 2.62. The main
result of this chapter is:

Theorem 8.13. Let X = (π : X → T ) be a tree of hyperbolic spaces with hyperbolic
total space X. Then for every subtree S ⊂ T, the inclusion map Y = XS → X admits a
CT-extension.

The most difficult part of the proof is to relate, for points x, y ∈ Y , the geodesics [xy]X

in X to the geodesics [xy]Y in Y . This is done in Section 8.2 in the form of a “cut-and-
replace” theorem (Theorem 8.21). Once this theorem is established, the existence of a
CT-map is an almost immediate consequence of Proposition 8.9 (see Theorem 8.48). The
main tool in our proof of Theorem 8.21 is the description of geodesics in hyperbolic trees
of spaces given in the previous chapter. As this description is inductive in nature (a 7-step
process), the proof of the cut-and-replace theorem follows the same inductive process (but
we will only need 6 steps). While our proof follows in main Mitra’s proof in [Mit98], we
have to deal with some substantial complications; in fact, we will derive Mitra’s theorem
(Theorem 8.12) as an easy application of the first part of our proof, see the end of Section
8.3.

In the proof of Theorem 8.21 we will be using the fact that X satisfies the uniform
K-flaring condition for all K ≥ 1 (see Lemma 2.50). Of course, if X satisfied the K-flaring
condition, so does Y ⊂ X.
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8.2. Cut-and-replace theorem

8.2.1. Definitions and notations. Suppose that X = (π : X → T ) is a tree of spaces
and Y = (π : XS = Y → S ) is a subtree of spaces in X. In the next section we shall prove
that the inclusion Y → X admits a Cannon–Thurston extension ∂∞Y → ∂∞X provided that
X satisfies Axiom H and X is hyperbolic.

To prove this result we need to compare the Y-geodesics [xy]Y to X-geodesics [xy]X

joining pairs points x, y ∈ Y . When the points are in the same vertex-space in Y , this is
done by Mahan Mitra in [Mit98] by constructing ladders. In general, up to a uniformly
bounded error, the relation between X-geodesics and Y-geodesics is given by a cut-and-
replace procedure described below.

For each (continuous) path c : I ⊂ R→ X in X with c(∂I) ⊂ Y , we define the following
modification, a cut-and-replace procedure, transforming c to a new path ĉ = cS : I → Y .

Definition 8.14. For a closed subinterval J = [s, s′] ⊂ I, we say that the restriction
ζ = c|J is a detour subpath in c, if c(∂J) ⊂ Y , while c(J − ∂J) is disjoint from Y . Thus, the
points x = c(s), x′ = c(s′) belong to a common vertex-space Xt ⊂ Y . We then replace each
detour subpath ζ in c by the corresponding Xt-geodesic ζ̂ = [xx′]Xt , called a replacement
segment. 1 We let ĉ = cS denote the resulting path I → Y .

Figure 29. Detours and path-modification

Definition 8.15. Let ϕ be a continuous Λ-quasigeodesic in X with the end-points in
Y . We will say that ϕ is Λ′-consistent if ϕ̂ is a Λ′-quasigeodesic in Y . We will say that a
pair of points (y, y′) ∈ Y2 is θ-consistent, where θ is a function [1,∞) → [1,∞), if every
continuous Λ-quasigeodesic ϕ in X connecting y to y′ is θ(Λ)-consistent. We say that a
subset of Y2 is (uniformly) consistent if it consists of θ-consistent pairs for some function
θ. We will say that a pair of points (y, y′) ∈ Y2 is Λ′-weakly consistent if y, y′ are connected
by some Λ′-consistent continuous quasigeodesic in X. Similarly, we will say that a subset
of Y2 is uniformly weakly consistent if it consists of Λ′-weakly consistent pairs of points
for some Λ′.

While it is clear that every consistent pair of points is also Λ′-consistent for some
Λ′, it is far from clear if a subset of Y2 consisting of Λ′-consistent pairs is uniformly
consistent. The issue is that while any two uniform quasigeodesics ϕ, ϕ′ connecting y to

1While this Xt-geodesic is, in general, non-unique, if vertex-spaces are uniformly hyperbolic (which will be
the case in all our examples) the ambiguity is uniformly bounded and we will ignore it.
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y′ are uniformly close, we do not yet know if the same holds for ϕ̂, ϕ̂′. We will prove the
claim, establishing equivalence of weak consistency and consistency, at the end of Part I
of the proof of Theorem 8.21. Before that, we will be only proving consistency of specific
quasigeodesics, namely slim combing paths c(y, y′) described in Section 7.1.

We will frequently use the following simple observation:

Remark 8.16. Suppose that a pair (x, y) ∈ Y2 in X is Λ′-consistent. Then every pair of
points x′, y′ ∈ Nr([xy]X)∩Y is θ′-consistent, where θ′ depends only on θ′ and r. In particu-
lar, perturbing the points x, y by a uniformly bounded amount, we do not lose consistency
of the pair.

Definition 8.17. Given two subsets Z′,Z′′ of a Gromov-hyperbolic space Z, we say
that y ∈ Z is an R-transition point between Z′,Z′′ in Z, if every geodesic in Z con-
necting Z′,Z′′ passes within distance R from y. We say that a finite sequence of points
z′ = z1, z2, ..., zn+1 = z′′ in a δ-hyperbolic space Z is R-straight if the geodesic γ = z′z′′ ⊂ Z
passes through some points xi ∈ B(zi,R) in the order x2, ..., xn.

In relation to (sub)trees of spaces Y ⊂ X, we will talk about X-transition points and
Y-transition points. We will say that y ∈ Y is an R-transition point between Z′,Z′′ ⊂ Y if it
is R-transition point for Z′,Z′′ regarded as subsets in both Y and X.

When dealing with sets of finite sequences, we will refer to those as uniformly straight
if they are R-straight for some uniform value of R. We use a similar terminology for
transition points.

Example 8.18. Suppose that Z,Z′ are λ-quasiconvex and C-cobounded subsets in a
δ-hyperbolic geodesic space X. Let β be a shortest geodesic between Z and Z′. Then
every point of β is an R-transition point between Z and Z′ with R = R(C, λ, δ). Conversely,
every R-transition point between such Z,Z′ is D-uniformly close to a point in β, where
D = D(C, B, δ,R).

The importance of the concept of a transition point comes from another simple obser-
vation. Let X be a tree of spaces and Y ⊂ X be a subtree of spaces.

Lemma 8.19. Suppose that Z1,Z2 ⊂ X and y ∈ Y is an R-transition point between
Z1,Z2. Assume that the set of pairs (zi, y), zi ∈ Zi, i = 1, 2, is θ-consistent. Then the set of
pairs (z1, z2) ∈ Z1 × Z2 is θ′-consistent where θ′ = θ′(L,R).

Proof. Since we are dealing with quasigeodesics, we can as well consider L-quasigeo-
desics c in X connecting point z1 ∈ Z1 to z2 ∈ Z2 and passing through y (such exist due
to the assumption that y is an R-transition points in X). Such c is a concatenation c1 ⋆ c2,
where c1 connects z1 to y. Thus, since y ∈ Y ,

ĉ = ĉ1 ⋆ ĉ2.

Each of the subpaths ĉi is a θ(L)-quasigeodesic by the consistency assumption for the pairs
(zi, y). We will estimate the quasiisometry constant of ĉ in Y . Let γ be a geodesic in Y
connecting two points a, b in ĉ; the only interesting case to consider is when a ∈ ĉ1, b ∈ ĉ2.
Let ĉ(a, b) be the portion of ĉ between a and b. Since y is an R-transition point in Y
between z1, z2, the path γ has to pass within distance r = r(R, L) from y. Subdividing γ as
a concatenation γ1 ⋆ γ2, where γ1 connects z1 to x ∈ B(y, r), i = 1, 2, we see that

length(ĉ(a, b)) ≤ (θ(L) + r) length(γ),
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as required by a uniform quasigeodesic.2 □

This lemma generalizes to the case of higher number of transition/concatenation points.
Since the proof is similar, we leave it to the reader:

Lemma 8.20. Suppose that z′ = z1, z2, ..., zn+1 = z′′ is an R-straight sequence in both
X and Y, and that each pair of points (zi, zi+1), i = 1, ..., n, is θ-consistent. Then the pair
(z′, z′′) is θ′-consistent with the function θ′ depending only on the hyperbolicity constant of
Y and on θ.

We are now ready to state the main technical result of this chapter:

Theorem 8.21 (Cut-and-replace X-quasigeodesics to get Y-quasigeodesics). Suppose
that X = (π : X → T ) is a tree of hyperbolic spaces satisfying the uniform K∗-flaring
condition, S ⊂ T is a subtree and Y = XS . Then Y × Y is θ-consistent with θ depending
only on the parameters of X.

We break the proof of Theorem 8.21 in three parts and each part in several steps, where
we prove this theorem in special cases and then use these special cases to prove the general
case in the last part.

8.3. Part I: Consistency of points in vertex flow-spaces

Suppose that k ≥ k5.2, K = K5.2(k), and that X is a tree of hyperbolic spaces satisfying
the uniform κ4.7(K)-flaring condition. (As it was noted earlier, in Lemma 2.50, uniform
κ-flaring holds for all κ’s if X is hyperbolic.) The main result of this section is:

Proposition 8.22. For every u ∈ V(S ), the set of pairs (y, y′) ∈ FlY,k(Xu) × FlY,k(Xu) is
θ = θ8.22,k-consistent, with θ depending only on k and the parameters of X.

Proof. For most of the proof we will be only proving weak uniform consistency,
working with the quasigeodesic paths c = cX(y, y′) in the fiberwise 4δ0-neighborhood of
FlX,k(Xu) ⊂ Y given by the slim combing of FlX,k(Xu) described in Section 7.1.

According to Corollary 5.12, there exists a (K,D, E)-ladder L = LX(α) ⊂ Y contained
in the fiberwise 4δ0-neighborhood of FlX,k(Xu) ⊂ Y, containing y (resp. y′) in its bottom
(resp. top), where K,D, E depend only on k and α is a geodesic in Xu. Recall that, by the
very definition, cX(y, y′) = cL(y, y′) is contained in the ladder LX(α). Define LY = L ∩ Y:
It follows from the definition of a ladder that LY is a (K,D, E)-ladder in Y. It also follows
from the definition of the modification c 7→ ĉ, that ĉ is contained in LY (up to a uniformly
bounded error which we will ignore).

There are several cases to consider, according to the construction of uniformly quasi-
geodesic paths cL(y, y′), depending on the properties of the ladder L and location of the
points y, y′.

8.3.1. Part I.1: The points y, y′ belong to a (K,MK̄)-narrow carpet A = AX = (π :
AX → ⟦u,w⟧) ⊂ LX . The carpet A contains the “subcarpet” AY = AX∩Y, ⟦u,w′⟧ = π(AY ).
Note that AY is a (K,C)-carpet where C is the length of the “narrow end” Aw′ of AY , but
we cannot bound C (from above) in terms of k. According to Corollary 3.63, we have the
coarse L3.63-Lipschitz retraction ρA : X → AX , where L3.63 depends only on K, D and E
(hence, only on k). The restriction of this retraction to Y is a retraction to AY ; in particular,
AY is L3.63-qi embedded in Y .

2Here and in what follows we repeatedly use the notation ϕ(p, q) for a subpath in a path ϕ between the
points p, q in ϕ, see Section 1.2.1.
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Lemma 8.23. The pairs (y, y′) are Λ8.23-weakly consistent, where Λ8.23 depends only
on k.

Proof. We let γy, γy′ denote the K-leaves in AX connecting, respectively, y, y′ to points
of Aw. Let v ∈ ⟦u,w⟧ be the infimum of all vertices t in ⟦u,w⟧ such that

dXt (γy(t), γy′ (t)) ≤ MK̄ .

Then c = cA(y, y′) is the concatenation of the subpath γy restricted to ⟦u, v⟧, followed by
the vertical geodesic [γy(v)γy′ (v)]Xv and then followed by γy′ restricted to ⟦v, π(y′)⟧. The
path ĉ is a similar concatenation c1 ⋆ c2 ⋆ c3 except v is replaced by the vertex v′ which
is the minimum of {v,w′} in the oriented interval ⟦u,w⟧ (the paths c1, c3 are contained in
γy, γy′ respectively and c2 is contained in Av′ ). But this path is exactly the path cAY (y, y′) as
defined in Step I.1 in Section 7.1, or in the proof of Proposition 4.1.

The quasigeodesic constant of cAY (y, y′) a priori depends on both K and C. However,
according to Remark 4.3, the dependence on C appears only in the proof of Lemma 4.2,
establishing uniform bounds on distortion of paths cAY (y, y′) in AY . It remains, therefore, to
get a uniform distortion bound depending only on k. Take a pair of points a, b ∈ ĉ. There
are several cases to consider depending on the location of the points a, b, we will treat just
one since the rest are done by the same argument: We will assume that a ∈ c2, b ∈ c3.
It suffices to bound the length of ĉ(a, b) (between a, b) in terms of dA(a, b), equivalently,
in terms of the length of c(a, b) since the latter is a uniform (with quasigeodesic constant
depending only on k) quasigeodesic in AX . The latter path is a concatenation of c(a, a′) and
c(a′, b), where a′ is in Av′ and c(a′, b) = c3. See Figure 30. We have

length(c3) ≤ length(c(a, b)),

while

length(c2) = dAv′ (a, a
′) ≤ η(dX(a, a′)) ≤ η(length(c(a, b))),

where η = η2.18. Thus,

length(ĉ(a, b)) ≤ length(c(a, b)) + η(length(c(a, b)),

thereby providing the required distortion bound depending only on k. □

Figure 30
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8.3.2. Part I.2: The points y, y′ ∈ Y belong to a carpeted X-ladder L = LX(α).
In this part of the proof we assume that L contains a (K,MK̄)-narrow carpet A = AX(α′),
where α is a geodesic segment in Xu, u ∈ S , and α′ ⊂ α is a subsegment of length ≥
length(α) − MK̄ . The path c = cL(y, y′) can be of one of two types (see Section 7.1, Step
I.2, for the definition of the types of slim combing paths in a ladder):

1. If c is of type 1, then the assumption that y, y′ are in Y and the definition of type 1
paths imply that c = ĉ, so there is nothing to prove.

2. Suppose that c is of type 2. Then c is the concatenation c1 ⋆ c2 ⋆ c3, where c2 is
contained in the carpet A, c1, c3 are contained in Y and, thus,

ĉ = c1 ⋆ ĉ2 ⋆ c3.

Below we will use the same notation for the subcarpet AY = A ∩ Y as in Part I.1.

Lemma 8.24. The pairs (y, y′) are Λ8.24-weakly consistent, where Λ8.24 depends only
on k.

Proof. The paths c1, c3 are uniformly quasigeodesic in LX (since c is) while ĉ2 is uni-
formly quasigeodesic in AY according to Lemma 8.23. Since LY is uniformly hyperbolic, in
order to prove the lemma, it suffices to verify that ĉ is uniformly proper in LY (see Lemma
1.21). The proof is similar to the one in Lemma 8.23. We will prove uniform properness
of ĉ in LX . As in the proof of Lemma 8.23, we only consider the most representative case,
of points a ∈ c2, b ∈ c3: We need to bound length(ĉ(a, b)) in terms of length(c(a, b)). The
path c(a, b) is the concatenation c(a, a′) ⋆ c3(a′, b), where a′ is the concatenation point of
c2 and c3. According to Lemma 8.23,

length(ĉ(a, a′)) ≤ Λ8.23dAY (a, a′) ≤ Λ8.23η2.18(dA(a, a′))
≤ Λ8.23η2.18(length(c(a, b))),

while
length(c3)) ≤ length(c(a, b)).

Lemma follows. □

8.3.3. Part I.3: General ladders. Suppose that u ∈ S , α = [pp′]Xu ⊂ Y , L = LX(α) ⊂
X is a K-ladder, LY = L∩Y. Our goal is to prove uniform consistency of paths cL connect-
ing points y ∈ bot(L) ∩ Y , y′ ∈ top(L) ∩ Y . Recall that according to Proposition 4.14 (on
vertical subdivision), we have a subdivision of α into subintervals αi = [pi pi+1]Xu , subin-
tervals α′i ⊂ αi, and a collection of K-qi sections Σi in L through the points pi dividing L
into subladders Li = L(αi) containing (K,MK̄)-narrow carpets Ai = A(α′i). We also defined
points x±i in the sections Σ−i = Σi,Σ

+
i = Σi+1 bounding Li such that the combing paths in L

(connecting y, y′) pass through the points x±i . Each section Σi is defined over some subtree
Ti ⊂ T . The intersections Σi,Y = Σi ∩ Y project to subtrees S i ⊂ Ti.

We next find uniform transition points in Y between the sections Σi,Y . We let v±i =
π(x±i ) and define vertices w±i as nearest-point projections of v±i ’s to the subtrees S i, S i+1,
where the projection is taken inside the trees Ti,Ti+1 respectively. Set

y±i := Σ±i,Y ∩ Xw±i .

See Figure 31.
Since each path cL connecting arbitrary points y± ∈ Σ±i is a concatenation of paths

in Σ±i connecting y± and x±i and of the path cLi (x−i , x
+
i ), we conclude that whenever y±

are both in Y , the path ĉL(y−i , y
+
i ) passes through the points y±i . Since the above paths

are uniformly quasigeodesic in the ladders Li
Y (Part I.2), we see that the points y±i are at
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Figure 31. Ladder Li and transition points.

uniformly bounded (in terms of k) distance R from the nearest-point projections (in the
ladder Li

Y ) of Σ−i ∩ Y to Σ+i ∩ Y and vice versa, for all i = 1, ..., n − 1. For i = n, we have
that the point y−n within distance R from the projection (in the ladder Ln

Y ) of y′ to the section
Σn,Y = Σn∩Y . Furthermore, by Part I.2, the paths ĉ(y+i−1, y

+
i ) areΛ8.24-quasigeodesics in Li

Y .
Thus, by Theorem 2.65, the alternating concatenation of the paths ĉL(y−i , y

+
i ) in the ladders

Li
Y and of the paths cΣi,Y (y+i−1, y

−
i ) in Σi,Y ’s, is a Λ8.3.3-quasigeodesic in LY connecting y to

y′.
For each vertex v of π(Ai) we break the geodesic segment Li

v ⊂ Xv as a concatenation
of two subsegments: Ai

v (in the carpet Ai) and βi
v.

Lemma 8.25. For w = w+i = π(y+i ) the length of β = βi
w is ≤ C8.25(K).

Proof. If the length of β is ≤ MK̄ then we are done. Otherwise, let J be the largest
subinterval in π(Ai) containing v such that for all vertices s ∈ J the length of the subinterval
βi

s is > MK̄ . Since βi
u has length ≤ MK̄ and for v = v+i = π(x+i ) the length of βi

v is also ≤ MK̄ ,
uniform K-flaring implies that the length of J is ≤ τ = τ(K,MK̄) − 2 and, thus, by Lemma
2.38

length(β) ≤ C(k) := aτ(MK̄ + b),
where a = L′0 and b = 2L′0K. □

At this point, if we knew that for all i’s the vertices π(x+i ), π(x−i+1) are separated in T
by the subtree S i+1 = π(Σ+i ), then the paths cΣi (x+i−1, x

−
i ) would have to contain the subpaths

cΣi,Y (y+i−1, y
−
i ). This would imply that ĉ is a concatenation of the uniform quasigeodesics

cLY (y−i , y
+
i ) ⋆ cΣi,Y (y+i , y

−
i+1), i = 1, 2, ...,

and then we would be done with the proof of the proposition. However, this (the separation
property) need not be the case. What we know, however, from the description of the points
x±i , y

±
i , is that in the oriented interval π(Ai) either

u ≤ π(y+i ) ≤ π(y−i ) ≤ π(x+i ) ≤ π(x−i )

or
u ≤ π(y+i ) = π(x+i ) ≤ π(y−i ) ≤ π(x−i ).
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Figure 32. A clique C = {x+i , ..., x
−
j , x
+
j }.

Moreover, since L,LY are ladders, π(x+i ), π(x−i+1) are separated in T by the subtree S i+1
if and only if they are separated in T by the subtree π(LY ) = π(L) ∩ S . In particular, for
each i either π(x±i ) are in the same component of T − π(LY ) or x+i lies in Y . In other words,
we find that y+i is an X-transition point between y, y′ if either y+i = x+i or if π(x+i ) and π(x−i+1)
lie in distinct components of T − π(LY ). Thus, we group the points x±i into cliques of the
form

C = {x+i , x
−
i+1, x

+
i+1, ..., x

+
j },

or
C = {x−i , x

+
i , x

−
i+1, x

+
i+1, ..., x

+
j },

etc., consisting of maximal collections of consecutive points in c of the form x±l , whose
projections to T are not separated by π(LY ). Here it is understood that if one of the two
vertices s, t lies in a subtree T ′ ⊂ T , then s and t are separated by this subtree. We will
denote a clique as

(x±i , ..., x
±
j ),

where x±i , x
±
j are the first and the last element of a clique C, listed in the order of their

appearance in the path c = c(x, x′). Elements of a clique have the property that their
projections to T followed by the projection to π(LY ) equal to the same vertex v = vC, and
the corresponding points in Y

y±i , ..., y
±
j

all belong to the same vertical geodesic segment Lv, v = vC. Furthermore, for each l ∈ [i, j]

y+l = y−l+1,

since they both belong to Lv ∩ Σl+1.

The first and the last points x±i , x
±
j of a clique C determine points y±i , y

±
j ∈ Lv∩ c which

break c as a concatenation of three subpaths c1 ⋆ c2 ⋆ c3, where c2 = c(y±i , y
±
j ). Thus, each

clique defines a decomposition
ĉ = ĉ1 ⋆ ĉ2 ⋆ ĉ3,



198 8. CANNON–THURSTON MAPS

where ĉ2 = [y±i y±j ]Xv ⊂ Lv. The latter path is a concatenation of the subsegments [y−l y+l ]Xv ⊂

Lv. Each of these subsegments, in turn, is a concatenation of two subsegments: Al
v (the

narrow end of the carpet Al
Y ⊂ L

i
Y ) and a subsegment βl

v of length ≤ C(k), see Lemma 8.25.
Since the segment Al

v is a uniform quasigeodesic in Li
Y (see Lemma 8.23), it follows that

[y−l y+l ]Xv is a uniform quasigeodesic in Li
Y .

Thus, the entire path ĉ is broken as an alternating concatenation of uniform Y-quasigeo-
desics [y−l y+l ]Xv connecting Σl,Y ,Σl+1,Y and of (possibly degenerate) horizontal K-qi leaves
connecting y+i , y

−
i+1 inside Σl+1,Y . The points y−l , y

+
l , up to a uniformly bounded error, realize

the shortest distance in Li
Y between Σl,Y ,Σl+1,Y .

We can now finish the proof of Proposition 8.22 for the slim combing paths c: The
path ĉ satisfies the conditions of Theorem 2.65 and, hence, is a uniform quasigeodesic in
Y .

To conclude:

Lemma 8.26. The set of pairs (y, y′) ∈ FlYk (Xu) × FlYk (Xu) is weakly special. More pre-
cisely, there exists Λ8.26(k) such that each slim combing path c in N f ib

4δ0
FlX

k (Xu) connecting
y to y′ satisfies the property that ĉ is a Λ8.26(k)-quasigeodesic in Y.

Proof. Points y, y′ belong to bottom/top of a k-ladder L(α) which is uniformly close
to FlYk (Xu). The combing path c = c(y, y′) in this ladder satisfies the property that ĉ is a
Λ8.26(k)-quasigeodesic in Y . □

Lastly, we prove consistency for arbitrary uniform quasigeodesics ϕ connecting points
of the given vertex-flow-space, i.e. uniform consistency of points in an arbitrary flow-space
Flk(Xu), i.e. prove Proposition 8.22 in full generality.

Since Flk(Xu) is δ5.17(k)-hyperbolic, for each Λ ≥ 1, each Λ-quasigeodesic ϕ in
Flk(Xu) connecting y, y′ is within Hausdorff distance D(k,Λ) from a combing path c =
cL(y, y′) contained in a ladder L = LX(α) ⊂ N f ib

4δ0
Flk(Xu), where y, y′ ∈ LX(α).

We will be using the notation from the proof of Lemma 8.26. Suppose that x ∈ X is
a point in c ⊂ LK(α), α ⊂ Xu, x < LY . Then x belongs to one of the subpaths c(y±i , y

±
j )

determined by a clique C and π(x) is a vertex in a subtree of T separated from π(LY ) by the
vertex v = vC ∈ π(LY ). In particular,

d(x, XS ) = d(x, Xv) ≥ d(π(x), v)

and taking intersection with Lv of the canonical K-qi section Σx ⊂ LX(α), we obtain a point
y′′ ∈ Lv ⊂ LY within distance Kd(x, XS ) from x. It follows that every point z ∈ XS within
distance R from x ∈ c, lies within distance (K + 1)R from a point ẑ = y′′ in ĉ ∩ Lv. In
particular, each intersection point of ϕ with XS is within distance D(k,Λ)+ (K+1)R from a
point in ĉ∩Lv. Furthermore, by the construction, the map z 7→ ẑ is monotonic: If z1 appears
before z2 in c, then ẑ1 appears before ẑ2 in ĉ. It now follows that for each L-quasigeodesic
ϕ, the path ϕ̂ is Λ̂-quasigeodesic in Y . □

This concludes Part I of the proof of Theorem 8.21.

The next result is an immediate corollary of Proposition 8.22:

Corollary 8.27. Suppose that p, p′ are points in a vertex-space Xv ⊂ Y such that a
Λ-quasigeodesic ϕ in X connecting p to p′ intersects Xv only at its end-points. Then the
vertical geodesic [pp′]Xv is a Λ′ = Λ′8.27(Λ)-quasigeodesic in Y.

As another application of Part I, we also obtain a theorem which is essentially due to
Mitra, [Mit98]:



8.3. PART I: CONSISTENCY OF POINTS IN VERTEX FLOW-SPACES 199

Theorem 8.28. There exists a constant R = R(Λ) depending only on the tree of spaces
X → T such that for every vertex u ∈ V(T ) and any pair of points y, y′ ∈ Xu, and any
Λ-quasigeodesic ϕ in X with the end-points y, y′, the intersection

Xu ∩ ϕ

is contained in the R-neighborhood of the vertical geodesic [yy′]Xu .

Proof. We will apply Proposition 8.22 to the subtree S = {u}. By the proposition,
each intersection point z ∈ Xu ∩ ϕ is within distance D(k,Λ) + (K + 1)R from a point in
the geodesic segment Lu ⊂ [yy′]Xu , where K = K(k),R = R(k,Λ) and k can be taken to be
uniform, say, k = K0. □

Corollary 8.29. There exists R = R8.29(r) such that for every vertex v ∈ V(T ) and any
pair of points p, q ∈ Xv and geodesics α = [pq]Xv , β = [pq]X , we have

Nr(Xv) ∩ β ⊂ NR(α).

In particular, if α′ = [xx′]Xv ⊂ α = [xy]Xv and y ∈ Nr(β), β = [xx′]X , then d(y, x′) ≤ R.
(See Figure 33.)

Figure 33

As another corollary, we obtain Mitra’s theorem on the existence of CT-maps (Theo-
rem 8.12):

Proof of Theorem 8.12. We will use Mitra’s Criterion for the inclusion map f : Xu →

X (Proposition 8.9). We prove that f satisfies the assumption of Proposition 8.9 by arguing
the contrapositive.

Fix a base-point y ∈ Y and consider a sequence of vertical geodesics αn = [xnx′n]Xu .
Assume that each X-geodesic βn = [xnx′n]X has nonempty intersection with the r-ball
B(y, r) ⊂ X for some fixed r. After replacing βn’s with uniform quasigeodesics ϕn in
X, we ensure that y ∈ ϕn for all n. Therefore, y ∈ ϕ̂n as well. Since the Hausdorff distance
between ϕ̂n and αn is uniformly bounded, the minimal distances between y and αn’s are
uniformly bounded too. Thus, the assumption of Proposition 8.9 is satisfied and, hence,
the inclusion map f : Xu → X admits a CT-extension. □

In Part II of the proof of Theorem 8.21 we will need several technical results regarding
projections to X-geodesics connecting points in Xu, u ∈ V(S ). These results occupy the
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rest of this section. We consider a (K,D, E)-ladder L = LX(α), where p, p′ ∈ Xu and
α = [pp′]Xu . We will be investigating the nearest-point projection (taken in X) of points
y ∈ α = [pp′]Xu to a Λ-quasigeodesic geodesic ϕ in X containing a detour path ζ = ϕ(p, p′)
connecting the points p, p′. Most of the discussion deals with the case ϕ = ζ. Since the path
ζ is uniformly Hausdorff-close to the combing path c = cX(p, p′), in order to understand
the projection of y to ζ, it suffices to analyze the projection of y to c (see Corollary 1.108).

Lemma 8.30. Suppose that p, p′ belong to a common vertex-space Xu. Let {αi} be a
vertical subdivision of α = [pp′]Xu . Then:

1. For each y ∈ αi = [pi pi+1]Xu the projection ȳ = PX,c(y) ∈ c = cX(p, p′) is uniformly
close to a point ȳ′ in the subladder Li = LK(αi) determined by αi:

dX(ȳ, ȳ′) ≤ C = C8.30(K,D, E,Λ).

