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Triangle inequalities in path metric spaces

MICHAEL KAPOVICH

We study side-lengths of triangles in path metric spaces. We prove that unless such a
space X is bounded, or quasi-isometric to RC or to R , every triple of real numbers
satisfying the strict triangle inequalities, is realized by the side-lengths of a triangle
in X . We construct an example of a complete path metric space quasi-isometric to
R2 for which every degenerate triangle has one side which is shorter than a certain
uniform constant.
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1 Introduction

Given a metric space X define

K3.X / WD f.a; b; c/ 2 R3
C W there exist points x;y; z

with d.x;y/D a; d.y; z/D b; d.z;x/D cg:

Note that K3.R
2/ is the closed convex cone K in R3

C given by the usual triangle
inequalities. On the other hand, if X D R then K3.X / is the boundary of K since all
triangles in X are degenerate. If X has finite diameter, K3.X / is a bounded set. We
refer the reader to [3] and [6] for discussion of the sets K4.X /.

Gromov [3, Page 18] (see also Roe [6]) raised the following question:

Question 1.1 Find reasonable conditions on path metric spaces X , under which
K3.X /DK .

It is not so difficult to see that for a path metric space X quasi-isometric to RC or R , the
set K3.X / does not contain the interior of K , see Section 7. Moreover, every triangle
in such X is D–degenerate for some D <1 and therefore K3.X / is contained in
the D–neighborhood of @K .

Our main result is essentially the converse to the above observation:
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1654 Michael Kapovich

Theorem 1.2 Suppose that X is an unbounded path metric space not quasi-isometric
to RC or R. Then:

(1) K3.X / contains the interior of the cone K .

(2) If, in addition, X contains arbitrary long geodesic segments, then K3.X /DK .

In particular, we obtain a complete answer to Gromov’s question for geodesic metric
spaces, since an unbounded geodesic metric space clearly contains arbitrarily long
geodesic segments. In Section 6, we give an example of a (complete) path metric space
X quasi-isometric to R2 , for which

K3.X /¤K:

Therefore, Theorem 1.2 is the optimal result.

It appears that very little can be said about K3.X / for general metric spaces even
under the assumption of uniform contractibility. For instance, if X is the paraboloid of
revolution in R3 with the induced metric, then K3.X / does not contain the interior of
K . The space X in this example is uniformly contractible and is not quasi-isometric
to R and RC .

The proof of Theorem 1.2 is easier under the assumption that X is a proper metric
space: In this case X is necessarily complete, geodesic metric space. Moreover, every
unbounded sequence of geodesic segments oxi in X yields a geodesic ray. The reader
who does not care about the general path metric spaces can therefore assume that X is
proper. The arguments using the ultralimits are then replaced by the Arcela–Ascoli
theorem.

Below is a sketch of the proof of Theorem 1.2 under the extra assumption that X is
proper. Since the second assertion of Theorem 1.2 is clear, we have to prove only
the first statement. To motivate the use of tripods in the proof we note the following:
Suppose that X is itself isometric to the tripod with infinitely long legs, i.e., three rays
glued at their origins. Then it is easy to see that K3.X /DK .

We define R–tripods T �X , as unions  [� of two geodesic segments ; ��X ,
having the lengths �R and � 2R respectively, so that:

(1)  \�D o is the end-point of  .

(2) o is distance �R from the ends of �.

(3) o is a nearest-point projection of  to �.

The space X is called R–thin if it contains no R–tripods. The space X is called thick
if it is not R–thin for any R<1.

We break the proof of Theorem 1.2 in two parts: Theorem 1.3 and Theorem 1.4.
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Theorem 1.3 If X is thick then K3.X / contains the interior of K3.R
2/.

The proof of this theorem is mostly the coarse topology. The side-lengths of triangles
in X determine a continuous map

LW X 3
!K

Then K3.X /DL.X 3/. Given a point � in the interior of K , we consider an R–tripod
T � X for sufficiently large R. We then restrict to triangles in X with vertices in
T . We construct a 2–cycle † 2 Z2.T

3;Z2/ whose image under L� determines a
nontrivial element of H2.K n �;Z2/. Since T 3 is contractible, there exists a 3–chain
� 2 C3.T

3;Z2/ with the boundary †. Therefore the support of L�.�/ contains the
point � , which implies that � belongs to the image of L.

Remark Gromov observed in [3] that uniformly contractible metric spaces X have
large K3.X /. Although uniform contractibility is not relevant to our proof, the key
argument here indeed has the coarse topology flavor.

Theorem 1.4 If X is a thin unbounded path metric space, then X is quasi-isometric
to R or RC .

Assuming that X is thin, unbounded and is not quasi-isometric to R and to RC , we
construct three diverging geodesic rays �i in X , i D 1; 2; 3. Define �i � X to be
the geodesic segment connecting �1.i/ and �2.i/. Take i to be the shortest segment
connecting �3.i/ to �i . Then i [ �i is an Ri –tripod with limi Ri D 1, which
contradicts the assumption that X is thin.

Acknowledgements During this work the author was partially supported by the NSF
grants DMS-04-05180 and DMS-05-54349. Most of this work was done when the
author was visiting the Max Plank Institute for Mathematics in Bonn. I am grateful to
the referee for useful comments and corrections.

2 Preliminaries

Convention 2.1 All homology will be taken with the Z2 –coefficients.

In the paper we will talk about ends of a metric space X . Instead of looking at the
noncompact complementary components of relatively compact open subsets of X as it is
usually done for topological spaces, we will define ends of X by considering unbounded
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complementary components of bounded subsets of X . With this modification, the
usual definition goes through.

