Triangle inequalities in path metric spaces

MichaEl Kapovich

Abstract

We study side-lengths of triangles in path metric spaces. We prove that unless such a space X is bounded, or quasi-isometric to \mathbb{R}_{+}or to \mathbb{R}, every triple of real numbers satisfying the strict triangle inequalities, is realized by the side-lengths of a triangle in X. We construct an example of a complete path metric space quasi-isometric to \mathbb{R}^{2} for which every degenerate triangle has one side which is shorter than a certain uniform constant.

51K05

1 Introduction

Given a metric space X define
$K_{3}(X):=\left\{(a, b, c) \in \mathbb{R}_{+}^{3}:\right.$ there exist points x, y, z

$$
\text { with } d(x, y)=a, d(y, z)=b, d(z, x)=c\} .
$$

Note that $K_{3}\left(\mathbb{R}^{2}\right)$ is the closed convex cone K in \mathbb{R}_{+}^{3} given by the usual triangle inequalities. On the other hand, if $X=\mathbb{R}$ then $K_{3}(X)$ is the boundary of K since all triangles in X are degenerate. If X has finite diameter, $K_{3}(X)$ is a bounded set. We refer the reader to [3] and [6] for discussion of the sets $K_{4}(X)$.

Gromov [3, Page 18] (see also Roe [6]) raised the following question:

Question 1.1 Find reasonable conditions on path metric spaces X, under which $K_{3}(X)=K$.

It is not so difficult to see that for a path metric space X quasi-isometric to \mathbb{R}_{+}or \mathbb{R}, the set $K_{3}(X)$ does not contain the interior of K, see Section 7. Moreover, every triangle in such X is D-degenerate for some $D<\infty$ and therefore $K_{3}(X)$ is contained in the D-neighborhood of ∂K.

Our main result is essentially the converse to the above observation:

Theorem 1.2 Suppose that X is an unbounded path metric space not quasi-isometric to \mathbb{R}_{+}or \mathbb{R}. Then:
(1) $K_{3}(X)$ contains the interior of the cone K.
(2) If, in addition, X contains arbitrary long geodesic segments, then $K_{3}(X)=K$.

In particular, we obtain a complete answer to Gromov's question for geodesic metric spaces, since an unbounded geodesic metric space clearly contains arbitrarily long geodesic segments. In Section 6, we give an example of a (complete) path metric space X quasi-isometric to \mathbb{R}^{2}, for which

$$
K_{3}(X) \neq K .
$$

Therefore, Theorem 1.2 is the optimal result.
It appears that very little can be said about $K_{3}(X)$ for general metric spaces even under the assumption of uniform contractibility. For instance, if X is the paraboloid of revolution in \mathbb{R}^{3} with the induced metric, then $K_{3}(X)$ does not contain the interior of K. The space X in this example is uniformly contractible and is not quasi-isometric to \mathbb{R} and \mathbb{R}_{+}.

The proof of Theorem 1.2 is easier under the assumption that X is a proper metric space: In this case X is necessarily complete, geodesic metric space. Moreover, every unbounded sequence of geodesic segments $\overline{o x_{i}}$ in X yields a geodesic ray. The reader who does not care about the general path metric spaces can therefore assume that X is proper. The arguments using the ultralimits are then replaced by the Arcela-Ascoli theorem.

Below is a sketch of the proof of Theorem 1.2 under the extra assumption that X is proper. Since the second assertion of Theorem 1.2 is clear, we have to prove only the first statement. To motivate the use of tripods in the proof we note the following: Suppose that X is itself isometric to the tripod with infinitely long legs, i.e., three rays glued at their origins. Then it is easy to see that $K_{3}(X)=K$.

We define R-tripods $T \subset X$, as unions $\gamma \cup \mu$ of two geodesic segments $\gamma, \mu \subset X$, having the lengths $\geq R$ and $\geq 2 R$ respectively, so that:
(1) $\gamma \cap \mu=o$ is the end-point of γ.
(2) o is distance $\geq R$ from the ends of μ.
(3) o is a nearest-point projection of γ to μ.

The space X is called R-thin if it contains no R-tripods. The space X is called thick if it is not R-thin for any $R<\infty$.

We break the proof of Theorem 1.2 in two parts: Theorem 1.3 and Theorem 1.4.

Theorem 1.3 If X is thick then $K_{3}(X)$ contains the interior of $K_{3}\left(\mathbb{R}^{2}\right)$.
The proof of this theorem is mostly the coarse topology. The side-lengths of triangles in X determine a continuous map

$$
L: X^{3} \rightarrow K
$$

Then $K_{3}(X)=L\left(X^{3}\right)$. Given a point κ in the interior of K, we consider an R-tripod $T \subset X$ for sufficiently large R. We then restrict to triangles in X with vertices in T. We construct a 2 -cycle $\Sigma \in Z_{2}\left(T^{3}, \mathbb{Z}_{2}\right)$ whose image under L_{*} determines a nontrivial element of $H_{2}\left(K \backslash \kappa, \mathbb{Z}_{2}\right)$. Since T^{3} is contractible, there exists a 3-chain $\Gamma \in C_{3}\left(T^{3}, \mathbb{Z}_{2}\right)$ with the boundary Σ. Therefore the support of $L_{*}(\Gamma)$ contains the point κ, which implies that κ belongs to the image of L.

Remark Gromov observed in [3] that uniformly contractible metric spaces X have large $K_{3}(X)$. Although uniform contractibility is not relevant to our proof, the key argument here indeed has the coarse topology flavor.

Theorem 1.4 If X is a thin unbounded path metric space, then X is quasi-isometric to \mathbb{R} or \mathbb{R}_{+}.

Assuming that X is thin, unbounded and is not quasi-isometric to \mathbb{R} and to \mathbb{R}_{+}, we construct three diverging geodesic rays ρ_{i} in $X, i=1,2,3$. Define $\mu_{i} \subset X$ to be the geodesic segment connecting $\rho_{1}(i)$ and $\rho_{2}(i)$. Take γ_{i} to be the shortest segment connecting $\rho_{3}(i)$ to μ_{i}. Then $\gamma_{i} \cup \mu_{i}$ is an R_{i} - tripod with $\lim _{i} R_{i}=\infty$, which contradicts the assumption that X is thin.

Acknowledgements During this work the author was partially supported by the NSF grants DMS-04-05180 and DMS-05-54349. Most of this work was done when the author was visiting the Max Plank Institute for Mathematics in Bonn. I am grateful to the referee for useful comments and corrections.

2 Preliminaries

Convention 2.1 All homology will be taken with the \mathbb{Z}_{2}-coefficients.
In the paper we will talk about ends of a metric space X. Instead of looking at the noncompact complementary components of relatively compact open subsets of X as it is usually done for topological spaces, we will define ends of X by considering unbounded
complementary components of bounded subsets of X. With this modification, the usual definition goes through.

If x, y are points in a topological space X, we let $P(x, y)$ denote the set of continuous paths in X connecting x to y. For $\alpha \in P(x, y), \beta \in P(y, z)$ we let $\alpha * \beta \in P(x, z)$ denote the concatenation of α and β. Given a path $\alpha:[0, a] \rightarrow X$ we let $\bar{\alpha}$ denote the reverse path

$$
\bar{\alpha}(t)=\alpha(a-t) .
$$

2.1 Triangles and their side-lengths

We set $K:=K_{3}\left(\mathbb{R}^{2}\right)$; it is the cone in \mathbb{R}^{3} given by

$$
\{(a, b, c): a \leq b+c, b \leq a+c, c \leq a+b\} .
$$

We metrize K by using the maximum-norm on \mathbb{R}^{3}.
By a triangle in a metric space X we will mean an ordered triple $\Delta=(x, y, z) \in X^{3}$. We will refer to the numbers $d(x, y), d(y, z), d(z, x)$ as the side-lengths of Δ, even though these points are not necessarily connected by geodesic segments. The sum of the side-lengths of Δ will be called the perimeter of Δ.

