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Triangle inequalities in path metric spaces

MICHAEL KAPOVICH

We study side-lengths of triangles in path metric spaces. We prove that unless such a
space X is bounded, or quasi-isometric to R4 or to R, every triple of real numbers
satisfying the strict triangle inequalities, is realized by the side-lengths of a triangle
in X'. We construct an example of a complete path metric space quasi-isometric to
R? for which every degenerate triangle has one side which is shorter than a certain
uniform constant.

51K05

1 Introduction

Given a metric space X define

K3(X):={(a,b,c) € [R{i : there exist points x, y, z

withd(x,y)=a, d(y,z) =b, d(z,x) =c}.
Note that K3(R?) is the closed convex cone K in Ri given by the usual triangle
inequalities. On the other hand, if X = R then K3(X) is the boundary of K since all

triangles in X are degenerate. If X has finite diameter, K3(X') is a bounded set. We
refer the reader to [3] and [6] for discussion of the sets K4(X).

Gromov [3, Page 18] (see also Roe [6]) raised the following question:

Question 1.1 Find reasonable conditions on path metric spaces X, under which
K3;(X)=K.

It is not so difficult to see that for a path metric space X quasi-isometric to Ry or R, the
set K3(X) does not contain the interior of K, see Section 7. Moreover, every triangle
in such X is D-degenerate for some D < oo and therefore K3(X) is contained in
the D-neighborhood of 0K .

Our main result is essentially the converse to the above observation:
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Theorem 1.2 Suppose that X is an unbounded path metric space not quasi-isometric
to Ry or R. Then:

(1) K;3(X) contains the interior of the cone K .

(2) If, in addition, X contains arbitrary long geodesic segments, then K3(X) = K.

In particular, we obtain a complete answer to Gromov’s question for geodesic metric
spaces, since an unbounded geodesic metric space clearly contains arbitrarily long
geodesic segments. In Section 6, we give an example of a (complete) path metric space
X quasi-isometric to R?, for which

K3(X) # K.
Therefore, Theorem 1.2 is the optimal result.

It appears that very little can be said about K3(X) for general metric spaces even
under the assumption of uniform contractibility. For instance, if X is the paraboloid of
revolution in R3 with the induced metric, then K3(X) does not contain the interior of
K. The space X in this example is uniformly contractible and is not quasi-isometric
to R and Ry .

The proof of Theorem 1.2 is easier under the assumption that X is a proper metric
space: In this case X is necessarily complete, geodesic metric space. Moreover, every
unbounded sequence of geodesic segments 0X; in X yields a geodesic ray. The reader
who does not care about the general path metric spaces can therefore assume that X is
proper. The arguments using the ultralimits are then replaced by the Arcela—Ascoli
theorem.

Below is a sketch of the proof of Theorem 1.2 under the extra assumption that X is
proper. Since the second assertion of Theorem 1.2 is clear, we have to prove only
the first statement. To motivate the use of tripods in the proof we note the following:
Suppose that X is itself isometric to the tripod with infinitely long legs, i.e., three rays
glued at their origins. Then it is easy to see that K3(X) = K.

We define R—tripods T C X, as unions y U u of two geodesic segments y, u C X,
having the lengths > R and > 2R respectively, so that:

(1) y N =o is the end-point of y.
(2) o isdistance > R from the ends of w.
(3) o is a nearest-point projection of y to u.

The space X is called R—thin if it contains no R—tripods. The space X is called thick
if it is not R—thin for any R < oo.

We break the proof of Theorem 1.2 in two parts: Theorem 1.3 and Theorem 1.4.
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Theorem 1.3 If X is thick then K3(X) contains the interior of K3(R?).

The proof of this theorem is mostly the coarse topology. The side-lengths of triangles
in X determine a continuous map

L: X3—>K

Then K3(X)= L(X?). Given a point « in the interior of K, we consider an R—tripod
T C X for sufficiently large R. We then restrict to triangles in X with vertices in
T. We construct a 2—cycle ¥ € Z,(T3,7,) whose image under L, determines a
nontrivial element of H,(K \ k,Z5). Since T? is contractible, there exists a 3—chain
I' € C3(T3, Z,) with the boundary X. Therefore the support of L. (I") contains the
point k, which implies that « belongs to the image of L.

Remark Gromov observed in [3] that uniformly contractible metric spaces X have
large K3(X). Although uniform contractibility is not relevant to our proof, the key
argument here indeed has the coarse topology flavor.

Theorem 1.4 If X is a thin unbounded path metric space, then X is quasi-isometric
toR or R4.

Assuming that X is thin, unbounded and is not quasi-isometric to R and to Ry, we
construct three diverging geodesic rays p; in X, i = 1,2,3. Define u; C X to be
the geodesic segment connecting p; (i) and p,(i). Take y; to be the shortest segment
connecting p3(i) to u;. Then y; U u; is an R;—tripod with lim; R; = oo, which
contradicts the assumption that X is thin.

Acknowledgements During this work the author was partially supported by the NSF
grants DMS-04-05180 and DMS-05-54349. Most of this work was done when the

author was visiting the Max Plank Institute for Mathematics in Bonn. I am grateful to
the referee for useful comments and corrections.

2 Preliminaries
Convention 2.1 All homology will be taken with the Z,—coefficients.
In the paper we will talk about ends of a metric space X . Instead of looking at the

noncompact complementary components of relatively compact open subsets of X asitis
usually done for topological spaces, we will define ends of X by considering unbounded
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complementary components of bounded subsets of X. With this modification, the

usual definition goes through.