If x;y are points in a topological space X , we let P .x;y/ denote the set of continuous
paths in X connecting x to y . For ˛ 2 P .x;y/; ˇ 2 P .y; z/ we let ˛ �ˇ 2 P .x; z/

denote the concatenation of ˛ and ˇ . Given a path ˛W Œ0; a�!X we let x̨ denote the
reverse path

x̨.t/D ˛.a� t/:

2.1 Triangles and their side-lengths

We set K WDK3.R
2/; it is the cone in R3 given by

f.a; b; c/ W a� bC c; b � aC c; c � aC bg:

We metrize K by using the maximum-norm on R3 .

By a triangle in a metric space X we will mean an ordered triple �D .x;y; z/ 2X 3 .
We will refer to the numbers d.x;y/; d.y; z/; d.z;x/ as the side-lengths of �, even
though these points are not necessarily connected by geodesic segments. The sum of
the side-lengths of � will be called the perimeter of �.

We have the continuous map

LW X 3
!K

which sends the triple .x;y; z/ of points in X to the triple of side-lengths

.d.x;y/; d.y; z/; d.z;x//:

Then K3.X / is the image of L.

Let � � 0. We say that a triple .a; b; c/ 2 K is �–degenerate if, after reordering if
necessary the coordinates a; b; c , we obtain

aC � � bC c:

Therefore every �–degenerate triple is within distance � � from the boundary of K .
A triple which is not �–degenerate is called �–nondegenerate. A triangle in a metric
space X whose side-lengths form an �–degenerate triple, is called �–degenerate. A
0–degenerate triangle is called degenerate.
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2.2 Basic notions of metric geometry

For a subset E in a metric space X and R <1 we let NR.E/ denote the metric
R–neighborhood of E in X :

NR.E/D fx 2X W d.x;E/�Rg:

Definition 2.2 Given a subset E in a metric space X and � > 0, we define the
�–nearest–point projection p D pE;� as the map which sends X to the set 2E of
subsets in E :

y 2 p.x/() d.x;y/� d.x; z/C �; 8z 2E:

If � D 0, we will abbreviate pE;0 to pE .

2.2.1 Quasi-isometries Let X;Y be metric spaces. A map f W X ! Y is called an
.L;A/–quasi-isometric embedding (for L� 1 and A 2 R) if for every pair of points
x1;x2 2X we have

L�1d.x1;x2/�A� d.f .x1/; f .x2//�Ld.x1;x2/CA:

A map f is called an .L;A/–quasi-isometry if it is an .L;A/–quasi-isometric em-
bedding so that NA.f .X // D Y . Given an .L;A/–quasi-isometry, we have the
quasi-inverse map

xf W Y !X

which is defined by choosing for each y 2 Y a point x 2X so that d.f .x/;y/�A.
The quasi-inverse map xf is an .L; 3A/–quasi-isometry. An .L;A/–quasi-isometric
embedding f of an interval I � R into a metric space X is called an .L;A/–quasi-
geodesic in X . If I D R, then f is called a complete quasi-geodesic.

A map f W X ! Y is called a quasi-isometric embedding (resp. a quasi-isometry) if
it is an .L;A/–quasi-isometric embedding (resp. .L;A/–quasi-isometry) for some
L� 1;A 2 R.

Every quasi-isometric embedding Rn ! Rn is a quasi-isometry, see for instance
Kapovich–Leeb [5].

2.2.2 Geodesics and path metric spaces A geodesic in a metric space is an isometric
embedding of an interval into X . By abusing the notation, we will identify geodesics
and their images. A metric space is called geodesic if any two points in X can
be connected by a geodesic. By abusing the notation we let xy denote a geodesic
connecting x to y , even though this geodesic is not necessarily unique.
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The length of a continuous curve  W Œa; b�!X in a metric space, is defined as

length. /D sup
n nX

iD1

d. .ti�1/;  .ti// W aD t0 < t1 < � � �< tn D b
o
:

A path  is called rectifiable if length. / <1.

A metric space X is called a path metric space (or a length space) if for every pair of
points x;y 2X we have

d.x;y/D infflength. / W  2 P .x;y/g:

We say that a curve  W Œa; b�!X is �–geodesic if

length. /� d. .a/;  .b//C �:

It follows that every �–geodesic is .1; �/–quasi-geodesic. We refer the reader to
Burago–Ivanov [2] and Gromov [3] for the further details on path metric spaces.

2.3 Ultralimits

Our discussion of ultralimits of sequences of metric space will be somewhat brief, we
refer the reader to Burago–Ivanov [2], Gromov [3], Kapovich [4], Kapovich–Leeb [5]
and Roe [6] for the detailed definitions and discussion.

Choose a nonprincipal ultrafilter ! on N. Suppose that we are given a sequence of
pointed metric spaces .Xi ; oi/, where oi 2Xi . The ultralimit

.X! ; o!/D !–lim.Xi ; oi/

is a pointed metric space whose elements are equivalence classes x! of sequences
xi 2Xi . The distance in X! is the !–limit:

d.x! ;y!/D !–lim d.xi ;yi/:

One of the key properties of ultralimits which we will use repeatedly is the following.
Suppose that .Yi ;pi/ is a sequence of pointed metric spaces. Assume that we are given
a sequence of .Li ;Ai/–quasi-isometric embeddings

fi W Xi! Yi

so that !–lim d.f .oi/;pi// <1 and

!–lim Li DL<1; !–lim Ai D 0:
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Then there exists the ultralimit f! of the maps fi , which is an .L; 0/–quasi-isometric
embedding

f! W X!! Y! :

In particular, if LD 1, then f! is an isometric embedding.

2.3.1 Ultralimits of constant sequences of metric spaces Suppose that X is a path
metric space. Consider the constant sequence Xi D X for all i . If X is a proper
metric space and oi is a bounded sequence, the ultralimit X! is nothing but X itself.
In general, however, it could be much larger. The point of taking the ultralimit is that
some properties of X improve after passing to X! .