We have the continuous map

$$
L: X^{3} \rightarrow K
$$

which sends the triple (x, y, z) of points in X to the triple of side-lengths

$$
(d(x, y), d(y, z), d(z, x)) .
$$

Then $K_{3}(X)$ is the image of L.
Let $\epsilon \geq 0$. We say that a triple $(a, b, c) \in K$ is ϵ-degenerate if, after reordering if necessary the coordinates a, b, c, we obtain

$$
a+\epsilon \geq b+c .
$$

Therefore every ϵ-degenerate triple is within distance $\leq \epsilon$ from the boundary of K. A triple which is not ϵ-degenerate is called ϵ-nondegenerate. A triangle in a metric space X whose side-lengths form an ϵ-degenerate triple, is called ϵ-degenerate. A 0 -degenerate triangle is called degenerate.

2.2 Basic notions of metric geometry

For a subset E in a metric space X and $R<\infty$ we let $N_{R}(E)$ denote the metric R-neighborhood of E in X :

$$
N_{R}(E)=\{x \in X: d(x, E) \leq R\} .
$$

Definition 2.2 Given a subset E in a metric space X and $\epsilon>0$, we define the ϵ-nearest-point projection $p=p_{E, \epsilon}$ as the map which sends X to the set 2^{E} of subsets in E :

$$
y \in p(x) \Longleftrightarrow d(x, y) \leq d(x, z)+\epsilon, \quad \forall z \in E
$$

If $\epsilon=0$, we will abbreviate $p_{E, 0}$ to p_{E}.
2.2.1 Quasi-isometries Let X, Y be metric spaces. A map $f: X \rightarrow Y$ is called an (L, A)-quasi-isometric embedding (for $L \geq 1$ and $A \in \mathbb{R}$) if for every pair of points $x_{1}, x_{2} \in X$ we have

$$
L^{-1} d\left(x_{1}, x_{2}\right)-A \leq d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq L d\left(x_{1}, x_{2}\right)+A
$$

A map f is called an (L, A)-quasi-isometry if it is an (L, A)-quasi-isometric embedding so that $N_{A}(f(X))=Y$. Given an (L, A)-quasi-isometry, we have the quasi-inverse map

$$
\bar{f}: Y \rightarrow X
$$

which is defined by choosing for each $y \in Y$ a point $x \in X$ so that $d(f(x), y) \leq A$. The quasi-inverse map \bar{f} is an ($L, 3 A$)-quasi-isometry. An (L, A)-quasi-isometric embedding f of an interval $I \subset \mathbb{R}$ into a metric space X is called an (L, A)-quasigeodesic in X. If $I=\mathbb{R}$, then f is called a complete quasi-geodesic.

A map $f: X \rightarrow Y$ is called a quasi-isometric embedding (resp. a quasi-isometry) if it is an (L, A)-quasi-isometric embedding (resp. (L, A)-quasi-isometry) for some $L \geq 1, A \in \mathbb{R}$.

Every quasi-isometric embedding $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a quasi-isometry, see for instance Kapovich-Leeb [5].
2.2.2 Geodesics and path metric spaces A geodesic in a metric space is an isometric embedding of an interval into X. By abusing the notation, we will identify geodesics and their images. A metric space is called geodesic if any two points in X can be connected by a geodesic. By abusing the notation we let $\overline{x y}$ denote a geodesic connecting x to y, even though this geodesic is not necessarily unique.

The length of a continuous curve $\gamma:[a, b] \rightarrow X$ in a metric space, is defined as

$$
\text { length }(\gamma)=\sup \left\{\sum_{i=1}^{n} d\left(\gamma\left(t_{i-1}\right), \gamma\left(t_{i}\right)\right): a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}
$$

A path γ is called rectifiable if length $(\gamma)<\infty$.
A metric space X is called a path metric space (or a length space) if for every pair of points $x, y \in X$ we have

$$
d(x, y)=\inf \{\operatorname{length}(\gamma): \gamma \in P(x, y)\}
$$

We say that a curve $\gamma:[a, b] \rightarrow X$ is ϵ-geodesic if

$$
\text { length }(\gamma) \leq d(\gamma(a), \gamma(b))+\epsilon
$$

It follows that every ϵ-geodesic is $(1, \epsilon)$-quasi-geodesic. We refer the reader to Burago-Ivanov [2] and Gromov [3] for the further details on path metric spaces.

2.3 Ultralimits

Our discussion of ultralimits of sequences of metric space will be somewhat brief, we refer the reader to Burago-Ivanov [2], Gromov [3], Kapovich [4], Kapovich-Leeb [5] and Roe [6] for the detailed definitions and discussion.

Choose a nonprincipal ultrafilter ω on \mathbb{N}. Suppose that we are given a sequence of pointed metric spaces $\left(X_{i}, o_{i}\right)$, where $o_{i} \in X_{i}$. The ultralimit

$$
\left(X_{\omega}, o_{\omega}\right)=\omega-\lim \left(X_{i}, o_{i}\right)
$$

is a pointed metric space whose elements are equivalence classes x_{ω} of sequences $x_{i} \in X_{i}$. The distance in X_{ω} is the ω-limit:

$$
d\left(x_{\omega}, y_{\omega}\right)=\omega-\lim d\left(x_{i}, y_{i}\right)
$$

One of the key properties of ultralimits which we will use repeatedly is the following. Suppose that $\left(Y_{i}, p_{i}\right)$ is a sequence of pointed metric spaces. Assume that we are given a sequence of (L_{i}, A_{i})-quasi-isometric embeddings

$$
f_{i}: X_{i} \rightarrow Y_{i}
$$

so that $\left.\omega-\lim d\left(f\left(o_{i}\right), p_{i}\right)\right)<\infty$ and

$$
\omega-\lim L_{i}=L<\infty, \quad \omega-\lim A_{i}=0
$$

Then there exists the ultralimit f_{ω} of the maps f_{i}, which is an $(L, 0)$-quasi-isometric embedding

$$
f_{\omega}: X_{\omega} \rightarrow Y_{\omega} .
$$

In particular, if $L=1$, then f_{ω} is an isometric embedding.
2.3.1 Ultralimits of constant sequences of metric spaces Suppose that X is a path metric space. Consider the constant sequence $X_{i}=X$ for all i. If X is a proper metric space and o_{i} is a bounded sequence, the ultralimit X_{ω} is nothing but X itself. In general, however, it could be much larger. The point of taking the ultralimit is that some properties of X improve after passing to X_{ω}.

Lemma 2.3 X_{ω} is a geodesic metric space.
Proof Points x_{ω}, y_{ω} in X_{ω} are represented by sequences $\left(x_{i}\right),\left(y_{i}\right)$ in X. For each i choose a $\frac{1}{i}$-geodesic curve γ_{i} in X connecting x_{i} to y_{i}. Then

$$
\gamma_{\omega}:=\omega-\lim \gamma_{i}
$$

is a geodesic connecting x_{ω} to y_{ω}.
Similarly, every sequence of $\frac{1}{i}$-geodesic segments $\overline{y x_{i}}$ in X satisfying

$$
\omega-\lim d\left(y, x_{i}\right)=\infty
$$

yields a geodesic ray γ_{ω} in X_{ω} emanating from $y_{\omega}=(y)$.
If $o_{i} \in X$ is a bounded sequence, then we have a natural (diagonal) isometric embedding $X \rightarrow X_{\omega}$, given by the map which sends $x \in X$ to the constant sequence (x).

Lemma 2.4 For every geodesic segment $\gamma_{\omega}=\overline{x_{\omega} y_{\omega}}$ in X_{ω} there exists a sequence of $1 / i$-geodesics $\gamma_{i} \subset X_{i}$, so that

$$
\omega-\lim \gamma_{i}=\gamma_{\omega} .
$$

Proof Subdivide the segment γ_{ω} into n equal subsegments

$$
\overline{z_{\omega, j} z_{\omega, j+1}}, \quad j=1, \ldots, n,
$$

where $x_{\omega}=z_{\omega, 1}, y_{\omega}=z_{\omega, n+1}$. Then the points $z_{\omega, j}$ are represented by sequences $\left(z_{k, j}\right) \in X$. It follows that for ω-all k, we have

$$
\left|\sum_{j=1}^{n} d\left(z_{k, j}, z_{k, j+1}\right)-d\left(x_{k}, y_{k}\right)\right|<\frac{1}{2 i} .
$$

Connect the points $z_{k, j}, z_{k, j+1}$ by $\frac{1}{2 i}$-geodesic segments $\alpha_{k, j}$. Then the concatenation

$$
\alpha_{n}=\alpha_{k, 1} * \cdots * \alpha_{k, n}
$$

is an $\frac{1}{i}$-geodesic connecting x_{k} and y_{k}, where

$$
x_{\omega}=\left(x_{k}\right), \quad y_{\omega}=\left(y_{k}\right)
$$

It is clear from the construction, that, if given i we choose sufficiently large $n=n(i)$, then

$$
\omega-\lim \alpha_{n(i)}=\gamma
$$

Therefore we take $\gamma_{i}:=\alpha_{n(i)}$.