If x, y are points in a topological space X, we let P(x, y) denote the set of continuous
paths in X connecting x to y. For @ € P(x,y),8 € P(y,z) welet o x 8 € P(x,z)
denote the concatenation of @ and B. Given a path «: [0,a] — X we let & denote the
reverse path

a(t)=ala—1).

2.1 Triangles and their side-lengths

We set K := K3(R?); it is the cone in R? given by
{(a,b,c):a<b+c,b<a+c,c <a+b}.

We metrize K by using the maximum-norm on R3.

By a triangle in a metric space X we will mean an ordered triple A = (x, y,z) € X3.
We will refer to the numbers d(x, y),d(y,z),d(z, x) as the side-lengths of A, even
though these points are not necessarily connected by geodesic segments. The sum of
the side-lengths of A will be called the perimeter of A.

We have the continuous map
L:X?—>K
which sends the triple (x, y, z) of points in X to the triple of side-lengths
(d(x.y).d(y.z).d(z.x)).
Then K3(X) is the image of L.

Let € > 0. We say that a triple (a, b, ¢) € K is e—degenerate if, after reordering if
necessary the coordinates «, b, ¢, we obtain

at+e>=b+c.

Therefore every e—degenerate triple is within distance < ¢ from the boundary of K.
A triple which is not e—degenerate is called e—nondegenerate. A triangle in a metric
space X whose side-lengths form an e—degenerate triple, is called e—degenerate. A
O0—degenerate triangle is called degenerate.
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2.2 Basic notions of metric geometry

For a subset E in a metric space X and R < co we let Ngr(E) denote the metric
R-neighborhood of E in X:

Nr(E)={x€ X :d(x,E) < R}.

Definition 2.2 Given a subset £ in a metric space X and ¢ > 0, we define the
e—nearest—point projection p = pg . as the map which sends X to the set 2F of
subsets in E':

yepx)<=dx,y)<d(x,z)+e€¢, VzeE.

If € =0, we will abbreviate pg o to pg.

2.2.1 Quasi-isometries Let X,Y be metric spaces. Amap f: X — Y is called an
(L, A)—quasi-isometric embedding (for L > 1 and A4 € R) if for every pair of points
X1,X2 € X we have

L7 (x1,x2) — A < d(f(x1). f(x2)) < Ld(x1,x3) + A.

A map f is called an (L, A)—quasi-isometry if it is an (L, A)—quasi-isometric em-
bedding so that N4(f(X)) = Y. Given an (L, A)—quasi-isometry, we have the
quasi-inverse map
1Y > X

which is defined by choosing for each y € Y a point x € X so that d( f(x),y) < A.
The quasi-inverse map f is an (L, 3A4)—quasi-isometry. An (L, A)—quasi-isometric
embedding f of an interval I C R into a metric space X is called an (L, A)—quasi-
geodesicin X . If [ =R, then f is called a complete quasi-geodesic.

A map f: X — Y is called a quasi-isometric embedding (resp. a quasi-isometry) if
it is an (L, A)—quasi-isometric embedding (resp. (L, A)—quasi-isometry) for some
L>1,4A€R.

Every quasi-isometric embedding R” — R” is a quasi-isometry, see for instance
Kapovich-Leeb [5].

2.2.2 Geodesics and path metric spaces A geodesic in a metric space is an isometric
embedding of an interval into X . By abusing the notation, we will identify geodesics
and their images. A metric space is called geodesic if any two points in X can
be connected by a geodesic. By abusing the notation we let Xy denote a geodesic
connecting x to y, even though this geodesic is not necessarily unique.

Geometry € Topology, Volume 11 (2007)



1658 Michael Kapovich

The length of a continuous curve y: [a, b] — X in a metric space, is defined as
n
length(y) = sup { D d(y(ti—1). v () sa=to <11 <+ <ty = b}
i=1
A path y is called rectifiable if length(y) < oco.

A metric space X is called a path metric space (or a length space) if for every pair of
points x, y € X we have

d(x,y) = inf{length(y) : y € P(x, y)}.
We say that a curve y: [a, b] > X is e—geodesic if
length(y) < d(y(a),y(b)) +e.
It follows that every e—geodesic is (1, €)—quasi-geodesic. We refer the reader to

Burago—Ivanov [2] and Gromov [3] for the further details on path metric spaces.

2.3 Ultralimits

Our discussion of ultralimits of sequences of metric space will be somewhat brief, we
refer the reader to Burago—Ivanov [2], Gromov [3], Kapovich [4], Kapovich-Leeb [5]
and Roe [6] for the detailed definitions and discussion.

Choose a nonprincipal ultrafilter @ on N. Suppose that we are given a sequence of
pointed metric spaces (Xj, 0;), where o; € X;. The ultralimit

(X0, 00) = o-lim(X;, 0;)

is a pointed metric space whose elements are equivalence classes x,, of sequences
x; € X;. The distance in X, is the w—limit:

d(xa)v yw) = w_limd(xiv yl)

One of the key properties of ultralimits which we will use repeatedly is the following.
Suppose that (Y;, p;) is a sequence of pointed metric spaces. Assume that we are given
a sequence of (L;, Aj)—quasi-isometric embeddings

Jit Xi > Y
so that w-limd( f(0;), p;)) < oo and

w-lmL; =L <00, w-limA; =0.
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Then there exists the ultralimit f,, of the maps f;, which is an (L, 0)—quasi-isometric
embedding
Jo: X = Yp.