Lemma 2.3 X! is a geodesic metric space.

Proof Points x! ;y! in X! are represented by sequences .xi/; .yi/ in X . For each
i choose a 1

i
–geodesic curve i in X connecting xi to yi . Then

! WD !–lim i

is a geodesic connecting x! to y! .

Similarly, every sequence of 1
i

–geodesic segments yxi in X satisfying

!–lim d.y;xi/D1;

yields a geodesic ray ! in X! emanating from y! D .y/.

If oi 2X is a bounded sequence, then we have a natural (diagonal) isometric embedding
X !X! , given by the map which sends x 2X to the constant sequence .x/.

Lemma 2.4 For every geodesic segment ! D x!y! in X! there exists a sequence
of 1= i –geodesics i �Xi , so that

!-lim i D ! :

Proof Subdivide the segment ! into n equal subsegments

z!;j z!;jC1; j D 1; : : : ; n;

where x! D z!;1;y! D z!;nC1 . Then the points z!;j are represented by sequences
.zk;j / 2X . It follows that for !–all k , we haveˇ̌̌̌

ˇ̌ nX
jD1

d.zk;j ; zk;jC1/� d.xk ;yk/

ˇ̌̌̌
ˇ̌< 1

2i
:
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Connect the points zk;j ; zk;jC1 by 1
2i

–geodesic segments ˛k;j . Then the concatenation

˛n D ˛k;1 � � � � �˛k;n

is an 1
i

–geodesic connecting xk and yk , where

x! D .xk/; y! D .yk/:

It is clear from the construction, that, if given i we choose sufficiently large nD n.i/,
then

!–lim˛n.i/ D :

Therefore we take i WD ˛n.i/ .

2.4 Tripods

Our next goal is to define tripods in X , which will be our main technical tool. Suppose
that x;y; z; o are points in X and � is an �–geodesic segment connecting x to y , so
that o 2 � and o 2 p�;�.z/. Then the path � is the concatenation ˛[ˇ , where ˛; ˇ
are �–geodesics connecting x;y to o. Let  be an �–geodesic connecting z to o.

Definition 2.5 (1) We refer to ˛[ˇ[ as a tripod T with the vertices x;y; z , legs
˛; ˇ;  , and the center o.

(2) Suppose that the length of ˛; ˇ;  is at least R. Then we refer to the tripod T as
.R; �/–tripod. An .R; 0/–tripod will be called simply an R–tripod.

The reader who prefers to work with proper geodesic metric spaces can safely assume
that � D 0 in the above definition and thus T is a geodesic tripod.

Definition 2.6 Let R 2 Œ0;1/; � 2 Œ0;1/. A metric space is called .R; �/–thin if it
contains no .R; �/–tripods. We will refer to .R; 0/–thin spaces as R–thin. A metric
space which is not .R; �/–thin for any R<1, � > 0 is called thick.

Therefore, a path metric space is thick if and only if it contains a sequence of .Ri ; �i/–
tripods with

lim
i

Ri D1; lim
i
�i D 0:
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Figure 1: A tripod

2.5 Tripods and ultralimits

Suppose that a path metric space X is thick. Thus, X contains a sequence of .Ri ; �i/–
tripods Ti with

lim
i

Ri D1; lim
i
�i D 0;

so that the center of Ti is oi and the legs are ˛i ; ˇi ; i . Then the tripods Ti clearly
yield a geodesic .1; 0/–tripod T! in .X! ; o!/ D !–lim.X; oi/. The tripod T! is
the union of three geodesic rays ˛! ; ˇ! ; ! emanating from o! , so that

o! D p�!
.!/:

Here �! D ˛! [ˇ! . In particular, X! is thick.

Conversely, in view of Lemma 2.4, we have:

Lemma 2.7 If X is .R; �/–thin for � > 0 and R<1, then X! is R0–thin for every
R0 >R.

Proof Suppose that X! contains an R0–tripod T! . Then T! appears as the ultralimit
of
�
R0� 1

i
; 1

i

�
–tripods in X . This contradicts the assumption that X is .R; �/–thin.

Let � W Œa; b�!X be a rectifiable curve in X parameterized by its arc-length. We let
d� denote the path metric on Œa; b� which is the pull-back of the path metric on X . By
abusing the notation, we denote by d the restriction to � of the metric d . Note that,
in general, d is only a pseudo-metric on Œa; b� since � need not be injective. However,
if � is injective then d is a metric.
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We repeat this construction with respect to the tripods: Given a tripod T � X , define
an abstract tripod Tmod whose legs have the same length as the legs of T . We have a
natural map

� W Tmod!X

which sends the legs of Tmod to the respective legs of T , parameterizing them by the
arc-length. Then Tmod has the path metric dmod obtained by pull-back of the path
metric from X via � . We also have the restriction pseudo-metric d on Tmod :

d.A;B/D d.�.A/; �.B//:

Observe that if � D 0 and X is a tree then the metrics dmod and d on T agree.

Lemma 2.8 d � dmod � 3d C 6�:

Proof The inequality d � dmod is clear. We will prove the second inequality. If
A;B 2 ˛[ˇ or A;B 2  then, clearly,

dmod.A;B/� d.A;B/C �;

since these curves are �–geodesics. Therefore, consider the case when A 2  and
B 2 ˇ . Then

D WD dmod.A;B/D t C s;

where t D d .A; o/; s D dˇ.o;B/.

Case 1 t � 1
3
D . Then, since o 2 ˛[ˇ is �–nearest to A, it follows that

1
3
D � t � d.A; o/C � � d.A;B/C 2�:

Hence
dmod.A;B/D

3D
3
� 3.d.A;B/C 2�/D 3d.A;B/C 6�;

and the assertion follows in this case.