2.4 Tripods

Our next goal is to define tripods in X, which will be our main technical tool. Suppose that x, y, z, o are points in X and μ is an ϵ-geodesic segment connecting x to y, so that $o \in \mu$ and $o \in p_{\mu, \epsilon}(z)$. Then the path μ is the concatenation $\alpha \cup \beta$, where α, β are ϵ-geodesics connecting x, y to o. Let γ be an ϵ-geodesic connecting z to o.

Definition 2.5 (1) We refer to $\alpha \cup \beta \cup \gamma$ as a tripod T with the vertices x, y, z, legs α, β, γ, and the center o.
(2) Suppose that the length of α, β, γ is at least R. Then we refer to the tripod T as (R, ϵ)-tripod. An $(R, 0)$-tripod will be called simply an R-tripod.

The reader who prefers to work with proper geodesic metric spaces can safely assume that $\epsilon=0$ in the above definition and thus T is a geodesic tripod.

Definition 2.6 Let $R \in[0, \infty), \epsilon \in[0, \infty)$. A metric space is called $(R, \epsilon)-t h i n$ if it contains no (R, ϵ)-tripods. We will refer to $(R, 0)$-thin spaces as R-thin. A metric space which is not (R, ϵ)-thin for any $R<\infty, \epsilon>0$ is called thick.

Therefore, a path metric space is thick if and only if it contains a sequence of $\left(R_{i}, \epsilon_{i}\right)-$ tripods with

$$
\lim _{i} R_{i}=\infty, \quad \lim _{i} \epsilon_{i}=0
$$

Figure 1: A tripod

2.5 Tripods and ultralimits

Suppose that a path metric space X is thick. Thus, X contains a sequence of $\left(R_{i}, \epsilon_{i}\right)-$ tripods T_{i} with

$$
\lim _{i} R_{i}=\infty, \quad \lim _{i} \epsilon_{i}=0
$$

so that the center of T_{i} is o_{i} and the legs are $\alpha_{i}, \beta_{i}, \gamma_{i}$. Then the tripods T_{i} clearly yield a geodesic $(\infty, 0)-\operatorname{tripod} T_{\omega}$ in $\left(X_{\omega}, o_{\omega}\right)=\omega-\lim \left(X, o_{i}\right)$. The $\operatorname{tripod} T_{\omega}$ is the union of three geodesic rays $\alpha_{\omega}, \beta_{\omega}, \gamma_{\omega}$ emanating from o_{ω}, so that

$$
o_{\omega}=p_{\mu_{\omega}}\left(\gamma_{\omega}\right) .
$$

Here $\mu_{\omega}=\alpha_{\omega} \cup \beta_{\omega}$. In particular, X_{ω} is thick.
Conversely, in view of Lemma 2.4, we have:
Lemma 2.7 If X is (R, ϵ)-thin for $\epsilon>0$ and $R<\infty$, then X_{ω} is R^{\prime}-thin for every $R^{\prime}>R$.

Proof Suppose that X_{ω} contains an R^{\prime}-tripod T_{ω}. Then T_{ω} appears as the ultralimit of $\left(R^{\prime}-\frac{1}{i}, \frac{1}{i}\right)$-tripods in X. This contradicts the assumption that X is (R, ϵ)-thin.

Let $\sigma:[a, b] \rightarrow X$ be a rectifiable curve in X parameterized by its arc-length. We let d_{σ} denote the path metric on $[a, b]$ which is the pull-back of the path metric on X. By abusing the notation, we denote by d the restriction to σ of the metric d. Note that, in general, d is only a pseudo-metric on $[a, b]$ since σ need not be injective. However, if σ is injective then d is a metric.

We repeat this construction with respect to the tripods: Given a tripod $T \subset X$, define an abstract tripod $T_{\text {mod }}$ whose legs have the same length as the legs of T. We have a natural map

$$
\tau: T_{\mathrm{mod}} \rightarrow X
$$

which sends the legs of $T_{\text {mod }}$ to the respective legs of T, parameterizing them by the arc-length. Then $T_{\text {mod }}$ has the path metric $d_{\text {mod }}$ obtained by pull-back of the path metric from X via τ. We also have the restriction pseudo-metric d on $T_{\text {mod }}$:

$$
d(A, B)=d(\tau(A), \tau(B))
$$

Observe that if $\epsilon=0$ and X is a tree then the metrics $d_{\text {mod }}$ and d on T agree.

Lemma $2.8 d \leq d_{\text {mod }} \leq 3 d+6 \epsilon$.

Proof The inequality $d \leq d_{\bmod }$ is clear. We will prove the second inequality. If $A, B \in \alpha \cup \beta$ or $A, B \in \gamma$ then, clearly,

$$
d_{\mathrm{mod}}(A, B) \leq d(A, B)+\epsilon
$$

since these curves are ϵ-geodesics. Therefore, consider the case when $A \in \gamma$ and $B \in \beta$. Then

$$
D:=d_{\bmod }(A, B)=t+s
$$

where $t=d_{\gamma}(A, o), s=d_{\beta}(o, B)$.
Case $1 t \geq \frac{1}{3} D$. Then, since $o \in \alpha \cup \beta$ is ϵ-nearest to A, it follows that

$$
\frac{1}{3} D \leq t \leq d(A, o)+\epsilon \leq d(A, B)+2 \epsilon
$$

Hence

$$
d_{\mathrm{mod}}(A, B)=\frac{3 D}{3} \leq 3(d(A, B)+2 \epsilon)=3 d(A, B)+6 \epsilon
$$

and the assertion follows in this case.
Case $2 t<\frac{1}{3} D$. By the triangle inequality,

$$
D-t=s \leq d(o, B)+\epsilon \leq d(o, A)+d(A, B)+\epsilon \leq t+2 \epsilon+d(A, B)
$$

Hence

$$
\frac{1}{3} D=D-\frac{2}{3} D \leq D-2 t \leq 2 \epsilon+d(A, B)
$$

and

$$
d_{\mathrm{mod}}(A, B)=\frac{3 D}{3} \leq 3 d(A, B)+6 \epsilon
$$

3 Topology of configuration spaces of tripods

We begin with the model tripod T with the legs $\alpha_{i}, i=1,2,3$, and the center o. Consider the configuration space $Z:=T^{3} \backslash$ diag, where diag is the small diagonal

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right) \in T^{3}: x_{1}=x_{2}=x_{3}\right\}
$$

We recall that the homology is taken with the \mathbb{Z}_{2}-coefficients.

Proposition 3.1 $H_{1}(Z)=0$.

Proof T^{3} is the union of cubes

$$
Q_{i j k}=\alpha_{i} \times \alpha_{j} \times \alpha_{k}
$$

where $i, j, k \in\{1,2,3\}$. Identify each cube $Q_{i j k}$ with the unit cube in the positive octant in \mathbb{R}^{3}. Then in the cube $Q_{i j k}(i, j, k \in\{1,2,3\})$ we choose the equilateral triangle $\sigma_{i j k}$ given by the intersection of $Q_{i j k}$ with the hyperplane

$$
x+y+z=1
$$

in \mathbb{R}^{3}. We adopt the convention that if exactly one of the indices i, j, k is zero (say, i), then $\sigma_{i j k}$ stands for the $1-$ simplex

$$
\{(0, y, z): y+z=1\} \cap\{o\} \times \alpha_{j} \times \alpha_{k}
$$

Therefore,

$$
\partial \sigma_{i j k}=\sigma_{0 j k}+\sigma_{i 0 k}+\sigma_{i j 0}
$$

Define the 2-dimensional simplicial complex

$$
S:=\bigcup_{i j k} \sigma_{i j k}
$$

This complex is homeomorphic to the link of (o, o, o) in T^{3}. Therefore Z is homotopyequivalent to

$$
W:=S \backslash\left(\sigma_{111} \cup \sigma_{222} \cup \sigma_{333}\right)
$$

Consider the loops $\gamma_{i}:=\partial \sigma_{i i i}, i=1,2,3$.