In particular, if L = 1, then f,, is an isometric embedding.

2.3.1 Ultralimits of constant sequences of metric spaces Suppose that X is a path
metric space. Consider the constant sequence X; = X for all i. If X is a proper
metric space and o; is a bounded sequence, the ultralimit X, is nothing but X itself.
In general, however, it could be much larger. The point of taking the ultralimit is that
some properties of X improve after passing to X, .

Lemma 2.3 X, is a geodesic metric space.
Proof Points x,, y, in X, are represented by sequences (x;), (y;) in X . For each
i choose a %—geodesic curve y; in X connecting x; to y;. Then
Vo = w-lim y;

is a geodesic connecting x4, t0 Y, . a
Similarly, every sequence of }f—geodesic segments yx; in X satisfying

w-limd(y, x;) = o0,
yields a geodesic ray y, in X, emanating from y, = ().

If 0; € X is a bounded sequence, then we have a natural (diagonal) isometric embedding
X — Xy, given by the map which sends x € X to the constant sequence (x).

Lemma 2.4 For every geodesic segment Y, = X4 Ve in Xy, there exists a sequence
of 1/i—geodesics y; C Xj, so that

w-lim y; = Y.
Proof Subdivide the segment y,, into n equal subsegments

Zo,jZw,j+1, J=1,...,n,

where X4 = 24,1, Yo = Zw,n+1- Then the points z, ; are represented by sequences
(zx,j) € X . It follows that for w—all k, we have

n
1
DGk zie 1) —d Ok, yi)| < 5
j=1
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Connect the points zg j, Zk, j+1 by % —geodesic segments o ;. Then the concatenation
Op = Q1 ¥ "% p

. 1 . .

is an 7 —geodesic connecting x; and yi, where

Yo = (k). Yo = (Vi)
It is clear from the construction, that, if given i we choose sufficiently large n = n(i),
then
w-lima,g) =y.

Therefore we take y; := o). a

2.4 Tripods

Our next goal is to define tripods in X, which will be our main technical tool. Suppose
that x, y, z, 0 are points in X and p is an e—geodesic segment connecting x to y, so
that 0 €  and o € py (z). Then the path u is the concatenation o U 8, where o, B
are e—geodesics connecting x, y to 0. Let y be an e—geodesic connecting z to o.

Definition 2.5 (1) Wereferto « UB Uy as atripod T with the vertices x, y, z, legs
o, B, y, and the center o.

(2) Suppose that the length of «, 8, y is at least R. Then we refer to the tripod T as
(R, €)—tripod. An (R, 0)—tripod will be called simply an R—tripod.

The reader who prefers to work with proper geodesic metric spaces can safely assume
that € = 0 in the above definition and thus 7" is a geodesic tripod.

Definition 2.6 Let R € [0, 00),€ € [0, 00). A metric space is called (R, €)—thin if it
contains no (R, €)—tripods. We will refer to (R, 0)—thin spaces as R-thin. A metric
space which is not (R, €)—thin for any R < co, € > 0 is called thick.

Therefore, a path metric space is thick if and only if it contains a sequence of (R;, ¢;)—
tripods with

limR; =00, lime =0.
1 l
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"

Figure 1: A tripod

2.5 Tripods and ultralimits

Suppose that a path metric space X is thick. Thus, X contains a sequence of (R;, €;)—
tripods 7; with
lim R; =00, lime =0,
1 1

so that the center of 7; is 0; and the legs are «;, B, y;. Then the tripods 7T; clearly

yield a geodesic (oo, 0)—tripod Ty, in (Xy,0,) = w-lim(X,0;). The tripod T, is
the union of three geodesic rays ¢, By, Yo €manating from o, so that

0(1) = pILw (VO))
Here ity = g U By . In particular, X, is thick.
Conversely, in view of Lemma 2.4, we have:

Lemma 2.7 If X is (R, €)—thin for € > 0 and R < oo, then X, is R’—thin for every
R > R.

Proof Suppose that X, contains an R’—tripod Ty,. Then T,, appears as the ultralimit
of (R’ — %, ll.)—tripods in X'. This contradicts the assumption that X is (R, €)—thin. O
Let o: [a,b] — X be a rectifiable curve in X parameterized by its arc-length. We let
dy denote the path metric on [a, b] which is the pull-back of the path metric on X . By
abusing the notation, we denote by ¢ the restriction to o of the metric d. Note that,
in general, d is only a pseudo-metric on [, b] since ¢ need not be injective. However,
if o is injective then d is a metric.
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We repeat this construction with respect to the tripods: Given a tripod 7" C X, define
an abstract tripod 7,0¢ Whose legs have the same length as the legs of 7. We have a
natural map

T: Tmod = X

which sends the legs of Tp0q to the respective legs of T', parameterizing them by the
arc-length. Then Ty,0q has the path metric dpoq Obtained by pull-back of the path
metric from X via 7. We also have the restriction pseudo-metric d on Tioq:

d(A, B) = d(z(A), T(B)).
Observe that if € =0 and X is a tree then the metrics dioq and d on T agree.
Lemma 2.8 d < dyoq4 < 3d + 6e¢.
Proof The inequality d < dpoq is clear. We will prove the second inequality. If
A,BeaUp or A, B € y then, clearly,

dmOd(Aa B) S d(A’ B) + E,

since these curves are e—geodesics. Therefore, consider the case when 4 € y and
B € . Then

D :=dyn(A,B)=1t+s,
where t = dy(A,0),s = dg(o, B).
Casel 1> %D. Then, since 0 € ® U B is e—nearest to A, it follows that
ID<t<d(A,0)+e=<d(A B)+2e.