Case 2 t < 1
3
D . By the triangle inequality,

D� t D s � d.o;B/C � � d.o;A/C d.A;B/C � � t C 2�C d.A;B/:

Hence
1
3
D DD� 2

3
D �D� 2t � 2�C d.A;B/;

and
dmod.A;B/D

3D
3
� 3d.A;B/C 6�:
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3 Topology of configuration spaces of tripods

We begin with the model tripod T with the legs ˛i , i D 1; 2; 3, and the center o.
Consider the configuration space Z WD T 3 n diag , where diag is the small diagonal

f.x1;x2;x3/ 2 T 3
W x1 D x2 D x3g:

We recall that the homology is taken with the Z2 –coefficients.

Proposition 3.1 H1.Z/D 0.

Proof T 3 is the union of cubes

Qijk D ˛i � j̨ �˛k ;

where i; j ; k 2 f1; 2; 3g. Identify each cube Qijk with the unit cube in the positive
octant in R3 . Then in the cube Qijk (i; j ; k 2 f1; 2; 3g) we choose the equilateral
triangle �ijk given by the intersection of Qijk with the hyperplane

xCyC z D 1

in R3 . We adopt the convention that if exactly one of the indices i; j ; k is zero (say,
i ), then �ijk stands for the 1–simplex

f.0;y; z/ W yC z D 1g\ fog � j̨ �˛k :

Therefore,
@�ijk D �0jk C �i0k C �ij0:

Define the 2–dimensional simplicial complex

S WD
[
ijk

�ijk :

This complex is homeomorphic to the link of .o; o; o/ in T 3 . Therefore Z is homotopy-
equivalent to

W WD S n .�111[ �222[ �333/:

Consider the loops i WD @�iii , i D 1; 2; 3.

Lemma 3.2 (1) The homology classes Œi �; i D 1; 2; 3 generate H1.W /.

(2) Œ1�D Œ2�D Œ3� in H1.W /.
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Proof of Lemma 3.2 (1) We first observe that S is the 3–fold join of a 3–element
set with itself and, therefore, is simply-connected. Alternatively, note that S a 2–
dimensional spherical building. Hence, S is homotopy-equivalent to a bouquet of
2–spheres (see Brown [1, Theorem 2, page 93]), which implies that H1.S/D 0. Now
the first assertion follows from the long exact sequence of the pair .S;W /.

(2) Let us verify that Œ1�D Œ2�. The subcomplex

S12 D S \ .˛1[˛2/
3

is homeomorphic to the 2–sphere. Therefore S12\W is the annulus bounded by the
circles 1 and 2 . Hence Œ1�D Œ2�.

Lemma 3.3
Œ1�C Œ2�C Œ3�D 0

in H1.W /.

Proof of Lemma 3.3 Let B0 denote the 2–chainX
fijkg2A

�ijk ;

where A is the set of triples of distinct indices i; j ; k 2 f1; 2; 3g. Let

B00 WD

3X
iD1

.�ii.iC1/C �i.iC1/i C �.iC1/ii/

where we set 3C 1 WD 1. We note that

1C 2C 3 D @�;

where

�D

3X
iD1

�iii :

Hence, the assertion of lemma is equivalent to

@.B0CB00C�/D 0:

To prove this, it suffices to show that every 1–simplex in S , appears in @.B0CB00C�/

exactly twice. Since the chain B0CB00C� is preserved by the permutation of the
indices i; j ; k , it suffices to consider the 1–simplex �ij0 where j D i C 1 or i D j .

Suppose that j D i C 1. Then the 1–simplex �ij0 appears in @.B0CB00C�/ exactly
twice: in @�ijk (where k ¤ i ¤ j ) and in @�i.iC1/i .
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Similarly, if i D j , then the 1–simplex �ii0 also appears in @.B0CB00C�/ exactly
twice: in @�iii and in @�ii.iC1/ .

By combining these lemmata we obtain the assertion of the theorem.

3.0.1 Application to tripods in metric spaces Consider an .R; �/–tripod T in a
metric space X and its standard parametrization � W Tmod! T .

There is an obvious scaling operation

u 7! r �u

on the space .Tmod; dmod/ which sends each leg to itself and scales all distances by
r 2 Œ0;1/. It induces the map T 3

mod! T 3
mod , denoted t 7! r � t , t 2 T 3

mod .

We have the functions

LmodW T
3

mod!K Lmod.x;y; z/D .dmod.x;y/; dmod.y; z/; dmod.z;x//;

LW T 3
mod!K L.x;y; z/D .d.x;y/; d.y; z/; d.z;x//

computing side-lengths of triangles with respect to the metrics dmod and d .

For � � 0 set
K� WD f.a; b; c/ 2K W aC bC c > �g:

Define
T 3.�/ WDL�1.K�/; T 3

mod.�/ WDL�1
mod.K�/:

Thus
T 3

mod.0/D T 3.0/D T 3
n diag:

Lemma 3.4 For every � � 0, the space T 3
mod.�/ is homeomorphic to T 3

mod.0/.

Proof Recall that S is the link of .o; o; o/ in T 3 . Then scaling defines homeomor-
phisms

T 3
mod.�/! S �R! T 3

mod.0/:

Corollary 3.5 For every � � 0, H1.T
3

mod.�/;Z2/D 0.

Corollary 3.6 The map induced by inclusion

H1.T
3.3�C 18�//!H1.T

3.�//

is zero.
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Proof Recall that
d � dmod � 3d C 6�:

Therefore
T 3.3�C 18�/� T 3

mod.�/� T 3.�/:

Now the assertion follows from the previous corollary.