Lemma 3.2 (1) The homology classes $\left[\gamma_{i}\right], i=1,2,3$ generate $H_{1}(W)$.
(2) $\left[\gamma_{1}\right]=\left[\gamma_{2}\right]=\left[\gamma_{3}\right]$ in $H_{1}(W)$.

Proof of Lemma 3.2 (1) We first observe that S is the 3-fold join of a 3-element set with itself and, therefore, is simply-connected. Alternatively, note that S a $2-$ dimensional spherical building. Hence, S is homotopy-equivalent to a bouquet of 2-spheres (see Brown [1, Theorem 2, page 93]), which implies that $H_{1}(S)=0$. Now the first assertion follows from the long exact sequence of the pair (S, W).
(2) Let us verify that $\left[\gamma_{1}\right]=\left[\gamma_{2}\right]$. The subcomplex

$$
S_{12}=S \cap\left(\alpha_{1} \cup \alpha_{2}\right)^{3}
$$

is homeomorphic to the $2-$ sphere. Therefore $S_{12} \cap W$ is the annulus bounded by the circles γ_{1} and γ_{2}. Hence $\left[\gamma_{1}\right]=\left[\gamma_{2}\right]$.

Lemma 3.3

$$
\left[\gamma_{1}\right]+\left[\gamma_{2}\right]+\left[\gamma_{3}\right]=0
$$

in $H_{1}(W)$.

Proof of Lemma 3.3 Let B^{\prime} denote the 2-chain

$$
\sum_{\{i j k\} \in A} \sigma_{i j k}
$$

where A is the set of triples of distinct indices $i, j, k \in\{1,2,3\}$. Let

$$
B^{\prime \prime}:=\sum_{i=1}^{3}\left(\sigma_{i i(i+1)}+\sigma_{i(i+1) i}+\sigma_{(i+1) i i}\right)
$$

where we set $3+1:=1$. We note that

$$
\gamma_{1}+\gamma_{2}+\gamma_{3}=\partial \Delta
$$

where

$$
\Delta=\sum_{i=1}^{3} \sigma_{i i i}
$$

Hence, the assertion of lemma is equivalent to

$$
\partial\left(B^{\prime}+B^{\prime \prime}+\Delta\right)=0
$$

To prove this, it suffices to show that every 1 -simplex in S, appears in $\partial\left(B^{\prime}+B^{\prime \prime}+\Delta\right)$ exactly twice. Since the chain $B^{\prime}+B^{\prime \prime}+\Delta$ is preserved by the permutation of the indices i, j, k, it suffices to consider the $1-\operatorname{simplex} \sigma_{i j 0}$ where $j=i+1$ or $i=j$.
Suppose that $j=i+1$. Then the $1-$ simplex $\sigma_{i j 0}$ appears in $\partial\left(B^{\prime}+B^{\prime \prime}+\Delta\right)$ exactly twice: in $\partial \sigma_{i j k}($ where $k \neq i \neq j)$ and in $\partial \sigma_{i(i+1) i}$.

Similarly, if $i=j$, then the 1 -simplex $\sigma_{i i 0}$ also appears in $\partial\left(B^{\prime}+B^{\prime \prime}+\Delta\right)$ exactly twice: in $\partial \sigma_{i i i}$ and in $\partial \sigma_{i i(i+1)}$.

By combining these lemmata we obtain the assertion of the theorem.
3.0.1 Application to tripods in metric spaces Consider an $(R, \epsilon)-\operatorname{tripod} T$ in a metric space X and its standard parametrization $\tau: T_{\mathrm{mod}} \rightarrow T$.

There is an obvious scaling operation

$$
u \mapsto r \cdot u
$$

on the space ($T_{\text {mod }}, d_{\text {mod }}$) which sends each leg to itself and scales all distances by $r \in[0, \infty)$. It induces the map $T_{\text {mod }}^{3} \rightarrow T_{\text {mod }}^{3}$, denoted $t \mapsto r \cdot t, t \in T_{\text {mod }}^{3}$.
We have the functions

$$
\begin{array}{ll}
L_{\mathrm{mod}}: T_{\mathrm{mod}}^{3} \rightarrow K & L_{\mathrm{mod}}(x, y, z)=\left(d_{\mathrm{mod}}(x, y), d_{\mathrm{mod}}(y, z), d_{\mathrm{mod}}(z, x)\right), \\
L: T_{\mathrm{mod}}^{3} \rightarrow K & L(x, y, z)=(d(x, y), d(y, z), d(z, x))
\end{array}
$$

computing side-lengths of triangles with respect to the metrics $d_{\text {mod }}$ and d.
For $\rho \geq 0$ set

$$
K_{\rho}:=\{(a, b, c) \in K: a+b+c>\rho\} .
$$

Define

$$
T^{3}(\rho):=L^{-1}\left(K_{\rho}\right), \quad T_{\bmod }^{3}(\rho):=L_{\bmod }^{-1}\left(K_{\rho}\right)
$$

Thus

$$
T_{\mathrm{mod}}^{3}(0)=T^{3}(0)=T^{3} \backslash \text { diag. }
$$

Lemma 3.4 For every $\rho \geq 0$, the space $T_{\bmod }^{3}(\rho)$ is homeomorphic to $T_{\bmod }^{3}(0)$.
Proof Recall that S is the link of (o, o, o) in T^{3}. Then scaling defines homeomorphisms

$$
T_{\mathrm{mod}}^{3}(\rho) \rightarrow S \times \mathbb{R} \rightarrow T_{\mathrm{mod}}^{3}(0)
$$

Corollary 3.5 For every $\rho \geq 0, H_{1}\left(T_{\bmod }^{3}(\rho), \mathbb{Z}_{2}\right)=0$.
Corollary 3.6 The map induced by inclusion

$$
H_{1}\left(T^{3}(3 \rho+18 \epsilon)\right) \rightarrow H_{1}\left(T^{3}(\rho)\right)
$$

is zero.

Proof Recall that

$$
d \leq d_{\bmod } \leq 3 d+6 \epsilon
$$

Therefore

$$
T^{3}(3 \rho+18 \epsilon) \subset T_{\bmod }^{3}(\rho) \subset T^{3}(\rho)
$$

Now the assertion follows from the previous corollary.

4 Proof of Theorem 1.3

Suppose that X is thick. Then for every $R<\infty, \epsilon>0$ there exists an (R, ϵ)-tripod T with the legs α, β, γ. Without loss of generality we may assume that the legs of T have length R. Let $\tau: T_{\text {mod }} \rightarrow T$ denote the standard map from the model tripod onto T. We will continue with the notation of the previous section.

Given a space E and map $f: E \rightarrow T_{\text {mod }}^{3}$ (or a chain $\sigma \in C_{*}\left(T_{\text {mod }}^{3}\right)$), let \hat{f} (resp. $\widehat{\sigma}$) denote the map $L \circ f$ from E to K (resp. the chain $L_{*}(\sigma) \in C_{*}(K)$). Similarly, we define $\widehat{f}_{\text {mod }}$ and $\widehat{\sigma}_{\text {mod }}$ using the map $L_{\text {mod }}$ instead of L.

Every loop $\lambda: S^{1} \rightarrow T_{\text {mod }}^{3}$, determines the map of the 2-disk

$$
\Lambda: D^{2} \rightarrow T_{\bmod }^{3}
$$

given by

$$
\Lambda(r, \theta)=r \cdot \lambda(\theta)
$$

where we are using the polar coordinates (r, θ) on the unit disk D^{2}. Triangulating both S^{1} and D^{2} and assigning the coefficient $1 \in \mathbb{Z}_{2}$ to each simplex, we regard both λ and Λ as singular chains in $C_{*}\left(T_{\bmod }^{3}\right)$.
We let a, b, c denote the coordinates on the space \mathbb{R}^{3} containing the cone K. Let $\kappa=\left(a_{0}, b_{0}, c_{0}\right)$ be a δ-nondegenerate point in the interior of K for some $\delta>0$; set $r:=a_{0}+b_{0}+c_{0}$.

