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1 Introduction

This course will concern the interaction between:

• hyperbolic geometry in dimensions 2 and 3;

• the dynamics of iterated rational maps; and

• the theory of Riemann surfaces and their deformations.

Rigidity of 3-manifolds. A hyperbolic manifold Mn is a Riemannian manifold
with a metric of constant curvature −1. Almost all our hyperbolic manifolds will
be complete. There is a unique simply-connected complete hyperbolic manifold
Hn of dimension n, so M = Hn/Γ where Γ ⊂ Isom(Hn) is a discrete, torsion-free
group isomorphic to π1(M).

In dimensions n ≥ 3 and higher, closed hyperbolic manifolds are rigid. That
is, composition of the maps

{closed hyperbolic n-manifolds} → {topological n-manifolds}
π1→ {finitely generated groups}

is injective. This is:

Theorem 1.1 (Mostow rigidity) Any isomorphism ι : π1(M) → π1(N) be-
tween the fundamental groups of closed hyperbolic manifolds of dimension 3 or
more can be realized as ι = π1(f) where f : M → N is an isometry.

It follows that geometric invariants such as vol(M), the hyperbolic length
#(γ), γ ∈ π1(M), etc. are (in principle) completely determined by the topologi-
cal manifold M , or even more combinatorially, by π1(M). Prasad extended this
result to finite volume manifolds.

In dimension 3 remarkable results of Thurston suggest that this rigidity
coexists with just enough flexibility that most 3-manifolds are hyperbolic. Thus
the ‘forgetful map’ above is almost a bijection. For example one has:

Theorem 1.2 (Thurston) If M is a closed Haken 3-manifold, then M is hy-
perbolic iff π1(M) is infinite and does not contain Z⊕ Z.

One can also compare the situation for manifolds of dimension 2. Closed,
orientable surfaces are classified by their genus g = 0, 1, 2, . . . and they always
admit metrics of constant curvature. For the sphere (g = 0) this metric is (es-
sentially) unique, but for the torus there is already a moduli space (H/ SL2(Z)).
Any surface of genus g ≥ 2 admits a complex structure, depending on 3g − 3
complex parameters, and each complex structure has a unique compatible hy-
perbolic metric.

Teichmüller space parameterizes these structures and will play a crucial role
in the construction of rational maps and 3-manifolds with prescribed topology.

1



For 3-manifolds our goal is to understand some examples of hyperbolic man-
ifolds, prove Mostow rigidity and related results, and give an idea of Thurston’s
construction of hyperbolic structures on Haken manifolds.

Dynamical systems. Any hyperbolic 3-manifold M gives rise to a conformal
dynamical system by considering the action of π1(M) on Ĉ thought of as the

sphere at infinity for H3. We have Isom+(H3) = Aut(Ĉ) = PSL2(C).
Iterated rational maps provide another source of conformal dynamics on the

Riemann sphere. These maps exhibit both expanding and contracting features.
For example, let

f : Ĉ→ Ĉ

be a rational map of degree d > 1. Then
∫

bC

|(fn)′(z)| |dz|2 = dn area(Ĉ)

tends to infinity exponentially fast as n → ∞. Here | · | denotes the spherical
metric. On the other hand, f has 2d − 2 critical points where f is highly
contracting.

There are surprisingly many similarities between the theories of rational
maps and of Kleinian groups. For example the following rigidity result holds:

Theorem 1.3 (Critically finite rigidity) Let f and g be rational maps all of
whose critical points are preperiodic. Then with rare exceptions, any topological
conjugacy between f and g can be deformed to a conformal conjugacy. (In the
exceptional cases, f and g are double-covered by an endomorphism of a torus.)

On the other hand, Thurston has also given a geometrization theorem char-
acterizing rational maps among branched covers of the sphere. The method of
proof parallels the more difficult geometrization result for Haken 3-manifolds.
Understanding the case of rational maps is good preparation for the 3-dimensional
theory, like adaptive excursions from the base camp at 17,000 feet on Mt. Ever-
est.

An exhaustive theory of dynamical systems is probably unachievable. One
usually tries to understand the behavior of fn(z) for most z ∈ Ĉ, and for most
f ∈ Ratd.

A rational map f is structurally stable if all sufficiently nearby maps g are
topologically conjugate to f . Despite the many mysteries of general rational
maps, one knows:

Theorem 1.4 The set of structurally stable rational maps is open and dense.

Many of the components of the structurally stable maps are encoded by
critically finite examples, so we are approaching a classification theory in this
setting as well.

References. For a brief survey of the iterations on Teichmüller space for
rational maps and Kleinian groups, see [Mc3]. For a proof of the density of
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structural stability in Ratd, see [MSS] or [Mc4]. Speculations on the role of
structural stability in the biology of morphogenesis and other sciences can be
found in [Tm].

1.1 Examples of hyperbolic manifolds

A Kleinian group Γ is any discrete subgroup of Isom(H3). Its domain of disconti-
nuity Ω(Γ) ⊂ Ĉ is the largest open set on which Γ acts properly discontinuously.

The limit set Λ(Γ) = Ĉ−Ω(Γ) can also be defined as Γx∩ Ĉn−1 for any x ∈ H3.
We say Γ is elementary if it is abelian, or more general if it contains an

abelian subgroup with finite index. Excluding these cases, Λ is also the closure
of the set of repelling fixed-points of γ ∈ Γ, and the minimal closed Γ-invariant
set with |Λ| > 2.

The quotient M = H3/Γ is an orbifold, and a manifold if Γ is torsion-free.
The Kleinian manifold

M = (H3 ∪ Ω(Γ))/Γ

has a complete hyperbolic metric on its interior and a Riemann surface structure
(indeed a projective structure) on its boundary.

We now turn to some examples.

1. Simply-connected surfaces and 3-space. The unit disk ∆ and the up-
per half-plane H in C are models for the hyperbolic plane with met-
rics 2|dz|/(1 − |z|2) and |dz|/ Im(z) respectively. We have Isom+(H) =
PSL2(R) acting by Möbius transformations.

The geodesics are circular arcs perpendicular to the boundary, in either
model.1

Similarly Hn+1 can be modeled on the upper half-space {(x0, . . . , xn) :
x0 > 0} in Rn+1, with the metric |dx|/x0; or on the unit ball with the
metric 2|dx|/(1− |x|2).
Planes in H3 are hemispheres perpendicular to the boundary. Reflections
through circles on Ĉ prolong to isometric reflections through hyperplane
in H3, and lead to the isomorphism Isom+(H3) = Aut(Ĉ) = PSL2(C)
acting by Möbius transformations.

2. Domains in Ĉ. By a generalization of the Riemann mapping theorem, the
unit disk covers (analytically) any domain Ω ⊂ Ĉ with |Ĉ−Ω| ≥ 3. Thus
any such Ω is a hyperbolic surface.

3. Examples with π1(M) = Z.

1The unit disk ∆ can be taken as a model of either RH2 or CH1; for the latter space the
natural metric is |dz|/(1− |z|2) with constant curvature −4. The symmetric space CHn, n > 1
contains copies of both RH2 and CH1, with curvatures −1 and −4 respectively. The space
CHn can be modeled on the unit ball in Cn with its Hermitian invariant metric, e.g. the
Bergman metric.
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(a) The punctured disk ∆∗ = H/〈z +→ z + 1〉; the covering map H→ ∆∗

is given by π(z) = e2πiz . A neighborhood of the puncture has finite
volume. The limit set is Λ = {∞}.

(b) The annulus A(r) = {z : r < |z| < 1}. We have A(r) = H/λZ, λ > 1,
with the covering map H→ A(r) given by

π(z) = z2πi/ log λ.

Note that π(λz) = π(z) and π(R+) = S1, the unit circle. π(R−) =
S1(r) where r = exp(−2π2/ log λ), so λ = exp(2π2/ log(1/r)).

Thus the length of the core geodesic of A(r) is 2π2/ log(1/r). For
example this shows A(r) and A(s) cannot be isomorphic if r -= s.

Λ = {0,∞}.
(c) The torus X = C∗/λZ is isomorphic to C/(2πiZ⊕ log λZ).

(d) The space H3/λZ is a solid torus with core curve of length log λ.

4. Pairs of pants, genus two and handlebodies. Now consider 3 disjoint
geodesic in ∆ symmetric under rotation. The group Γ′ generated by reflec-
tions through these geodesics gives a quotient orbifold which is a hexagon
with alternating edges removed. The limit set is a Cantor set.

Let Γ ⊂ Γ′ be the index two subgroup preserving orientation. This is the
familiar subgroup

Γ ∼= 〈AB, AC〉 ∼= Z ∗ Z ⊂ 〈A, B, C : A2 = B2 = C2 = 1〉 ∼= Γ′.

Then ∆/Γ′ is a pair of pants, i.e. the double of the hexagon.

Next consider the action of Γ on Ĉ − Ω; the quotient X is the double of
a pair of pants, namely a surface of genus two. A fundamental domain
is the region outside of 4 disjoint disks. Looking at the region above the
hemispheres these disks bound, we see M = H3/Γ is a handlebody of
genus two.

Conversely, for any Riemann surface X of genus two, the realization of
X as the boundary of a topological handlebody M determines a planar
covering space Ω → X which can be compactified to the sphere. The
action of Z ∗ Z = π1(M) on Ω extends to the sphere and gives a Kleinian
group.

5. Surfaces of genus two. It is familiar from the classification of surfaces
that a torus can be obtained from a 4-gon by identifying opposite sides,
a surface of genus 2 from an 8-gon, and a surface of genus g from a 4g-
gon. The resulting cell complex has only one vertex, where 4g faces come
together.

A regular octagon in H with interior angles of 45◦ serves as a fundamental
domain for a Fuchsian group such that H/Γ = X has genus two. Extending
the action to H3 we obtain a compact Kleinian manifold M ∼= S × [0, 1].
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6. The triply-punctured sphere. There is only one ideal triangle T in H, and
by doubling it we obtain hyperbolic structure on X = Ĉ− {0, 1,∞}. The
covering map π : H→ X can be constructed by taking the Riemann map-
ping from T to H, sending the vertices to {0, 1,∞}, and then prolonging
by Schwarz reflection.

The corresponding group is arithmetic, indeed X = H/Γ(2).

We have Aut(X) = S3 = SL2(Z/2), which can be seen as the permutation
group of the cusps of X .

The fact that X is covered by H proves the Little Picard Theorem: an
entire f : C→ C omitting 2 values is constant. Indeed, the omitted values
can be taken to be 0 and 1; then f lifts to the universal cover, giving a
map f̃ : C→ H which must be constant.

7. Punctured tori. To handle a torus we need to delete a point so the Euler
characteristic becomes negative. Then we can take as a fundamental do-
main an ideal quadrilateral, and glue opposite sides. (It is essential to be
careful doing the gluing! So the holonomy around a cusp is parabolic.)

These examples can be perturbed to give Poincaré’s examples of quasi-
fuchsian groups, by taking reflections in a necklace of 4 tangent circles.

8. A compact hyperbolic 3-manifold. Here is an example to which Mostow
rigidity applies: take a regular hyperbolic dodecahedron D with internal
dihedral angles 72◦ = 2π/5. Then identify opposite faces making a twist
of 3/10ths of a revolution. The 30 edges of D are identified in six groups
of 5 each, so we obtain a manifold structure around each edge. The link
of a vertex is orientable and admits a metric of constant curvature 1, so
it is a sphere. (In fact there is only one vertex in D/ ∼, and its link is an
S2 tiled by 20 triangles in the icosahedral pattern.)

9. The Hopf link. As a warmup to a hyperbolic link complement, let’s look
at the Hopf link L ⊂ S3, which can be thought of as a pair of disjoint
geodesics. Then M = S3−L = S1×S1×(0, 1); note that we have omitted
the boundary, so M is open.

We claim S3−L can be obtained from an octahedron by identifying sides
in a suitable pattern, then deleting two vertices (say the north and south
poles).

To see this, first write L = K01K1. Then T = S3−K0 is a solid torus T ,
and M = S3 − L is just the complement of the core curve in T , T −K1.
To obtain a cell, cut T along a disk to obtain a solid cylinder C; then K1

becomes an interval I1 joining the ends of C. Now cut along a rectangle
joining the round part of ∂C to I1, and open it up. The result is like a
split log. Shrink the parts of the boundary running along K0 and K1 to
points, which will become the north and south poles. We obtain a ball
with 4 longitudes joining the poles. Adding a square of 4 more edges to
form the equator, the result is an octahedron.
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Thus the face identifications preserve the northern and southern hemi-
spheres, and match each quadrant to its ‘opposite’ quadrant in the same
hemisphere.

10. The Whitehead link. The Whitehead link W ⊂ S3 is a symmetric link of
two unknots, with linking number zero, but one clasp.

Figure 1. The Whitehead link; vol(S3 −W ) = 3.66386 . . .

Its complement M = S3 −W has a finite volume hyperbolic metric that
can be obtained from a regular ideal octahedron in H3 by a suitable gluing
pattern. To see this, first note that for the unknot K0, S3 −K0 is a solid
torus D2 × S1. Thus M = D2 × S1 − K1 for a certain knot K1 with
winding number zero.

Cutting D2 × S1 with a disk D = D2 × {t} meeting K in two points, we
obtain a cylinder D2× [0, 1] from which a pair of intervals I1 1 I2 must be
removed.

After a little deformation, we can replace D2×[0, 1] with a cube C = [0, 1]3,
and the two intervals with segments joining opposite faces. The original
knot K0 now corresponds to 8 of the 12 edges of C. To obtain a 3-cell, we
cut C−(I1∪I2) along rectangles Ri joining Ii to an adjacent face. Then we
obtain a cell structure on S2 = ∂D3 with 4 pentagons and 4 quadrilaterals.
Each pentagon has 3 edges along K0, and each quadrilateral has 1 edge
along K1. Collapsing these edges, we obtain an octahedron.

The dihedral angles of a regular octahedron are 90◦, so it can be reglued
to give a hyperbolic structure on S3 −W .

11. Arithmetic examples. Let Od be the ring of algebraic integers in the
quadratic number field K = Q(

√
−d), d ≥ 1. Then Od ⊂ C is discrete, so

SL2(Od) is a Kleinian group. In fact Md = H/ SL2(Od) is a finite-volume
orbifold (Borel), with as many cusps as the class number of K.

The Whitehead link and Borromean rings complements are commensu-
rable H3/ SL2(Z[i]), and the figure eight knot to SL2(Z[ω]) (the Gaussian
and Eisenstein integers respectively). Both have class number one.
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Figure 2. Building the Whitehead link complement from an octahedron.

Theorem 1.5 (Thurston) A knot complement M = S3−K admits a complete
hyperbolic structure of finite volume iff M is atoroidal: that is, iff every copy of
Z⊕ Z in π1(M) comes from a tubular neighborhood of the knot.

Example. For trefoil knot T2,3, and more generally any torus knot, Tp,q, the
complement Mp,q = S3 − Tp,q is toroidal. In fact Mp,q is a Seifert fibered
manifold; it admits a nontrivial S1 action. This action gives rise to many
nontrivial copies of Z⊕ Z in π1(Mp,q).

To see the S1 action, first think of S3 as the unit sphere in C2. The circle
action on S3 by

(z1, z2) +→ (epiθz1, e
qiθz2).

A generic orbit is a (p, q)-torus knot, so its complement admits an S1 action.
To visualized an immersed incompressible torus in the complement of the

trefoil knot, imagine T2,3 as a cable lying on a torus Σ = S1 × S1 ⊂ S3. Try
to wrap the torus Σ in paper, avoiding the cable. Passing the paper alternately
under and over the cable, it closes up to make an immersed torus.

Figure 3. Tiling of the Z2 ! Z cover of the figure eight knot complement.
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The figure eight knot. The simplest hyperbolic knot complement is M =
S3 −K where K is the figure eight knot. The hyperbolic manifold M can be
built from 2 regular ideal tetrahedra.

One can describe M concretely the complement T ∗ of the zero section of
the torus bundle T → S1 with monodromy A = PQ = ( 1 1

2 1 ) = ( 1 1
0 1 ) ( 1 0

1 1 ).
This factorization of A into elementary matrices determines a sequence of tri-
angulations of the plane which are related by cobordisms through tetrahedra
(see Figure 3). By inspection, six tetrahedra are adjacent to each edge of the
resulting triangulation of the one-point compactification of M . Since the di-
hedral angles of a regular hyperbolic tetrahedron are all 60◦, M can be given
a complete hyperbolic structure. There are just 2 edges in the quotient, with
six tetrahedra coming together along an edge (like equilateral triangles tiling a
hexagon).

We note that the figure eight knot (which includes the information of the
embedding of M into S3) can be constructed as the Murasugi sum of two Hopf
bands, which makes clear that it is a fibered knot and that its monodromy is
the product of two Dehn twists, P and Q. Indeed, the Hopf link complement
itself can be regarded as the fibered link obtained by suspending a single Dehn
twist on a annulus. Here we have arranged that the monodromy is the identity
on the boundary of the fiber, and that the resulting framing of the boundary
corresponds to the framing of the Hopf link by meridians and by fiber. If we
had, instead, use the identity map on the annulus, we would have obtained the
same 3-manifold, but now presented as the complement of a link in S2 × S1.

Reflection groups. Quite generally, one can consider any convex polyhedron
P in Hn, Rn or Sn whose dihedral angles are of the form θi = π/ni. Then the
group Γ generated by reflections in the sides of P is discrete, and P forms a
fundamental domain for Γ. The proof is by induction on the dimension of P
(see e.g. [Rat, §7]).

Figure 4. Fundamental polyhedron P7.

3-dimensional pairs of pants. A pair of pants is associated to each triangle in
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H2 with vertices outside the plane. Similary we can consider regular tetrahedra
with vertices outside H3. For each n ≥ 7 there is a unique such tetrahedron Pn

such that its ‘convex core’ Kn is bounded by four 2π/n triangles and by four
right hexagons.

The four faces of Pn are simply four circles in the sphere meeting with
dihedral angles of π/n. The example P7 is depicted in Figure 4. Note that 3 of
the circles simply determine the (2, 3, 7) triangle group acting on a copy of H,
namely the common perpendicular circle (shown as a dotted line). Reflections
in the sides of Pn generate a discrete group Γn for all n; when n is even, Pn is
a fundamental domain for this group.

Figure 5. Limit sets from regular tetrahedra with vertices beyond infinity; the
cases n = 7, 8, 12,∞.

As n→∞ the limit sets for these reflection groups tend to the limit set for
the Apollonian gasket. See Figure 5 for exaples.

One can glue several copies of Kn, thought of as an orbifold, together along
their triangular faces, in a pattern dictated by any 4-valent graph, just as a
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3-valent graph gives a gluing pattern for pairs of pants. In this way one obtains
many compact, hyperbolic 3-manifolds with π1(M) mapping surjectively to a
free group.

1.2 Examples of rational maps

Let f : Ĉ → Ĉ be a rational map. We will be interested in f as a dynamical
system; that is, we will study the iterates

fn(z) = (f ◦ f ◦ . . . ◦ f)
︸ ︷︷ ︸

n times

(z).

Orbits and periodic points. The forward orbit of z ∈ Ĉ is the sequence
〈z, f(z), f2(z), . . .〉. The backward orbit is

⋃
n≥0 f−n(z).

A point z ∈ Ĉ is periodic if fn(z) = z; the least such n > 0 is its period.
The eigenvalue, derivative or multiplier of a periodic point is the complex

number λ = (fn)′(z). A periodic point is attracting, repelling, or indifferent
if its multiplier is < 1, > 1 or = 1. A periodic point is superattracting if its
multiplier is zero. Sometimes attracting is meant to exclude superattracting.

A cycle is a finite set cyclically permuted by f , i.e. the forward orbit of a
periodic point. A periodic point is superattracting iff its cycle includes a critical
point of f .

Conjugacy. Two dynamical systems f1, f2 are conjugate if φf1φ−1 = f2.
Conjugacies ‘preserve the dynamics’, e.g. φ sends periodic points to periodic
points. The quality of φ determines the amount of structure of f which is
preserved (e.g. topological, measurable, quasiconformal, conformal).

For rational maps, if φ : Ĉ → Ĉ is conformal, then f1 and f2 are equivalent
or isomorphic. Conformal conjugacy preserves multipliers.

Normal families. A collection of analytic maps fα : U → Ĉ is normal if every
sequence has a convergence subsequence. Here U can be an open subset of Ĉ or
more generally a complex manifold.

Theorem 1.6 Any bounded family of analytic functions is normal. More gen-
erally, if F is not normal then

⋃
fα(U) is dense in Ĉ.

Proof. First suppose |f(z)| ≤M for all f ∈ F . Using a chart we reduce to the
case X = ∆. By Cauchy’s formula, we have

|f ′(z)| =

∣∣∣∣∣
1

2πi

∫

S(z,r)

f(ζ) dζ

(ζ − z)2

∣∣∣∣∣ ≤
M

r

for any r < d(z, ∂∆). This shows F is equicontinuous, so by the Arzela-Ascoli
theorem F is normal.

More generally, if F omits B(w, r), then letting M(z) = 1/(z − w) we see
the family

M ◦ F = {M ◦ f : f ∈ F}

10



is bounded by 1/r, and normality of F follows from normality of M ◦ F .

The Julia set. The Fatou set Ω(f) is the largest open set in Ĉ such that the
family of iterates 〈fn : n ≥ 0〉 forms a normal family when restricted to Ω(f).
Its complement, J(f) = Ĉ− Ω(f), is the Julia set.

Theorem 1.7 Let J(f) be the Julia set of a rational map f . Then:

• The Julia set is closed and totally invariant; that is, f−1(J(f)) = f(J(f)) =
J(f).

• If an open set U meets J(f) then
⋃

fn(U) = Ĉ.

• Either J(f) = Ĉ or J(f) is nowhere dense.

Proof. These assertions follow from the definition of normalization and Theo-
rem 1.6.

Order and chaos. Since the iterates 〈fn〉 have limit on Ω(f), orbits of nearby
points stay close together. Thus the dynamical behavior of 〈fn(z)〉, z ∈ Ω(f),
is predictable — it is not highly sensitive to the exact position of z.

We will show every z ∈ Ω(f) is either attracted to a periodic cycle, or lands
in a disk or annulus subject to an irrational rotation.

On the other hand, the Julia set is the locus of chaotic behavior, where a
small change z can product a vast change in its forward orbit. For example, we
will see (Theorem 5.7) the Julia set is the same as the closure of the repelling
periodic points for f .

Examples of rational maps.

1. Degree one. Any Möbius transformation f(z) is hyperbolic, parabolic,
elliptic irrational or of finite order.

In the hyperbolic case up to conjugacy f(z) = λz, |λ| > 1, and all points
but z = 0 are attracted to infinity. Then J(f) = {0,∞} and

Ω(f)/f = C∗/λZ = C/(Z2πi⊕ Z log λ).

In the parabolic case, we can take f(z) = z + 1 and then Ω(f)/f = C∗.
This quotient can arise as a limit of degenerating tori, e.g. when fn(z) =
λnz + 1, |λn| > 1 and λn → 1.

In the irrational elliptic case, we can put f in the form f(z) = exp(2πiθ)z,
θ ∈ R−Q, and the orbits are dense subsets of the circles |z| = r.

In the finite order case, we have f(z) = exp(2πip/q), and Ĉ/f is the (q, q)
orbifold.

11



2. f(z) = z2. Here J(f) = S1. Clearly fn(z)→ 0 or ∞ when |z| -= 1, and f
has a dense set of repelling periodic points on S1.

3. Blaschke products. For |a| < 1 let

f(z) = z

(
z + a

1 + az

)
.

Theorem 1.8 The Julia set of f(z) is S1, the action of f on S1 is ergodic,
and every point outside S1 is attracted to z = 0 or z =∞.

Proof. Clearly f(z) has an attracting fixed-point of multiplier a at z = 0,
and since |f(z)| < |z| in the disk we see every z ∈ ∆ is attracted to the
origin under iteration. By symmetry points outside the circle are attracted
to infinity. Thus fn cannot be normal near S1, so J(f) = S1.

As for ergodicity, let E ⊂ S1 be a set of positive measure such that
f−1(E) = E, and let u : ∆ → [0, 1] be the harmonic extension of the
indicator function χE(z). Then by invariance, u(z) = u(f(z)) and thus

u(z) = limu(fn(z)) = u(0)

for all z ∈ ∆. Since u is constant, E = S1.

The Blaschke products are strongly reminiscent of Fuchsian groups.

4. An interval. Let f(z) = z2 − 2. We claim J(f) = [−2, 2], and every point
outside this interval is attracted to infinity.

Indeed, f is a quotient of F (z) = z2; setting p(z) = z + z−1, we have
f(p(z)) = p(F (z)). Thus the Julia set is the image of the unit circle, and
the rest follows.

5. A Cantor set. Let f(z) = z2−100. Then the preimages of the critical point
z = 0 are z = ±10. The ball B(0, 20) is disjoint from the critical value
z = −100, so its preimage f−1(B(0, 20)) is a pair of disks D± ‘centered’
at z = ±10, each of radius about 1, since |f ′(10)| = 20. The two branches
of the inverse of f , mapping B(0, 20) into these disks, are contractions, by
a factor of about 20. Thus J(f) is a Cantor set, and every point outside
the Cantor set is attracted to infinity.

In this example the fact that f : (D− ∪D+)→ B(0, 20) is a covering map
is an example of the following basic principle:

Let V ⊂ Ĉ be an open set disjoint from the critical values of f ,
and let U = f−1(V ). Then f : U → V is a covering map.

Proof: f : U → V is a proper local homeomorphism.

12



6. Lattès examples. Here is another example of a quotient dynamical system
(like z2 − 2). In this example, J(f) = Ĉ.

Let X = C/(Z ⊕ iZ) and define F : X → X by F (z) = (1 + i)z. Then
|F ′| =

√
2 everywhere and it is easy to see repelling periodic points of F

are dense on X .

Let p : X → Ĉ be (essentially) the Weierstrass ℘-function, presenting X
as a 2-fold cover branched over 0, ±1 and ∞ (by symmetry). Note that
p identifies x and −x, so its critical points are the 4 points of order 2 on
X (the fixed-points of x +→ −x). Since F (−x) = F (x), there is a degree 2

rational map f : Ĉ→ Ĉ such that

X
F−−−−→ X

p

- p

-

Ĉ
f−−−−→ Ĉ

commutes. From this we find:

f(z) =

(
z − i

z + i

)2

.

Since repelling points are dense for F , they are also dense for f , and thus
J(f) = Ĉ.

c_1

c_3

c_2
c_4

Figure 6. Action of F (z) = (1 + i)z on points of order two.

Deriving the formula. Here is how the formula for f was found. The
critical points {c1, c2, c3, c4} of p are the points of order 2 on X . Under
F , these points map by

c1, c2 +→ c3 +→ c4 +→ c4.

(See Figure 6.)

We can arrange that the 2-fold branched covering p : X → Ĉ has critical
values ei = p(ci) with {e1, e2, e3, e4} = {0,∞, 1,−1}.

Now z ∈ Ĉ is a critical value of f(z) = p◦F ◦p−1(z) exactly when w = p(z)
is a critical point of p, but F−1(w) is not. Thus the critical values of f
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Figure 7. Orbit of Lattés example f(z) = (z − i)2/(z + i)2.

are {p(c1), p(c2)} = {e1, e2} = {0,∞}. Therefore f(z) = M(z)2 for some
Möbius transformation M .

Since f(0) = f(∞) = e3 = 1, we have M(0)2 = M(∞)2 = 1, so we can
write M(z) = (bz − a)/(bz + a). (Of course M(z) and −M(z) give the
same map, so M is only determined up to sign.) From f(1) = −1 and
f(−1) = −1 we find a = i and b = 1.

Note that F is ergodic on X , preserving the measure |dz|2. Thus f is

ergodic on Ĉ, with respect to the push-forward of this measure, namely

ω =
|dz|2

|z||z − 1||z + 1| ·

Thus the orbits of f concentrate near {0,∞,±1}. See Figure 7.

Orbifold picture. The map f has a simple picture in terms of orbifolds.
Namely, think of the Riemann sphere Ĉ as the double of a square S. The
Euclidean metric on S makes Ĉ into a (2, 2, 2, 2)-orbifold X , admitting a
symmetry ι : X → X obtained by rotating the square 180◦ around its
center. The quotient X/ι also has signature (2, 2, 2, 2), and in the induced
Euclidean metric it is similar to X .

Thus we obtain a degree two covering map (of orbifolds) f : X → X ,
expanding the (singular) Euclidean metric on X by a factor of

√
2. Since

f is conformal, it is also a rational map, and f is (conjugate to) the map
we have described above.

A mechanical version of this map is well-known in origami: you can fold
the corners of a square towards the center to make a smaller square of 1/2
the original area.

These combinatorial constructions of branched covers are very simple ex-
amples of dessins d’enfants, cf. [Sn].
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7. f(z) = z2 − 1. Here 0 +→ −1 +→ 0, so an open set is (super)attracted to
a cycle C of order two. What other kinds of behavior can result? For
example, can there be another attracting cycle?

In Figure 8 the points attracted to C are colored gray; the Julia set is
black, and fn(z)→∞ for z in the white region.

We will eventually show that whenever f(z) = z2 + c has an attracting
cycle C, all orbits outside J(f) converge to C or to ∞ (Corollary 5.25).

            

Figure 8. Dynamics of f(z) = z2 − 1.

1.3 Classification of dynamical systems

To put this theory in context, we first mention some general notions in dynam-
ics. Classically dynamics emerges from the theory of differential equations. By
taking the flow for a given time, we obtain a diffeomorphism of a manifold,
f : M → M . It is also interesting to study groups of maps (e.g. Kleinian
groups) and maps that are not invertible (e.g. rational maps with deg(f) > 1.)

Consider the category whose objects are diffeomorphisms of manifolds, f :
M →M . These objects can be equipped with various morphisms. For example,
we can regard diffeomorphisms h : M → N such that h ◦ f = g ◦ h as the mor-
phisms between (M, f) and (N, h). In this category, two objects are isomorphic
if they are smoothly conjugate.

If we allow h instead to be a homeomorphism, then we obtain the notion of
topological conjugacy. If we allow h to simply be continuous, then the morphisms
are semiconjugacies.

Program of dynamics. A central and difficult problem is to classify dynamical
systems. Progress can be made in specific families.

Examples.

1. The family of dynamical systems fλ(x) = λx, λ ∈ R∗. There are six
topological conjugacy classes. A useful observation is that h(x) = xα

conjugates x +→ λx to x +→ λαx.

2. The family fθ(z) = e2πiθz, |z| = 1 in C. Here fθ is topologically conjugate
to fα iff α = ±θ mod Z. One approach to the proof uses unique ergodicity
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of an irrational rotation. Any topological conjugacy h must preserve this
measure and so h is an isometry.

In this example there are uncountably many topological conjugacy classes.

3. Let f : S1 → S1 be a ‘generic’ Ck diffeomorphism. (Note: C∞ diffeomor-
phisms do not form a Baire space.) Then f has rotation number p/q, and
the periodic points of f consists of mq pairs of alternating attracting and
periodic points (organized into m pairs of cycles). Under iteration, every
point converges to one of the m attracting cycles. A model for f is given
by taking an mq-fold covering of a hyperbolic Möbius transformation act-
ing on the circle, and composing with a deck transformation. Thus f is
determined up to conjugacy its rotation number p/q and the number of
attracting cycles m.

Definition. Let M be a compact manifold. A map f ∈ Diff(M) is structurally
stable if there is an open neighborhood U of f such that g is topologically
conjugate to f (f ∼ g) for all g ∈ U .

By definition, the structurally stable set Ω ⊂ Diff(M) is open. Since Diff(M)
is separable, Ω has at most a countable number of components. Thus there at
most a countably number of topological forms for structurally stable dynamical
systems.

Program of dynamics. One of the overarching programs in dynamics can
be described as follows. Fixing attention on a particular family of dynamical
systems, one tries to:

1. Show most maps are structurally stable.

2. Provide models for, and classify topologically, the structurally stable maps.

3. Find continuous moduli to parameterize each component of the struc-
turally stable regime.

Example. This program can be successfully carried out for Diff(S1). Namely,
(1) the structurally stable maps are indeed dense, (2) the rotation number p/q
and number of attracting cycles provide topological invariants, and models are
easily constructed; and (3) the eigenvalues at the periodic points provide con-
tinuous moduli.

Rational maps. Our main goal is to carry through this program for rational
maps f : Ĉ→ Ĉ. We will find:

1. Structurally stable rational maps are indeed open and dense. Holomorphic
motions, the λ-lemma and univalent mappings provide methods of proof.

2. Topological models can be given for rational maps. Indeed, Thurston
has characterized rational maps among critically finite branched covers of
the sphere. The method here is iteration on Teichmüller space — a toy
version of the same discussion that leads to the geometrization of Haken
manifolds.
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3. Moduli for rational maps can be given in terms of the Teichmüller space
of a quotient Riemann surface. Typically these moduli boil down to eigen-
values at attracting cycles, much as in the case of generic diffeomorphisms
of S1.

Expanding maps. We now turn to another example of structural stability. A
map f : S1 → S1 is expanding if there is a λ > 1 such that |f ′(x)| ≥ λ > 1 for
all x ∈ S1 ∼= R/Z. Then f is a covering map, and d = deg(f) satisfies |d| ≥ 2.

Clearly the expanding maps are open in the space of smooth endomorphisms
of S1. We now show that all maps of a given degree are topologically conjugate.

Theorem 1.9 Any two expanding maps f : S1 → S1 of degree d are topologi-
cally conjugate.

Proof. Lifting to the universal cover, we obtain a map f : R → R satisfying
f(x+1) = f(x)+d. Let g(x) = dx. It is enough to construct a homeomorphism
h such that h ◦ f = g ◦ h. Since f is expanding, it clearly has a fixed-point, and
we can choose coordinates so that f(0) = 0. Then f(k) = dk for all k ∈ Z.

If h exists then it formally satisfies h = g−n ◦ h ◦ fn. To solve this equation,
we replace h on the right with the identity, and then take a limit as n → ∞.
More precisely, let

hn(x) = g−n ◦ fn(x) =
fn(x)

dn
.

Now if x ∈ [k, k + 1] then f(x) ∈ [kd, kd + d] and thus d−1f(x) ∈ [k, k + 1] as
well. It follows that |hn+1(x)−hn(x)| ≤ 2d−n. Thus hn(x) converges uniformly
to a continuous limit h(x). Moreover h is monotone increasing and satisfies
h(x + 1) = h(x) + 1, so it descends to a map on the circle.

To complete the proof we must show h is 1-1. Since h is monotone, if it fails
to be injective there is a nontrivial interval I ⊂ S1 such that h(I) is a single
point. But since f is expanding, there is an n > 0 such that fn(I) = S1. Then
we must also have gn(h(I)) = S1, which is impossible if I is collapsed by h.
Therefore h is a homeomorphism.

An analysis of the last step in the proof shows:

1. Even if f is not expanding, it is semiconjugate to x +→ dx.

2. To get a conjugacy, it suffices that f is LEO (locally eventually onto): for
every open interval I ⊂ S1 there exist an n such that fn(I) = S1.

3. If f is expanding, then |h(I)| > C|I|α where α = log d/ log λ. Thus the
conjugacy and its inverse are Hölder continuous.

Motion of periodic points. An alternative approach to the proof is to con-
sider a family of expanding maps ft(z) connecting f(z) to g(z). Then one can
follow the periodic points along and obtain not just a homeomorphism but an
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isotopy ht(z) of conjugacies. This idea leads to the holomorphic motions we use
for rational maps.

Failure of structural stability. Although structural stability is dense in
Diff(S1), it fails to be dense in Diff(M) for higher-dimensional manifolds. The
first result in this direct was [Sm]:

Theorem 1.10 Structural stability is not dense in Diff(M) for M = R3/Z3 the
3-torus.