4 Proof of Theorem 1.3

Suppose that X is thick. Then for every R<1; � > 0 there exists an .R; �/–tripod
T with the legs ˛; ˇ;  . Without loss of generality we may assume that the legs of T

have length R. Let � W Tmod! T denote the standard map from the model tripod onto
T . We will continue with the notation of the previous section.

Given a space E and map f W E! T 3
mod (or a chain � 2 C�.T

3
mod/), let yf (resp. y� )

denote the map L ı f from E to K (resp. the chain L�.�/ 2 C�.K/). Similarly, we
define yfmod and y�mod using the map Lmod instead of L.

Every loop �W S1! T 3
mod , determines the map of the 2–disk

ƒW D2
! T 3

mod;

given by
ƒ.r; �/D r ��.�/

where we are using the polar coordinates .r; �/ on the unit disk D2 . Triangulating
both S1 and D2 and assigning the coefficient 1 2 Z2 to each simplex, we regard both
� and ƒ as singular chains in C�.T

3
mod/.

We let a; b; c denote the coordinates on the space R3 containing the cone K . Let
� D .a0; b0; c0/ be a ı–nondegenerate point in the interior of K for some ı > 0; set
r WD a0C b0C c0 .

Suppose that there exists a loop � in T 3
mod such that:

(1) y�.�/ is �–degenerate for each � . Moreover, each triangle �.�/ is either contained
in ˛mod[ˇmod or has only two distinct vertices.

In particular, the image of y� is contained in

K nRC � �:

(2) The image of y� is contained in K� , where �D 3r C 18� .

(3) The homology class Œy�� is nontrivial in H1.K nRC � �/.
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y�yB

K�

Kr

K

yƒ

�

Figure 2: Chains yƒ and yB

Lemma 4.1 If there exists a loop � satisfying the assumptions (1)–(3), and � < ı=2,
then � belongs to K3.X /.

Proof We have the 2–chains

yƒ; yƒmod 2 C2.K n �/;

with
y�D @yƒ; y�mod D @yƒmod 2 C1.K�/:

Note that the support of y�mod is contained in @K and the 2–chain yƒmod is obtained by
coning off y�mod from the origin. Then, by Assumption (1), for every w 2D2 :

(i) Either d.yƒ.w/; yƒmod.w//� � .

(ii) Or yƒ.w/; yƒmod.w/ belong to the common ray in @K .

Since d.�; @K/ > ı � 2� , it follows that the straight-line homotopy Ht between the
maps

yƒ; yƒmodW D
2
!K
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misses � . Since K� is convex, Ht .S
1/�K� for each t 2 Œ0; 1�, and we obtain

Œyƒmod�D Œyƒ� 2H2.K n �;K�/:

Assumptions (2) and (3) imply that the relative homology class

Œyƒmod� 2H2.K n �;K�/

is nontrivial. Hence
Œyƒ� 2H2.K n �;K�/

is nontrivial as well. Since � D 3r C 18� , according to Corollary 3.6, � bounds a
2–chain

B 2 C2.T
3.r//:

Set † WD BCƒ. Then the absolute class

Œy†�D ŒyƒC yB� 2H2.K n �/

is also nontrivial. Since T 3
mod is contractible, there exists a 3–chain � 2C3.T

3
mod/ such

that
@� D†:

Therefore the support of y� contains the point � . Since the map

LW T 3
!K

is the composition of the continuous map �3W T 3 ! X 3 with the continuous map
LW X 3!K , it follows that � belongs to the image of the map LW X 3!K and hence
� 2K3.X /.

Our goal therefore is to construct a loop �, satisfying Assumptions (1)–(3).

Let T �X be an .R; �/–tripod with the legs ˛; ˇ;  of the length R, where � � ı=2.
We let � W Tmod!T denote the standard parametrization of T . Let x;y; z; o denote the
vertices and the center of Tmod . We let ˛mod.s/; ˇmod.s/; mod.s/W Œ0;R�!Tmod denote
the arc-length parameterizations of the legs of Tmod , so that ˛.R/Dˇ.R/D  .R/D o.

We will describe the loop � as the concatenation of seven paths

pi.s/D .x1.s/;x2.s/;x3.s//; i D 1; : : : ; 7:

We let aD d.x2;x3/; b D d.x3;x1/; c D d.x1;x2/.

(1) p1.s/ is the path starting at .x;x; o/ and ending at .o;x; o/, given by

p1.s/D .˛mod.s/;x; o/:

Note that for p1.0/ and p1.R/ we have c D 0 and b D 0 respectively.
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(2) p2.s/ is the path starting at .o;x; o/ and ending at .y;x; o/, given by

p2.s/D . x̌mod.s/;x; o/:

(3) p3.s/ is the path starting at .y;x; o/ and ending at .y; o; o/, given by

p3.s/D .y; ˛mod.s/; o/:

Note that for p3.R/ we have aD 0.

(4) p4.s/ is the path starting at .y; o; o/ and ending at .y;y; o/, given by

p4.s/D .y; x̌mod.s/; o/:

Note that for p4.R/ we have c D 0. Moreover, if ˛ � x̌ is a geodesic, then

d.�.x/; �.o//D d.�.y/; �.o//) yp4.R/D yp1.0/

and therefore yp1 � � � � � yp4 is a loop.

(5) p5.s/ is the path starting at .y;y; o/ and ending at .y;y; z/ given by

.y;y; xmod.s//:

(6) p6.s/ is the path starting at .y;y; z/ and ending at .x;x; z/ given by

.ˇmod � x̨mod; ˇmod � x̨mod; z/:

(7) p7.s/ is the path starting at .x;x; z/ and ending at .x;x; o/ given by

.x;x; mod.s//:

Thus
� WD p1 � � � � �p7

is a loop.

Since ˛ � ˇ and  are �–geodesics in X , each path pi.s/ determines a family of
�–degenerate triangles in .Tmod; d/. It is clear that Assumption (1) is satisfied.

