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Basics of Hyperbolic Geometry-

Hyperbolic 3-space, H
3, may be identified with the upper half space {(z, t) | z ∈ C, t > 0}

equipped with the metric
dz2 + dt2

t2

The isometry group of hyperbolic space Isom(H3) can be identified with the group of
Mobius transformations, and the group of orientation preserving isometries Isom+(H3) can
be identified with PSL2(C). PSL2(C) acts on the boundary of the upper half space by

�
a b
c d

�
· z =

az + b

cz + d

and this action can be extended in a natural way to the interior. Non-identity elements of
PSL2(C) fall into one of the following three categories:
-elliptic isometries (having fixed points in H

3)
-parabolic elements (having one fixed point on �C, the sphere at infinity)
-loxodromic elements (having two fixed points at infinity and an axis fixed set-wise):

A Kleinian group Γ is discrete a subgroup of Isom(H3). We will usually assume that it
is orientation preserving and without elliptic elements. A discrete group is a group in
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which the identity element is isolated. Discreteness also implies that the orbit of any
point in H

3 is discrete, i.e. for any x ∈ H
3 there exists a ball B containing x such that

gB ∩ B = ∅ ⇐⇒ gx = x. Assuming the group has no elliptic elements, this implies
that there exists a B such that gB ∩ B = ∅ for any nonidentity element. In this case
MΓ = H

3/Γ is a manifold , and it inherits a complete hyperbolic metric.

Conversely, given a complete hyperbolic manifold M , there exists an isometry φ from the
universal cover �M → H

3 with φ∗(π1(M)) a Kleinian group, so the study of hyperbolic
3-manifolds can be reduced to the study of Kleinian groups.

Surface groups-

A Kleinian group Γ is a called a surface group if Γ ∼= π1(S) for a closed surface S. In some
cases we allow compact surfaces but impose a parabolicity condition on ∂S.

The simplest example of a surface group sitting in H
3 is given by considering the set

{(z, t) | z ∈ R}, an isometric copy of H
2 sitting in H

3. The subgroup of the isometry group
of H

3 perseving this plane is PSL2(R) ⊂ PSL2(C), so we can see hyperbolic three space as
a complexification of two dimensional hyperbolic space.

Other examples of surface groups are given by considering the images of topological maps
S → M whose induced map π1(S) → π1(M) is injective. Then Γ0

∼= π1(S) sits as a
subgroup in Γ, and we get a covering map H

3/Γ0 → H
3/Γ ≈M .

M

H
3

H
3

Manifolds foliated by surfaces and fibrations give important examples of such situations.
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As another example of how surface groups come up in 3-manifolds, we can consider man-
ifolds M which are homeomorphic to the interior of a compact manifold �M . In this case
surface groups are associated the the ends of the manifold. Considering the ends of a
manifold allows us to get a grasp on the deformation theory of hyperbolic structures on
manifolds, as we can set up a correspondence between structures on the ends of the manifold
and the space of hyperbolic structures on M .

Limit sets-

Let Γ be a general Kleinian group. For any x ∈ H
3, Γx is a discrete set in H

3, but by
compactness it must accumulate on the boundary of H

3∪ �C = H3. The compactness of the
closure of H

3 is easier to see in the Poincaré ball model of hyperbolic space, which is the
unit ball in R

3 with the metric 4(dx2+dy2+dz2)
(1−r2)2 . In this model the sphere at infinity �C can

be identified with the unit sphere. ΛΓ = Γx ∩ �C is called the limit set of Γ. Notice that
the limit set does not depend on the particular orbit we look at. If λ is a limit point of
Γx, γix → λ, and y is any other point in H

3, γix and γiy are the same distance apart for
all i as γi is a hyperbolic isometry. Given any segment of fixed hyperbolic length in H

3,
its Euclidean length goes to zero as it approaches the boundary, so γix and γiy converge
as γix approaches ∂H

3.

If Γ is a finite group then ΛΓ = ∅. If Γ is infinite cyclic, the limit set consists of two points
p+ and p− in the case of a group generated by a loxodromic element, or a single point in
the case of a group generated by a parabolic element. The limit set can also be a single
point if Γ ∼= Z× Z is generated by two parabolics with a common fixed point.