Proof. It is known that an Anosov map on the 2-torus X = R2/Z2, such as
f(x) = Ax with A = ( 2 1

1 1 ), is structurally stable. Extend f to a map of the
3-torus M = X × R/Z so that f fixes X0 = X × {0} and is highly contracting
normal to X0. This can be done so that the stable manifolds W s(p), p ∈ X0,
give a codimension-1 foliation of M .

Next, arrange that f has a hyperbolic fixed-point q = (0, 0, 1/2) that is
locally contracting on X1/2 and expanding along (0, 0) × S1. Finally arrange
that the unstable manifold Wu(q) has an isolated tangency to W s(p), some
p ∈ X0.

The entire picture persists for all g in some neighborhood U of f . Let us
say g is ‘rational’ if Wu(q) is tangent to W s(p) for some periodic point p on
X0. This property is a topological invariant. The set of leaves through periodic
points is countable and dense, so the set of rational g is also dense. Similarly,
the set of irrational g is dense. Thus structural stability fails throughout U .

Shifts. The classical Smale horseshoe, with a dense set of saddle points and a
basic set isomorphic to the two-side shift, cannot occur in conformal dynamics,
even topologically. Indeed the moduli of the two quadrilaterals involved cannot
agree. See §2.4.

On the other hand the one-sided shifts (Σn,σ) arise frequently, for example
inside z2 + c with |c| large.

Notes. See [AS] and [Wil] for more on the failure of structural stability to
be dense. For ideas connecting structural stability and bifurcations to physical
sciences and biology, see [Tm].

2 Geometric function theory

This section provides background in geometric methods of complex analysis.
Basic references for Teichmüller theory include [Ah2], [Le].

2.1 The hyperbolic metric

Theorem 2.1 (Schwarz lemma) Let f : (∆, 0) → (∆, 0) be holomorphic.
Then |f ′(0)| ≤ 1, and equality holds iff f(z) = eiθz.

Proof. Apply the maximum principle to f(z)/z.
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Corollary 2.2 Aut(H) = Isom+(H), the isometry group of the hyperbolic met-
ric ρH = |dz|/y, z = x + iy.

Proof. By the Schwarz lemma, an automorphism fixing the origin in ∆ is
the restriction of a Möbius transformations. Since the Möbius transformations
act transitively on ∆, we see Aut(∆) is the subgroup PSU(1, 1) of Aut(Ĉ)
preserving the disk.

Similarly, Aut(H) = PSL2(R). To see that Aut(H) preserves ρH, just check
invariance under (i) z +→ z + t, t ∈ R; (ii) z +→ az, a > 0; and (iii) z +→ 1/z; and
observe these maps generate PSL2(R).

Alternatively, note that

ρ∆ =
2|dz|

1− |z|2 ,

so the hyperbolic metric is invariant under the stabilizer S1 of the origin in
Aut(∆); it is also invariant under translation along a geodesic through z = 0,
since on H it is invariant z +→ az; and these two subgroups generate (PSL2(R) =
KAK).

Corollary 2.3 Any Riemann surface covered by the disk comes equipped with
a canonical metric of constant curvature −1.

Corollary 2.4 (Schwarz lemma for Riemann surfaces) Let f : X → Y
be a holomorphic map between hyperbolic Riemann surfaces. Then either:

• f is a locally isometric covering map, or

• ‖df‖ < 1 everywhere, and thus d(f(x, fy) < d(x, y) for any pair of distinct
points x, y ∈ X.

Theorem 2.5 The triply-punctured sphere Ĉ−{0, 1,∞} is covered by the disk.

Proof. Let T ⊂ H be the ideal triangle spanning 0, 1 and∞, and let f : T → H
be the Riemann mapping normalized to fix 0, 1 and∞. Using Schwarz reflection
through the sides of T in the domain and through the real axis in the range,
we can analytically continue f to a covering map π : H→ Ĉ− {0, 1,∞}. Thus

Ĉ − {0, 1,∞} is isomorphic to H/Γ(2) (the orientation-preserving subgroup of
the group of reflections in the sides of T ).

Corollary 2.6 (Montel’s theorem) Any family of holomorphic functions omit-

ting 3 fixed values in Ĉ is normal.

Proof. Reduce to the case where F consists of all maps f : ∆ → C − {0, 1}.
Given a sequence fn ∈ F , pass to a subsequence such that fn(0) converges to

z ∈ Ĉ. If z = 0, 1 or ∞ then fn converges to a constant map by the Schwarz
lemma and completeness of the hyperbolic metric on C− {0, 1}. Otherwise we
can lift fn to the universal cover of C−{0, 1}, obtaining a sequence gn : (∆, 0)→
(∆, zn), where zn → z̃, a lift of z. Then gn has a convergent subsequence, so
fn = π ◦ gn does too.
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Which Riemann surfaces are hyperbolic? It is known that the simply-
connected Riemann surfaces are Ĉ, C, H, and the first two only cover C∗, C/Λ
and themselves. All remaining surfaces are hyperbolic.

We will proof a special case:

Theorem 2.7 (Uniformization of planar domains) Any region X ⊂ C whose
complement contains 2 or more points is covered by the disk.

This includes the well-known:

Theorem 2.8 (Riemann mapping theorem) Any disk U ⊂ C, U -= C is
conformally equivalent to the disk.

Proof of Theorem 2.7. We can arrange by an affine transformation that
X ⊂ C− {0, 1}. Pick a basepoint x ∈ X , let (X̃, x̃) be the universal cover of X ,
and consider the family of maps

F = {f : (X̃, x̃)→ (∆, 0) : f is a covering map to its image}.

To see F is nonempty, lift the inclusion X ⊂ C − {0, 1} to a map between the
universal covers, f : X̃ → ∆; the image is the covering space of X corresponding
to the kernel of π1(X)→ π1(C− {0, 1}), and f is a covering map to this image.

Now take a sequence fn ∈ F such that |f ′
n(x̃)| tends to its supremum over

F . Since ∆ is bounded, fn is a normal family, and we can take a subsequence
fn → f . It is not hard to check that f ∈ F .

We claim f : X̃ → ∆ is surjective. Indeed, if the image omits a value z,
then we can choose a proper degree two map B : (∆, 0)→ (∆, 0) branched over
z. By the Schwarz lemma, |B′(0)| < 1; on the other hand, since z -∈ f(X̃),
the map B−1 ◦ f admits a single-valued branched g : (X̃, x̃) → (∆, 0), we have
g ∈ F , and |g′(0)| > |f ′(0)|, contrary to the construction of f .

Thus f is surjective; but since it is a covering map, it is an isomorphism.

Remark. To prevent cyclic reasoning, one should first prove the Riemann
mapping theorem for simply-connected domains, then use it to uniformize Ĉ−
{0, 1,∞}, and finally extend the uniformization theorem to all planar domains
as above.

2.2 Extremal length

Let X be a Riemann surface. A Borel metric ρ on X is locally of the form
ρ(z)|dz| where ρ ≥ 0 is a Borel measurable function. If γ is a rectifiable path
on X , then its ρ-length is defined by

#ρ(γ) =

∫

γ
ρ(z) |dz|.
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Similarly the ρ-area of X is given by

areaρ(X) =

∫

X
ρ(z)2 |dz|2.

Now let Γ be a collection of paths on X . Setting

#ρ(Γ) = inf
Γ

#ρ(γ),

we define the extremal length of Γ by

λ(Γ) = sup
ρ

#ρ(Γ)2

areaρ(X)
· (2.1)

The supremum is take over all Borel metrics of finite area. Clearly λ(Γ) is a
conformal invariant of the pair (X, Γ).

Beurling’s criterion for an extremal metric. (See [Ah2, §4.7].) A metric
is extremal if it realizes the supremum in (2.1).

Theorem 2.9 Suppose the measure ρ2 on X lies in the closed convex hull of
the measures

{ρ|γ : γ ∈ Γ and #ρ(γ) = #ρ(Γ)}.

Then ρ is extremal for Γ.

Proof. Consider any other Borel metric α. We may assume both α and ρ are
normalized to give X area 1.

Now for any γ ∈ Γ we have

#α(Γ) ≤
∫

γ
α =

∫

γ
(α/ρ)ρ = 〈α/ρ, ρ|γ〉

where the last expression is the pairing between functions and measures. Since
the probability measure ρ2 is a convex combination of the probability measures
(ρ|γ)/#ρ(Γ), we have

#α(Γ)

#ρ(Γ)
≤ 〈α/ρ, ρ2〉 =

∫

X
αρ ≤

(∫
α2

∫
ρ2

)1/2

= 1

by Cauchy-Schwarz. Thus #α(Γ) ≤ #ρ(Γ), and therefore ρ maximizes the ratio
(2.1) of length-squared to area.

Examples.

1. A quadrilateral Q ⊂ C is a Jordan domain with 4 marked points on its
boundary, and a distinguished pair of opposite edges. We let Q∗ denote
the same quadrilateral with the other pair of edges distinguished.
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Any quadrilateral is conformally equivalent to a unique Euclidean quadri-
lateral Q(a) = [0, a] × [0, 1], with the sides of unit length distinguished.
By definition, the modulus of Q is a.

Notice that mod(Q∗) = 1/ mod(Q).

Let Γ(Q) be the set of all paths joining the distinguished sides. Since the
Euclidean metric on Q(a) satisfies Beurling’s criterion (the geodesics are
horizontal segments), we find

λ(Γ(Q)) = mod(Q).

By considering any specific metric ρ on Q, we obtain lower bounds on
mod(Q) by considering λ(Γ(Q)) and λ(Γ(Q∗)). Thus one has a powerful
method for estimating the modulus of a quadrilateral.

Example: let Q0 = [0, 1] × [0, 1] with the vertical sides distinguished; we
have mod(Q0) = 1. Now construct Q by adding a ‘roof’ to the house, i.e.
adding a right isosceles triangle of hypotenuse 1 to the top of the square.
Then ρ = |dz| on Q gives mod(Q) ≥ 2/3 (the area has increased to 3/2),
while ρ = |dz| restricted to Q0 gives mod(Q∗) ≥ 1. Thus

2/3 < mod(Q) < 1;

in particular, adding the roof brings the walls closer together.

2. An annulus. Any Riemann surface with π1(X) = Z is isomorphic to C∗,
∆∗ or

A(R) = {z : 1 < |z| < R}

for a unique R. In the last case we define mod(X) = log(R)/(2π); and by
convention, mod(X) =∞ in the first two cases.

Fixing R, let Γ be the family of ‘topological radii’, that is curves joining
the two boundary components of A(R). These curves are geodesics for the
cylindrical metric ρ = |dz|/|z|, which is extremal by Beurling’s criterion.
Thus

λ(Γ) =
log(R)

2π
= mod(A(R)).

Letting Γ∗ denote the family of simple essential loops in A(R), we find
λ(Γ∗) = 1/λ(Γ) = 1/ mod(A(R)).

Thus any metric ρ on an annular Riemann surface X yields upper and
lower bounds for mod(X), in terms of the ρ-area of X and the shortest
curves in Γ and Γ∗.

3. The real projective plane. Let X = RP2. Then X is canonically a Riemann
surface, in the sense that its universal cover S2 has a unique conformal
structure, and this structure is preserved (up to orientation) by the deck
transformations of S2/X .
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Let Γ be the family of all loops generating π1(X) ∼= Z/2. We claim
λ(Γ) = π/2.

To see this, let ρ be the round metric on X , making its universal cover S2

into the sphere of radius 1. If we average linear measure on a great circle
over the rotation group of S2, we obtain an invariant measure which must
be the usual area form. Thus ρ satisfies Beurling’s criterion. The minimal
length of a curve joining antipodal points on S2 is π, and the area of RP2

is 2π, so λ(Γ) = π2/(2π) = π/2.

4. Simple curves on a torus. Consider the torus X = C/Z ⊕ Zτ , Im τ > 0.
Let Γ be the family of loops on X in the homotopy class of [0, 1]. By
Beurling’s criterion, the flat metric |dz| on X is extremal. The area of X
is Im τ and the length of the geodesic [0, 1] is 1, so we find

λ(Γ) =
1

Im τ
.

Remark. For completeness we recall a direct proof that the quadrilaterals Q(a)
and Q(b) are conformally isomorphic iff a = b. Namely, given a conformal map
f : Q(a) → Q(b), one can develop f by Schwarz reflection through the sides of
Q(a) and Q(b) to obtain an automorphism F : C → C, which must be of the
form F (z) = αz + β. Since f fixes [0, 1]i, F is the identity.

A similar argument shows the annuli A(R) and A(S) are conformally iso-
morphic iff R = S.

2.3 Extremal length and quasiconformal mappings

Theorem 2.10 If Γ and Γ′ are related by a K-quasiconformal mapping, then

1

K
λ(Γ′) ≤ λ(Γ) ≤ Kλ(Γ′).

Proof. Let f : X → X ′ be a quasiconformal mapping sending Γ to Γ′. For
each conformal metric ρ on the domain, we get a metric ρ′ = f∗(ρ) on X ′

with the same lengths and areas as ρ; in particular, areaρ′(X ′) = areaρ(X) and
#ρ′(Γ′) = #ρ(Γ).

However ρ′ is generally not conformal. To make it conformal while we expand
its infinitesimal unit balls (which are ellipses of oblateness at most K) to round
balls. This does not decrease the ρ′-length of Γ′, and it increases the ρ′-area of
X by at most K. Thus λ(Γ′) ≥ λ(Γ)/K, and the Theorem follows by symmetry.

Cf. [LV, §IV.3.3].

Corollary 2.11 If f : X → Y is a K-quasiconformal map, then mod f(Q) ≤
K mod Q for every quadrilateral Q on X.
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In fact the converse is true: a map which distorts the modulus of every
quadrilateral by at most K is K-quasiconformal. The converse is clear for
linear maps, so it follows easily for smooth quasiconformal maps. The general
case depends on the a.e. differentiability of quasiconformal maps. Using this
fact, we have:

Theorem 2.12 Any homeomorphism f which is a uniform limit of K-quasiconformal
mappings is itself K-quasiconformal.

2.4 Aside: the Smale horseshoe

To study celestial mechanics, Poincaré investigated the Hamiltonian flow on
phase space corresponding to time evolution of the planets. Since the orbit of a
particular planet is approximately periodic, it is natural to take a transversal M
to the flow (e.g. the configurations of the sun-earth-moon system as the earth
passes through a window transverse to its orbit), and study the first return map
f : M →M .

The map f is volume-preserving. Indeed, the symplectic volume form Ω =
ωn on phase space is preserved by the Hamiltonian vector field v, as is v, and
thus the 2n− 1 form

α = iv(Ω)

is also preserved by the flow. Since α vanishes any hypersurface tangent to the
flow, the volume form α|M is f -invariant.

The existence of very complicated behavior in these dynamical systems was
known to Poincaré and Birkhoff.

Smale provided a simple picture, the horseshoe, that sums up in an immedi-
ate and geometric form a mechanism leading to infinitely many periodic cycles.
Namely a square S is stretched to a long, thin rectangle, then laced through
itself as in Figure 9. The thick edges of S map to the thick edges of f(S).

f(S)

S

Figure 9. The Smale horseshoe.

Within the two rectangles forming f(S) ∩ S, one finds a totally invariant
Cantor set E. The dynamics of f |E is conjugate to the action of Z on the shift
space (Z/2)Z of all functions φ : Z→ Z/2.

Note that f can be realized as an area-preserving map. But by basic prop-
erties of extremal length, the modulus of f(S) (the extremal length of the paths
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joining the thick sides) is greater than the modulus of S. Thus f cannot be
made conformal, and the horseshoe does not occur in conformal dynamics!

On the other hand, by flattening the horseshoe we obtain a 2-to-1 map
of an interval over itself, the critical point being the ‘bend’ in the horseshoe.
As the horseshoe is created (in a family of diffeomorphisms), the bend pushes
through the square, much as the critical point pushes through the interval.
Thus understanding the dynamics of fc(x) = x2 + c is a natural prerequisite
to understanding the bifurcations leading to a horseshoe, and one is back to
complex dynamics again.

2.5 The Ahlfors-Weill extension

In this section we discuss the extension of conformal maps f : H → Ĉ to
quasiconformal maps on the whole Riemann sphere. This extension is useful for
Teichmüller theory and holomorphic motions, as well as the theory of structural
stability for rational maps and Kleinian groups.

Norms. The natural Lp-norm on holomorphic quadratic differentials on a
hyperbolic Riemann surface X is given by

‖φ‖p =

(∫

X
ρ2−2p|φ|p

)1/p

, ‖φ‖∞ = sup
X

|φ|
ρ2

,

where ρ = ρ(z) |dz| denotes the hyperbolic metric. Note that the L1 norm does
not involve ρ at all. Similarly for Beltrami differentials we have

‖µ‖p =

(∫

X
ρ2|µ|p

)1/p

, ‖µ‖∞ = sup
X

|µ|.

A Beltrami differential µ on X is harmonic if µ = φ/ρ2 for some holomorphic
quadratic differential φ. This means that µ formally minimizes the L2 norm
among equivalent differentials µ + ∂v. Note that ‖µ‖∞ = ‖φ‖∞.

Theorem 2.13 Let f : H → Ĉ be a holomorphic map, and suppose ‖Sf‖∞ <
1/2. Then there exists a unique extension of f to a quasiconformal map on the
whole Riemann sphere such that the dilatation µ of f on the lower halfplane is
a harmonic Beltrami differential. In fact we have µ(z) = −2y2φ(z).

Proof. Here is a quick construction of the map g on the lower halfplane ex-
tending f . Given w ∈ H, let Mw(z) be the unique Möbius transformation whose
2-jet at z = w matches the 2-jet of f(z) at z = w. Then set g(z) = Mz(z).

To verify that g has the required properties, it is useful to know how to
reconstruct f from its Schwarzian derivative φ = (f ′′/f ′)′ − (1/2)(f ′′/f ′)2. To
do this, one can begin with two linearly independent solutions f1, f2 to the
differential equation

y′′ + (1/2)φy = 0.
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After scaling one can assume the Wronskian f1f ′
2 − f2f ′

1 = 1. From these
solutions we obtain a map z +→ (f1(z), f2(z)) from H into C2. Projectivizing,
we obtain a map f : H→ Ĉ given by f = f2/f1.

Because of our normalization of the Wronskian, this map satisfies

f ′ = (f1f
′
2 − f2f

′
1)/f2

1 = 1/f2
1 ,

f ′′ = −2f ′
1/f3

1 , and

(f ′′/f ′) = (log f ′)′ = −2f ′
1/f1.

From this we find

Sf = −2(f1f
′′
1 − (f ′

1)
2)/f2

1 − 2(f ′
1)

2/f2
1 = −2f ′′

1 /f2
1 = φ.

The choice of basis for the space of solutions of the different equation accounts
for the fact that Sf only determines f up to a fractional linear transformation.

Once we have f = f1/f2 it is easy to see that

Mz(z + ε) =
f2(z) + εf ′

2(z)

f1(z) + εf ′
1(z)

· (2.2)

To check this one simply examines the power series in ε for the expression above,
up to the term ε2, and compares the terms to (f, f ′, f ′′) computed above.

Thus the extension of f is given by

g(z) =
f2(z) + εf ′

2(z)

f1(z) + εf ′
1(z)

,

with ε = z− z = 2iy, if z = x+ iy. To compute the Beltrami differential ∂g/∂g,
we first observe that both terms with involve the square of the denominator of
the expression above. As for the numerator, for ∂g it is simply

(f1 + εf ′
1)f

′
2 − (f2 + εf ′

2)f
′
1 = f1f

′
2 − f2f

′
1 = 1.

For ∂g we first note that:

∂(fi + εf ′
i) = f ′

i + εf ′′
i − f ′

i = −(1/2)εφfi.

Thus its numerator is given by

(−1/2)εφ((f1 + εf ′
1)f2 − (f2 + εf ′

2)f1) = (1/2)ε2φ.

So altogether the Beltrami differential of g is given by

µ(z) = −2y2φ(z).

Since φ(z) is a holomorphic quadratic differential, we have shown that µ is a
harmonic Beltrami differential.

Finally we verify uniqueness. Suppose we have another extension G to the
lower halfplane with µ(G) = −2ρ−2ψ harmonic. Then G arises as the Ahlfors-

Weill extension of a univalent map F : H → Ĉ with SF = ψ. By uniqueness
of the solution to the Beltrami equation (up to a Möbius transformation), we
have F = f and thus ψ = φ, which implies g = G.

26



Corollary 2.14 A conformal immersion f : H→ Ĉ is univalent if ‖Sf‖ ≤ 1/2.

Area theorem. Let f(z) = z +
∑∞

1 bnz−n be a univalent map on Ĉ −∆ =
{z : |z| > 1}. Then f sends the outside of the unit disk to the outside of a full,
compact set Kf ⊂ C of capacity one. One can compute the area of Kf directly
from the coefficients of f : namely we have

area(Kf ) = π(1 −
∑

n|bn|2).

In particular we have:

Proposition 2.15 (Area theorem) If f(z) = z +
∑

bnz−n is univalent, then∑
n|bn|2 ≤ 1.

Using the area theorem one can prove:

Corollary 2.16 (Nehari) If f : H→ Ĉ is univalent, then ‖Sf‖ ≤ 3/2.

Geometry of the Schwarzian derivative. The Schwarzian derivative can
also be interpreted as the rate of change of the osculating Möbius transformation
Mz, and as the curvature of a surface in H3 naturally associated to f : H→ Ĉ.
See [Th], [Ep1], [Ep2].

Let π : H3 → H be the ‘nearest point’ projection, obtained by following the
normals to the hyperplane spanned by R̂. Then the Ahlfors-Weill map can be
further prolonged to a map

F : H
3 → H

3

by F (p) = Mπ(p)(p). This map is a diffeomorphism and a quasi-isometry when
‖Sf‖ < 1/2.

On the other hand, it is easy to see that if Q ⊂ Ĉ is a K-quasicircle with
K near 1, then ‖Sf‖ < 1/2 for the Riemann map to one side of Q. Thus
any ‘mild’ quasicircle can be realized as Q = F (R̂) for a canonical map of the
closed hyperbolic ball to itself (unique up to pre-composition with an isometry
stabilizing R̂ and preserving its orientation).

3 Teichmüller theory via geometery

In this section we discuss Teichmüller space from the perspective of hyperbolic
geometry.

3.1 Teichmüller space

Let S be a closed, oriented surface of genus g ≥ 2. A marked hyperbolic surface
is a pair (φ, X) consisting of an oriented compact hyperbolic surface X ∼= H/Γ
and an orientation-preserving homeomorphism φ : S → X .
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Two marked surfaces (φi, Xi), i = 1, 2 are equivalent if there exists an isom-
etry α : X1 → X2 such that φ−1

2 ◦ α ◦ φ1 = ψ is isotopic to the identity.
The space of such equivalence classes is the Teichmüller space Tg = Teich(S).
For any essential closed loop α ⊂ S, there is a unique closed geodesic α ⊂ X

freely isotopic to φ(α). We denote its hyperbolic length by Lα(X). We give
Teichmüller space the weakest topology which makes all such length functions
continuous.

Representations. Since each surface in Teichmüller space is equipped with a
complete hyperbolic metric, from φ : S → X = H/Γ we obtain a homomorphism

ρ : π1(S)→ Γ ⊂ Isom+(H) = PSL2(R),

well-defined up to conjugacy. Thus Teichmüller space admits an embedding

Teich(S) ↪→ Hom(π1(S), PSL2(R))/(conjugation).

Since traces recover lengths, the topology induced by this embedding is the
same as that defined above.

Mapping-class group. We let Mod(S) denote the group of orientation-
preserving homeomorphisms ψ : S → S, modulo those isotopic (equivalently,
homotopic) to the identity. It acts on Teich(S) by ψ · (φ, X) = (φ ◦ ψ−1, X).
The quotient space is the moduli space

Mg = M(S) = Teich(S)/ Mod(S).

3.2 Fenchel-Nielsen coordinates

Theorem 3.1 The Teichmüller space Teich(S) is homeomorphic to a ball Bn,
and n = dimR Q(X) for any X ∈ Teich(S).

Proof. (Fenchel-Nielsen) Suppose S is a closed surface of genus g ≥ 2. Then
S can be decomposed along 3g− 3 simple closed curves into pairs of pants. For
any X ∈ Teich(S), these curves are canonically represented by geodesics, whose
lengths determine each pair of pants up to isometry. To recover X in addition we
need a twist parameter when gluing pants together. Thus altogether Teich(S)
is parameterized by R3g−3

+ × R3g−3, and 6g − 6 = dim Q(X).
The case of surfaces with boundary or of smaller genus is similar.

Construction of pants and triangles. Note that the construction of a pair
of pants with cuffs of length 2Li, i = 1, 2, 3 is tantamount to the construction
of three disjoint geodesics in H2 with d(γi, γi+1) = Li+2. Now an (oriented)
geodesic, in the Minkowski model R2,1, corresponds to a vector with v2 = 1,
and the oriented distance between two them satisfies − coshd(γ1, γ2) = 〈v1, v2〉.
Thus our pair of pants corresponds to a basis for R2,1 with the quadratic form

B =




1 − coshL3 − coshL2

− coshL3 1 − coshL1

− coshL2 − coshL1 1



 ·
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Figure 10. Tiling by (2, 3, 7) triangles

It is readily verified that B has signature (2, 1), for all choices of (Li); this shows
such a configuration exists and is unique up to isometry.

Similarly, to construct an (α,β, γ) triangle, one can use the form

B =




1 − cosγ − cosβ

− cosγ 1 − cosα

− cosβ − cosα 1



 ·

Note that

detB = 1− 2 cosα cosβ cos γ + cos2 α + cos2 β + cos2 γ = 0

iff S = α + β + γ = π. If S < π then B has signature (2, 1), while if S > π then
it has signature (3, 0). (Consider the extreme cases where all angles are 0 or all
are π/2. Note that when all angles go to π the determinant goes to 0, since the
vertices become colinear on the sphere.)

As another example, suppose we wish to construct (2, p, q) triangle in H2 ∼=
∆. We can arrange that the x and y axes form two of the sides, i.e v1 = e1

and v2 = e2 in R2,1. Then the third side is a circle centered at (x/z, y/z) in C,
where v3 = (x, y, z) satisfies v2

3 = x2 + y2 − z2 = 1 and 〈v3, e1〉 = x = cosπ/p,
〈v3, e2〉 = y = cosπ/q. This allows one to easily locate the center; moreover,
the radius satisfies 1/r2 = z2 = x2 + y2 − 1.

The case of a (2, 3, 7) triangle is shown in Figure 10.

Trivalent graphs. We remark that up to homeomorphism, there are only
finitely many decomposition of a surface of genus g into pairs of pants, and
these decompositions correspond to trivalent graphs with g loops (first Betti
number g).

Limits of pants. Interesting geometric limits can arise as the lengths (L1, L2, L3)
of the cuffs of a pair of pants P tend to infinity. There are 3 basic cases:
(0, 0,∞): P splits into a pair of punctured monogons. (∞,∞,∞): P collapses
(after rescaling) to a trivalent graph, or (before rescaling) to a pair of ideal
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Figure 11. The trivalent graphs of genus 2 and 3.

triangles. (0,∞,∞): P collapses to a punctured bigon, which has a nontrivial
modulus (it is bounded by a pair of geodesics from 1 to τ ∈ S1 in ∆∗).

Symplectic structure. Fixing a pair of pants decomposition P of Σg, we ob-
tain twist and length coordinates (#i, τi) for Tg. (Note that the twist parameter
is measured in units of length, not angle.) In these coordinates, a Dehn twist
around the ith element of P acts by τi +→ τi + #i. An important result is that
the symplectic form

ω =
∑

i

d#i ∧ dτi

is invariant under the full mapping-class group. It coincides with the sym-
plectic form on twisted cohomology coming from the intersection pairing on
H1(Σ, sl2(R)ρ).

Case of genus one. In the case of a torus, normalize to have total area 1, we
have just 2 coordinates # and τ , giving the lattice Z(#, 0)⊕ Z(τ, 1/#). In terms
of τ = x+ iy ∈ H, this lattice has coordinates (x, y) = (τ/#, 1/#2). We then find
that d#dτ is a constant multiple of the hyperbolic area form dxdy/y2.

Characteristic classes. It is known that the Weil-Petersson symplectic form
has the property that [ω/π2] generates H2(Mg, Q). Consequently the Weil-
Petersson volume of moduli space is a rational multiple of π6g−6 [Wol1]. It
can also be shown that [ω/2π2] = κ1 as a class in H2(Mg, Q), where κ1 =
π∗(c1(V )2) is the pushfoward of the square of first Chern class of the relative
tangent bundle to the universal curve π : Cg →Mg; see [Wol2].

3.3 Geodesic currents

The circle at infinity. Fix g ≥ 2 and let X, Y ∈ Tg be a pair of marked
hyperbolic surfaces. Then there is a unique homotopy class of homeomorphism
f : X → Y compatible with markings.

Theorem 3.2 The lift f̃ : H→ H of f to the universal covers of X and Y ex-
tends to a homeomorphism of S1

∞. This extension depends only on the homotopy
class of f .
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Thus the circles at infinity for all points in Tg are canonically identified. This
circle, together with an action of π1(Zg) on it, can be constructed topologically
by taking the metric completion of a conformal rescaling of the word metric on
π1(Zg).

For concreteness, we fix a particular X = H/Γ in Tg, but observe that the
topological dynamics of (Γ, S1) is independent of X .

Theorem 3.3 Γ has dense orbits on S1 × S1.

Proof. By ergodicity, there exists a dense geodesic γ in T1X . Thus there
exists a geodesic γ̃ in H, with endpoints (a, b), whose Γ-orbit is dense in T1(H).
Consequently Γ · (a, b) is dense in S1 × S1.

On the other hand, ‘periodic orbits’ are also dense:

Theorem 3.4 The closed geodesics on X correspond to a dense subset of S1×
S1.

The space of currents. Let G = (S1 × S1 − ∆)/(Z/2) denote the Möbius
band forming the space of unoriented geodesics in H. Then G/Γ is the space
of geodesics on X . (Since Γ has a dense orbit in G, this is a ‘quantum space’
in the sense of Connes; nevertheless it carries many interesting closed sets and
measures.)

A geodesic current is a locally finite, Γ-invariant measure µ on G. We require
that µ -= 0. The space of all geodesic currents on X will be denoted C(X).

Examples of currents. (i) An unoriented closed geodesic γ ⊂ X gives a point
pγ ∈ G such that Γ · p is discrete. Thus we can form an invariant measure by
putting a δ mass on each point in its orbit. This is the current [γ] associated to
a closed loop.

(ii) A positive weighted sum of closed curves
∑

Ciγi determines a current∑
Ci[γi].
For simplicity we suppressed the brackets in the future.

Integral geometry. The integral geometric measure on G is defined as follows.
Fix an oriented geodesic γ ⊂ H. Then there is an injective map γ × S1 → G
sending (x, θ) to the unique unoriented geodesic δ(x, θ) through x making angle
θ with γ. (Since the geodesics are unoriented, θ ranges in [0,π].) The measure

µ = (1/2) sin θdθ dx

can be shown to be independent of the choice of chart. It is characterized by
the following property.

Theorem 3.5 For any geodesic segment S ⊂ H, the measure of the set of
geodesics γ ∈ G meeting S is equal to #(S).

Proof. We have
∫ π
0 (1/2) sin θ dθ = 1.
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Clearly µ is invariant under all isometries of H, so it defines an element
LX ∈ C(X). This Liouville current depends very much on X ; in fact, as we will
see below, the natural identification C(X) = C(Y ) sends LX to LY iff X = Y in
Tg.

Constructing T1(X). Now let ∆ ⊂ G × S1 be the set of pairs (γ, p) where p
is an endpoint of γ. Then we have a natural isomorphism

(G × S1 −∆) ∼= T1(H).

Indeed, the orthogonal projection of p to γ determines a point x ∈ H, and there
is a unique unit vector v ∈ Tx(H) tangent to γ, oriented so that p lies to the
right. The foliation of T1(H) by geodesics is obtained simply by varying the S1

factor p in this product. Taking the quotient by Γ, we find:

Theorem 3.6 The topological space T1(X) and its foliation by geodesics can be
reconstructed from the action of Γ on S1.

In particular, this foliated 3-manifold does not depend on the choice of X ∈
Tg.

Theorem 3.7 The space of currents C(X) is isomorphic to the space of invari-
ant measures for the geodesic flow on T1(X) that are also invariant under time
reversal.

Proof. The lift of an invariant measure to T1(H) gives a measure on G×S1 that
is locally of the form µ× ds for length measure along geodesics. By invariance
under Γ, µ is a geodesic current. Conversely, the product of a geodesic current
with length measure gives an invariant measure for the geodesic flow.

Remark. The geodesic flow cannot be reconstructed from the topological
action of Γ on S1, since its time parameterization determines the lengths of
closed geodesics.

Intersection number. Let I ⊂ G × G be the set of pairs of geodesics (α,β)
that cross one another. Note that we can identify I with the bundle I1(H)
whose fiber over x ∈ H consists of ordered pairs (±v,±w) of unoriented, linearly
independent unit vectors.

Similarly, we have I/Γ = I1(X). We define the intersection number i(α,β)
of a pair of geodesic currents to be the total measure of I1(X) with respect to
the measure α× β.

Theorem 3.8 If α,β are closed geodesics on X, then i(α,β) is the number of
transverse intersections of α and β.

Theorem 3.9 We have i(α, LX) = #α(X).
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Proof. We have a natural projection I1(X) → P1(X) = T1(X)/(±1) by
(±v,±w) +→ (±v). By the characteristic property of the integral geometry
measure, the pushforward of α × LX to P1(X) gives the product of α with
length measure along geodesics; i.e. it gives the measure invariant under the
geodesic flow corresponding to α. The total mass of this measure is then just
the length of α.

Remark. The proof shows that i(α, LX) is simply the total mass of the corre-
sponding measure on P1(X) invariant under the geodesic flow.

Theorem 3.10 We have i(LX , LX) = π2|χ(X)|.

Proof. As above, the pushforward of LX×LX to P1(X) is the invariant measure
µ for the geodesic flow attached to LX . We wish to relate this measure to the
usual Liouville measure dx dy dθ. Since the computation is at a small scale, it
suffices to work in Euclidean space.

Thus we let LX be the measure on the space of unoriented lines in R2 given
by the 2-form

ω = (1/2) sin θ dθ du.

Here the line L(θ, u) passes through (u, 0) and has slope θ ∈ [0,π]. Letting
(θ, x, y) denote coordinates on P1(R2), we have

tan θ = y/(x− u),

and thus u = x− y/ tan θ. Using the fact that dθ already appears in ω, we then
have

ω = (1/2) sin θ dθ(dx − dy/ tan θ) = (1/2)d θ(sin θ dx− cos θ dy)

as a form pulled back to P1(R2). Since the form α = cos θ dx + sin θ dy restricts
to arclength along any geodesic in P1(R), we find:

µ = ω ∧ α = (1/2)d θ(sin2 θ + cos2 θ) dx dy = (1/2)dx dy dθ.

Consequently i(LX , LX) is one-half the volume of P1(X) with respect to the
standard measure. The standard measure has total volume = π area(X) =
2π2|χ(X)|, completing the proof.

Topology of C(X). The space C(X) is equipped with the weak topology. That
is, we have µn → µ as measures on G × G if and only if

∫
φµn →

∫
φµ

for every φ ∈ C0(G × G).
Using the fact that closed curves are dense in G, it is straightforward to

show:
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Theorem 3.11 The set of weighted closed curves is dense in C(X).

The next result is a little more subtle, since I is an open set. It depends on
the fact that pairs of geodesics near ∂I are nearly parallel.