Suppose that there exists a loop λ in $T_{\text {mod }}^{3}$ such that:
(1) $\hat{\lambda}(\theta)$ is ϵ-degenerate for each θ. Moreover, each triangle $\lambda(\theta)$ is either contained in $\alpha_{\text {mod }} \cup \beta_{\text {mod }}$ or has only two distinct vertices.
In particular, the image of $\hat{\lambda}$ is contained in

$$
K \backslash \mathbb{R}_{+} \cdot \kappa
$$

(2) The image of $\hat{\lambda}$ is contained in K_{ρ}, where $\rho=3 r+18 \epsilon$.
(3) The homology class $[\hat{\lambda}]$ is nontrivial in $H_{1}\left(K \backslash \mathbb{R}_{+} \cdot \kappa\right)$.

Figure 2: Chains $\widehat{\Lambda}$ and \widehat{B}
Lemma 4.1 If there exists a loop λ satisfying the assumptions (1)-(3), and $\epsilon<\delta / 2$, then κ belongs to $K_{3}(X)$.

Proof We have the 2-chains

$$
\widehat{\Lambda}, \widehat{\Lambda}_{\bmod } \in C_{2}(K \backslash \kappa)
$$

with

$$
\hat{\lambda}=\partial \widehat{\Lambda}, \hat{\lambda}_{\bmod }=\partial \hat{\Lambda}_{\bmod } \in C_{1}\left(K_{\rho}\right)
$$

Note that the support of $\hat{\lambda}_{\text {mod }}$ is contained in ∂K and the 2 -chain $\hat{\Lambda}_{\text {mod }}$ is obtained by coning off $\hat{\lambda}_{\text {mod }}$ from the origin. Then, by Assumption (1), for every $w \in D^{2}$:
(i) Either $d\left(\widehat{\Lambda}(w), \widehat{\Lambda}_{\bmod }(w)\right) \leq \epsilon$.
(ii) $\operatorname{Or} \hat{\Lambda}(w), \hat{\Lambda}_{\text {mod }}(w)$ belong to the common ray in ∂K.

Since $d(\kappa, \partial K)>\delta \geq 2 \epsilon$, it follows that the straight-line homotopy H_{t} between the maps

$$
\hat{\Lambda}, \hat{\Lambda}_{\mathrm{mod}}: D^{2} \rightarrow K
$$

misses κ. Since K_{ρ} is convex, $H_{t}\left(S^{1}\right) \subset K_{\rho}$ for each $t \in[0,1]$, and we obtain

$$
\left[\hat{\Lambda}_{\mathrm{mod}}\right]=[\hat{\Lambda}] \in H_{2}\left(K \backslash \kappa, K_{\rho}\right)
$$

Assumptions (2) and (3) imply that the relative homology class

$$
\left[\hat{\Lambda}_{\bmod }\right] \in H_{2}\left(K \backslash \kappa, K_{\rho}\right)
$$

is nontrivial. Hence

$$
[\widehat{\Lambda}] \in H_{2}\left(K \backslash \kappa, K_{\rho}\right)
$$

is nontrivial as well. Since $\rho=3 r+18 \epsilon$, according to Corollary 3.6, λ bounds a 2-chain

$$
\mathrm{B} \in C_{2}\left(T^{3}(r)\right)
$$

Set $\Sigma:=\mathrm{B}+\Lambda$. Then the absolute class

$$
[\hat{\Sigma}]=[\hat{\Lambda}+\widehat{\mathrm{B}}] \in H_{2}(K \backslash \kappa)
$$

is also nontrivial. Since $T_{\text {mod }}^{3}$ is contractible, there exists a 3-chain $\Gamma \in C_{3}\left(T_{\text {mod }}^{3}\right)$ such that

$$
\partial \Gamma=\Sigma .
$$

Therefore the support of $\hat{\Gamma}$ contains the point κ. Since the map

$$
L: T^{3} \rightarrow K
$$

is the composition of the continuous map $\tau^{3}: T^{3} \rightarrow X^{3}$ with the continuous map $L: X^{3} \rightarrow K$, it follows that κ belongs to the image of the map $L: X^{3} \rightarrow K$ and hence $\kappa \in K_{3}(X)$.

Our goal therefore is to construct a loop λ, satisfying Assumptions (1)-(3).
Let $T \subset X$ be an (R, ϵ)-tripod with the legs α, β, γ of the length R, where $\epsilon \leq \delta / 2$. We let $\tau: T_{\text {mod }} \rightarrow T$ denote the standard parametrization of T. Let x, y, z, o denote the vertices and the center of $T_{\text {mod }}$. We let $\alpha_{\text {mod }}(s), \beta_{\bmod }(s), \gamma_{\bmod }(s):[0, R] \rightarrow T_{\text {mod }}$ denote the arc-length parameterizations of the legs of T_{mod}, so that $\alpha(R)=\beta(R)=\gamma(R)=o$.

We will describe the loop λ as the concatenation of seven paths

$$
p_{i}(s)=\left(x_{1}(s), x_{2}(s), x_{3}(s)\right), i=1, \ldots, 7
$$

We let $a=d\left(x_{2}, x_{3}\right), b=d\left(x_{3}, x_{1}\right), c=d\left(x_{1}, x_{2}\right)$.
(1) $p_{1}(s)$ is the path starting at (x, x, o) and ending at (o, x, o), given by

$$
p_{1}(s)=\left(\alpha_{\bmod }(s), x, o\right) .
$$

Note that for $p_{1}(0)$ and $p_{1}(R)$ we have $c=0$ and $b=0$ respectively.
(2) $p_{2}(s)$ is the path starting at (o, x, o) and ending at (y, x, o), given by

$$
p_{2}(s)=\left(\bar{\beta}_{\mathrm{mod}}(s), x, o\right)
$$

(3) $p_{3}(s)$ is the path starting at (y, x, o) and ending at (y, o, o), given by

$$
p_{3}(s)=\left(y, \alpha_{\bmod }(s), o\right)
$$

Note that for $p_{3}(R)$ we have $a=0$.
(4) $p_{4}(s)$ is the path starting at (y, o, o) and ending at (y, y, o), given by

$$
p_{4}(s)=\left(y, \bar{\beta}_{\mathrm{mod}}(s), o\right)
$$

Note that for $p_{4}(R)$ we have $c=0$. Moreover, if $\alpha * \bar{\beta}$ is a geodesic, then

$$
d(\tau(x), \tau(o))=d(\tau(y), \tau(o)) \Rightarrow \hat{p}_{4}(R)=\hat{p}_{1}(0)
$$

and therefore $\hat{p}_{1} * \cdots * \hat{p}_{4}$ is a loop.
(5) $\quad p_{5}(s)$ is the path starting at (y, y, o) and ending at (y, y, z) given by

$$
\left(y, y, \bar{\gamma}_{\bmod }(s)\right)
$$

(6) $\quad p_{6}(s)$ is the path starting at (y, y, z) and ending at (x, x, z) given by

$$
\left(\beta_{\mathrm{mod}} * \bar{\alpha}_{\mathrm{mod}}, \beta_{\mathrm{mod}} * \bar{\alpha}_{\mathrm{mod}}, z\right)
$$

(7) $\quad p_{7}(s)$ is the path starting at (x, x, z) and ending at (x, x, o) given by

$$
\left(x, x, \gamma_{\bmod }(s)\right)
$$

Thus

$$
\lambda:=p_{1} * \cdots * p_{7}
$$

is a loop.
Since $\alpha * \beta$ and γ are ϵ-geodesics in X, each path $p_{i}(s)$ determines a family of ϵ-degenerate triangles in $\left(T_{\bmod }, d\right)$. It is clear that Assumption (1) is satisfied.
The class $\left[\hat{\lambda}_{\text {mod }}\right]$ is clearly nontrivial in $H_{1}(\partial K \backslash 0)$. See Figure 3. Therefore, since $\epsilon \leq \delta / 2$,

$$
[\hat{\lambda}]=\left[\hat{\lambda}_{\mathrm{mod}}\right] \in H_{1}\left(K \backslash \mathbb{R}_{+} \cdot \kappa\right) \backslash\{0\}
$$

see the proof of Lemma 4.1. Thus Assumption (2) holds.
Lemma 4.2 The image of $\hat{\lambda}$ is contained in the closure of $K_{\rho^{\prime}}$, where

$$
\rho^{\prime}=\frac{2}{3} R-4 \epsilon
$$

Figure 3: The loop $\hat{\lambda}_{\text {mod }}$

Proof We have to verify that for each $i=1, \ldots, 7$ and every $s \in[0, R]$, the perimeter (with respect to the metric d) of each triangle $p_{i}(s) \in T_{\text {mod }}^{3}$ is at least ρ^{\prime}. These inequalities follow directly from Lemma 2.8 and the description of the paths p_{i}.