The class Œy�mod� is clearly nontrivial in H1.@K n 0/. See Figure 3. Therefore, since
� � ı=2,

Œy��D Œy�mod� 2H1.K nRC � �/ n f0g;

see the proof of Lemma 4.1. Thus Assumption (2) holds.

Lemma 4.2 The image of y� is contained in the closure of K�0 , where

�0 D
2

3
R� 4�:
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yp2

yp3

yp1

yp5

yp7

yp4

yp6

K

aD 0

b D 0c D 0

0

y�mod

Figure 3: The loop y�mod

Proof We have to verify that for each i D 1; : : : ; 7 and every s 2 Œ0;R�, the perimeter
(with respect to the metric d ) of each triangle pi.s/ 2 T 3

mod is at least �0 . These
inequalities follow directly from Lemma 2.8 and the description of the paths pi .

Therefore, if we take

R> 9
2
r � 33�

then the image of y� is contained in

K3rC18�

and Assumption (3) is satisfied. Theorem 1.3 follows.
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5 Quasi-isometric characterization of thin spaces

The goal of this section is to prove Theorem 1.4. Suppose that X is thin. The proof is
easier if X is a proper geodesic metric space, in which case there is no need considering
the ultralimits. Therefore, we recommend the reader uncomfortable with this technique
to assume that X is a proper geodesic metric space.

Pick a base-point o 2X , a nonprincipal ultrafilter ! and consider the ultralimit

X! D !–lim.X; o/

of the constant sequence of pointed metric spaces. If X is a proper geodesic metric
space then, of course, X! DX . In view of Lemma 2.7, the space X! is R–thin for
some R.

Assume that X is unbounded. Then X contains a sequence of 1= i –geodesic paths
i D oxi with

!–lim d.o;xi/D1;

which yields a geodesic ray �1 in X! emanating from the point o! .

Lemma 5.1 Let � be a geodesic ray in X! emanating from a point O . Then the
neighborhood E DNR.�/ is an end E.�/ of X! .

Proof Suppose that ˛ is a path in X! nB2R.O/ connecting a point y 2X! nE to
a point x 2 E . Then there exists a point z 2 ˛ such that d.z; �/ D R. Since X!
contains no R–tripods,

d.p�.z/;O/ <R:

Therefore d.z;O/ < 2R. Contradiction.

Set E1 WDE.�1/. If the image of the natural embedding �W X !X! is contained in a
finite metric neighborhood of �1 , then we are done, as X is quasi-isometric to RC .
Otherwise, there exists a sequence yn 2X such that:

!–lim d.�.yn/; �1/D1:

Consider the 1
n

–geodesic paths ˛n 2 P .o;yn/. The sequence .˛n/ determines a
geodesic ray �2 �X! emanating from o! . Then there exists s � 4R such that

d.˛n.s/; i/� 2R

for !–all n and !–all i . Therefore, for t � s , �2.t/ …E.�1/. By applying Lemma
5.1 to �2 we conclude that X! has an end E2DE.�2/DNR.�2/. Since E1;E2 are
distinct ends of X! , E1\E2 is a bounded subset. Let D denote the diameter of this
intersection.
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Lemma 5.2 (1) For every pair of points xi D �i.ti/, i D 1; 2, we have

x1x2 �ND=2C2R.�1[ �2/:

(2) �1[ �2 is a quasi-geodesic.

Proof Consider the points xi as in Part 1. Our goal is to get a lower bound on
d.x1;x2/. A geodesic segment x1x2 has to pass through the ball B.o! ; 2R/; i D 1; 2,
since this ball separates the ends E1;E2 . Let yi 2 x1x2\B.o! ; 2R/ be such that

xiyi �Ei ; i D 1; 2:

Then

d.y1;y2/�DC 4R;

d.xi ;yi/� ti � 2R;

and xiyi �NR.�i/; i D 1; 2:

This implies the first assertion of Lemma. Moreover,

d.x1;x2/� d.x1;y1/C d.x2;y2/� t1C t2� 4RD d.x1;x2/� 4R:

Therefore �1[ �2 is a .1; 4R/–quasi-geodesic.

If �.X / is contained in a finite metric neighborhood of �1[ �2 , then, by Lemma 5.2,
X is quasi-isometric to R. Otherwise, there exists a sequence zk 2X such that

!–lim d.�.zk/; �1[ �2/D1:

By repeating the construction of the ray �2 , we obtain a geodesic ray �3 � X!
emanating from the point o! , so that �3 is not contained in a finite metric neighborhood
of �1[ �2 . For every t3 , the nearest-point projection of �3.t3/ to

ND=2C2R.�1[ �2/

is contained in
B2R.o!/:

Therefore, in view of Lemma 5.2, for every pair of points �i.ti/ as in that lemma, the
nearest-point projection of �3.t3/ to �1.t1/�2.t2/ is contained in

B4RCD.o!/:

Hence, for sufficiently large t1; t2; t3 , the points �i.ti/, i D 1; 2; 3 are vertices of an
R–tripod in X . This contradicts the assumption that X! is R–thin.

Therefore X is either bounded, or is quasi-isometric to a RC or to R.
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6 Examples

Theorem 6.1 There exist an (incomplete) 2–dimensional Riemannian manifold M

quasi-isometric to R, so that:

(1) K3.M / does not contain @K3.R
2/.

(2) For the Riemannian product M 2 DM �M , K3.M
2/ does not contain @K3.R

2/

either.

Moreover, there exists D <1 such that for every degenerate triangle in M and M 2 ,
at least one side is �D .