Theorem 3.12 The intersection number i : C(X)× C(X)→ R is continuous.

Corollary 3.13 A map f : S → C(X) is continuous iff i(f(s),α) is continuous
for every closed curve α.

Corollary 3.14 The map Tg → C(X) given by Y +→ LY is a proper homeo-
morphism to its image.

Proof. We can find a finite set of simple closed curves whose lengths determine
Fenchel-Nielsen coordinates for Y .

Compactness. We say a current α binds X if every geodesic on X crosses a
geodesic in the support of α. For example, if α =

∑
Ciαi is a weighted sum of

closed curves with Ci > 0, and if every component of X −
⋃

αi is a topological
disk, then α binds X . Similarly, LX binds X .

Theorem 3.15 If α binds X, then for any M > 0 the set

K = {β : i(α,β) ≤M} ⊂ C(X)

is compact.

Proof. It suffices to show that every p ∈ G has a neighborhood U such that
β(U) ≤ CU for all β ∈ K. Given p, pick q ∈ suppα such that (p, q) ∈ I. Since
I is open, we can find a neighborhood U × V of (p, q) within it. Then for all
β ∈ K, we have

β(U)α(V ) ≤ i(α,β) ≤M,

and thus β(U) ≤M/α(V ) = cU .

Corollary 3.16 Let (αi)N
1 be a set of closed curves that bind X. Then the set

of points Y ∈ Tg such that #Y (αi) ≤M is compact.

Random geodesics. Putting these results together, we see that any point
in Teichmüller space can be specified by a sequence of weighted simple closed
curves Cnγn → LX . These curves can be constructed by choosing a random
vector in T1(X) and closing longer and longer segments of the resulting geodesic.
Thus one sometimes refers to LX as a ‘random geodesic’ on X . This is made
more precise by the following result.

Theorem 3.17 For suitable closed geodesics γn, we have

LX(δ) =
π

2
area(X) lim

i(γn, δ)

LX(γn)
· (3.1)
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Proof. Choose γn such that Cnγn → LX ; then we have LX(δ) = limCni(γn, δ)
and the equation

i(Cnγn, LX) = CnLX(γn)→ i(LX , LX) = π2|χ(X)| = (π/2) area(X)

gives the behavior of the constants Cn.

Alternatively, for small r one can consider the locus Ur ⊂ T1(X) of tangents
to segments of length 2r centered on points of δ. Then the angular measure of
Ur through a point p at distance t from δ is given by 4 cos−1(t/r) (which tends
to 2π as t→ 0). Thus

m(Ur) ∼ LX(δ)

∫ r

−r
4 cos−1(|t|/r) dt = 8rLX(δ).

Now a random geodesic γn will meet Ur in i(γn, δ) segments, each of length 2r;
hence we have:

#(γn ∩ Ur)

#(γn)
=

2ri(γn, δ)

LX(γn)
→ m(Ur)

m(T1(X))
=

8rLX(δ)

2π area(X)
.

This shows:

i(γn, δ) ∼ 2LX(γn)LX(δ)

π area(X)
,

which also gives (3.1).

Laminations. A geodesic lamination λ ⊂ X is a closed set that is a union
of simple geodesics. Through each point of λ there passes a unique complete
simple geodesic contained in λ. (One might regard the foliation of λ by simple
geodesics as part of the structure of the lamination; for surfaces of finite volume
this structure is redundant, but for surfaces of infinite volume (such as H itself)
it is not.)

A transverse measure µ for λ is an assignment of a positive measure to each
transversal τ to λ, supported on τ∩λ and invariant under homotopy. A measured
lamination is a geodesic lamination equipped with a transverse measure of full
support.

We say α ∈ C(X) is a measured lamination if i(α,α) = 0. This condition
implies that the set of geodesics in the support of α form a geodesic lamination
λ, and that α yields a transverse invariant measure of full support. The converse
also holds, and thus:

Theorem 3.18 The set ML(X) of measured geodesic laminations can be iden-
tified with the space of currents such that i(α,α) = 0.

Examples of laminations. The simplest example of a measured lamination
is a simple closed curve α.

For a more interesting example, let F be an irrational measured foliation of
a torus T . Cut T open along a single leaf, and insert a bigon. The result is a
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punctured torus X with a measure lamination λ whose transversals are Cantor
sets.

This example can be compared to the construction of the Cantor set by
cutting the interval [0, 1] open at every dyadic rational p/2n, and inserting an
interval of length 3−n.

Theorem 3.19 (Nielsen) Any geodesic lamination of a surface of finite vol-
ume has measure zero.

Proof. Apply Gauss-Bonnet to the surface obtained by doubling X − λ across
its boundary.

Compactification. Let PC(X) = C(X)/R+ with the quotient topology.

Theorem 3.20 The projective space PC(X) is compact.

Proof. Any sequence of projective currents [αn] lifts to a sequence normalized
to that #X(αn) = 1, and these currents form a compact set by Theorem 3.15.

Theorem 3.21 The Teichmüller space Tg embeds into PC(X), and the union

Tg ∪ PML(X)

is compact.

Proof. Embedding is immediate because i(LY , LY ) is constant for all Y ∈ Tg.
Now suppose Yn → ∞ in Tg. Then there exists a simple closed curve α such
that i(α, LYn

)→∞. Consequently LYn
goes to infinity in the space of currents.

Thus if we rescale LYn
so it remains in a compact set, its self-intersection number

tends to zero and any limit is a measured lamination.

Pinching. As an example, let (#i, τi)
3g−3
1 be Fenchel-Nielsen coordinates as-

sociated to a pair-of-pants decomposition (αi) of Zg. Set τi = 0 and consider
the surfaces Yn = Y (#n

i ) where #n
i ≤ 1 and #n

i → 0 for some i. Each corre-
sponding geodesic γn

i on Yn is enclosed in a standard collar neighborhood of
width approximately log(1/#n

i ). Passing to a subsequence, we can assume that
[log(1/#n

i )]→ [wi] in the projective space P(Rn). Then Yn →
∑

wiαi ∈ PMLg,
because

#β(Yn) =
∑

log(1/#n
i )i(β,αi) + Oβ(1)

for every closed geodesic β on Yn.
This shows every weight sum of disjoint simple closed curves actually occurs

in ∂Tg. We will soon see these sums are dense in PMLg, and thus PMLg = ∂Tg.

Twisting. Similarly, let ψ ∈Modg be a product ψ = T ni

Ci
of Dehn twists about

disjoint simple closed curves, and let λ =
∑

|ni|Ci. Then ψn(X) → [λ] for all
X ∈ Tg.

As Bers once put it: there are two ways to send a Riemann surface to infinity
in Teichmüller space: by pinching it, and by wringing its neck.
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3.4 Laminations

The space MLg turns out to be a rather concrete space: it is a finite-dimensional
manifold, homeomorphic to a R6g−6, with combinatorial charts that depend only
on the topology of Zg.

Example: braids and simple closed curves. To motivate our approach
to MLg, and more generally to MLg,n, we consider a particular sequence of
simple closed curves on the 4-times punctured sphere.

Let X = C − {−1, 0, 1}. Choosing a marking, we can consider X as an
element of the Teichmüller space M0,4.

Let A, B be simple closed curves on X , represented by round circles, such
that A encloses {−1, 0} and B encloses {0, 1}. Let α,β ∈ Mod(X) be given by
the left Dehn twist on A and a right Dehn twist on B. Note that α and β are
conjugate under the reflection ρ(x + iy) = −x + iy.

We now wish to examine the simple closed curves given by

(C0, C1, C2, C3, . . .) = (A,β(A),αβ(A),βαβ(A), . . .).

These curves can be visualized by enclosing the top two strands of an alternating,
3-stranded braid in a rubber band, and then pushing the band downwards, one
crossing at a time. See Figure 12.

By the time one has drawn C4, it has become evident that (although they are
very long) these curvesi consist mainly of many parallel strands, joined together
in a simple branching pattern.

The branching pattern for the curves with odd indices is the train track τ
shown in Figure 13. Any collection of non-negative integral weights (a, x, b, y, c)
on the edges of τ , satisfying the switching conditions

a = b + x, a + x = c + y, b + c = y

at its vertices, determines a simple closed curve C(a, x, b, y, c) carried by τ . To
construct C(a, x, b, y, c), replace each edge of τ by a number of parallel strands
determined by its weight, and join them without crossing at the vertices.

For simplicity, we eliminate the weights x and y (since they are determined
by the switching conditions); we then have a curve C(a, b, c) defined by inte-
gers satisfying a = b + c. In this notation, C0 = C(1, 1, 0), C2 = (2, 1, 1) and
C4 = (5, 2, 3), and in fact all the curves C2i are carried by τ . The weights (a, b, c)
are simply the number of strands crossing (−∞,−1), (0,−i∞) and (1,∞) re-
spectively.

The curves C2i+1 are similarly carried by the train track τ ′ = ρ(τ). Using
the same crossing numbers, we then have simple closed curves C′(a, b, c) carried
by τ ′. On τ ′ the weight relation becomes c = a + b.

It is now easy to check:

Theorem 3.22 We have β(C(a, b, c)) = C′(a, c, b + 2c) and α(C′(a, b, c)) =
C(b + 2a, a, c).
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Figure 12. Simple closed curves C0, C1, C2, C3, C4.
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b

x

y

Figure 13. A train track for C2i.

Since the weight transformations are linear, it is easy to compute that the
action of ψ = αβ is given by ψ(C(a, b, c)) = C(2a+c, a, b+2c). We can eliminate
b = a− c and obtain

ψ(C(a, c)) = C(2a + c, a + c) = C

((
2 1

1 1

)(
a

c

))

.

Starting with C0 = C(1, 0) = C(f1, f0), we then find C2i = (f2i+1, f2i), where
(f0, f1, f2, f3, . . .) = (0, 1, 1, 2, 3, 5, 8, . . .) are the Fibonacci numbers.

It is well-known that fn+1/fn → γ = (1 +
√

5)/2 (the golden ratio). Thus
[C2i] converges, in the space PML, to the projective measured lamination
[C(γ, 1)] = [λ]. Moreover, this measured lamination satisfies ψ(λ) = γ · λ.

Note that [λ] is not transversally orientable! Thus it does not represent a
cohomology class on X .

We now proceed to a more formal discussion.

Train tracks. A train track τ ⊂ X is a finite 1-complex such that

(i) every x ∈ τ lies in the interior of a smooth arc embedded in τ ,

(ii) any two such arcs are tangent at x, and

(iii) for each component U of X − τ , the double of U along the smooth part
of ∂U has negative Euler characteristic.

Example. The complementary regions of our train track τ are all punctured
monogons. The double of such a surface is a triply-punctured sphere.

The vertices (or switches) of a train track, V ⊂ τ , are the points where 3
or more smooth arcs come together. The edges E of τ are the components of
τ − V ; some ‘edges’ may be closed loops.

The module of a train track. Let T (τ) denote the Z-module generated by
the edges E of τ , modulo the relations

[e1] + · · · + [er] = [e′1] + · · · + [e′s]

for each vertex v ∈ V with incoming edges (ei) and outgoing edges (e′j). (The
distinction between incoming and outgoing edges depends on the choice a di-
rection along τ at v.) Since there is one relation for each vertex, we obtain a
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presentation for T (τ) of the form:

ZV D−→ ZE → T (τ) → 0. (3.2)

The space of 1-cycles on τ with values in B is defined by

Z1(τ, B) = Hom(T (τ), B).

Laminations A geodesic lamination λ is carried by a train track τ if there is a
continuous collapsing map f : λ→ τ such that for each leaf λ0 ⊂ λ,

(i) f |λ0 is an immersion, and

(ii) λ0 is the geodesic representative of the path or loop f : λ0 → X .

Collapsing maps between train tracks are defined similarly.

Theorem 3.23 Every geodesic lamination is carried by some train track.

See [HP, 1.6.5].
A collapsing map λ → τ sends transverse measures on λ to elements of

Z1(τ, R+).

Theorem 3.24 The set of measured laminations carried by τ corresponds to
the set of positive 1-cycles Z1(τ, R+).

The set of systems of simple closed curves with rational weights carried by τ
corresponds to Z1(τ, Q+).

Corollary 3.25 Weighted systems of simple closed curves are dense in ML(X).

Corollary 3.26 The closure of Tg is all of PML(X).

Using train tracks as charts, one finds:

Theorem 3.27 The space ML(X) is a PL-manifold of dimension 6g − 6.

For example, if we take 3g− 3 curves forming a pair of pants decomposition
of Σg (with 2g− 2 pants), then add 3 more arcs to each pair of pants to obtain
a train track, then the original curves give 4(3g − 3) = 12g − 12 edges, the new
arcs give 3(2g − 2) = 6g − 6 more edges; and each of the original curves now
carries 4 vertices, so we get |E| = 18− 18, |V | = 4(3g − 3) = 12g − 12, and the
difference is 6g − 6.

With more work (using e.g. the classification of surface diffeomorphisms),
one can show more precisely:

Theorem 3.28 The space PML(X) is homeomorphic to a sphere of dimension
6g − 7.

Example. Using our train track τ , one sees that PML0,4 is a compact 1-
manifold, hence a circle. It is instructive to find a finite collection of train
tracks whose charts cover PML0,4.
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3.5 Symplectic geometry of Teichmüller space

Hamiltonian formalism. Recall that a symplectic manifold (M2n,ω) is a
smooth manifold equipped with a closed 2-form such that ωn -= 0. A typical
example is Cn ∼= R2n with ω =

∑
dxi ∧ dyi.

Any smooth function H : M → R determines a Hamiltonian vector field XH ,
characterized by ω(XH , Y ) = dH(Y ). The flow generated by XH preserves both
ω and H ; for example,

LX(ω) = diX(ω) + iXd(ω) = d(dH) + iX(0) = 0.

Fenchel-Nielsen coordinates. Recall that any pair of pants decomposition of
Zg, determined by simple closed curves α1, . . . ,α3g−3, gives a coordinate system
(τi, #i) for Tg.

We emphasize that τi, like #i, has units of length, and that the vector field
∂/∂τi represents a right twist along the corresponding simple closed curve.

Theorem 3.29 The symplectic form ω =
∑

d#i ∧ dτi is independent of the
choice of coordinate system.

Kähler form. This symplectic form has many other manifestations; for exam-
ple, when coupled to the complex structure it yields the Weil-Petersson metric,
given on the cotangent space by ‖φ‖22 =

∫
X |φ|2/ρ2.

In the case of H = T1,1, we have τ ∼ x/y and # ∼ 1/y, and thus ω = d#∧dτ ∼
dxdy/y3 as y →∞. Thus the Weil-Petersson metric is approximately |dz|/y3/2,
the distance to the cusp is finite and hence M1 has finite Weil-Petersson diam-
eter.

In particular, the Weil-Petersson metric is not equivalent to the Bergman
metric, since the latter is complete and in fact comparable to the Teichmüller
metric [Ha].

Earthquakes. For simple closed curves we have:

Corollary 3.30 The Fenchel-Nielsen twist −∂/∂τi is the Hamiltonian vector
field generated by the length function #i(X).

Based on this observation, for any λ ∈MLg we define the twist deformation
twλ : Tg → Tg as the unit-time diffeomorphism generated by the Hamiltonian
vector field −XH , where H(X) = #λ(X). The result is a right earthquake along
the lamination λ.

Theorem 3.31 Any two points in Teichmüller space are connected by a unique
right earthquake.

Convexity of lengths. Given simple closed curves α and β, and p ∈ α ∩ β,
let θp ∈ [0,π] denote the angle through which β must be rotated to line up with
α. This angle changes to π − θp if the roles of α and β are reversed.
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Theorem 3.32 For any pair of laminations α,β the right twist along β satisfies

d

dt
#α(twtβ)(X) =

∑

p∈α∩β

cos(θp).

Corollary 3.33 Geodesic lengths are convex along earthquake paths, and strictly
so if α meets β.

Proof. It is also easy to see that θp is decreasing under the earthquake flow
along β, and thus

d2

dt2
#α(twtβ)(X) =

∑

p∈α∩β

− sin(θp)
dθp

dt
> 0.

Following [Ker], we then have:

Theorem 3.34 (Nielsen realization conjecture) Any finite subgroup G ⊂
Modg can be lifted to a finite subgroup of Diff(Zg).

Equivalently, any finite subgroup G of Modg has a fixed-point in Tg.

Proof. Pick a closed curves α that binds Zg, and let β =
∑

G g · α ∈ C(Zg).
Then #β(X) is a proper function on Teichmüller space, so it achieves its mini-
mum at some point X0. If the minimum is also achieved at X1, then X0 = X1

because #β(Xt) is strictly convex along the earthquake path from X0 to X1.
Since #β(g · X) = #β(X), we have g · X0 = X0 for all g ∈ G.

4 Teichmüller theory via complex analysis

This section provides an introduction to the complex analytic theory of Te-
ichmüller space. It centers around the geometric meaning of the Teichmüller
metric.

Basic references for Teichmüller theory include [Gd], [IT] and [Nag].

4.1 Teichmüller space

Definitions. A Riemann surface X is of finite type (g, n) if X = X − E for
some compact Riemann surface X of genus g and finite set E with |E| = n.
Each end of X is isomorphic to a punctured disk.

Let S be a compact connected oriented surface. and let X be a Riemann
surface of finite type homeomorphic to int(S). A marking of X by S is an
orientation-preserving homeomorphism

f : int(S)→ X.
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The Teichmüller metric on Riemann surfaces marked by S is defined by

d((f, X), (g, Y )) =
1

2
inf{logK(h) : h : X → Y is homotopic to g ◦ f−1}.

Here h ranges over all quasiconformal maps respecting markings, and

K(h) = sup
X

|hz| + |hz|
|hz|− |hz|

≥ 1

is its dilatation.
For any two Riemann surfaces X, Y marked by S, the compactifications X

and Y are diffeomorphic. Thus their exists a quasiconformal map f : X → Y
respecting markings, and therefore the Teichmüller distance between X and Y
is finite.

The Teichmüller space Teich(S) is obtained from the space of all marked
Riemann surfaces (f, X) by identifying those at distance zero. Equivalently,
two marked surfaces (f1, X1) and (f2, X2) define the same point in Teich(S) if
there is a conformal map h : X1 → X2 homotopic to f2 ◦ f−1

1 .
The mapping class group Mod(S) consists of all homotopy classes of orientation-

preserving homeomorphisms h : S → S. (In fact homotopy and isotopy define
the same equivalence relation here.) There is a natural action of Mod(S) on
Teich(S) by

h · (f, X) = (f ◦ h−1, X).

This action is an isometry for the Teichmüller metric. (In fancier language, the
map S +→ Teich(S) is a functor from the category of surfaces and isotopy classes
of homeomorphisms, to the category of metric spaces and isometries.)

The notation Tg,n is often used for the Teichmüller space of Riemann surfaces
of genus g with n punctures.

4.2 The Teichmüller space of a torus

Theorem 4.1 The Teichmüller space of a torus S is naturally isometric to
H, with the conformal metric 1

2 |dz|/ Im(z) of constant curvature −4, and with
Mod(S) ∼= SL2(Z) acting by Möbius transformations.

Proof. A marked torus f : S → X = C/Λ determines a homomorphism
f∗ : π1(S)→ Λ. Choosing oriented generators 〈a, b〉 for π1(S) ∼= Z ⊕ Z, we can
normalize by scaling in C so that f∗(a, b) = (1, τ) with τ ∈ H. This gives the
desired map Teich(S) ∼= H.

To see the Teichmüller metric dT is half the hyperbolic metric dH, first
note that the natural real affine map f : X1 → X2, between a pair of tori Xi =
C/(Z⊕Zτi), has dilatation log K(f) = dH(τ1, τ2). This is particularly clear when
τi = iyi, since then f(x, y) = (x, y2y/y1) has log K(f) = | log(y2)− log(y1)|.

Therefore
dT (τ1, τ2) ≤ dH(τ1, τ2)/2.
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To see f is extremal, we look at the distortion of extremal length. Letting
Γ(1, 0) denote the family of loops on S in the isotopy class (1, 0) ∈ π1(S), we
have seen that

λ(Γ(1, 0), C/(Z⊕ τZ)) =
1

Im τ
.

Since extremal length is distorted by at most the factor K(f), we have

dT (τ1, τ2) ≥
1

2
| log Im(τ1)− log Im(τ2)|.

Now the right-hand side is just the hyperbolic distance between the two
horocycles resting on ∞ ∈ R̂ = ∂H that pass through τ1 and τ2. By replacing
Γ(1, 0) with Γ(p, q), we see in the same way that

dT (τ1, τ2) ≥
1

2
dH(H1(p/q), H2(p/q)),

where Hi(p/q) is the horocycle resting on p/q and passing through τi. Letting
p/q tend to an endpoint of the geodesic between τ1 and τ2, the right-hand side
tends to dH(τ1, τ2)/2, and thus dT = dH/2.

Cross-ratios. Any 4-tuple E ⊂ Ĉ naturally determines a 2-fold covering space
π : X(E) → Ĉ branched over E, where X = C/Λ is a torus and the critical
points of π are the points of order two on X(E). Conversely, the quotient of a
torus X by the involution x +→ −x gives the sphere with 4 branch points E.

The map E +→ X(E) gives a natural bijection between T0,4, T1. Since
the extremal quasiconformal map F : X(E) → X(E′) can be chosen to be a
group homomorphism, it commutes with x +→ −x and so it descends to a map
f : (Ĉ− E)→ (Ĉ− E′). Thus T0,4 and T1 are isometric.

Let M̃0,4 denote the moduli space of ordered 4-tuples of points on the Rie-

mann sphere. Then M̃0,4
∼= Ĉ− {0, 1,∞}; the isomorphism is given by taking

the cross-ratio. There is a regular covering map M̃0,4 → M0,4 with Galois
group S3. From the discussion above, we have:

Corollary 4.2 The Teichmüller metric on the space of cross-ratios M̃0,4
∼=

Ĉ− {0, 1,∞} coincides with the hyperbolic metric of constant curvature −4.

Corollary 4.3 A K-quasiconformal mapping distorts the cross-ratio of any
4 points by a bounded amount, as measured in the hyperbolic metric on Ĉ −
{0, 1,∞}.

Corollary 4.4 A K-quasiconformal map f is (1/K)-Hölder continuous.

Proof. Assume f fixes {0, 1,∞}. The hyperbolic metric on X = Ĉ− {0, 1,∞}
near z = 0 is bounded below by |dz|/(|z| log |Az|) for some A > 0, and

∫ b

a

dx

x log(Ax)
= log log Ax,
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so for z near zero we have

log K(f) ≥ dX(z, f(z)) ≥ dX(|z|, |f(z)|) ≥ | log log |Az|− log log |Af(z)||,

which gives |f(z)| ≤ O(|z|1/K).
This proves Hölder continuity of f at z = 0. By replacing f with AfB for

Möbius transformations A and B, the same proof applies near any point.

Corollary 4.5 The space of K-quasiconformal homeomorphisms of the sphere
is compact, up to the action of Aut(Ĉ).

Proof. Once normalized to fix 3 points, the space of K-quasiconformal maps is
uniformly Hölder continuous by the preceding corollary, and it is closed because
the property mod(fQ) ≤ K mod(Q) persists under uniform limits. By Arzela-
Ascoli, we have compactness.

4.3 Quadratic differentials

Let X be a Riemann surface. A quadratic differential φ on X is a tensor locally
given by φ = φ(z)dz2, where φ(z) is holomorphic. In other words, φ is a section
of the square of the canonical bundle on X .

If φ(p) -= 0, then we can find a local chart near p in which φ = dz2. This
chart is unique up to

z +→ ±z + a; (4.1)

it is given locally by

z(q) =

∫ q

p

√
φ.

(Note that
√

φ is a holomorphic 1-form.)
A quadratic differential determines a flat metric |φ| on X and a foliation F

tangent to the vectors with φ(v) > 0. For the differential φ = dz2 on C, the
metric is just the Euclidean metric on the foliation is by horizontal lines. Note
that these structures are preserved by the transformations (4.1).

If φ(p) = 0, then there is a local chart with φ(z) = zddz2. The metric |φ| has
a cone-like singularity with (2+ d)π degrees at p (and thus negative curvature);
the foliation has d + 1 leaves coming together at p.

A quadratic differential is integrable if

‖φ‖ =

∫

X
|φ| <∞.

Let Q(X) denote the Banach space of all integrable quadratic differentials with
the L1-norm above. The norm of φ is simply the total area of X in the |φ|-metric.
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Proposition 4.6 Let X be a Riemann surface of finite type. Then Q(X) con-
sists of the holomorphic quadratic differentials on X with at worst simple poles
at the punctures of X.

Proof. Near z = 0,
∫
|dz|2/|z|n =

∫
r−nr dr dθ converges iff n < 2.

Example. The surface X = C∗ becomes an infinite cylinder in the metric
determined by φ = dz2/z2, so φ -∈ Q(X). On the other hand, for X = (C −
{0, 1, a}), the differential

φ =
dz2

z(z − 1)(z − a)

lies in Q(X). When a ∈ R, X is the double of a rectangle (a pillowcase) in the
|φ|-metric.

Corollary 4.7 If X is a Riemann surface of finite type (g, n), then

dimQ(X) =






n− 3 g = 0,

1 g = 1, n = 0,

n− 1 g = 1, n > 0,

3g − 3 + n g ≥ 2.

4.4 Measured foliations

A measured foliation F on a manifold M is a foliation equipped with a measure
on the space of leaves. That is, F comes equipped with a measure α on all
transversals T to F , such that the natural maps between transversals (following
the leaves of the foliation) are measure-preserving. Morally, α is a measure on
the leaf space of F .

Basic examples.

1. The foliation by horizontal lines in C with the transverse measure |dy|
determines a measured foliation F , such that the mass of a transversal T
is its total variation in the vertical direction.

2. Since F is translation invariant, it descends to a measured foliation on
any complex torus X = C/Λ.

3. On a surface, a measured foliation is determined by a degenerate metric g
of rank one on X . The null-geodesics of g are the leaves of the foliation, and
the measure of a transversal is its g-length. Thus g(x, y) = y2 describes
the standard foliation in the plane.

4. A nowhere vanishing holomorphic quadratic differential φ on X similarly
determines a measured foliation F(φ). In a chart where φ = dz2, the
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measured foliation becomes the usual one whose leaves are horizontal lines.
The degenerate metric g defining F(φ) is given by

g = | Im
√

φ|2.

The measured foliation F(−φ) has leaves orthogonal to those of F(φ), and
the product of the transverse measures gives the area form determined by
the quadratic differential:

|φ| = αF(φ) × αF(−φ).

5. By convention, one broadens the definition of a measured foliation on a
surface to allow singularities like those of quadratic differentials at their
zeros. Then any holomorphic quadratic differential determines a measured
foliation.

6. A closed 1-form ω with generic zeros determines a measured foliation
with singularities smoothly equivalent to the standard model (z dz)2 at
z = 0. Namely ω = df locally, the foliation F is by the level sets of f
(or the integral curves of the kernel of ω), and the f is the integral of
the transverse measure. Conversely, any transversely oriented measured
foliation corresponds to a closed 1-form.

The special feature of holomorphic quadratic differentials is that they
locally correspond to the square of a harmonic 1-form. Geometrically this
means that the foliation obtained by rotating the leaves of F(φ) by 90◦

(or any other angle) also comes equipped with a transverse measure; or
that F(φ) is locally defined by a 1-form ω such that d ∗ ω = 0.

Now given a measured foliation F and a conformal metric ρ, we can form a
measure ρ × αF on X that is locally the product of the transverse measure of
F with ρ-length along leaves. We define the length of F by

#ρ(F) =

∫

F
ρ(z)|dz| =

∫

X
ρ× αF .

Let us say F ∼ F ′ if there is a homeomorphism of X , isotopic to the identity,
sending F to F ′. This relation is meant to generalize the idea of moving a simple
curve by isotopy. Then the extremal length of F on X is defined by

λ(F , X) = sup
ρ

infF∼F ′ #ρ(F ′)2

areaρ(X)
.

A measured foliation is geodesic for ρ if it minimizes #ρ(F) in its isotopy
class, and ρ is extremal if it maximizes the extremal length quotient above.

Theorem 4.8 Let φ ∈ Q(X) be a nonzero holomorphic quadratic differential
on a Riemann surface X of finite type, and let ρ = |φ|1/2. Then

#τ (F(φ)) ≤ #ρ(F(φ))

for any metric τ with areaτ (X) = areaρ(X). Equality holds iff τ = ρ.
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Proof. By definition, the restriction of ρ = |φ|1/2 to the orthogonals of F =
F(φ) gives its transverse measure. Thus

#ρ(F)2 =

(∫

X
ρ2

)2

= areaρ(X)2.

On the other hand, by Cauchy-Schwarz,

#τ (F)2 =

(∫

F
τ

)2

=

(∫

X
τρ

)2

≤
∫

τ2

∫
ρ2 = (areaρ(X))2 ,

by our assumption that τ and ρ give X the same area. If equality holds in
Cauchy-Schwarz, then τ is a constant multiple of ρ, so τ = ρ by our normaliza-
tion of the area.

Corollary 4.9 We have λ(F(φ)) = ‖φ‖, and ρ = |φ|1/2 is the unique extremal
metric for F(φ), up to scale.

Proof. The foliation F = F(φ) is the unique geodesic in its equivalence class
because ρ is a metric of non-positive curvature. More precisely, suppose F ′ =
f(F), where f is isotopic to the identity. Define a map g : X → X by sending
each leaf L′ of F ′ to the corresponding leaf L = f−1(L) of F by the nearest-
point projection, in the ρ-metric. Since L is a ρ-geodesic and ρ is non-positively
curved, this projection does not increase distances. Thus

∫
F ′ ρ ≥

∫
F ρ and

therefore F is geodesic. It follows that

λ(F) ≥ infF ′ #ρ(F ′)2

areaρ(X)
≥ #ρ(F)2

areaρ(X)
= areaρ(X) = ‖φ‖.

On the other hand,

λ(F) = sup
τ

infF ′ #τ (F ′)2

areaτ (X)
≤ sup

τ

#τ (F)2

areaτ (X)
≤ #ρ(F)2

areaρ(X)
= ‖φ‖

by the preceding theorem, and for equality to hold we must have τ a constant
multiple of ρ.

Unique ergodicity. The ρ-geodesic representative of F(φ) may not be unique
as a measured foliation. For example, let X = C/Z ⊕ τZ be a torus, let φ =
[dz2] ∈ Q(X), and let F = F(φ) and ρ = |φ|1/2. Then projection to the y-axis
gives a fibration

π : X → S1 = R/Z Im τ,

whose fibers are the leaves of F . The transverse measure to F pushes forward
to give a measure α on S1, and conversely any measure α′ on S1 determines a
measured foliation F ′ with the same leaves as F . If the total mass of α and α′
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is the same, then F ′ ∼ F , and both are geodesic for the ρ-metric, even though
they are distinct as measured foliations.

On the other hand, we say a measured foliation is uniquely ergodic if it admits
a unique transverse invariant measure up to scale. For example, an irrational
foliation of X is uniquely ergodic. If F(φ) is uniquely ergodic, then it is the
unique geodesic measured foliation in the |φ|1/2-metric.

4.5 Teichmüller’s theorem

In this section we continue to assume χ(S) < 0, so the Riemann surfaces in
Teich(S) are hyperbolic.

Definition. Let X, Y ∈ Teich(S) be marked Riemann surfaces. A Teichmüller
mapping

f : X → Y

is a quasiconformal map, respecting markings, such that

µ(f) =
∂f

∂f
= k

φ

|φ|

for some φ ∈ Q(X) and 0 ≤ k < 1. The map f has dilatation K = (1+k)/(1−k).
Equivalently: there is a quadratic differentials φ ∈ Q(X) such that, away

form its zeros, there are charts on X and Y in which φ = dz2 and f(x + iy) =
Kx + iy.

This means f maps F(φ) to F(ψ) for some ψ ∈ Q(Y ), stretching the leaves
of F(φ) by a constant factor K in the flat metric, and sending the orthogonal
leaves to the orthogonal leaves by an isometry.

Theorem 4.10 Let f : X → Y be a Teichmüller mapping between hyperbolic
Riemann surfaces. Then f is the unique extremal quasiconformal map in its
homotopy class. That is, K(g) ≥ K(f) for any g homotopic to f , and equality
holds iff f = g. In particular,

dT (X, Y ) =
1

2
log K(f).

Proof. First note that the identity map is the only conformal map homotopic
to the identity. This can be seen by lifting f to the universal cover so it induces
the identity on the circle at infinity. So we may assume K = K(f) > 1.

Let φ ∈ Q(X) and ψ ∈ Q(Y ) be the quadratic differentials (unique up to
a positive multiple) such that ‖ψ‖ = K‖φ‖ and f(F(φ)) = F(ψ). That is, f
stretches the leaves of F(φ) by the factor K.

Consider any quasiconformal mapping F : X → Y homotopic to f . Let

ρ = |ψ|1/2

be the extremal metric for F(ψ) on Y , let

g = F ∗(ρ)
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be the Riemannian metric obtained by pulling it back, and let

γ ≤ g ≤ K(F )γ

be the ‘rounding down’ of g, i.e. the largest conformal metric on X lying below
g. Then:

K(f)‖φ‖ = ‖ψ‖ = λ(F(ψ)) =
#ρ(F(ψ))2

areaρ(Y )
≤ #ρ(F (F(φ)))2

areaρ(Y )

=
#g(F(φ))2

areag(X)
≤ K(F )

#γ(F(φ))2

areaγ(X)
≤ K(F )λ(F(φ)) = K(F )‖φ‖.

Therefore K(F ) ≥ K(f) and thus f is extremal.
To check uniqueness, suppose equality holds above. Then the process of

rounding down, that is replacing g with γ, must decrease the area of X by
exactly K(F ) while holding the length of F(φ) constant. It follows that the
major axis of g must be tangent to F(φ), and the eccentricity of g must be
K(F ) = K(f) a.e. But then µ(f) = µ(g), so g−1 ◦f is a conformal map isotopic
to the identity, and thus f = g.

Theorem 4.11 (Teichmüller’s theorem) There is a unique Teichmüller map-
ping f : X → Y between any pair of Riemann surfaces X, Y ∈ Teich(S).

Proof. The proof is by the ‘method of continuity’.
Let Q(X)1 denote the open unit ball in Q(X). We will define a map

π : Q(X)1 → Teich(S)

such that the theorem holds for all Y in the image; then we will show π is a
bijection.

To define π, let φ belong to Q(X)1 and let k = ‖φ‖ < 1. For φ = 0 we set
π(0) = X . Otherwise, we construct a Teichmüller mapping f : X → Y with
µ(f) = kφ/|φ|, and set π(φ) = (f, Y ).

To construct Y , we just apply a stretch by the factor K = (1 + k)/(1 − k)
along the foliation F(φ), to obtain charts for a new Riemann surface. The com-
plex structure fills in over the isolated zeros of φ by the removable singularities
theorem. Then by construction we have a Teichmüller mapping f : X → Y
stretching along F(φ).

Since f is extremal, we have d(X,π(X)) = 1
2 log K. Since the extremal

is unique, and f determines φ, we can recover φ from π(X); and thus π is
injective. But π is also continuous, and the dimensions of domain and range
are equal by Theorem 3.1. Therefore π is an proper local homeomorphism, and
thus a covering map. Since π is injective, it is a global homeomorphism.

In particular, π is surjective, so any Y ∈ Teich(S) is the target of a Te-
ichmüller mapping with domain X .
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The case of a torus. When S is a torus, Teichmüller’s theorem still holds up
to the action of translations on X . That is, the Teichmüller mapping is only
unique up to composition with a conformal automorphism of X isotopic to the
identity.