Therefore, if we take

$$
R>\frac{9}{2} r-33 \epsilon
$$

then the image of $\hat{\lambda}$ is contained in

$$
K_{3 r+18 \epsilon}
$$

and Assumption (3) is satisfied. Theorem 1.3 follows.

5 Quasi-isometric characterization of thin spaces

The goal of this section is to prove Theorem 1.4. Suppose that X is thin. The proof is easier if X is a proper geodesic metric space, in which case there is no need considering the ultralimits. Therefore, we recommend the reader uncomfortable with this technique to assume that X is a proper geodesic metric space.
Pick a base-point $o \in X$, a nonprincipal ultrafilter ω and consider the ultralimit

$$
X_{\omega}=\omega-\lim (X, o)
$$

of the constant sequence of pointed metric spaces. If X is a proper geodesic metric space then, of course, $X_{\omega}=X$. In view of Lemma 2.7, the space X_{ω} is R-thin for some R.

Assume that X is unbounded. Then X contains a sequence of $1 / i$-geodesic paths $\gamma_{i}=\overline{o x_{i}}$ with

$$
\omega-\lim d\left(o, x_{i}\right)=\infty,
$$

which yields a geodesic ray ρ_{1} in X_{ω} emanating from the point o_{ω}.
Lemma 5.1 Let ρ be a geodesic ray in X_{ω} emanating from a point O. Then the neighborhood $E=N_{R}(\rho)$ is an end $E(\rho)$ of X_{ω}.

Proof Suppose that α is a path in $X_{\omega} \backslash B_{2 R}(O)$ connecting a point $y \in X_{\omega} \backslash E$ to a point $x \in E$. Then there exists a point $z \in \alpha$ such that $d(z, \rho)=R$. Since X_{ω} contains no R-tripods,

$$
d\left(p_{\rho}(z), O\right)<R .
$$

Therefore $d(z, O)<2 R$. Contradiction.
Set $E_{1}:=E\left(\rho_{1}\right)$. If the image of the natural embedding $\iota: X \rightarrow X_{\omega}$ is contained in a finite metric neighborhood of ρ_{1}, then we are done, as X is quasi-isometric to \mathbb{R}_{+}. Otherwise, there exists a sequence $y_{n} \in X$ such that:

$$
\omega-\lim d\left(\iota\left(y_{n}\right), \rho_{1}\right)=\infty .
$$

Consider the $\frac{1}{n}$-geodesic paths $\alpha_{n} \in P\left(o, y_{n}\right)$. The sequence $\left(\alpha_{n}\right)$ determines a geodesic ray $\rho_{2} \subset X_{\omega}$ emanating from o_{ω}. Then there exists $s \geq 4 R$ such that

$$
d\left(\alpha_{n}(s), \gamma_{i}\right) \geq 2 R
$$

for ω-all n and ω-all i. Therefore, for $t \geq s, \rho_{2}(t) \notin E\left(\rho_{1}\right)$. By applying Lemma 5.1 to ρ_{2} we conclude that X_{ω} has an end $E_{2}=E\left(\rho_{2}\right)=N_{R}\left(\rho_{2}\right)$. Since E_{1}, E_{2} are distinct ends of $X_{\omega}, E_{1} \cap E_{2}$ is a bounded subset. Let D denote the diameter of this intersection.

Lemma 5.2 (1) For every pair of points $x_{i}=\rho_{i}\left(t_{i}\right), i=1$, 2, we have

$$
\overline{x_{1} x_{2}} \subset N_{D / 2+2 R}\left(\rho_{1} \cup \rho_{2}\right)
$$

(2) $\rho_{1} \cup \rho_{2}$ is a quasi-geodesic.

Proof Consider the points x_{i} as in Part 1. Our goal is to get a lower bound on $d\left(x_{1}, x_{2}\right)$. A geodesic segment $\overline{x_{1} x_{2}}$ has to pass through the ball $B\left(o_{\omega}, 2 R\right), i=1,2$, since this ball separates the ends E_{1}, E_{2}. Let $y_{i} \in \overline{x_{1} x_{2}} \cap B\left(o_{\omega}, 2 R\right)$ be such that

$$
\overline{x_{i} y_{i}} \subset E_{i}, \quad i=1,2
$$

Then

$$
\left.\begin{array}{rl}
d\left(y_{1}, y_{2}\right) & \leq D+4 R \\
d\left(x_{i}, y_{i}\right) & \geq t_{i}-2 R \\
\text { and } \quad & \overline{x_{i} y_{i}}
\end{array}\right)
$$

This implies the first assertion of Lemma. Moreover,

$$
d\left(x_{1}, x_{2}\right) \geq d\left(x_{1}, y_{1}\right)+d\left(x_{2}, y_{2}\right) \geq t_{1}+t_{2}-4 R=d\left(x_{1}, x_{2}\right)-4 R
$$

Therefore $\rho_{1} \cup \rho_{2}$ is a $(1,4 R)$-quasi-geodesic.
If $\iota(X)$ is contained in a finite metric neighborhood of $\rho_{1} \cup \rho_{2}$, then, by Lemma 5.2, X is quasi-isometric to \mathbb{R}. Otherwise, there exists a sequence $z_{k} \in X$ such that

$$
\omega-\lim d\left(\iota\left(z_{k}\right), \rho_{1} \cup \rho_{2}\right)=\infty
$$

By repeating the construction of the ray ρ_{2}, we obtain a geodesic ray $\rho_{3} \subset X_{\omega}$ emanating from the point o_{ω}, so that ρ_{3} is not contained in a finite metric neighborhood of $\rho_{1} \cup \rho_{2}$. For every t_{3}, the nearest-point projection of $\rho_{3}\left(t_{3}\right)$ to

$$
N_{D / 2+2 R}\left(\rho_{1} \cup \rho_{2}\right)
$$

is contained in

$$
B_{2 R}\left(o_{\omega}\right)
$$

Therefore, in view of Lemma 5.2, for every pair of points $\rho_{i}\left(t_{i}\right)$ as in that lemma, the nearest-point projection of $\rho_{3}\left(t_{3}\right)$ to $\overline{\rho_{1}\left(t_{1}\right) \rho_{2}\left(t_{2}\right)}$ is contained in

$$
B_{4 R+D}\left(o_{\omega}\right)
$$

Hence, for sufficiently large t_{1}, t_{2}, t_{3}, the points $\rho_{i}\left(t_{i}\right), i=1,2,3$ are vertices of an R-tripod in X. This contradicts the assumption that X_{ω} is R-thin.

Therefore X is either bounded, or is quasi-isometric to a \mathbb{R}_{+}or to \mathbb{R}.

6 Examples

Theorem 6.1 There exist an (incomplete) 2-dimensional Riemannian manifold M quasi-isometric to \mathbb{R}, so that:
(1) $K_{3}(M)$ does not contain $\partial K_{3}\left(\mathbb{R}^{2}\right)$.
(2) For the Riemannian product $M^{2}=M \times M, K_{3}\left(M^{2}\right)$ does not contain $\partial K_{3}\left(\mathbb{R}^{2}\right)$ either.

