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1. Introduction

This paper is motivated by the following basic question:

Question 1.1. Let G be a connected Lie group and let A = (A1, . . . , Ak) be a

finite ordered subset of G. Is the discreteness problem for the subgroup ΓA :=

〈A1, . . . , Ak〉 < G decidable?

This question, in the case of G = PSL(2,C), was raised, most recently, in the

paper [8] by J. Gilman and L. Keen, who noted that “it is a challenging problem that

has been investigated for more than a century and is still open.” The decidability

problem was solved in the case G = PSL(2,R) by R. Riley [20] and, more efficiently,

in the case of 2-generated subgroups, by J. Gilman and B. Maskit [9] and Gilman

[6], (cf. [7] for a comparison of the two approaches).

To make the general decidability question more precise one has to specify the

model of computability. There are several computability models over the real num-

bers; we refer the reader to [1] and [21] for summaries of these and in-depth treat-

ment of the BSS and the bit-computability approaches respectively. In this paper

we address decidability of the discreteness problem in the real-RAM or BSS (which

stands for Blum–Shub–Smale) computability model as it is the closest in spirit to the

papers by Gilman, Maskit and Keen mentioned above as well as Riley’s work [20].
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We will address decidability of the discreteness problem in the bit-computabulity

model in another paper, [13].

Remark 1.2. We refer the reader to the paper by J. Gilman in [7], where sev-

eral (semi)algorithms for the discreteness problem in PSL(2,R) and PSL(2,C) in

different computability models, including the BSS model, are compared.

Briefly, computations in the BSS model over the real numbers are performed

by a BSS machine, which is an analogue of a Turing machine except that a BSS

machine can store finite lists of real numbers and do elementary algebraic and

order operation with real numbers: Such a machine can add, subtract, multiply and

divide, as well as verify inequalities and equalities a < b, a = b for real numbers.

(BSS machines are also defined for computations in other rings, but, in this paper

we will use only real numbers.) We refer to [1] for the details.

A subset E ⊂ Rn is BSS-semicomputable (or the membership problem for E is

BSS-semidecidable) if E is the halting set of a BSS machine: There exists a BSS

machine which, given an input vector x ∈ Rn, stops iff x ∈ E. A membership prob-

lem for E is BSS-decidable iff both E and Ec = Rn − E are BSS-semicomputable.

We refer the reader to the book [1] for the details.

Remark 1.3. In our paper, the input for a BSS machine is a tuple A of 2 × 2

complex matrices.

The main result about BSS machines needed for our paper is the following

theorem due to Blum, Shub and Smale, see [1, Theorem 1, Chapter 2]:

Theorem 1.4. The halting set for a BSS machine is a (computable) countable

union of real semialgebraic subsets of Rn.

Remark 1.5. We note that the proof of this theorem in [1] actually shows more:

Allow a generalized BSS machine to do boolean operations with inequalities, as

well as to compute not only rational functions, but also real algebraic functions,

i.e., functions whose graphs are given by finite sets of polynomial equations and

inequalities, e.g.
√
x. Then the halting set of such a machine is still a countable

union of real semialgebraic subsets.

Before stating our main results, we note that the nondiscreteness problem for

1-generator subgroups of G = S1 ⊂ C∗ is not semidecidable, since a subgroup

〈A〉 < S1 is nondiscrete if and only if A has infinite order, i.e., is not a root of unity.

The complement in S1 of the set of roots of unity is clearly not a countable union of

arcs, therefore, it cannot be a halting set of a BSS machine. Thus, the discreteness

problem, strictly speaking, is undecidable already in G = PSL(2,R). To make it

decidable in G = PSL(2,R) one has to exclude from Gk the algebraic subvariety

consisting of tuples of matrices generating (virtually) abelian subgroups. Regarding

subgroups of G = PSL(2,C) with two (or more) generators, one has to exclude, for

a similar reason, dihedral subgroups (both finite and infinite). In line with the work
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of Gilman, Keen, Maskit and Riley, we will, moreover, exclude from consideration

all tuples A which generate elementary subgroups of G = SL(2,C). (This exclusion

also allows for a clean discussion of the character variety, which is a quotient of

Hom(Fk, G) by the group G acting via conjugation.) Observe also that Riley’s

arguments in [20] (based on the Jørgensen inequality) show that the nondiscreteness

problem for nonelementary subgroups of PSL(2,C) is BSS-semidecidable.

The space Gk of k-tuples of matrices A, Aj ∈ G, is naturally identified with the

representation variety, which is the algebraic variety Hom(Fk, G), via the map

φ 7→ (A1, . . . , Ak), Aj = φ(xj), j = 1, ..., k,

where Fk = 〈x1, ..., xk〉 is the free group of rank k. The variety Hom(Fk, G) contains

a (closed) real semialgebraic subvariety Home(Fk, G) consisting of representations φ

whose images are elementary subgroups of G, i.e., subgroups which either fix a point

in the hyperbolic 3-space or on its ideal boundary sphere or preserve a geodesic in

the hyperbolic 3-space. The complement

Homne(Fk, G) = Hom(Fk, G)−Home(Fk, G)

is the space of nonelementary representations. This space is the main object of our

study. We let

Homd(Fk, G) ⊂ Homne(Fk, G)

denote the subset consisting of nonelementary representations with discrete images.