Real and complex Teichmüller geodesics. Associated to a nonzero quadratic
differential φ ∈ Q(X) is an isometric, holomorphic map

∆→ Teich(S)

of the unit disk (with curvature −4) into Teichmüller space. This map t +→ Xt

is defined by letting Xt be X endowed with the complex structure coming from
the Beltrami differential

µt = tφ/|φ|,
i.e. for t = keiθ, the surface Xt is the terminus of the Teichmüller mapping

ft : X → Xt

with quadratic differential e−iθφ and with dilatation K(ft) = (1 + k)/(1− k).
The image of the geodesic (−1, 1) ⊂ ∆ is the real Teichmüller geodesic

through X determined by φ; the image of ∆ itself is the corresponding complex
geodesic.

4.6 The tangent and cotangent spaces to Teichmüller space

On any complex manifold M , a deformation of complex structure can be defined
by moving charts relative to one another. Thus the deformations are naturally
isomorphic to H1(M, Θ), where Θ is the sheaf of holomorphic vector fields on
M . This point of view is the basis of Kodaira-Spencer deformation theory.

On a Riemann surface X , Θ is the sheaf of sections of K∗, the dual of the
canonical bundle. By Serre duality,

H1(X, Θ)∗ ∼= H0(X, K −Θ) = H0(X, 2K) = Q(X).

In other words, Q(X) is naturally the cotangent space to the Teichmüller space
Teich(S) at X .

From the quasiconformal point of view, any complex structure on X can be
specified by a Beltrami differential of norm less than one, and thus we have a
surjective holomorphic map

π : M(X)1 → Teich(S)

sending 0 to X .
Here is a concrete description of this map π. First present X as the quotient

H/Γ of the upper half-plane by a Fuchsian group Γ. Given µ ∈ M(X)1, lift it
to H and extend it by reflection to the lower half-plane, obtaining a differential
µ̃ ∈M(Ĉ)1. Now let F denote the solution to the Beltrami equation

Fz

Fz
= µ̃
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that fixes {0, 1,∞}. Then by symmetry, F sends H to itself. Since µ̃ is Γ-
invariant, F conjugates Γ to a new Fuchsian group Γ′. Let X ′ = H/Γ′. Then F
descends to a quasiconformal map f : X → X ′, and π(µ) = (f, X ′).

The tangent space TX Teich(S) is the quotient of M(X) (the tangent space to
M(X)1 at the origin) by the space of trivial deformations of X . Here µ is trivial
if the complex structure it specifies is the same as the original structure on X up
to isotopy. On an infinitesimal level, this means µ = ∂v for some quasiconformal
vector field on X . (The space of such v can be thought of as the tangent space
at the identity to the group QC(X) of quasiconformal homeomorphisms of X
to itself.)

We claim µ = ∂v iff
∫

µφ = 0 for every φ ∈ Q(X). To see this, we note that
the space M0(X) of trivial µ is a closed subspace of M(X), by compactness of
quasiconformal vector fields. As Banach spaces we have

L1(X, dz2)∗ = L∞(X, dz/dz) = M(X),

so M0(X) = P⊥ for some subspace P of the space of L1 measurable quadratic
differentials. But if φ ∈ P , then

∫

X
φ∂v = −

∫

X
(∂φ)v = 0

for every smooth vector field v, and thus ∂φ = 0 as a distribution. Thus
P⊥ ⊂ Q(X), and the reverse inclusion is obvious.

Now think of µ ∈ M(X) as representing an infinitesimal quasiconformal
mapping f : X → X ′ with dilatation εµ. Then

d(X, X ′) =
1

2
log K(f) =

1

2
log

1 + ε‖µ‖
1− ε‖µ‖ = ε‖µ‖+ O(ε2).

Thus the L∞ norm on M(X) gives the dilatation of f . If we vary µ by ele-
ments of M0(X), we obtain all maps that are infinitesimally isotopy to f . Thus
the infinitesimal form of the Teichmüller metric is just the quotient norm on
M(X)/M0(X). Similarly, the cometric on Q(X) is just the induced norm from
L1(X, dz2).

Summarizing, we have:

Theorem 4.12 For any X ∈ Teich(S), we have

TX Teich(S) ∼= M(X)/Q(X)⊥ and

T ∗
X Teich(S) ∼= Q(X).

The quotient L∞-norm on M(X)/Q(X)⊥ is the Teichmüller metric, and the
L1-norm metric on Q(X) is the Teichmüller cometric.

Note that these Banach spaces are generally not Hilbert spaces, and thus
the Teichmüller metric is generally not a Riemannian metric.

52



The factors 1/2 and 4. The definition of the Teichmüller metric as dT (X, Y ) =
(1/2) inf log K(f) is compatible with the natural L1 and L∞ norms on the tan-
gent and cotangent space used above. The same factor arises if we use the
Euclidean metric on C to give a metric ρ on T0∆; then ρ agrees at z = 0 with
the metric of constant curvature −4, not −1.

Geodesics and cotangents. At first sight it seems strange that a Teichmüller
geodesic is associated to a quadratic differential φ ∈ Q(X), because Q(X)
is the cotangent space to Teichmüller space (rather than the tangent space).
The explanation is that the Teichmüller metric, while not Riemannian, gives
a nonlinear duality between PQ(X) and PM(X)/Q(X)⊥. Namely to each line
Rφ ⊂ Q(X) there is associated the supporting hyperplane Hφ for the unit ball
BX = {φ : ‖φ‖ ≤ 1}. This hyperplane is the kernel of the Beltrami differential
µ = φ/|φ|, and µ is tangent to the Teichmüller geodesic that stretches along φ.

4.7 A novel formula for the Poincaré metric

Theorem 4.13 The hyperbolic metric ρ(t)|dt| on Ĉ− {0, 1,∞} is given by

ρ−1(t) = 2|t(t− 1)|
∫

bC

|dz|2

|z||z − 1||z − t| .

Proof. Think of t ∈ Ĉ − {0, 1,∞} as determining a Riemann surface Xt =

Ĉ − {0, 1,∞, t} in the moduli space of a 4-times punctured sphere. The Te-
ichmüller metric has constant curvature −4 so up to a factor of 2 it agrees
with the Poincaré metric ρ(t). On the other hand, a vector v ∈ TtĈ deter-
mines a deformation of Xt whose Teichmüller length is given by |Rest(vφ)|/‖φ‖,
where φ ∈ Q(Xt) is any nonzero holomorphic quadratic differential. Taking
φ(z) = dz2/(z(z − 1)(z − t)), we obtain the formula above.

4.8 The Kobayashi metric

Why is the Teichmüller metric important? Given any complex manifold M ,
the Kobayashi metric on M is defined as the largest metric such that every
holomorphic map

f : ∆→M

satisfies ‖f ′(0)‖ ≤ 1. For example, on the disk itself, the Kobayashi metric
is |dz|2/(1 − |z|2), the multiple of the hyperbolic metric that gives constant
curvature −4.

The Kobayashi metric is generally not a Riemannian metric; rather, it is a
Finsler metric defined by a norm on each tangent space to M . The manifold
M is Kobayashi hyperbolic if this metric is nowhere degenerate. A nice criterion
for hyperbolicity is:

Theorem 4.14 A compact complex manifold M is Kobayashi hyperbolic iff ev-
ery holomorphic map f : C→M is constant.
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Cf. [La, III, §2]. For example, if M is covered by a bounded domain in Cn, then
it is Kobayashi hyperbolic.

From the definition it is easy to see:

Theorem 4.15 Any holomorphic map between complex manifolds is distance
non-increasing for the Kobayashi metric.

Now for Teichmüller space we have:

Theorem 4.16 (Royden) The Teichmüller metric on Teich(S) coincides with
the Kobayashi metric.

Corollary 4.17 Any holomorphic map f : Teich(S)→ Teich(S) satisfies

d(fX, fY ) ≤ d(X, Y )

in the Teichmüller metric.

This Corollary is a Schwarz lemma for Teichmüller space. It indicates that
the Teichmüller metric is well-adapted to the problem of finding the fixed-point
of an iteration on Teichmüller space.

See [La] for more details on Kobayashi hyperbolicity.

4.9 Moduli space

The moduli space M(S) = Teich(S)/ Mod(S) is obtained from Teichmüller space
by forgetting the marking of S. Moduli space is an orbifold with exactly one
point for each isomorphism class of Riemann surface of the type specified by
S. The orbifold structure arises because Mod(S) does not act freely; for any
X ∈ Teich(S), the stabilizer of X in Mod(S) is isomorphic to the conformal
automorphism group Aut(X).

Example. For a torus, Mod(S) is the (2, 3,∞) orbifold H/ SL2(Z); it is iso-

morphic to the quotient of Ĉ− {0, 1,∞} by its S3 automorphism group.

Theorem 4.18 (Mumford) Let ML ⊂M(S) be the set of Riemann surfaces
whose shortest closed hyperbolic geodesic is of length ≥ L > 0. Then ML is
compact.

Proof. For any X ∈M(S), we have

area(X) = 2π|χ(S)|

by Gauss-Bonnet. If X belongs to ML, then balls of radius L/10 on X are
embedded, and by the area bound there is an N = N(L, S) such that X is
covered by N closed balls of radius L/10.

Given a sequence Xn ∈ ML, choose such a covering Bn for each n. Passing
to a subsequence, we can assume the nerve of Bn is constant. (The nerve is the
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finite complex with a vertex for each ball and a k-simplex for each k-tuple of
balls with nonempty intersection).

Now choose a baseframe at the center of each ball. Whenever two balls meet,
we can lift them uniquely to H2 so the first frame goes to a fixed standard frame
(e.g. at the origin in the ball model for H2); then there is a unique isometry of
H2 moving the first frame to the second. In this way the oriented edges of the
nerve of Bn are naturally labeled by hyperbolic isometries.

These isometries range in a compact subset of Isom(H2), so after passing to
a subsequence we can assume they converge. Along the way a cocycle condition
is satisfied along the boundary of any 2 simplex of the nerve, so the cocycle
condition holds in the limit by continuity. Thus the limiting data determines
charts for a hyperbolic manifold X∞, and X∞ is closed since it is covered by a
finite number of balls B∞.

Now each ball in B∞ is naturally associated to a ball in Bn for n7 0. Using
baseframes, we obtain isometries between associated balls. Using a partition
of unity on X∞, we can piece these isometries together to obtain a continuous
map fn : X∞ → Xn for all n 7 0. Since the gluing data for Xn converges to
that of X∞, the isometries relating adjacent balls are nearly the same, so fn is
a nearly isometric diffeomorphism for all n7 0. In particular, K(fn)→ 1, and
thus the Teichmüller distance from Xn to X∞ tends to zero.

Thus X∞ ∈ML and we have shown every sequence in ML has a convergent
subsequence.

4.10 The mapping-class group

In this section, following [Bers2], we give the proof of:

Theorem 4.19 (Thurston) Any mapping-class [f ] ∈Mod(S) has a reprenta-
tive which is: finite order, reducible, or pseudo-Anosov.

Pseudo-Anosov mappings. Here f is reducible if there is a multicurve C ⊂ S
whose components are permuted by f .

A mapping f : X → X on a Riemann surface is pseudo-Anosov if f is a
Teichmüller mapping of dilatation K2 > 1 and its initial and terminal quadratric
differentials (normalized so

∫
|q| = 1) coincide. Note that the Riemann surface

X is not unique — it can be chosen as any point on the loop in Mg determined
by f .

With this in mind, we say f : S → S is pseudo-Anosov it is preserves a pair
of transverse, measured foliations, multiplying the transverse measure on one
by K and on the other by 1/K.

This structure permits a detailed analysis of the topological and measure-
theoretic properties of f . For example:

Proposition 4.20 A pseudo-Anosov mapping is ergodic.
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Proof. (Hopf.) The ergodic sums of T n for n > 0 are clearly constant along
the leaves of one foliation, and the sums for n < 0 are constant along the leaves
of the other. Thus their limit is constant.

Proposition 4.21 The period points for f are dense.

Proof. Take a small square S ⊂ X . By Poincaré recurrence, we can find a
large n such that fn(S) meets S. Thus fn(3S) passes near the center of 3S,
giving a long thin rectangle cutting through two of its sides. It follows easily
that fn|3S has an invariant leaf and there is a fixed point on this leaf.

A more detailed analysis shows:

Proposition 4.22 The map f is mixing, and each of its invariant foliations is
uniquely ergodic.

Proof of Theorem 4.19. Connect X to fX by a path in Tg and project to
obtain a loop γ ⊂Mg of finite length. Now try to shrink this loop to make it
as short as possible. If it shrinks to a point, f is of finite order; if it goes out
the end of moduli space, f is reducible; and if it shrinks to a geodesic, then f
is pseudo-Anosov.

For a more precise analysis, observe that in the last case we can find an
X ∈ Tg minimizing d(X, fX). Let Y be the midpoint of the geodesic from X
to fX ; then we must have

d(Y, fY ) = d(Y, fX) + d(fX, fY ).

But for a pair of linear maps, we have K(AB) < K(A)K(B) unless the expand-
ing and contracting directions coincide. This shows the initial and terminal
foliations of f coincide.

4.11 Counterexamples

1. There exist normalized K-quasiconformal maps fn : C → C such that
µ(fn)→ 0 weakly but fn does not converge uniformly to the identity.

Fix K > 1 and let f(x + iy) = x + s(y), where s is a piecewise-linear
function with s(0) = 0 and

s′(y) =

{
K on [2n, 2n + 1) and

1/K on [2n + 1, 2n + 2).

Then the dilatation µ(f) is constant on horizontal strips of unit width, but
alternating in sign. Thus if we set fn(z) = nf(z/n), then µ(fn) alternates
sign on strips of width 1/n. Moreover, fn fixes {0, 1,∞} and µ(fn)→ 0 in
the weak topology on L∞(C) (that is,

∫
µ(fn)g → 0 for any f ∈ C∞

0 (C)).
But fn converges uniformly to the real-linear map F (x + iy) = x + iLy,
where L = (K + 1/K)/2.
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2. There exist locally affine maps f : X → Y between Riemann surfaces of
finite type which are not Teichmüller mappings.

Fix λ > 1 and let X = C∗/λZ be a complex torus. Define ft : C∗ → C∗

by
ft(x + iy) = x + ety.

Then ft(λz) = λft(z), and F = f1 : X → X is a locally affine map.
But f0(z) = z, so F is isotopic to the identity, and thus it is not the
Teichmüller mapping in its homotopy class.

The vertical lines of maximal stretch of F (t > 0) descend to give a Reeb
foliation F of X ; there are two closed leaves, coming from the imaginary
axis, and all other leaves of F spiral from one closed leaf to the other.
Because of the spiraling, this foliation admits no transverse invariant mea-
sures other than δ-masses on the closed leaves.

Note that F : X → X , while locally affine, is not Anosov — it preserves
a splitting of the tangent space, but the splitting is not along the stable
and unstable manifolds of F .

4.12 Bers embedding

In this section we discuss the Teichmüller space of a quite general Riemann
surface X , and its embedding as a domain in a complex Banach space.

Ideal boundary. Let X = H/ΓX be a hyperbolic Riemann surface, presented
as the quotient of the upper halfplane by a Fuchsian group. We do not assume
that X has finite volume.

The group ΓX acts on the whole sphere, with limit set Λ ⊂ R̂ = R ∪ {∞}.
In particular the quotient of the lower halfplane,

X∗ = (−H)/ΓX ,

is the complex conjugate of X . The map z +→ z1 descends to a natural anticon-
formal isomorphism X → X , identifying their fundamental groups.

Let Ω = R̂− Λ be the domain of discontinuity of ΓX acting on R̂. Then we
can form a partial compactification of X by taking the quotient

X = (H ∪ Ω)/ΓX .

We refer to ideal-∂X = X −X as the ideal boundary of X .
As a special case, ideal-∂H = R̂. Any quasiconformal f : H→ H extends to

a homeomorphism of H, and thus any quasiconformal map f : X → Y extends
to a homeomorphism f : X → Y .

Homotopy and isotopy. The key to defining the Teichmüller space is to know
which quasiconformal maps f : X → X are to be considered trivial. Luckily
several natural notions coincide.

Theorem 4.23 Let X = H/ΓX and let f : X → X be a quasiconformal map.
The following are equivalent.
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1. There is a lift of f to a map H→ H that extends to the identity on R̂.

2. The map f is homotopic to the identity rel ideal boundary.

3. The map f is isotopic to the identity rel ideal boundary, through uniformly
quasiconformal maps.

See [EaM].
A Riemann surface marked by X is a pair (Y, g) where g : X → Y is a quasi-

conformal map. Two marked Riemann surfaces (Y, g) and (Z, h) are equivalent
if there is a conformal isomorphism α : Y → Z such that

f = h−1 ◦ α ◦ g : X → X

is isotopic to the identity rel ideal boundary. (Of course any of the other condi-
tions above give the same definition).

The Teichmüller space of X is the space of equivalence classes of Riemann
surfaces (Y, g) marked by X .

Example: universal Teichmüller space. The case where ΓX is the trivial
group, and X = H¡ is called universal Teichmüller space. In this case we have

Teich(H) ∼= QS(R̂)/ PSL2(R),

where QS(R̂) is the group of quasi-symmetric maps g : R̂→ R̂. These are exactly
the homeomorphisms of R̂ that arise as boundary values of quasiconformal maps.

Quasifuchsian groups and univalent maps. Fix a model X = H/ΓX

for the universal cover of X . The Bers embedding of Teich(X) is based on a
construction that canonically associates to any (Y, g) ∈ Teich(X):

• A Kleinian group ΓY acting on the Riemann sphere; and

• A quasiconformal map F : Ĉ → Ĉ, fixing {0, 1,∞} and conjugating Γ to
ΓY ; such that

• F is conformal in (−H), Y = F (H)/ΓY and X∗ = F (−H)/ΓY .

Because of the last property, the group ΓY is said to simultaneously uniformize
X∗ and Y .

The construction is the following. Let g : X → Y be a Riemann surface
marked by X . Let µ = µ(g), lifted to H and extended to (−H) by 0. Let

F : Ĉ → Ĉ be the normalized solution to the Beltrami equation µ(F ) = µ.
Since µ is ΓX -invariant, we have µ(F ◦ γ) = µ(F ) for all γ ∈ ΓX . But the solu-
tion to the Beltrami equation is unique up to post-composition with a Möbius
transformation, so there is an isomorphism

ρ : ΓX → ΓY ⊂ Aut Ĉ

such that
F ◦ γ = ρ(γ) ◦ F
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for all γ ∈ ΓX .
Thus F conjugates ΓX to ΓY , and by construction F is conformal in (−H).
Since F intertwines ΓX and ΓY , the Schwarzian derivative φY = SF |(−H)

is ΓX -invariant. Since F is univalent, we have φY ∈ P (X∗); in fact ‖φY ‖ < 3/2.
The map β : (Y, g) +→ φY gives the Bers embedding

β : Teich(X)→ P (X∗).

Image of Bers embedding. Let us write S(X∗) ⊂ P (X∗) for the set of ΓX -
invariant Schwarzians of univalent (schlicht) maps, and T (X∗) for the image of
Bers embedding. Then we have

T (X∗) ⊂ S(X∗) ⊂ P (X∗).

In fact, T (X∗) is exactly the set of Schwarzians of univalent maps to quasidisks.
By the Ahlfors-Weill extension, the ball of radius 1/2 is contained in T (X∗).
With similar reasoning, one can also show that T (X∗) is open. Thus the Bers
embedding provides a model for T (X∗) as a complex manifold, in facts as a
bounded domain in a complex Banach space with

B(1/2) ⊂ T (X∗) ⊂ B(3/2).

Role of the Ahlfors-Weill extension. If Y is close enough to X that ‖φY ‖ <
1/2, then we can extend F |(−H) to H using the Ahlfors-Weill construction. The
result is a canonical quasiconformal map gY : X → Y , characterized by having
a harmonic Beltrami coefficient

µ(gY ) = ρ−2φY (z).

Notice that µ(gY ) ∈ M(X) is a holomorphic function of Y , since it is a holo-
morphic function of φY (for each fixed z). In other words, the Ahlfors-Weill
extension provides a holomorphic Teich(X) !!" M(X) defined near X and lift-
ing the natural holomorphic projection M(X)→ Teich(X).

Finite sets on the sphere. The Teichmüller space T0,n of a sphere with n ≥ 3
punctures has an alternative and very simple complex model: we have

T0,n/Gn = {z ∈ Cn−3 : zi -= zj -= 0, 1,∞ ∀i, j},

where Gn is the pure mapping-class group of n points on the sphere (the pure
braid group modulo its center). This group acts without fixed-points by au-
tomorphism of T0,n, so Teichmüller space arises as the universal cover of the
complement of suitable hyperplanes in Cn−3.

The complex structure on T0,n derived from Cn−3 agrees with that coming
from the Bers embedding. To see this consider a Beltrami differential µ on
X = Ĉ−E. Then the solution to the Beltrami equation at any point, fµ(z), is

holomorphic in µ; thus Y = Ĉ− fµ(E) is the complement of a holomorphically
moving finite set. At the same time, pulling µ back to −H, the quadratic
differential φY = SFµ is a holomorphic function of µ as well. In other words,
the pair of maps M(X)1 → Cn−3 and M(X)1 → T0,n are both holomorphic
submersions, so the transition between them is also holomorphic.
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4.13 Conjectures on the Bers embedding

In general one hopes to show that all Kleinian groups are limits of geometrically
finite ones. A precise conjecture in this direction for quasifuchsian groups was
made by Bers.

Conjecture 4.24 For all finite-volume hyperbolic surfaces X, we have T (X) =
S(X).

K. Bromberg has recently announced a proof of this central conjecture.
This conjecture can also be formulated for other Riemann surfaces, including

the unit disk.
It is false for universal Teichmüller space. Let us say a compact quasiarc

Q ⊂ C is incorrigible if the Hausdorff limits of Aut(Ĉ)·Q in the space of compact
subsets of Ĉ include no circle. Then we have [Th]:

Theorem 4.25 (Thurston) There exist isolated points in S(∆). In fact, the

Riemann mapping f : ∆ → Ĉ − Q is isolated in S(∆) for any incorrigible
quasiarc Q.

Such quasiarcs Q are also called zippers, because they lock two sides of the
plane together. The ‘Bers density conjecture’ can be formulated as saying there
are no group-invariant zippers, at least for finitely-generated nonelementary
Kleinian groups.

4.14 Quadratic differentials and interval exchanges

Let q ∈ Q(X) be a holomorphic quadratic differential on a compact Riemann
surface X . In local coordinates where q = dz2, we have a foliation by vertical
lines together with a transverse invariant measure |dx|. These objects patch
together to yield a measured vertical foliation F(q) on X . The corresponding
horizontal foliation is F(−q).

Intrinsically, the tangent space to the vertical F(q) is given by the vectors v ∈
TX such that q(v, v) < 0. If q = ω2 happens to be the square of a holomorphic
1-form, then F(q) is defined by the closed harmonic form ρ = Re(ω). That is,
TF = Ker ρ and |

∫
I ρ| = µ(I) gives the transverse measure.

In this section we discuss the dynamics of the foliation F . In other words, we
discuss the asymptotic distribution of very long leaves of F . The usual ergodic
theorems apply to the undirected ‘flow’ along the leaves of F . Indeed, after
passing to a branched double cover of (X, q) we can assume q = ω2, in which
case the leaves are coherently oriented by Imω and we obtain a flow in the usual
sense.

See [MT] for more details.

Cylinders and saddle connections. A saddle connection is a leaf of F joining
a pair of its zeros. A cylinder is an open annulus C ⊂ X foliated by closed leaves
of F . So long as X is not a torus, it carries a canonical collection of disjoint
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maximal cylinders Ci whose boundaries are unions of saddle connections. The
locus

⋃
Ci coincides with the union of the (smooth) closed leaves of F .

The foliation F is aperiodic if it has no cylinders. It is minimal if every leaf
disjoint from the zeros of q is dense.

Interval exchange. The first return map f : I → I to any transversal arc
to the vertical foliation F (often taken to be an interval along the horizontal
foliation) is an interval exchange transformation: there is a partition I =

⋃
Ii

into disjoint subintervals such that f(x) = x + ti on Ii.
Here the metric |q| is used to identify I with an interval in R. The discon-

tinuities of f come from the zeros of q and the endpoints of I. Note that there
are only finitely many vertical arcs the start on I and terminate on a zero of q
without meeting any other zeros en route. It is useful to choose a convention
for continuing the flow past such points, e.g. by always turning to the right, to
make f well-defined even at the endpoints of the intervals Ii.

The map f is aperiodic if it has no periodic points, and minimal if every
orbit is dense. A transversal is full if it meets every leaf of F ; in this case it
inherits aperiodicity and minimality from F .

Invariant measures. By definition, f preserves Lebesgue measure dx|I. It
may however have other invariant measures ν. These correspond to other trans-
verse invariant measures for F . If ν has full support and no atoms, we can inte-
grate it to obtain a topological conjugacy from f to another interval exchange
g, such that nu becomes dx.

Lack of mixing.

Theorem 4.26 An interval exchange is never mixing.

Proof. Let f : I → I be an interval exchange with n subintervals. We may
assume f is aperiodic, otherwise it is clearly not mixing.

Let J ⊂ I be a subinterval; then the first return map gives an induced
interval exchange fni : Ji → J ,

⋃
Ji = J . Since the discontinuities of the

first return map come from the endpoints of I and the discontinuities of f , the
induced map has at most n + 2 subintervals.

Note that I is partitioned into intervals of the form Jm
i = fm(Ji).

Repeat the process by taking the first return map to each Ji. The result is
an interval exchange fnij : Jij → Ji, where again j takes on at most (n + 2)
values.

Now the key point is that we have

T nij (Jm
ij ) ⊂ Jm

i ,

which implies

Jm
i ⊂

⋃
T−nij (Jm

i ).

Note that there are at most (n+2) terms on the right. Since preimages respect
set operations, if A is any set that is a union of interval of the form Jm

i , we have

A ⊂
⋃

T−nij (A).
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But this implies
µ(A ∩ T−nij(A)) > µ(A)/(n + 2)2 (4.2)

for some ij.
Now let B ⊂ I be an interval of length ε. Then if we have mixing, there is

an N such that µ(B ∩ T−n(B)) ≈ ε2 : µ(B)/(n + 2)2 for all n > N . Choose
J such that all nij > N , and so that the union A of the intervals Jm

i ⊂ B has
measure at least ε/2. Then we obtain a contradiction to the frequent return
guaranteed by (4.2).

Corollary 4.27 The geodesic flow for (X, q), even restricted to geodesics of a
fixed slope, is never mixing.

Theorem 4.28 An aperiodic interval exchange f : I → I with n subintervals
has at most n ergodic invariant probability measures.

Proof. An invariant measure µ is determined by µ(Ii), and the ergodic invariant
measures map to linearly independent vectors νj(Ii) in Rn.

4.15 Unique ergodocitiy for quadratic differentials

In this section we will establish:

Theorem 4.29 (Masur) Given q ∈ Q(X), suppose the Teichmüller ray from
X to [F(q)] ∈ PMLg is recurrent when projected to Mg. Then F(q) is uniquely
ergodic.

Pseudo-Anosov case. Let ψ : X → X be a pseudo-Anosov diffeomorphism,
adapted to the quadratic differential q. Let λ > 1 be its expansion factor, so
the the leaves of F = F(q) are contracted by λ under ψ. We begin by showing:

Theorem 4.30 The vertical invariant foliation F for a pseudo-Anosov trans-
formation is uniquely ergodic.

Invariant measures. Let ν1, . . . , νn be the ergodic invariant probability mea-
sures for F . These are measures on X , invariant under parallel transport along
leaves, such that for νi-almost every x ∈ X and every φ ∈ C(X) we have

1

L

∫
φ(x)|dq| →

∫

X
φνi (4.3)

as |L|→∞. Here L is any segment of a leaf of F with x ∈ L.
Note that we can write the Lebesgue measure |q| =

∑
aiνi for some ai ≥ 0.

We will exploit the property that |q| is invariant under ψ; note that we do not
know, a priori, if this is true for any individual νi.
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Let Ei ⊂ X be the set of points x where (4.3) holds. We say such points
are ‘generic’ for νi. Note that E =

⋃
Ei has full Lebesgue measure, and the

Ei ∩ Ej = ∅ if i -= j.

Renormalization. The next idea is to use ψ to renormalize the geodesic flow
along the leaves of F . The point is that the behavior of a long segment L
can be related to the behavior of the shorter segment ψn(L), which satisfies
|ψn(L)| = λ−nL.

A rectangle R ⊂ (X, |q|) is a closed region isometric to a Euclidean rectangle,
bounded by segments of the vertical and horizontal foliations of q. Note that
every point of X (including the zeros of q) lies in at least one rectangle, and
that any two points can be joined by a chain of rectangles.

Lemma 4.31 Given x1, x2 ∈ E, suppose there is a sequence N ⊂ N such that
ψn(xi)→ yi as n→∞ in N , y1, y2 lie in a rectangle R, and ψn(xi) ∈ R for all
n7 0 in N . Then x1 and x2 are generic for the same measure νj.

Proof. Let Si be the leaf of F running the length of R and passing through yi.
Then for n ∈ N , the parallel leaves Ln(i) = ψ−n(Si) passing through xi have
length < λn and are separated by O(λ−n) in the |q|-metric. Thus the averges
in (4.3) for L = Ln(i) converge to the same value as n→∞, and therefore the
ergodic measures for x1 and x2 are the same.

Lemma 4.32 Given a sequence N ⊂ N and a nonempty open set U ⊂ X, there
is an x ∈

⋃
Ei and a further subsequence N ′ ⊂ N along which ψn(x)→ y ∈ U .

Proof. Let K ⊂ U be a compact set of positive measure, and let Kn = ψ−n(K).
Then since ψ is measure preserving, the sum over n ∈ N of the |q|-measure of
Kn diverges, and thus (by Borel-Cantelli) there is a set of A ⊂ E of positive
Lebesgue measure consisting of points with ψn(x) ∈ K for infinitely many
n ∈ A. Passing to a convergent subsequence yields the lemma.

Proof of Theorem 4.29. Let u1 and u2 be generic for a pair of ergodic
invariant measures ν1 and ν2. We will show ν1 = ν2.

First, pass to a subsequence such that ψn(ui) → vi ∈ X . Next, choose a
chain of overlapping rectangles connecting v1 to v2. In case v1 or v2 is a zero of
q, choose the initial or terminal rectangle so it also contains ψn(ui) for infinitely
many n.

Let U1, . . . , Um be open sets in the overlap of adjacent rectangles. Then by
the lemma above, we can find yj ∈ Uj and xj ∈ E such that ψn(xj)→ yj along
a further subsequence. By Lemma 4.31, v1 is generic for the same measure as
y1. Similarly yi and yi+1 are generic for the same measure, as are ym and v2.
Thus ν1 = ν2, and therefore F is uniquely ergodic.
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4.16 Hodge theory

Real multiplication in higher genus. [Mo], [Sch].

Theorem 4.33 Let V ⊂Mg be a Teichmüller curve generated by (X,ω), where
the trace field K of SL(X,ω) has degree g over Q. Then Jac(X) admits real
multiplication by K with ω as an eigenform.

Proof. We will use a basic fact about variations of Hodge structures: if σ =∑
σp,q is a flat section of a Hodge bundle (over a quasiprojective base such as

V ), then its components σp,q are also flat. (See e.g. Schmid, Invent. math.,
1973).

Let H → V be the Hodge bundle whose fiber over t is H1(Xt, Z) ⊗ C. Let
H0 be the fiber over a basepoint t = 0. Then under the action of π1(V ), the
space H0 decomposes into 2-dimensional irreducible subspaces

H0 = S1 ⊕ · · ·⊕ Sg,

where S1 is spanned by ω and ω. The full commutant of π1(V ) is the abelian
algebra Cg acting diagonally and preserving each Si.

Let P0 : H0 → H0 be projection onto Si. Since P0 commutes with the
action of π1(V ), it extends to a flat section P of the (weight zero) Hodge bundle
Hom(H, H). By Schmid’s theorem, the Hodge components P ij of P are also
flat. Thus P ij

0 = P |H0 commutes with π1(V ), and hence it is diagonal. But
P−1,1 maps H1,0 into H0,1, so it is ”off-diagonal”; for example, its square is
zero. Consequently P−1,1 = P 1,−1 = 0, and thus P = P 0,0. This implies
that P preserves H1,0, and therefore each subspace Si decomposes as a direct
sum S1,0

i ⊕ S0,1
i . Thus Jac(X0) admits real multiplication by the trace field of

SL(X,ω).

5 Dynamics of rational maps

This chapter develops the basic picture of the dynamics of a single rational map,
and the Teichmüller theory of deformations of its deformations.

5.1 Dynamical applications of the hyperbolic metric

All rational maps will be of degree d > 1.

Exceptional points. A set E ⊂ Ĉ is exceptional if E is finite and f−1(E) ⊂ E.
A single point z is exceptional if it belongs to an exceptional set; equivalently,
if its inverse orbit

⋃
f−n(z) is finite.

Theorem 5.1 Any rational map f has a maximal exceptional E, |E| ≤ 2 and
E ∩ J(f) = ∅.
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Proof. Consider any exceptional set E. Then f maps X = Ĉ−E into itself, so
χ(X) ≤ deg(f)χ(X) by Riemann-Hurwitz. Therefore χ(X) = 2 − |E| ≥ 0, and
|E| ≤ 2. Thus the number of exceptional points is at most two, and the union
of all exceptional points gives the maximal exceptional set.

Since every z ∈ Ĉ has d preimages counted with multiplicity, any z ∈ E is a
critical value, and therefore E consists of superattracting cycles. In particular
E is disjoint from the Julia set.

Since J(f) is totally invariant we have:

Corollary 5.2 The Julia set is infinite.

Examples. The maximal exceptional set is E = {0,∞} for f(z) = zd, and
E = {∞} if f(z) is a polynomial not conjugate to zd. These rational maps
represent all the cases where E -= ∅ (up to conjugacy).

Attractors and critical points. We next use the Schwarz lemma to demon-
strate a close connection between critical points and attractors of f . In particu-
lar we shall see all but finitely many cycles of a rational map are repelling. (On
the other hand, it is known that smooth dynamical systems — even polynomial
maps in dimension two — can have infinitely many attracting cycles.)

Theorem 5.3 A rational map of degree d has 2d − 2 critical points, counted
with multiplicity.

Proof. (1) (Riemann-Hurwitz): Letting N be the number of branch points

counted with multiplicity. We have χ(Ĉ) = deg(f) · χ(Ĉ)−N , so N = 2d− 2.
(2) Write f(z) = P (z)/Q(z) with deg P = deg Q = d (after a generic conju-

gation). Then the critical points are zeros of PQ′ − P ′Q. The leading terms of
this polynomial cancel, resulting in a polynomial of degree 2d− 2.

(3) Let V be a holomorphic vector field on Ĉ; then V has 2 zeros and no
poles. Now consider f∗(V ): it has zeros at the 2d preimages of these zeros, and
poles at the critical points of f . Since the number of zeros minus the number
of poles of f∗(V ) is still two, we have 2 = 2d− |C(f)|.

Theorem 5.4 Every attracting periodic cycle of f attracts a critical point.

Proof 1. Let U ⊂ Ĉ be the open set of points attracted to a given cycle.
Since J(f) is infinite and disjoint from U , the set U is hyperbolic. If U contains
no critical point, then f : U → U is a covering map, hence an isometry for the
hyperbolic metric. But then |f ′|U = 1, contrary to the existence of an attracting
cycle.

Proof 2. For a superattracting cycle the result is immediate. Otherwise f acts
on the immediate basin U of the cycle by a proper local homeomorphism, hence
a covering map. Clearly U/f is a torus, so U is a covering space of a torus. But
then U is isomorphic to C or C∗, and these possibilities are easily ruled out.
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Corollary 5.5 The number of attracting cycles is at most 2 deg(f)− 2.