2. The point ȳ′ can be chosen to lie in the carpet Ai = A(α′i) ⊂ Li, where α′i ⊂ αi is as
in Proposition 4.14.

3. The point ȳ′ ∈ Ai can be chosen so that y, ȳ′ are connected by a (canonical in
Ai ⊂ Li) K-qi leaf contained in Ai.

Proof. 1. Connect y to a point z ∈ c∩Li by a geodesic [yz]X . Since Li is λ-quasiconvex
in X, [yz]X lies in the λ-neighborhood of Li. On the other hand, by Lemma 1.105, [yz]X , as
any geodesic connecting y to c, has to pass uniformly close to ȳ, namely, within distance
λ′ + 3δX , where λ′ is the quasiconvexity constant (in X) of the path c. It follows that ȳ lies
at a distance C = λ + λ′ + 3δX from a point ȳ′ ∈ Li.

2. By Part (1), ȳ ∈ c lies within distance C from a point ȳ′ ∈ Li. If ȳ < Li, take
the smallest subpath in c connecting ȳ to a point z ∈ Li. Then (by the construction of
the path c) the point z realizes (up to a uniform additive error) the minimal distance from
ȳ to Li. Hence, by replacing C with another uniform constant C′, we can assume that
ȳ′ ∈ ci := c ∩ Li, dX(ȳ, ȳ′) ≤ C′.

Figure 34. Path ci.

Note that ci is the concatenation

c(x+i−1, x
−
i ) ⋆ c(x−i , x

+
i ) ⋆ c(x+i , x

−
i+1),

see Figure 34. The middle subpath lies in Ai (except for a vertical subpath of length ≤ MK̄);
therefore, there are just two cases we have to consider:
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(a) ȳ′ ∈ c(x+i−1, x
−
i ) \ Ai. Then, by the description of combing paths in Li (see Section

7.1, Step I.2), the path c(ȳ′, y) contains a subpath contained in bot(Li)∩ c(x+i−1, x
−
i ) ⊂ ci ⊂ c

and connecting ȳ′ to a point Ai. Since ȳ′ is uniformly close to the projection of y to c (and
since c(ȳ′, y) is uniformly quasigeodesic), the length of that subpath of c(ȳ′, y) is uniformly
bounded and, hence, ȳ′ is uniformly close to a point in ci ∩ Ai, as required by the second
statement of the lemma.

(b) ȳ′ ∈ c(x+i , x
−
i+1) \ Ai, see Figure 35. The proof is similar to Case (a): The path

c(ȳ′, y) starts with a subpath cȳ′ ⊂ Li connecting ȳ′ to Ai (again, see Section 7.1, Step I.2).
Since the length of the part of cȳ′ contained in ci has to be uniformly bounded (as in Case
(a)), by changing the location of ȳ′ ∈ ci ∩ top(Li) by a uniformly bounded amount, we can
assume that for

b = center(∆uπ(x+i )π(x−i+1)) = center(∆uwiπ(x−i+1)),

the vertex v = π(ȳ) lies in the interval

⟦b, π(x+i )⟧ ⊂ ⟦u, π(x+i )⟧,

where π(Ai) = ⟦u,wi⟧. Therefore, by Lemma 4.15(2), the vertical distance from ȳ′ to the
top of Ai

v is bounded by R4.15(K). This concludes the proof of (2).

Figure 35. Path ci

3. Thus, we assume that ȳ′ ∈ ci ∩ Ai. If y ∈ αi \ α
′
i , then ȳ′ ∈ top(Ai) and c(ȳ′, x+i ) has

uniformly bounded length and, without loss of generality, c(ȳ′, x+i ) is a vertical segment
of length ≤ MK̄ . The canonical K-section Σy ⊂ Li crosses the vertical interval c(ȳ′, x+i ) at
some point ȳ′′ and d(ȳ′, ȳ′′) ≤ MK̄ . Thus, from now on, we assume that y ∈ α′i ⊂ Ai.

The intersection ci ∩ Ai consists of a path in top(Ai), the narrow end of Ai (which has
length ≤ MK̄) and of a path contained in bot(Ai) which equals

c(x+i−1, x
−
i ) ∩ bot(Ai).

Since every point in the narrow end of Ai is connected to each point of α′i by a K-qi section,
we have two cases to consider:
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(a)
ȳ′ ∈ c(x+i−1, x

−
i ) ∩ bot(Ai).

By the definition of the path
c(ȳ′, y),

it is a concatenation of a horizontal subpath contained in c(x+i−1, x
−
i ) ∩ bot(Ai), followed by

a vertical path of length ≤ MK̄ and, then by a K-qi leaf

γȳ′′,y ⊂ Ai,

connecting ȳ′′ to y. (Note that ȳ′′ does not, in general, lie in c, it is just within distance
≤ MK̄ from a point in c.) The first horizontal subpath is entirely contained in ci ⊂ c, hence,
has to have uniformly bounded length. Thus, ȳ′ is uniformly close to the point ȳ′′ ∈ Ai

connected to y by a K-qi section. This concludes the proof in case (a).
(b)

ȳ′ ∈ c(x+i−1, x
−
i ) ∩ top(Ai).

This case is similar to (a): The path c(ȳ′, y) is a concatenation of a subpath contained in c,
followed by a short vertical subpath and, then, by a K-qi leaf connecting a point ȳ′′ ∈ Ai to
y. The first two subpaths are uniformly short, hence, we are done. □

Corollary 8.31. If d(ȳ, p) ≤ R, then

dX(y, p) ≤ R′ = R′8.31(R,K,C),

where C = C8.30.

Proof. Taking ȳ′ is as in Part (3) of Lemma 8.30, we obtain

dT (u, π(ȳ′)) ≤ dX(p, ȳ′) ≤ R +C.

Since y, ȳ′ are connected by a K-qi leaf over the interval ⟦u, π(ȳ′)⟧,

dX(y, ȳ′) ≤ KdT (u, π(ȳ′)) ≤ K(R +C),

which, in turn, implies the inequality dX(y, p) ≤ (K + 1)(R +C). □

Lastly, we turn to the projection of y ∈ [pp′]Xu to aΛ-quasigeodesic ϕ (with end-points
in Y) containing ζ = ϕ(p, p′) as a detour subarc:

Lemma 8.32.
d(PX,ϕ(y), ζ) ≤ D8.32 = D8.32(K,D, E,Λ).

Proof. The result is an application of Corollaries 1.110 and 8.31. The subsets U =
ϕ,V = ζ are D1.54(δX ,Λ)-quasiconvex in X. Assume that ȳ := PX,ϕ(y) is not in the arc ζ. In
view of the Morse Lemma (Lemma 1.54), for each z ∈ ζ the geodesic [ȳz]X passes within
distance D1.54(δX ,Λ) from p or from p′ (depending which component of ϕ \ ζ the point
ȳ belongs to). We will assume that it is p rather than p′. Therefore, by Lemma 1.105(i),
the projection of ȳ is within distance 2D1.54(δX ,Λ) from p or from p′. But, according to
Corollary 1.110,

dX(PU,V ◦ PX,U(y), PX,V (y)) ≤ C1.110(δX ,D1.54(δX ,Λ)).

Hence,
dX(PV (y), p) ≤ R := C1.110(δX ,D1.54(δX ,Λ)) + 2D1.54(δX ,Λ).

Applying Corollary 8.31, we get

dX(y, p) ≤ R′8.31(D),

and, therefore, dX(ȳ, p) ≤ D8.32 := 2R′8.31(R). □
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Corollary 8.33.

d(PX,ϕ(y), PX,ζ(y)) ≤ D8.33(K,D, E,Λ).

Proof. If PX,ϕ(y) ∈ ζ then PX,ϕ(y) = PX,ζ(y). Assume, therefore, that PX,ϕ(y) < ζ.
According to lemma, PX,ϕ(y) is within distance D8.33 from a point q ∈ ζ. Therefore,

dX(y, q) ≤ d(y, ζ) + D8.33.

By Corollary 1.107,
dX(q, PX,ζ(y)) ≤ D8.33 + 2λ + 4δX ,

where λ = D1.54(δX ,Λ) is the quasiconvexity constant of ζ ⊂ X. □

8.4. Part II: Consistency in semispecial flow-spaces

8.4.1. Part II.4: Projections in special flow-spaces. In this part of the proof (which
is the most difficult part of Section 8.4) we are assuming that vertices u, v ∈ V(S ) define a
K-special interval J = ⟦u, v⟧ ⊂ S . In order to simplify the notation we set

FX
w = FlX

K(Xw), FY
w = FlYK(Xw),

for vertices w ∈ V(S ). Observe that FX
v ∩ Xu , ∅ ⇐⇒ FY

v ∩ Xu , ∅ and FX
u ∩ Xv ,

∅ ⇐⇒ FY
u ∩Xv , ∅, i.e. it does not matter in what space (X or Y) our interval J is special.

In the proofs below, it does not matter which of the above intersections is nonempty. In
this section we will relate the X-projection x̄ of x ∈ FY

v to FX
u and the Y-projection ¯̄x of x

to FY
u . At the same time, we will establish uniform consistency of some classes of pairs

(x, x′) ∈ FY
v ×FY

u . These results will be the key for proving uniform consistency of pairs of
points in semispecial flow-spaces, which will be done in the next section. (This will apply,
of course, to points in special flow-spaces as well.) After altering x̄ and ¯̄x by uniformly
bounded distance, we can assume that these points belong to vertex-spaces of X and Y
respectively.

Recall (see Lemma 1.105) that the concatenation

ϕ = [xx̄]X ⋆ [x̄x′]X

is a Λ-quasigeodesic in X, where Λ depends only on the quasiconvexity constant λX of FX
u

and the hyperbolicity constant of X (i.e. only on the parameters of X and K). If x̄ < Y ,
we let ζ = ϕ(x̂, x̂′) denote the detour subpath in ϕ containing x̄ and connecting points x̂, x̂′

which belong to the same vertex-space Xt ⊂ Y . In the case x̄ ∈ Y ∩ Xt, we declare ζ to be
degenerate, equal to the singleton {x̄}, and, accordingly, set

x̂ = x̂′ = x̄.

Figure 36. Two projections.
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Remark 8.34. Even if x̄ is far away from Y , the points x̂, x̂′ depend quite a bit on
the quasigeodesic ϕ (i.e. on the choice of geodesics [xx̄]X , [x̄x′]X) connecting x, x′. The
notation x̂, x̂′, therefore, is ambiguous and, in truth, should contain the symbol ϕ, which
we omit for ease of notation.

Below is a picture of the detour at the vertex-space Xs in more detail:

Figure 37. Two projections: Detour ζ1.

The key result of Part II.4 is:

Lemma 8.35. The point ¯̄x lies within distance R8.35(K,Λ) from a point of the segment
ζ̂ = [x̂x̂′]Xt , no matter what x′ and ϕ are.

Proof. Consider the subpath ϕ′ = ϕ(x, x̂′) connecting x to x̂′ and passing through x̂:

ϕ′ = ϕ1 ⋆ ζ.

(The subpath ϕ1 is geodesic since it is contained in [xx̄]X .) See Figure 36. Then

ϕ̂′ = ϕ̂1 ⋆ ζ̂.

We already know (by Proposition 8.22 and Corollary 8.27) that ϕ̂1 and ζ̂ are uniform Y-
quasigeodesics, but we do not yet know that their concatenation is, since uniform consis-
tency of the pairs (x, x̂′) is not yet known, except in some special cases. We do know,
however, the uniform consistency of the pair (x, ¯̄x): Since FY

v ∩ FY
u , ∅, Lemma 1.130

implies that the point ¯̄x lies in the 2λY + 3δY -neighborhood of FY
v , where λY is the qua-

siconvexity constant of flow-spaces FlYw ⊂ Y . Therefore, the uniform consistency of the
pairs (x, ¯̄x) follows from Proposition 8.22.

Since the geodesic [xx̂′]Y passes uniformly close to the projection ¯̄x of x to FY
u , by the

δY -slimness of the geodesic triangle

∆Y xx̂x̂′ ⊂ Y,

either ϕ̂1 or ζ̂ passes within the distance R = R(K) from ¯̄x. If it is ζ̂, we are done. Consider,
therefore, the case that ϕ̂1 passes within distance R from ¯̄x. The path ϕ̂1 is a concatenation
of subarcs ϕ1 ∩ Y with vertical geodesics ζ̂i, where each ζi is a detour subarc in ϕ1.

Suppose first that ϕ1 ∩ Y passes within distance R from ¯̄x ∈ FY
u . Since ϕ1 is geodesic

in X and x̄ is the nearest-point projection of x to FX
u , we obtain:

d( ¯̄x, x̄) ≤ 2R.

In particular, d(x̄, Xt) ≤ 2R as well (since [x̄ ¯̄x]X has to cross Xt). By Corollary 8.29, the
intersection

B(x̄, 2R) ∩ Xt
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is uniformly close to a subset of ζ̂ and, hence, we are done, in this case as well.
It remains to analyze the harder case when for one of the detour subarcs ζ1 ⊂ ϕ1, the

path ζ̂1 passes within distance R from ¯̄x. Let Xs denote the vertex-space of Y containing
the end-points p, p′ of ζ1 and y ∈ ζ̂1 ⊂ Xs a point within distance R from ¯̄x. Let ȳ denote
the nearest-point projection of y to ζ1.

The point ȳ lies within distance D8.32 from the projection of y to ϕ1 since the latter
contains ζ1, see Lemma 8.32. The concatenation ψ = ψ1 ⋆ [ȳy]X (where ψ1 is the subpath
of ϕ1 between x and ȳ) is a uniform quasigeodesic in X connecting x to the point y within
distance R from ¯̄x.

Since FX
v is λX-quasiconvex in X, [y ¯̄x]X has length ≤ R and ψ is a uniform quasi-

geodesic in X, the path ψ′ = ψ ⋆ [y ¯̄x]X (connecting x to ¯̄x) lies within a uniform neighbor-
hood of FX

v . Since ¯̄x is in the 2λY + 3δY -neighborhood of FY
v ⊂ FX

v , by Lemma 1.105(i)
the path ψ′ (connecting x ∈ FX

v to ¯̄x which is uniformly close to FX
v ) passes, at some point

z ∈ ψ′, uniformly close to x̄.
Where could this point z be? If z lies in ψ1, then, since ȳ is between z and x̄ in ϕ, the

length of the entire subpath ϕ′′ of ϕ between x̄ and ȳ is uniformly bounded. Similarly, if z
lies in [y ¯̄x]X then, since the concatenation of ϕ′′ with [ȳy]X is also a uniform quasigeodesic,
the length of ϕ′′ is uniformly bounded as well. The path ϕ′′ includes a subpath (contained
in ζ1) between ȳ and p′, and we conclude that the distance between ȳ and p′ is uniformly
bounded by some constant D. Therefore, by Corollary 8.31, the distance between y and
p′ is ≤ D′ = D′8.31(D), implying a uniform upper bound on the distance from ¯̄x to x̂ ∈ ϕ′′.
Therefore, in this case again, we see that ¯̄x is uniformly close to a point (namely, x̂) in the
segment

ζ̂ = [x̂x̂′]Xt .

Of course, in this case the distance between ¯̄x and x̄ is also uniformly bounded as well. □

In fact, we can pin down the location of a point y ∈ ζ̂ within distance R8.35(K) from
¯̄x a bit further. Namely, the set of points x̂′ in the lemma is precisely the 4δ0-quasiconvex
subset Qt ⊂ Xt equal to the intersection

Xt ∩ FlX
u .

Since ¯̄x is uniformly close to a point in each of the geodesics [x̂x̂′]Xt , x̂′ ∈ Qt, by applying
Corollary 1.109 we conclude that ¯̄x is uniformly close to a point in the geodesic segment
[x̂y]Xt , where y is the projection (taken in Xt) of x̂ to Qt.

At the same time, since ¯̄x belongs to FY
u , y lies in the intersection of Xt with the

R8.35(K)-neighborhood of FY
u (the neighborhood is taken in X). Thus, by Lemma 3.29, the

point y lies in
N f ib

D (Qt) ⊂ Xt,

where D = D3.29(R,K). We conclude:

Corollary 8.36. The point ¯̄x is uniformly close to the projection x̃ (taken in Xt) of x̂
to Qt = Xt ∩ FlX

K(Xu).

Note that, while the point x̂ depends heavily on the choice of the path ϕ connecting
x, x′ ∈ FY

u , the point x̃ is canonical (up to a uniform error, depending only on K).

Another observation relating the position of the points ¯̄x and x̄ is that, setting y := x̃,
if ȳ denotes the X-projection of y to the detour arc ζ (connecting x̂ and x̂′), then x̄ is
uniformly close to a point in the subarc ζ(x̂, ȳ) ⊂ ζ: Otherwise, as in the proof of Lemma
8.35, the concatenation [yȳ]X ⋆ ζ(ȳ, x̂) is a uniform X-quasigeodesic. Therefore, it has to
pass uniformly close to the point x̄. At the same time, the concatenation [yȳ]X ⋆ ζ(ȳ, x̂′)
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Figure 38. Location of ¯̄x.

is also a uniform X-quasigeodesic. Thus, x̄ would have to be within uniformly bounded
distance from both [yȳ]X and ζ(ȳ, x̂′), which means that x̄ is uniformly close to ȳ. We,
therefore, proved (see Figure 39):

Lemma 8.37. dX(x̄, ζ(x̂, ȳ)) ≤ C8.37(K).

Figure 39. Location of x̄ in the detour path.

Corollary 8.38. If dX(x̄,Y) ≤ r, then dX(x̄, ¯̄x) ≤ r̄ = r̄8.38(K, r).

Proof. Choose x′ = y = x̃ as above. As before, the concatenation [xx̄]X ⋆ [x̄y]X is a
Λ-quasigeodesic in X for Λ depending only on K. Take a point p ∈ Xt within distance r
from x̄. Then, according to Lemma 3.29,

d(p, Fu ∩ Xt) ≤ D3.29(r,K).
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At the same time, by Corollary 8.29, the point p can be chosen to lie in the R8.29(r)-
neighborhood of the segment [x̂y]Xt . Since y = x̃ was the projection of x̂ to Fu ∩ Xt (taken
in Xt), it follows that the distance from p to y is uniformly bounded. □

We are now ready to prove (using the notation introduced above, with the point y := x̃
uniformly close to ¯̄x):

Lemma 8.39. For all K-special intervals J = ⟦u, v⟧ in S , and all pairs (x, x′) ∈ FY
v ×

FY
u :

1. The points x̂ are uniform transition points between x, x̂′.
2. The pairs (x, x̂′) are uniformly consistent.

Proof. 1. By the construction, the point x̂ belongs to the Λ = Λ(K)-quasigeodesic
ϕ = [xx̄]X ⋆ [x̄x̂′]X connecting x to x̂′, implying that x̂ is a uniform X-transition point
between x, x̂′. To prove the Y-transition property, note that the concatenation

[xy]Y ⋆ [yx̂′]Xt

is a uniform Y-quasigeodesic (since y is uniformly close to the nearest-point projection in
Y of x to FY

u and [yx̂′]Xt is a uniform quasigeodesic in FY
u ). Thus, we only have to prove

that [xy]Y passes uniformly close to x̂. As we noted earlier, the pairs (x, y) are uniformly
consistent (since x ∈ FY

v and y lies in a uniform neighborhood of FY
v ). The concatenation

ψ = [yȳ]X ⋆ [ȳx]X

is a uniform quasigeodesic in X. The path ψ̂ = [yx̂]Xt ⋆ ψ̂(x̂, x) passes through x̂ and
is a uniform Y-quasigeodesic (by the uniform consistency of the pair (x, y)). The same,
therefore, holds for the geodesic [yx]Y . This implies that x̂ is a uniform transition point
between x and x̂′.

2. The pairs (x, x̂), (x̂, x̂′) are uniformly consistent according to Proposition 8.22,
because the first is in FY

v ×FY
v and the second is in X2

t . Since x̂ is a uniform transition point
between x, x̂′ according to Part 1, the pairs (x, x̂′) are uniformly consistent (see Lemma
8.19). □

This concludes Part II.4 of the proof of Theorem 8.21.

8.4.2. Part II.5: Pairs in semispecial flow-spaces. Consider a K-semispecial inter-
val J = J1 ∪ J2 which is a union of two K-special intervals J1, J2 meeting only at a com-
mon end-point w. We will prove uniform consistency of pairs of points in FlYK(XJ): This
will also apply to the case of special intervals J since would arbitrarily subdivide it into
two subintervals. Observe that it suffices to prove uniform consistency of pairs of points
xi ∈ FY

vi
= FlYK(Xvi ), vi ∈ V(Ji), i = 1, 2. Indeed, if vi, i = 1, 2 are both in, say, J1, then we

subdivide the interval J1 further, to subintervals J′1, J
′′
1 containing v1, v2 respectively.

Proposition 8.40. Each pair (x1, x2) as above is θ8.40,K-consistent.

Proof. For i = 1, 2 consider the point

x̄i = PX,FX
w
(xi),

which is the nearest-point projection of xi (taken in X) to the flow-space FX
w = FlX

K(Xw).

Lemma 8.41. The points x̄1, x̄2 cannot lie in the same component of X − Y.

Proof. Assume that both x̄1, x̄2 belong to X − Y; in particular, π(x̄i) , w, i = 1, 2.
Then the vertex w cannot separate wi = π(x̄i) from vi, i = 1, 2: If w were to separate these
vertices, then the geodesic [xi x̄i]X would cross into Xw before reaching x̄i and, thus, x̄i
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Figure 40. Path ϕ from x1 to x2.

would not be a nearest point to xi in FX
w . In particular, the geodesics ⟦vi,wi⟧ lie in distinct

components of T − {w} and, hence, w1,w2 are separated by w ∈ S . Thus, x̄1, x̄2 cannot lie
in the same connected component of X − Y . □

Figure 41. Transition points on the path ϕ from x1 to x2.

As we proved in Section 2.6.2, the concatenations

ϕ = [x1 x̄1]X ⋆ [x̄1 x̄2]X ⋆ [x̄2x2]X ,

are Λ-quasigeodesics, where Λ = Λ(K). As in the previous section, we consider detour
subpaths ζi ⊂ ϕ containing x̄i,

ζi = ϕ(x̂i, x̂′i ),
where x̂i, x̂′i ∈ Xti , i = 1, 2. (See Figure 41.) By Lemma 8.41, these detour subpaths have to
be disjoint, except, possibly at their end-points. The points x̂′i belong to the middle portion
[x̄1 x̄2]X of ϕ. We mark points

yi ∈ [x̂i x̂′i ]Xti
, i = 1, 2

which are uniformly close to the projections ¯̄xi = PY,FY
w
(xi), see Lemma 8.35.

Lemma 8.42. The points x̂′i are uniform transition points between x1 and x2, more
precisely, the sequences

x1, x̂′1, x̂
′
2, x2

are uniformly straight in both X and in Y.
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Proof. The uniform straightness in X follows from the fact that the above sequence
appears in the Λ-quasigeodesic ϕ in X (in the correct order). To prove the uniform straight-
ness in Y , note that the concatenation

ψ = [x1y1]Y ⋆ [y1y2]Y ⋆ [y2x2]Y ,

is a uniform quasigeodesic in Y , since each yi is uniformly close to the projection of xi to
the λY -quasiconvex subset FY

w ⊂ Y (again, see Section 2.6.2). Thus, it suffices to show that
x̂′1, x̂

′
2 are uniform Y-transition points between y1, y2. As in the previous section, consider

the nearest-point projections ȳi ∈ ζi of yi. According to Lemma 8.32, there exist points

ỹi ∈ [x̄i, x̂′i ]X , i = 1, 2,

within distance C8.37(K) from ȳi. The points ȳi (and, hence, ỹi) are uniformly close to the
projections of yi to the quasigeodesic ϕ (Lemma 8.32). Hence, the concatenation

[y1ỹ1]X ⋆ [ỹ1ỹ2]X ⋆ [ỹ2y2]X

is a uniform quasigeodesic in X, where [ỹ1ỹ2]X ⊂ [x̄1 x̄2]X . The middle geodesic in this con-
catenation passes through the points x̂′1, x̂

′
2 (in this order), implying the uniform straightness

of the sequence
y1, x̂′1, x̂

′
2, y2

in Y , as claimed. □

Now, we can finish the Part II.5 of the proof of Theorem 8.21. The sequence

x1, x̂′1, x̂
′
2, x2

is uniformly straight in both X and in Y . The pair

(x̂′1, x̂
′
2) ∈ FY

w × FY
w

is uniformly consistent according to Proposition 8.22, while both pairs

(x1, x̂′1), (x̂′2, x2)

are uniformly consistent by Lemma 8.39(2). Therefore, by Lemma 8.20, the pair (x1, x2)
is θ-consistent for some function θ = θ8.40,K . □

This concludes Part II of the proof.

8.5. Part III: Consistency in the general case

Suppose that x, y ∈ Y belong to vertex-spaces Xu, Xv, respectively, u, v ∈ V(S ). Fix
K = K0. Using Lemma 3.44 and Theorem 6.17, we obtain a horizontal subdivision of
the interval J = ⟦u, v⟧, into subintervals Ji = ⟦ui, ui+1⟧, i = 1, ..., n, such that the pairs of
distinct flow-spaces FX

i := FlX
K(Xui ) have disjoint projections to T and, hence, are C =

C6.17-cobounded, unless, possibly i = n; u = u1, v = un+1. (The same, of course also holds
for the Y-flows.) As in Lemma 3.44, we also define vertices u′′i , u

′
i+1 ∈ Ji such that

1. u′i , ui span an edge ei in T (except, possibly, for i = n + 1, in which case we can
have dT (u′n+1, un+1) ≤ 1).

2. Each subinterval ⟦u′i , ui⟧, ⟦ui, u′′i ⟧, ⟦u
′′
i , u

′
i+1⟧ is K-special. In particular, the subin-

terval J′i = ⟦ui, u′i+1⟧ is semispecial.
For each i we define pairs of points (x′′i , x

′
i+1) ∈ F X

i × F
X

i+1 realizing the minimal
distance between the subsets F X

i ,F
X

i+1 of X unless i = n and u′n+1 = un+1, in which case we
take x′′n to be the projection of y to F X

n .

For each i define the vertices t′i := π(x′i ), t′′i := π(x′′i ) and let s′i , s
′′
i denote their respec-

tive projections to the subtree S ⊂ T .
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Figure 42. Projections to J.

Lemma 8.43. Let b′i (resp. b′′i , v′i , v′′i ) denote the projection to J of the vertices t′i (resp.
t′′i , π(y′i), π(y′′i )). Then:

1. The projections b′i , v
′
i lie in the subinterval ⟧u′′i−1, u

′
i⟧.

2. The projections b′′i , v
′′
i lie in the subinterval ⟦ui, u′′i ⟧.

Proof. We will prove the claim for the vertex v′i , since the rest is proven by the same
argument.

First of all,
π(FY

i ) ⊂ π(FX
i )

and, by the definition of the horizontal subdivision of the interval J, π(FX
i ) intersects J

in a subinterval of ⟧u′′i−1, u
′′
i ⟧. Thus, v′i belongs to ⟧u′′i−1, u

′′
i ⟧. Suppose, for the sake of a

contradiction, that v′i is in the interval ⟦ui, u′′i ⟧. Then each geodesic connecting y′′i−1 to y′i
goes through the edge-space Xe of the edge

e = [u′i , ui],

before reaching x′i . But then, this geodesic also passes through the subset

Xeu′i ⊂ Xu′i .

Since K ≥ 1, the entire subset Xeu′i is contained in the flow-space FlYK(Xui ). Hence, y′i
cannot possibly be the Y-projection of y′′i to FY

i . A contradiction. □

Corollary 8.44. The pairs (y′′i , y
′
i+1) are uniformly consistent.

Proof. Let v′′i , v
′
i+1 denote the projections of π(y′′i ), π(y′i+1) to J. By the lemma, both

v′′i , v
′
i+1 lie in the interval J′i = ⟦ui, u′i+1⟧, which is semispecial. Moreover, y′′i ∈ FlYK(Xui )

and y′i ∈ FlYK(Xu′i+1
). Thus,

(y′′i , y
′
i+1) ∈ FlYK(XJ′i )

and, hence, the statement is a special case of Proposition 8.40. □

Our next task is to relate the points x′i , y
′
i and also relate the points x′′i , y

′′
i . Since y′i is

in Y , the segment [y′i x
′
i ]X has to cross the vertex-space Xs′i ; the same holds for the segment

[y′′i x′′i ]X and Xs′′i . We define the points ỹ′i ∈ [y′i x
′
i ]X , ỹ′′i ∈ [y′′i x′′i ]X by the condition that the

subsegments
[ỹ′i x

′
i ]X ⊂ [y′i x

′
i ]X
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Figure 43. Transition points

and
[ỹ′′i x′′i ]X ⊂ [y′′i x′′i ]X

are the smallest subsegments terminating in x′i , x
′′
i , with the property that ỹ′i ∈ Xs′i , ỹ

′′
i ∈ Xs′′i .