Moreover, there exists $D<\infty$ such that for every degenerate triangle in M and M^{2}, at least one side is $\leq D$.

Proof (1) We start with the open concentric annulus $A \subset \mathbb{R}^{2}$, which has the inner radius $R_{1}>0$ and the outer radius $R_{2}<\infty$. We give A the flat Riemannian metric induced from \mathbb{R}^{2}. Let M be the universal cover of A, with the pull-back Riemannian metric. Since M admits a properly discontinuous isometric action of \mathbb{Z} with the quotient of finite diameter, it follows that M is quasi-isometric to \mathbb{R}. The metric completion \bar{M} of M is diffeomorphic to the closed bi-infinite flat strip. Let $\partial_{1} M$ denote the component of the boundary of \bar{M} which covers the inner boundary of A under the map of metric completions

$$
\bar{M} \rightarrow \bar{A}
$$

As a metric space, \bar{M} is $C A T(0)$, therefore it contains a unique geodesic between any pair of points. However, for any pair of points $x, y \in M$, the geodesic $\gamma=\overline{x y} \subset \bar{M}$ is the union of subsegments

$$
\gamma_{1} \cup \gamma_{2} \cup \gamma_{3}
$$

where $\gamma_{1}, \gamma_{3} \subset M, \gamma_{2} \subset \partial_{1} M$, and the lengths of γ_{1}, γ_{3} are at most $D_{0}=\sqrt{R_{2}^{2}-R_{1}^{2}}$. Hence, for every degenerate triangle (x, y, z) in M, at least one side is $\leq D_{0}$.
(2) We observe that the metric completion of M^{2} is $\bar{M} \times \bar{M}$; in particular, it is again a $\operatorname{CAT}(0)$ space. Therefore it has a unique geodesic between any pair of points. Moreover, geodesics in $\bar{M} \times \bar{M}$ are of the form

$$
\left(\gamma_{1}(t), \gamma_{2}(t)\right)
$$

where $\gamma_{i}, i=1,2$ are geodesics in \bar{M}. Hence for every geodesic segment $\gamma \subset \bar{M} \times \bar{M}$, the complement $\gamma \backslash \partial \bar{M}^{2}$ is the union of two subsegments of length $\leq \sqrt{2} D_{0}$ each. Therefore for every degenerate triangle in M^{2}, at least one side is $\leq \sqrt{2} D_{0}$.

Remark The manifold M^{2} is, of course, quasi-isometric to \mathbb{R}^{2}.

Figure 4: Geodesics in \bar{M}
Our second example is a graph-theoretic analogue of the Riemannian manifold M.
Theorem 6.2 There exists a complete path metric space X (a metric graph) quasiisometric to \mathbb{R} so that:
(1) $K_{3}(X)$ does not contain $\partial K_{3}\left(\mathbb{R}^{2}\right)$.
(2) $K_{3}\left(X^{2}\right)$ does not contain $\partial K_{3}\left(\mathbb{R}^{2}\right)$.

Moreover, there exists $D<\infty$ such that for every degenerate triangle in X and X^{2}, at least one side is $\leq D$.

Proof (1) We start with the disjoint union of oriented circles α_{i} of the length $1+\frac{1}{i}$, $i \in I=\mathbb{N} \backslash\{2\}$. We regard each α_{i} as a path metric space. For each i pick a point $o_{i} \in \alpha_{i}$ and its antipodal point $b_{i} \in \alpha_{i}$. We let α_{i}^{+}be the positively oriented arc of α_{i} connecting o_{i} to b_{i}. Let α_{i}^{-}be the complementary arc.

Consider the bouquet Z of α_{i} 's by gluing them all at the points o_{i}. Let $o \in Z$ be the image of the points o_{i}. Next, for every pair $i, j \in I$ attach to Z the oriented arc $\beta_{i j}$ of the length

$$
\frac{1}{2}+\frac{1}{4}\left(\frac{1}{i}+\frac{1}{j}\right)
$$

connecting b_{i} and b_{j} and oriented from b_{i} to b_{j} if $i<j$. Let Y denote the resulting graph. We give Y the path metric. Then Y is a complete metric space, since it is a metric graph where the length of every edge is at least $1 / 2>0$. Note also that the length of every edge in Y is at most 1 .

Figure 5: The metric space Y

The space X is the infinite cyclic regular cover over Y defined as follows. Take the maximal subtree

$$
T=\bigcup_{i \in I} \alpha_{i}^{+} \subset Y
$$

Every oriented edge of $Y \backslash T$ determines a free generator of $G=\pi_{1}(Y, o)$. Define the homomorphism $\rho: G \rightarrow \mathbb{Z}$ by sending every free generator to 1 . Then the covering
$X \rightarrow Y$ is associated with the kernel of ρ. (This covering exists since Y is locally contractible.)

We lift the path metric from Y to X, thereby making X a complete metric graph. We label vertices and edges of X as follows.
(i) Vertices a_{n} which project to o. The cyclic group \mathbb{Z} acts simply transitively on the set of these vertices thereby giving them the indices $n \in \mathbb{Z}$.
(ii) The edges $\alpha_{i}^{ \pm}$lift to the edges $\alpha_{i n}^{+}, \alpha_{i n}^{-}$incident to the vertices a_{n} and a_{n+1} respectively.
(iii) The intersection $\alpha_{i n}^{+} \cap \alpha_{i(n+1)}^{-}$is the vertex $b_{i n}$ which projects to the vertex $b_{i} \in \alpha_{i}$.
(iv) The edge $\beta_{i j n}$ connecting $b_{i n}$ to $b_{j(n+1)}$ which projects to the edge $\beta_{i j} \subset Y$.

Figure 6: The metric space X

Lemma 6.3 X contains no degenerate triangles (x, y, v), so that v is a vertex,

$$
d(x, v)+d(v, y)=d(x, y)
$$

and $\min (d(x, v), d(v, y))>2$.

Proof of Lemma 6.3 Suppose that such degenerate triangles exist.
Case $1\left(v=b_{i n}\right)$ Since the triangle (x, y, v) is degenerate, for all sufficiently small $\epsilon>0$ there exist ϵ-geodesics σ connecting x to y and passing through v.

Since $d(x, v), d(v, y)>2$, it follows that for sufficiently small $\epsilon>0, \sigma=\sigma(\epsilon)$ also passes through $b_{j(n-1)}$ and $b_{k(n+1)}$ for some j, k depending on σ. We will assume that as $\epsilon \rightarrow 0$, both j and k diverge to infinity, leaving the other cases to the reader.

Therefore

$$
\begin{aligned}
& d(x, v)=\lim _{j \rightarrow \infty}\left(d\left(x, b_{j(n-1)}\right)+d\left(b_{j(n-1)}, v\right)\right) \\
& d(v, y)=\lim _{k \rightarrow \infty}\left(d\left(y, b_{k(n+1)}\right)+d\left(b_{k(n+1)}, v\right)\right)
\end{aligned}
$$

Then

$$
\lim _{j \rightarrow \infty} d\left(b_{j(n-1)}, v\right)+\lim _{k \rightarrow \infty} d\left(b_{k(n+1)}, v\right)=1+\frac{1}{2 i}
$$

On the other hand, clearly,

$$
\lim _{j, k \rightarrow \infty} d\left(b_{j(n-1)}, b_{k(n+1)}\right)=1
$$

Hence

$$
d(x, y)=\lim _{j \rightarrow \infty} d\left(x, b_{j(n-1)}\right)+\lim _{k \rightarrow \infty} d\left(y, b_{k(n+1)}\right)+1<d(x, v)+d(v, y)
$$

Contradiction.
Case $2\left(v=a_{n}\right)$ Since the triangle (x, y, v) is degenerate, for all sufficiently small $\epsilon>0$ there exist ϵ-geodesics σ connecting x to y and passing through v. Then for sufficiently small $\epsilon>0$, every σ also passes through $b_{j(n-1)}$ and $b_{k n}$ for some j, k depending on σ. However, since $j, k \geq 2$,

$$
d\left(b_{j(n-1)}, b_{k n}\right)=\frac{1}{2}+\frac{1}{4 j}+\frac{1}{4 i} \leq \frac{3}{4}<1=\inf _{j, k}\left(d\left(b_{j(n-1)}, v\right)+d\left(v, b_{k n}\right)\right)
$$

Therefore $d(x, y)<d(x, v)+d(v, y)$. Contradiction.