Proof (1) We start with the open concentric annulus A� R2 , which has the inner
radius R1 > 0 and the outer radius R2 <1. We give A the flat Riemannian metric
induced from R2 . Let M be the universal cover of A, with the pull-back Riemannian
metric. Since M admits a properly discontinuous isometric action of Z with the
quotient of finite diameter, it follows that M is quasi-isometric to R. The metric
completion SM of M is diffeomorphic to the closed bi-infinite flat strip. Let @1M

denote the component of the boundary of SM which covers the inner boundary of A

under the map of metric completions

SM ! xA:

As a metric space, SM is CAT .0/, therefore it contains a unique geodesic between any
pair of points. However, for any pair of points x;y 2M , the geodesic  D xy � SM

is the union of subsegments
1[ 2[ 3

where 1; 3�M , 2� @1M , and the lengths of 1; 3 are at most D0D

q
R2

2
�R2

1
.

Hence, for every degenerate triangle .x;y; z/ in M , at least one side is �D0 .

(2) We observe that the metric completion of M 2 is SM � SM ; in particular, it is
again a CAT .0/ space. Therefore it has a unique geodesic between any pair of points.
Moreover, geodesics in SM � SM are of the form

.1.t/; 2.t//

where i , i D 1; 2 are geodesics in SM . Hence for every geodesic segment  � SM � SM ,
the complement  n @ SM 2 is the union of two subsegments of length �

p
2D0 each.

Therefore for every degenerate triangle in M 2 , at least one side is �
p

2D0 .

Remark The manifold M 2 is, of course, quasi-isometric to R2 .
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A

R1

M yx

@1M

Figure 4: Geodesics in SM

Our second example is a graph-theoretic analogue of the Riemannian manifold M .

Theorem 6.2 There exists a complete path metric space X (a metric graph) quasi-
isometric to R so that:

(1) K3.X / does not contain @K3.R
2/.

(2) K3.X
2/ does not contain @K3.R

2/.

Moreover, there exists D <1 such that for every degenerate triangle in X and X 2 , at
least one side is �D .

Proof (1) We start with the disjoint union of oriented circles ˛i of the length 1C 1
i

,
i 2 I D N n f2g. We regard each ˛i as a path metric space. For each i pick a point
oi 2 ˛i and its antipodal point bi 2 ˛i . We let ˛Ci be the positively oriented arc of ˛i

connecting oi to bi . Let ˛�i be the complementary arc.
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Consider the bouquet Z of ˛i ’s by gluing them all at the points oi . Let o 2Z be the
image of the points oi . Next, for every pair i; j 2 I attach to Z the oriented arc ˇij

of the length
1
2
C

1
4

�
1
i
C

1
j

�
connecting bi and bj and oriented from bi to bj if i < j . Let Y denote the resulting
graph. We give Y the path metric. Then Y is a complete metric space, since it is a
metric graph where the length of every edge is at least 1=2 > 0. Note also that the
length of every edge in Y is at most 1.

o

˛iC1

bi�1

˛C
i�1

˛�i�1

˛i

bi

biC1

Y

ˇ.i�1/.iC1/

ˇi.iC1/

ˇ.i�1/i

Figure 5: The metric space Y

The space X is the infinite cyclic regular cover over Y defined as follows. Take the
maximal subtree

T D
[
i2I

˛Ci � Y:

Every oriented edge of Y nT determines a free generator of G D �1.Y; o/. Define the
homomorphism �W G! Z by sending every free generator to 1. Then the covering
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X ! Y is associated with the kernel of � . (This covering exists since Y is locally
contractible.)

We lift the path metric from Y to X , thereby making X a complete metric graph. We
label vertices and edges of X as follows.

(i) Vertices an which project to o. The cyclic group Z acts simply transitively on
the set of these vertices thereby giving them the indices n 2 Z.

(ii) The edges ˛˙i lift to the edges ˛Cin; ˛
�
in incident to the vertices an and anC1

respectively.

(iii) The intersection ˛Cin \ ˛
�
i.nC1/

is the vertex bin which projects to the vertex
bi 2 ˛i .

(iv) The edge ˇijn connecting bin to bj.nC1/ which projects to the edge ˇij � Y .

an anC1 anC2bin

X

bj.n�1/ bk.nC1/˛Cn ˛�
nC1

ˇiknˇijn

Figure 6: The metric space X

Lemma 6.3 X contains no degenerate triangles .x;y; v/, so that v is a vertex,

d.x; v/C d.v;y/D d.x;y/

and min.d.x; v/; d.v;y// > 2.

Proof of Lemma 6.3 Suppose that such degenerate triangles exist.

Case 1 (v D bin ) Since the triangle .x;y; v/ is degenerate, for all sufficiently small
� > 0 there exist �–geodesics � connecting x to y and passing through v .

Since d.x; v/; d.v;y/ > 2, it follows that for sufficiently small � > 0, � D �.�/ also
passes through bj.n�1/ and bk.nC1/ for some j ; k depending on � . We will assume
that as �! 0, both j and k diverge to infinity, leaving the other cases to the reader.
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Therefore

d.x; v/D lim
j!1

.d.x; bj.n�1//C d.bj.n�1/; v//;

d.v;y/D lim
k!1

.d.y; bk.nC1//C d.bk.nC1/; v//:

Then

lim
j!1

d.bj.n�1/; v/C lim
k!1

d.bk.nC1/; v/D 1C
1

2i
:

On the other hand, clearly,

lim
j ;k!1

d.bj.n�1/; bk.nC1//D 1:

Hence

d.x;y/D lim
j!1

d.x; bj.n�1//C lim
k!1

d.y; bk.nC1//C 1< d.x; v/C d.v;y/:

Contradiction.