(See Figure 43.) Thus,
Y ∩ [ỹ′i x

′
i ]X \ {ỹ′i} = ∅,

and, similarly, for [ỹ′′i x′′i ]X .
Similarly, define points ŷ′′i , ŷ

′
i+1 ∈ [x′′i x′i+1]X such that

[ŷ′i x
′
i ]X ⊂ [x′′i−1x′i ]X , [ŷ′′i x′′i ]X ⊂ [x′i+1x′′i ]X ,

are the smallest subsegments terminating in x′i , x
′′
i with ŷ′i ∈ Xs′i , ŷ

′′
i ∈ Xs′′i . Observe that the

concatenations
βi := [y′′i x′′i ]X ⋆ [x′′i x′i+1]X ⋆ [x′i+1y′i+1]X

are uniform quasigeodesics in X since x′′i ∈ FX
i , x

′
i+1 ∈ FX

i+1 realize the minimal distance
between these two uniformly quasiconvex subsets of X and y′′i ∈ FY

i ⊂ FX
i , y

′
i+1 ∈ FY

i+1 ⊂

FX
i+1. Both

ζ′i = [ŷ′i x
′
i ]X ∪ [x′i ỹ

′
i]X , ζ

′′
i = [ŷ′′i x′′i ]X ∪ [x′′i ỹ′′i ]X

are detour subpaths in βi, containing the points x′i , x
′′
i respectively.

Lemma 8.45. 1. The pairs (ŷ′′i , ŷ
′
i+1) ∈ Y2 are uniformly consistent.

2. The distances d(y′i , ỹ
′
i), d(y′′i , ỹ

′′
i ) are uniformly bounded.

Proof. Part 1. By the previous corollary, the pair (y′′i , y
′
i+1) is uniformly consistent. In

particular, the path

β̂i = ̂[y′′i ỹ′′i ]X ⋆ [ỹ′′i ŷ′′i ]Xs′′i
⋆ ̂[ŷ′′i ŷ′i+1]X ⋆ [ŷ′i+1ỹ′i+1]Xs′i+1

⋆ ̂[ỹ′i+1y′i+1]X

is uniformly quasigeodesic. Thus, the geodesic [y′′i y′i+1]Y passes within uniform distance
D from the points ỹ′′i , ŷ

′′
i , ŷ

′
i+1, ỹ

′
i+1 (in this order). Taking into account uniform consistency

of the pairs (y′′i , y
′
i+1) and Remark 8.16, we conclude uniform consistency of the pairs

(ŷ′′i , ŷ
′
i+1).

Part 2. We will estimate the second distance, d(y′′i , ỹ
′′
i ), since the proof for the first one

is similar. Since FX
i is λX-quasiconvex in X, and (x′i , y

′
i) ∈ FX

i × FX
i , the point ỹ′i lies within

distance λX from a point q in FX
i . The point q might not be in FY

i = FX
i ∩Y , but it is within

distance KλX from FX
i ∩Xs′i ⊂ FY

λ . In Part 1 we observed that the geodesic [y′′i y′i+1]Y passes
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(at some point p) within uniform distance D from the point ỹ′′i . Thus, we found a point
p ∈ [y′′i y′i+1]Y within distance D + (K + 1)λ from FY

i . It follows that

dY (p, y′′i ) ≤ D + (K + 1)λX

and, hence,
dY (ỹ′′i , y

′′
i ) ≤ 2D + (K + 1)λX . □

Remark 8.46. While it is not needed for our purposes, one can prove similarly to
Lemma 8.35, that the points y′i , y

′′
i are uniformly close to the projections (taken in the

vertex-spaces Xs′i , Xs′′i respectively) of the points ŷ′i , ŷ
′′
i to the 4δ0-quasiconvex subsets

FY
i ∩ Xs′i , F

Y
i ∩ Xs′′i

respectively. This provides a description (up to a uniform error) of the points y′i , y
′′
i in terms

of x′′i−1, x
′
i , x
′′
i .

Lemma 8.47. The pairs (ŷ′i , ŷ
′′
i ) are uniformly consistent.

Proof. Each interval
Ii = ⟦s′i , s

′′
i ⟧ ⊂ T

is contained ⟦t′i , t
′′
i ⟧ and intersects J along the interval ⟦b′i , b

′′
i ⟧, which, in turn, contains

the vertex ui, see Lemma 8.43. Since FY
i has nonempty intersection with both Xs′i , Xs′′i , it

follows that the interval Ii is semispecial (it is the union of special subintervals ⟦s′i , ui⟧,
⟦s′′i , ui⟧). Thus,

y′i , y
′′
i ∈ XIi ⊂ FlYK(XIi )

and, hence, the pair (ŷ′i , ŷ
′′
i ) is uniformly consistent by Proposition 8.40. □

We now can finish the proof of Theorem 8.21. For each i, the points ŷ′′i , ŷ
′
i+1 are both

X and Y-transition points between, respectively, x′′i , x
′
i+1 and y′′i , y

′
i+1. The sequence

x, ŷ′′1 , ŷ
′
2, ŷ
′′
2 , ..., ŷ

′
n, ŷ
′′
n , ŷ

′
n+1, y

is uniformly straight in both X and in Y and the consecutive pairs of points in this sequence
are uniformly consistent. Now, the uniform consistency of the pairs (x, y) follows from
Lemma 8.20. □

8.6. The existence of CT-maps for subtrees of spaces

We finally are ready to prove the main result of this chapter:

Theorem 8.48. Let X = (π : X → T ) be a tree of hyperbolic spaces with hyperbolic
total space X and let Y = (π : Y → S ) be a subtree of spaces in X, where S ⊂ T is a
subtree and Y = π−1(S ). Then the inclusion map Y → X admits a CT-extension.

Proof. We will derive this result from Theorem 8.21. Fix p ∈ Y and suppose that
(yn), (y′n) are sequences in Y such that

lim
n→∞

(yn.y′n)Y
p = ∞,

where the superscript Y refers to the Gromov-product of the intrinsic path-metric of Y .
Equivalently, for the geodesic βn = [yny′n]Y ⊂ Y we have

lim
n→∞

d(p, βn) = ∞.
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For the sake of contradiction, assume that the corresponding X-geodesics αn = [yny′n]X ⊂ X
all pass through a ball BX(y,R) ⊂ X for some fixed R (which is equivalent to saying that
the sequence (yn, y′n)X

p does not diverge to infinity), i.e. there exist points

qn ∈ αn ∩ BX(p,R).

By Theorem 8.21, each α̂n is a Λ-quasigeodesic in Y connecting yn, y′n, for some Λ inde-
pendent of n. By the Morse Lemma (Lemma 1.54),

HdY (βn, α̂n) ≤ D = D(δY ,Λ).

There are two cases which may occur:
a. qn ∈ Y . Then (by the definition of α̂n) qn ∈ α̂n, hence,

dX(p, βn) ≤ D + R

for all n, which is a contradiction.
b. qn < Y . Let ζn = [znz′n]X ⊂ αn be a detour subpath in αn containing qn; the end-

points zn, z′n of ζn belong to a vertex-space Xvn ⊂ Y . Since p ∈ Y , qn < Y , the vertex-space
Xvn separates p from qn and, hence, the geodesic [pqn]X has to pass through Xvn at some
point pn ∈ Xvn . We, obviously, have

dX(p, pn) ≤ R.

Thus, by Corollary 8.29, the points pn are all uniformly close (within distance r depending
only on the parameters of X) to the geodesic [znz′n]Xvn

⊂ α̂n. Therefore,

dX(p, βn) ≤ D + R + r,

which is again a contradiction. □

8.7. Fibers of CT-maps

Let X = (π : X → T ) be a tree of hyperbolic spaces with hyperbolic total space X.
According to Theorem 8.48, for every subtree S ⊂ T and Y = XS , the inclusion map

fY,X : Y = XS → X

admits a Cannon–Thurston extension

∂Y,X := ∂∞ fY,X : ∂∞Y → ∂∞X.

For the rest of the chapter, we will be working under the extra assumptions that X is a
proper metric space, i.e. that an abstract tree of spaces X admits a proper total space. Note
that if some edge-spaces are non-discrete, the total space X defined in the proof of Theorem
2.15 need not be proper even if V(T ) = {v,w} and Xv, Xw, X[v,w] are proper. However, this
X will be proper (a locally finite metric graph) under the following conditions:

1. Each vertex-space Xv is a locally-finite graph (with the standard graph-metric).
2. All edge-spaces Xe are discrete and Xev = fev(Xe) ⊂ V(Xv) for each edge e and

incident vertex v.
3. Each finite subset of each vertex-space Xv meets only finitely many subsets of the

form Xev, where e’s are edges incident to v.

Proposition 8.49. Suppose that X has a proper total space X. Then there exists a
number r, depending only on X and X, for which the following holds. For each Y = XS ⊂ X,
if ξ± ∈ ∂∞Y are two distinct points such that ∂Y,X(ξ+) = ∂Y,X(ξ−), then there exists a vertex
v ∈ S and two ideal boundary points ξ′± ∈ ∂∞Xv such that:

1. ∂Xv,Y (ξ′±) = ξ±.
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2. The Y-geodesic η : R → Y, connecting ξ+, ξ−, is contained in the r-neighborhood
of a vertex-space Xv, v ∈ S , and, moreover, is r-Hausdorff-close to a vertical geodesic α in
Xv.

Proof. Set xn := η(n), n ∈ Z. Define subarcs of the geodesic η by

ηn := [x−nxn]Y , n ∈ N,

and geodesics βn = [x−nxn]X .
Since ∂Y,X(ξ+) = ∂Y,X(ξ−), we have that

lim
n→∞

dX(x0, βn) = ∞.

Thus, x0 cannot be uniformly close to βn ∩ Y . At the same time, since x0 belongs to each
ηn (which, by Theorem 8.21, is uniformly close to the Λ-quasigeodesic β̂n in Y), the point
x0 lies in the C-neighborhood of one of the replacement arcs ζ̂n = [pnqn]Xvn

⊂ η̂n, where Λ
and C depend only on the parameters of X. In particular, dX(x0, Xvn ) ≤ C for all n. Since X
is assumed to be proper, there are only finitely many vertex-spaces in X which can intersect
B(x0,C). It follows that there is an infinite subset M ⊂ N and a vertex v ∈ S such that for
all m ∈ M, vm = v. At the same time, since the distances d(x0, βn) diverge to infinity, we
also have

lim
n→∞

d(x0, pn) = ∞, lim
n→∞

d(x0, qn) = ∞.

Hence, after passing to a further subsequence, the sequences (pm)m∈M , (qm)m∈M , diverge in
Xv to two ideal boundary points ξ′±.

By continuity at infinity of the CT-map ∂Xv,Y : ∂∞Xv → ∂∞Y , it follows that

∂Xv,Y (ξ′±) = ξ±.

After passing to a subsequence once more, we can assume that the sequence of geodesics
ζ̂n ⊂ Xv converges to a complete geodesic ζ ⊂ Xv asymptotic to the points ξ′±. Since
geodesics ζ̂n are Λ-quasigeodesics in Y , so is their limit α. Since the Y-geodesic η is also
asymptotic to ξ±, it follows that η, α are within Hausdorff distance r := 2D1.54(δY ,Λ),
which depends only on the parameters of X. It also follows that η is contained in Nr(Xv).

□

In the following addendum to this proposition we describe more precisely (up to a
uniform error) the nature of geodesic segments β−m,n connecting the points x−m, xn, n,m ∈
N, in the setting of the theorem. Since the points x−m, xn belong to the r-neighborhood of
Xv, we will be considering instead of β−m,n’s the uniform quasigeodesics c−m,n (from the
slim combing of X described in Section 7.1) connecting points y−m, yn, m, n ∈ N, where
yi := α(i), i ∈ Z. We will see that the path c−m,n first diverges away from Xv (in the metric
of X) at a linear speed and then converges back to Xv at a linear speed. We refer the reader
to Section 7.1 (step I.1) for the description of uniform quasigeodesics connecting points in
narrow carpets used in the proof of the next proposition.

Remark 8.50. In what follows, we will frequently use the following notation. Let
A = A(α) be a (K,C)-narrow carpet with the narrow end β ⊂ Xw, bottom and top sections
γ−, γ+. Then we define the path c = cA as the concatenation

γ− ⋆ β ⋆ γ+

connecting the bottom and the top points of the segment α ⊂ Xu. Such paths will be
uniform (with qi constants depending on K and C) quasigeodesics in A and, hence, in X,
as long as for each vertex v ∈ Xv, the length of Av is ≥ MK̄ , see Section 4.1 or Section 7.1,
Step I.1.
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Proposition 8.51. 1. For all n > 0,m > 0, the segment α−m,n = [y−myn]Xv bounds a
certain (K,C)-narrow carpet A−m,n = AK(α−m,n) in X over the interval J−m,n = ⟦v,w−m,n⟧.
Here K and C depend only on the parameters of X.

2. For n > 0,m > 0, the uniform quasigeodesic c−m,n in Am,n ⊂ X connecting points
y−m, yn is the concatenation

γ−m ⋆ β−m,n ⋆ γn,

where β−m,n is a vertical geodesic in Xw−m,n of length ≤ C and γ−m, γn are K-qi sections
over the interval J−m,n = ⟦v,w−m,n⟧.

Proof. Set K := K0 (defined in Notation 2.6.4). Consider maximal K-qi sections
Σ−m,Σn in X through the points y−m, yn. If, for some n0,m0, these sections have vertical
separation ≥ MK everywhere, then they are uniformly cobounded in X, see 7.1. In this
situation, for all n ≥ n0,m ≥ m0, the path c−m,n (and, hence, the geodesic β−m,n = [x−mxn]X)
has to come uniformly close to a pair of points x− ∈ Σ−m0 , x

+ ∈ Σn0 , contradicting the
assumption that

lim
n→∞,m→∞

d(y0, β−m,n) = ∞.

Thus, for each pair (m, n) there is a vertex wm,n and a pair of K-qi leaves γn ⊂ Σn, γ−m ⊂

Σ−m over an interval Jm,n = ⟦v,wm,n⟧, with vertical separation ≥ MK , such that

dXwm,n
(γ−m(wm,n), γn(wm,n)) ≤ MK .

The uniform quasigeodesic c−m,n connecting points y−m, yn then is defined as the concate-
nation

γ−m ⋆ β−m,n ⋆ γn, β−m,n = [γ−m(w−m,n)γn(w−m,n)]Xw−m,n
.

(This argument is similar to the proof of Proposition 7.2.) □

We can now give a complete description of pairs of distinct points in the fibers of the
CT-map ∂Y,X . Recall that the metric space X is assumed to be proper.

Theorem 8.52. There are constants K,C depend only on the parameters of X and a
function D = D(k) such that the following hold:

1. Suppose that ξ± are distinct points in ∂∞Y such that ∂Y,X(ξ−) = ∂Y,X(ξ+). Then there
exists a vertex-space Xu ⊂ Y and a complete geodesic α : R → Xu, which is a uniform
quasigeodesic in Y asymptotic to ξ±, such that the intervals α−m,n = [α(−m)α(n)]Xu ⊂ α,
bound (K,C)-narrow carpets A(α−m,n) in X for all m > 0, n > 0.

2. Conversely, if Xu is a vertex-space of Y, α ⊂ Xu is a complete geodesic asymptotic
to distinct points ξ± ∈ ∂∞Y, such that each subinterval α−m,n as above bounds a (K,C)-
narrow carpet A(α−m,n) in X, then ∂Y,X(ξ−) = ∂Y,X(ξ+).

3. Suppose that Xu is a vertex-space of Y, α ⊂ Xu is a complete geodesic asymptotic
to distinct points ξ± ∈ ∂∞Y. Then ∂Y,X(ξ−) , ∂Y,X(ξ+) if and only if for some (equivalently,
every) k ≥ 1, there exist points x, y ∈ α and maximal k-qi sections Σx,Σy over, possibly dif-
ferent, subtrees Tx,Ty in T through the points x, y such that the vertical separation between
Σx,Σy over every vertex of Tx ∩ Ty is ≥ D.

Proof. We take K = K0 and C = MK̄ .
1. The first part of the theorem is the content of Propositions 8.49 and 8.51.
2. Since the lengths of the intervals α−m,n = [y−myn]Xu diverge to∞ as m→ ∞, n→ ∞,

for all sufficiently large m, n, without loss of generality, we may assume that the vertical
separation between the top and the bottom of each carpet A(α−m,n) is ≥ MK . (Otherwise,
since C = MK̄ ≥ MK , we take a smaller (K,C)-subcarpet A′(α−m,n) ⊂ A(α−m,n) containing
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no vertical intervals of length < MK .) Now, just as in proof of Proposition 7.2, each carpet
A(α−m,n) defines a uniform X-quasigeodesic c−m,n connecting y−m to yn and

dX(y0, c−m,n) ≥ length(π(A(α−m,n))).

Thus,

lim
m→∞,n→∞

dX(x0, [y−myn]X) = ∞

and, therefore, ∂Y,X(ξ−) = ∂Y,X(ξ+).

Figure 44. The carpet A(α−m,n).

3. This part of the proof is similar to that of Proposition 8.49. We choose D = Mk.
(a) Suppose that sections Σx,Σy exist. After reparameterizing α, we can assume that

x = α(−m0), y = α(n0),m0 > 0, n0 > 0. There is a ladder LX,k(α) ⊂ X containing sections
Σx,Σy. Consider the combing paths c−m,n = c(α(−m), α(n)) in the ladder LX,k(α) for n ≥
n0,m ≥ m0. These paths have to go through both sections Σx,Σy and, hence, pass uniformly
close to a pair of points x′, y′ (independent of m, n) in these sections realizing the minimal
fiberwise distance between Σx,Σy (the sections are cobounded in LX,k(α), see Section 7.1).
Thus, for y0 = α(0), the minimal distances dX(y0, c−m,n) are uniformly bounded (from
above), hence,

lim sup
m,n→∞

(α(−m).α(n))y0 < ∞,

and, therefore, ∂Y,X(ξ−) , ∂Y,X(ξ+).
(b) Suppose that the points x, y do not exist. Take arbitrary maximal k-qi sections

Σy−m ,Σyn in X through the points y−m = α(−m), yn = α(n). Then for all m ≥ 0, n ≥ 0 the
minimal vertical separation between Σy−m ,Σyn is ≤ Mk and, hence, each interval α−m,n =

[y−myn]Xu ⊂ α bounds a (k,Mk)-narrow carpet A(α−m,n) in X. According to Part 2, then
∂Y,X(ξ−) = ∂Y,X(ξ+). □

Remark 8.53. Note that in Part 2 of the theorem we can bound from above lengths of
the intervals ⟦u,wm,n⟧ = π(A(α−m,n)) in terms of lengths of the segments α−m,n: In view of
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the exponential flaring satisfied by X (see Lemma 2.59 and Proposition 2.60) there exists a
constant λ (depending only on K and the parameters of X) such that

length(α−m,n) ≥ λtC, t = dT (u,wm,n).

Thus,
dT (u,wm,n) ≤ τm,n := logλ(length(α−m,n)) − logλ(C).

As an application of Part 1 of the theorem we obtain the following:

Corollary 8.54. Suppose that γ is a geodesic in Y whose projection to T is un-
bounded. Then γ is not a leaf of the CT-map ∂Y,X .

8.8. Boundary flows and CT laminations

In this section we will be using the notion of ideal boundary flows Flt (where t’s are
vertices and edges of the tree T ) which are defined and discussed in Section 3.3.4.

Before proving the next proposition we will need two definitions which will be dis-
cussed in much greater detail in Section 8.9. Recall that ∂∞(Z, X) denotes the limit set
(relative ideal boundary) of a subset Z ⊂ X. Recall also that Λ(Y, X) denotes the Cannon–
Thurston lamination of a hyperbolic subspace Y in a hyperbolic space X, see Definition
8.10.

Definition 8.55. Consider a point ξ ∈ ∂∞T and a geodesic ray vξ in T joining a vertex
v ∈ T to ξ. Define the ξ-relative ideal boundary

∂
ξ
∞(Xv, X) := {η ∈ ∂∞(Xv, X) : ∃ a qi section γ over vξ, γ(∞) = η}

and
Λξ(Xv, X) = {{z−, z+} ∈ Λ(Xv, X) : ∂Xv,X(z±) ∈ ∂ξ∞(Xv, X)}.

Note that, by the definition of Λ(Xv, X), ∂Xv,X(z+) = ∂Xv,X(z−).

While the definition of Λξ(Xv, X) at this point looks rather unmotivated, in the next
section we will prove that it equals the the ξ-ending lamination Λ(Xv, Xvξ). Examples of
points in ∂ξ∞(Xv, X) are given by points γ(∞) for qi sections γ that are limits (as n→ ∞) of
bottom sections of carpets A(α−m0,n) appearing in the proof of Theorem 8.52.

Proposition 8.56. Fix a point ξ ∈ ∂∞T and a pair of distinct points z+, z+ ∈ ∂∞Xv such
that {z+, z+} ∈ Λξ(Xv, X). Let Lv = α ⊂ Xv be a biinfinite geodesic asymptotic to the points
z±.

(1) For all vertices and edges t in the ray vξ we have

Flt({z±}) = {z±t } , ∅.

(2) For each vertex/edge t in the ray vξ let Lt be a biinfinite geodesic in Xt connecting
the points z±t . Then the collection of such geodesics forms the union of vertex/edge sets of
a metric bundle L = (π : L→ vξ) ⊂ X over vξ, which is also a K′-ladder for some K′.

(3) There are constants K1,C1 such that for each n, the segment α−n,n = [α(−n)α(n)]Xv

bounds a (K1,C1)-narrow carpet Bn ⊂ L, where Λ is the ladder from (2).
(4) Every qi section over vξ contained in L is asymptotic to z = ∂Xv,X(z−) = ∂Xv,X(z+) ∈

∂∞X. In particular, any two such qi sections are at a finite Hausdorff distance from each
other.

(5) ∂∞L is the singleton {z}, in particular, ∂∞(L, X) = {z}.

Proof. We let Y = (π : Y → vξ) denote the restriction of X to the ray vξ. We will
need:
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Lemma 8.57. ∂Xv,Y (z+) = ∂Xv,Y (z−).

Proof. We consider a sequence of (K,C)-narrow carpets An = A(α−n,n) = (π : An →

⟦v,wn⟧) in X given by Theorem 8.52(1) and bounded by the intervals

α−n,n = [α(−n)α(n)]Xu ⊂ α.

Set
⟦v, vn⟧ = vξ ∩ ⟦v,wn⟧.

i. Let us first verify that limn→∞ vn = ξ. Suppose not. After passing to a subsequence,
the sequence (vn) would have to be constant. For sufficiently large each n, there is a point xn

in the narrow end of An and a K-section γxn in An connecting xn to γ(v). The concatenation
γxn ⋆γ is then a uniform quasigeodesic in X (since vn is fixed). But then limn→∞ xn , γ(∞)
in ∂∞X, contradicting the assumption that {z+, z−} ∈ Λξ(Xv, X).

ii. The carpets An define uniform quasigeodesics c−n,n in X connecting points α(±n)
(see the proof of Theorem 8.52). Applying the cut-and-replace procedure to the paths c−n,n

with respect to the subtree of spaces Y ⊂ X, we obtain uniform quasigeodesics ĉ−n,n in Y
which project to the intervals ⟦v, vn⟧. Since limn→∞ dT (v, vn) = ∞, it follows that

dY (α(0), ĉ−n,n) = ∞,

implying that ∂Xv,Y (z+) = ∂Xv,Y (z−). □

We now begin the proof of the proposition. In view of the lemma, we can replace X
with Y.

(1) Since ∂Xv,Y (z+) = ∂Xv,Y (z−), Theorem 8.52(1) implies that for each n > 0 the
interval

α−n,n = [α(−n)α(n)]Xu ⊂ α

bounds a (K,C)-narrow carpet An = A(α−n,n) = (π : An → ⟦v,wn⟧) in Y for some K,C
depending only on the parameters of X, wn ∈ vξ. Since for each vertex t ∈ vξ

HdY (An
v , A

n
t ) ≤ KdT (v, t),

it follows that the entire geodesic Lv is contained in the KdT (v, t)-neighborhood of the
vertex-space Xt. Lemma 3.35 now implies that

Flt({z±}) = {z±t } , ∅.

This proves (1).

(2) By the construction, for each pair of vertices s, t ∈ vξ with dT (s, t) = 1, the
geodesics Ls, Lt are asymptotic to the same pair of points in Xst. Therefore, Hd(Ls, Lt) ≤ D
for some D depending only on L′0 and the hyperbolicity constant δ′0 of Xst. The same ap-
plies to the geodesic Le ⊂ Xe, e = [s, t]. This proves that the union of Lt’s, t ∈ V(vξ), Le’s,
e ∈ E(vξ) forms a metric bundle L in Y. This metric bundle has structure of a K′-ladder
according to Lemma 3.17.

(3) As noted in the proof of (1), we already have the carpets An in Y bounded by
the segments α−n,n. The trouble is that these carpets need not be contained in the ladder
L. However, according to Theorem 3.3, there is a uniformly coarse Lipschitz projection
ν : Y → L which, for every vertex t ∈ vξ, equals to the restriction of the nearest-point
projection PXt ,Lt . Taking the corresponding modified projection P̄Xt ,Lt (A

n
t ) (see Definition

1.124) we then obtain a collection of subsegments Bn
t ⊂ Lt satisfying axioms of a (K1,C1)-

narrow carpet over ⟦v,wn⟧, which we denote Bn.
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(4) Suppose that γ is a k-qi section of L over the ray vξ, p = γ(v) ∈ α. Then p
belongs to the segment α−n,n for all sufficiently large n ≥ np. We let cn denote the uniform
quasigeodesic in Y connecting the end-points of α−n,n and equal to the concatenation of the
two horizontal boundary sections of Bn along with its narrow end (the vertical geodesic
segment in Xwn ). Since both sequences (α(n)), (α(−n)) converge to the same point z ∈ ∂∞Y ,
it follows that the sequence of quasigeodesics (cn) also converges to z. For each n ≥ np,
there exists a vertex vn ∈ ⟦v,wn⟧ such that

dXvn
(γ(vn), xn) ≤ K1 + K′,

where xn lies in cn. Clearly,
lim
n→∞

dY (α(0), xn) = ∞.

In particular, the sequence (xn) converges to γ(∞). Since the sequence (xn) also converges
to z, we obtain γ(∞) = z.

(5) The proof of this part is similar to that of (4). Consider a geodesic ray β in L,
β(0) = α(0) = p. Then for each n, there is a point xn in β within distance K′ from the
path cn in Bn defined as in the proof of (4). Again, d(p, xn) → ∞ and, hence, β(∞) =
limn→∞ cn = z. □

We now can relate boundary flows to CT-laminations:

Proposition 8.58. Suppose that X = (π : X → T ) is a tree of hyperbolic spaces with
hyperbolic total space X, Y = (π : Y → S ) ⊂ X is a subtree of spaces and v ∈ V(S )
satisfies the following conditions:

1. ∂∞Xw ⊂ Fl(∂∞Xv) for each vertex w ∈ V(S ).
2. ∂Xv,X(∂∞Xv) = ∂∞X.

Then the CT-map ∂Xv,Y : ∂∞Xv → ∂∞Y is also surjective.

Proof. We claim that each z ∈ ∂∞Y belongs to ∂Xv,Y (Xv). Since ∂Xv,X is surjective,
there is z1 ∈ ∂∞Xv such that ∂Xv,X(z1) = ∂Y,X ◦ ∂Xv,Y (z1) = ∂Y,X(z). Thus, for z′ = ∂Xv,Y (z1) ∈
∂∞Y , ∂Y,X(z′) = ∂Y,X(z).

If z′ = z, then we are done. If not, then by the description of the fibers of the CT-map
∂Y,X given in Proposition 8.49, there exists a vertex-space Xw ⊂ Y such that a geodesic
β = zz′ ⊂ Y asymptotic to z, z′ is Hausdorff-close to a geodesic α ⊂ Xw. In particular,
z ∈ ∂∞(Xw,Y). The first assumption of the proposition implies that z ∈ ∂∞(Xv,Y). Since
∂∞(Xv,Y) = ∂Xv,Y (∂∞Xv) (see Lemma 8.7), the claim follows. □

8.9. Cannon–Thurston lamination and ending laminations

In this section we shall significantly expand on Theorem 8.52(1); many of our results
are generalizations of the ones proven by Mitra in [Mit97]. Throughout this section we
will assume that X = (π : X → T ) is a tree of hyperbolic spaces with proper hyperbolic
total space X.

To motivate the discussion, we recall Thurston’s notion of the ending laminations in
the setting of hyperbolic 3-manifolds. (We refer the reader for a detailed overview of end-
invariants of hyperbolic 3-manifolds to Minsky’s surveys [Min03b] and [Min03a].) For
simplicity of the discussion, we consider a noncompact complete connected hyperbolic
3-manifold M with finitely-generated fundamental group that does not split as a nontrivial
free product and such that M has positive injectivity radius. The manifold M contains a
(unique up to isotopy) compact submanifold with smooth boundary Mc (the compact core
of M), such that the complement M \ int(Mc) is homeomorphic to ∂Mc × R+.



220 8. CANNON–THURSTON MAPS

Remark 8.59. The existence of a compact core was first proven by P. Scott in [Sco73a,
Sco73b] in the context of topological 3-manifolds with finitely-generated fundamental
groups. The uniqueness, up to an isotopy, again, in the topological context was proven
in [MMS85]. Tameness of the ends of M, i.e. the existence of a product decomposition of
M \ int(Mc) was proven primarily in the work of F. Bonahon, [Bon86], (who was inspired
by the earlier work of W. Thurston, [Thu80]), in combination with the paper by Freedman,
Hass and Scott, [FHS83]. See also [Kap09, Theorems 1.26, 1.27] and [Kap09, Chapter
14].