Since elementary representations are excluded, the subset Homd(Fk, G) is known

to be closed (in the classical topology), see the paper of T. Jorgensen and P. Klein

[10], as well as [11].

In this paper we prove:

Theorem 1.6. The subset Homd(F2, SL(2,C)) is not BSS-semicomputable.

Thus, at least in the BSS-computability model, the discreteness problem for

2-generated subgroups of SL(2,C) is undecidable. Our proof is modeled on the

undecidability result for the Mandelbrot set M: The membership problem for M
is BSS-undecidable according to [1, Chapter 2]. The proof of Theorem 1.6 is not

difficult, but it relies upon three deep results:

• Description of BSS-computable sets by Blum, Shub and Smale, see [1].

• Minsky’s solution of the ending lamination conjecture for punctured tori

[15].a

• Miyachi’s theorem [17], proving non-smoothness (at the “cusps”) of the

boundary of the Maskit slice in the character variety of the punctured

torus.

aMinsky’s work used here was one of the many papers leading, eventually, to the solution of the

full Ending Lamination Conjecture by Minsky, Brock and Canary, [16,3].
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The undecidability theorem in this paper should be contrasted with the semide-

cidability result for convex-cocompact faithful representations into PSL(2,C), cf. [8].

We note that a more general semidecidability result for Morse (Anosov) represen-

tations of hyperbolic groups into semisimple Lie groups is proven in the work of the

author with B. Leeb and J. Porti [12, section 7.7].

2. Proof of Theorem 1.6

Set G = SL(2,C). We will show that the set in Theorem 1.6 is not a countable

union of real semialgebraic subsets of Homne(F2, G), where we regard G as a real

algebraic group. First of all, instead of working in Hom(F2, G), it suffices to work

with the character variety X = X(F2, G) = Hom(F2, G)//G. The reason is that

there is a polynomial map τ : Hom(F2, G) → X whose fibers are the extended

G-orbits in Hom(F2, G), where G acts via composition of representations F2 → G

with inner automorphisms of G. Discreteness, of course, is invariant under conjuga-

tion. We will avoid discussion of the extended orbit equivalence and only note that

for representations in Homne(F2, G) the extended orbit equivalence is the same

as the orbit equivalence. Therefore, it suffices to work with the character variety.

Concretely, the map τ is given by

τ(A,B) = (tr(A), tr(B), tr(AB)) ∈ C3.

Our next reduction is to the Maskit slice XM in X, i.e., the complex-algebraic subset

given by the following trace conditions:

tr([A,B]) = −2, tr(A) = 2.

Since the Maskit slice is algebraic, the problem now reduces to the one in the Maskit

slice. The Maskit slice of X is complex 1-dimensional, it is biregularly isomorphic

to the complex line C via the map

(tr(A), tr(B), tr(AB)) 7→ tr(B) ∈ C.

We, therefore, identify XM with C via this map. Recall that geometrically finite rep-

resentations are dense among all discrete and faithful representations Γ→ SL(2,C)

(for any finitely generated group Γ). This was proven first by Y. Minsky [15] for

representations of punctured torus groups, and, hence, in the Maskit slice, which

suffices for our purposes. The general case is due to the work of many people, most

notably, K. Bromberg [4], J. Brock and K. Bromberg [2], H. Namazi and J. Souto

[18], and K. Ohshika [19]. We, thus, have:

Proposition 2.1. The space D ⊂ C of equivalence classes of discrete representa-

tions [ρ] ∈ XM = C has the following structure:

D = DF t C,

where C is a countable subset of non-faithful geometrically finite representations

and DF is the set of equivalence classes [ρ] ∈ XM such that ρ : F2 → G is discrete

and faithful.
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Thus, it suffices to show that DF is not a countable union of real semialgebraic

subsets. Due to the work of Y. Minsky [15], the topological boundary of DF is a

topological arc α properly embedded in C. The complement to DF in C is also

diffeomorphic to R2.

Before proving the next lemma, we recall that an accidental parabolic element

of a representation

ρ : F2 = π1(T 2 − point)→ SL(2,C)

is an element of F2 represented by a (necessarily simple) nonperipheral loop γ (not

representing the conjugacy class of the generator A of F2) on the punctured torus

T 2 − point, such that π1(γ) is a parabolic element of SL(2,C). The equivalence

class [ρ] ∈ DF of a representation ρ is called a cusp if ρ has an accidental parabolic

element. It again follows from Minsky’s work (Theorem B in [15]) that cusps are

dense in the boundary of DF (cf. the earlier work of C. McMullen [14]).

Lemma 2.2. The arc α contains no smooth subarcs (which are not singletons).

Proof. H. Miyachi proved [17] the arc α is not smooth at each cusp, which are

dense in α. Therefore, α does not contain nondegenerate smooth subarcs.

We now can conclude the proof of Theorem 1.6.

Proof. Suppose that DF is a countable union⋃
j∈J

Ej

of real algebraic subsets Ej of C. Each Ej is either finite or its topological frontier

∂Ej in C is a finite union of real-algebraic arcs. Since, as noted above, the arc α

does not contain real-algebraic subarcs, each Ej intersects α in a nowhere dense (in

α) subset. By the Baire Theorem, the union⋃
j∈J

∂Ej ∩ α

has empty interior in α. Therefore, the union of subsets Ej cannot be equal to DF .

This contradiction concludes the proof of Theorem 1.6.
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