Example. A quadratic polynomial fc(z) = z2 + c has at most one attracting
cycle in the complex plane, and this cycle can be located by iterating fc on
z = 0.

Corollary 5.6 A rational map f of degree d has at most 4d− 4 non-repelling
cycles.

Proof. Consider the holomorphic family of maps ft(z) = (1 − t)f(z) + tzd,
t ∈ C. By transversality, any periodic point of multiplier λ -= 1 can be locally
labeled (near t = 0) by a holomorphic function pt, with fn

t (pt) = pt. In the case
of a multiple periodic point (multiplier 1), the same is true after making a base
change by t +→ tn.

Now consider the multiplier (fn)′(pt) = λt as t varies, and assume p0 is
indifferent. Since z +→ zd has no indifferent cycle, λt is nonconstant. The set of
directions t ∈ S1 such that |λεt| < 1 (and thus pt becomes an attractor for fεt)
has measure 1/2.

Applying the same reasoning the any collection of N indifferent cycles, we
conclude there is some direction t such that N/2 of them become attracting
for fεt. Under this perturbation, the attracting cycles for f0 remain attracting.
Since fεt has at most 2d− 2 attracting cycles, we find:

(attracting) + (indifferent)/2 ≤ 2d− 2,

so at most 4d− 4 cycles of f0 are not repelling.

Remarks. It is easy to construct maps of a fixed degree where the period of
one or more attracting cycles is very long. For example, there are cn → −2 such
that the critical point of fn(z) = z2 + cn has period n.

5.2 Basic properties of the Julia set.

Theorem 5.7 Let J(f) be the Julia set of a rational map. Then:

1. Repelling periodic points are dense in J(f).

2. The inverse orbit of every point in J(f) is dense in J(f).

3. More generally, the inverse orbit of z ∈ Ĉ accumulates on J(f) unless z
is exceptional.

4. If an open set U meets J(f), then J(f) ⊂ fn(U) for some n.

5. The Julia set is perfect: it has no isolated points.
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Proof. For (1), consider p ∈ J(f). By replacing p by a point in its inverse
orbit, we can assume p is neither a fixed-point nor a critical value of f . On any
small neighborhood U of p we can find maps gi : U → Ĉ with disjoint graphs,
i = 1, 2, 3, such that g1(z) = z, and f(gi(z)) = z for i = 2, 3.

If fn(z) = gi(z) for some n > 0 and z ∈ U , then either fn(z) = z or
fn+1(z) = z, and thus p is approximated by a periodic point. Otherwise the
sequence of functions

hn(z) =
fn(z)− g0(z)

fn(z)− g1(z)

(
g3(z)− g0(z)

g3(z)− g2(z)

)−1

= Mz ◦ fn

omits {0, 1,∞}, and is hence normal on U by Montel’s theorem. But then
〈fn|U〉 is normal, contradicting the definition of J(f).

This shows p is a limit of periodic points of f ; and all but 4d − 4 of these
are repelling. Once p is so approximated, so is any point in the forward orbit of
p, and thus J(f) is the closure of the repelling periodic points of f .

(2): For p ∈ J(f) consider any 3 points z1, z2, z3 in the inverse orbit of p.
Let U be an open set meeting J(f). Since 〈fn|U〉 is not a normal family, it
cannot omit all 3 values {z1, z2, z3}, and thus fn(z) = zi for some z ∈ U . Thus
the inverse orbit of p enters U .

The same argument applies to any point p with an infinite inverse orbit,
yielding (3).

(4): By (1), U contains a repelling periodic point, so after shrinking U and
replacing f with fn we can assume U ⊂ f(U). Then fn(U) is an increasing
sequence of open sets, and by (3) any non-exceptional point is eventually covered
by fn(U). Since the exceptional points do not belong to J(f), by compactness
we have J(f) ⊂ fn(U) for some finite n.

(5): If J(f) has an isolated point, then by (4) J(f) is a finite set. Since
f−1(J(f)) = J(f), the Julia set must consist of exceptional points, which implies
J(f) = ∅. But deg(fn)→∞, so the iterates of f cannot form a normal family
on the whole sphere.

Corollary 5.8 The Julia set is the smallest totally invariant closed set on the
sphere such that |J(f)| ≥ 3.

Remarks.

1. To apply the Schwarz lemma to a rational map, we want to find a hyper-
bolic open set Ω ⊂ Ĉ such that f(Ω) ⊂ Ω. Then F = Ĉ − Ω is a closed,
backward invariant set with |F | ≥ 3. By Corollary 5.8, the Fatou set Ω(f)
is the largest hyperbolic open set which is mapped into itself.

2. The argument to prove (1) in Theorem 5.7 illustrates a useful generaliza-
tion of Montel’s theorem: for any bundle of hyperbolic Riemann surfaces
E → U , the space of all holomorphic sections s : U → E is normal. In the
case at hand, the bundle has fibers Ez = Ĉ− {g1(z), g2(z), g3(z)}.
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3. The density of periodic cycles in the ‘chaotic locus’ is not known for a
generic C2 diffeomorphism of a manifold. Thus the density of periodic
cycles in J(f) is one of many indications that one-dimensional complex
dynamical systems are better behaved than higher-dimensional smooth
dynamical systems. (For C1 diffeomorphisms, the generic density of peri-
odic cycles in the non-wandering set is known by Pugh’s ‘closing lemma’
[Pu]).

4. Property (4) is sometimes called LEO (locally eventually onto).

5.3 Univalent maps

We now introduce another very useful tool. Let S be the set of all univalent
analytic maps

f : ∆→ C,

normalized so that f(0) = 0 and f ′(0) = 1. We give S the topology of uniform
convergence on compact sets.

Theorem 5.9 (Koebe distortion theorem) The space of normalized univa-
lent maps S is compact.

Proof. By the Schwarz Lemma, f(∆) cannot contain B(0, r) for any r > 1. So
given a sequence fn ∈ S, we can find a sequence of points an, bn -∈ fn(∆) with
|an| = 1 and |bn| = 2. Letting An(z) = (z − an)/(bn − an), we see

An ◦ fn : ∆→ C− {0, 1}.

By Montel’s theorem, we can pass to a subsequence converging on the disk.
Along a further subsequence we have an → a and bn → b with a -= b, so
An → A. Then An ◦ fn → A ◦ f for some f ∈ S, and thus fn → f .

Corollary 5.10 Writing f(z) =
∑∞

1 anzn, we have |an| ≤ Cn for universal
constants Cn.

In fact we can take Cn = n; this is the Bieberbach conjecture, proved by de-
Branges.

Corollary 5.11 There is an r > 0 such that f(∆) ⊃ B(0, r) for any f ∈ S.

In fact we can take r = 1/4; this is the Koebe 1/4 theorem.

Corollary 5.12 If f : B(z, r) → C is univalent on a ball, then f has bounded
distortion on the smaller ball B(z, r/2). That is, all ratios of distance are dis-
torted by a bounded factor; f is a quasi-similarity.

Keep in mind that the Riemann mapping theorem allows a conformal map
to send ∆ to an arbitrarily wild region. The point of the Corollary is that a
small baller has a controlled image. The yolk of the egg stays good.
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5.4 Periodic points

Before analyzing the global dynamics of a rational map, we discuss the local
dynamics of a holomorphic map near one of its fixed-points. Let f be an analytic
mapping fixing z = 0, with multiplier λ = f ′(0). We distinguish several cases,
depending on the multiplier.

Attracting case: 0 < |λ| < 1.

Theorem 5.13 (Linearization) There is a holomorphic chart φ : (U, 0) →
(C, 0) such f(w) = λw where w = φ(z).

Proof 1. Let B(0, s) be a small enough ball that |f(z)| ≤ r|z| < |z| for all
z ∈ B(0, s) − {0}. Then |zn| = |fn(z)| = O(rn). Defining φn(z) = λ−nfn(z),
we have

φn+1(z)

φn(z)
=

λ−1f(zn)

zn
=

zn + O(z2
n)

zn
= 1 + O(rn).

Since
∑

rn < ∞, φn(z) converges uniformly to a nonzero holomorphic map
φ : (U, 0)→ (C, 0). Since φ′(0) = limφ′

n(0) = 1, the map φ is a chart on a small
enough neighborhood of z = 0.

Proof 2. Consider the annulus A = B(0, s) − f(B(0, s)) for s small. Then
X = A/f is a Riemann surface, indeed a complex torus. The subgroup of
π1(X) corresponding to f determines a cyclic covering space of X isomorphic
to C∗. Uniformization of this covering space gives the linearizing map.

Superattracting case: λ = 0.

Theorem 5.14 Suppose f(z) = zd +O(zd+1), d > 1. Then there is a holomor-
phic chart φ : (U, 0)→ (C, 0) such f(w) = wd, where w = φ(z).

Proof. For z small enough we have

|zn| = |fn(z)| ≤ 1

2dn .

Let φn(z) = (fn(z))1/dn

, where the dn-th root is chosen so that φ′
n(0) = 1.

Then

φn+1(z)

φn(z)
=

(
f(zn)1/d

zn

)1/dn

= (1 + O(zn))1/dn

= 1 + O(zn) = 1 + O(2−dn

).

Since
∑

2−dn

converges (very rapidly!), φn converges uniformly to the desired
chart φ.
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Parabolic case: λ = 1. Assuming f is not the identity, we can make a linear
change of coordinates so that

f(z) = z + zp+1 + O(zp+2),

p ≥ 1. The behavior of f is controlled by the leading term in f(z)− z.
Indeed, the dynamics of f is nicely modeled by the holomorphic vector field

V = zp+1 ∂

∂z
·

For p = 1, V is an infinitesimal parabolic Möbius transformation, and its orbits
are circles tangent to the real axis at z = 0. Every orbit converges to z = 0,
although those near the real axis make a long excursion away from z = 0 before
returning to converge.

For p > 1, the picture is just a p-fold cover of the parabolic picture.

Theorem 5.15 (Leau-Fatou flower theorem) For p = 1, there is a petal U
tangent to the positive real axis such that f(U) ⊂ U and fn(z) → 0 uniformly
on compact subsets of U . The quotient Riemann surface U/f is isomorphic to
C∗.

For p > 1 there are p such petals, U1, . . . , Up, each invariant under f and
tangent to the lines arg(z) = 2πk/p, k = 1, 2, . . . , p. We have Ui/f ∼= C∗.

Figure 14. One and several petals

Proof. First suppose p = 1. The discussion is mostly easily carried out by
moving the fixed-point to infinity with the coordinate change w = −1/z. Then

f(w) = w + 1 + O(1/w),

from which we see fn(w) = w + n + O(log n) if Re w 7 0. It follows that the
basin of attraction of w =∞ contains the half-plane H = {w : Rew > R} for
some large R. By considering the action of f on the edges of the strip H−f(H),
we see that H/f ∼= C∗.

Now if Re w is less than R, we can still insure that the orbit of w enters H so
long as | Imw| is large enough and a gradual drift towards w = 0 coming from the
O(1/w) terms is controlled. If w = x+ iy, it will take approximately n = R− x

70



iterations to reach H , and the potential vertical drift is O(log n) = O(log(2+|x|),
so we set

U = {w = x + iy : x > R or |y| > C log(2 + |x|)}.

Then f(U) ⊂ U and fn(w) → ∞ in U as desired. Since the slope of the
boundary of U tends to zero as x → −∞, in the z-coordinate U is tangent to
the positive real axis.

The case of p > 1 is similar. It is useful to make the coordinate change
w = −1/zp; then f is a multivalued map, spread out over the w-plane, with the
form

f(w) = w + 1 + O(w−1/p).

Parabolic case: λq = 1. If the multiplier is a primitive qth root of unity, then
one can conjugate f to the form f(z) = λz + O(zq+1) by a holomorphic change
of coordinates. Thus f q(z) = z + O(zq+1) has at least q petals. Generically
there are exactly q, but in general there may be p = kq altogether. These petals
fall into k orbits under the action of f .

Corollary 5.16 Every cycle of parabolic petals contains a critical point of f .

Proof. Otherwise f : U → U is a covering map. But from the local picture we
see U/f ∼= C∗. Thus U ∼= C∗ or C, and neither of these spaces can embed in
the complement of the Julia set.

The snail lemma. For later use we record the following criterion for a fixed-
point to be parabolic.

Theorem 5.17 Let f have an indifferent fixed-point at z = 0, and suppose
there is a domain U ⊂ Ĉ with f(U) ⊂ U and fn(z)→ 0 uniformly on compact
subsets of U . Then f ′(0) = 1.

Intuitively, if f ′(0) -= 1, then U must wind around 0, like a snail shell;
then a short cross-cut for U forms a disk mapping properly into itself, showing
|f ′(0)| < 1.

Proof. We can assume f is univalent on ∆. Let B ⊂ U be a ball and let K ⊂ U
be a compact connected set containing B and f(B). Since fn → 0 uniformly on
K, we can assume fn(K) ⊂ ∆ for all n, and thus fn|K is univalent for all n.

Suppose the multiplier λ = f ′(0) -= 1. Then d(fn(K), 0) = O(diam fn(K)),
for otherwise fn(K) would not be big enough to join fn(B) to fn+1(B) ≈
λfn(B). By the Koebe distortion theorem, we also have d(fn(B), 0) = O(diam fn(B)).

Thus the visual size of fn(B) as seen from z = 0 is bounded below. But
then there is a universal N such that

〈λi(fn(B)) : i = 1, . . . , N〉
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forms a necklace encircling z = 0. Once fn(B) is close enough to zero, f(z) ≈
λz, and therefore

〈fn+i(B) : i = 1, . . .N〉
also encircles z = 0. The union of these balls is in U , so there is a loop L ⊂ U
encircling zero. Since fn|L→ 0 uniformly, the maximum principle implies that
fn → 0 uniformly on the disk enclosed by L. Therefore |f ′(0)| < 1, contrary to
our assumption of indifference.

Therefore f ′(0) = 1.

Irrationally indifferent case: λ = exp(2πiθ), θ ∈ R − Q.
First we remark that f may not be linearizable. This is not surprising since

a parabolic point is not linearizable (unless f has finite order), so a nearly
parabolic point should not be either. More concretely we have:

Theorem 5.18 There is a dense Gδ of multipliers λ ∈ S1 such that f(z) =
λz + z2 cannot be linearized near z = 0.

Proof. Note that

fn(z)− z = (λn − 1)z + a2z
2 + · · · + z2n

.

Thus the product of the nonzero roots of fn(z) = z is λn − 1, and therefore f
has a periodic point pn with

|pn| ≤ |λn − 1|1/2n

= rn.

The set of λ such that lim inf rn = 0 is a dense Gδ on S1 (containing the roots
of unity), and for any such λ there are periodic points pnk

→ 0, so f is not
linearizable.

Theorem 5.19 There is a full-measure set of multipliers λ ∈ S1 such that
f(z) = λz + z2 can be linearized near z = 0.

Proof. Let fλ = λz + z2, let Uλ = {z : fn
λ (z) → 0}. For λ ∈ ∆∗, let

φλ : Uλ → C be the linearizing map, normalized so that φ′
λ(0) = 1. Finally,

noting that the critical value of fλ is at −λ2/2, set

Rλ = φλ(−λ2/2).

Next note that φ−1
λ admits a univalent branch defined on B(0, |Rλ|). By the

Koebe 1/4 theorem, this means Uλ ⊃ B(0, |Rλ|/4). But Uλ is bounded, so Rλ
is a bounded analytic function on ∆∗ (and indeed on ∆, since the singularity
at z = 0 is removable).

By a general result, from complex analysis, Rλ has nonzero radial limits at
almost every λ ∈ S1. Thus for almost every λ ∈ S1, there is a ball of positive
radius B(0, |Rλ|/4) contained in the Fatou set of fλ.

Thus the component U of Ω(fλ) containing z = 0 is a nonempty disk, and
f : U → U satisfies |f ′(0)| = 1. By the Schwarz lemma, f is an isometry in
the hyperbolic metric, the Riemann mapping (U, 0)→ (∆, 0) conjugates f to a
rotation.

72



The above argument is from [Y, §II.2].

Conditions of Diophantus and Brjuno. Here is a more precise statement
about linearizing irrational multipliers. An irrational number θ is Diophantine
if there exist C, d > 0 such that

∣∣∣∣θ −
p

q

∣∣∣∣ >
C

qd

for all rationals p/q. Almost every number is Diophantine, and Siegel showed
any holomorphic germ of the form f(z) = e2πiθz + O(z2) with θ Diophantine is
linearizable.

It is known that the set of θ for which f(z) = e2πiθz + z2 is linearizable is
exactly those satisfying the Brjuno condition:

∑ log qn+1

qn
<∞,

where pn/qn are the continued fraction approximants of θ. See [Y] for details.

5.5 Classification of periodic regions

Theorem 5.20 (Classification of stable regions) A component Ω0 of pe-
riod p in the Fatou set of a rational map f is of exactly one of the following five
types:

1. An attractive basin: there is a point x0 in Ω0, fixed by fp, with 0 <
|(fp)′(x0)| < 1, attracting all points of Ω0 under iteration of fp.

2. A superattractive basin: as above, but x0 is a critical point of fp, so
(fp)′(x0) = 0.

3. A parabolic basin: there is a point x0 in ∂Ω0 with (fp)′(x0) = 1, attracting
all points of Ω0.

4. A Siegel disk: Ω0 is conformally isomorphic to the unit disk, and fp acts
by an irrational rotation.

5. A Herman ring: Ω0 is isomorphic to an annulus, and fp acts again by an
irrational rotation.

Proof. Replacing f with fp, we can assume f maps Ω0 to itself. Then f is
non-expanding for the hyperbolic metric on Ω0 (which we denote by d(·)); that
is, d(fx, fy) ≤ d(x, y) for all x, y ∈ Ω0.

Consider an arbitrary z ∈ Ω0 and its forward orbit zn = fn(z). Then
d(zn+1, zn) ≤ d(z1, z0).

If zn →∞ (meaning the orbit leaves every compact set of Ω0), then dbC
(zn, zn+1)→

0, since the ratio of the spherical to hyperbolic metrics on Ω0 tends to zero at the
boundary. Thus the orbit accumulates on a connected set E ⊂ ∂Ω0 on which
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\text{superattractive basin}

\text{These have dynamically defined foliations}

\text{These have fundamental domains}

\text{Siegel disk}

\text{attractive basin} \text{parabolic basin}

\text{Herman ring}

Figure 15. The five types of stable regions.
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f(z) = z. Since f is not the identity map, E reduces to a single fixed-point
E = {x0}. Since x0 ∈ J(f), it is an indifferent fixed-point, and f ′(x0) = 1 by
the Snail Lemma (Theorem 5.17).

Now suppose zn is recurrent: that is, the orbit returns infinitely often to a
fixed compact set K ⊂ Ω0. We distinguish two cases, depending on whether or
not f : Ω0 → Ω0 is a covering map.

If f is not a covering map, then |f ′| < c < 1 on K (in the hyperbolic metric);
therefore d(zn, zn+1)→ 0, and any accumulation point x0 of zn in K is a fixed-
point of f . By contraction, this fixed-point is unique, |f ′(x0)| < 1, and we have
the attracting or superattracting case.

If f is a covering map, then by recurrence there are self-coverings (of the
form fn) arbitrarily close to the identity (on compact sets). More precisely, if
v0 is a unit tangent vector at z0, vn = Dfn(v0), and vk ≈ vk+n, then fn ≈ id
on a large ball about zk.

If Ω0 carries a nontrivial closed hyperbolic geodesic γ, then fn(γ) = γ for
arbitrarily large n. Since fn -= id, we conclude that Ω0 is an annulus around γ
and f is an irrational rotation. This is the case of a Herman ring.

Finally if Ω0 carries no closed geodesics, then it must be a disk (it cannot
be a punctured disk since the Julia set is perfect). Then f |Ω0 is an irrational
rotation; any other isometry of infinite order would fail to be recurrent. This is
the case of a Siegel disk.

Cf. [McS].

5.6 The postcritical set

Although the Schwarz lemma gives contraction in the hyperbolic metric, it can
also be used to reveal expanding properties of rational maps.

Definition. The post-critical set is given by

P (f) =
∞⋃

n=1

⋃

f ′(c)=0

fn(c).

Thus P (f) is the smallest forward-invariant closed set containing the critical
values of f .

Once easily checks P (f) = P (fn) for any n ≥ 1, and |P (f)| ≤ 2 iff f(z) is
conjugate to z +→ zd.

Setting the (easily analyzed) cases where f(z) = zd, we can assume |P (f)| ≥
3 and thus its complement Ĉ− P (f) is hyperbolic (in the sense that each com-
ponent is hyperbolic).

Since f(P (f)) ⊂ P (f), the pre-image of the post-critical set contains itself.
Thus we obtain the diagram:

Ĉ− f−1P (f)
ι−−−−→ Ĉ− P (f)

f

-

Ĉ− P (f)
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where along the vertical arrow f is a covering map, and along the horizontal
arrow ι is an inclusion. Imposing the hyperbolic metric on Ĉ−P (f), we conclude
that the vertical arrow is an isometry, while the inclusion ι is non-expanding.
Thus the composition

f ◦ ι−1 : Ĉ− P (f)→ Ĉ− P (f)

is a non-expanding where it is defined.

Theorem 5.21 For any z ∈ J(f), we have ‖(fn)′(z)‖ → ∞ in the hyperbolic
metric on Ĉ− P (f).

(If fn(z) happens to land in P (f), we set ‖(fn)′(z)‖ =∞.)

Proof. Let Xn = Ĉ− f−n(P (f)) and

ιn : Xn ↪→ X0

the inclusion. Since |P (f)| ≥ 3, f−n(P (f)) accumulates on the Julia set, and
thus the hyperbolic metric on Xn at z ∈ J(f) tends to infinity. In other words,
‖ι′n(z)‖ → 0 with respect to the hyperbolic metrics on domain and range. Since
fn : Xn → X0 is a covering map, we have ‖(fn)′(z)‖ → ∞ with respect to the
hyperbolic metric on X0.

Every periodic component of the Fatou set is related to the post-critical set.
More precisely:

Theorem 5.22 The post-critical set P (f) contains every attracting, superat-
tracting and parabolic cycle, every indifferent point in the Julia set, and the full
boundary of every Herman ring and Siegel disk.

Proof. Assume |P (f)| > 2, since the theorem clearly holds for f(z) = zd.
Consider any ball B = B(w, r) disjoint from P (f). Then all branches of

f−n|B are well-defined and univalent on B. Moreover, these inverse branches
form a normal family, since they omit P (f) from their range.

If w is a periodic point, of period p, then by normality its multiplier satisfies
|λ| ≥ 1. If |λ| = 1, then by univalence the forward iterates of f are also normal
near w, so w is the center of a Siegel disk. Summing up, any periodic point
outside P (f) must be either repelling or the center of a Siegel disk.

Similarly, if w is in the boundary of a Siegel disk or Herman ring, we can
choose a subsequence of f−n|B that converges to the identity on an open subset
of B (namely its intersection with the rotation domain). Thus along a subse-
quence, f−n converges to the identity on all of B. Thus B contains no repelling
cycles, so B is disjoint from the Julia set, a contradiction.
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5.7 Expanding rational maps

Definition. A rational map f(z) is expanding if for some n, the derivative of
fn in the spherical metric satisfies |(fn)′(z)|σ > 1 for all z ∈ J(f).

Theorem 5.23 The following are equivalent:

1. The rational map f is expanding.

2. P (f) ∩ J(f) = ∅.

3. The forward orbit of every critical point tends to an attracting cycle.

4. There are no critical points in the Julia set, and every point in the Fatou
set converges to an attracting cycle.

Here ‘attracting’ includes ‘superattracting’.

Proof. The maps f(z) = zd clearly satisfy all the above conditions, so we may
assume |P (f)| ≥ 3.

(1) =⇒ (4). By expansion, there is an r > 0 such that for any z ∈ Ω(f),
supn d(fn(z), J(f)) > r. Since only finitely many components of Ω(f) can con-
tain a ball of radius r, we see the orbit of z eventually lands in a periodic com-
ponent. Expansion rules out Siegel disks, Herman rings and parabolic basins,
so fn(z) must tend to an attracting cycle.

(4) =⇒ (3) =⇒ (2). These implications are immediate.

(2) =⇒ (1). By Theorem 5.21, under iteration f expands the hyperbolic
metric on Ĉ−P (f) at any point of J(f). If P (f)∩J(f) is empty, then by com-
pactness of J(f), some fixed iterate fn strictly expands the hyperbolic metric
everywhere on J(f). A further iterate fnk then expands the spherical metric,
since the spherical and hyperbolic metrics have a bounded ratio of J(f).

Theorem 5.24 The Julia set of an expanding map is quasi-self-similar, and
H. dimJ(f) < 2.

Proof. By expansion and the distortion lemma for univalent maps, any small
piece of J(f) can be blown up to definite size with bounded distortion. Thus
J(f) is quasi-self-similar, and there is no ball in which J(f) is very dense. It
follows that H. dim J(f) < 2.

The preceding two results, taken together, completely determine the behav-
ior of a typical point z ∈ Ĉ under the iteration of an expanding map f . For
example we can now see:

Corollary 5.25 Suppose f(z) = zd + c has an attracting cycle C ⊂ C. Then

for any z ∈ Ĉ, either:

1. fn(z)→∞; or
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2. d(fn(z), C)→ 0; or

3. z ∈ J(f), a compact set of Hausdorff dimension < 2.

Proof. Since f has only two critical points, it has exactly two attracting cycles,
C and ∞. These cycles must each attract a critical point, so f is expanding.
Therefore every point in Ω(f) tends to C or ∞, and the remaining points J(f)
have dimension less than two.

5.8 Density of expanding dynamics

We can now state a central conjecture:

Conjecture 5.26 For each d ≥ 2, the expanding maps are open and dense in
Ratd and in Polyd, the spaces of rational maps and polynomials of degree d.

Clearly the expanding maps form an open set, but their density is still un-
known, even in the case of Poly2 (quadratic polynomials).

Recall from §1.3 that in the early history of smooth dynamical systems, it
was suspected that Axiom A systems (an analogue of expanding) should be
open and dense in Diff(Mn). This was soon proved to be false for all manifolds
of dimension n ≥ 3, and finally even for all surfaces.

For n = 1 Axiom A dynamics is trivially seen to be dense. There are
good reasons (both theoretical and experimental) to think that expanding maps
may be dense for conformal dynamical systems. The most naive reason is that
polynomials and rational maps are 1-dimensional dynamical systems over C.

5.9 Quasiconformal maps and vector fields

We now introduce a new technique.
Let f : U → V be a diffeomorphism between regions in C. Recall the

differential operators

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

These operators behave like differentiation with respect to the independent vari-
ables (z, z). For example,

f(z + t) = f(z) + t
∂f

∂z
+ t

∂f

∂z
+ O(t2).

The map f is conformal iff ∂f/∂z = 0.
We say f is quasiconformal if for some 0 < k < 1, we have

∣∣∣∣
∂f

∂z

∣∣∣∣ ≤ k

∣∣∣∣
∂f

∂z

∣∣∣∣ .
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Noting that for |t| = 1,

|fz|− |fz| ≤ |tfz + tfz| ≤ |fz| + |fz|,

we see Df maps circles to ellipses of oblateness bounded by

K =
1 + k

1− k
≥ 1;

we say f is K-quasiconformal and note that 1-quasiconformal mappings are
conformal.

The Jacobian determinant is given by the product of the maximum and
minimum stretchings:

detDf = (|fz| + |fz|)(|fz|− |fz|) = |fz|2 − |fz|2.

We also have |fx|2, |fy|2 ≤ K detDf . Thus for any region U ,

area(f(U)) =

∫

U
detDf |dz|2 ≥ 1

K

∫

U

∣∣∣∣
∂f

∂x

∣∣∣∣
2

|dz|2,

and similarly for ∂f/∂y.
This suggest the more general definition: a homeomorphism f : U → V is

K-quasiconformal iff f has distributional first derivatives fx and fy (or fz and
fz) in L2, and Df(z) is K-quasiconformal for almost every z.

The distortion of a general quasiconformal map is measured by the complex
dilatation

µ = µ(z)
dz

dz
=

∂f

∂f
.

This Beltrami differential µ is a measurable (−1, 1)-form, so its absolute value
is natural, and we have

‖µ‖∞ ≤ k =
K − 1

K + 1
< 1.

The space of complex structures. Here is a more intrinsic discussion of the
Beltrami differential. For any Riemann surface X , we let M(X) be the space of
L∞ Beltrami differentials, equipped with the sup-norm. We claim the unit ball
in M(X) is naturally identified with the space of complex structures on X at a
bounded distance form the given structure.

To see this, recall that the space of conformal structures on a 2-dimensional
real vector space V is SL(V )/ SO(V ) ∼= H. Thus the space of complex structures
on a surface S is naturally a bundle of hyperbolic disks CS = SL(TS)/ SO(TS).

On a Riemann surface X , this bundle comes equipped with a section s, so
we have a bundle of pointed hyperbolic disks. The associated bundle of tangent
spaces, TsCX , is naturally isomorphic to the Beltrami line bundle T−1,1X .
Then CX is naturally realized as the space of unit disks in the Beltrami line
bundle, and a Beltrami differential with |µ| < 1 is simply a measurable section
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of this bundle of unit disks, at a bounded hyperbolic distance from the zero
section.

The Beltrami differential as a connection. A complex structure is the
same as a ∂-operator on functions, and we can also associate to µ the operator

∂µ = ∂ − µ∂

to specify the Riemann surface (X, µ).

Complex structures and self-adjoint maps. Alternatively, given a pair of
a complex structures J1, J2 on V , there is a unique map A : V → V such that

(i) A is positive with respect to J1 (i.e. A has a set of positive eigenvectors,
orthogonal with respect to J1);

(ii) A∗(J2) = J1 (i.e. J1 = A−1J2A); and

(iii) det(A) = 1.

Thus we can identify C(V ) with the space P (V, J1) ⊂ SL(V ) of positive endo-
morphisms of determinant one.

Now consider the special case where V = C with its standard conformal
structure. Then a R-linear map A : C→ C given by

A(z) = az + bz

is self-adjoint iff a ∈ R. When self-adjoint, its eigenvalues are a± |b|. Thus A is
positive iff we have a ∈ R and a > |b|.

Now return to the setting of a Riemann surface X . A Beltrami differential
µ ∈ T−1,1

p X with |µ| < 1 determines a positive map A : TpX → TpX by

A(v) =
1 + µ(v)

1− |µ|2 · v.

This map A ∈ P (TpX, Jp) corresponds canonically to the complex structure
determined by µ. For example, if µ = a dz/dz on C, then under the identification
TpC = C we have µ(ξ) = aξ/ξ and

A(ξ) =
ξ + aξ

1− |a|2 ·

When a is real, the eigendirection of A are along the real and imaginary axes.
In general, they correspond to the lines along which µ(v) > 0 and µ(v) < 0.

Note: if |µ(p)| = 1, the unnormalized map A(v) = (1 + µ(v)) · v has rank
one, so its kernel determines a real line Lp ⊂ TpX .

Theorem 5.27 (Measurable Riemann mapping theorem) For any µ ∈
M(Ĉ) with ‖µ‖∞ < 1, there is a unique quasiconformal homeomorphism f :
Ĉ→ Ĉ such that fz = µfz and f fixes {0, 1,∞}.

Moreover, the mapping ft(z) with dilatation tµ, t ∈ ∆, varies holomorphi-
cally with respect to t.
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The first statement is due to Morrey; the second is due to Ahlfors and
Bers. Bers also introduced the use of the Beltrami equation in the theory of
deformations of Kleinian groups.

Examples.

1. For |α| < 1 let

f(z) =

{
z + αz, |z| ≤ 1,

z + α/z otherwise.

Then fz/fz = α on the unit disk and zero elsewhere. The mapping f is
K-quasiconformal with K = (1 + |α|)/(1− |α|).

2. For 1 > α > 0 let f(z) = z|z|α−1. In polar coordinates we have f(reiθ) =
rαeiθ.

Writing f(z) = z(α+1)/2z(α−1)/2, we can easily compute

µ =
fz

fz
=

(α− 1)

(α + 1)

z

z
.

Thus f is K-quasiconformal with K = 1/α.

Note that f is only α-Hölder continuous at the origin. It is a general fact
that a K-quasiconformal map is 1/K-Hölder continuous.

Distortion of balls. An alternative definition of K-quasiconformal mappings
f is that

H(z) = lim sup
r→0

maxS1(z,r) |f(z)− f(w)|
minS1(z,r) |f(z)− f(w)| ≤ K

for almost every z. Thus roughly speaking, the ratio of inradius to outradius of
the image of a ball is bounded by K.

This sharp bound on distortion of balls holds only a.e., and only at a micro-
scopic level. For example, the K-quasiconformal map f(reiθ) = rKeiθ sends the
ball B(1, 1) to a region U containing [0, 2K ]. The ratio of inradius to outradius
of U at z = 1 is about 2K 7 K when K is large.

The distortion of macroscopic balls under f is bounded in terms of K(f);
it’s just that the best bound is not K.

Vector fields. A vector field v(z)∂/∂z is quasiconformal if its Beltrami dif-
ferential µ = ∂v is in L∞ as a distribution. A quasiconformal vector field is
continuous; in fact v ∈ C1−ε for any ε > 0.

For many purposes we can get by with the infinitesimal form of the Measur-
able Riemann Mapping Theorem.

Theorem 5.28 (Infinitesimal version) For any µ ∈ M(Ĉ), there is a con-
tinuous vector field v on the sphere such that ∂v = µ.
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For the proof we recall that 1/(πz) is a fundamental solution to the ∂-
equation; that is, (1/z)z = πδ, a multiple of the δ-function at z = 0.

To see this, consider any f ∈ C∞
0 (C). In terms of the pairing between

smooth functions and distributions, we have

〈(1/z)z, f〉 =

∫

C

f(z)
∂

∂z

1

z
|dz|2 = −

∫
1

z

∂f

∂z
|dz|2

=
1

2i

∫
1

z

∂f

∂z
dz ∧ dz =

1

2i

∫
dz

z
∧ ∂f =

−1

2i

∫
d

(
f(z) dz

z

)

= lim
r→0

1

2i

∫

S1(r)
f(z)

dz

z
=

1

2i
2πif(0) = πf(0) = 〈πδ, f〉,

and thus (1/z)z = −πδ.

Proof of Theorem 5.28. It suffices to handle the case where µ is compactly
supported in C, since up to the action of Aut(C) any Beltrami differential is a
sum of two of this form.

To prove the theorem for compactly supported µ, just let v(z) be the con-
volution of µ with the fundamental solution −1/(πz) the ∂ equation.

Since 1/z is in L1 on compact sets, it is easy to see directly that v is contin-
uous. In fact v is C1−ε for any ε > 0.

Examples. Given complex numbers (a1, . . . , an), let

µ(z) =






n∑

1

kakzk−1, |z| ≤ 1,

0 otherwise.

Then ∂v = µ where

v =






n∑

1

akzk, |z| ≤ 1,

n∑

1

ak
1

zk
|z| > 1.

Trivial deformations. A Beltrami differential µ ∈ M(∆) is trivial if there is
a solution to ∂v = µ such that v = 0 on S1.

Using the preceding examples we can see:

Proposition 5.29 There exists an infinite-dimensional space of compactly sup-
ported Beltrami differentials V ⊂M(∆) such that µ ∈ V is trivial iff µ = 0.

Proof. Let V be the span of 〈zkdz/dz : k ≥ 0〉. Suppose µ ∈ V is trivial;
that is, there is a solution to ∂w = µ with w = 0 on S1. Let v be the solution
to ∂v = µ given in the example above. Then ∂(v − w) = 0 and thus v − w is
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holomorphic on the disk. Since w = 0 on S1, we see v|S1 admits a holomorphic
extension to the unit disk. But v|S1 is a polynomial in negative powers of z, so
we conclude v = 0. Therefore µ = 0.