The group G = π1(Mc) � π1(M) is hyperbolic (see [Kap09, Theorem 19.8]). In view
of the Loop Theorem, [Hem04], the assumption that G does not split as a free product
implies that for each surface component S ⊂ ∂Mc, the inclusion map S → Mc is π1-
injective.

Each component E = S × R+ of M \ Mc is an end of M; the surface S is a component
of ∂Mc; it is a compact surface which admits a hyperbolic metric (which we fix from now
on). For each end E = S × R+ one defines an ending lamination λ = λ(E) of E, which is a
certain nonempty compact subset of S , equal to a disjoint union of complete geodesics in S .
Lifting λ to the universal covering space of S , one obtains a π1(S )-invariant closed subset of
S̃ � H2 equal to a disjoint union of geodesics. Each geodesic β in λ̃ is uniquely determined
by an unordered pair {ξ+, ξ−} ∈ ∂(2)

∞ H
2, the ideal boundary points such that β = ξ−ξ+.

We, thus, identity λ with a π1(S )-invariant closed subset of ∂(2)
∞ H

2 consisting of such pairs.
Consider a component Ẽ of the preimage of E in H3 (the universal covering space of M);
the boundary surface S̃ of Ẽ is a copy of the universal covering space of S . It was proven
by Minsky [Min94] (under the above assumption on the injectivity radius of M) and Mj
[Mj17] in full generality, that each inclusion map S̃ → Ẽ has a CT-map; these CT-maps
combine in a CT-map for the inclusion M̃c → M̃ = H3 (where M̃c is the universal covering
space of Mc equipped with the pull-back Riemannian metric). Each ending lamination
λ(E) is π1(S )-equivariantly homeomorphic to the CT-lamination Λ(S̃ , Ẽ) and the union of
G-orbits of these laminations in ∂∞M̃c is the CT-lamination Λ(M̃c,H

3).
We now relate this discussion to trees of spaces. For each end E, the space Ẽ (with its

intrinsic Riemannian path-metric) is π1(E)-equivariantly quasiisometric to the total space
of a certain metric bundle XE = (E → R+), with vertex and edge-spaces isometric to the
hyperbolic plane. (This bundle structure is implicit in [Min94]. It is obtained via pull-back
of the universal bundles over the Teichmüller spaces of boundary surfaces of Mc.) Putting
these spaces together, we obtain a tree of spaces X = (X → T ) (on which G = π1(M) is
acting) which has a distinguished vertex v fixed by G. The total space X of X is isometric
to H3. The tree T is a union of geodesic rays; the intersection of any two distinct rays in
this collection is the vertex v. Thus, the G-orbits of ending laminations λ(E) in ∂(2)

∞ G can
be described as CT-laminations

Λ(Xv, Xvξ) ⊂ ∂
(2)
∞ Xv,

where, ξ’s are the ideal boundary points of T and Xvξ is the total space of the pull-back of
X to the ray vξ in T . The result stated above, relating ending laminations of M with the
CT-lamination Λ(M̃c,H

3) can then be restated as:

Λ(Xv, X) =
⋃
ξ∈∂∞T

Λ(Xv, Xvξ).

In the context of general trees of hyperbolic spaces, points at infinity ξ ∈ ∂∞T play the
role of ends of the hyperbolic manifolds and, accordingly, ending laminations are defined



8.9. CANNON–THURSTON LAMINATION AND ENDING LAMINATIONS 221

as CT-laminations Λ(Xv, Xvξ). The main goal of this section is to prove an analogue (actu-
ally, a sharper version) of the above equality in the setting of more general trees of spaces,
Theorem 8.63 below. In particular, we will also prove that for each ξ ∈ ∂∞T , the end-
ing lamination Λ(Xv, Xvξ) equals the subset Λξ(Xv, X) ⊂ Λ(Xv, X) defined in the previous
section. This alternative interpretation of the ending lamination Λ(Xv, Xvξ) will be used in
several places, e.g. proof of Theorem 8.63, Parts (4) and (5) and proof of Proposition 8.67.

The results below are motivated by similar results obtained in [KS20, section 6.2]; our
notation and proofs are similar (see also [Mit97, Bow13]).

Lemma 8.60. Suppose that X = (π : X → T ) is a tree of hyperbolic spaces with proper
hyperbolic total space X. We fix a vertex v ∈ V(T ) and K ≥ 1.

1. For every ξ ∈ ∂∞T, there is a geodesic ray ρ joining v to ξ.
2. There is K1 depending on K and the parameters of X such that the following holds.

Let (wn) be a sequence of points in V(T )∪ ∂∞T and let (γn) be a sequence of K-qi sections
of X of over the geodesic vwn. Suppose that the sequence (γn(v)) belongs to a bounded
subset B of X and the sequence (γn(wn)) converges to a point η ∈ ∂∞X. Then the sequence
(wn) converges to a point ξ ∈ ∂∞T and there is a K1-qi section γ over the geodesic vξ such
that η = γ(∞) and γ(v) ∈ B.

Proof. 1. Let (wn) be a Gromov-sequence of vertices in T representing the point ξ.
Then

lim
m,n→∞

dT (v,wmwn) = ∞.

It follows that the union of geodesic segments vwn, n ∈ N, is a locally finite subtree S ⊂ T .
Therefore, the sequence of segments vwn subconverges to a geodesic ray ρ in S emanating
from v. In order to prove that ρ joins v to ξ we note that for each m ∈ N and all sufficiently
large n, the points tm = ρ(m) satisfy

dT (v, tmwn) = dT (v, tm) = m.

Thus, the sequence (tm) is a Gromov-sequence equivalent to (wn).
2. Pick a base-point x0 in a bounded subset B ⊂ X of diameter D containing all the

points γn(v), e.g. we can take x0 = γ1(v).
Since the sequence (γn(wn)) converges η ∈ ∂∞X, we have

lim
n→∞

dT (v,wn) = ∞.

Moreover, since the sequence of geodesic segments γ∗i = [x0γn(wn)]X coarsely converges
to a geodesic ray x0ξ (see [DK18, Definition 8.32]), there is a constant C (depending only
on K,D and the hyperbolicity constant of X) such that for each R, there is a number n0
such that for all m, n ≥ n0 the Hausdorff-distance between γm ∩ B(x0,R) and γn ∩ B(x0,R)
is ≤ C. Since γi’s are sections over geodesic segments vwi in T , it follows that

lim
i→∞

sup{R : vwm ∩ B(v,R) = vwn ∩ B(v,R) ∀m, n ≥ i} = ∞.

In particular, (wn) is a Gromov-sequence in T converging to some ξ ∈ ∂∞T and by Part 1
of the lemma, the sequence of segments (vwn) converges to the ray vξ.

Furthermore, in view of properness of X, the sequence of K-qi sections (γn) subcon-
verges to a K-qi section γ over the geodesic ray vξ in T (this is a coarse version of the
Arzela–Ascoli Theorem, cf. [DK18, Proposition 8.34]). □

Fix K ≥ K0, pick a vertex v ∈ V(T ) and let Y = (π : Y → S ) be a (K,D, E, λ)-
semicontinuous family in X relative to a vertex v ∈ S ⊂ T , see Definiton 3.1. The following
proposition is motivated by the results of [KS20] and [Bow13, Proposition 8.2]:
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Proposition 8.61. We have

∂∞Y = U := ∂∞(Xv,Y) ∪

 ⋃
ξ∈∂∞S

∂
ξ
∞(Xv, X)

 .
Proof. Recall that, according to Theorem 3.3, Y is qi embedded in X. Thus, we will

identify ∂∞Y with a subset of ∂∞X. Since U is obviously contained in ∂∞Y , we only have
to prove that every point z ∈ ∂∞Y lies in U. Fix a base-point x ∈ Xv. Suppose that xn ∈ Yvn

is a sequence of points converging to z. Let γn be a K-qi section in Y over vvn, joining xn

to yn ∈ Yv.
(i) Suppose first that (yn) is a bounded sequence. Then by Lemma 8.60(2), the se-

quence (vn) converges to some ξ ∈ ∂∞Tv and the sequence (γn) coarsely converges to a K-
qi section γ in Y over the ray vξ, so that xn → γ(∞). Thus z = limn→∞ xn ∈ ∂

ξ
∞(Xv, X) ⊂ U

in this case.

(ii) Consider now the case when (yn) is an unbounded sequence. After extraction,
we can assume that (yn) converges to some z′ ∈ ∂∞(Xv, X) = ∂∞(Xv,Y) (since Y is
quasiconvex in X). We claim that z′ = z. Since each γn is a K-qi section, it suffices
to show that d(x, γn) → ∞. Suppose that the sequence d(x, γn) is bounded, and pn =

γn(vn), vn ∈ V(⟦v, π(yn)⟧), is a sequence such that dX(x, pn) ≤ C for all n. Since dT (v, vn) =
dT (π(x), π(pn)) ≤ dX(x, pn) ≤ C, it follows that

dX(yn, pn) ≤ CK, dX(x, yn) ≤ C +CK,

contradicting the assumption that the sequence (yn) is unbounded. Thus,

z = z′ ∈ ∂∞(Xv,Y) ⊂ U. □

Corollary 8.62. For any ladder L = (π : L → π(L)) in X, centered at a vertex
v ∈ V(T ), we have

∂∞(L, X) =
⋃

ξ∈∂∞π(L)

∂
ξ
∞(Lv, X).

Proof. Since Lv is a finite geodesic segment, ∂∞(Lv, L) = ∅, and, thus, the corollary is
an immediate consequence of Proposition 8.61. □

We now return to the discussion of properties of ending laminations Λ(Xv, Xxξ) and
their relation to the CT-laminations Λ(Xv, X) and their subsets Λξ(Xv, X) defined in the
previous section (see Definition 8.55).

Theorem 8.63 (Properties of ending laminations). Suppose that X = (π : X → T )
is a tree of hyperbolic spaces with hyperbolic and proper total space X. There exists K
depending only of the parameters of X and the hyperbolicity constant of X such that the
following hold:

(1) Let v be a vertex of T and let α : R → Xv be a complete geodesic in Xv such
that {α(−∞), α(∞)} ∈ Λ(Xv, X). Then for both z ∈ {α(±∞)}, there exists point
ξ ∈ ∂∞Tz such that for each p ∈ α, there is a K-qi section γ over vξ satisfying
γ(v) = p and γ(∞) = ∂Xv,X(α(∞)). In other words, for each point {z−, z+} ∈
Λ(Xv, X), there exists ξ ∈ ∂∞T such that

∂Xv,X(z±) ∈ Λξ(Xv, X)

and, thus,
Λ(Xv, X) =

⋃
ξ∈∂∞Tv

Λξ(Xv, X).
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(2) For each ξ ∈ ∂∞T we have

Λξ(Xv, X) = Λ(Xv, Xvξ) = Λ(Xv, FlK(Xv) ∩ Xvξ).

(3) Each Λξ(Xv, X) is a closed subset of ∂(2)
∞ Xv.

(4) Suppose ξ1 , ξ2 ∈ ∂∞T, and α1, α2 complete geodesics in Xv such that {z−i , z
+
i } =

{αi(−∞), αi(∞)} ∈ Λξi (Xv, X), i = 1, 2. Then the subsets {z−1 , z
+
1 }, {z

−
2 , z
+
2 } of ∂∞Xv

are disjoint. In particular, the ending laminations Λξ1 (Xv, X), Λξ2 (Xv, X) are
disjoint and the point ξ in (1) is uniquely determined by {z−, z+} ∈ Λ(Xv, X).

(5) Ending laminationsΛξ depend upper semicontinuously3 on ξ: Suppose that ξn →

ξ in ∂∞Tv, {z+n , z
−
n } ∈ Λ

ξn (Xv, X) and {z+n , z
−
n } → {z

+, z−} ∈ ∂(2)
∞ Xv. Then {z+, z−} ∈

Λξ(Xv, X).
(6) If ξ1 , ξ2 ∈ ∂∞Tv, then any two leaves αi of Λξi (Xv, X), i = 1, 2, are uniformly

cobounded in Xv. Namely, given D > 0 there exists R = R(D) (independent of
α1, α2 but possibly depending on ξ1, ξ2) such that α1 ∩ND(α2) has diameter ≤ R.

Proof. (1) The proof follows the argument in the proof of Proposition 8.56(1) (or Part
(3) of that proposition). By Theorem 8.52(1), for each n > 0 the interval

α−n,n = [α(−n)α(n)]Xu ⊂ α

bounds a (K,C)-narrow carpet An = A(α−n,n) in X, which, in turn, defines a uniform
quasigeodesic cn = c(An) in A(α−n,n) connecting the points α(−n), α(n). Take any point
p ∈ α. Then for all n ≥ np, p belongs to the segment α−n,n. Since An is a K-metric
bundle, there exists a K-section γn over the segment ⟦v,wn⟧ = π(An). The end-point
xn = γn(wn) belongs to cn, which implies that the sequence (xn) converges to the limit
point ∂Xv,X(α(−∞)) = ∂Xv,X(α(∞)). Then the existence of the point ξ follows from Lemma
8.60(2): Proposition 8.56(1) implies that ξ ∈ ∂∞Tz, z = α(±∞). The rest of the assertions
of Part (1) follow immediately from the definition of Λξ(Xv, X).

(2) The inclusion Λξ(Xv, X) ⊂ Λ(Xv, Xvξ) is clear from the definition of Λξ(Xv, X).
The opposite inclusion is a direct consequence of Part (1) of the theorem. The inclusion
Λ(Xv, FlK(Xv) ∩ Xvξ) ⊂ Λ(Xv, Xvξ) for every K ≥ K0 is clear from the fact that FlK(Xv) is
quasiconvex in X. Suppose that {z−, z+} ∈ Λ(Xv, Xvξ). Proposition 8.56(1) implies that for
each vertex t ∈ vξ, Flt({z±}) , ∅. By Lemma 3.37(1), there exists K such that for each
vertex/edge t in vξ there exists a biinfinite geodesic Lt ⊂ FlK(Xv) asymptotic to the points
Flt({z±}). By Proposition 8.56(2), these geodesics form a ladder L = (π : L → vξ) in X.
By Part 5 of the same proposition, ∂∞L is a singleton, which implies

∂Xv,FlK (Xv)∩Xvξ (z
+) = ∂Xv,FlK (Xv)∩Xvξ (z

−).

In other words,
{z−, z+} ∈ Λ(Xv, FlK(Xv) ∩ Xvξ).

(3) In view of Part (2), the assertion follows from the fact that the CT-lamination
Λ(Xv, Xvξ) is closed in ∂(2)

∞ Xv.

(4) By Proposition 8.56(2) and (4), there are quasiisometric sections γi over vξi as-
ymptotic to ∂Xv,X(z±i ), i = 1, 2. Since ξ1 , ξ2, Hd(vξ1, vξ2) = ∞, which, in turn, implies
that Hd(γ1, γ2) = ∞. Thus γ1(∞) , γ2(∞), whence {z−1 , z

+
1 } ∩ {z

−
2 , z
+
2 } = ∅.

(5) Since ∂Xv,X(z+n ) = ∂Xv,X(z−n ) and ∂Xv,X is continuous, we have ∂Xv,X(z+) = ∂Xv,X(z−).
Thus {z+, z−} ∈ Λ(Xv, X). Since z+ , z−, geodesics αn in Xv connecting the points z±n all
intersect a certain bounded subset of Xv. Hence, we can parameterize these geodesics so

3It is shown in [DKT16, section 7] that in general Λξ does not depend continuously on ξ.
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that the sequence (αn(0)) is bounded in Xv. In view of properness of Xv, by the Arzela–
Ascoli theorem, the sequence of geodesics αn subconverges to a geodesic α in X. This
geodesic is necessarily asymptotic to the points z±, see e.g. [DK18, Theorem 11.104].
Since {z+n , z

−
n } belongs to Λξ(Xv, X), there exist uniform qi sections γn over vξn connecting

αn(0) to ∂Xv,X(z±). By the continuity of the CT-map, zn → z implies that ∂Xv,X(zn) →
∂Xv,X(z). Accordingly, γn(∞) → ∂Xv,X(z). Hence, by Lemma 8.60(2) there is a qi section γ
over vξ such that γ(∞) = ∂Xv,X(z±), which implies that {z+, z−} belongs to Λξ(Xv, X).

(6) Note that this statement is a strengthening of Part (4) since that part is equivalent to
the statement that the leaves α1, α2 are cobounded in Xv. Note also that, since vertex-spaces
of X are uniformly properly embedded in X, the following two properties are equivalent
for subsets Y1,Y2 ⊂ Xv:

(i) There exists a function Rv(D) such that diamXv (Y
1 ∩ NXv

D (Y2)) ≤ Rv(D).
(ii) There exists a function R(D) such that diamX(Y1 ∩ ND(Y2)) ≤ R(D).

Set αi(±∞) = z±i , i = 1, 2. Let x±i ∈ αi, i = 1, 2, be points such that

(8.1) dXv (x±1 , x
±
2 ) ≤ D.

Our goal is to get an upper bound (in terms of D) on the distances dXv (x+i , x
−
i ), i = 1, 2.

a. We first consider the special case when the rays vξ1, vξ2 intersect only at the vertex
v. We have subtrees of spaces Yi = (π : Xvξi → vξi) in X, i = 1, 2. Since for i = 1, 2,

{z−i , z
+
i } ∈ Λ

ξi (Xv, X) = Λ(Xv, Xvξi ),

there is a sequence of (K,C)-narrow carpets

A
i,n = A(αi

−n,n) ⊂ Yi, n ∈ N,

where αi
−n,n is the subinterval in αi between αi(−n), αi(n). In particular, for all sufficiently

large n, x±i ∈ α
i
−n,n, i = 1, 2. Connect x±i to the narrow end of Ai,n by a K-section γ±i in Ai,n,

i = 1, 2. Since dXv (x±1 , x
±
2 ) ≤ D, both concatenations

ϕ− := γ−1 ⋆ [x−1 x−2 ]Xv ⋆ γ
−
2 , ϕ

+ := γ+1 ⋆ [x+1 x+2 ]Xv ⋆ γ
+
2

are k-quasigeodesics in X with k depending only on K and D. The respective end-points of
these quasigeodesics are at most C-apart from each other. It follows that dXv (x+i , x

−
i ) ≤ R =

R(k, δX), cf. Lemmata 1.55 and 2.50.

b. We now consider the general case: The rays vξ1, vξ2 intersect along a finite subin-
terval vw (this subinterval is finite since ξ1 , ξ2). Since {z−i , z

+
i } ∈ Λ

ξi (Xv, X), there exist
vertical geodesics β1, β2 in Xw within uniformly bounded (in terms of dT (v,w)) Hausdorff
distance from α1, α2 respectively, see Proposition 8.56. By Part (a), the geodesics β1, β2 are
uniformly cobounded in Xw. It follows that α1, α2 are uniformly cobounded as well. □

Corollary 8.64. For each vertex v ∈ T and

z ∈ ∂∞(Xv, X) \ (
⋃
ξ∈∂∞T

∂
ξ
∞(Xv, X)),

the preimage ∂−1
Xv,X

(z) is a singleton.

Proof. By Lemma 8.7, ∂∞(Xv, X) = ∂Xv,X(∂∞Xv). Thus, all we need is to show that
|∂−1

Xv,X
(z)| ≤ 1. As we noted in the previous section, for each ξ ∈ ∂∞T ,

∂Xv,X(Λξ(Xv, X)) ⊂ ∂ξ∞(Xv, X).
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Hence, z < ∂Xv,X(Λξ(Xv, X)) for any ξ ∈ ∂∞T . However, according to Theorem 8.63(1),

Λ(Xv, X) =
⋃

ξ∈∂∞Tv

Λξ(Xv, X),

which means that there is no {z+, z−} ∈ Λ(Xv, X) satisfying ∂Xv,X(z±) = z. Thus, ∂−1
Xv,X

(z)
contains at most one point. □

Corollary 8.65. 1. If for each ξ ∈ ∂∞T, Λξ(Xv, X) = ∅, then Λ(Xv, X) = ∅, i.e. the
CT-map ∂Xv,X is 1-1.

2. If z± ∈ ∂∞Xv are distinct points such that ∂Xv,X(z+) = ∂Xv,X(z−), then there exists
ξ ∈ ∂∞T such that for every vertex w ∈ vξ, Flw({z±}) , ∅.

Proof. 1. The first claim is a direct consequence of Theorem 8.63(1).
2. Since ∂Xv,X(z+) = ∂Xv,X(z−), {z+, z−} ∈ Λ(Xv, X). By Theorem 8.63(1), there exists

ξ ∈ ∂∞T such that {z+, z−} ∈ Λξ(Xv, X). Now the claim follows from Proposition 8.56(1).
□

8.10. Conical limit points in trees of hyperbolic spaces

In this section we consider trees of hyperbolic spaces X = (π : X → T ) with proper
total space X and discuss the relation between conicality for limit points of subtrees of
spaces Y ⊂ X and the CT-maps ∂Y,X . Namely, identifying Λ(Y, X) with a subset Σ(Y, X) of
∂∞Y equal ⋃

{z+,z−}∈Λ(Y,X)

{z+, z−},

we’ll see that ∂Y,X(Σ(Y, X)) is disjoint from the conical limit set of Y in ∂∞X.
The next definition is motivated by the notion of conical limit points of group actions

on hyperbolic spaces, see Definition 1.138, as well as Definition 11.93 and Section 11.13.4
in [DK18].

Definition 8.66. Suppose X is an arbitrary hyperbolic geodesic metric space and Y ⊂
X. Then a point ξ ∈ ∂∞(Y, X) ⊂ ∂∞X is called a conical limit point of Y if for some (any)
(quasi)geodesic α ⊂ X asymptotic to ξ there is R > 0 and a sequence of points {yn} in
NR(α) ∩ Y converging to ξ. The set of conical limit points of Y is called the conical limit
set of Y in ∂∞X.

Thus, if Y is an orbit Gx of an isometric proper action G↷ X, then ξ is a conical limit
point of Y if and only if it is a conical limit point of the G-action on X.

Proposition 8.67. Suppose X = (π : X → T ) is a tree of hyperbolic spaces with
proper and hyperbolic total space, and Y = (π : Y → S ) ⊂ X is a subtree of spaces. Let
∂Y,X : ∂∞Y → ∂∞X be the CT-map. If η ∈ ∂∞(Y, X) is a conical limit point of Y, then
|∂−1

Y,X(η)| = 1.

Proof. If not, then there are distinct points z± ∈ ∂∞Y such that ∂Y,X(z−) = ∂Y,X(z+) = η.
Consider a geodesic β in Y asymptotic to the points z±. By Proposition 8.49, there exists
a vertex-space Xv ⊂ Y and a complete geodesic α ⊂ Xv such that Hd(α, β) < ∞. Let
z′± = α(±∞). It follows that ∂Xv,X(z′±) = η. By Theorem 8.63(1), there is a point ξ ∈ ∂∞T
and a qi section γ over the ray vξ, such that γ(∞) = η. We claim that ξ ∈ ∂∞T \ ∂∞S . If
not, then the ray vξ is contained in the subtree S . By Theorem 8.63(2),

{z′−, z
′
+} ∈ Λ

ξ(Xv, X) = Λ(Xv, Xvξ) ⊂ Λ(Xv,Y).
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But then ∂Xv,Y (z′±) = z± and z+ = z−, contradicting our assumption that the points z±
are distinct. It then follows that limn→∞ dX(γ(n),Y) = ∞. Since γ(∞) = η and γ is a
quasigeodesic in X, this contradicts the hypothesis that η is a conical limit point of Y and
proves the proposition. □

Remark 8.68. This proposition is a geometric counterpart of the following group-
theoretic result: If H is a hyperbolic subgroup of a hyperbolic group G, and the CT-map
∂H,G exists, and a limit point z of H in G is conical, then |∂−1

H,G(z)| = 1. The converse to this
implication is false, see [JKLO16].

The next conjecture would show that there always is a large number of limit points of
H for which the converse (in the remark) actually holds:

Conjecture 8.69. Suppose that H < G is a hyperbolic subgroup of a hyperbolic group,
the CT-map ∂H,G exists, but H is not quasiconvex in G. Then there is a continuum of
(nonconical) limit points of H in G whose preimages under ∂H,G are not singletons.

Here is some background on the conjecture. First of all, if all limit points of H have
singletons as preimages under ∂H,G (equivalently, ∂H,G is injective), then all limit points of
H are conical and, hence, H is quasiconvex in G. In view of the equivariance of ∂H,G, once
there is one limit point whose preimage is not a singleton, there are countably infinitely
many. The question then becomes of the actual cardinality of the set of such points. It
is easy to see, for instance, that if G is the fundamental group of a compact hyperbolic
3-manifold fibering over the circle and H is the fundamental group of the fiber, then the
cardinality is that of continuum. More generally, the following theorem was proven in
[KL19]:

Theorem. Suppose that X is a Hadamard manifold of pinched negative curvature and
Γ is a discrete isometry group of X. Then the followings are equivalent:

(1) Γ is geometrically infinite.
(2) There exists a sequence of closed geodesics in M which escapes every compact

subset of M.
(3) The set of nonconical limit points of Γ has cardinality of continuum.

At this point, it is very unclear if this result also holds in the setting of subgroups of
hyperbolic groups. However, it is not unreasonable to expect that, indeed failure of quasi-
convexity implies continuum of nonconical limit points. The part about preimages under
CT-maps in Conjecture 8.69 would further strengthen the analogy with surface subgroups
of hyperbolic 3-manifold groups.

8.11. Group-theoretic applications

In this section we collect group-theoretic applications of our existence results for CT-
maps.

8.11.1. Maps to products and examples of undistorted subgroups in PS L(2,C) ×
PS L(2,C). Set H := PS L(2,C) and G := H × H. We equip G with a left-invariant
Riemannian metric and the corresponding left-invariant distance function dG. A finitely
generated subgroup Γ < G is said to be undistorted if the inclusion map

(Γ, dΓ)→ (G, dG)

is a qi embedding, where dΓ is a word metric on Γ. Since G acts properly, isometrically
and transitively on H3×H3, a subgroup Γ < G is undistorted if and only if for (some/every)
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point x ∈ H3 ×H3 the orbit map γ 7→ γx is a qi embedding of Γ (with its word metric) into
H3 × H3.

An element h ∈ H is called parabolic if it has precisely one fixed point in the Riemann
sphere. An element g = (h1, h2) ∈ G is called semisimple if neither component h1 nor h2
is a parabolic element of H. We will not attempt to define here Anosov subgroups of G,
it suffices to say that each Anosov subgroup Γ < G is Gromov-hyperbolic and for one of
the factors H± of G = H × H = H+ × H−, the projection of Γ to H± has finite kernel
and convex-cocompact image. Moreover, each Anosov subgroup is undistorted in G. We
refer to the reader to [GW12, KL18a, KLP17] for the detailed definitions. O. Guichard
constructed in [Gui04] (see also [GGKW17]) an example of an undistorted non-Anosov
free subgroup Γ < G. The subgroup in his example contained non-semisimple elements.
(Its projections to both factors were geometrically finite with parabolic elements, we refer
the reader to [Bow95] for definitions of geometric finiteness.) Let S be a closed connected
oriented hyperbolic surface with the fundamental group π.

Theorem 8.70. There exists an undistorted subgroup Γ < G isomorphic to π, such that
every element of Γ is semisimple, but Γ is not Anosov.

Proof. Let c be a complete geodesic in the Teichmüller space T (S ) of S , such that
the projection of c to the moduli space of S is bounded. For instance, c can be taken to
be the unique invariant geodesic (axis) in T (S ) of a pseudo-Anosov homeomorphism h of
S . The asymptotics of c in positive/negative directions are described by two transversal
geodesic laminations λ± on S , called ending laminations: Such laminations contain no
closed geodesics and each component of S \ λ± is simply-connected (see [Kla18]). In the
example where c is the axis of a pseudo-Anosov homeomorphism h, the laminations λ±

are stable/unstable laminations of h (see e.g. [CB88]).
Take λ±, the ending laminations of a pseudo-Anosov homeomorphism of S or, more

generally, any two transversal ending geodesic laminations on S . There exist discrete
embeddings ρ± : π→ H such that the image Γ± of each ρ± is a singly-degenerate subgroup
of H without parabolic elements such that λ± is the ending lamination of the geometrically
infinite end4 E± of the hyperbolic manifold M± = H3/Γ±. Furthermore, there exists a
discrete embedding ρ0 : π → H such that the group Γ0 = ρ0(π) is doubly-degenerate
group, whose quotient manifold M0 = H

3/Γ0 has two ends E±0 with the ending laminations
λ±. We refer the reader to [Ohs09] for proofs of more general existence theorems of
this type (which are generalizations of Thurston’s double limit theorem). The ends E± are
bilipschitz homeomorphic to the ends E±0 of the manifold M0 (see [Min94] or [BCM12] for
more general results). The manifolds M0,M± have injectivity radii bounded from below
and M± has structure of a metric bundle over R, whose fibers are uniformly bilipschitz
to the surface S . For instance, in the case when λ± are stable/unstable laminations of
a pseudo-Anosov homeomorphism h, the manifold M0 is isometric to a cyclic covering
space of the mapping torus of h, equipped with the unique hyperbolic metric.