Hence
dmod(A, B) = 32 < 3(d(A, B) + 2¢) = 3d(A, B) + 6e,

and the assertion follows in this case.
Case2 1< %D. By the triangle inequality,
D—t=s5s=<d,B)+e=<d(o,A)+d(A,B)+e<t+2+d(A,B).

Hence
ID=D-2D<D-2t<2e+d(4,B),

and
dmod(4, B) = 32 < 3d(A, B) + 6e. O
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3 Topology of configuration spaces of tripods

We begin with the model tripod 7" with the legs «;, i = 1,2, 3, and the center o.

Consider the configuration space Z := T3\ diag, where diag is the small diagonal
{(x1,x2,x3) € T? 1 x1 = x5 = x3}.

We recall that the homology is taken with the Z;—coefficients.
Proposition 3.1 H;(Z) =0.

Proof 73 is the union of cubes
Oijk = ai Xaj X a,

where i, j,k € {1,2,3}. Identify each cube Q;;x with the unit cube in the positive
octant in R*. Then in the cube Qijk (i, j.k €{1,2,3}) we choose the equilateral
triangle o given by the intersection of Q;;x with the hyperplane

x+y+z=1

in R?. We adopt the convention that if exactly one of the indices i, j, k is zero (say,
i), then o;j stands for the 1-simplex

10,y,2):y+z=1}N{o} xaj x .
Therefore,

d0ijk = 00k + Ojok + Tijo-

Define the 2—dimensional simplicial complex
S = U Oijk-
ijk

This complex is homeomorphic to the link of (0, 0,0) in T'3. Therefore Z is homotopy-
equivalent to

W= 8\ (0111 U022 U0333).

Consider the loops y; := daiii, i = 1,2, 3.

Lemma 3.2 (1) The homology classes [y;],i = 1,2,3 generate H(W).

) [r1l=I[y2l =Ilys] in Hi(W).
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Proof of Lemma 3.2 (1) We first observe that S is the 3—fold join of a 3—element
set with itself and, therefore, is simply-connected. Alternatively, note that S a 2—
dimensional spherical building. Hence, S is homotopy-equivalent to a bouquet of
2-spheres (see Brown [1, Theorem 2, page 93]), which implies that H;(S) = 0. Now
the first assertion follows from the long exact sequence of the pair (S, W).

(2) Let us verify that [y1] = [y2]. The subcomplex
S12 =S8N (a; Uay)?

is homeomorphic to the 2—sphere. Therefore S;, N W is the annulus bounded by the
circles 1 and y,. Hence [y1] = [y2]. ad

Lemma 3.3
il +[r2]+ 3] =0
in Hi(W).

Proof of Lemma 3.3 Let B’ denote the 2—chain

where A is the set of triples of distinct indices i, j, k € {1, 2, 3}. Let

3
B":= (0iii+1) * Oi(+1)i + 0+1)ii)

i=1
where we set 3+ 1 := 1. We note that
Y1+Y2+y3=0A,
where
3
A= ZO’,’,’,‘.

i=1
Hence, the assertion of lemma is equivalent to

(B +B"+A)=0.

To prove this, it suffices to show that every 1-simplex in S, appears in d(B’ + B” + A)
exactly twice. Since the chain B’ + B” + A is preserved by the permutation of the
indices 7, j, k, it suffices to consider the 1-simplex ;o where j =i +1ori = j.

Suppose that j =i + 1. Then the 1-simplex o;j¢ appears in d(B’ + B” + A) exactly
twice: in do;jx (where k #i # j) and in 00;(;41);-
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Similarly, if i = j, then the 1-simplex o;;¢ also appears in d(B’ + B” + A) exactly
twice: in d0;;; and in 00} 41). |

By combining these lemmata we obtain the assertion of the theorem. |
3.0.1 Application to tripods in metric spaces Consider an (R, ¢)—tripod T in a
metric space X and its standard parametrization t: Toq — 7T .
There is an obvious scaling operation

Ur>r-u

on the space (Tmod, dmod) Which sends each leg to itself and scales all distances by
r €[0,00). It induces the map T2 ; — T2 ;. denoted t +>r-1, 1€ T3 ;.

We have the functions

Linog: Trﬁod — K Linod(x, Y, z) = (dmod(x7 y), dmod(y7 z), dmod(za .X)),
L: Ty — K L(x,y,2) = (d(x, p),d(y.2),d(z,x))

computing side-lengths of triangles with respect to the metrics dpoq and d.

For p > 0 set
Ky,:={(a.b,c)ye K:a+b+c> p}.
Define
T3(p):= L7 (Kp).  Toa(p) := Liga(Kp)-
Thus

T3 4(0)=T3%0) =T\ diag.
Lemma 3.4 Forevery p > 0, the space T rgod(,o) is homeomorphic to Tniod(O).
Proof Recall that S is the link of (0, 0,0) in T3. Then scaling defines homeomor-
phisms
Tniod(,o) - SXxR— Tn3lod(0). m|

Corollary 3.5 Forevery p >0, H; (Trgod(,o), Z,)=0.

Corollary 3.6 The map induced by inclusion
Hi(T?(3p + 18¢)) = Hy (T (p))

is zero.
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Proof Recall that
d < dmoq < 3d + 6¢.