The groups listed above are all called elementary groups. If Γ is not elementary, then its
limit set is uncountable. The limit set Λ can be proved to be the smallest nonempty closed
Γ-invariant set in �C, and is also the closure of the set of fixed points of the parabolic and
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loxodromic elements of the group.

As Λ is Γ-invariant, Ω = �C\Λ is Γ-invariant. Orbits do not accumulate in Ω, and in fact
Γ acts properly discontinuously on Ω, i.e. if K ⊂ Ω is compact then only finitely many
of the sets γK for γ ∈ Γ intersect K. This implies that Ω/Γ is Hausdoff, and it will be a
manifold assuming the group does not contain elliptics.

To prove that Γ acts properly discontinuously on Ω, we introduce Cλ, the convex hull of
Λ, which is the smallest convex set in H

3 whose closure in the ball contains Λ. Recall that
a convex set is a set X such that for x, y ∈ X the geodesic segment containing x and y
also lies in X. Note that the Γ-invariance of the limit set implies the Γ invariance of CΛ.
CΛ may also be characterized as the intersection of all closed half-spaces whose extension
to the sphere at infinity contains λ.

Note that as CΛ lies in H
3, Γ acts properly discontinuously on CΛ. We can define a Γ-

equivariant retraction r : H
3 ∪ ∂H

3 → CΛ ∪ ΛΓ, by sending r(x) to the “closest point” on
CΛ, where closest point is understood literally for points in the interior, and is understood
to mean the point of intersection of a horoball through x for a point x on the boundary.
To see that this is well defined, note that balls in H

3 are strictly convex, so the following
picture can’t happen:

Supposed Convex Hull

Horoball or Sphere 

Points of

Tangency

Geodesic must 

penetrate ball
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The Γ-equivariance of this retraction is easy to see, as hitting the whole picture by an
element of Γ doesn’t change the convex hull of the limit set, and if y in the closest point
in CΛ to x then γy is the closest point in CΛ to γx. If K ⊂ Ω is compact, then r(K)
is compact, and lies in the interior of H

3. If γK ∩ K �= ∅ for infinitely many γ’s, then
γ(r(K)) ∩ r(K) = r(γ(K)) ∩ r(K) �= ∅ for infinitely many γ, which is a contradiction.

We now have that Γ acts properly discontinuously on H
3 ∪ Ω, and H

3 ∪ Ω/Γ = M , a
manifold with boundary. Ω/Γ = ∂M is called the conformal boundary at infinity: as
PSL2(C) acts conformally on the boundary sphere �C, Ω/Γ comes with the structure of a
Riemann surface. Note that M is not necessarily compact.

Limit sets of Surface Groups-

Let Γ be a surface group. If Γ ⊂ PSL2(R) preserves a copy of H
2 inside H

3, then in non-
elementary cases the limit set is a circle, and the group is a Fuchsian group. The domain
of discontinuity is a disjoint union of two disks, Ω+ and Ω−, and H

2/Γ is conformally
equivalent to both Ω+/Γ and Ω−/Γ (the retraction r is in fact conformal in the case when
CΛ is a totally geodesic disc).

As a more interesting case, we can consider the case when the limit set is a general Jordan
curve. This is the called the quasi-Fuchsian case. A Jordan curve still separates the sphere
into two discs, and in fact Ω+/Γ and Ω−/Γ will still be homeomorphic to a single surface
S, and M � S × [0, 1] � CΛ/Γ.

Fuchsian Case quasi-Fuchsian Case

One can show that a group that is bi-Lipschitz equivalent to a Fuchsian group is quasi-
Fuchsian. Furthermore, Ber’s simultaneous uniformization theorem gives that there is a
one-to-one correspondence between quasi-Fuchsian groups considered up to an appropri-
ate equivalence and pairs of points (X,Y ) in Teichmüller space, the space of hyperbolic
structures on X and Y. A central question that will be addressed in these lectures is how
information about the pair (X,Y ) gives information about the quasi-Fuchsian groups and
its quotient manifold.
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