Corollary 6.4 X contains no degenerate triangles (x, y, z), such that

$$
d(x, z)+d(z, y)=d(x, y)
$$

and $\min (d(x, z), d(z, y)) \geq 3$.

Proof of Corollary 6.4 Suppose that such a degenerate triangle exists. We can assume that z is not a vertex. The point z belongs to an edge $e \subset X$. Since length $(e) \leq 1$, for one of the vertices v of e

$$
d(z, v) \leq 1 / 2
$$

Since the triangle (x, y, z) is degenerate, for all ϵ-geodesics $\sigma \in P(x, z), \eta \in P(z, y)$ we have:

$$
e \subset \sigma \cup \eta
$$

provided that $\epsilon>0$ is sufficiently small. Therefore the triangle (x, y, v) is also degenerate. Clearly,

$$
\min (d(x, v), d(y, v)) \geq \min (d(x, z), d(y, z))-1 / 2 \geq 2.5
$$

This contradicts Lemma 6.3.

Hence part (1) of Theorem 6.2 follows.
(2) We consider $X^{2}=X \times X$ with the product metric

$$
d^{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d^{2}\left(x_{1}, x_{2}\right)+d^{2}\left(y_{1}, y_{2}\right)
$$

Then X^{2} is a complete path-metric space. Every degenerate triangle in X^{2} projects to degenerate triangles in both factors. It therefore follows from part (1) that X contains no degenerate triangles with all sides ≥ 18. We leave the details to the reader.

7 Exceptional cases

Theorem 7.1 Suppose that X is a path metric space quasi-isometric to a metric space X^{\prime}, which is either \mathbb{R} or \mathbb{R}_{+}. Then there exists a $(1, A)$-quasi-isometry $X^{\prime} \rightarrow X$.

Proof We first consider the case $X^{\prime}=\mathbb{R}$. The proof is simpler if X is proper, therefore we sketch it first under this assumption. Since X is quasi-isometric to \mathbb{R}, it is 2-ended with the ends E_{+}, E_{-}. Pick two divergent sequences $x_{i} \in E_{+}, y_{i} \in E_{-}$. Then there exists a compact subset $C \subset X$ so that all geodesic segments $\gamma_{i}:=\overline{x_{i} y_{i}}$ intersect C. It then follows from the Arcela-Ascoli theorem that the sequence of segments γ_{i} subconverges to a complete geodesic $\gamma \subset X$. Since X is quasi-isometric to \mathbb{R}, there exists $R<\infty$ such that $X=N_{R}(\gamma)$. We define the $(1, R)$-quasi-isometry $f: \gamma \rightarrow X$ to be the identity (isometric) embedding.

We now give a proof in the general case. Pick a non-principal ultrafilter ω on \mathbb{N} and a base-point $o \in X$. Define X_{ω} as the ω-limit of (X, o). The quasi-isometry $f: \mathbb{R} \rightarrow X$ yields a quasi-isometry $f_{\omega}: \mathbb{R}=\mathbb{R}_{\omega} \rightarrow X_{\omega}$. Therefore X_{ω} is also quasi-isometric to \mathbb{R}.

We have the natural isometric embedding $t: X \rightarrow X_{\omega}$. As above, let E_{+}, E_{-}denote the ends of X and choose divergent sequences $x_{i} \in E_{+}, y_{i} \in E_{-}$. Let γ_{i} denote an $\frac{1}{i}$-geodesic segment in X connecting x_{i} to y_{i}. Then each γ_{i} intersects a bounded subset $B \subset X$. Therefore, by taking the ultralimit of γ_{i} 's, we obtain a complete geodesic $\gamma \subset X_{\omega}$. Since X_{ω} is quasi-isometric to \mathbb{R}, the embedding $\eta: \gamma \rightarrow X_{\omega}$ is a quasi-isometry. Hence $X_{\omega}=N_{R}(\gamma)$ for some $R<\infty$.

For the same reason,

$$
X_{\omega}=N_{D}(\iota(X))
$$

for some $D<\infty$. Therefore the isometric embeddings

$$
\eta: \gamma \rightarrow X_{\omega}, \quad \iota: X \rightarrow X_{\omega}
$$

are $(1, R)$ and $(1, D)$-quasi-isometries respectively. By composing η with the quasiinverse to ι, we obtain a $(1, R+3 D)$-quasi-isometry $\mathbb{R} \rightarrow X$.

The case when X is quasi-isometric to \mathbb{R}_{+}can be treated as follows. Pick a point $o \in X$ and glue two copies of X at o. Let Y be the resulting path metric space. It is easy to see that Y is quasi-isometric to \mathbb{R} and the inclusion $X \rightarrow Y$ is an isometric embedding. Therefore, there exists a ($1, A$)-quasi-isometry $h: Y \rightarrow \mathbb{R}$ and the restriction of h to X yields the ($1, A$)-quasi-isometry from X to the half-line.

Note that the conclusion of Theorem 7.1 is false for path metric spaces quasi-isometric to $\mathbb{R}^{n}, n \geq 2$.

Corollary 7.2 Suppose that X is a path metric space quasi-isometric to \mathbb{R} or \mathbb{R}_{+}. Then $K_{3}(X)$ is contained in the D-neighborhood of ∂K for some $D<\infty$. In particular, $K_{3}(X)$ does not contain the interior of $K=K_{3}\left(\mathbb{R}^{2}\right)$.

Proof Suppose that $f: X \rightarrow X^{\prime}$ is an (L, A)-quasi-isometry, where X^{\prime} is either \mathbb{R} or \mathbb{R}_{+}. According to Theorem 7.1, we can assume that $L=1$. For every triple of points $x, y, z \in X$, after relabeling, we obtain

$$
d(x, y)+d(y, z) \leq d(x, z)+D
$$

where $D=3 A$. Then every triangle in X is D-degenerate. Hence $K_{3}(X)$ is contained in the D-neighborhood of ∂K.

Remark One can construct a metric space X quasi-isometric to \mathbb{R} such that $K_{3}(X)=$ K. Moreover, X is isometric to a curve in \mathbb{R}^{2} (with the metric obtained by the restriction of the metric on \mathbb{R}^{2}). Of course, the metric on X is not a path metric.

Corollary 7.3 Suppose that X is a path metric space. Then the following are equivalent:
(1) $\quad K_{3}(X)$ contains the interior of $K=K_{3}\left(\mathbb{R}^{2}\right)$.
(2) X is not quasi-isometric to the point, \mathbb{R}_{+}and \mathbb{R}.
(3) X is thick.

Proof $(1) \Rightarrow(2)$ by Corollary 7.2. $(2) \Rightarrow(3)$ by Theorem 1.4. $(3) \Rightarrow(1)$ by Theorem 1.3.

Remark The above corollary remains valid under the following assumption on the metric on X, which is weaker than being a path metric:

For every pair of points $x, y \in X$ and every $\epsilon>0$, there exists a $(1, \epsilon)$-quasi-geodesic path $\alpha \in P(x, y)$.

References

[1] KS Brown, Buildings, Springer, New York (1989) MR969123
[2] D Burago, Y Burago, S Ivanov, A course in metric geometry, Graduate Studies in Mathematics 33, American Mathematical Society, Providence, RI (2001) MR1835418
[3] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152, Birkhäuser, Boston (1999) MR1699320
[4] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics 183, Birkhäuser, Boston (2001) MR1792613
[5] M Kapovich, B Leeb, On asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds, Geom. Funct. Anal. 5 (1995) 582-603 MR1339818
[6] J Roe, Lectures on coarse geometry, University Lecture Series 31, American Mathematical Society, Providence, RI (2003) MR2007488

Department of Mathematics, University of California, Davis Davis CA 95616, USA
kapovich@math.ucdavis.edu
http://www.math.ucdavis.edu/~kapovich/

Proposed: Walter Neumann
Seconded: Yasha Eliashberg, Martin Bridson
Accepted: 30 July 2007