Therefore
T*(3p+18€) C Tnoa(p) C T2 (p).

Now the assertion follows from the previous corollary. |

4 Proof of Theorem 1.3

Suppose that X is thick. Then for every R < 0o, € > 0 there exists an (R, €)—tripod
T with the legs «, 8, y. Without loss of generality we may assume that the legs of T
have length R. Let t: Tyoq — T denote the standard map from the model tripod onto
T . We will continue with the notation of the previous section.

Given a space £ and map f: F — Tn?lod (or a chain o € C*(Trfmd)), let f (resp. 0)
denote the map L o f from E to K (resp. the chain L4 (0) € Cx(K)). Similarly, we
define fmod and Gyoq using the map Lpoq instead of L.

Every loop A: S1 — Trflod, determines the map of the 2—disk
A: D?> T3,

given by
A, 0)=r-A(0)

where we are using the polar coordinates (r, §) on the unit disk D?. Triangulating
both S! and D? and assigning the coefficient 1 € Z, to each simplex, we regard both
A and A as singular chains in C*(Trgod).

We let a, b, ¢ denote the coordinates on the space R* containing the cone K. Let
Kk = (ag, by, cp) be a 6—nondegenerate point in the interior of K for some § > 0; set
ri=day +b()+C().

Suppose that there exists a loop A in T n?;od such that:

(1) X(Q) is e—degenerate for each 6. Moreover, each triangle A(0) is either contained
N @mod U Bmod OF has only two distinct vertices.

In particular, the image of A is contained in

K\R+'K.

(2) The image of A is contained in K,, where p = 3r + 18e.
(3) The homology class [X] is nontrivial in Hy (K \ Rt - k).
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Figure 2: Chains A and B

Lemma 4.1 If there exists a loop A satisfying the assumptions (1)—(3), and € < §/2,
then x belongs to K3(X).

Proof We have the 2—chains
K7 //{Inod € C2(K\K)7
with
A =0A, Amod = 0Amod € C1(K)).

Note that the support of Xmod is contained in 0K and the 2—chain /A\mod is obtained by
coning off Ayeq from the origin. Then, by Assumption (1), for every w € D?:

(i) Either d(K(w), /’imod(w)) <e.
(i) Or K(u)), lA\mod(w) belong to the common ray in 0K .

Since d(k, dK) > § > 2¢, it follows that the straight-line homotopy H; between the
maps
A, Amod: D? > K
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misses k. Since K, is convex, H,(S') C K, for each ¢ € [0, 1], and we obtain
[Amod] = [A] € Hy(K \ k. K,).
Assumptions (2) and (3) imply that the relative homology class
[Amod] € Ha(K \ k. Kp)

is nontrivial. Hence
[Al€ Hy(K \k, K)p)

is nontrivial as well. Since p = 3r + 18¢, according to Corollary 3.6, A bounds a
2—chain
B e Co(T3(r)).
Set ¥ := B + A. Then the absolute class
[£]=[A +B] € Hy(K \ )

. .« e . 3 . . . . 3
is also nontrivial. Since T , is contractible, there exists a 3—chain I" € C3(T; ;) such
that

or=%.

Therefore the support of [ contains the point k. Since the map
L:T? > K

is the composition of the continuous map v3: 73 — X3 with the continuous map
L: X3 — K, it follows that x belongs to the image of the map L: X3 — K and hence
k€ K3(X). O

Our goal therefore is to construct a loop A, satisfying Assumptions (1)—(3).

Let T C X be an (R, €)-tripod with the legs «, 8, y of the length R, where € <§/2.
We let t: Thoq — T denote the standard parametrization of 7'. Let x, y, z, o denote the
vertices and the center of Toq. We let 0mod(5), Bmod($)s Ymod (8): [0, R]— Tmoq denote
the arc-length parameterizations of the legs of 704, S0 that ®(R) = S(R) =y(R) =o.

We will describe the loop A as the concatenation of seven paths
pi(s) = (x1(s), x2(5), x3(5)),i =1,...,7.
Welet a = d(x3,x3),b =d(x3,x1),c =d(x1,x2).
(1) p1(s) is the path starting at (x, x,0) and ending at (o, x, 0), given by
P1(s) = (¢tmoa(s), X, 0).
Note that for p;(0) and p;(R) we have ¢ =0 and b = 0 respectively.
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(2) pa2(s) is the path starting at (o, x, 0) and ending at (y, x, 0), given by
P2(5) = (Bmoa(s). X, 0).
(3) ps(s) is the path starting at (), x, 0) and ending at (y, 0, 0), given by
P3(8) = (¥, tmod(s). 0).
Note that for p3(R) we have a = 0.
(4) p4(s) is the path starting at (y, 0,0) and ending at (y, ¥, 0), given by
Pa(s) = (3. Bmoa(s). 0).
Note that for p4(R) we have ¢ = 0. Moreover, if « % 8 is a geodesic, then
d(t(x),7(0)) =d(t(»).7(0)) = pa(R) = p1(0)
and therefore pp *---% py is a loop.
(5) ps(s) is the path starting at (y, y,0) and ending at (y, y, z) given by
(¥ ¥: Ymoa(s))-
(6) pe(s) is the path starting at (y, y, z) and ending at (x, x, z) given by
(Bmod * Omod. Bmod * Umod. Z)-
(7) p7(s) is the path starting at (x, x, z) and ending at (x, x, 0) given by
(X, X, Ymod(s))-
Thus
Ai=pixekopr
is a loop.