We then obtain a discrete and faithful representation

ρ : π→ Γ < G = H × H, ρ(γ) = (ρ+(γ), ρ−(γ)).

By the construction, the image of each element of π is a semisimple element of G. Since the
projections Γ± of Γ to the factors H± of H×H are geometrically infinite, the representation
ρ is not Anosov. It remains to prove that Γ is undistorted in G, i.e. that the map ρ is a qi
embedding. This qi embedding condition can be reformulated as follows. Consider the

4As it is customary in 3-dimensional topology we will be conflating ends and their neighborhoods.
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closed convex hulls C± ⊂ H3 of the limit sets of the subgroups Γ± < H. The group π
acts properly discontinuously, isometrically and cocompactly on the boundaries of these
convex hulls. Accordingly, we obtain quasiisometries

H2 → ∂C±,

where the targets are equipped with intrinsic path-metrics. The quotient manifolds C±/Γ±
are isometric to the ends E± ⊂ M±. Since C± are isometrically embedded in H3, Γ is qi
embedded in G if and only if the map

f : H2 → H3 × H3

given by the composition of the isometries f± : H2 → ∂C± with the inclusion maps ∂C± →
C± → H3, is a qi embedding. Since the ends E± are bilipschitz homeomorphic to the ends
E±0 of the manifold M0, f is a qi embedding if and only if the following holds:

For some (every) Γ0-invariant embedded simply-connected hypersurface Σ ⊂ H3 sep-
arating H3 into components Σ± (equipped with the induced path-metrics), the inclusion
maps Σ→ Σ± combine to a qi embedding

Σ→ Σ− × Σ+.

Since H3 has a Γ-invariant structure of a metric bundle X = (π : X → T = R) with fibers
uniformly qi to H2, we just need to prove that for some (every) vertex v ∈ T and the ideal
boundary points ξ± of T = R, the inclusion maps Xv → XT± = Xvξ± combine to a qi
embedding

Φ : Xv → XT+ × XT− ,

where T± = vξ±, a half-line. We will prove that Φ is indeed a qi embedding (and even
more) below, Proposition 8.71.

Suppose X = (π : X → T ) is a tree of hyperbolic metric spaces with hyperbolic
total space X and let v ∈ V(T ) be a vertex of finite degree n ≥ 2, with edges e1, ..., en

incident to v. For each i = 1, ..., n, let Ti denote the subtree in T which is the union of
subintervals of the form ⟦v,w⟧, containing the edge ei. We then obtain the subtrees of
spaces XTi = (π : XTi → Ti) in X. For each i, we let fi : Xv → XTi denote the inclusion
map. We equip the product Q =

∏
1≤i≤n XTi with the ℓ1-metric

dQ(p, q) =
n∑

i=1

dXTi
(pi, qi), p = (p1, ..., pn), q = (q1, ..., qn).

(One can also use the ℓ2-metric, the product metric: The two metrics are qi to each other.)
In what follows, we take K = K∗, D = D5.2, E = E5.2, depending on the parameters of

the tree of spaces X.

The next proposition is a generalization of a result from [KS20], where it was proven
in the case when X is a metric bundle:

Proposition 8.71. Under the above assumptions, the diagonal map

Φ : Xv → Q =
∏

1≤i≤n

XTi , x 7→ ( fi(x)),

is a qi embedding.

Proof. We note that the inclusion maps Xv → XTi are all 1-Lipschitz. Hence, the
diagonal map Φ is n-Lipschitz. The proof of the proposition is divided in two cases.

Case 1: Suppose that n = 2. Consider a pair of points x, y ∈ Xv and let L = L(α) =
{π : L → π(L)} be a (K,D, E)-ladder centered at v, with α = [xy]Xv = Lv. For i = 1, 2, we
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have the (K,D, E)-ladders Li = {Li → π(L)∩Ti} in XTi , obtained by pull-back of the ladder
L to the subtree of spaces XTi .

Let c = cL(x, y) be a combing path in L connecting x to y. We let ĉ1, ĉ2 be the paths in
L1, L2 respectively, obtained from c via the cut-and-replace procedure with respect to the
inclusions L1 → L, L2 → L (see Definition 8.14). Note that, since Li is a ladder in XTi ,
it is qi embedded in XTi . Moreover, according to Theorem 8.21, both ĉ1, ĉ2 are (uniform)
κ-quasigeodesics in XTi . (Actually, this fact is established in Part I of the proof of Theorem
8.21.)

We will now estimate the length of α from above in terms of the distance between
Φ(x),Φ(y) in Q. We claim that the segment α is contained in the union ĉ1 ∪ ĉ2. Indeed,
by the definition of combing paths c = cL in L, there exists a finite monotonic sequence
x0 = x, x1, ..., xm = y in α such that c is the concatenation of paths c(xi, xi+1) between points
xi, xi+1, such that (after switching the roles of L1, L2 if necessary), c(xi, xi+1) is contained
in L1 for odd i and is contained in L2 for even i. Now, it follows from the definition of
the cut-and-replace procedure that [xixi+1]Xv ⊂ α is contained in ĉ1 for each odd i and is
contained in ĉ2 for even i.

Thus,

dXv (x, y) = length(α) ≤ length(ĉ1) + length(ĉ2) ≤

(κ + 1)
(
dXT1

(x, y) + dXT2
(x, y)

)
= 2(κ + 1)d(Φ(x),Φ(y)).

It follows that Φ is a qi embedding.

Case 2: Suppose that n ≥ 3. Consider two points x, y ∈ Xv. Observe that for p =
(x, x), q = (y, y) ∈ XT1 × XT2 , we have

dQ((x, ...., x︸ ︷︷ ︸
n times

), ( y, ..., y︸︷︷︸
n times

)) ≥ dXT1×XT2
(p, q).

Therefore, Case 1 implies that the diagonal embedding Φ : Xv → Q is a qi embedding. □

This concludes the proof of the theorem as well. □

Question 8.72. In the example given in this theorem, is the subgroup Γ < G a coarse
Lipschitz retract of G?

Note that Anosov subgroups of semisimple Lie groups are coarse Lipschitz retracts,
see [KL18b].

8.11.2. CT-maps for hyperbolic graphs of groups. In this section, G′ is a finite
graph of hyperbolic groups satisfying Axiom H, with underlying connected graph Γ′ and
Bass–Serre tree T ′. We will also assume that the group G′ = π1(G′) is hyperbolic.

We first prove the existence of CT-maps for some classes of hyperbolic subgroups
G < G′.

Proposition 8.73. Suppose that Γ ⊂ Γ′ is a connected subgraph and G ⊂ G′ is the
subgraph of groups obtained by restricting G′ to Γ (see Section 2.1), with G = π1(G). Then
the subgroup G < G′ admits a CT-map ∂∞G → ∂∞G′.

Proof. Let T,T ′ denote the Bass–Serre trees of G, G′. The embedding of graphs of
groups G ↪→ G′ induces a G-equivariant embedding T ↪→ T ′. Since the subgraph of
groups G ⊂ G′ is obtained by the restriction, for each vertex v and edge e of the subtree T ′,
the stabilizer of v (resp. e) in G equals its stabilizer in G′. Thus, the tree of spaces X = (π :
X → T ) corresponding to the graph of groups G is obtained as the pull-back of the tree of
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spaces X′ = (π : X′ → T ′), X = X′T . Since the groups G,G′ are naturally quasiisometric
to the spaces X, X′ (via respective orbit maps) the existence of a CT-extension for the
embedding G′ → G is equivalent to that of the embedding X′ → X. Since the existence
of a CT-map for the inclusion X′ ↪→ X is the content of Theorem 8.13, the proposition
follows. □

The next theorem shows that one does not need to restrict to subgraphs of G′ to obtain
subgroups with CT-maps:

Theorem 8.74. Assume that G < G′ = π1(G′) is a subgroup preserving a subtree
T ⊂ T ′ such that the quotient graph T/G is finite and that the vertex and edge stabilizers
of this action on T are quasiconvex in the respective subgroups of G′: Gv < G′v and
Ge < G′e are quasiconvex for all v ∈ V(T ), e ∈ E(T ). Then the subgroup G is hyperbolic
and the inclusion map G → G′ admits a CT-map.

Proof. We will use Proposition 2.30: As in the proof of the proposition we observe
that the G-action on T defines a graph-of-groups decomposition of G: π1(G) = G, and the
graph of groups G satisfies Axiom H (in view of the quasiconvexity assumptions in the
theorem). We let X = (π : X → T ) and X′ = (π : X′ → T ′) denote the trees of spaces
corresponding to the graphs of groups G,G′ respectively.

Since G′ is hyperbolic, so is X′ and, hence, X′ satisfies the uniformly proper flaring
condition. We have a G-equivariant relatively retractive morphism of trees of spaces X →
X′ (h : X → X′, over the inclusion T → T ′). The uniformly proper flaring condition for
X′ then implies the uniformly proper flaring condition for X, hence, X and, thus, G, is also
hyperbolic. We let Y = (π : X′T → T ) denote the restriction of the tree of spaces X′ to T .
The quasiconvexity assumption for the subgroups Gv < G′v,Ge < G′e, v ∈ V(T ), e ∈ E(T ),
implies that for each v ∈ V(T ), and edge e = [v,w] ∈ E(T ), the Gv-orbit of X′ev is locally
finite in X′v, see Lemma 1.7. Thus, Proposition 2.30 implies that the map h : X → Y = X′T is
a qi embedding. According to Theorem 8.13, the inclusion Y → X′ admits a CT-map ∂Y,X′ .
Composing it with the boundary map of the qi embedding X → Y , we obtain a CT-map
∂∞h for the map h : X → X′. Since G acts geometrically on X and G′ acts geometrically
on X′ (see Section 1.3 for the definition and Lemma 1.32), we conclude from the existence
of ∂Y,X′ the existence of a CT-map for the subgroup G < G′. □

Example 8.75. Let G′ = F⋆φ be a hyperbolic group which is the descending HNN
extension of a finitely generated free group F via an injective endomorphism φ : F → F.
Then G = F⋆φn is a hyperbolic subgroup of G′ and the embedding G → G′ admits a
CT-map.

For a boundary vertex v of a subtree T ⊂ T ′, we let T ′(v) ⊂ T ′ denote the maximal
subtree of T ′ containing v and disjoint from the rest of the vertices of T . Thus, if g is an
automorphism of T fixing v and preserving T , it preserves the subtree T ′(v) as well.

Theorem 8.76. Assume that G < G′ are as in Theorem 8.74 and that for each boundary
vertex v of T in T ′, the stabilizer Gv < G acts k-acylindrically on the subtree T ′(v) ⊂ T ′.
Then G is a quasiconvex subgroup of G′.

Proof. According to Remark 8.11(2), in order to prove the quasiconvexity of G in G′

it suffices to show that the CT-map ∂G,G′ is injective, i.e. that the CT-lamination Λ(G,G′)
is empty. For the sake of contradiction, suppose that Λ(G,G′) , ∅. As we observed in
the proof of Theorem 8.74, the action of G on the space Y = X′T is quasiconvex. Since
Λ(G,G′) , ∅, follows that there exists a pair of distinct limit points z± of G in ∂∞Y with



8.11. GROUP-THEORETIC APPLICATIONS 231

equal images under ∂Y,X′ . By Proposition 8.49, there is a biinfinite vertical geodesic α ⊂ X′v
(for some v ∈ V(T )) which is a quasigeodesic in Y , such that z± = α(±∞).

Lemma 8.77. Suppose that ρ is a geodesic ray in a vertex-space X′v, v ∈ T, which is
also a quasigeodesic ray in Y, such that z = ρ(∞) is a limit point of G in ∂∞Y. Then z is a
(conical) limit point of the action of Gv on X′v.

Proof. Since the G-action on Y is quasiconvex, the limit point z is a conical limit
point (see Definition 1.138). Thus, there is a sequence gi ∈ G and a constant r such that
for x = ρ(0), d(gix, ρ) ≤ r, and limi→∞ gi(x) = z. At the same time, the G-orbit of X′v in Y
is locally finite (since for g ∈ G, gX′v = X′gv and each compact in X intersects only finitely
many vertex-spaces). Since gi(x) ∈ Nr(X′v), Proposition 1.137 implies that gi(x) ∈ NR(Gvx)
for some R independent of i. Hence, for hi ∈ Gv such that d(gi(x), hi(x)) ≤ R, we obtain
limi→∞ hi(x) = z in X′v. □

We now return to the proof of the theorem. By the lemma, the points z± are limit points
of the Gv-action on X′v. Since ∂Y,X′ (z−) = ∂Y,X′ (z+) and z± ∈ ∂∞X′v ⊂ ∂∞Y are limit points of
the Gv-action on X′v, Theorem 8.63(1) implies that there is a point ξ ∈ ∂∞T ′ \∂∞T such that
{z−, z+} ∈ Λξ(X′v, X

′). By Proposition 8.56(2), for each vertex w ∈ V(vξ), Flw({z±}) , ∅.
Thus, according to Lemma 3.35, for each x ∈ Xv and vertex w ∈ vξ, the pair of subsets
Gvx, X′w is not cobounded in Xvw. Lemma 2.36 then implies that the Gv-stabilizer of the
interval Jw = ⟦v,w⟧ is infinite for each w ∈ V(vξ). Since ξ ∈ ∂∞T ′ \ ∂∞T , the intersection
of the ray vξ with the subtree T is a finite interval ⟦v, v′⟧. The vertex v′ is a boundary vertex
of T in T ′. Let GJw denote the G-stabilizer of the interval J. Consider a vertex w ∈ vξ such
that v′ ∈ V(⟦v,w⟧) and, moreover, dT (v′,w) > k. Then the infinite subgroup GJ ∩Gv fixes
the interval ⟦v′,w⟧ ⊂ T ′(v′) of length > k, contradicting the hypothesis that the group Gv′

acts k-acylindrically on the subtree T ′(v′). □

Remark 8.78. Assume that G < G′ are as in Theorem 8.74.
1. The subgroup G is at most exponentially distorted in G′ since Y is at most expo-

nentially distorted in X′ (Corollary 2.20) and the orbit map oy : G → Gy ⊂ Y is a qi
embedding.

2. In the setting of Theorem 8.74, we can drop the assumption of hyperbolicity for
G′, but assume that for each boundary vertex v ∈ T and the boundary edge e = [v,w] the
stabilizer Ge is finite. Then G is a coarse Lipschitz retract of G′, since for each boundary
edge e the projection of Gv to G′e is uniformly bounded, cf. Theorem 2.22 and Proposition
2.30.

3. In [BR13] Baker and Riley construct examples of finitely generated free subgroups
G in certain hyperbolic groups G′ such that the CT-maps for the inclusions G → G′ do
not exist. Their groups G′ free-by-cyclic, hence, are isomorphic to fundamental groups of
graphs of groups G′ satisfying Axiom H. However, in their examples, the intersections of
G with vertex/edge subgroups of G′ are not finitely generated.

The next result is a direct group-theoretic application of Proposition 8.49 regarding
the nature of CT-laminations for subgraphs of groups:

Corollary 8.79. Suppose that G < G′ are as in Proposition 8.73 and ξ± ∈ ∂∞G are
distinct points which have the same image in ∂∞G′ under the CT-map ∂∞G → ∂∞G′. Then
there exists a vertex v ∈ T and a pair of points ξ±v ∈ ∂∞Gv such that:

1. ∂Gv,G(ξ±v ) = ξ±.
2. Geodesics in Gv connecting ξ±v are uniform quasigeodesics in G.
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Here is another application, this time of Theorem 8.52. Consider a hyperbolic group
H, an automorphism f : H → H and the semidirect product G = H ⋊ f Z. The next
result describes when a geodesic in H is a leaf of the CT-lamination Λ(H,G). For the
formulation of the result we will use the notion of pseudo-orbits of the automorphism f ,
Definition 2.72.

Corollary 8.80. A geodesic α in the Cayley graph of H is a leaf of Λ(H,G) if and
only if the following holds for some numbers K ≥ 1 and C ≥ 0:

There exist K-pseudo-orbits (y±i ), of h±n = α(±n) ∈ H under the automorphism f
which approach each other within distance C. More precisely, there exist i = i(n) such that

dH(y+i , y
−
i ) ≤ C.

Proof. We let X = (π : X → T = R) denote the tree of spaces corresponding to the
graph-of-groups structure on G given by the HNN-extension of H via the automorphism
f .

Suppose that An = (π : An → ⟦0,wn⟧), wn = i = i(n), is a (K,C)-narrow carpet in G
bounded by [h−nhn]X0 and γ±n denote the K-qi sections corresponding to the top/bottom of
the carpet An. By the definition of a (K,C)-narrow carpet,

dtiH(γ−n (i), γ+n (i)) ≤ C.

As it was explained in Section 2.7, for each n, the sequences y±j = γ±n ( j) are precisely
the partial pseudo-orbits of f in H through the points h±n. Thus, the claim is a direct
consequence of Theorem 8.52. □

Remark 8.81. One can show that α as above is a leaf ofΛ(H,G) if and only if there are
sequences h±n in H converging to α(±∞) (but not necessarily of the form α(±n)), such that
the f -orbits of h±n approach each other within distance C, where C is a uniform constant
depending only on the group H, its generating set, and f .

8.11.3. Miscellaneous results. The next proposition is a partial converse to Proposi-
tion 8.67:

Proposition 8.82. Suppose G is a finite graph of hyperbolic groups satisfying Axiom
H and G = π1(G) is hyperbolic. Suppose X → T is the tree of spaces associated to this
graph of groups. If v is a vertex of T and z ∈ ∂∞Xv is such that the subtree Tz = π(Fl({z}))
contains no geodesic rays, then ∂Xv,X(z) is a conical limit point of Xv in X.

Proof. By the definition, Tz ⊂ T is the subtree whose vertex set consists of those
vertices w ∈ V(T ) for which Flw(z) , ∅.

Lemma 8.83. The subtree Tz is finite.

Proof. Since Tz contains no rays, it suffices to prove that the tree Tz is locally finite.
Consider a vertex w ∈ Tz and the collection of edges ei, i ∈ I, in Tz incident to w. Let
Flw({z}) = {z′}, z′ ∈ ∂∞Xw. Then, according to the definition of the boundary flow in
Section 3.3.4, for each edge ei we have Flei ({z

′}) , ∅. It follows that z′ ∈ ∂∞(Gei ,Gw) for
each i ∈ I. Since G is a finite graph of groups, there are only finitely many Gw-conjugacy
classes of edge-stabilizers Gei < Gw. At the same time,

z′ ∈
⋂
i∈I

∂∞(Gei ,Gw) , ∅,

hence (since each subgroup Gei is quasiconvex in Gw) each intersection Gei ∩Ge j is an infi-
nite subgroup of Gw, see e.g. Lemma 2.6 in [GMRS98]. The main theorem in [GMRS98]
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states that quasiconvex subgroups of hyperbolic groups have finite width. Without defining
width of subgroups here, we only note that, as a consequence of this finiteness theorem, if
Hi, i ∈ I, is a collection of pairwise distinct quasiconvex subgroups of a hyperbolic group
H which belong to finitely many H-conjugacy classes and |Hi ∩ H j| = ∞ for all i, j ∈ I,
then I is finite. Applying this result in our setting, with the ambient hyperbolic group H
equal Gw and quasiconvex subgroups Hi equal to the edge-subgroups Gei , we conclude that
the set I is finite. Thus, Tz is a locally finite tree and, hence, is finite. □

We can now prove the proposition. In the proof it will be convenient to assume that
each edge-space Xe of X is discrete, cf. introduction to Section 8.7. Let β be a ray in X
asymptotic to the point ∂Xv,X(z). Suppose for a moment that the intersection β ∩ XTz is
bounded. Then there exists a boundary edge e = [v′,w] of Tz, w < V(Tz), v′ ∈ V(Tz), such
that an unbounded subray β′ of β projects to the subtree Tw,z ⊂ T which is the maximal
subtree of T containing w and disjoint from Tz. (Here are are using the discreteness as-
sumption on the edge-spaces of X.) Let K be as in Proposition 8.56 and let α ⊂ Xv be a
geodesic ray asymptotic to z.

Since w < Tz = π(Fl({z})), the intersection FlK(α) ∩ Xw is bounded, cf. Lemma 3.35.
Recall that the flow-space FlK(α) is quasiconvex in X. Hence, we will identify ∂∞FlK(α)
with a subset of ∂∞X. We claim that

∂α,FlK (α)(z) , β(∞) ∈ ∂∞FlK(α).

Indeed, the assumption that π(β′) ⊂ Tw,z implies that each geodesic in FlK(α) connecting
points of α to that of β′ has to pass through FlK(α) ∩ Xw, i.e. within distance D from
p = α(0), where D = Hd({p}, FlK(α)∩Xw). But this means that the sequences (α(n)), (β(n))
cannot define the same ideal boundary point of ∂∞FlK(α). Quasiconvexity of FlK(α) ⊂ X
implies that ∂Xv,X(z) , β(∞), which is a contradiction. Thus, β contains an unbounded
sequence of points (xn) contained in Y := FlK(α) ∩ XTz . Since (by the lemma) the subtree
Tz is finite, the subset Y is Hausdorff-close to the ray α ⊂ Xv. In other words, the point
∂Xv,X(z) = β(∞) is a conical limit point of Xv. □

We conclude the chapter with a proposition that deals with the case of nonhyperbolic
graphs of hyperbolic groups and relates this lack of hyperbolicity to various notions dis-
cussed earlier, such as boundary flow-spaces and unbounded sequences of carpets:

Proposition 8.84. Suppose G is a finite graph of hyperbolic groups satisfying Axiom
H; let X = (π : X → T ) denote the corresponding tree of metric spaces. If G = π1(G) is
not hyperbolic, then there is a vertex v ∈ V(T ) such that π(Fl(∂∞Xv)) contains a geodesic
ray.

Proof. Let G be the fundamental group of G. By Corollary 2.53(2) there is a constant
D > 0, a sequence of intervals In = ⟦−tn, tn⟧ ⊂ T of length at least n and a sequence
(Πn) of pairs of κ-qi sections (γn

0, γ
n
1) over In (n ∈ N), such that Πn

max ≤ D, but Πn
0 → ∞.

Since the G-action is cofinite on T and cocompact on X, and the map π : X → T is G-
equivariant, after extraction, we may assume that for each n the midpoint of In is a fixed
vertex v ∈ V(T ) and the midpoint of [γn

0(0)γn
1(0)]Xv is within unit distance from a fixed

point x ∈ Xv. After passing to a further subsequence, we may assume that the sequence
of segments [γn

0(0)γn
1(0)]Xv converges to a complete geodesic in Xv. We note that for each

n the vertical geodesic segments [γn
0(t)γn

1(t)]Xt , t ∈ V(In), form a K-metric bundle over
In (with K = κ′, see Lemma 3.17) and hence there is a K-qi section γn over In passing
through B(x, 2) and contained in this metric bundle. Hence, after passing to a further
subsequence, we may assume that the sequence of sections (γn) converges to a complete
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quasigeodesic γ in X and the sequence In converges of complete geodesic I in T such that
γ is a qi section over I, cf. the proof of Lemma 8.60(2). Lastly, Lemma 3.35(3) implies
that I ⊂ π(Fl(∂∞Xv)). □



CHAPTER 9

Cannon–Thurston maps for relatively hyperbolic spaces

The goal of this chapter is to generalize the results on Chapter 8 (primarily, the exis-
tence of CT-maps and some basic facts about CT-laminations) in the context of relatively
hyperbolic spaces. Such a generalization was achieved in [MP11] for the inclusion maps
of vertex-spaces.

Relatively hyperbolic spaces are generalizations of the following object: Start with
the classical real-hyperbolic space Hn and remove from it a collection of open horoballs
B̊i, i ∈ I, such that any two distinct horoballs are ϵ-separated for some uniform ϵ > 0. The
result is a pair (Y,H), where Y is the result of removal of horoballs (a truncated hyper-
bolic space) and H is the collection of boundary spheres Hi of the horoballs Bi; these are
the peripheral horospheres. The pair (Y,H) is a basic example of a relatively hyperbolic
space. Attaching hyperbolic cones Hh

i to each horosphere Hi results in a geodesic metric
space quasiisometric to Hn, it is the hyperbolification of (Y,H). In parallel, one defines
the electrification Yℓ of (Y,H) by attaching to Y cones along each horosphere Hi. The
interplay between the geometry of Y (with the induced path-metric), Yh and Yℓ is one of
the main tools of the theory of relatively hyperbolic spaces. In Sections 9.1, 9.2 we cover
basic definitions of the theory of relatively hyperbolic spaces, one (of the many!) alter-
native definition and tools of the theory. We also define Cannon-Thurston maps between
morphisms of relatively hyperbolic spaces.

In Section 9.3 we introduce the notion of trees of relatively hyperbolic spaces (still
denoted X), over simplicial trees T . The key difference with the notion of ordinary trees of
spaces is that the incidence maps fev are required to be morphisms of relatively hyperbolic
spaces which are relative qi embeddings. There are two ways to electrify the total space
X of a tree of relatively hyperbolic spaces: One is to electrify each vertex, edge-space
and incidence map, and then define the total space Xℓ of the resulting tree of hyperbolic
spaces Xℓ. The other way is to form trees of spaces over subtrees in T , whose vertex
and edge-spaces are peripheral horospheres; the total spaces of these trees of horospheres
are peripheral subspaces in X. Then one forms a space X̂ by coning-off these peripheral
subspaces in X. Similarly, there are two ways to hyperbolify X. One is to hyperbolify each
vertex and edge-space of X; this results in a tree of hyperbolic spaces with the total space
Xh. The other way is to hyperbolify X by attaching hyperbolic cones along each peripheral
subspace of X; the result is a space XP.

Following Mj and Reeves we then define a relative flaring condition for trees of rela-
tively hyperbolic spaces which combines flaring for Xℓ with another condition in terms of
apexes of cones in the vertex and edge-spaces of Xℓ. According to a theorem by Mj and
Reeves (which we do not reprove in this book), under the relative flaring condition, the
space XP is hyperbolic.

We are now ready to state the main results of the chapter:

235
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1. In Theorem 9.47 we prove an existence theorem for CT-maps in the relative setting:
For each subtree S ⊂ T , the inclusion map XP

S → XP admits a CT extension ∂XP
S ,X

P . Here
XS is the total space of a subtree of relatively hyperbolic spaces induced from X by the
inclusion S → T .

This theorem generalizes an earlier result by Mj and Pal who proved it in the case
when S is a single vertex. The proof of this theorem occupies a part of Section 9.3 and
Sections 9.3.2, 9.4. Our proof depends critically on the results of Chapter 8 establishing
existence of CT-maps in the case of trees of hyperbolic spaces.

2. In Section 9.5 (the last section of the chapter) we prove Theorem 9.60. This theo-
rem establishing certain basic properties of CT-laminations for the maps ∂XP

S ,X
P , which are

analogous to those in Theorem 8.52 in the absolute case. Mainly, Theorem 9.60 proves that
the leaves of the CT-lamination for the map ∂XP

S ,X
P come from leaves of CT-laminations of

maps ∂XP
v ,XP , for various vertices in T . Unlike Chapter 8 (Section 8.9), we do not relate

CT-laminations in the relative setting to ending laminations.

9.1. Relative hyperbolicity

9.1.1. Relative hyperbolicity in the sense of Gromov. We refer the reader to the
papers by Farb and Bowditch [Far98, Bow12] for the background on the theory of rela-
tively hyperbolic spaces. Briefly, a relatively hyperbolic space is a pair (Y,H) consisting
of a geodesic metric space (Y, d) together with a collection H = {Hi : i ∈ I} of peripheral
subspaces, which are nonempty subsets of Y satisfying certain conditions discussed below
and, in an alternative form, in Section 9.2.1. While this is not always required for relatively
hyperbolic spaces, we will assume that each Hi ∈ H is rectifiably connected and the inclu-
sion maps (Hi, dHi )→ (Y, dY ) are uniformly proper, where dHi are the intrinsic path-metrics
on Hi’s. Given such a pair (Y,H), one defines two new metric spaces:

1. The extended hyperbolic space (Yh, dh) = (Yh, dYh ) = G(Y,H) (or the horoballi-
fication of (Y,H)), which is a path-metric space obtained by attaching along each Hi its
hyperbolic cone Hh

i defined in Section 1.11; the latter are (intrinsically) uniformly hyper-
bolic horoballs, with Hi the boundary horosphere in Hh

i . Recall that each Hh
i has unique

ideal boundary point, called the foot-point (or the ideal center) of Hh
i , ξ(Hh

i ).
2. The electric space (Yℓ, dℓ) = E(Y,H) (the electrification of (Y,H)), obtained by

coning off each Hi, i.e. attaching to Y along each Hi the cone Hℓ
i = C(ai,Hi) with the apex

ai = a(Hℓ
i ) within distance 1/2 from each point in Hi. We refer the reader to Section 1.7

for the precise definition of the metric spaces C(ai,Hi). Here we recall only that each point
x ∈ Hi is connected to ai by a canonical geodesic segment of length 1/2, called a radial
line-segment. The set of apexes of these cones is called the cone-locus of Yℓ and denoted
a(Yℓ).

We will use the notation H̊h
i (the open peripheral horoball) and H̊ℓ

i (the open periph-
eral cone) for the complements

Hh
i \ Hi, Hℓ

i \ Hi

respectively.