To obtain compact support, restrict the elements of V to the ball B(0, 1/2).
If ∂v = µ ∈ V , then v = 0 on |z| = 1 and so v = 0 on |z| = 1/2, since v is
holomorphic on 1/2 < |z| < 1. Then µ = 0 by the argument above.

For applications we need to recognize triviality from the behavior of a solu-
tion to ∂v = µ on the sphere. This recognition is provided by:

Theorem 5.30 Let v be a quasiconformal vector field on Ĉ, and let

π : ∆→ Ω ⊂ Ĉ

be a Riemann mapping to a disk. Suppose µ = ∂v|Ω is compactly supported,
and v = 0 on ∂Ω. Then π∗(v) = 0 on ∂∆, and π∗(µ) is trivial in M(∆).

Proof. Write v = v(z)(∂/∂z). Then v(z) is holomorphic outside a compact
subset of Ω, and v(z) = 0 on ∂Ω. Therefore

π∗(v) =
v(π(z))

π′(z)

∂

∂z
=

w(z)

π′(z)

∂

∂z

with w(z) holomorphic outside a compact subset of ∆, and w(z) → 0 on ∂∆.
By Schwarz reflection, w(z) is identically zero near the boundary of ∆, and thus
π∗(v) is a compactly supported vector field in ∆. Since ∂π∗(v) = π∗(µ), we find
µ is trivial in M(∆).

5.10 Deformations of rational maps

We now explain how f -invariant Beltrami differentials determine deformations
of f .

Conformal deformations. The space Ratd of all rational maps of degree d is a
complex manifold, isomorphic to an open subset of P2d+1. (If f(z) = P (z)/Q(z),
then deg(P ), deg(Q) ≤ d so we have 2d + 2 coefficients, giving homogeneous
coordinates on projective space. The condition that P and Q are relatively
prime, and at least one is of degree d, determines a Zariski open subset.)

Suppose a rational map f0(z) varies smoothly in a family ft(z). Then the
derivative w = dft(z)/dt is a vector field whose value w(z) lies in the tangent
space Tf(z)Ĉ. In other words, w is a holomorphic section of the bundle f∗(T Ĉ).
Thus

Tf Ratd = Γ(Ĉ, f∗(T Ĉ)).

The pullback of the tangent bundle has degree 2d, so it is isomorphic to
O(2d), and thus

dimTf Ratd = 2d + 1,
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consistent with our description of Ratd as an open subset of P2d+1.
A continuous vector field v on Ĉ gives a deformation of f iff

δv = Df(v)− v ◦ f

is a holomorphic section of f∗(T Ĉ). Since

∂δv = f∗µ− µ ◦ f,

we see v gives a deformation iff µ = ∂v is f -invariant, i.e. f∗µ = µ.
The deformation produced by v can be interpreted as dft/dt, where

ft = φ−1
t ◦ fφt

for a isotopy φt of Ĉ with dφt/dt = v. Thus deformations give directions in
which f is (formally) varying by conjugacy.

In particular, we should only expect the full tangent Tf Ratd to be spanned
by deformations when f is structurally stable.

A 3-dimensional subspace of deformations arises from the action of PSL2(C)
on Ratd by conjugation. Namely, if v ∈ sl2(C) is a holomorphic vector field on
the sphere, then δv is clearly holomorphic.

A trivial deformation is a vector field with δv = 0, which is equivalent to the
condition f∗(v) = v. If f(z) = z and f ′(z) -= 1, we can conclude that f(v) = 0.
Applying the same reasoning to the repelling periodic points, by continuity of
v we have:

Proposition 5.31 If a continuous vector field v gives a trivial deformation of
f , then v vanishes identically on the Julia set of f .

Corollary 5.32 If v is holomorphic and δv = 0 then v = 0.

Intuitively, the Proposition says that a small deformation commuting with f
fixes the repelling cycles, and so it is the identity on the Julia set. The Corollary
says the group Aut(f) of Möbius transformations commuting with f is discrete.
(In fact Aut(f) is finite.)

Because of this Corollary, sl2(C) maps injectively into the space of deforma-
tion of f . Taking the quotient, we obtain the ‘cohomology group’

H1(f, TĈ) = H0(Ĉ, f∗(TĈ))/sl2(C).

This group measures deformations modulo those that come from conformal con-
jugacy. It is naturally the tangent space at f to the variety Vd = Ratd / PSL2(C).
We have

dim H1(f, TĈ) = 2d− 2.

Quasiconformal deformations. Let M(Ĉ)f ⊂ M(Ĉ) be the space of f -
invariant Beltrami differentials, i.e. those satisfying f∗(µ) = µ. Each invariant
µ determines an almost-complex structure on Ĉ with respect to which f is
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holomorphic. Usually dimM(Ĉ)f = ∞. For example, if an open set U is
disjoint from its forward images, and fn|U is injective, then we can propagate
any µ ∈ M(U) to an f -invariant differential on the sphere, and thus M(U) ↪→
M(Ĉ)f .

We have a natural map

δ : M(Ĉ)f → H1(f, TĈ)

defined as follows: given an f -invariant µ, solve the equation ∂v = µ and then
map µ to the deformation δv. The solution to the ∂-equation is only well-defined
up to elements of sl2(C), which is why the image lies in the cohomology group.

To under δ, note that µ ∈ M(Ĉ)f determines a 1-parameter family of
quasiconformal maps φt with complex dilatation tµ. The rational maps ft =
φt ◦ f ◦ φ−1

t vary holomorphically with respect to t, and by differentiating at
t = 0 we obtain the deformation [dft/dt] = δµ.

5.11 No wandering domains

Using the fact that a rational map admits only a finite-dimensional space of
deformations, we can finally prove:

Theorem 5.33 (No wandering domains) Every component of the Fatou set
eventually cycles.

We begin with an observation due to N. Baker.

Lemma 5.34 If Ω(f) has a wandering domain, then it has a wandering disk.

Proof. Let U be a wandering component of Ω(f), and let Un = fn(U) be its
distinct forward images (each a component of Ω(f)). Since f has just finitely
many critical values, f : Un → Un+1 is a covering map, hence a hyperbolic
isometry, for all n7 0.

We claim Un is a disk for all n 7 0. Otherwise, for all n 7 0, Un carries
a hyperbolic geodesic γn such that f(γn) = γn+1. (Note that Un cannot be a
punctured disk because J(f) is perfect.) Since f is a covering, the length of γn

in the hyperbolic metric on Un is the same for all n 7 0. Now the diameter
of the largest spherical ball contained in Un must tend to zero, since these
components are distinct. By comparing the hyperbolic and spherical metrics,
we see diamσ(γn) → 0. Since f is Lipschitz in the spherical metric, once the
spherical size of γn is small, any small disk bounded by γn must map to a small
disk bounded by γn+1. It follows that fn+i is normal on this small disk, which
is impossible since each component of Ĉ − γn must meet J(f). Thus Un is
eventually a disk.
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Proof of Theorem 5.33. Let U be a wandering disk, or more precisely a
simply-connected component of Ω(f) such that fn|U is injective for all n > 0.
Let π : ∆→ U be a Riemann mapping. Then π allows us to transfer Beltrami
differentials from ∆ to U . Let V ⊂ M(∆) be the infinite-dimensional space
of compactly supported Beltrami differentials guaranteed by Proposition 5.29,
such that µ ∈ V is trivial iff µ = 0. Then we have

V ⊂M(∆)
π∗∼= M(U) ↪→M(Ĉ)f δ→ H1(f, TĈ).

Now suppose µ ∈ V maps to 0 ∈ H1(f, TĈ). Then the associated vector
field v vanishes on J(f), and in particular v = 0 on ∂U . By Theorem 5.30, this
implies µ is a trivial deformation of the disk, and thus µ = 0.

Thus V maps injectively into Tf (Ratd). But dim(V ) =∞ > dimH1(f, TĈ) =
2d− 2, so this is impossible. Therefore f has no wandering domain.

5.12 Finiteness of periodic regions

Theorem 5.35 Every component of the Fatou set Ω(f) eventually cycles, and
there are only finitely many periodic components.

Proof. We have seen there are no wandering domains. Apart from Herman
rings, the periodic components of Ω(f) are associated to superattracting, at-
tracting, parabolic or indifferent periodic points, so they are finite in number.

For Herman rings, one can use the quasiconformal deformation theory to
show each cycle of rings contributes one complex parameter to the moduli space
of f . Since dimM(f) ≤ 2d− 2, there are at most 2d− 2 Herman rings.

Remarks. More sophisticated arguments show the number of cycles of com-
ponents of the Fatou set is at most 2d− 2 [Shi].

5.13 The Teichmüller space of a dynamical system

In preparation to discuss the Teichmüller space of a rational map, we outline
the more general theory of the Teichmüller space of a dynamical system.

Definitions. A holomorphic dynamical system (X, f) consists of a 1-dimensional
complex manifold X , possibly disconnected, and a holomorphic map f : X → X .
(The definition can be extended in a natural way to replace f by a group action
or a semigroup or a collection of holomorphic correspondences.)

An isomorphism α : (X1, g1) → (X2, g2) is given by a conformal map α :
X1 → X2 such that α ◦ g1 = g2 ◦ α.

A quasiconformal conjugacy φ : (X, f) → (Y, g) gives a marking of (Y, g)
by (X, f). Two such marked dynamical systems are isomorphic if there is an
isomorphism α : (Y1, g1) → (Y2, g2) respecting markings (i.e. such that φ2 =
α ◦ φ1).
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The deformation space Def(X, f) is the space of isomorphism classes of dy-
namical systems marked by (X, f). It is easy to see the deformation space may
be identified with the unit ball in the space of f -invariant Beltrami differentials;
that is, we have:

Def(X, f) = M(X)f
1 .

The quasiconformal conjugacies φ : (X, f)→ (X, f) form a group we denote
QC(X, f). It acts on Def(X, f) by changing the marking. The normal subgroup
QC0(X, f) consists of quasiconformal conjugacies isotopic to the identity, rel the
ideal boundary of X and through uniformly quasiconformal conjugacies.

The Teichmüller space Teich(X, f) is the quotient space of dynamical sys-
tems marked up to isotopy:

Teich(X, f) = Def(X, f)/ QC0(X, f).

The mapping-class group

Mod(X, f) = QC(X, f)/ QC0(X, f)

acts on Teichmüller space, yielding as quotient the moduli space

M(X, f) = Teich(X, f)/ Mod(X, f)

of isomorphism classes of dynamical systems quasiconformally conjugate to f .
The subgroup of conformal conjugacies will be denoted Aut(X, f) ⊂ QC(X, f).

Its image in Mod(X, f) coincides with the stabilizer of [(X, f)] ∈ Teich(X, f).

Rotation of an annulus. To make these ideas concrete, let us consider the
Teichmüller space of (X, f) = (A(R), f), where A(R) = {1 < |z| < R} is the
standard annulus of modulus log(R)/2π, and

f(z) = e2πiαz

is an irrational rotation.

1. We have Aut(X, f) = S1 acting by rotations. Moreover, the dynamical
system generated by f is dense S1.

2. The space Def(X, f) = M(A(R))f
1 can be identified with L∞([1, R])1. In-

deed, any f -invariant Beltrami differential µ on A(R) is also S1-invariant,
by ergodicity of the irrational rotation of a circle. Thus µ is determined
by its values on the radius [1, R].

3. In terms of marked dynamical systems, Def(X, f) can be identified with
the set of triples (Y, g,φ) = (A(S), f,φ) such that φ : A(R)→ A(S) is an
S1-equivariant quasiconformal map and

φ|S1(1) = id .

To see this, just note that any Riemann surface Y quasiconformally equiv-
alent to X is of the form A(S), that the rotation number of f is a topo-
logical invariant, and that by composing with an automorphism of A(S)
we can normalize the conjugacy so that φ(1) = 1.
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4. The group QC(X, f) consists of all quasiconformal maps φ : A(R)→ A(R)
that commute with rotations. It is conveniently to visualize the orbits of
S1 on A(R) as circles of constant radius in the cylinderical metric |dz|/|z|;
then φ preserves this foliation and maps leaves to leaves by isometries.

Any φ ∈ QC(X, f) is actually Lipschitz and is determined by its values
on [1, R]. Thus φ has the form

φ(z) = e2πiθ(|z|) · z,

where θ : [1, R] → C is a Lipschitz function such that θ(1) and θ(R) are
real. Note that θ and θ + n, n ∈ Z, determine the same map φ.

Moreover, the condition that φ as above is quasiconformal is equivalent
to the condition that θ is Lipschitz and r +→ |φ(r)| = r exp(2π Im θ(r)) is
a bilipschitz map. In other words, if we write θ(r) = α(r) + iβ(r) then we
need α and β to be Lipschitz and we need a definite gap betwen 1/r and
2πβ′(r); that is, we need

inf
r

((1/r)− 2πβ′(r)) > 0

to insure |φ(r)| increases at a definite rate.

5. The group QC0(X, f) consists of those φ that can be deformed to the
identity while keeping the values of φ on S1(1) and S1(R) fixed. This
means that φ is the identity on ∂A(R) and moreover that there is no
relative twisting. In terms of θ(r), the condition φ ∈ QC0(R) is equivalent
to the condition

θ(0) = θ(R) ∈ Z.

6. A linear combination of Lipschitz functions is again Lipschitz. Using this
fact, it is easy to see that the map φ +→ (θ(1), θ(R)) gives an isomorphism

Mod(X, f) = QC(X, f)/ QC0(X, f) ∼= R2/Z,

where Z = {(n, n) ∈ R2}.

7. Now we have seen that points (A(S), f,φ) ∈ Def(X, f) can be normalized
so that φ(1) = 1, i.e. such that θ(1) = 0. Therefore φ is determined up to
isotopy (rel ideal boundary) by the value of θ(R) ∈ R. Thus the map

(A(S), f,φ) +→ −(log φ(R))/2πi

= θ(R) + i mod(A(S))

establishes an isomorphism

Teich(X, f) ∼= H.

It can be verified that this isomorphism is complex-analytic.
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8. Finally Mod(X, f) = (R2/Z) acts on Teich(X, f) by changing the bound-
ary values of φ. This actions is on z ∈ H given by:

(s, t)(z) = z + (t− s).

Note that any point z ∈ H is stabilized by the diagonal subgroup R/Z ∼=
S1 ⊂ R2/Z, consistent with the fact that Aut(Y, f) = S1 for every (Y, f) ∈
Teich(X, f).

9. Taking the quotient by the group of all translations of H, we find the map
(Y, g) +→ mod(Y ) (or equivalently z +→ Im z) gives an isomorphism

M(X, f) = Teich(X, f)/ Mod(X, f) ∼= R+ = (0,∞).

In other words, the rotations of an annulus Y through irrational angle θ
are classified up to conjugacy by mod(Y ).

Attracting fixed-points. As a second example that is important for the
theory of attracting fixed-points, let (X, f) = (C, f) where

f(z) = λz

with 0 < |λ| < 1. For this map, a central role in the Teichmüller theory is
placed by the quotient torus T = C∗/〈f〉.

1. The automorphism group of (C, f) is the multiplicative group C∗.

2. The space Def(X, f) is naturally identified with M(T )1. (Invariant Bel-
trami differential come from the quotient T .) An invariant Beltrami differ-
ential is determined by its values in the fundamental annulus |λ| < |z| < 1.

3. In terms of dynamical systems, any (Y, g,φ) ∈ Def(X, f) has the form
(Y, g) = (C,κz) with 0 < |κ| < 1. The map φ can be normalized so that
φ(1) = 1.

4. The dynamical system (Y, g) has its own quotient torus T ′ = C∗/〈κ〉,
naturally marked by φ, giving an isomorphism

Teich(X, f) ∼= Teich(T ) ∼= H.

In terms of (Y, g) = (C,κz), this isomorphism is given by

(C,κz) +→ log κ

2πi
∈ H.

The value of log κ can be made well-defined using the marking of (Y, g) by
(X, f). To use the marking, first choose an arc γ ⊂ X = C∗ connecting 1
to λ. Then φ(γ) ⊂ Y connects 1 to κ. There is a unique continous branch
of the logarithm along φ(γ) with log(1) = 0, and this branch defines logκ.
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5. The torus T has a distinguished map π1(T ) → Z defining the covering
space X = C∗ → T . In other words, T has a distinguished cohomology
class C ∈ H1(T, Z). It is not hard to see that Mod(X, f) ∼= Z coincides
with the subgroup of Mod(T ) ∼= SL2(Z) stabilizing C. Thus we have the
isomorphism

Mod(X, f) ∼= Z ∼= {
(

1 n

0 1

)

∈ SL2(Z)}.

6. The modular group acts on H in the natural way — by sending z to z +n.
Thus we have

M(X, f) ∼= H/Z ∼= ∆∗.

This isomorphism simply sends (C∗,κz) to κ.

7. In summary, the Teichmüller space of an attracting fixed-point coincides
with the Teichmüller space of its quotient torus; the torus carries a distin-
guished cohomology class; a marking determines a logarithmic lift of the
multiplier; and the moduli space is the punctured disk.

5.14 The Teichmüller space of a rational map

We are now in a position to describe the space of all rational maps quasiconfor-
mally conjugate to a given one. See [McS] for details.

The quotient Riemann surface. To relate Teich(f) to more traditional
Teichmüller spaces, we introduce a quotient Riemann surface for f .

The grand orbits of f are the equivalence classes of the relation x ∼ y if
fn(x) = fm(y) for some n, m ≥ 0. Let Ĵ denote the closure of the grand orbits
of all periodic points and all critical points of f . Let F̂ = Ĉ − Ĵ ⊂ Ω. Then
f : F̂ → F̂ is a covering map without periodic points. Let F̂ = Ωdis 1 Ωfol

denote the partition into open sets where the grand orbit equivalence relation
is discrete and where it is indiscrete.

Theorem 5.36 The Teichmüller space of a rational map f of degree d is nat-
urally isomorphic to

M1(J, f)× Teich(Ωfol, f)× Teich(Ωdis/f),

where Ωdis/f is a complex manifold.

Here M1(J, f) denotes the unit ball in the space of f -invariant Beltrami
differentials on J . In particular, M1(J, f) = 0 if the Julia set has measure zero.

Proof. Since Ĵ contains a dense countable dynamically distinguished subset,
ω|Ĵ = id for all ω ∈ QC0(Ĉ, f), and so

QC0(Ĉ, f) = QC0(Ω
fol, f)×QC0(Ω

dis, f).

90



This implies the theorem with the last factor replaced by Teich(Ωdis, f), using
the fact that J and Ĵ differ by a set of measure zero. To complete the proof,
write Ωdis as

⋃
Ωdis

i , a disjoint union of totally invariant open sets such that
each quotient Ωdis

i /f is connected. Then we have

Teich(Ωdis, f) =
∏′

Teich(Ωdis
i , f) =

∏′
Teich(Ωdis

i /f) = Teich(Ωdis/f).

Note that Ωdis/f is a complex manifold (rather than an orbifold), because f |Ωdis

has no periodic points.

The dimension of the Teichmüller space of a rational map of degree d is at
most 2d− 2, i.e. at most the dimension of Ratd / Aut Ĉ.

Next we give a more concrete description of the factors appearing in Theorem
5.36.

By the classification of stable regions, it is easy to see that Ĵ is the union of:

1. The Julia set of f ;

2. The grand orbits of the attracting and superattracting cycles and the
centers of Siegel disks (a countable set);

3. The grand orbits of the critical points that land in attracting and parabolic
basins (a countable set); and

4. The leaves of the canonical foliations which meet the grand orbit of the
critical points (a countable union of one-dimensional sets).

The superattracting basins, Siegel disks and Herman rings of a rational map
are canonical foliated by the components of the closures of the grand orbits. In
the Siegel disks, Herman rings, and near the superattracting cycles, the leaves
of this foliation are real-analytic circles. In general countably many leaves may
be singular. Thus Ωdis contains the points which eventually land in attracting
or parabolic basins, while Ωfol contains those which land in Siegel disks, Herman
rings and superattracting basins.

Theorem 5.37 The quotient space Ωdis/f is a finite union of Riemann sur-
faces, one for each cycle of attractive or parabolic components of the Fatou set
of f .

An attractive basin contributes an n-times punctured torus to Ωdis/f , while
a parabolic basin contributes an (n + 2)-times punctured sphere, where n ≥ 1 is
the number of grand orbits of critical points landing in the corresponding basin.

Proof. Every component of Ωdis is preperiodic, so every component X of Ωdis/f
can be represented as the quotient Y/fp, where Y is obtained from a parabolic
or attractive basin U of period p be removing the grand orbits of critical points
and periodic points.
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First suppose U is attractive. Let x be the attracting fixed point of fp in U ,
and let λ = (fp)′(x). After a conformal conjugacy if necessary, we can assume
x ∈ C. Then by classical results, there is a holomorphic linearizing map

ψ(z) = limλ−n(fpn(z)− x)

mapping U onto C, injective near x and satisfying ψ(fp(z)) = λ(ψ(z)).
Let U ′ be the complement in U of the grand orbit of x. Then the space of

grand orbits in U ′ is isomorphic to C∗/ < z +→ λz >, a complex torus. Deleting
the points corresponding to critical orbits in U ′, we obtain Y/fp.

Now suppose U is parabolic. Then there is a similar map ψ : U → C such
that ψ(fp(z)) = z + 1, exhibiting C as the small orbit quotient of U . Thus the
space of grand orbits in U is the infinite cylinder C/ < z +→ z +1 >∼= C∗. Again
deleting the points corresponding to critical orbits in U , we obtain Y/fp.

In both cases, the number n of critical orbits to be deleted is at least one,
since the immediate basin of an attracting or parabolic cycle always contains
a critical point. Thus the number of components of Ωdis/f is bounded by the
number of critical points, namely 2d− 2.

For a detailed development of attracting and parabolic fixed points, see e.g.
[CG, Chapter II].

Definitions. A critical point is acyclic if its forward orbit is infinite. Two
points x and y in the Fatou set are in the same foliated equivalence class if the
closures of their grand orbits agree. For example, if x and y are on the same
leaf of the canonical foliation of a Siegel disk, then they lie in a single foliated
equivalence class. On the other hand, if x and y belong to an attracting or
parabolic basin, then to lie in the same foliated equivalence class they must
have the same grand orbit.

Theorem 5.38 The space Teich(Ωfol, f) is a finite-dimensional polydisk, whose
dimension is given by the number of cycles of Herman rings plus the number
of foliated equivalence classes of acyclic critical points landing in Siegel disks,
Herman rings or superattracting basins.

Proof. As for Ωdis, we can write Ωfol =
⋃

Ωfol
i , a disjoint union of totally

invariant open sets such that Ωfol
i /f is connected for each i. Then

Teich(Ωfol, f) =
∏′

Teich(Ωfol
i , f).

Each factor on the right is either a complex disk or trivial. Each disk factor
can be lifted to Def(Ĉ, f), so by finiteness of the space of rational maps the
number of disk factors is finite. A disk factor arises whenever Ωfol

i has an
annular component. A cycle of foliated regions with n critical leaves gives n
periodic annuli in the Siegel disk case, n + 1 in the case of a Herman ring, and
n wandering annuli in the superattracting case. If two critical points account
for the same leaf, then they lie in the same foliated equivalence class.
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Definition. An invariant line field on a positive-measure totally invariant
subset E of the Julia set is the choice of a real 1-dimensional subspace Le ⊂ TeĈ,
varying measurably with respect to e ∈ E, such that f ′ transforms Le to Lf(e)

for almost every e ∈ E.
Equivalently, an invariant line field is given by a measurable Beltrami differ-

ential µ supported on E with |µ| = 1, such that f∗µ = µ. The correspondence

is given by Le = {v ∈ TeĈ : µ(v) = 1 or v = 0}.

Theorem 5.39 The space M1(J, f) is a finite-dimensional polydisk, whose di-
mension is equal to the number of ergodic components of the maximal measurable
subset of J carrying an invariant line field.

Corollary 5.40 On the Julia set there are finitely many positive measure er-
godic components outside of which the action of the tangent map of f is irre-
ducible.

Theorem 5.41 (Number of moduli) The dimension of the Teichmüller space
of a rational map is given by n = nAC + nHR + nLF − nP , where

• nAC is the number of foliated equivalence classes of acyclic critical points
in the Fatou set,

• nHR is the number of cycles of Herman rings,

• nLF is the number of ergodic line fields on the Julia set, and

• nP is the number of cycles of parabolic basins.

Proof. The Teichmüller space of an n-times punctured torus has dimension
n, while that of an n + 2-times punctured sphere has dimension n − 1. Thus
the dimension of Teich(Ωdis/f) is equal to the number of grand orbits of acyclic
critical points in Ωdis, minus nP . We have just seen the number of remaining
acyclic critical orbits (up to foliated equivalence), plus nHR, gives the dimension
of Teich(Ωfol, f). Finally nLF is the dimension of M1(J, f).

Remark. The number nP can exceed the number of parabolic cycles. For
example, a parabolic fixed point can have many petals attached, and these
petals may fall into several distinct cycles under the dynamics.

5.15 The modular group of a rational map

Recall that Mod(Ĉ, f) = QC(Ĉ, f)/ QC0(Ĉ, f) is the group of quasiconformal
automorphisms of f , modulo those isotopic (through conjugacies) to the identity.
In this section we will prove:

Theorem 5.42 (Discreteness of the modular group) The group Mod(Ĉ, f)
acts properly discontinuously by holomorphic automorphisms of Teich(Ĉ, f).
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Proof of Theorem 5.42 (Discreteness of the modular group). The

group Mod(Ĉ, f) acts isometrically on the finite-dimensional complex mani-
fold Teich(Ĉ, f) with respect to the Teichmüller metric. The stabilizer of a
point ([φ], Ĉ, g) is isomorphic to Aut(g) and hence finite; thus the quotient of

Mod(Ĉ, f) by a finite group acts faithfully. By compactness of quasiconfor-
mal maps with bounded dilatation, Mod(Ĉ, f) maps to a closed subgroup of

the isometry group; thus Mod(Ĉ, f) is a Lie group. If Mod(Ĉ, f) has positive
dimension, then there is an arc (φt, Ĉ, f) of inequivalent markings of f in Te-
ichmüller space; but such an arc can be lifted to the deformation space, which
implies each φt is in QC0(f), a contradiction.

Therefore Mod(Ĉ, f) is discrete.

Remark. Equivalently, we have shown that for any K > 1, there are only a
finite number of non-isotopic quasiconformal automorphisms of f with dilatation
less than K.

Let Ratd denote the space of all rational maps f : Ĉ → Ĉ of degree d.
This space can be realized as the complement of a hypersurface in projective
space P2d+1 by considering f(z) = p(z)/q(z) where p and q are relatively prime

polynomials of degree d in z. The group of Möbius transformations Aut(Ĉ) acts
on Ratd by sending f to its conformal conjugates.

A complex orbifold is a space which is locally a complex manifold divided by
a finite group of complex automorphisms.

Corollary 5.43 (Uniformization of conjugacy classes) There is a natural
holomorphic injection of complex orbifolds

Teich(Ĉ, f)/ Mod(Ĉ, f)→ Ratd / Aut(Ĉ)

parameterizing the rational maps g quasiconformal conjugate to f .

Corollary 5.44 If the Julia set of a rational map is the full sphere, then the
group Mod(Ĉ, f) maps with finite kernel into a discrete subgroup of PSL2(R)n!
Sn (the automorphism group of the polydisk).

Proof. The Teichmüller space of f is isomorphic to Hn.

Corollary 5.45 (Finiteness theorem) The number of cycles of stable re-
gions of f is finite.

Proof. Let d be the degree of f . By Corollary 5.43, the complex dimension of
Teich(Ĉ, f) is at most 2d − 2. This is also the number of critical points of f ,
counted with multiplicity.

By Theorem 5.41 f has at most 2d− 2 Herman rings, since each contributes
at least a one-dimensional factor to Teich(Ĉ, f) (namely the Teichmüller space
of a foliated annulus. By a classical argument, every attracting, superattracting
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or parabolic cycle attracts a critical point, so there are at most 2d− 2 cycles of
stable regions of these types. Finally the number of Siegel disks is bounded by
4d− 4. (The proof, which goes back to Fatou, is that a suitable perturbation of
f renders at least half of the indifferent cycles attracting; cf. [Mon, §106].)

Consequently the total number of cycles of stable regions is at most 8d− 8.

Remark. The sharp bound of 2d− 2 (conjectured in [Sul4]) has been achieved
by Shishikura and forms an analogue of Bers’ area theorem for Kleinian groups
[Shi], [Bers1].

6 Hyperbolic 3-manifolds

6.1 Kleinian groups and hyperbolic manifolds

A hyperbolic manifold Mn is a connected, complete Riemannian manifold of
constant sectional curvature −1.

There is a unique simply-connected hyperbolic manifold Hn of dimension n,
up to isometry. Thus any hyperbolic manifold can be regarded as a quotient
Mn = Hn/Γ where Γ ⊂ Isom(Hn) is a discrete group.

Two explicit models for hyperbolic space are the upper half-space model,

Hn = {(x1, . . . , xn) ∈ Rn : xn > 0}

with the metric ρ = |dx|/xn; and the Poincaré ball model

Hn = Bn = {x ∈ Rn : |x| < 1}

with ρ = 2|dx|/(1 − |x|2). Hyperbolic space has a natural sphere at infinity
Sn−1
∞ , corresponding to Rn−1 ∪ {∞} in the upper half-space model and to ∂Bn

in the Poincaré ball model.
The points on Sn−1

∞ can be naturally interpreted as endpoints of geodesics.

Theorem 6.1 For n > 1, every hyperbolic isometry extends continuously to a
conformal automorphism of the sphere at infinity, establishing an isomorphism

Isom(Hn) ∼= Aut(Sn−1
∞ ).

Proof. First note that reflection through a hyperplane Pn−1 ⊂ Hn extends
continuously to (conformal) reflection through the sphere Sn−2 = ∂Pn−1 ⊂
Sn−1
∞ . Conversely, reflection through a sphere extends to reflection through

a hyperplane in hyperbolic space. Since reflections generate both groups, we
see the boundary values of any hyperbolic isometry are conformal, and any
conformal map extends to an isometry.

Finally any isometry inducing the identity on Sn−1
∞ must be the identity,

since it stabilizes every geodesic.
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A Kleinian group is a discrete subgroup Γ ⊂ Isom(Hn). The limit set Λ ⊂
Sn−1
∞ of Γ is defined by Λ = Γx ∩ Sn−1

∞ for any x ∈ Hn. The complement
Ω = Sn−1

∞ − Λ is the domain of discontinuity for Γ.

Theorem 6.2 The action of a Kleinian group on its domain of discontinuity
is properly discontinuous. That is, for any compact set K ⊂ Ω, the set of γ ∈ Γ
such that γ(K) ∩K -= ∅ is finite.

A Kleinian group is elementary if it contains an abelian subgroup of finite
index; equivalently, if |Λ| ≤ 2.

Theorem 6.3 If Γ is nonelementary, then Λ is the smallest nonempty closed
Γ-invariant subset of Sn−1

∞ .

A baseframe ω for a hyperbolic manifold M is simply a point in the frame
bundle of M . There is a natural bijection:

{Baseframed hyperbolic manifolds (Mn,ω)}
↔

{Torsion-free Kleinian groups Γ ⊂ Isom(Hn)} .

General Kleinian groups correspond to hyperbolic orbifolds. Forgetting the
baseframe amounts to only knowing Γ up to conjugacy in Isom(Hn).

6.2 Ergodicity of the geodesic flow

Theorem 6.4 The geodesic flow on M = Hn/Γ is ergodic if and only if Γ acts
ergodically on Sn−1

∞ × Sn−1
∞ .

Theorem 6.5 The geodesic flow is ergodic on any finite-volume hyperbolic man-
ifold M .

Proof. (Hopf) Let f ∈ C0(T1M) be a compactly supported continuous function
on the unit tangent bundle. Let gt denote the geodesic flow, and I ⊂ L2(T1M)
the subspace of functions invariant under gt. To prove ergodicity we need to
show I consists of the constant functions.

By the ergodic theorem,

f+(v) = lim
T→∞

1

T

∫ T

0
f(gt(v)) dt

exists for almost every v ∈ T1M , and converges to the L2-projection F of f to
I. On the other hand, the negative time average f−(v) converges to the same
thing, so F (v) = f+(v) = f−(v) for almost every v.

Now if v and w are vectors converging to the same point on Sn−1
∞ in positive

time, then the geodesic rays through v and w are asymptotic, so f+(v) = f+(w)
by uniform continuity of f . In other words, F (v) is constant along the (n −
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1)-spheres of the positive horocycle foliation of T1(M). Applying the same
argument to f−(v), we see F is also constant along the negative horocycle
foliation. Finally F (v) is invariant under the geodesic flow. By Fubini’s theorem,
we conclude that F (v) is constant.

Since C0(T1M) is dense in L2(T1M), we have shown I consists only of the
constant functions, and thus the geodesic flow is ergodic.

6.3 Quasi-isometry

Let X and Y be complete metric spaces. A map f : X → Y is a K-quasi-
isometry if for some R > 0 we have

R + Kd(x, x′) ≥ d(f(x), f(x′)) ≥ d(x, x′)

K
−R

for all x, x′ ∈ X . In other words, on a large scale, f gives a bi-Lipschitz map to
its image.

We say f : X → X is close to the identity if supX d(x, f(x)) <∞.
We say f : X → Y is a quasi-isometric isomorphism if there is a quasi-

isometry g : Y → X such that f ◦ g and g ◦ f are close to the identity. If
f : X → Y is a quasi-isometry and B(f(X), R) = Y for some R, then in fact f
is an isomorphism.

Example. The inclusion f : Zn → Rn is a quasi-isometric isomorphism. An
inverse is the map g : R→ Z defined by taking the integer part, g(x) = [x].

Groups. Let G be a finitely-generated group. Choosing a finite set of genera-
tors 〈gi〉, we can construct the Cayley graph C(G) by taking G as the vertices
and connecting g and h by an edge if g = gih for some gi. Taking the edges to
be of unit length, we obtain a metric d on G.

Alternatively, one can define d(id, g) = n where n is the length of a minimal
word expressing g in terms of 〈g±1

i 〉, and then extend d to G×G so it is right-
invariant.

Another choice of generators 〈g′i〉 determines another metric d′ on G. By
expressing each gi as a word in 〈g′i〉 and vice-versa, one easily sees that (G, d)
and (G, d′) are quasi-isometric.

Theorem 6.6 For any compact Riemannian manifold M , the universal cover
M̃ and the group π1(M) are quasi-isometric.

Proof. Realize π1(M, ∗) = G as a group of deck transformations acting on

(M̃, ∗), and define f : G→ M̃ by f(g) = g∗. The map f can be extended to the
Cayley graph by mapping each edge to a geodesic segment. Edges corresponding
to the same generator of G map to segments of the same length, so f is Lipschitz.

To see f is a quasi-isometry, note that by compactness of M there is an R > 0
such that every point of the universal cover is within distance R of the orbit G∗.
Consider a geodesic segment γ ⊂ M̃ of length L = d(∗, g∗) joining ∗ to g∗. Cut
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γ into L segments of about unit length, and assign to each a point hi∗ within
distance R. Then d(hi∗, hi+1∗) ≤ 2R+1). Now by discreteness of G∗, there are
only finitely many h such that d(∗, h∗) ≤ 2R + 1; letting C = max d(id, g) over
such g, we have d(hi, hi+1) ≤ C, and thus d(id, g) ≤ CL = Cd(∗, g∗). Thus f is
a quasi-isometry.