Since o * § and y are e—geodesics in X', each path p;(s) determines a family of
e—degenerate triangles in (7Tioq, d). It is clear that Assumption (1) is satisfied.

~

The class [Amoq] is clearly nontrivial in H; (0K \ 0). See Figure 3. Therefore, since
€=<§/2, L

[A] = [Amod] € Hi (K \ Ry - ) \ {0},
see the proof of Lemma 4.1. Thus Assumption (2) holds.

Lemma 4.2 The image of A is contained in the closure of K o » Where

/—2R 4e
,0—3 .
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Figure 3: The loop Amod

Proof We have to verify that for each i = 1,...,7 and every s € [0, R], the perimeter
(with respect to the metric d) of each triangle p;(s) € Trgod is at least p’. These
inequalities follow directly from Lemma 2.8 and the description of the paths p;. O

Therefore, if we take
R>3r—33

then the image of A is contained in

K3 113¢

and Assumption (3) is satisfied. Theorem 1.3 follows. |
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S5 Quasi-isometric characterization of thin spaces

The goal of this section is to prove Theorem 1.4. Suppose that X is thin. The proof is
easier if X is a proper geodesic metric space, in which case there is no need considering
the ultralimits. Therefore, we recommend the reader uncomfortable with this technique
to assume that X is a proper geodesic metric space.

Pick a base-point 0 € X, a nonprincipal ultrafilter @ and consider the ultralimit
Xo = o-lim(X, 0)

of the constant sequence of pointed metric spaces. If X is a proper geodesic metric
space then, of course, X, = X . In view of Lemma 2.7, the space X, is R-thin for
some R.

Assume that X is unbounded. Then X contains a sequence of 1/i—geodesic paths
y; = ox; with
w-limd (o, x;) = 0o,

which yields a geodesic ray p; in X, emanating from the point oy, .

Lemma 5.1 Let p be a geodesic ray in X, emanating from a point O. Then the
neighborhood E = Ng(p) is an end E(p) of X,.

Proof Suppose that « is a path in X, \ B, g(0O) connecting a point y € X, \ E to
a point x € E. Then there exists a point z € o such that d(z, p) = R. Since X,
contains no R—tripods,

d(pp(z), 0) < R.

Therefore d(z, O) < 2R. Contradiction. m|
Set E1 := E(py1). If the image of the natural embedding ¢: X — X,, is contained in a

finite metric neighborhood of p;, then we are done, as X is quasi-isometric to R4 .
Otherwise, there exists a sequence y, € X such that:

w-limd(t(yn), p1) = o0.

Consider the %—geodesic paths o, € P(o, yn). The sequence (o,) determines a
geodesic ray p, C X, emanating from o4 . Then there exists s > 4 R such that

d(an(s),yi) = 2R

for w—all n and w-all i. Therefore, for t > s, p>(¢) € E(p1). By applying Lemma
5.1 to pp we conclude that X, has anend E, = E(p2) = Ng(p2). Since Eq, E, are
distinct ends of X,,, E1 N E, is a bounded subset. Let D denote the diameter of this
intersection.
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Lemma 5.2 (1) For every pair of points x; = p;(t;), i = 1,2, we have
X1X2 C Npja42r(p1 U p2).
(2) p1 U p, is a quasi-geodesic.

Proof Consider the points x; as in Part 1. Our goal is to get a lower bound on
d(x1,x,). A geodesic segment XX, has to pass through the ball B(oy,2R),i = 1,2,
since this ball separates the ends E, E;. Let y; € X1x3 N B(04,2R) be such that

X;yi C Ej, i=1,2.

Then

d(y1,y2) = D +4R,

d(xi,yi) > ti —2R,

and Xiyi C Nr(pi), i=1,2.
This implies the first assertion of Lemma. Moreover,
d(x1,x2) Zd(x1,y1) +d(x2,y2) =211 + 1 —4R =d(x1,x2) —4R.

Therefore p; U p, is a (1,4 R)—quasi-geodesic. O

If «(X) is contained in a finite metric neighborhood of p; U p,, then, by Lemma 5.2,
X is quasi-isometric to R. Otherwise, there exists a sequence z; € X such that

w-limd(t(zg), p1 U p2) = 0.

By repeating the construction of the ray p;, we obtain a geodesic ray p3 C Xy
emanating from the point o, so that p3 is not contained in a finite metric neighborhood
of p1 U p,. For every t3, the nearest-point projection of p3(¢3) to

Np/24+2r(p1 U p2)

is contained in

B3 gr(0w).
Therefore, in view of Lemma 5.2, for every pair of points p;(#;) as in that lemma, the
nearest-point projection of p3(#3) to p1(¢1)p2(t2) is contained in

B4r+p(0w).

Hence, for sufficiently large #1, ¢, t3, the points p;(#;), i = 1,2, 3 are vertices of an
R—tripod in X . This contradicts the assumption that X, is R—thin.

Therefore X is either bounded, or is quasi-isometric to a Ry or to R. |
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6 Examples

Theorem 6.1 There exist an (incomplete) 2—dimensional Riemannian manifold M
quasi-isometric to R, so that:

(1) K3(M) does not contain 0K 3(R?).

(2) For the Riemannian product M? = M x M , K3(M?) does not contain 9K 3(R?)
either.

Moreover, there exists D < oo such that for every degenerate triangle in M and M?,
at least one side is < D.