Definition 9.1 (Relative hyperbolicity in the sense of Gromov). A pair (Y,H) is called
relatively hyperbolic in the sense of Gromov (GRH) if the metric space (Yh, dh) is hyper-
bolic.

If (Y,H) is GRH, then the electric space (Yℓ, dℓ) is hyperbolic. This is a standard fact,
usually attributed to Farb, [Far98]: Although the proofs given in his paper are only in the
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setting of manifolds of negative curvature, they go through in greater generality. We will
give a proof in Section 9.2 with the side-benefit of relating quasigeodesics in (Yh, dh) to
those in (Yℓ, dℓ).

Remark 9.2. There are many characterizations of relatively hyperbolic spaces and
groups, see [Bum05, Osi06, DS05, Hru10, Bow12, Far98, Ger09, GP15, GP16, Yam04].
In this book we discuss just two definitions of relative hyperbolicity, Gromov’s and Farb’s.

9.1.2. Extrinsic geometry of the peripheral horoballs. Throughout this section we
will assume that (Y,H) is GRH with the hyperbolicity constant δ. Our goal is to discuss
the extrinsic geometry of the peripheral horoballs Hh

i . Among other things, we will prove
that they are uniformly quasiconvex and uniformly pairwise cobounded.

Lemma 9.3. 1. The subsets Hh
i are λ9.3(δ)-quasiconvex and L9.3(δ)-qi embedded in Y.

2. Y is uniformly properly embedded in Yh with distortion function depending only on
δ.

Proof. 1. We observe that, by the definition of the metric on Hh
i , for each point x =

(z, t) ∈ Hh
i the distance from x to Hi equals log(t). It follows that for any two points

x1 = (z, t1), x2 = (z, t2) ∈ Hh
i ,

dYh (x1, x2) = | log(t1/t2)|

and the vertical segment in Hh
i between x1, x2 is isometrically embedded in Yh. In partic-

ular, the vertical rays in Hh
i are isometrically embedded in Yh. Since any two such rays

ρ1(t), ρ2(t) converge as t → ∞, it follows that the horoballs Hh
i are uniformly quasiconvex

in Yh. The fact that the peripheral subspaces Hi are uniformly properly embedded in Y
implies that the horoballs Hh

i are uniformly properly embedded in Yh. Combined with the
uniform quasiconvexity, we obtain that these horoballs are uniformly qi embedded in Yh.

2. Lastly, uniform properness of the inclusion maps Hi → Hh
i (see Proposition 1.71)

implies that Y is uniformly properly embedded in Yh as well. □

Recall that a closed subset C of a geodesic metric space X is called strictly convex,
see e.g. [BH99], if for any two points x, y ∈ C, every geodesic xy ⊂ X is contained in the
interior of C, except maybe for its end-points. For instance, closed balls and horoballs in
the classical hyperbolic space are strictly convex, while a closed hyperbolic half-space is
not. The next lemma establishes a form of coarse strict convexity of peripheral horoballs
in the context of GRH spaces.

Lemma 9.4. There exist L = L9.4(K, r, δ) and R = R9.4(K, r, δ) satisfying the following
properties. Suppose that β : [a, b]→ Yh is a continuous K-quasigeodesic in Yh connecting
points z = β(a), y = β(b).

1. Suppose that the image of β is entirely contained in Nr(H) for some H ∈ H . Then
d(y, z) ≤ R = R9.4(K, r, δ).

2. Suppose that the points z = β(a), y = β(b) both belong to Nr(Hh) \ H̊h. Then either
b − a ≤ 2L or there exist a′ ∈ [a, a + L] and b′ ∈ [b − L, b] such that z′ = β(a′) ∈ H,
y′ = β(b′) ∈ H and the subpath β(z′, y′) in β(z, y) is entirely contained in H̊h, except for the
end-points z′, y′.

Proof. 1. Let ȳ, z̄ ∈ Hh be the images of y, z, respectively, under the projection PYh,Hh .
Thus, d(y, ȳ) ≤ r, d(z, z̄) ≤ r. Let c = c(z̄, ȳ) denote the combing path in Hh connecting z̄ to
ȳ, as defined in the proof of Proposition 1.68. By the version of stability of quasigeodesics
in hyperbolic spaces (Lemma 1.55), the Hausdorff distance between the images of β and c
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is at most D1.55(δ,max(k,K), r), where k is the bound on quasiisometry constant of c given
in Remark 1.69.

We will consider the case when x̄, ȳ are both in H and leave the other cases to the
reader as the proofs are similar. According to the description of the combing paths in
Hh, for each constant D ≥ 0 if the path c is contained in the D-neighborhood of H, then
A = dH(z̄, ȳ) ≤ eD.

In our case, c is contained in the D = (D1.55(δ,max(k,K), r) + r)-neighborhood of H
and, hence, we conclude that dH(z̄, ȳ) ≤ eD. It follows that

d(y, z) ≤ R9.4(K, r, δ) := eD + 2r.

2. We follow the arguments of Part 1, define points ȳ, z̄ and the path c connecting them,
setting now D := D1.55(δ,max(k,K), r), an upper bound on the Hausdorff distance between
β and c. If dH(z̄, ȳ) > eD, then there are points ȳ′, z̄′ within distance D from ȳ, z̄ respectively,
such that the subpath c(z̄, ȳ) is disjoint from the D-neighborhood of H, apart from the
end-points. Thus, there are points y′′, z′′ in the image of β which are within distance D
from, respectively, ȳ′, z̄′, such that the subpath β(z′′, y′′) is entirely contained in H̊h, except,
possibly, the end-points. We then take the points y′, z′ on the subpaths β(y, y′′), β(z, z′′)
where these paths cross into Hh and such that β(z′, y′) is entirely contained in H̊h, except
for the end-points x′, y′. Lemma follows. □

Definition 9.5. In what follows, we will use the notation [a′, b′] for the maximal
subinterval in [a, b] satisfying the properties in Part 2 of the lemma.

Corollary 9.6. Suppose that y, z ∈ Nr(Hh) and the geodesic [yz]Yh is disjoint from
H̊h. Then d(y, z) ≤ 2L9.4(1, r, δ).

In the next corollary we use the notation introduced in Definition 9.5:

Corollary 9.7. Suppose that Hi,H j are distinct elements of H , β : [0,T ] → Y is
a K-quasigeodesic, [si, ti], [s j, t j] are subintervals of length > 2L9.4(K, r, δ) in [0,T ] such
that β(si) ∈ Hi, β(ti) ∈ Hi, β(s j) ∈ H j, β(t j) ∈ H j. Then [s′i , t

′
i ] ∩ [s′j, t

′
j] = ∅.

Figure 45
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Lemma 9.8. Consider three points, x ∈ Hh, z ∈ H and y ∈ Yh, and K-quasigeodesics
α = α(z, x), β = β(y, z) in Yh connecting z to x and y to z respectively, such that β is disjoint
from H̊h and α is contained in Hh. (See Figure 45.) Then the concatenation β ⋆ α is an
L9.8(K, δ)-quasigeodesic in Yh.

Proof. We set D := D1.54(δ,K), R := R9.4(1,D, δ) + 1. Note that D > 2δ, see Lemma
1.54.

In view of stability of quasigeodesics, it suffices to get an upper bound on the qi
constant of the concatenation β∗ ⋆ α∗, where α∗ = [zx]Yh , β∗ = [yz]Yh (geodesics which are
D-Hausdorff close to α, β, respectively, where D = D1.54(δ,K)). By the assumption of the
corollary, β∗ is contained in ND(Yh \ Hh). There are two cases to consider:

a. dYh (y, z) < R or dYh (x, z) < R. Then the claim follows immediately: A concatenation
of a uniform quasigeodesic with a uniformly bounded quasigeodesic is again a uniform
quasigeodesic.

b. R ≤ min(d(x, z), d(y, z)). Then, by Lemma 9.4(1), there exists a point z′ ∈ β∗ at the
distance R′ ≤ R from z such that z′ < ND(Hh). Take the point x′ ∈ α∗ ⊂ Hh at the same
distance R′ from z. Then

d(z′, x′) ≥ D > 2δ.

By Lemma 1.79, the concatenation β∗ ⋆ α∗ is then an L1.79(R′, δ)-quasigeodesic in Yh. □

In the next lemma we prove a generalization of this result, for concatenations of three
uniform quasigeodesics.

Figure 46

Lemma 9.9. Suppose we have three K-quasigeodesics β(xi, yi), β(yi, y j) and β(y j, x j) in
Yh such that the paths β(xk, yk) are contained in the distinct peripheral horoballs Hh

k , and
β(yi, y j) ∩ H̊h

k = ∅, k = i, j. (See Figure 46.) Then the concatenation

β(xi, yi) ⋆ β(yi, y j) ⋆ β(y j, x j)

is again a (uniform) L9.9(K, δ)-quasigeodesic in Yh.

Proof. We first consider the concatenation β(yi, y j) ⋆ β(y j, x j) and observe that it sat-
isfies the assumptions of Lemma 9.8 with the peripheral horoball Hh equal Hh

j . Thus,



240 9. RELATIVELY HYPERBOLIC SPACES

β = β(yi, y j)⋆β(y j, x j) is a K1 = L9.8(K, δ)-quasigeodesic in Yh. Then we consider the con-
catenation α⋆β, where α = β(xi, yi). This concatenation again satisfies the assumptions of
Lemma 9.8 with the peripheral horoball Hh equal Hh

i . Lemma follows. □

We now analyze the nearest-point projection to quasigeodesics of the type described
in Lemma 9.8:

Lemma 9.10. Consider a quasigeodesic γ = β ⋆ α as in Lemma 9.8. Then for each
point p ∈ Hh the nearest-point projection p̄ = Pγ(z) satisfies:

d(p̄, α) ≤ C9.10(K).

Proof. We continue with the notation of Lemma 9.8. Suppose that p̄ ∈ β. Since γ is a
K-quasigeodesic, it is λ = λ1.92(δ,K)-quasiconvex; hence (see Lemma 1.105), the geodesic
pz in Yh passes within distance ≤ D = λ + 2δ from p̄. In particular, for

r = D + λ9.3(δ),

d(p̄,Hh) ≤ r, i.e. p̄ ∈ Nr(H). We also have p ∈ H and β ∩ H̊ = ∅. Hence, according to
Lemma 9.4(2) the distance between p̄ and z is ≤ 2K. □

Lemma 9.11. The peripheral horoballs Hh
i , i ∈ I, are uniformly pairwise cobounded in

Yh.

Proof. Consider two distinct peripheral horoballs Hh
i ,H

h
j and suppose that zi ∈ Hi, z j ∈

H j are within distance c from each other in Yh. The points zi, z j are connected by a path
β of length ≤ K = 4ec in Y . Hence, β is a K-quasigeodesic in Yh. Let ρi, ρ j denote the
vertical geodesic rays in Hh

i ,H
h
j emanating from zi, z j respectively. Then, by Lemma 9.9,

the concatenation α of the rays ρi, ρ j and the path β is an L = L9.9(K, δ)-quasigeodesic in
Yh.

Figure 47

Suppose now that we have four points zi, z′i ∈ Hi, z j, z′j ∈ H j satisfying dYh (zi, z j) ≤ c,
dYh (z′i , z

′
j) ≤ c. We then, as above, form two L-quasigeodesic lines α, α′ in Yh passing

through the points zi, z j and z′i , z
′
j respectively and asymptotic to the centers ξ(Hh

i ), ξ(Hh
j )

of our peripheral horoballs. Thus, the δ-hyperbolicity of Yh, and the fact that α, α′ are
L-quasigeodesics in Yh asymptotic to the same pairs of points at infinity, imply that the
Hausdorff distance between these quasigeodesics is ≤ D = D1.87(L, δ), see Lemma 1.87.

We claim a uniform upper bound on the distance between zi, z′i . By Lemma 9.10, there
exists a point xi ∈ ρi within distance C = C9.10(L) from the nearest-point projection z̄′i of zi

to α′. Hence,
d(z′i , xi) ≤ D′ = D +C.
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By the upper bound Hd(α, α′) ≤ D, in view of Lemma 9.10, there exists a point xi ∈

ρi within distance D′ = D′9.10(L,D) from z′i . Since zi is the point in Hi closest to xi, it
follows that d(xi, zi) ≤ D′ as well. Combining the inequalities, we get d(zi, z′i) ≤ 2D′.
Similarly, d(z j, z′j) ≤ 2D′. Uniform quasiconvexity of the horoballs Hh

i ,H
h
j combined with

Proposition 1.140 now implies that these horoballs are uniformly cobounded. □

Lemma 9.12. Every point ξ ∈ ∂∞Yh is the limit of a sequence (zn) in Y, unless ξ is the
center of a horoball Hh with bounded horosphere H.

Proof. There are two cases to consider.
1. ξ = ξ(Hh) is the center of a peripheral horoball Hh. Fix a base-point y0 ∈ H and

the vertical ray ρ in Hh emanating from y0. Since H is unbounded, take a sequence zn ∈ H
which diverges to infinity, i.e. Dn = dH(y0, zn) → ∞. We claim that (zn) converges to
ξ. Indeed, for yn := (zn, log(Dn)) ∈ Hh, the combing path c(y0, yn) in Hh contains the
subsegment of length log(Dn) in ρ. Hence, limn→∞ zn = limn→∞ ρ(log(Dn)) = ξ.

2. ξ is not the center of any peripheral horoball. Then each geodesic ray ρ = yξ will
cross into Y along a sequence zn which diverges to infinity. Thus, (zn) converges to ξ. □

9.1.3. Electrification and hyperbolization of quasigeodesics. In this section we de-
scribe two procedures of converting paths in Yh to paths in Yℓ and vice-versa.

We first describe the procedure of electrification of continuous hyperbolic quasigeode-
sics. In view of Corollary 9.7, for each continuous K-quasigeodesic β : [0,T ] → Yh we
obtain a maximal collection of maximal pairwise disjoint subintervals [s′1, t

′
1],...,[s′n, t

′
n] in

[0,T ] satisfying the conclusion of Corollary 9.7 with respect to certain peripheral sub-
spaces H j1 , ...,H jn ∈ H . We then perform the following electrification procedure on β:

For each subinterval [s′i , t
′
i ] we replace the restriction of β to [s′i , t

′
i ] with the concate-

nation of two geodesic segments (of length 1/2 each) in Hℓ
ji

connecting β(s′i), β(t′i ) to the
apex a(Hℓ

ji
) of the cone Hℓ

ji
. In the special case when we have to deal with the subintervals

[0, t′1] and/or [s′n,T
′] (i.e, β(0) or β(T ) belongs to one of the open horoballs H̊h

j ), we replace
β|[0,t′1] (resp. β|[s′n,T ]) with the unit length geodesic in Hℓ

j connecting the apex a(Hℓ
j) to β(t′1)

(resp. β(s′n)). We let βℓ denote the resulting path in Xℓ. Lastly, each subpath of β whose
domain has length ≤ 2L(K) and which connects points of Hi in Hh

i , is replaced by a geo-
desic in Hi connecting the same points. Lengths of such geodesics are uniformly bounded
by some constant E = E(K) since horospheres Hi are uniformly properly embedded in the
horoballs Hh

i . The resulting map βℓ = EP(β) will be called the electrification of β.
We note that βℓ visits each cone-point a(Hℓ

ji
), i = 1, ..., n, exactly once; more precisely,

βℓ is tight in the following sense:

Definition 9.13. A continuous path γ in Yℓ is tight if for each cone Hℓ
i , i ∈ I, the

preimage γ−1(H̊ℓ
i ) is a (possibly empty) interval and the restriction of γ to this interval is

1-1.

Remark 9.14. 1. The commonly used name for tight paths is paths without backtrack-
ing; we find this terminology cumbersome.

2. The continuity assumption here is simply a matter of convenience and electrification
can be defined for general K-quasigeodesics by using si, ti’s such that β(si), β(ti) are within
distance K from the horosphere Hi.

3. The electrification procedure described in [DM17] is similar, except they replace by
geodesics in Hℓ

i the subsegments in β with end-point in Hi at distance > 1. This construc-
tion, while technically simpler, does not result in tight paths, which we find undesirable.
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More generally, we define tightness of paths in Yh as follows:

Definition 9.15. We say that a continuous path β in Yh is tight (relative to H) if
for each peripheral horoball H ∈ H , the preimage β−1(H̊h) is an open interval (possibly
empty).

It is clear that for each tight path β, its electrification βℓ is a tight path in Yℓ.

We next use electrification to compare distances in Yh and in Yℓ:

Lemma 9.16. For any two pair of points x, y ∈ Y, dℓ(x, y) ≤ dYh (x, y), i.e. the inclusion
map (Y, dYh )→ (Yℓ, dℓ) is 1-Lipschitz.

Proof. Recall that by the definition of the metric on the hyperbolic cones Hh
i , if x, y

belong to the same peripheral subspace Hi and dYh (x, y) ≤ 1, then dY (x, y) ≤ 1. It follows
that if β is a geodesic in Yh connecting the points x, y ∈ Y then the length of βℓ is at most
the length of β. □

Hyperbolization of electric geodesics. Conversely, given any (continuous) path β in
Yℓ, we define its hyperbolization βh by replacing each subpath βH of β connecting x, y ∈
H ∈ H and contained in H̊ℓ except for its end-points, with the combing path c(x, y) in
Hh, see Section 1.11. Recall that the paths c(x, y) are uniform quasigeodesics in Hh (with
respect to the intrinsic metric dh on Hh). It is clear that if β was tight, so is βh.

In the case when β is a quasigeodesic in Yℓ, the path βh is called an electro-ambient
quasigeodesic, see [DM17]. This construction yields a collection of paths in Yh connect-
ing points in Y . In Section 9.2.1 we describe (uniform) electro-ambient quasigeodesics
connecting arbitrary pairs of points in Yh.

The next result appears in [DM17, Lemma 2.15].

Lemma 9.17. For tight1 uniform quasigeodesics β in Yℓ connecting points of Y, the
paths βh are uniform quasigeodesics in Yh. More precisely, there exists a function L =
L9.17(K) such that if β is a tight K-quasigeodesic in Yℓ connecting points of Y, its hyper-
bolization βh is an L-quasigeodesic in Yh.

An alternative and detailed proof was given by A. Pal and A. Kumar Singh in [PKS15];
we will discuss this further in Section 9.2.1.

9.2. Hyperbolicity of the electric space

In this section we will prove that for each relatively hyperbolic space (Y,H), the space
Yℓ is hyperbolic and describe uniform quasigeodesics in this space. The key result of this
section is:

Proposition 9.18. Electrifications αℓ of uniform (continuous) quasigeodesics α in Yh

connecting points of Y, are uniformly proper in Yℓ.

Proof. Let α : J = [0,T ] → Yh be a continuous K-quasigeodesic in Yh connecting
points x, y ∈ Y . Our goal is to prove that the length of the domain of αℓ is bounded in terms
of the distance M := dℓ(x, y). This will imply uniform properness of the maps αℓ for all
continuous K-quasigeodesics α in Yh.

Let β be a geodesic in Yℓ connecting x to y and the length of β is ≤ M. In particular,
β goes through at most N cones Hℓ

i where N depends only on M; these cones correspond
to the horoballs B1 = Hh

i1
, ..., Bn = Hh

in
in Yh, n ≤ N. It also follows that the length of

1This assumption was forgotten in [DM17].
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each subsegment of β between two distinct horoballs is at most M. By renumbering the
horoballs, we can also label these subsegments β1, ..., βn−1 so that βi connects Bi to Bi+1.
We also label β0 the subsegment of β between x and B1 and label βn the subsegment of β
between Bn and y. Set

B := β0 ∪ B1 ∪ .... ∪ Bn ∪ βn.

In particular, the subset B ⊂ Yh is λ = λ(M)-quasiconvex in Yh. According to Lemma
1.142, there exists D and ϵ such that for each component C of α−1(Yh − ND(B)) the
projection of α(C) to B has diameter ≤ ϵ. (Here ϵ,D depend on δ,K and λ, and D =
D1.142(δ, λ′), where λ′ is the maximum of λ and the quasiconvexity constant of the images
of K-quasigeodesics in Yh.) We now decompose the interval J = [0,T ] according to the
mutual position of points α(t), t ∈ J, with respect to the horoballs Bi and the segments βi.

Let J(β j) denote the maximal subinterval in J such that the images of the end-points
of J(β j) under α belong to ND(β j). Similarly, we define subintervals J(B j).

1. Since α is a K-quasigeodesic and β j has length ≤ M, the length of each J(β j) is
≤ K(2D + M + 1).

2. Similarly, Lemma 9.4 implies that the length of each J(B j) \ α−1(B j) is at most
2L9.4(K+D, 0, δ). Recall that by the definition of αℓ, whenever J(B j)\α−1(B j) is nonempty,
the interval J(B j) contributes the length ≤ 2+2L9.4(K+D, 0, δ) to the length of the domain
of αℓ.

3. It now remains to estimate the length of

J′ := J \
n+1⋃
i=0

(J(βi) ∪ J(Bi))

Let C = [s, t] be a component of this complement. Then both points α(s), α(t) belong to
∂ND(B) and the diameter of the projection of α(C) to B is ≤ ϵ. Hence, the distance in Yh

between α(s), α(t) is at most 2D + ϵ. It follows that C has length ≤ K(2D + ϵ + 1). Since
the number of components C is ≤ 2N + 2, it follows that the total length of J′ is at most

K(2D + ϵ + 1)(2N + 2).

Combining these estimates we conclude that the domain of αℓ has length at most

(M + 1)K(2D + M + 1) + (2 + 2L9.4(K + D, 0, δ))M + K(2D + ϵ + 1)(2N + 2).

Uniform properness of the maps αℓ follows. □

As an application of this result we prove:

Theorem 9.19. 1. If (Y,H) is relatively hyperbolic, then Yℓ is hyperbolic.
2. Moreover, continuous K-quasigeodesics α in Yh yield k9.19(K)-quasigeodesics αℓ in

Yℓ.

Proof. We will verify that the conditions of Corollary 1.64 are met. Namely, we will
check that the combing of Yh by continuous K-quasigeodesics α results in a thin combing
of Yℓ by paths αℓ connecting points of the subset Yℓ

0 ⊂ Yℓ which is the union of Y and
the set a(Yℓ) of apexes ai of the cones Hℓ

i , i ∈ I. We already know that the paths αℓ are
uniformly proper (Property 1 in Corollary 1.64). Let us verify Property 2. Consider a triple
of K-quasigeodesics αx,y, αy,z, αz,x connecting points x, y, z in Yh. Since Yh is δ-hyperbolic,

αx,y ⊂ N3D1.54(δ,K)+δ(αy,z ∪ αz,x).

Let u be a point of αx,y ∩ Y and suppose that v is a point in αy,z at a distance

dYh (u, v) ≤ 3D1.54(δ,K) + δ
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from u. If v happens to be in Y , then Lemma 9.16 implies that

dℓ(u, v) ≤ 3D1.54(δ,K) + δ

as well. If v = αy,z(t) belongs to an open horoball H̊h
i but t does not lie in one of the

subintervals [si, ti] in the domain of the path αy,z which are coned-off when we define αℓy,z,
then the distance in Yh from αy,z(t) to αy,z ∩ Hi is at most 2(K + 1)L9.4(K, 0, δ) and, thus,
dℓ(u, αy,z) ≤ 2(K + 1)L9.4(K, 0, δ) as well. Lastly, if t is one of the intervals [si, ti] then pi is
in αy,z and

dℓ(u, pi) ≤ d(u, v) + 1 ≤ 3D1.54(δ,K) + δ + 1.
Finally, each point of αℓx,y lies within unit distance (as measured in Yℓ) from a point of

αℓx,y ∩ Y and, therefore, for

R = 3D1.54(δ,K) + δ + 1 + 2(K + 1)L9.4(K, 0, δ),

the path αℓx,y is contained in the R-neighborhood (in Yℓ) of the union αℓy,z ∪ α
ℓ
z,x. □

The following consequence of the theorem appears in [Kla99, Proposition 4.3], see
also [Far98, Lemma 4.5 and Lemmas 4.8, 4.9] in the setting of manifolds of negative
curvature:

Corollary 9.20. For x, y ∈ Y let α = [xy]Yℓ and β = [xy]Yh . Then the Hausdorff
distance in Y between α ∩ Y and β ∩ Y is uniformly bounded.

Proof. 1. Take z ∈ α ∩ Y . Since αh is a uniform k-quasigeodesic in Yh connecting the
endpoints of β, the k-quasigeodesics αh and β are D-Hausdorff-close in Yh, D = D1.54(δ, k).
Thus, there exists w ∈ β within distance D from z. If w happens to be in Y , we are done.
Suppose, therefore, that w ∈ H̊ for some H ∈ H . Since w is within distance D (as measured
in Yh) from Y , and β is a geodesic in Yh, it follows that there exists a point v ∈ β∩H within
distance C = D + D′ from w, where D′ = D1.54(δ,K) and K is the qi constant of the
combing paths in Hh. Since dYh (v, z) ≤ D + C, it follows that dY (v, z) is also uniformly
bounded by a uniform constant E, as (Y, d) is uniformly properly embedded in (Yh, dh), see
Lemma 9.3(2). Hence,

α ∩ Y ⊂ NY
E (β ∩ Y).

2. The proof of the opposite inclusion is similar, swapping the roles of αh and β and is
left to the reader. □

We also record another application of Theorem 9.19:

Corollary 9.21. There exists a constant L = L9.21(δ) such that every two points x, y
in X are connected by a tight L-quasigeodesic in Xℓ. Namely, given a geodesic c = [xy]Xh

in Xh, its electrification cℓ is a uniform tight quasigeodesic in Xℓ.

We define a coarse projection q = qY : Yh → Yℓ as follows:
1. The map q is the identity on Y .
2. For each peripheral subspace Hi, q(H̊h

i ) = {a(Hℓ
i )}, the apex of the cone over Hi.

The following lemma is immediate:

Lemma 9.22. The map q is (1, 1)-coarse Lipschitz.

The next result is a direct corollary of Theorem 9.19(2):

Corollary 9.23. There exists a function λ 7→ λ̂ such that if Z ⊂ Yh is a λ-quasiconvex
subset, then q(Z) is λ̂-quasiconvex in Yℓ.
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Lemma 9.24. The projection q coarsely commutes with nearest-point projections. More
precisely, there is D = D9.24(δ, λ), where δ is the hyperbolicity constant of Yh, such that for
each λ-quasiconvex subset Z ⊂ Yh,

d(PYℓ ,q(Z), q ◦ PYh,Z) ≤ D.

Proof. For y ∈ Yh, up to a uniformly bounded error, the projection ȳ = PYh,Z(y) of y
to Z is defined by the property that for each z ∈ Z the concatenation β = yȳ ⋆ ȳz = β1 ⋆ β2
is a uniform quasigeodesic (see Lemma 1.105). Suppose first that ȳ ∈ Y . Theorem 9.19(2)
implies that the concatenation βℓ = βℓ1 ⋆ β

ℓ
2 is a uniform quasigeodesic in Ŷ . By applying

Lemma 1.101, we conclude that ȳ is uniformly close to PYℓ ,q(Z)(q(y)).
Suppose now that ȳ lies in some Hh

i ; let ai = a(Hh
i ) denote the apex of the cone in Yℓ

corresponding to Hi, and β0 ⊂ Hh
i be the maximal subsegment of β contained in Hh

i and
connecting points xi, yi ∈ Hi. Then β is the concatenation β1 ⋆ β0 ⋆ β2. Accordingly, βℓ is
the concatenation βℓ1 ⋆ [xiai] ⋆ [aiyi] ⋆ βℓ2. Thus, ai is uniformly close to PYℓ ,q(Z)(q(y)). At
the same time, q(ȳ) = ai. □

Lastly, we discuss relatively hyperbolic structures on metric spaces which are already
hyperbolic, see [Bow12, Theorem 7.11] and, in a more limited version, [Ger96]:

Theorem 9.25. Suppose that X is a hyperbolic space andH = {Hi, i ∈ I} is a collection
of rectifiable uniformly qi embedded subsets of X (in particular, these subsets are uniformly
quasiconvex in X).

1. If the subsets Hi are uniformly pairwise cobounded, then the pair (X,H) is relatively
hyperbolic.

2. Conversely, if Xh is hyperbolic, then the subsets {Hi, i ∈ I} are uniformly pairwise
cobounded in X.

Proof. 1. We first equip Xh with a structure of a tree of hyperbolic spaces Y = (π :
Y → T ). We define the tree T by taking the wedge of rays Ri, i ∈ I, where each Ri is the
positive half-line [0,∞) equipped with the standard simplicial structure (vertices are the
nonnegative integers) and the wedge of rays is obtained by identifying 0’es in all Ri’s with
a single vertex v0 ∈ T . For n ∈ N ∪ {0} ⊂ Ri we use the notation vin for the corresponding
vertex in T . We define vertex-spaces of Y as Yv0 := X; Yvin := Hi × {n} ⊂ Hh

i = Hi × [1,∞).
The edge-space Yein for the edge ein = [vin, vin+1] is Hi × {n + 1

2 }. The incidence maps

fein,vin : Yein → Yvin , fein,vin+1 : Yein → Yvin+1

are given by

(y, n +
1
2

) 7→ (y, n), (y, n +
1
2

) 7→ (y, n + 1)

respectively. These maps clearly are uniform quasiisometries. (The inclusion maps Hi =

Yei0 → Yv0 = X are uniform qi embeddings by the assumption.) Thus, we obtain a tree of
hyperbolic spaces Y = (π : Y → T ) satisfying Axiom H.