Corollary 6.7 (Milnor, Švarc) If M is a closed manifold with a metric of
negative curvature, then π1(M) has exponential growth.

Quasi-geodesics. A quasi-geodesic in a metric space X is a quasi-isometric
map

γ : [a, b]→ X.

Often we will take [a, b] = R.

Examples.

1. If γ : [a, b] → X is a geodesic and f : X → Y is a quasi-isometry, then
f ◦ γ is a quasi-geodesic.

2. Let γ : R → C(G) be a geodesic in the Cayley graph of a group G =
π1(M), and let

f : (C(G), id)→ (M̃, ∗)

be defined by f(g) = g∗ and by sending edges to geodesic segments. Then
f ◦ γ is a quasi-geodesic.

3. Efficient taxis take quasi-geodesics along the grid of ‘streets’ connecting
Z2 ⊂ R2. These Manhattan geodesics are far from unique; e.g. there are(2n

n

)
geodesics from (0, 0) to (n, n). This example comes from the universal

cover of a 2-torus.

4. If γ : R → Hn is a C2 curve parameterized by arclength, with geodesic
curvature k(s) < k0 < 1 at every point, then γ(s) is a quasigeodesic.
Indeed, the normal planes P (s) through γ(s) advance at a uniform pace
C, so

d(γ(s), γ(t)) ≥ d(P (s), P (t)) ≥ C(k0)|s− t|.

The borderline case is a horocycle, which is not a quasi-geodesic (in fact
d(γ(s), γ(0)) grows like log s). On the other hand, a curve at constant dis-
tance D from a geodesic in H2 has curvature k0(D) < 1 (and is obviously
a quasi-geodesic).

5. The loxodromic spiral γ : [0,∞) → C given by γ(s) = s1+i is a quasi-
geodesic ray with no definite direction; that is, arg γ(s) = log(s) moves
around the circle an infinite number of times as s→∞.

This γ is not within a bounded distance of any Euclidean geodesic.
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Lemma 6.8 For any closed convex set K ⊂ Hn, nearest-point projection π :
Hn → K contracts by a factor of at least cosh(r) at distance r from K.

Proof. First calculate ‖dπ(z)‖ in the case where K is a geodesic in H2. We can
normalize coordinates so K is the imaginary axis and z lies on the unit circle;
then π(i) = 1. As a hyperbolic geodesic, the arclength parameterization of the
unit circle is given by (tanh s, sech s), so Im z = sech r where r = d(z, K). Now
the geodesics normal to K are Euclidean circles, so ‖dπ‖ = 1 in the Euclidean
metric. Thus the hyperbolic contraction is by a factor of Im(π(z))/ Im(z) =
cosh r.

The general case reduces to this one by considering a supporting hyperplane
to K.

Theorem 6.9 Let γ : R→ Hn be a quasi-geodesic. Then γ is within a bounded
distance of a unique hyperbolic geodesic.

Proof. For convenience, assume γ is continuous. For T 7 0, let δT be the
complete geodesic passing through γ(−T ) and γ(T ). Consider the cylinder
B(δT , r) of radius r about δT , and suppose (a, b) is a maximal interval for
which γ(a, b) is outside the cylinder. Then γ(a), γ(b) lie on the boundary of the
cylinder, and the nearest point projection of γ(a, b) to δT is contracting by a
factor of cosh(r). Thus, if |a− b| > R, we have

|a− b|
K

≤ d(γ(a), γ(b)) ≤ 2r +
d(γ(a), γ(b))

cosh(r)
≤ 2r +

K|a− b|
cosh(r)

.

If we take r large enough that cosh(r)7 K2, then the inequality above implies
|a− b| is not too large, and hence γ[a, b] stays close to δT .

In other words, there is an absolute constant D such that γ(−T, T ) ⊂
B(δT , D). Since the space of geodesics within distance D of γ(0) is compact, we
can pass to a convergent subsequence and obtain a geodesic δ with γ ⊂ B(δ, D).

In hyperbolic space, distinct geodesics diverge, so δ is unique.

6.4 Quasiconformal maps

We now revisit the notion of a quasiconformal map from a geometric point of
view.

Let f : Rn → Rn be a homeomorphism (often required to preserve orienta-
tion). For each sphere S = S(x, r), let

K(S) =
max{d(f(y), f(x)) : y ∈ S}
min{d(f(y), f(x)) : y ∈ S} ·

We say f is geometrically quasiconformal if supK(S) is finite. A homeomor-
phism f : Sn → Sn is geometrically quasiconformal if supK(S) is bounded in
the spherical metric.
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Theorem 6.10 Let f be a quasiconformal homeomorphism of Rn or Sn with
n ≥ 2. Then:

• f is analytically quasiconformal (f has derivatives in L2 satisfying ‖Df‖n ≤
K| detDf | almost everywhere);

• f is absolutely continuous (f(E) has measure zero iff E has measure zero);

• f is differentiable almost everywhere; and

• if Df is conformal a.e., then f is a Möbius transformation.

For proofs, see [LV]. To convey the spirit of the passage between the geo-
metric and analytic definitions, we will prove:

Theorem 6.11 A quasiconformal map f : C → C is absolutely continuous on
lines (ACL).

This means that for any line L ⊂ C, the real and imaginary parts of f are
absolutely continuous functions on L + t for almost every t ∈ C.

Proof. By making a linear change of coordinates in the domain of f , it suffices
to show that Re f(x + iy) is an absolutely continuous function of x ∈ [0, 1] for
almost every y.

Consider the function A(y) = area f([0, 1]× [0, y]). Since A(y) is monotone
increasing, it has a finite derivative a.e. Choose y such that A′(y) exists; we will
show F (x) = Re f(x + iy) is absolutely continuous for x ∈ [0, 1].

Consider a collection of disjoint intervals I1, . . . , In in [0, 1], with
∑

|Ii| < ε.
We must show that

∑
|F (Ii)| < δ(ε)→ 0 as ε→ 0.

By subdividing the intervals, we can assume |Ii| = h: ε for all i, so nh = ε.
Let Si be the h × h square resting on Ii. Since f is quasiconformal, we have
area(f(Si)) < |Ji|2. Thus we have:

(∑
|Ji|

)2
≤ n

∑
|Ji|2 < n

∑
area(f(Si))

≤ n area(f([0, 1]× [y, y + h])) ≈ nhA′(y).

Therefore
∑

|Ji| = O(
√

nh) = O(ε1/2).

Measuring quasiconformality. The natural measure of distortion for a
homeomorphism f : C→ C is the dilatation K(f).

If f is R-linear, it maps circles to ellipses with major and minor axes M and
m, and we define K(f) = M/m. For a general quasiconformal map, we define
K(f) to be the least constant such that K(Df) ≤ K(f) almost everywhere.

Perhaps surprisingly, K(f) is not the same as sup K(S) over all spheres. For
example, if f is given in polar coordinates by f(r, θ) = (rα, θ), with α > 1, then
K(f) = α even though K(S) = 2α for the sphere S = {z : |z − 1| = 1}.

The proper geometric definition of the dilatation is that K(f) is the least
constant such that lim supr→0 K(S(x, r)) ≤ K(f) almost everywhere.
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The 1-dimensional case. The geometric definition of quasiconformality makes
sense even in dimension one, and yields the useful family of k-quasisymmetric
homeomorphisms f : R → R, satisfying supK(S) ≤ k for every sphere S. Of
course a quasisymmetric map f is differentiable a.e. (since it is a monotone
function) , but f need not be absolutely continuous.

6.5 Quasi-isometries become quasiconformal at infinity

Let f : Hn+1 → Hn+1 be a quasi-isometry.
The extension F : Sn

∞ → Sn
∞ of f is defined as follows. Given x ∈ Sn

∞, take
a geodesic ray γ landing at x, and let δ be a geodesic ray that shadows the
quasi-geodesic f ◦ γ; then F (x) is the endpoint of δ.

It is easy to see:

If f is close to the identity, then F is the identity.

Thus if f is an isomorphism with quasi-inverse g, the extensions of f and g
satisfy F ◦G = G ◦ F = id, so F is bijective. In fact we have:

Theorem 6.12 The extension F : Sn
∞ → Sn

∞ of a quasi-isometry f : Hn+1 →
Hn+1 is a homeomorphism.

Proof. It suffices to show F is injective and continuous. Let us work in the
Poincaré unit ball model, with Hn+1 = Bn+1 ⊂ Rn+1. Composing with an
isometry, we can assume f(0) = 0.

Consider x, y ∈ Sn
∞ with |x − y| = ε > 0. Let γ be the geodesic joining x

and y, and let δ be the geodesic shadowing f(γ). Then the endpoints are δ are
F (x) and F (y). Since the endpoints are distinct, F is injective.

Moreover, d(0, γ) = | log ε| + O(1) in the hyperbolic metric, so we have
d(0, δ) ≥ | log ε|/K + O(1). Therefore |F (x) − F (y)| = O(ε1/K), showing F is
even Hölder continuous.

Corollary 6.13 Any quasi-isometry f : Hn+1 → Hn+1 is an isomorphism.

Proof. Let F be the extension of f . Given z ∈ Hn+1, choose a geodesic δ
through z with endpoints F (x), F (y), and let γ be the geodesic from x to y.
Then f(γ) comes within a bounded distance of z, so f is essentially surjective
and therefore it admits a quasi-inverse.

Theorem 6.14 The extension of a quasi-isometry f on Hn+1 is a quasiconfor-
mal homeomorphism F on Sn

∞.

Proof. To see F is quasi-conformal, we will show F (S(a, r)) has a bounded ratio
of inradius to outradius for any small sphere S(a, r) ⊂ Sn

∞. For convenience we
normalize so a = 0 and F fixes 0 and ∞. Let |b| = |c| = r maximize the ratio
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Figure 16. Geodesics, inradius and outradius.

K = |F (c)/F (b)|. Then the geodesics [0, b] and [c,∞] are at distance O(1),
while the geodesics [0, F (b)] and [F (c),∞] are at distance about log K (see
Figure 16). Since f is a quasi-isometry, f([0, b]) and f([∞, c]) lie at a bounded
distance from [0, F (b)] and [∞, F (c)], and from each other. Thus log K = O(1)
and F is quasiconformal.

6.6 Mostow rigidity

In this section we prove that a compact hyperbolic manifold of dimension 3 or
more can be reconstructed from its fundamental group.

Lemma 6.15 Let f : M → N be a homotopy equivalence between compact
Riemannian manifolds. Then the lift

f̃ : M̃ → Ñ

of f gives a quasi-isometric isomorphism between the universal covers of M and
N .

Proof. Let g : N → M be a homotopy inverse to f , and let g̃ : Ñ → M̃ be a
lift of g compatible with f̃ . Then the homotopy ht of g ◦ f to the identity lifts
to a homotopy h̃t of g̃ ◦ f̃ to the identity.

We can assume that f and g are smooth, so by compactness of M and N
their lifts are K-Lipschitz for some K. Similarly, since h̃t is a lift of a homotopy
on M , there is a D > 0 such that

d(x, g̃ ◦ f̃(x)) ≤ diam h̃0,1(x) ≤ D (6.1)

for all x ∈ M̃ . Therefore g̃ ◦ f̃ is close to the identity. Similarly, f̃ ◦ g̃ is close
to the identity. It follows that f̃ is a quasi-isometry. Indeed, we have the upper
bound

d(f̃(x), f̃ (y)) ≤ Kd(x, y)

since f̃ is Lipschitz, and the lower bound

d(x, y) ≤ d(g̃ ◦ f̃(x), g̃ ◦ f̃(y))−D ≤ Kd(f̃(x), f̃(y))−D

by (6.1). Similarly, g̃ is a quasi-inverse for f̃ .
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Remark. One can also argue that M̃ and Ñ are quasi-isometry to π1(M)

and π1(N) in such a way that f̃ is close to the quasi-isometric isomorphism
f∗ : π1(M)→ π1(N).

Theorem 6.16 (Mostow) Let Mn and Nn be compact hyperbolic n-manifolds,
n ≥ 3, and let

ι : π1(M
n)→ π1(N

n)

be an isomorphism. Then there is an isometry I : Mn → Nn such that ι = I∗.

Proof. The manifolds M and N are K(π, 1)’s, so the isomorphism ι between
their fundamental groups can be realized by a homotopy equivalence f : M →
N . By the preceding lemma, the lift f̃ : Hn → Hn is a quasi-isometry, so its
extension is a quasiconformal map F : Sn−1

∞ → Sn−1
∞ conjugating the action of

π1(M) to that of π1(N). The map F is differentiable almost everywhere, by
fundamental results on quasiconformal mappings.

If DF is conformal almost everywhere then, since n > 2, F is a Möbius
transformation. (This step fails when n = 2). Then F extends to an isometry
Ĩ : Hn → Hn which descends to the desired isometry I : M → N .

Otherwise, DF fails to be conformal on a set of positive measure in Sn−1
∞ .

By ergodicity, DF is nonconformal almost everywhere.
Now for concreteness suppose n = 3. Then the conformal distortion of

DF (x) defines an ellipse in the tangent space TxS2
∞ for almost every x. Let

Lx ⊂ TxS2
∞ be the line through the major axis of this ellipse.

Define θ : S2
∞ × S2

∞ → S1 as follows: given x, y on the sphere, use parallel
transport along the geodesic joining x to y to identify TxS2

∞ with TyS2
∞, and

let θ be the angle between the lines Lx and Ly.
Then θ is invariant under the action of π1(M), so by ergodicity of the

geodesic flow it is a constant a.e. This means that if we choose coordinates
on S2

∞ so x =∞, then the lines Ly have constant slope for y ∈ R2
∞. But almost

any point can play the role of x, while it is clearly impossible to arrange the
linefield Ly to have constant slope in more than one affine chart on the sphere.

The proof for n > 2 is similar.

Note. Mostow rigidity also holds for finite volume manifolds.

6.7 Rigidity in dimension two

Here is a version of Mostow rigidity that works for hyperbolic surfaces.

Theorem 6.17 Let f : S1
∞ → S1

∞ be an orientation-preserving homeomor-
phism conjugating Γ to Γ′, where X = H/Γ and X ′ = H/Γ′ are finite-volume
hyperbolic surfaces. Then f is either singular or absolutely continuous. In the
absolutely continuous case, f must be a Möbius transformation.
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Proof. For convenience we treat the case where X and X ′ are compact. By
hypothesis, there is an isomorphism ι : Γ → Γ′ induced by f . We first observe
that if Γ = Γ′ and ι is the identity, then f is the identity. This is because f must
fix the attracting fixed-point of every g ∈ Γ, and such fixed points are dense on
S1
∞.

By ergodicity of the action of Γ on the circle, f is either absolutely continuous
or singular. We will show that in the former case, Γ is conjugate to Γ′ inside
G = IsomH; in other words, X ∼= X ′. To this end, we identify S1

∞ with Q̂ and
choose coordinates so that f(∞) =∞. Then f : R→ R is a homeomorhism; in
particular, f ′ exists a.e.

Our hypothesis of absolutely continuity implies that f =
∫

f ′; in particular,
f ′(x) -= 0 for some x. We can assume x = 0 and f ′(0) = 1. Let An(x) = nx.
Then fn = AnfA−1

n converges to the identity map f∞(x) = x uniformly on
compact sets. Moreover fn intertwines the actions of certain conjugates Γn and
Γ′

n of our original Fuchsian groups. Since G/Γ and G/Γ′ are compact, we can
pass to a subsequence so these conjugates converge, say to Γ∞ and Γ′

∞. Since
f∞(x) = x, we have Γ∞ = Γ′

∞ and hence X ∼= X ′.
The same proof shows the isomorphism ι : Γ → Γ′ induced by the original

map f is given by conjugation by an element g ∈ G. Thus our initial remarks
show f = g.

6.8 Geometric limits

For another viewpoint on Mostow rigidity, we introduce in this section the
geometric topology on baseframed hyperbolic manifolds.

For any topological space X , let Cl(X) be the set of all closed subsets of X .
When X is a compact Hausdorff space, we introduce a topology on Cl(X) by
defining Fα → F iff

• for any open set U ⊃ F , we have Fα ⊂ U for all α7 0; and

• for any open set with U ∩ F -= ∅, we have Fα ∩ U -= ∅ for all α7 0.

Theorem 6.18 If X is a compact Hausdorff space, then so is Cl(X).

Next suppose X is only locally compact and Hausdorff. Then the one-
point compactification X ′ = X ∪ {∞} is compact, and there is a natural map
Cl(X) → Cl(X ′) by sending F to F ∪ {∞}. Under this inclusion, Cl(X) is
closed, so it becomes a compact Hausdorff space with the induced topology.

Example. In Cl(R), the intervals In = [n,∞) converge to the empty set as
n→∞.

Now suppose G is a Lie group. The set of all closed subgroups of G forms a
compact subset of Cl(G). If H, Hn are subgroups, we say Hn → H geometrically
if we have convergence in the Hausdorff topology.

Finally let G = Isom(Hn). Recall that every baseframed hyperbolic manifold
(M,ω) determines a torsion-free discrete group Γ ⊂ G, and vice-versa. We say
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(Mn,ωn) converges geometrically to (M,ω) if the corresponding Kleinian groups
satisfy Γn → Γ in Cl(G).

Theorem 6.19 The set Hn
r of baseframed hyperbolic manifold (M,ω) with in-

jectivity radius ≥ r at the basepoint is compact in the geometric topology.

If we fix a hyperbolic manifold M , then we have a natural map FM → Cl(G)
sending each ω in the frame bundle FM to the subgroup Γ(M,ω). This map is
continuous. In particular, if M is compact, then the set of baseframed manifolds
(M,ω) that can be formed from M is compact in the geometric topology.

We can now offer a proof of the last step of Mostow rigidity that does not
make reference to ergodic theory of the geodesic flow.

Theorem 6.20 Let M = H3/Γ be a compact hyperbolic 3-manifold, and let

µ ∈M(Ĉ) be an L∞ Γ-invariant Beltrami differential. Then µ = 0.

Proof. Suppose µ -= 0. Then, by a variant of the Lebesgue density theorem,
there exists a p ∈ C such that µ(p) -= 0 and µ is almost continuous at p. That
is, if we write µ = µ(z) dz/dz, then for each ε > 0 we have

lim
r→0

m{x ∈ B(p, r) : |µ(x)− µ(p)| > ε}
m(B(p, r))

= 0.

By a change of coordinates, we can assume that p = 0. Let µ(0) = a. Then for
gt(z) = tz, we have the weak* limit

g∗t µ = µ(tz)
dz

dz
→ ν = a

dz

dz

as t→ 0. Concretely, this means
∫

C

(g∗t µ)φ =

∫
µ(tz)φ(z) |dz|2 →

∫
a · φ(z) |dz|2

for every L1 measurable quadratic differential φ = φ(z) dz2.
Since µ is Γ-invariant, g∗t (µ) is invariant under

Γt = g∗t (Γ) = g−1
t Γgt.

These conjugates Γt correspond to the baseframed manifolds (M,ωt) as ωt

moves along a geodesic. Since M is compact, we can pass to a subsequence such
that Γt → Γ′, where Γ′ is a conjugate of Γ′. Indeed, Γt only depends on the
value of [gt] in the compact space Γ\G.

Then ν is invariant under Γ′. This implies Γ′ fixes the point z = ∞, since
∞ is the only point at which ν is discontinuous. Therefore Γ′ is an elementary
group — which is impossible, since in fact every orbit of Γ′ on Ĉ is dense.

Pushing this argument further, one can show:

Theorem 6.21 Let M3 = H3/Γ be a hyperbolic manifold whose injectivity ra-
dius is bounded above. Then M3 is quasiconformally rigid: the only measurable
Γ-invariant Beltrami differential µ ∈M(Ĉ) is µ = 0.

See [Mc5, Thm. 2.9].
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6.9 Promotion

The basic mechanism of Mostow rigidity is promotion: we can use the expanding
dynamics of a cocompact group to promote a point of measurable continuity to
a point of topological continuity.

Here are two simpler results with the same promotion principle at work.

Theorem 6.22 Let M = Hn/Γ be a compact hyperbolic manifold. Then the
action of Γ on Sn−1

∞ is ergodic.

Proof 1. Let A ⊂ Sn−1
∞ be a Γ-invariant set of positive measure. Then A has

a point of Lebesgue density p ∈ Rn−1
∞ ; that is,

lim
r→0

m(B(p, r) ∩A)

m(B(p, r))
= 1.

We may assume p = 0. Let gn(x) = x/n; then gn ∈ G = Isom(Hn). Since 0 is
a point of density, we have g∗n(χA) → 1 in the weak* topology on L∞(Sn−1

∞ ).
Since G/Γ is compact, we can write gn = γnhn with γn ∈ Γ and hn in a compact
subset of G. Then passing to a subsequence, we have hn → h, and therefore

g∗n(χA) = h∗
n(γ∗

nχA) = h∗
n(χA)→ h∗(χA).

Therefore h∗(χA) = 1, which shows χA = 1 and A has full measure. Thus Γ
acts ergodically.

Proof 2 (Ahlfors). Let A ⊂ Sn−1
∞ be a Γ-invariant set of positive measure.

Then the harmonic extension of χA to Hn descends to a harmonic function
u : M → R. By the maximum principle, u is constant, and thus A = Sn−1

∞ .

Theorem 6.23 Let f : X → Y be a homotopy equivalence between a pair of
compact hyperbolic surfaces, and let

F : S1
∞ → S1

∞

be the boundary values of f̃ . Then either F ′ = 0 almost everywhere, or f is
homotopic to an isometry.

Proof. Write X = H/Γ and Y = H/Γ′. Suppose F ′(p) -= 0. By a change
of coordinates, we can assume p = F (p) = 0 ∈ R1

∞. Let a = F ′(0) and
gn(x) = x/n. Then we have

Fn(x) = g−1
n ◦ F ◦ gn(x) = nF (x/n)→ F∞(x) = ax

uniformly on compact sets. That is, the blowups of F yield in the limit the
boundary values F∞ of an isometry of H2.

Now Fn conjugates Γn = g−1
n Γgn to Γ′

n = g−1
n Γ′gn. By compactness of X

and Y , we can pass to a subsequence such that Γn and Γ′
n converge geometrically

to groups Γ∞ and Γ′
∞ that are conjugates of Γ and Γ′. Then F∞ conjugates

Γ∞ to Γ′
∞, so X and Y are isometric. With more care one can check that the

isometry is in the homotopy class of f .
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Notes. Bowen used this fact to prove that the limit set of a quasifuchsian group
is either a round circle or a Jordan curve of Hausdorff dimension d > 1 [Bo].

6.10 Ahlfors’ finiteness theorem

We now turn to results which control much more general hyperbolic 3-manifolds,
with the constraint that M3 = H3/Γ is compact replaced by the assumption
that π1(M3) is finitely-generated.

Recall that the action of a Kleinian group on its domain of discontinuity Ω
is properly discontinuous.

Theorem 6.24 (Ahlfors’ finiteness theorem) Let Γ ⊂ Isom+(H3) be a finitely-
generated torsion-free Kleinian group. Then the quotient complex 1-manifold
X = Ω/Γ is isomorphic to the complement of a finite set in a finite union of
compact Riemann surfaces.

Corollary 6.25 The components of Ω fall into finitely many orbits under the
action of Γ.

Corollary 6.26 The domain of discontinuity has no wandering domain; in
fact, the stabilizer ΓU of any component U is infinite.

If Γ is elementary, then Ω/Γ is isomorphic to Ĉ, C, C∗ or a torus C/L, so
the conclusion of the finiteness theorem holds.

Let us assume from now on that Γ ⊂ Aut(Ĉ) is an N -generator nonelemen-
tary Kleinian group. This condition implies that the centralizer of Γ in Aut(Ĉ)
is finite, and some of the results below will hold under that slightly weaker
hypothesis.

We will start by proving the slightly weaker statement established in Ahlfors’
original paper [Ah1]:

Theorem 6.27 If Γ has N generators, then dim Teich(Ω/Γ) ≤ 3N − 3.

Remarks. The bound is sharp: an N -generator Schottky group has quotient
surface X of genus g = N , satisfying dim Teich(X) = 3g − 3.

While it is true that any connected Riemann surface of infinite hyperbolic
area has an infinite-dimensional Teichmüller space, the result above does not
exclude the possibility that X contains infinitely many components isomorphic
to the triply-punctured sphere Y = Ĉ− {0, 1,∞} (since dim Teich(Y ) = 0).

The proof has two main ingredients — the cohomology of deformations, and
an estimate for quasiconformal vector fields.

Cocycles and group cohomology. Let G be a group, and A a G-module. A
1-cocycle is a map ξ : G→ A such that

ξ(gh) = ξ(g) + g · ξ(h).
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Such a cocycle is also called a crossed homomorphism, since it coincides with a
homomorphism when G acts trivially on A. A 1-coboundary is a cocycle of the
form

ξ(g) = g · a− a

for some a ∈ A. The quotient space, (cocycles)/(coboundaries), gives the group
cohomology H1(G, A).

One can view the group H1(G, A) as classifying affine actions of G on A of
the form g(a) = g · a + ξ(a), up to conjugacy by translation. This explains the
cocycle rule: we need to have

(gh)(a) = gh · a + ξ(gh) = g · (h · a + ξ(h)) + ξ(g) = gh · a + g · ξ(h) + ξ(g).

The action g(a) = g · a is considered trivial. It is conjugate to g(a + b) − b =
g · a + (g · b − b), so the coboundary ξ(g) = g · b− b is also considered trivial.

Holomorphic vector fields and deformations. Let G = PSL2(C), and let
A = sl2(C) be the Lie algebra of holomorphic vector fields on the sphere. We
have dim sl2(C) = dimG = 3. The adjoint action makes A into a G-module.
We can regard an element X ∈ sl2(C) as a matrix or as a vector field, in terms
of which the action can be written

g · X = gXg−1 = g∗(X).

Lemma 6.28 If Γ is a nonelementary N -generator Kleinian group, then

dimH1(Γ, sl2(C)) ≤ 3N − 3.

Proof. The space of cocycles is at most 3N dimensional since a cocycle is
determined by its values on generators. Since the centralizer of Γ is trivial,
the space of coboundaries is isomorphic to sl2(C), hence 3-dimensional. The
difference gives the bound 3N − 3.

The group H1(Γ, sl2(C)) can be interpreted as the tangent space to the
variety of homomorphisms from Γ into G, modulo conjugacy, at the inclusion.
That is, if ρt : Γ→ G is a 1-parameter family of representations, with ρ0 = id,
and we set

ξ(g) =
d

dt
ρt(g)g−1,

then ξ(g) gives a cocycle with values in sl2(C). This cocycle is a coboundary iff
to first order we have ρt(g) = γtgγ−1

t , i.e. if the deformation is by conjugacy.

From Beltrami differentials to cocycles. Now let M(X) be the space of

L∞ Beltrami differentials on X , or equivalently the space of Γ-invariant µ on Ĉ
supported on Ω. We now define a natural map

δ : M(X)→ H1(Γ, sl2(C)).

Namely, we solve the equation ∂v = µ and set δµ = ξ where

ξ(g) = g∗(v)− v.
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Since µ is Γ-invariant, we have ∂ξ(g) = 0, so ξ(g) is indeed a holomorphic vector
field and therefore an element of sl2(C). Note that the solution to ∂v = µ is
only well-defined modulo sl2(C), but changes v by an element of sl2(C) only
changes ξ by a coboundary.

The idea of the construction is that µ ∈ M(X) should correspond to Rie-
mann surface Xµ complex structure deformed infinitesimally in the direction µ,
plus a quasiconformal map f : X → Xµ with complex dilatation an infinitesimal
multiple of µ. Since f is infinitely close to the identity, it should be represented
by a vector field v. But the vector field does not quite live on X , because the
target of f is Xµ rather than X . On the universal cover, v is really well-defined,
and its failure to live on X is measured by the cocycle ξ(g).

Quadratic differentials. Let Q(X) be the Banach space of holomorphic
quadratic differentials on X with finite L1-norm: ‖φ‖ =

∫
X |φ|. There is a

natural pairing M(X)×Q(X)→ C given by

〈φ, µ〉 =

∫
φµ.

Since 〈φ,φ/|φ|〉 =
∫
|φ|, the pairing descends to a perfect pairing on M(X)/Q(X)⊥×

Q(X). The quotient pairing is exactly that between the tangent space TX Teich(X)
and the cotangent space Q(X) = T∗

X Teich(X).
Let us say µ ∈ M(X) is trivial if µ ∈ Q(X)⊥; that is, if

∫
µφ = 0 for all

φ ∈ Q(X), or equivalently if [µ] represents the zero tangent vector to Teichmüller
space.

Let V (X) be the space of quasiconformal vector fields on X , and let ‖v‖X =
sup ρX(z)|v(z)| denote the supremum of the hyperbolic length of v.

Lemma 6.29 If δµ = 0, then ∂v = µ has a Γ-invariant solution vanishing on
the limit set.

Proof. If δµ = 0, then we can modify any solution v by a holomorphic vector
field to obtain ξ(g) = 0 for all g; then v is Γ-invariant. Now if z ∈ Λ is a
hyperbolic fixed-point of an element g ∈ Γ, then g′(z) -= 1, so the condition
g∗(v) = v implies v(z) = 0. Such points are dense in the limit set, so v|Λ = 0.

Lemma 6.30 Let v be a quasiconformal vector field on Z = Ĉ − {0, 1,∞},
vanishing at 0, 1 and ∞. Then ‖v‖Z , the maximum speed of v in the hyperbolic
metric on Z, is finite.

Proof 1. The vector field v has an |x log x| modulus of continuity, which exactly
balances the 1/|x logx| singularity of the hyperbolic metric at the punctures
0, 1,∞.

Proof 2. The Teichmüller space of the 4-times punctured sphere is isometric
to Z by the cross-ratio map. Thus the hyperbolic length of v(z) is the same
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as the Teichmüller length of the deformation of Ĉ− {0, 1,∞, z} defined by ∂v,
which is controlled by ‖∂v‖∞.

Proof 3. Let µ = ∂v. By linearity we can assume ‖µ‖∞ = 1. Let φt : Ĉ → Ĉ
be the unique holomorphic motion fixing 0, 1 and∞ and with µ(φt) = tµ. Then
f(t) = φt(z) gives a holomorphic map f : ∆→ Z. By the Schwarz lemma, with
w = d/dz, we have

‖v(z)‖X = ‖Df(w)‖X ≤ ‖w‖∆ = 2.

Corollary 6.31 If v is a quasiconformal vector field on a domain Ω ⊂ Ĉ, and
v|∂Ω = 0, then ‖v‖Ω is finite.

Proof. At any point z ∈ Ω we can find three points {a, b, c} in ∂Ω such that
the hyperbolic metric on Ω at z is comparable to the hyperbolic metric on
Ĉ− {a, b, c}. But the length of v(z) in the hyperbolic metric on Ĉ− {a, b, c} is
bounded.

Lemma 6.32 If v ∈ V (X) has ‖v‖X < ∞ then µ = ∂v is trivial. In other
words, if v has bounded hyperbolic speed, then

∫
µφ = 0 for all φ ∈ Q(X).

Proof. Let ρ be the hyperbolic metric on X , and fix φ ∈ Q(X). Let X0 be a
component of X , and consider a large ball B(p, r) ⊂ X0. Then we have

∫

X0

|φ| =

∫ ∞

0
dr

∫

∂B(p,r)
|φ|/ρ <∞.

Integrating by parts and using the fact that ∂φ = 0, we find:
∫

B(p,r)
φ(∂v) =

∫

∂B(p,r)
φv.

Now the sup-norm of ρv is bounded, while the L1-norm of |φ|/ρ tends to zero as
r → ∞, so we can conclude that

∫
X0

φ∂v = 0. Since X0 and φ were arbitrary,

we find µ = ∂v ∈M(X) is trivial.

Proof of Theorem 6.27. By the preceding lemmas, we have

Ker δ ⊂ Q(X)⊥.

Indeed, if δµ = 0, then µ = ∂v for a Γ-invariant v vanishing on ∂Ω = Λ. Then v
descends to a quasiconformal vector field on X with boundary hyperbolic speed,
and hence µ = ∂v is trivial, i.e. µ belongs to Q(X)⊥.
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Since the pairing between Q(X) and M(X)/Q(X)⊥ is perfect, we have:

dimQ(X) = dimM(X)/Q(X)⊥

≤ dimM(X)/ Ker δ

≤ dimH1(Γ, sl2(C)) ≤ 3N − 3.

Notes. Ahlfors’ finiteness theorem fails for hyperbolic 4-manifolds; see [KP].
For another viewpoint on boundedness of ‖v‖Ω when v|∂Ω = 0, one can use

the fact that a quasiconformal vector field has modulus of continuity x| log x|,
while the hyperbolic metric near a puncture is at worst like |dz|/|z|| log z|.

6.11 Bers’ area theorem

Theorem 6.33 (Bers) Let Γ be a nonelementary N -generator Kleinian group.
Then the hyperbolic area of X = Ω(Γ)/Γ is finite; in fact we have

area(X) ≤ 4π(N − 1).

Remark. By Gauss-Bonnet, once we know X has finite hyperbolic area, we
have area(X) = 2π|χ(X)|, and thus |χ(X)| ≤ 2N − 2. Again this inequality is
sharp for a handlebody of genus g: we have N = g and χ(X) = 2− 2g.

Proof. We follow the same lines as Ahlfors’ finiteness theorem, but replace
the space sl2(C) = H0(Ĉ,O(2)) of holomorphic vector fields with the space

Vd = H0(Ĉ,O(2d)) of holomorphic sections of the dth power of the tangent
bundle to Ĉ.

Then a typical element of Vd has the form v = v(z)(∂/∂z)d, and we have
dimVd = 2d + 1. As before, the space of 1-coboundaries is isomorphic to Vd, so
we have

dimH1(Γ,O(2d)) ≤ (2d + 1)(N − 1).

Then ∂v = µ is a (−d, 1)-form.
For the analytical part, let Md(X) denote the measurable (−d, 1)-forms on

X which are in L∞ with respect to the hyperbolic metric. Similarly let Qd(X)
denote the L1 holomorphic sections φ(z) dzd+1 of the (d + 1)st power of the
canonical bundle on X . Then there is a natural pairing between Md(X) and
Qd(X) as before.

We define
δd : Md(X)→ H1(Γ, Vd)

as before: by solving δv = µ and taking the resulting cocycle. Note that the lift
of µ to Ω satisfies

sup ρd−1(z)|µ(z)| <∞
where the hyperbolic metric ρ(z)|dz| satisfies ρ(z) → ∞ near ∂Ω. Thus µ is
locally in L∞ and the ∂-equation is solvable. (For example, any µ ∈ Md(H)
satisfies µ(z) = O(yd−1).)
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We have δµ = 0 iff there is a Γ-invariant solution to ∂v = µ. In this case,
v = 0 on Λ and one can again show v is bounded in the hyperbolic metric. Then
integration by parts can be justified, showing µ ∈ Qd(X)⊥. In conclusion, we
find dimQd(X) ≤ (2d + 1)(N − 1).

Now let us examine the integrability condition on φ = φ(z) dzd+1. On the
punctured disk, the hyperbolic metric is given by ρ = |dz|/|z log z|. So if we
have ∫

U
ρ1−d|φ| <∞

for some neighborhood U of z = 0, then φ has at worst a pole of order d at
z = 0.

Thus if X = X − P , where X is a compact surface of genus g and |P | = n,
then Qd(X) = H0(X,O((d + 1)K + dP )), where K is a canonical divisor. We
have deg(K + P ) = 2g − 2 + n = |χ(X)|. By Riemann-Roch, the dimension
of Qd(X) agrees with the degree of the divisor d(K + P ), up to an additive
constant, so we have

dimQd(X) = d|χ(X)| + O(1).