Proof (1) We start with the open concentric annulus A C R?, which has the inner
radius Rq > 0 and the outer radius R, < 0co. We give A the flat Riemannian metric
induced from R?. Let M be the universal cover of A, with the pull-back Riemannian
metric. Since M admits a properly discontinuous isometric action of Z with the
quotient of finite diameter, it follows that M is quasi-isometric to R. The metric
completion M of M is diffeomorphic to the closed bi-infinite flat strip. Let 9, M
denote the component of the boundary of M which covers the inner boundary of A
under the map of metric completions

M — A.
As a metric space, M is CAT(0), therefore it contains a unique geodesic between any

pair of points. However, for any pair of points x, y € M, the geodesic y =Xy C M
is the union of subsegments

iUy Uys
where y1,y3 C M, y, Cd1 M, and the lengths of y, y3 are at most Dy = ,/R% —R%.

Hence, for every degenerate triangle (x, y,z) in M, at least one side is < Dy.

(2) We observe that the metric completion of M2 is M x M ; in particular, it is
again a CAT(0) space. Therefore it has a unique geodesic between any pair of points.
Moreover, geodesics in M x M are of the form

(D), r2(0))

where y;, i = 1,2 are geodesics in M . Hence for every geodesic segment y C M x M ,
the complement y \ 9M 2 is the union of two subsegments of length < /2D, each.
Therefore for every degenerate triangle in M 2, at least one side is < +/2D. a

Remark The manifold M2 is, of course, quasi-isometric to R2.
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'\ M /y

M

Figure 4: Geodesics in M
Our second example is a graph-theoretic analogue of the Riemannian manifold M .
Theorem 6.2 There exists a complete path metric space X (a metric graph) quasi-
isometric to R so that:
(1) K3(X) does not contain 3K 3(R?).
(2) K3(X?) does not contain 9K 5(R?).
Moreover, there exists D < oo such that for every degenerate triangle in X and X2, at

least one side is < D.

Proof (1) We start with the disjoint union of oriented circles «; of the length 1 + ll.,
i € I =N\ {2}. We regard each «; as a path metric space. For each i pick a point
0; € a; and its antipodal point b; € o;. We let ozl.+ be the positively oriented arc of ¢;
connecting o; to b;. Let a; be the complementary arc.
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Consider the bouquet Z of «;’s by gluing them all at the points 0;. Let o € Z be the
image of the points o0;. Next, for every pair i, j € I attach to Z the oriented arc B;;
of the length

1, 1(1 41

2+i(E+75)
connecting b; and b; and oriented from b; to b; if i < j. Let Y denote the resulting
graph. We give Y the path metric. Then Y is a complete metric space, since it is a
metric graph where the length of every edge is at least 1/2 > 0. Note also that the
length of every edge in Y is at most 1.

i—1

Figure 5: The metric space Y

The space X is the infinite cyclic regular cover over Y defined as follows. Take the
maximal subtree

T=|Jof cV.
iel
Every oriented edge of Y \ T determines a free generator of G = (Y, 0). Define the
homomorphism p: G — Z by sending every free generator to 1. Then the covering
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X — Y is associated with the kernel of p. (This covering exists since Y is locally
contractible.)

We lift the path metric from Y to X, thereby making X a complete metric graph. We
label vertices and edges of X as follows.

(i) Vertices a, which project to 0. The cyclic group Z acts simply transitively on
the set of these vertices thereby giving them the indices n € Z.

i’;, @;, incident to the vertices a, and a1

(i) The edges ozl.jE lift to the edges «
respectively.

. . +
(iii) The intersection «;), N Y1)

b,-eai.

is the vertex b;, which projects to the vertex

(iv) The edge Bijn connecting b;y to bj(,41) which projects to the edge B;; C Y.

n in 0,4 Ap+1 k(n+1) ap42

NAANAA

\._/ e
ﬁijn ﬂikn

bj(n—l) dpn o

Figure 6: The metric space X

Lemma 6.3 X contains no degenerate triangles (x, y, v), so that v is a vertex,
d(x,v)+d(v,y) =d(x.y)
and min(d(x,v),d(v, y)) > 2.

Proof of Lemma 6.3 Suppose that such degenerate triangles exist.

Case 1 (v =b;,) Since the triangle (x, y, v) is degenerate, for all sufficiently small
€ > 0 there exist e—geodesics o connecting x to y and passing through v.

Since d(x,v),d (v, y) > 2, it follows that for sufficiently small € > 0, 0 = g (¢€) also
passes through b;(,—1) and bg(,41) for some j,k depending on 0. We will assume
that as € — 0, both j and k diverge to infinity, leaving the other cases to the reader.
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Therefore
d(x.v) = Jim (d(x. i) +d(bjgu1). ).
d(v,y)= lim (d(y,bxn+1)) +dbrn+1),v))-
k—o0
Then

1
lim d(bjp—1), lim d(b ) =14 —.
Jim, (bjn—1)- ) + lim d(brur1).v) =1+ -

On the other hand, clearly,

lim  d(bj—1y, bknt1)) = 1.

j,k—o00

Hence
d(x,y)= lim d(x,bjp-1)) + lim d(y,bgpu+1)) +1<d(x,v)+d(v,y).
j—ooo k—>o0

Contradiction.