Since the hyperbolic cones Hh
i are uniformly hyperbolic (see Proposition 1.68), the

restrictions of the tree of spaces Y to the rays Ri satisfy the uniform flaring condition with
flaring constants independent of i, see Lemma 2.50. Suppose that ⟦v,w⟧ ⊂ T is an interval
containing vertices (different from v0) of different rays Ri,R j. Let γ0, γ1 be K-qi sections
of π : Y → T over ⟦v,w⟧. The assumption that peripheral subspaces Hi,H j in X are
uniformly cobounded implies that

dYvi1
(γ0(vi1), γ1(vi1)) ≤ C(K), dYv j1

(γ0(v j1), γ1(v j1)) ≤ C(K).
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In view of the uniform flaring of Y over the rays Ri,R j, it then follows that

dYvin
(γ0(vi1), γ1(vin))

is either uniformly bounded (in terms of K) or grows at a linear rate (as a function of n).
The same applies to

dYv jn
(γ0(v j1), γ1(v jn)).

Hence Y satisfies the uniform flaring condition and, thus, Y is uniformly hyperbolic by
Theorem 2.62.

2. This part is a consequence of Lemma 9.11. □

This theorem has a useful addendum, relating quasigeodesics in X and in Xh. In the
setting of the theorem, let β be a k-quasigeodesic in Xh connecting points in X. For each
maximal subsegment βi contained in some Hh

i , we replace βi with a geodesic in X connect-
ing the end-points of βi. We let βX denote the resulting path in X.

Lemma 9.26. The paths βX in X are K9.26(k)-quasigeodesic.

Proof. Thinking of Xh as the total space Y of a tree of spaces Y as above, we note that
the path βX obtained via the above procedure of converting β to βX is exactly the cut-and-
replace procedure in Definition 8.14. Now, the result follows from Theorem 8.21 (actually,
it follows already from Proposition 8.22 proven earlier by Mitra in [Mit98]). □

9.2.1. Equivalence of the two definitions of relative hyperbolicity. We start by re-
viewing Farb’s definition of relative hyperbolicity. Given a metric space Y and a collection
of its rectifiably connected, uniformly properly embedded subspaces H = {Hi : i ∈ I}, we
get the associated electric space Yℓ = E(Y,H) with the metric dℓ as described in Section
9.1.1.

Definition 9.27. The pair (Y,H) is said to be weakly relatively hyperbolic if the metric
space (Yℓ, dℓ) is hyperbolic.

Every two points in Yℓ are connected by a tight L-quasigeodesic in Yℓ for some uni-
form constant L (for instance, one can use geodesics in Yℓ). We refer to the tight quasi-
geodesics in Yℓ connecting points in Y as electric quasigeodesics in Yℓ.

In Section 9.1.1, given an electric quasigeodesic β in Yℓ connecting points x, y ∈ Y , we
defined a path βh in Yh (the hyperbolization of β) connecting x and y. We now extend this
definition to connect arbitrary pairs of points x, y in Yh. We let x̂ = q(x), ŷ = q(y) denote
the projections of x, y to Yℓ. Let β be an electric quasigeodesic connecting x̂ to ŷ. In the
case when x ∈ H̊h, x̂ = a(Hℓ) is the apex of the cone Hℓ, we let xH ∈ H denote the exit
point of β from the cone Hℓ; similarly, if y ∈ Hh, we let yH denote the entry point of β into
the cone Hℓ. We set x′ = x if x ∈ Y and x′ := xH if x < Y; similarly, we define the point y′.
Then for the subpath β(x′, y′) of β between x′, y′, we define its hyperbolization β(x′, y′)h as
before, and connect x to x′, y to y′ by geodesics in the corresponding horoballs Hh in the
case when x , x′ or y , y′.

We, thus, obtain a family of paths connecting points of Yh. As it turns out (see Theo-
rem 9.30), under suitable assumptions, the resulting paths define a slim combing of Yh. In
the next definition, D = D(K).

Definition 9.28. Two electric K-quasigeodesics α1, α2 with the same end-points are
said to have the same D-intersection pattern with respect to the collection of cones Hℓ

i , i ∈
I, or, simply, D-track each other, if the following conditions hold for all i ∈ I:
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1. If one path, say, α1, contains a(Hℓ
i ) but then other (namely, α2) does not, then

dHi (α1(s), α1(t)) ≤ D, where α−1
1 (H̊ℓ

i ) is the open interval (s, t).
2. Suppose that, for some i ∈ I, α−1

j (H̊ℓ
i ) = (si, ti) , ∅, j = 1, 2. Then

max{dHi (α1(s1), α2(s2)), dHi (α1(t1), α2(t2))} ≤ D.

The function D(K) is the tracking function of (Y,H).

Definition 9.29. A pair (Y,H) is relatively hyperbolic in Farb’s sense (FRH) if it is
weakly relatively hyperbolic and for every K ≥ 1 there exists D = D(K) such that any two
electric K-quasigeodesics with the same end-points D-track each other.

The next theorem relating the two definitions was proven by A. Pal and A. Kumar
Singh in [PKS15] (for relatively hyperbolic groups the equivalence of two definitions was
known earlier, cf. [Bow12]):

Theorem 9.30. If (Y,H) is FRH, then Yh is uniformly2 hyperbolic and the hyperboliza-
tion of uniform electric quasigeodesics yields uniform quasigeodesics in Yh. In particular,
(Y,H) is GRH.

Remark 9.31. A. Pal and A. Kumar Singh in [PKS15] assume that the subsets Hi, i ∈
I, are uniformly separated in Y . In our setting one achieves uniform separation by replacing
Y with the space Y ′ obtained by attaching the products Hi × [0, 1], i ∈ I, along the subsets
Hi, and replacing the subsets Hi ⊂ Y with Hi × {1}, i ∈ I.

To conclude the discussion, we note a relation between uniform tight quasigeodesics
in Yℓ and uniform quasigeodesics in the space Y itself. (This is not needed for any proofs
in the book, but clarifies the overall picture.) The following result is proven in [Hru10,
Lemma 8.8] in the context of relatively hyperbolic groups, but the proof works for general
relatively hyperbolic spaces:

Theorem 9.32. There are functions D = D9.32(K, δ) and L = L9.32(K, δ) such that
if α is an electric K-quasigeodesic in Yℓ (connecting points x, y of Y), then for every L-
quasigeodesic β in Y also connecting x and y, we have that α ∩ Y is contained in the
D-neighborhood of β, with respect to the metric dY of Y.

9.2.2. Morphisms of relatively hyperbolic spaces. Given a pair of relatively hyper-
bolic spaces (Y,H), (Y ′,H ′), a relative morphism of these pairs is a uniformly proper map
f : Y → Y ′ such that:

a. For each H′ ∈ H ′, f −1(H′) is either empty or equals some H ∈ H .
b. For each H ∈ H , there exists H′ ∈ H ′ satisfying f (H) ⊂ H′.

Remark 9.33. 1. The first condition implies that if Hi,H j ∈ H are distinct, then
f (Hi), f (H j) are not contained in the same H′ ∈ H ′.

2. One can relax a bit the above conditions by requiring existence of a uniform con-
stant D such that:

(a’) For each H′ ∈ H ′, f −1(H′) either has diameter ≤ D or is D-Hausdorff-close to
some H ∈ H .

(b’) For each H ∈ H , there exists H′ ∈ H ′ satisfying f (H) ⊂ ND(H′).
This is the approach taken in [MS20]. However, the two definitions are easily seen

to be effectively equivalent since one can replace the peripheral horoballs Hh,H ∈ H and
(H′)h,H′ ∈ H ′, by suitable smaller subsets.

2With respect to the tracking function and the hyperbolicity constant of Yℓ.
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A relative morphism is said to be a relative qi embedding of the pairs if, additionally:
c. f : Y → Y ′ is a qi embedding.

The qi constants of f are called the parameters of the relative qi embedding f .

Given a relative morphism f : (Y,H) → (Y ′,H ′), the coned-off map f ℓ : Yℓ → (Y ′)ℓ

is defined as follows:
i. The restriction of f ℓ to Y equals f .
ii. Consider a peripheral subset H ∈ H such that f (H) ⊂ H′ ∈ H ′ and let a = a(Hℓ),

a′ = a((H′)ℓ) denote the respective apexes of the cones Hℓ, (H′)ℓ over these peripheral
subsets in Yℓ, (Y ′)ℓ. Then f ℓ(a) = a′ and for each x ∈ H, x′ := f (x) ∈ H′, the map f̂ sends
the radial segment xa to x′a′ isometrically. This defines f ℓ on Hℓ for each H ∈ H .

Similarly, we define the hyperbolic extension f h of f , f h : Yh → (Y ′)h; this extension
construction goes back to the work of Mostow on strong rigidity of nonuniform lattices in
rank one Lie groups.

For x ∈ H ∈ H , x′ = f (x) ∈ H′ ∈ H ′, we consider the vertical geodesic rays
ρx : [0,∞)→ Hh, ρx′ : [0,∞)→ (H′)h, emanating from x, x′ and asymptotic to the centers
of the horoball Hh, (H′)h. Then for t ∈ [0,∞), we set

f h(ρx(t)) := ρx′ (t), x ∈ H.

Lemma 9.34. 1. The hyperbolic extension f h of a proper coarse Lipschitz map is again
a proper coarse Lipschitz map.

2. If f , f ℓ are qi embeddings, then so is f h and the constants of f h depend only on the
parameters of (Y,H), (Y ′,H ′) and qi constants of f , f ℓ.

3. Conversely, if f and f h are qi embeddings, so is f ℓ.

Proof. Part 1. We will only show that f h is coarse Lipschitz and leave it to the reader
to check properness. Since Yh is a path-metric space, the problem is local and we have
to address it only in the horoballs Hh, H ∈ H . Clearly, f h is isometric along the vertical
geodesic rays in Hh. Suppose, therefore, that y1, y2 are points within unit distance on the
same horosphere H×{t} ⊂ Hh, t ≥ 0 (where the distance is computed in the intrinsic metric
of the horosphere). Thus, yi = ρxi (t), xi ∈ H, i = 1, 2, and, by the definition of the metric
on Hh,

dH(x1, x2) = et.

Since the horospheres H,H′ are uniformly qi embedded in Y,Y ′, we conclude that the
restriction map f : (H, dH)→ (H′, dH′ ) is (L, A)-coarse Lipschitz, where L, A depend only
on the parameters of (Y,H) and f . Hence,

dH′ ( f (x1), f (x2)) ≤ LdH(x1, x2) + A ≤ Let + A.

Again, by the definition of the metric on the horoball (H′)h,

d(ρx′1 (t), ρx′2 (t)) ≤ e−t(Let + A) = L + e−tA ≤ L + A.

This verifies that f h is uniformly coarse Lipschitz.
Part 2. Note that given an ambient geodesic γ in Yh, its electrification γℓ is a uniform

electric quasigeodesic in Yℓ, hence, f ℓ carries it to a uniform electric quasigeodesic γ̂′ in
(Y ′)ℓ, coarsely preserving its arc-length. Then, applying Lemma 9.17, we obtain that the
hyperbolization γ′ = (γ̂′)h of γ̂′ is a uniform quasigeodesic in (Y ′)h. By the construction,
the map f h coarsely preserves arc-lengths of paths in Xh, cf. Section 1.11; and, thus, f h

sends geodesics to uniform quasigeodesics coarsely preserving arc-length, hence, is a qi
embedding.
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Part 3. The proof of this part is similar to the proof of Part 2, except one uses Theorem
9.19(2). □

Remark 9.35. This lemma is a weak form of a more general recent result by J. Mackay
and A. Sisto [MS20, Corollary 1.2], who proved Part 2 without assuming that f ℓ is a
qi embedding (in fact, they also relax the condition (c) in the definition of a relative qi
embedding). Part 3 of the lemma then implies that f ℓ is a uniform qi embedding provided
that f is. See also the recent paper [HH20] by Healy and Hruska with a similar result for
relatively hyperbolic groups.

9.2.3. CT maps. Suppose that (X,F ) and (Y,H) are relatively hyperbolic spaces and
f : (Y,H) → (X,F ) is a morphism of pairs. We then have the hyperbolic extension of
f , which is a coarse Lipschitz uniformly proper map f h : Yh → Xh (see Lemma 9.34), as
well as the coned-off map f ℓ : Yℓ → Xℓ.

The next proposition is a relative analogue of 8.3 (see the formulation in terms of
distances to geodesics, Theorem 8.4). The main difference with the absolute case is that
the properness condition (the existence of a function C(y0,K,D)) in the relative case is
formulated in terms of the map of electric spaces (instead of f h : Yh → Xh which would
have made the result too easy and not so useful) and geodesics are replaced by uniform
tight quasigeodesics.

Proposition 9.36. Assume that for some (equivalently, every) y0 ∈ Y and every K ≥ 1,
there is a function C = C(y0,K,D) such that:

For all pairs of points y1, y2 ∈ Y, all tight K-quasigeodesic βℓ in Yℓ connecting y1, y2,
and all tight K-quasigeodesics αℓ in Xℓ connecting x1 = f (y1), x2 = f (y2),

dX( f (y0), αℓ ∩ X) ≤ D⇒ dY (y0, β
ℓ ∩ Y) ≤ C.

Proof. Note that, in view of Corollary 9.20, the implication in the proposition can be
rewritten as

dX( f (y0), [x1x2]Xh ∩ X) ≤ D⇒ dY (y0, [y1y2]Yh ∩ Y) ≤ C := ϕ(D),

for some function ϕ. We will be verifying that f h satisfies Mitra’s Criterion, Theorem 8.3.
Suppose that y1, y2 ∈ Yh are such that

dXh (x0, [x1x2]Xh ) ≤ D,

where f (yi) = xi, i = 0, 1, 2. Our goal is to get a uniform bound on the distance from y0 to
[y1y2]Yh in Yh.

Case 1. We first suppose that y1, y2 are both in Y . Then, x1, x2 are both in X as
well. Since X is uniformly properly embedded in Xh and x0 is in X, it follows that there
is x′ ∈ [x1x2]Xh ∩ X within distance D′ from x0, with respect to the metric of X, where
D′ depends only on D (and geometry of (X,H), of course), cf. Lemma 1.70. Thus, the
assumptions of the proposition imply that

dY (y0, [y1y2]Yh ∩ Y) ≤ C′,

where C′ is a function of D. This, of course, implies that

dYh (y0, [y1y2]Yh ) ≤ C′,

as required by Mitra’s Criterion.

Case 2. Suppose that both y1, y2 belong to the same Hh
i . In view of Lemma 1.70, we

obtain that for k = 1 or k = 2, d(x0, xk) ≤ D′, for some D′ depending only on D. Uniform
properness of f h then implies that dYh (y0, yk) is also uniformly bounded, as required.
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Case 3. Suppose that y1 ∈ Hh
i1
, y2 ∈ Hh

i2
and Hh

i1
, Hh

i2
. Thus, xi ∈ Fh

ji
, F ji ∈ F , are

distinct, i = 1, 2. Our assumption that

dXh (x0, [x1x2]Xh ) ≤ D

implies that there is a point p ∈ x1x2 = [x1x2]Xh ∩ X within distance ≤ D′ = D′(D)
from [x1x2]Xh (cf. the proof in Case 2). Let x′i ∈ F ji , i = 1, 2, be points realizing the
minimal distance in Xh between Fi1 , Fi2 . Thus, the R-neighborhood of the segment x1x2
in Xh contains x′1x′2, where R is a uniform constant, see Lemma 1.147. Let x′′i ∈ x1x2 be
points within distance R from x′i , i = 1, 2. By the uniform quasiconvexity of Hh

ik
in Xh,

k = 1, 2, if p is not in x′′1 x′′2 = [x′′1 x′′2 ]Xh then its distance to x′′1 or x′′2 is uniformly bounded
(cf. Corollary 9.6). Thus, it suffices to consider the case when p ∈ x′′1 x′′2 .

Let wi, i = 1, 2, be intersection points of [y1y2]Yh = y1y2 with Hh
i1
,Hh

i2
respectively, and

zi := f (wi), t = 1, 2. The points z1, z2 belong to the peripheral subsets F j1 , F j2 respectively.
Thus, again, the R-neighborhood of the segment z1z2 contains x′1x′2. Since we are assuming
that p ∈ x′′1 x′′2 , it follows that

p ∈ N2R+δ(z1z2)
with respect to the metric of Xh. Hence, dXh (x0, [z1z2]Xh ) ≤ 2R + δ + D′. Now, we are in
the setting of Case 1 and it follows that

dY (y0, [w1w2]Yh ) ≤ ϕ(2R + δ + D′).

Therefore,
dYh (y0, [y1y2]Yh ) ≤ dY (y0, [w1w2]Yh ) ≤ ϕ(2R + δ + D′),

as required.
Case 4. Suppose that y1 < Y and y2 ∈ Y . This case is similar to Case 3 and we leave it

to the reader. □

9.3. Trees of relatively hyperbolic spaces

We can now describe axioms of trees of relatively hyperbolic spaces; our definition
follows [MP11]:

Definition 9.37. A tree of relatively hyperbolic spaces is an (abstract) tree of spaces
X = (π : X → T ) where all vertex and edge spaces have structures of uniformly3 relatively
hyperbolic spaces (Xv,Hv), (Xe,He), and the incidence maps fev : Xe → Xv are uniform
relative qi embeddings.4

Remark 9.38. The definition of a tree of relatively hyperbolic spaces given in [MR08]
also requires the coned-off maps f ℓev : Xℓ

e → Xℓ
v to be uniform qi embeddings. In view of

[MS20], this is a consequence of the assumption that the incidence maps are uniform
relative qi embeddings (cf. Remark 9.35). The reader not willing to rely upon the results
of [MS20], can simply assume that the maps f ℓev are uniform qi embeddings.

Next, given such a tree of spaces X = (π : X → T ), we define an equivalence relation
on X generated by the following:

1. For each edge e = [v1, v2] of T , every point in a peripheral subspace He ⊂ Xe is
equivalent to all the points of the mapping cylinders of the incidence maps fevi : He →

Hv ⊂ Xvi , i = 1, 2, in X.

3I.e. each Xh
v , X

h
e is δ-hyperbolic for a uniform constant δ.

4Recall that this condition also requires the incidence maps to be morphisms of these relatively hyperbolic
spaces, fev : (Xe,He)→ (Xv,Hv).
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2. All points of each peripheral subspace Hv ⊂ Xv, v ∈ V(T ), belong to the same
equivalence class.

Each equivalence class of this equivalence relation is called a peripheral subspace P
of X. Observe that for each peripheral subspace P of X and each vertex (resp. edge) space
Xv (resp. Xe) of X, the intersection P∩Xv (resp, P∩Xe) is either empty or equals one of the
peripheral subspaces of Xv (resp. Xe). Given these peripheral subspaces, one defines the
new space XP = G(X,P), by attaching hyperbolic horoballs Ph

j to X along all peripheral
subspaces P j, j ∈ J, of X. Here and in what follows, P = {P j : j ∈ J}.

Remark 9.39. The definition of XP should not be confused with the one, Xh, of the
total space of a tree of spaces over T , with the vertex/edge spaces Xh

v , X
h
e .

Similarly, for each subtree S ⊂ T , we define the space XP
S obtained by first restricting

the tree of spaces X to S and, thus, obtaining a tree of spaces XS → S , and then applying
the above procedure, so that XP

S = (XS )P. The peripheral structure of XS is denoted PS .

Additionally, we have the space X̂ = E(X,P) obtained by coning-off the peripheral
subspaces P ∈ P in X.

Furthermore, we define the tree of coned-off-spaces Xℓ = (π : Xℓ → T ) with ver-
tex/edge spaces Xℓ

v , X
ℓ
e and coned-off incidence maps f ℓev : Xℓ

e → Xℓ
v , which are uniform qi

embeddings (see Remark 9.38).

Remark 9.40. In the terminology of [MR08], Xℓ is a partially electrocuted space.

The total space Xℓ of Xℓ contains a forest F which is a collection of pairwise disjoint
trees FP corresponding to the peripheral subspaces P ∈ P:

(i) The vertices νiv of FP are the apexes a(Hℓ
iv) of the cones over the peripheral sub-

spaces Hiv = P ∩ Xv of the vertex-spaces Xv, v ∈ V(T ).
(ii) Similarly, the edges ϵie of FP are labeled by the apexes a(Hℓ

ie) of the cones over the
peripheral subspaces of the edge-spaces Xe, e ∈ E(T ), where Hie = P ∩ Xe.

(iii) A vertex νiv (corresponding to a(Hℓ
iv)) of the tree FP is incident to the edge ϵie

(corresponding to a(Hℓ
ie)) if and only if the incidence map fev of X sends Hie to Hiv.

The fact that each graph FP is a tree is a consequence of the following lemma:

Lemma 9.41. Under the projection Xℓ → T, each FP maps isomorphically to a subtree
in T .

Proof. Connectivity of FP is clear, we need to verify the injectivity of the map. The
problem is local and reduces to analyzing vertex-spaces of X. The only way the map can
fail to be injective is if there is an edge e = [v,w] of T and two distinct peripheral subspaces
Hei,He j of Xe which map to the same peripheral subspace Hvk of Xv. But this contradicts
the condition that (Xe,He)→ (Xv,Hv) is a morphism of relatively hyperbolic spaces. □

In particular, the trees FP are uniformly qi embedded in Xℓ.

Remark 9.42. There are natural projections θP : P → FP sending each nonempty
intersection P ∩ Xv = Hiv to the corresponding vertex νiv of FP and, for Hie = P ∩ Xe, e =
[v,w], sending the (double) mapping cylinder of ( fev ∪ few)|Hie to the edge ϵie in such a way
that each interval {x}× [v,w], x ∈ Xe maps linearly onto the edge ϵie. The mapping cylinder
of θP is then homeomorphic to the closure in Xℓ of the component of Xℓ \ X containing
FP. We, therefore, will use the notation Cyl(FP, P) for this closure. This viewpoint of
identifying Xℓ with the space obtained from X by attaching mapping cylinders of peripheral
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subsets P ∈ P to trees, is adapted from [MR08] and [MP11]. In line with the notion of
radial segments in cones, we will refer to the projections of intervals {x}×[0, 1] ⊂ P×[0, 1]
to Cyl(FP, P) as radial segments in Cyl(FP, P).

The spaces Xℓ and X̂ are related by a quotient map τ : Xℓ → X̂ which collapses each
tree FP ∈ F to a single point, the apex a(Pℓ) ∈ X̂ of the cone over the peripheral subspace
P. See also the diagram in Section 9.3.1.

We next describe a relative flaring condition for trees of relatively hyperbolic spaces.
This condition consists of two parts.

Part 1. The first part of the relative flaring condition requires that the tree of hyperbolic
spaces Xℓ satisfies one of the equivalent flaring conditions, equivalently, the space Xℓ is
hyperbolic (see Section 2.5 for the detailed discussion).

Part 2. The (λ,D)-flaring:
Let Π = (γ0, γ1) be a pair of 1-sections5 of Xℓ over an interval ⟦u,w⟧ of length ≥ D in

T , such that for each vertex v ∈ V(⟦u,w⟧), γi(v) ∈ a(Xℓ
v), i = 0, 1. Then

Πmax ≥ λΠ0,

where the distances are computed in electrified vertex-spaces.

Mj and Reeves in [MR08] prove the following relative form of the Bestvina-Feighn
combination theorem:

Theorem 9.43. For every λ > 1,D ≥ 2, if X is a tree of relatively hyperbolic spaces
satisfying the relative (λ,D)-flaring condition (both parts), the space XP is hyperbolic.

We refer the reader to the papers by Sisto [Sis13], Gautero [Gau16] and Dahmani
[Dah03] for related results.

Lemma 9.44. Assuming that X is a tree of relatively hyperbolic spaces satisfying the
relative flaring condition, the pair (Xℓ,F ) is a relatively hyperbolic space.

Proof. We will be using Theorem 9.25. Part 1 of the relative flaring condition (to-
gether with Theorem 2.62) implies that Xℓ is hyperbolic. In view of Lemma 9.41, the
peripheral subspaces FP ∈ F are trees uniformly qi embedded in Xℓ. Lastly, Part 2 of
the relative flaring condition implies that distinct peripheral subspaces in F are uniformly
pairwise cobounded. □

Since the pair (Xℓ,F ) is relatively hyperbolic, we may perform the secondary cone-off
construction, coning-off the peripheral subspaces FP ∈ F of Xℓ. The result is a hyperbolic
metric space X̃ := E(Xℓ,F ). There is a natural map

θ : X̂ = E(X,P)→ X̃ = E(Xℓ,F )

which is the identity on X and sends the cone over each P ∈ P to the union of Cyl(FP, P)
and C(aF , F) (cone over F = FP) so that each radial line segment connecting the apex
a = a(Pℓ) of Pℓ = C(a, P) to a point x ∈ P, maps homeomorphically to the concatenation
of the radial line segment in C(a, F) connecting a to a point y ∈ F with the line radial
segment in C(F, P) connecting y to x. The next lemma is immediate from the fact that
each cone Pℓ has unit diameter and for each F ∈ F , the union of Cyl(FP, P) with the cone
C(aF , F) has diameter 2:

5For each edge e j = [v j, v j+1] in ⟦u,w⟧, γi(e j) maps to γi(v j), γi(v j+1) under the maps a(Xℓ
e j

)→ a(Xℓ
v j

) and

a(Xℓ
e j

)→ a(Xℓ
v j+1

).
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Lemma 9.45. The map θ is a quasiisometry.

In the follow-up (to [MR08]) paper [MP11], Mj and Pal prove the following result
regarding existence of CT maps:

Theorem 9.46. For each vertex v ∈ V(T ), the inclusion map Xh
v → XP admits a CT

extension.

The main result of this chapter is to generalize this theorem to subtrees S ⊂ T :

Theorem 9.47. For each subtree S ⊂ T, the inclusion map XP
S → XP admits a CT

extension.

Note that the main tools in the proof of Theorem 9.46 in [MP11] were:

(a) A construction of derived ladders in the induced tree of coned-off space Xℓ → T
and

(b) a construction of qi sections in X lying inside these ladders.

We include below proofs of these results for the sake of completeness. (We will also
need these results in order to prove Theorem 9.47.) However, we provide simplified proofs
modulo the corresponding results for trees of hyperbolic metric spaces.

9.3.1. Comparison of quasigeodesics. Let X = (π : X → T ) be a tree of rela-
tively hyperbolic spaces. There are several spaces and, accordingly, several types of quasi-
geodesics associated with X. In this section we discuss the relation between different types
of quasigeodesics. We begin, however, with a diagram describing spaces where these
quasigeodesics live in. Recall that the tree of spaces X = (π : X → T ) gives rise to two
other trees of spaces:

X
h = (π : Xh → T )f X⇝ Xℓ = (π : Xℓ → T ).

Both Xh and Xℓ are trees of hyperbolic spaces (satisfying Axiom H) but only Xℓ satisfies
the flaring condition. The following diagram describes the relation between five different
spaces associated with X; the arrow θ is the quasiisometry described in Lemma 9.45 and
the map τ is the collapsing map from Section 9.3:

Xh �
⊃ X ⊂ - Xℓ ⊂ - X̃ = E(Xℓ,F )

τ

XP = G(X,P)
?

∩

�
⊃ X

id

?

6

⊂ - X̂ = E(X,P)

θ

?

6
...............-

We will discuss the following classes of quasigeodesics in these spaces:
• Quasigeodesics in XP = G(X,P).
• Tight quasigeodesics in X̂ = E(X,P).
• Tight quasigeodesics in Xℓ.
• Tight quasigeodesics in X̃ = X̂ℓ = E(Xℓ,F ).

Our goal is to relate these quasigeodesics. We already know that the first two types
of quasigeodesics are uniformly Hausdorff-close to each other (when intersected with X,
where the distance is computed via the metric dX), see Theorem 9.19 and Corollary 9.20.
In this section we prove that the same holds for the remaining types of quasigeodesics
under a suitable tightness assumption on the quasigeodesics in Xℓ:
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Definition 9.48. We say that a a continuous quasigeodesic in Xℓ is tight if its inter-
section with every C̊(FP, P), P ∈ P, is either empty or is a concatenation of two radial
geodesics with a geodesic in FP.

By analogy with electrification of paths β in XP (where the result is a tight path in X̂),
we define the partial electrification βℓ of β as follows:

Definition 9.49 (Partial electrification). Suppose that β is a path in XP which is tight
with respect to P. For each pair of points x, y in β which belong to some P ∈ P and such
that the subpath β(x, y) between points x, y is contained in P̊h, except for the points x, y, we
replace β(x, y) with a geodesic in C̊(FP, P) connecting x and y. The resulting path βℓ is the
partial electrification of β.

It follows from the definition that the path βℓ is tight in Xℓ.
Given a tight quasigeodesic β in Xℓ, we can electrify it with respect to the collection

of peripheral subsets F and obtain a tight quasigeodesic β̃ = EF (β) in X̃, see Section 9.1.3.
Clearly, this defines an injective map β 7→ β̃ from the set of tight quasigeodesics in Xℓ to
those in X̃, under which uniform quasigeodesics correspond to uniform quasigeodesics.