Case 2 (v D an ) Since the triangle .x;y; v/ is degenerate, for all sufficiently small
� > 0 there exist �–geodesics � connecting x to y and passing through v . Then for
sufficiently small � > 0, every � also passes through bj.n�1/ and bkn for some j ; k

depending on � . However, since j ; k � 2,

d.bj.n�1/; bkn/D
1

2
C

1

4j
C

1

4i
�

3

4
< 1D inf

j ;k
.d.bj.n�1/; v/C d.v; bkn//:

Therefore d.x;y/ < d.x; v/C d.v;y/. Contradiction.

Corollary 6.4 X contains no degenerate triangles .x;y; z/, such that

d.x; z/C d.z;y/D d.x;y/

and min.d.x; z/; d.z;y//� 3.

Proof of Corollary 6.4 Suppose that such a degenerate triangle exists. We can assume
that z is not a vertex. The point z belongs to an edge e �X . Since length.e/� 1, for
one of the vertices v of e

d.z; v/� 1=2:

Since the triangle .x;y; z/ is degenerate, for all �–geodesics � 2P .x; z/, �2P .z;y/

we have:
e � � [ �;
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provided that � > 0 is sufficiently small. Therefore the triangle .x;y; v/ is also
degenerate. Clearly,

min.d.x; v/; d.y; v//�min.d.x; z/; d.y; z//� 1=2� 2:5:

This contradicts Lemma 6.3.

Hence part (1) of Theorem 6.2 follows.

(2) We consider X 2 DX �X with the product metric

d2..x1;y1/; .x2;y2//D d2.x1;x2/C d2.y1;y2/:

Then X 2 is a complete path-metric space. Every degenerate triangle in X 2 projects to
degenerate triangles in both factors. It therefore follows from part (1) that X contains
no degenerate triangles with all sides � 18. We leave the details to the reader.

7 Exceptional cases

Theorem 7.1 Suppose that X is a path metric space quasi-isometric to a metric space
X 0 , which is either R or RC . Then there exists a .1;A/–quasi-isometry X 0!X .

Proof We first consider the case X 0DR . The proof is simpler if X is proper, therefore
we sketch it first under this assumption. Since X is quasi-isometric to R , it is 2–ended
with the ends EC;E� . Pick two divergent sequences xi 2EC;yi 2E� . Then there
exists a compact subset C � X so that all geodesic segments i WD xiyi intersect
C . It then follows from the Arcela-Ascoli theorem that the sequence of segments i

subconverges to a complete geodesic  �X . Since X is quasi-isometric to R, there
exists R<1 such that X DNR. /. We define the .1;R/–quasi-isometry f W  !X

to be the identity (isometric) embedding.

We now give a proof in the general case. Pick a non-principal ultrafilter ! on N and a
base-point o2X . Define X! as the !–limit of .X; o/. The quasi-isometry f W R!X

yields a quasi-isometry f! W RD R!!X! . Therefore X! is also quasi-isometric to
R.

We have the natural isometric embedding �W X !X! . As above, let EC;E� denote
the ends of X and choose divergent sequences xi 2EC;yi 2E� . Let i denote an
1
i

–geodesic segment in X connecting xi to yi . Then each i intersects a bounded
subset B � X . Therefore, by taking the ultralimit of i ’s, we obtain a complete
geodesic  �X! . Since X! is quasi-isometric to R, the embedding �W  !X! is a
quasi-isometry. Hence X! DNR. / for some R<1.
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For the same reason,
X! DND.�.X //

for some D <1. Therefore the isometric embeddings

�W  !X! ; �W X !X!

are .1;R/ and .1;D/–quasi-isometries respectively. By composing � with the quasi-
inverse to �, we obtain a .1;RC 3D/–quasi-isometry R!X .

The case when X is quasi-isometric to RC can be treated as follows. Pick a point o2X

and glue two copies of X at o. Let Y be the resulting path metric space. It is easy to
see that Y is quasi-isometric to R and the inclusion X !Y is an isometric embedding.
Therefore, there exists a .1;A/–quasi-isometry hW Y ! R and the restriction of h to
X yields the .1;A/–quasi-isometry from X to the half-line.

Note that the conclusion of Theorem 7.1 is false for path metric spaces quasi-isometric
to Rn , n� 2.

Corollary 7.2 Suppose that X is a path metric space quasi-isometric to R or RC .
Then K3.X / is contained in the D–neighborhood of @K for some D < 1. In
particular, K3.X / does not contain the interior of K DK3.R

2/.

Proof Suppose that f W X !X 0 is an .L;A/–quasi-isometry, where X 0 is either R

or RC . According to Theorem 7.1, we can assume that L D 1. For every triple of
points x;y; z 2X , after relabeling, we obtain

d.x;y/C d.y; z/� d.x; z/CD;

where DD3A. Then every triangle in X is D–degenerate. Hence K3.X / is contained
in the D–neighborhood of @K .

Remark One can construct a metric space X quasi-isometric to R such that K3.X /D

K . Moreover, X is isometric to a curve in R2 (with the metric obtained by the
restriction of the metric on R2 ). Of course, the metric on X is not a path metric.

Corollary 7.3 Suppose that X is a path metric space. Then the following are equiva-
lent:

(1) K3.X / contains the interior of K DK3.R
2/.

(2) X is not quasi-isometric to the point, RC and R.

(3) X is thick.
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Proof (1))(2) by Corollary 7.2. (2))(3) by Theorem 1.4. (3))(1) by Theorem
1.3.

Remark The above corollary remains valid under the following assumption on the
metric on X , which is weaker than being a path metric:

For every pair of points x;y 2X and every � > 0, there exists a .1; �/–quasi-geodesic
path ˛ 2 P .x;y/.

References
[1] K S Brown, Buildings, Springer, New York (1989) MR969123

[2] D Burago, Y Burago, S Ivanov, A course in metric geometry, Graduate Studies in
Mathematics 33, American Mathematical Society, Providence, RI (2001) MR1835418

[3] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress
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