Case2 (v =uay,) Since the triangle (x, y, v) is degenerate, for all sufficiently small
€ > 0 there exist e—geodesics o connecting x to y and passing through v. Then for
sufficiently small € > 0, every o also passes through b;(,—1) and by, for some j,k
depending on o . However, since j,k > 2,

1 1 1 3 ,
d(bjn-1). bkn) = 5 + e +tp =<1 Z}I}If(d(bj(n—l)v v) +d(v. bgn)).
Therefore d(x, y) < d(x,v) + d(v, y). Contradiction. |

Corollary 6.4 X contains no degenerate triangles (x, y, z), such that
d(x,z)+d(z,y) =d(x, )
and min(d(x, z),d(z, y)) > 3.

Proof of Corollary 6.4 Suppose that such a degenerate triangle exists. We can assume
that z is not a vertex. The point z belongs to an edge ¢ C X . Since length(e) < 1, for
one of the vertices v of e

d(z,v) <1/2.

Since the triangle (x, y, z) is degenerate, for all e—geodesics o € P(x,z), n€ P(z,y)
we have:
eCoUn,
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provided that € > 0 is sufficiently small. Therefore the triangle (x, y,v) is also
degenerate. Clearly,

min(d (x,v),d(y,v)) > min(d(x,z),d(y,z))—1/2>2.5.

This contradicts Lemma 6.3. O

Hence part (1) of Theorem 6.2 follows.

(2) We consider X? = X x X with the product metric

d*((x1. 1), (x2, y2)) = d*(x1,x2) + d*(y1. y2).

Then X2 is a complete path-metric space. Every degenerate triangle in X2 projects to
degenerate triangles in both factors. It therefore follows from part (1) that X contains
no degenerate triangles with all sides > 18. We leave the details to the reader. |

7 Exceptional cases

Theorem 7.1 Suppose that X is a path metric space quasi-isometric to a metric space
X', which is either R or R4 . Then there exists a (1, A)—quasi-isometry X' — X .

Proof We first consider the case X’ = R. The proof is simpler if X is proper, therefore
we sketch it first under this assumption. Since X is quasi-isometric to R, it is 2—ended
with the ends E, E_. Pick two divergent sequences x; € E, y; € E_. Then there
exists a compact subset C C X so that all geodesic segments y; := X;y; intersect
C. It then follows from the Arcela-Ascoli theorem that the sequence of segments y;
subconverges to a complete geodesic ¥ C X . Since X is quasi-isometric to R, there
exists R < oo such that X = Ng(y). We define the (1, R)—quasi-isometry f: y — X
to be the identity (isometric) embedding.

We now give a proof in the general case. Pick a non-principal ultrafilter v on N and a
base-point 0 € X'. Define X,, as the w-limit of (X, 0). The quasi-isometry f: R— X
yields a quasi-isometry fy,: R =R, — X, . Therefore X, is also quasi-isometric to
R.

We have the natural isometric embedding ¢: X — X, . As above, let £, E_ denote
the ends of X and choose divergent sequences x; € £, y; € E_. Let y; denote an
ll.—geodesic segment in X connecting x; to y;. Then each y; intersects a bounded
subset B C X . Therefore, by taking the ultralimit of y;’s, we obtain a complete
geodesic y C X, . Since X, is quasi-isometric to R, the embedding n: y — Xy is a
quasi-isometry. Hence X, = Ng(y) for some R < oo.
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For the same reason,
Xo» = Np((X))

for some D < co. Therefore the isometric embeddings
Ny —>Xp, UX—>Xo

are (1, R) and (1, D)—quasi-isometries respectively. By composing n with the quasi-
inverse to ¢, we obtain a (1, R + 3D)—quasi-isometry R — X .

The case when X is quasi-isometric to R4 can be treated as follows. Pick a point 0 € X
and glue two copies of X at 0. Let Y be the resulting path metric space. It is easy to
see that Y is quasi-isometric to R and the inclusion X — Y is an isometric embedding.
Therefore, there exists a (1, A)—quasi-isometry /: ¥ — R and the restriction of / to
X yields the (1, A)—quasi-isometry from X to the half-line. |

Note that the conclusion of Theorem 7.1 is false for path metric spaces quasi-isometric
to R", n>2.

Corollary 7.2 Suppose that X is a path metric space quasi-isometric to R or R4.
Then K3(X) is contained in the D-neighborhood of 0K for some D < oco. In
particular, K3(X) does not contain the interior of K = K3(R?).

Proof Suppose that f: X — X’ is an (L, A)—quasi-isometry, where X" is either R
or Ry. According to Theorem 7.1, we can assume that L = 1. For every triple of
points x, y,z € X, after relabeling, we obtain

d(x,y)+d(y.z) =d(x.z) + D,
where D =3A. Then every triangle in X is D—degenerate. Hence K3(X) is contained
in the D-neighborhood of 0K . m|

Remark One can construct a metric space X quasi-isometric to R such that K53(X) =
K. Moreover, X is isometric to a curve in R? (with the metric obtained by the
restriction of the metric on R?). Of course, the metric on X is not a path metric.

Corollary 7.3 Suppose that X is a path metric space. Then the following are equiva-
lent:

(1) K3(X) contains the interior of K = K3(R?).

(2) X is not quasi-isometric to the point, Ry and R.

(3) X is thick.
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Proof (1)=(2) by Corollary 7.2. (2)=-(3) by Theorem 1.4. (3)=-(1) by Theorem
1.3. |

Remark The above corollary remains valid under the following assumption on the
metric on X, which is weaker than being a path metric:

For every pair of points x, y € X and every € > 0, there exists a (1, €)—quasi-geodesic
path @ € P(x, y).
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