We also have the quasiisometry

θ : E(X,P) = X̂ → X̃ = E(Xℓ,F )

see Lemma 9.45. This map induces a bijection Θ between the sets of tight quasigeodesics
in X̂ and quasigeodesics of the form β̃ in X̃. Uniform quasigeodesics again correspond to
uniform quasigeodesics. Combining the two maps, we obtain a bijection

Φ : α 7→ Θ(α) = β̃ 7→ β,

between the sets of tight quasigeodesics in E(X,P) and those in Xℓ. Moreover, the paths α
and β agree in X.

We record these observations as in the following lemma:

Lemma 9.50. There exists a bijection Φ between the sets of tight quasigeodesics in
E(X,P) and those in Xℓ. Moreover, a tight path in E(X,P) is a uniform quasigeodesic if
and only if the path β = Φ(α) is in Xℓ.

As an application, we obtain a result which appears as Lemma 1.21 in [MP11]:

Lemma 9.51. Let x, y be in X and let α be a continuous L-quasigeodesic in XP between
these points. Then there exists a tight L9.51(L)-quasigeodesic β in Xℓ connecting x and y
such that α ∩ X = β ∩ X.

Proof. As described in Section 9.1.3, we convert α to a uniform tight quasigeodesic
α̂ in X̂, the electrification of α. Then applying the map Φ as above, we obtain β = Φ(α), a
tight quasigeodesic in Xℓ whose qi constant depends only on that of α. By the construction.
α ∩ X = β ∩ X. □

Corollary 9.52. Any two points in X ⊂ Xℓ are connected by a uniform tight quasi-
geodesic in Xℓ.

Suppose that β1, β2 are tight L-quasigeodesics in Xℓ with the same end-points in X.
Applying the inverse bijection Φ−1 to β1, β2 we obtain tight L′-quasigeodesics α1, α2 in X̂,
again connecting the same points in X and such that αi ∩ X = βi ∩ X, i = 1, 2. Since, by
Theorem 9.30 the paths α1, α2 uniformly track each other in X, we obtain:

Corollary 9.53. Any two tight quasigeodesics in Xℓ connecting points of X uniformly
track each other in X.
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9.3.2. Ladders in trees of relatively hyperbolic spaces. By Lemma 9.34, we have
a tree of hyperbolic spaces Xh = (πh : Xh → T ) such that edge-spaces are uniformly
quasiisometrically embedded in vertex-spaces.

Hence, given x, y ∈ Xu ⊂ Xh
u we construct a (K,D, E)-ladder Lh ⊂ Xh of the geodesic

segment Lh
u = [xy]Xh

u
, as we have done in Chapter 3. (Note that flaring conditions were not

used in this construction.)
For each vertex v (resp. edge e) in π(Lh) ⊂ T we have the oriented vertical geodesic

segment Lh
v = [xvyv]Xh

v
(resp. Lh

e = [xeye]Xh
e
) of the ladder Lh. Coning-off the subsegments

of Lv (resp. Le) contained in the peripheral horoballs of Xh
v (resp. Xh

e ) we obtain a collection
of uniform quasigeodesics in the electrified vertex/edge spaces Xℓ

v (resp. Xℓ
e), see Theorem

9.19(2). We let Lℓv (resp. Lℓe) denote the geodesics in Xℓ
v (resp. Xℓ

e) connecting the end-
points of the above quasigeodesics.

Lemma 9.54. The collection of segments Lℓv and Lℓe defines a (K̂, D̂, Ê)-ladder Lℓ in
Xℓ.

Proof. The proof is based on Lemma 3.17. The collection of segments Lℓv and Lℓe
satisfies the assumptions of Lemma 3.17 because Lh is a ladder and because coning-off of
quasigeodesics coarsely commutes with the nearest-point projections, see Lemma 9.24 as
well as Remark 3.2(viii). □

We let Lℓ, Lh denote the total spaces of the ladders Lℓ and Lh respectively. We will
say that the ladder Lℓ is derived from the ladder Lh.

Remark 9.55. The ladder construction given in [MP11] is a bit more complicated.

By the construction, each ladder is a tree of relatively hyperbolic spaces with the total
space L and the peripheral structure PL (given by the pull-back of the peripheral structure
P of X), and the inclusion map (L,PL) → (X,P) is a morphism of relatively hyperbolic
spaces (we will need only that distinct peripheral subsets map to distinct ones).

Corollary 3.13 (the existence of coarse Lipschitz retractions to ladders in hyperbolic
trees of spaces), combined with Lemma 9.54 implies:

Corollary 9.56. There is a coarsely Lipschitz retraction Xℓ → Lℓ with Lipschitz
constant depending only on the parameters K,D, E.

Applying Corollary 9.52, we obtain:

Corollary 9.57. Any two points in L ⊂ Lℓ are connected by a uniform tight quasi-
geodesic in Lℓ.

QI sections in ladders. We next discuss the construction in [MP11] of vertical quasi-
geodesic rays contained in ladders. We assume that

Lh = Lh([xuyu]Xh
u
)

is a (K,D, E)-ladder in Xh and Lℓ is the ladder in Xℓ derived from it.

Lemma 9.58. Given a vertex v ∈ π(Lh) and a point zv ∈ Xv ∩ Lℓv, there is a k-qi section
σ : ⟦u, v⟧→ X of π : X → T such that σ(⟦u, v⟧) ⊂ Lℓ, σ(v) = zv. Here, k depends only on
K and E.

Proof. Arguing inductively, it is clear that it suffices to prove the lemma in the case
when u, v span an edge e = [u, v] of T . We will use the fact that Lℓ is derived from the
K-ladder Lh. Thus, there exists a point z ∈ Lh

u within distance K from zv (the distance is
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measured in Xh
uv). Since zv is in Xv, the incidence maps of X are morphisms of relatively

hyperbolic spaces, there exists a point zu ∈ Lh
u ∩ Xu within uniformly bounded distance

from zv and, hence, within uniformly bounded distance from z in Xuv. Hence, we set
σ(u) := zu. □

9.4. Cannon–Thurston maps for trees of relatively hyperbolic spaces

Proof of Theorem 9.47: In the proof we shall use the following criterion for the exis-
tence of CT maps, which appears as Lemma 1.29 in [MP11]. Recall that we have a subtree
XℓS = (Xℓ → S ) in the tree of hyperbolic spaces Xℓ = (Xℓ → T ). We fix a point x0 ∈ Xv0 ,
where v0 ∈ V(S ).

Lemma 9.59. A CT map for XP
S → XP exists provided that the following condition

holds:
For each k ≥ 1 and M ≥ 0, there is N ≥ 0 such that for all x, y ∈ XS , if γℓ ⊂

Xℓ, γℓS ⊂ Xℓ
S are tight k-quasigeodesics joining x, y, then dX(x0, γ

ℓ ∩ X) ≤ M implies
dXS (x0, γ

ℓ
S ∩ XS ) ≤ N.

Proof. Our proof closely follows the one of [MP11, Lemma 1.29]. We will verify
that the conditions of Proposition 9.36 are satisfied. The main difference with the setting
of the lemma is that Proposition 9.36 was stated in terms of coned-off quasigeodesics γ̂, γ̂S

in X̂ = E(X,P), X̂S = E(XS ,PS ) respectively, connecting x, y. Here PS is the collection of
intersections P ∩ XS , P ∈ P.

However, according to Lemma 9.51, the Hausdorff distances (computed in X and XS

respectively) between γℓ ∩ X, γ̂∩ X and between γℓS ∩ XS , γ̂S ∩ XS are uniformly bounded,
with bounds depending only on K. With this in mind, Proposition 9.36 applies and lemma
follows. □

We now proceed proving the theorem. Let x, y ∈ XS be arbitrary points and let γℓ =
[xy]Xℓ be a uniform tight quasigeodesic in Xℓ joining them (see Corollary 9.52). Suppose
z ∈ γℓ ∩ X is a point such that dX(x0, z) ≤ D for some D ≥ 0.

We apply the cut-and-replace operation (see Definition 8.14) to the tree of spaces Xℓ

and the quasigeodesic γℓ, transforming it to a path γ̂ℓ in Xℓ
S . By Theorem 8.21, the path γ̂ℓ

in Xℓ
S is a uniform quasigeodesic. Tightness of γℓ implies that of γ̂ℓ.

Case 1. Suppose that z ∈ XS . By the construction of γ̂ℓ, the point z lies on γ̂ℓ. By
Corollary 9.53, any two tight uniform quasigeodesics in Xℓ

S uniformly track each other in
XS . Hence, each tight uniform quasigeodesic γℓS in Xℓ

S (connecting x and y) passes within
uniformly bounded distance (in terms of the metric of XS ) from the point z. Thus, the
implication required by Proposition 9.59 holds and we are done in this case.

Case 2. Suppose that z < XS . Then there is a vertex v ∈ V(S ) and a component γℓ1 of
γℓ \ Xℓ

S , such that z ∈ γℓ1 and the end-points x1, y1 of γℓ1 belong to Xℓ
v .

Subcase 2.1. We first consider the subcase when x1, y1 both belong to Xv. Let T1 be
the smallest subtree of T such that γℓ1 is contained in Xℓ

T1
. In other words, T1 is the span of

a component of T \ S and the vertex v. In the tree of spaces XℓT1
we construct a ladder

Lℓ = Lℓ([x1y1]Xℓ
v
)

with the total space Lℓ, as described in Section 9.3.2.
Let γ̄ℓ1 be a uniform tight quasigeodesic joining x1, y1 in Lℓ. Since the ladder Lℓ is

uniformly qi embedded in Xℓ
T1

(see Corollary 3.13), γ̄ℓ1 is also a uniform quasigeodesic in
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Xℓ
T1

. Moreover, since the inclusion Lℓ → XℓT1
corresponds to a morphism of relatively

hyperbolic spaces
(L,PL)→ (XT1 ,PT1 ),

the path γ̄ℓ1 is tight in Xℓ
T1

.
Applying Corollary 9.53 again, we obtain that z ∈ γℓ1 ∩ XT1 is C-close (in terms of

the metric of XT1 ) to a point z̄ ∈ γ̄ℓ1 ∩ Xw for some vertex w ∈ V(T1), where C depends
only on qi constants of the original quasigeodesic γℓ1. Recall that dX(x0, z) ≤ D. Then
dX(x0, z̄) ≤ D1 := D +C.

According to Lemma 9.58, there exists a k-qi section σ over ⟦v,w⟧ with image in
Lℓ ∩ X, such that σ(w) = z̄ and

σ(v) = z1 ∈ [x1y1]Xℓ
v
.

Since z1 belongs to XS , dT (v,w) ≤ D1 and dX(x0, z̄) ≤ D1, it follows that

dX(x0, z1) ≤ kD1 + D1.

Thus, we can apply the same reasoning as in the case when z is in XS , to conclude that for
every uniform tight quasigeodesic γℓS in Xℓ

S connecting x, y such that the minimal distance
(in XS ) from γℓS ∩ XS to z is uniformly bounded.

Subcase 2.2. Suppose that one of the two points x1, y1 is in Xv and the other is not.
After relabeling, we can assume that x1 ∈ Xv and y1 < Xv.

The (tight) geodesic [x1y1]Xℓ
v

contains a maximal subpath [y′1y1]Xℓ
v1

of length ≤ 1 con-
tained in Xℓ

v \ Xv. The concatenation γ′1 of this path and γℓ1 is still tight, γ′1 is again a
uniform quasigeodesic in XℓT1

, and both of its endpoints are in Xv1 . Now, we repeat the
argument in Subcase 2.1 with respect to the pair of points x1, y′1 ∈ Xv and the uniform tight
quasigeodesic γ′1 connecting them.

Subcase 2.3. The subcase when both points x1, y1 are not in Xv but [x1y1]Xℓ
v
∩ Xv , ∅

is similar to Subcase 2.2 and we leave it to the reader.

Subcase 2.4. [x1y1]Xℓ
v
∩ Xv = ∅, which implies that the points x1, y1 are within unit

distance from each other in Xℓ
v . Tightness of the path γℓ1 then implies that γℓ1 is disjoint

from X, which contradicts the assumption that z ∈ γℓ1 ∩ X. □

9.5. Cannon–Thurston laminations for trees of relatively hyperbolic spaces

Since the inclusion map XP
S → XP admits a CT-map, one can also define its Cannon–

Thurston lamination. Unlike Chapter 8 (specifically, Sections 8.7, 8.8 and 8.9) where
these laminations were discussed in great detail in the absolute case, here we limit our
discussion to a (weak) analogue of Theorem 8.52(1), relating these CT-laminations to that
of the inclusion maps Xh

v → XP (Theorem 9.60 below).

From now on, we assume, as we did in Theorem 8.52, that X is a proper metric space.
Let S ⊂ T be a subtree. We then have the inclusion map XP

S → XP that, according to
Theorem 9.47, admits a CT-map ∂XP

S ,X
P .

Theorem 9.60. Suppose that ξ± are distinct points in ∂∞XP
S such that

η = ∂XP
S ,X

P (ξ−) = ∂XP
S ,X

P (ξ+).

1. Then there exists a vertex-space Xv ⊂ XS and a complete geodesic α : R → Xh
v ,

asymptotic to ξ± in XP
S and asymptotic (in Xh

v ) to points ξ±v ∈ ∂∞Xh
v , such that

∂Xh
v ,XP (ξ+v ) = ∂Xh

v ,XP (ξ−v ) = η.
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2. Moreover, α is a uniform quasigeodesic in XP
S .

Remark 9.61. In this situation we necessarily have

∂Xh
v ,XP

S
(ξ±v ) = ξ±.

Proof. The proof follows the arguments of Proposition 8.49. Our first task is to mod-
ify the cut-and-replace procedure (Definition 8.14), used in the proof of Proposition 8.49.
As before, we will be identifying spaces Xh

v with their images in XP, v ∈ V(T ); ditto XP
S .

The modification of a path β in XP to a path “β in XP
S will be done in two steps.

Step 1. The first step simply repeats what is done in Definition 8.14 (except that
XP and XP

S are not exactly total spaces of trees of spaces!): We identify primary detour
subpaths ζv of β, connecting points xv, yv of vertex-spaces Xh

v , v ∈ V(S ), and, apart from
these end-points, lying outside of XP

S . We then replace each detour subpath with a geodesic
[xvyv]Xh

v
in Xh

v . These geodesic segments are the primary replacement subpaths for β. As
in Definition 8.14, we refer to the resulting path as βS : Its image entirely lies in XP

S . The
trouble is that, unlike the absolute case, even if β is uniformly quasigeodesic, the paths βS

are priori are not even uniformly proper in XP
S .

Step 2. We then modify βS with respect to the collection of peripheral subsets PS of
XS as follows. We define secondary detour subpaths of βS as subpaths ζP in βS connecting
points of peripheral subsets P ∈ PS of XS and, besides those points, lying entirely inside
the open peripheral horoballs P̊h ⊂ XP

S . The path

“β = GXS ,PS (βS )

the hyperbolization of βS , is obtained by replacing each secondary detour subpath ζP with
a geodesic in Ph connecting the end-points of ζP.

Our next goal is to relate quasigeodesic properties of β to that of “β. We will be using
the notion of tight paths, Definition 9.15. The following lemma is clear:

Lemma 9.62. Suppose that β in XP is tight with respect to P.
1. For each subtree S ⊂ T, the cut-and-replace path βS is tight with respect to PS ,

and so is the path “β.
2. (βS )ℓ = (βℓ)S , where βS is the result of application Step 1 to β as above and (βS )ℓ is

its partial electrification (a tight path in Xℓ
S , see Definition 9.49), while (βℓ)S is the result

of application of the cut-and-replace procedure from Definition 8.14 to the path βℓ (the
partial electrification of β) in the tree of spaces Xℓ = (Xℓ → T ).

In view of Part 2 of this lemma, we will use the notation βℓS for (βS )ℓ = (βℓ)S .

Recall that the map Φ defined in Section 9.3.1 establishes a bijection between tight
paths in E(X,P) and those in Xℓ; same for the corresponding map ΦS for the electric space
E(XS ,PS ) and Xℓ

S . The following lemma is again a direct consequence of the definitions:

Lemma 9.63. For every path β in XP, tight with respect to P, the path “β can be de-
scribed as follows. Set β̂S := Φ−1

S (βℓS ). Then “β equals the path obtained via hyperbolization
of β̂S with respect to PS , i.e.

“β = GXS ,PS (β̂S ).

This lemma has an important consequence:

Corollary 9.64. If β is a tight L-quasigeodesic in X, then “β is an L9.64(L)- quasi-
geodesic in XP

S .
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Proof. First of all, according to Theorem 9.19(2), the path βℓ is a uniform (in terms
of L) quasigeodesic in Xℓ. Thus, by Theorem 8.21, so is the path βℓS = (βℓ)S , in Xℓ

S .
By Lemma 9.50, the path β̂S is also. Lastly, by Lemma 9.17, it follows that the path
“β = GXS ,PS (β̂S ) is also a uniform quasigeodesic in XP

S . □

With these preliminaries out of the way, we can now proceed with the proof of The-
orem 9.60. Fix a base-point x0 ∈ XS . Let (x±n ) denote sequences in XS converging in
XP

S ∪ ∂∞XP
S to the points ξ± respectively, see Lemma 9.12. We let βn denote a sequence of

tight (with respect to P) uniformly quasigeodesic paths in XP connecting the points x−n , x
+
n .

According to Corollary 9.64, the paths “βn are uniformly quasigeodesic. Thus, since, by the
assumption, ξ+ , ξ−, it follows that there is a constant C such that d(x0, “βn) ≤ C. We let zn

denote a point in “βn within distance C from x0. Without loss of generality, we may assume
that these points lie in the images in XP

S of spaces Xh
vn

, vn ∈ S . Since X is assumed to be
proper, so is XS . Therefore, after extraction, we may assume that all points zn lie in Xh

v for
some vertex v ∈ V(S ).

Case 1: All points zn lie in Xv. Since the sequence of distances d(x0, βn) diverges to
∞, for all but finitely many n’s, the points zn lie in secondary replacement segments

[z+n z−n ]Xv =
“ζvn ⊂ “βn ∩ Xv.

Recall that, by the construction of “βn, for each n we also have a primary replacement
segment ζvn = [y+n y−n ]Xh

v
of βn, containing [z+n z−n ]Xv , where y±n lie on βn. Since d(x0, βn)→ ∞,

lim
n→∞

d(x0, y±n ) = ∞.

By the properness of Xv, since zn is in ζvn and d(x0, zn) ≤ C, after further extraction, the
sequence of geodesics [y+n y−n ]Xh

v
converges to a biinfinite geodesic α in Xh

v connecting points
ξ±v ∈ ∂∞Xh

v . Using again the assumption that d(x0, βn)→ ∞, and the points x±n , y
±
n all lie on

the uniform quasigeodesic βn, we see that

∂Xh
v ,XP (ξ+v ) = ∂Xh

v ,XP (ξ−v ) = ∂XP
S ,X

P (ξ+) = ∂XP
S ,X

P (ξ−).

This proves the first claim of the theorem in Case 1.

It remains to show that α (or, for this matter, any uniform quasigeodesic in Xh
v as-

ymptotic to ξ±v ) is a uniform quasigeodesic in XP
S . Note that, since paths “βn are uniform

quasigeodesics in XP
S , the same holds for the subpaths [z−n z+n ]Xv ⊂

“βn.

Subcase 1a: limn→∞ d(x0, z±n ) = ∞. Then the sequence of subsegments [z−n z+n ]Xv (uni-
formly quasigeodesic in XP

S ) subconverges to a geodesic αv in Xv also asymptotic to ξ±v ; it
follows that αv is a uniform quasigeodesic in XP

S .

Subcase 1b: There exists a constant D such that limn→∞ d(x0, z+n ) = ∞ and d(x0, z−n ) ≤
D for all n. By properness, after further extraction, we can assume that all points z−n lie
on a fixed peripheral subset Pv ∈ PXv of Xv. We then consider the sequence of segments
[y−n z+n ]Xv instead of the segments [z−n z+n ]Xv used in Case 1.

Each segment [y−n z+n ]Xv is a concatenation of a vertical geodesic segment

[y−n z−n ]Xv ⊂ Ph
v

and the geodesic segment [z−n z+n ]Xv . Since the path βnS is tight (with respect to PS ), its
subsegment [y−n z+n ]Xv is also tight in Xh

v with respect to its peripheral structure Pv. In par-
ticular, the subsegments [z−n z+n ]Xv are all disjoint from the open peripheral horoball P̊h

v . In
particular, [z−n z+n ]Xv is disjoint from the open peripheral horoball P̊h

S ⊂ XP
S containing P̊h

v .
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Using the fact that [z−n z+n ]Xv and [y−n z+n ]Xv are both uniform quasigeodesic in XP
S , we apply

Lemma 9.9 to conclude that the segments [y−n z+n ]Xv are uniformly quasigeodesic in XP
S as

well. Thus, their limit αv, a uniform quasigeodesic in Xh
v asymptotic to ξ±v , is also a uniform

quasigeodesic in XP
S .

Subcase 1c: There exists a constant D such that d(x0, z±n ) ≤ D for all n. The proof
is similar to the subcase 1b and we give only a sketch. We consider the sequence of
geodesic segments [y−n y+n ]Xv and break each of these as a concatenation of three geodesic
segments, two of which are contained in distinct horoballs Ph

v± and one has uniformly
bounded length. We again apply Lemma 9.9 to conclude that the segments [y−n y+n ]Xv are
uniformly quasigeodesic in XP

S .

Case 2. We now assume that none of the points zn belongs to XS . Then, after further
extraction, each zn lies in a peripheral horoball Ph for some P ∈ PS . Hence, zn belongs to
a geodesic [pnqn]Ph ⊂ “βn, where pn ∈ Pvn , qn ∈ Pwn ∈ PXwn

and

Pvn = Xvn ∩ P, Pwn = Xwn ∩ P.

By the description of such geodesics [pnqn]Ph , up to a uniformly bounded error, the path
[pnqn]Ph is the concatenation of two vertical geodesics segments [pn p′n]Xh

vn
, [qnq′n]Xh

wn
and a

unit horizontal segment in Ph connecting p′n, q
′
n. Thus, either

dXP
S
(zn, pn) ≤ C

or
dXP

S
(zn, qn) ≤ C.

Accordingly, dXP
S
(x0, pn) ≤ 2C or dXP

S
(x0, qn) ≤ 2C. Since pn, qn are in XS , Case 2 is

reduced to Case 1.
This concludes the proof of the theorem. □
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List of symbols

∆ geodesic triangles in metric spaces
L, ϵ coarse Lipschitz constants

D, E, ϵ,R, r bounds on distances
R, r radii of tubular neighborhoods

ℓ(α), length(α) length of a path α
c, α, β, γ, ϕ, ψ a path

βh hyperbolization of a path β
“β hyperbolization of a path βS

βℓ electrification of a path β
ĉ = cS path obtained from c via the cut-and-replace proce-

dure, Definition 8.14
⃗c reversed path of c

c1 ⋆ c2 concatenation of paths c1, c2
D0 Equation (3.5)
K0 Notation 2.6.4

κ, k,K quasiisometry and flow constants
Function K′ Lemma 3.17

Functions K∨ and K∧ Equation (3.11)
λ quasiconvexity constant

ρ, µ, ν retractions
f , g, h maps

P, PX,Y nearest-point projection
P̄ the modified projection to a tripod
x̄ nearest-point projection of x
η a distortion function
η0 the distortion function of vertex-spaces in a tree of

spaces X
V(T ) the vertex set of a tree T

e = [u, v] the edge of T connecting vertices u, v
ė an edge in a tree minus its vertices

E(T ) the edge set of a tree T
γx qi sections over an interval or a subtree, passing

through x
Hd Hausdorff distance
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266 LIST OF SYMBOLS

⟦u, v⟧ or uv the geodesic segment (interval) connecting vertices
u, v ∈ V(T ) in a tree

⟧u, v⟧, ⟧u, v⟦, ⟦u, v⟦ open and half-open intervals in T
S (u, r) the sphere of radius r and center u
B(u, r) the closed ball of radius r and center u
NR(A) closed R-neighborhood of A

b = center(∆) center of a tripod in a tree
X :=

∐
v∈V(T ) Xv union of vertex-spaces of a tree of spaces

F lK(·), FlK(·), FlK(·) flow-space (as a tree of spaces), the total space and the
intersection with X respectively

Fl(Xv) ideal boundary flow
L,LK,D,E a ladder, as a tree of spaces and intersection with X

respectively
A,AK,C carpets

Λ( f ),Λ(Y, X) CT-lamination
Λξ(Xv, X) ξ-ending lamination, Definition 8.55
∂Y,X , ∂H,G Cannon–Thurston maps for the inclusion maps Y → X

and H ↪→ G
∂∞(Y, X) relative ideal boundary of Y in X
∂
ξ
∞(Xv, X) ξ-relative ideal boundary, Definition 8.55
δ0 hyperbolicity constant of vertex spaces (total space

and intersection with X)
δ′0 hyperbolicity constant of spaces Xuv, [u, v] ∈ E(T )
λ0 the quasiconvexity constant of Xeu ⊂ Xu, e = [u, v] ∈

E(T )
λ′0 the quasiconvexity constant for the inclusion maps

Xu → Xuv, [u, v] ∈ E(T )
L0 the quasiisometry constant for the incidence maps feu :

Xe → Xv

L′0 the quasiisometry constant for the inclusion maps
Xv → Xuv, e = [u, v] ∈ E(T )

N f ib
R closed fiberwise R-neighborhood

Ne
R closed neighborhood in Xuv, where [u, v] = e ∈ E(T )

Π = (γ0, γ1) a pair of K-qi sections over the same interval in T
Π0 the girth of Π
Πmax the maximal separation of the ends of Π

X = (π : X → T ) a tree of spaces
XS := π−1(S ) the total space of a subtree of spaces over S ⊂ T

(Yℓ, dℓ) = E(Y,H) the electrified space
(Yh, dh) = G(Y,H) the horoballification

a(Yℓ) cone-locus
H̊h open horoball, §9.1.1
H̊ℓ open cone, §9.1.1



Index

C-center of a triangle, 27
C-cobounded subsets in a hyperbolic space, 47
C-tripod, 27
K-qi section, 61
K0, 83
R(K,C)-thin K-bigon property, 72
ϵ-short path, 18
η-proper map, 5
ξ-ending lamination, 219
k-acylindrical group action, 54

acylindrical tree of spaces, 73
Axiom H, 64

Bass–Serre tree, 52
boundary edge of a subtree, 1
boundary flow, 105
boundary vertex of a subtree, 1

Cannon–Thurston lamination, x, 191
Cannon–Thurston map, 189
carpet, 96
coarse retraction, 6
coarsely connected metric space, 13
coarsely connected space, 13
coarsely Lipschitz, 5
coarsely Lipschitz map, 5
coarsely surjective map, 5
cobounded group action, 4
cobounded quasiconvex chain-amalgam, 79
combing, 21
comparison map, 27
comparison point, 27
comparison triangle, 27
cone-locus, 238
coned-off map, 250
conical limit point, 46, 227
consistent pair, 193

detour subpath, 193
distortion function, 5

electric quasigeodesic, 248
exponential flaring, 75

fellow-traveling property, 21
flow-space FlK (Q), 100
fundamental group of a graph of groups, 52

generalized flow-space, 104
geometric group action, 4
graph, 1
graph of groups, 51
graph-morphism, 1
Gromov product, 16
Gromov-boundary, 31
Gromov-sequence, 30

hallway, 97
Hausdorff fellow-traveling paths, 21
horizontal path, 58
hyperbolic cone, 24
hyperbolic group, 16
hyperbolic space in the sense of Gromov, 16
hyperbolic space in the sense of Rips, 17

insize, 17
internal points, 17
intervals in trees, 2

ladder, 94
length space, 5
length structure, 5
limit point, 46
Lipschitz cobounded subsets, 11
locally finite orbit, 4

metric bundle, 93
metrically proper group action, 4
Milnor–Schwarz Lemma, 14
Mitra’s retraction ρ, 101
modified path ĉ, 193
modified projection P̄, 42
morphism of relatively hyperbolic spaces, 249
morphism of trees of spaces, 56
Morse Lemma, 19

net, 3

open peripheral cone, 238
orbit map, 4
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parameters of a tree of hyperbolic spaces, 64
path-metric, 3
peripheral horoball, 238
peripheral subspace, 238, 253
proper flaring, 69
pseudo-orbit, 84

quasiconvex action, 44
quasiconvex hull, 34
quasiconvex subgroup, 44
quasiconvex subset, 33
quasigeodesic, 6
quasigeodesics tracking each other, 248
quasiisometric embedding, 6
quasiisometry, 6

relative flaring condition, 254
relative ideal boundary, 31
relatively hyperbolic in the sense of Gromov, 238
Rips graph, 13

semicontinuous family, 91
slim combing, 21
slim triangle, 17
small carpet condition, 180
space relatively hyperbolic in Farb’s sense, 249
straight sequence, 194

thin triangle, 17
tight path, 244
tracking function, 249
transition point, 194
tree, 2
tree of topological spaces, 54
tripod of ladders, 141

uniform flaring, 71
uniformly proper flaring, 68
uniformly proper map, 6

vertical path, 58

weakly relatively hyperbolic space, 248