Comparing with the dimension of the group cohomology, we find

d|χ(X)| ≤ (2d + 1)(N − 1) + O(1).

Dividing by d and letting d→∞ we get the area theorem.

Notes. Bers’ theorem is proved in [Bers1]. The case of a Schottky group again
shows the bound is sharp.

It is desirable to have a geometric interpretation of the cohomology H1(Γ,O(d)),
generalizing the case H1(Γ,O(2)) which measures deformations of Γ inside
PSL2(C) and which appears in Ahlfors’ finiteness theorem. Such an interpre-
tation has been developed by Anderson. The idea is to use the embedding
P1 → Pn as a rational normal curve to extend the action of Γ to Pn, and then
investigate its deformations inside PGLn+1(C). See [And].

For example, SL2(Z) acts on both RP1 and RP2 = PR2+1. The latter action
comes from the Klein and Minkowski models for hyperbolic space. The action
of P1 is rigid but the action on P2 admits deformations; see [Sc].

6.12 No invariant linefields

Let Γ ⊂ Isom(H3) be a finitely-generated Kleinian group. In this section we will
show:

Theorem 6.34 (Sullivan) The limit set Λ(Γ) supports no measurable, Γ-invariant
field of tangent lines.

Equivalently, if µ ∈M(Ĉ) is a Γ-invariant Beltrami differential, and if µ = 0
outside Λ, then µ = 0 a.e.
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Let Jg(x) = |γ′(x)|2σ denote the Jacobian determinant of g at x for the
spherical metric. If Jg(x) = 1 on a set of positive measure, then g is an isometry
in the spherical metric and g has a fixed-point in H3. Since Γ is torsion-free, we
conclude that for almost every x, the map

g +→ Jg(x)

gives an injection of Γ into (0,∞).

We begin with a general analysis of the action of Γ on an invariant set E ⊂ Ĉ
of positive measure. The measurable dynamical system (Γ, E) is conservative
if for any A ⊂ E of positive measure, we have m(A ∩ gA) > 0 for infinitely
many g ∈ Γ. At the other extreme, (Γ, E) is dissipative if it has a ‘fundamental
domain’ F ⊂ E, meaning E =

⋃
Γ gF and m(F ∩ gF ) = 0 for all g -= e.

Example: f(z, t) = (e2πiθx, t) gives a conservative action of Z on E = S1 ×
[0, 1]. Note that f is far from ergodic.

Lemma 6.35 Let C = {x ∈ E :
∑

Γ Jg(x) = ∞} and let D = E − C. Then
(Γ, C) is conservative and (Γ, D) is dissipative.

Proof. Suppose A ⊂ C has positive measure but m(A ∩ gA) = 0 for all g
outside a finite set G0 ⊂ G. Then any point of C belongs to at most n = |G0|
translates of A. It follows that

∫

A

∑

Γ

Jg(x) dm ≤ n · m(C) <∞,

contrary to the definition of C. Thus (Γ, C) is conservative.
To show (Γ, D) is dissipative, let F ⊂ D be the set of y such that Jg(y) < 1

for all g ∈ Γ. Clearly gF is disjoint from F for g -= e, because Jg−1(g(y)) =
1/Jg(y) > 1 for all g(y) ∈ gF .

Now for almost any x ∈ D, the values {Jg(x) : g ∈ Γ} ⊂ R are discrete
(by summability) and correspond bijectively to the elements of Γ. Thus there
is a unique g maximizing Jg(x), and therefore y = g(x) belongs to F . Thus⋃

Γ gF = D and (Γ, D) is dissipative.

Lemma 6.36 Let Γ ⊂ Isom(H3) be a finitely-generated Kleinian group with
limit set Λ. Then (Γ, Λ) is conservative.

Proof. Suppose not. Then there is a set D ⊂ Λ of positive measure such that
(Γ, D) is dissipative. Let F ⊂ D be a measurable fundamental domain for Γ,
and let M(F ) ⊂M(Ĉ) denote the space of L∞ Beltrami differentials supported
on F . Each µ ∈ F can be freely translated by Γ to give a Γ-invariant Beltrami
differential µ′ supported on D ⊂ Λ. Thus the space M(Λ)Γ of Γ-invariant
differentials supported on the limit set is infinite-dimensional.

On the other hand, the natural map

δ : M(Λ)Γ → H1(Γ, sl2(C))
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is injective. Indeed, if δµ = 0, then the equation ∂v = µ has a solution vanishing
on Λ, which implies µ = 0 on Λ. Since Γ is finitely-generated, the cohomology
group on the right is finite-dimensional, so we obtain a contradiction.

Lemma 6.37 Let (Γ, E) be conservative and fix ε > 0. Then there is a g ∈
Γ− {e} such that |Jg(x)− 1| < ε on a set of positive measure.

Proof. Suppose not. Then we can find ε > 0 such that |Jg(x) − 1| < ε =⇒
g = e a.e. Therefore the image of g +→ Jg(x) is discrete a.e.: since if Jg(x) and
Jh(x) are close, then J(hg−1)(y) is close to one at y = g(x).

Let E+ = {x : Jg(x) ≥ 1 ∀g ∈ Γ}. Then g(E+) ∩ E+ = ∅ for any g -= e,
since J(g−1)(g(x)) = 1/Jg(x) < 1 for x ∈ E+. By conservativity, we have
m(E+) = 0. By similar reasoning, we conclude that for a.e. x there are unique
elements g−, g+ ∈ Γ (depending on x) such that

Jg−(x) < 1 < Jg+(x)

and no elements have Jacobians closer to 1 at x. Then the maps F± : E → E
defined by F±(x) = g±(x) are inverses of one another, so both are injective.
But F+ is uniformly expanding, which is impossible since the total measure of
E is finite.

Inducing. The preceding result is obvious if E = S2
∞. Indeed, for any g ∈

IsomH3, the Jacobian Jg(x) is continuous and
∫

S2
∞

Jg = 1, so the Jacobian is

close to one on a set of positive measure.
For applications it is useful to have the following stronger statement.

Lemma 6.38 Let (Γ, E) be conservative and fix ε > 0 and a set F ⊂ E of
positive measure. Then there is a g ∈ Γ − {e} and a set of positive measure
A ⊂ F such that g(A) ⊂ F and |Jg(x)− 1| < ε for all x ∈ A.

The most conceptual formulation of this result is via inducing. First we must
generalize our setting. A partial automorphism g : E !!" E is an invertible
measurable map whose domain and range are in E. A collection of partial
automorphisms G forms a pseudo-group if whenever the composition g ◦ h of
g, h ∈ G is defined on a set of positive measure A, we have g ◦ h = k|A for
some k ∈ G. We say (G, E) is conservative if whenever m(A) > 0, we have
m(A ∩ g(A)) > 0 for infinitely many g ∈ G.

Now suppose Γ is a group acting on an invariant set E, and suppose F ⊂ E
has positive measure. Let

G = Γ|F = {g|F ∩ g−1(F ) : g ∈ Γ}.

Then G is a pseudo-group acting on F . If (Γ, E) is conservative, so is (G, F ).
It is then easy to see that Lemma 6.37 applies just as well to pseudo-group

actions. Applying the Lemma to Γ|F yields Lemma 6.38.
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Theorem 6.39 Let Γ be any Kleinian group, and suppose (Γ, E) is conserva-

tive, E ⊂ Ĉ. Then E supports no Γ-invariant linefield.

Remark. For this Theorem we do not assume Γ is finitely generated. This
very general statement shows that the Γ-invariant complex structure is unique
on the conservative part of the dynamics; any variation must be supported on
the dissipative part, where it can be freely specified in a measurable fundamental
domain.

Proof. Suppose to the contrary that E supports a Γ-invariant line field, spec-
ified by a Beltrami differential with |µ| = 1. Fix a small ε > 0. Choose coor-
dinates so that z = ∞ is not fixed by any g -= e in Γ. Writing µ = µ(z)dz/dz,
we can find a compact set of positive measure K ⊂ C on which the linefield has
nearly constant slope. Rotating the linefield, we can assume the slope is nearly
one, i.e. |µ(z)− 1| < ε for all z ∈ K.

Almost every point of K is a point of Lebesgue density. So shrinking K, we
can assume there exists an r0 > 0 such that for any z ∈ K and r < r0, we have
|µ(w) − 1| < ε for 99% of the points w ∈ B(z, r)

By the measure-theory Lemma above, for any δ > 0 there is a z ∈ K and
g -= e in Γ such that g(z) ∈ K and |Jg(z)− 1| < δ. (In fact there is a positive
measure set of such z, but only one is necessary to get a contradiction.) Since
g(∞) -= ∞, we can write g = I ◦ R where I : C → C is a Euclidean isometry
and R : Ĉ→ Ĉ is a reflection through a circle S = S(p, s).

Now the Möbius transformation g is determined by its 2-jet, g(z), g′(z) and
g′′(z). The first two terms range in a compact set. By taking K small, we can
exclude g from any finite subset of Γ, so g′′(z) must be large. But this means
the radius s of S is small. So with a suitable choice of δ, we can assume s: r.
Since Jg(z) = JR(z) = s2|z−c|−2 is close to one, the point z lies in the annulus
A = {w : s/2 < |w − c| < 2s} about S, which satisfies R(A) = A.

But it is clear that R sends the parallel linefield on A to a linefield that is
very far from parallel. On the other hand, g(A) = I(R(A)) = I(A) is isometric
to A, so it still has diameter 2s : r and it contains g(z) ∈ K. Thus µ|A and
µ|g(A) are both nearly 1, which is impossible.

Notes.

1. Sullivan’s proof appears in [Sul2]; see also [Ot, Ch. 7]. One of its first
applications, as explained in [Ot], was in the endgame of Thurston’s con-
struction of hyperbolic structures on 3-manifolds that fiber over the circle.
For a survey of the ergodic theory of Kleinian groups, see [Sul3].

2. Attached to any measurable dynamical system (Γ, E) there is a von Neu-
mann algebra A. To construct A, one first forms a bundle of Hilbert
spaces H → E/Γ whose fiber over Γx is #2(Γx). Then A is the space of
L∞ sections of the bundle of operator algebras B(H).

One can also describe A as a space of matrices of the form T = (Txy)
with x, y ∈ E, such that Txy = 0 unless x and y lie in the same orbit.
Composition is defined by (ST )xz =

∑
y SxyTyz.
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The space L∞(E) forms the commutative subalgebra of diagonal operators
in A. That is, for each x ∈ E and f ∈ L∞(E), we have a bounded operator

Fx : #2(Γx)→ #2(Γx)

defined by Fx(aγx) = f(γx)aγx, and these fit together to give a section of
B(H). The group Γ also embeds in A, acting by a unitary shift of each
Hilbert space #2(Γx).

The center of A corresponds to L∞(E/Γ), so A is a factor (the center is
trivial) iff (Γ, E) is ergodic. It can also be shown that A admits a trace (a
linear functional satisfying tr(ab) = tr(ba) and tr(1) = 1) iff (Γ, E) admits
an invariant measure. In this case, (Γ, E) is said to be a factor of type
II1.

The proof that Λ supports no Γ-invariant line field (when Γ is finitely
generated) also shows that (Γ, Λ) is an algebra of type III1 — it admits
no invariant measure, and the ‘ratio set’ of Radon-Nikodym derivatives is
dense in R∗ for measure equivalent to Lebesgue.

3. A nice example of an infinitely-generated group Γ which is quasiconfor-
mally rigid is the group generated by reflections in a hexagonal packing
of circles in C. Here the quotient Riemann surface Ω/Γ is a countable
union of triply-punctured spheres (corresponding to the interstices in the
packing), so its Teichmüller space is trivial.

A fundamental domain F for Γ is the region above the hemispheres resting
on the circles in the hexagonal packing. The set E = F ∩ S2

∞ is just the
closure of the union of the interstices, and it serves as a fundamental
domain for the dissipative part of the action on S2

∞. Since m(E ∩Λ) = 0,
the action on the limit set is conservative, so M(Λ)Γ = 0. Therefore Γ is
rigid.

Using the fact, one can show that circle packings furnish an algorithm
for the construction of Riemann mappings [RS]. This algorithm has been
used to apply conformal mappings to the human brain.

6.13 Sullivan’s bound on cusps

Theorem 6.40 (Sullivan) Let Γ be a nonelementary N generator Kleinian
group. Then the number of cusps of M = H3/Γ is at most 5N − 5.

The idea of the proof is similar to the proof of Bers’ area theorem, but with
an analytical twist: we allow distributional Beltrami coefficients.

More precisely, let C ⊂ Λ be the countable set of cusps of Γ, i.e. fixed-points
of parabolic elements. Let Md(C) be the vector space of Γ-invariant (−d, 1)-
forms on C with the quality of measures. That is, µ ∈ Md(C) is locally of the
form µ(z)dz/(dz)d, where µ(z) is a measure supported on C.

Theorem 6.41 For d ≥ 2, we have dimMd(C) = |C/Γ|.
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Proof. We claim that for any cusp c ∈ Ĉ,

∑

Γ/Γc

‖γ′(c)‖3 <∞.

Here Γc is the stabilizer of c. Note that γ′(c) is well-defined since γ′(c) = 1
for γ ∈ Γc. Then ‖γ′(c)‖ is bounded above by the Euclidean volume of the
horoball (in the ball model for H3) resting on γ(c). Since these are disjoint we
get convergence.

Now consider, for c ∈ C, the measure-differential µc = δ(z − c)dz/(dz)d.
Then |µc| transforms by |γ′(c)|2+d (the 2 comes from the action on area densities
the sphere), so

µ =
∑∑

Γc

γ∗µc

converges to an element of Md(C) supported on Γc. Since µ’s with different
supports are linearly independent, we obtain the bound on dim Md(C).

Proof of Theorem 6.40. Solving the ∂-equation, we have as usual a cocycle
map δ : Md(C) → H1(Γ, Vd). We claim δ is injective. Indeed, if δµ = 0, then
∂v = µ for some Γ-invariant d-field v = v(z)(d/dz)d. Since the fundamental
solution 1/z to the ∂-equation µ is in L1

loc, so is v. Now v is holomorphic on Ω,
so it vanishes there — the Riemann surface Ω/Γ admits no holomorphic vector
fields or d-fields. On the other hand, v also vanishes on the limit set by a variant
of the no-invariant linefields theorem. Thus v = 0.

Taking d = 2, we find

|C/Γ| = dimM2(C) ≤ dimH1(Γ, V2) ≤ 5N − 5.

Note. Sullivan’s bound on the number of cusps appears in [Sul1]. (In this
reference, the bound of 5N − 5 is misstated as 5N − 4.)

6.14 The Teichmüller space of a 3-manifold

Let M be a compact 3-manifold. A convex hyperbolic structure on M is a
Riemann metric g of constant curvature −1 such that ∂M is locally convex.
Equivalently, for any homotopy class of path γ between two points in int(M),
the shortest representative of γ also lies in int(M).

Given such a metric, the developing map M̃ → Hn is injective and its image
is convex. Thus (M, g) can be extended to a complete hyperbolic manifold N
in a unique way. The manifold N = Hn/Γ is geometrically finite and indeed
convex cocompact: that is, the convex core of N , given by

core(N) = hull(Λ)/Γ ⊂ N,
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is compact.
Conversely, for any convex cocompact hyperbolic manifold N , a unit neigh-

borhood M of its convex core carries a (strictly) convex hyperbolic structure.
We can complete N to a Kleinian manifold

N = (Hn ∪ Ω)/Γ,

with a complete hyperbolic metric on its interior and a conformal structure on
its boundary. The manifolds M and N are homeomorphic.

In analogy with the Teichmüller space of a Riemann surface, given a compact
oriented 3-manifold M , we can consider the space GF (M) of all geometrically
finite hyperbolic manifolds marked by M .

A point (f, N) ∈ GF (M) is represented by a homeomorphism

f : M → N,

where N is an oriented Kleinian manifold, and f respects orientations. As usual,
two pairs (f1, N1), (f2, N2) are equivalent if there is an orientation-preserving
isometry ι : N1 → N2 and an h : M →M homotopic to the identity such that

M
f1−−−−→ N1

h

- ι

-

M
f2−−−−→ N2

commutes.

Theorem 6.42 Let M be a compact 3-manifold admitting at least one convex
hyperbolic structure. Then there is a naturally isomorphism

GF (M) ∼= Teich(∂M)

given by
(N, f) +→ (∂N, f |∂M).

6.15 Hyperbolic volume

Let (θ) = −
∫ θ
0 log |2 sin t| dt be the Lobachevsky function. An ideal tetrahe-

dron T (α,β, γ) is determined by its dihedral angles, which sum to π.

Theorem 6.43 The hyperbolic volume of T (α,β, γ) is given by (α) + (β) +
(γ).

Idea of the proof.

Corollary 6.44 The regular tetrahedron has maximum volume.

Proof. By Lagrange multipliers, at the maximum of (α)+ (β)+ (γ) subject
to α + β + γ = π we have ′(α) = ′(β) = ′(γ). Since ′(θ) determines
| sin θ|, this means sin(α) = sin(β) = sin(γ). By the law of sines, this means the
associated triangle is equilateral.
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Figure 17. Dissection of an ideal tetrahedron into 6 pieces.

Ideal octahedron, Whitehead link, Apollonian gasket, Scott’s theo-
rem.

Theorem 6.45 Surface groups are LERF.

This means every finitely generated subgroup of π1(Σg) comes from a sub-
surface of a finite-sheeted covering space.

Corollary 6.46 Every closed geodesic on a closed surface is covered by a simple
geodesic on a finite cover.

The proof is based in part on:

Theorem 6.47 H is exhausted by convex regions tiled by right pentagons.

We note that in fact the layers of pentagons surrounding a given one always
form convex regions. Indeed, the total number of edges en and right angles an

around the nth layer satisfies
(

an+1

en+1

)

=

(
2 1

3 2

)(
an

en

)

·

By Gauss-Bonnet the total number of pentagons pn out to generation n is an−4.
Thus one can easily compute p1, p2, . . . = 1, 11, 51, 201, 761, 2851, 10651, . . . with
pi ∼ Cλi, λ = 2 +

√
3.

Three dimensions. It is also known that the Bianchi groups SL2(OD) are
LERF, and in particular that the figure eight and Whitehead link complements
are LERF. However the proof is much more difficult in 3-dimensions, because a
finitely-generated subgroup of a geometrically finite group need not be geomet-
rically finite. In particular, the proof for the Whitehead link complement does
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Figure 18. Tiling by right pentagons.

not just follow from commensurability with a reflection group, as indicated in
[Scott].

There are also now examples of 3-manifold groups which are not LERF;
however these examples are torus-reducible.

Question. Is the fundamental group of every compact hyperbolic 3-manifold
LERF?

Question. Is every surface subgroup of a compact hyperbolic 3-manifold rep-
resented by a virtually embedded surface?

Remark: Apollonian gasket. The submanifold of M obtained by cutting
along a totally geodesic triply-punctured sphere (the disk spanning one compo-
nent of W ) has, as its limit sets, the Apollonian gasket.

Remark: Vol3 and volume coincidences. There is a closed hyperbolic
3-manifold whose volume is a rational multiple of the volume of the figure
eight knot complement [JR]. In general, for an arithmetic hyperbolic manifold,
vol(M) is a rational multiple of ζk(2), where k is the invariant trace field of
M ; but the commensurability class of M depends on the associated quaternion
algebra over k.

In general a quaternion algebra over a quadratic imaginary field is uniquely
determined by specifying the even number of places where it ramifies. It gives
a cocompact lattice unless this set of places is empty, in which case Q ∼= M2(k).

7 Holomorphic motions and structural stability

In this section we study holomorphic motions, and their use in constructing
conjugacy for holomorphic dynamical systems.
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7.1 The notion of motion

A holomorphic motion of a set A ⊂ Ĉ over a pointed complex manifold (Λ,λ0)

is a map φ : Λ×A→ Ĉ, written (λ, a) +→ φλ(a), such that:

1. φλ(a) is injective for each fixed λ;

2. φλ(a) is holomorphic for each fixed a; and

3. φλ0
(a) = a.

Usually we take (Λ,λ0) = (∆, 0).

Examples.

1. Given a torsion-free Fuchsian group Γ ⊂ Aut(∆), the map φλ(γ(0)) = γ(λ)
gives a holomorphic motion of A = Γ · 0 over (∆, 0).

2. The natural map sending A = Z⊕Zi to Z⊕λZ gives a holomorphic motion
over (H, i).

3. Let E ⊂ Ĉ be a finite set, a -∈ E, and A = E ∪ {a}. Let φλ|E = id and
φλ(a) = π(λ), where π : (∆, 0)→ (Ĉ−E, a) is the universal covering map.
Then φ is a holomorphic motion of A over (∆, 0).

4. Let f : H→ H be an earthquake, and let Γ ⊂ Aut(H) be the set of Möbius
transformations that match f on at least one geodesic. Then Γ is not in
general a group, but it does have the property that γ1◦γ−1

2 is never elliptic
if γ1 -= γ2 in Γ. Therefore λ +→ γ(λ) is a holomorphic motion of Γ · 0 over
(∆, 0).

5. Let µ be a Beltrami differential on Ĉ with ‖µ‖∞ < 1, and let φλ : Ĉ→ Ĉ be
the unique quasiconformal map with dilatation λµ fixing (0, 1,∞). Then
φ gives a holomorphic motion of the whole sphere.

Theorem 7.1 A holomorphic motion of A over (∆, 0) extends uniquely to a
holomorphic and continuous motion of A. For each fixed λ, the map φλ : A→
Ĉ extends to a (1 + k)/(1 − k)-quasiconformal homeomorphism of the sphere,
k = |λ|.

Topological remarks. Given A ⊂ Y , a continuous motion of A over (T, t0)
is a continuous map φ : T × A → Y such that φt is injective for each t, and
φt0 = id.

A continuous motion of A need not extend to a continuous motion of A; for
example, the original might not be uniformly continuous, even though T × A
is compact. A simple counter-example is providing by sliding an infinite set of
counters from one end of an abacus to another, moving the later counters faster
and faster.

Also, a continuous motion of a compact set A ⊂ S2 need not extend to
a motion of S2. An counter-example is provided by infinitely braiding A =
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{0, 1, 2−1, 3−1, 4−1, . . .}. If we twist the strands through (1, 1/2) once around
during time [0, 1/2], then those around (1/3, /1/4) once around during time
[1/3, 1/4], etc. we obtain a ‘wild braid’ in S2 × [0, 1] and hence a motion that
cannot be extended to the sphere. (For a tameness criterion for infinite braids,
see [CJ].)

On the other hand, any continuous motion of a finite set A ⊂ S2 does
extend — indeed a ‘radial extension’ can be constructed for small time near
each point. Also it is worth noting that there are no “knotted” Cantor sets in
S2; if A ⊂ S2 is a Cantor set, then any homeomorphism f : A→ S2 extends to
a homeomorphism of S2.

7.2 Stability of the Julia set

Let f : X × Ĉ→ Ĉ be a holomorphic family over rational maps over a complex
manifold X .

Theorem 7.2 The following conditions are equivalent.

1. The number of attracting cycles N(ft) is constant.

2. The periods of the attracting cycles of ft are locally bounded.

3. Every periodic cycles of ft is attracting, repelling or persistently indiffer-
ent.

4. The number of critical points in the Julia set is locally constant.

5. The Julia set J(ft) moves continuously in the Hausdorff topology.

6. The Julia set J(ft) moves locally by a conjugating holomorphic motion.

If the critically points are locally given by holomorphic functions ci(t), then these
conditions are equivalent to the functions

F = {t +→ fn
t (ci(t))}

forming a normal family.

The proof is based on extending the holomorphic motion of the repelling periodic
points to a holomorphic motion of the whole Julia set [Mc4, §4]; see also [MSS]
[Ly].

When any of these conditions hold, we say ft(z) is a stable family of rational
maps. The largest open set Xstable ⊂ X on which these conditions hold is the
stable regime. Since the set where N(ft) achieves its maximum is open and
dense, we have:

Theorem 7.3 The stable regime is open and dense for any holomorphic family
of rational maps.
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Remark. The unstable set X − U can have positive measure by a result of
Rees; see [Rs].

Evidentally the number of attracting cycles is locally constant at f0 if f0 is
expanding, since all critical points are already accounted for. This shows:

Theorem 7.4 If f is expanding then f is stable in Ratd, and hence in any
holomorphic family.

Examples.

1. f(z) = z2 is expanding; thus J(z2 + ε) is a quasicircle. Note that z2 and
z2 + ε are not topologically conjugate on the whole sphere, only on their
Julia sets.

2. f(z) = z2−2 is unstable. For example the critical point z = 0 lies in J(f)
but escapes for infinity for z2 − 2− ε. One can also perturb f slightly to
create attracting cycles of arbitrarily high order.

3. f(z) = z2 + 1/4 is unstable. In fact under a slight perturbation any point
in K(f) can be made to lie in the Julia set.

4. f(z) = z2 − 1 is stable and hyperbolic.

Problem. In the expanding case, reconstruct the topological dynamical system
f : J(f)→ J(f) from a finite amount of combinatorial data.

Alternative proof that expanding =⇒ stable. Let f0 be an expanding
map, f0 : U0 → V a covering map as before with J(f0) ⊂ U0. We can arrange
that V −U0 is a smoothly bounded domain. We wish to construct a topological
conjugacy between f0 and a small perturbation ft.

To do this, set Ut = f−1
t (V ); then ft : Ut → Vt is also a covering map.

Choose a homeomorphism φ0 : V → V such that φ0 ◦ f0(z) = ft ◦ φ(z) when
f0(z) ∈ V − U . Using the lifting property of covering maps, define φn+1 =
f−1

t ◦ φn ◦ f0 on U , and keep its old values on V − U . Then using expansion it
is easy to see that φn is uniformly Hölder continuous. Taking a limit and using
the fact that

⋂
f−n
0 (V ) = J(f) is nowhere dense, we obtain a conjugacy φ.

Conjecture 7.5 A rational map f ∈ Ratd or Polyd is stable iff f is expanding.

In the case of degree 2 polynomial, this conjecture implies fn
c (0) converges

to an attracting cycle whenever c lies in the interior of the Mandelbrot set and
fc(z) = z2 + c.

Theorem 7.6 Expanding dynamics is dense in Poly2 iff there is no c such that
J(fc) has positive measure and carries an fc-invariant linefield.
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Note: a Beltrami differential µ(z)dz/dz determines a function on the tangent
space at each point, homogeneous of degree zero, by

µ(v) = µ(p)
dz

dz

(
v(p)

∂

∂z

)
= µ(p)

v(p)

v(p)
·

Thus µ(v) > 0 iff v(p) ∈ R ·
√

µ(p). The linefield associated to a Beltrami
differential µ is defined by

Lp = {v ∈ TpĈ : µ(v) > 0}

on the set where µ(p) -= 0.

Conjecture 7.7 Any rational map that carries an invariant line field on its
Julia set is double-covered by an integral endomorphism of a complex torus.

7.3 Extending holomorphic motions

We now discuss the problem of extending a holomorphic motion to the whole
sphere. We will prove a theorem from [BR].

Theorem 7.8 (Bers-Royden) Let φ : ∆× A→ Ĉ be a holomorphic motion.
Then after restricting to the disk of radius 1/3, there is an extension of φ to a
holomorphic motion

Φ : ∆(1/3)× Ĉ→ Ĉ.

The extended motion can be chosen such that µ(Φt) is a harmonic Beltrami

differential on Ĉ−A, in which case the extension is unique.

Recognizing holomorphic motions.

Theorem 7.9 Let φ : ∆ × Ĉ → Ĉ be a continuous motion of the sphere such
that φλ is quasiconformal for each λ. Then φλ is a holomorphic motion iff
µλ = µ(φλ) varies holomorphically as a function of λ.

Moreover, any holomorphically varying ‖µλ‖ < 1 arises from a holomor-
phic motion, unique up to composition with a holomorphically varying Möbius
transformation.

Example. Define

φλ(z) =

{
z + λ/z |z| ≥ 1,

z + λz |z| < 1.

Note that φλ maps the unit circle to an ellipse. We have µλ = µ(φλ) = λdz/dz
on ∆ on µ = 0 elsewhere, so µλ varies holomorphically.

The Ahlfors-Weill extension as a holomorphic motion. Let X be the
ball of radius 1/2 in the space of L∞ holomorphic quadratic differential φ on
H. Then X has the structure of an infinite-dimensional complex manifold. To
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each φ ∈ X we can associate the unique univalent map fφ : H→ Ĉ which fixes
(0, 1,∞) and satisfies Sf = φ. Thus we obtain a holomorphic motion

F : X ×H→ Ĉ

over (X, 0) defined by F (φ, z) = fφ(z).
Now the Ahlfors-Weill extension prolongs F to a motion of the whole sphere,

which we continue to denote by F . Examining equation 2.2 we see that for fixed
z ∈ −H, the extension g(z) = Mz(z) is a holomorphic function of f , and hence
of φ. Thus the Ahlfors-Weill extension not only prolongs f , it prolongs the
‘universal’ holomorphic motion of H, by (suitably bounded) univalent functions,
to a motion of the whole sphere.

Proof of the Bers-Royden Theorem 7.8. First consider the case where
the moving set A is a finite. Then Yλ = Ĉ− φλ(A) defines a holomorphic path
in Teich(X), X = Y0. By the Schwarz lemma, ∆(1/3) maps under the Bers
embedding to a holomorphically varying family of quadratic differentials φλ in
the ball of radius 1/2 in P (X). Thus there is a canonical quasiconformal map
fλ : X → Yλ. Its dilatation is given by

µ(fλ) = ρ−2
X φλ(z),

so it varies holomorphically and thus fλ defines a holomorphic motion of Ĉ.
To handle the general case, exhaust A by a sequence of dense and denser

finite sets.

Sections of the universal curve. The universal curve over Teichmüller space
is the complex fiber bundle Cg → Tg such that the fiber over [Y ] is Y itself. More
precisely, the universal curve is the quotient of Tg,1 by the subgroup π1(Σg) ⊂
Modg,1 coming from the kernel of the map Modg,1 → Modg. Alternatively, Cg

is the pullback of the natural fibration Mg,1 →Mg under the covering map (of
orbifolds) Tg →Mg.

From [Hub] we have following result.

Theorem 7.10 There is no holomorphic section of the universal curve over
Cg → Tg over Teichmüller space when g ≥ 3.

Sketch of the proof. A section of the universal curve lifts to a section s :
Tg → Tg,1 inverting the natural projection. Since the Teichmüller metric and
the Kobayashi metric coincide (Royden), s is an isometry. It follows that there
exists, for any X ∈ Tg and p = s(X) ∈ X , a unit-norm projection

P : Q(X − {p})→ Q(X)

(dual to the derivative of s at X). (Note that Q(X) naturally forms a subspace
of Q(X − {p}), namely the subspace of differentials holomorphic at p.) Using
Riemann-Roch and a differentiability argument, one shows such a projection
cannot exist.
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Remark. For genus 2, the 6 Weierstrass points provide sections.

Corollary 7.11 There exists a holomorphic motion

φ : U × (−H)→ Ĉ

where U ⊂ Cn is a bounded domain of holomorphy, that cannot be extended to
a holomorphic motion of the sphere.

Proof. Let U = Tg
∼= Teich(X). Using the construction of the Bers embed-

ding, for each Y ∈ Tg we obtain a univalent map fY : (−H) → Ĉ with contin-
uous boundary values. This gives the desired holomorphic motion, by setting
φ(Y, z) = fY (z). If it could be extended to the whole sphere, then for z ∈ H
we would have s(Y ) = φ(Y, z) ∈ ΩY . Passing to the quotient Y = ΩY /ΓY , we
would then obtain a section of the universal curve Cg → Tg, a contradiction.

S"lodkowski’s theorem.

Theorem 7.12 A holomorphic motion φ : ∆×A→ Ĉ extends to a holomorphic
motion of the whole sphere. The extension can be made equivariant in a suitable
sense.

See [Sl], [Dou]

7.4 Stability of Kleinian groups

We now turn to the notion of structural stability in families of Kleinian groups.
See [Bers3] and [Sul5] for more details.

Families of groups. A holomorphic family of representations (into Aut Ĉ)
over a complex manifold X is a map

ρ : X ×G→ Aut Ĉ,

where G is an abstract group, ρt(g) is a holomorphic function of t for each
g ∈ G, and ρt : G→ Aut Ĉ is a homomorphism of groups for each t ∈ X .

Two representations ρs and ρt are quasiconformally conjugate if there is a
quasiconformal map φ : Ĉ→ Ĉ such that φ ◦ ρs(g) = ρt(g) ◦ φ for every g ∈ G.

The next result shows faithfulness is enough to prove a strong form of struc-
tural stability.

Theorem 7.13 Let ρ : X × G → Aut Ĉ be a holomorphic family of faithful
representations over a connected complex manifold X. Then ρs and ρt are
quasiconformally conjugate for all s, t ∈ X.

Lemma 7.14 Let g, h ∈ Aut Ĉ be elements other than the identity, and let
G = 〈g, h〉 be the subgroup they generate. Then exactly one of the following
possibilities holds.
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1. G ∼= Z/2× Z/2. Then the fixed-points of g and h are disjoint.

2. G is an abelian group other than Z/2×Z/2. Then the fixed points sets of
g and h coincide.

3. [G, G] is an infinite, torsion-free group of parabolics. Then g and h share
exactly one fixed-point.

4. G is none of the above. Then the fixed-points of g and h are disjoint.

Proof. First suppose the fixed-points of g and h coincide. Then it is easy to
see G is abelian and not isomorphic to Z/2× Z/2. So the Lemma holds in this
case.

Now suppose g and h share one but not all fixed-points. (In particular they
are not both parabolic). Normalizing so the common fixed-point is at z = ∞,
we can assume G lies in the solvable subgroup of affine linear maps Aut C.
In particular, G is solvable, and [G, G] is an infinite torsion-free subgroup of
parabolic transformations. So the Lemma holds in this case as well.

Finally suppose g and h share no fixed-points. If G is abelian then g must
interchange the fixed-points of h, and similarly h must interchange the fixed-
points of g. Thus g2 = h2 = 1 and G ∼= Z/2 × Z/2. Next suppose [G, G] is
an infinite, torsion-free abelian group. Then [G, G] cannot consist entirely of
parabolics; otherwise they would all share the same fixed-point p, which would
also be fixed by g and h since [G, G] is normal. Thus G falls into the case ‘none
of the above’, and the Lemma is true in the case as well.

Isomorphic groups with different actions. The groups

G1 = 〈z +→ z + 1, z +→ −z〉,
G2 = 〈z +→ 2z, z +→ 1/z〉

are both isomorphic to Z/2 ! Z, but they have different fixed-point structures.
The generators of G1 have a common fixed-point and those of G2 do not. This
is the one instance where the isomorphism type of G does not determine the
fixed-point structure.

Proof of Theorem 7.13. Since X is connected, it suffices to prove the theorem
locally. Thus we can restrict to the case where X = ∆.

Notice ρt(g) is parabolic for one value of t iff it is parabolic for all values. Oth-
erwise tr ρt(g) would be a nonconstant holomorphic function passing through
the value 2; but then for some s and s we would have tr ρs(g) = 2 cos(π/n),
which implies ρs(gn) = 1, contradicting faithfulness.

Let Λt be the closure of the fixed points of the elements of Γt = ρt(G)
other than the identity. Then Λt is a closed, Γt-invariant set. Since ρt(g) is
parabolic iff ρ0(g) is parabolic, the fixed-points of individual elements move
holomorphically. By the preceding Lemma, fixed-points of g and h coincide for
ρ0 iff they coincide for all ρt. Thus Λt moves by a holomorphic motion, which
is also a conjugacy for the action of Γt.
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The action of Γt on Ĉ−Λt = Ωt is free. Thus if |Λt| < 3, we can extend it by
an orbit of Γt until |Λt| ≥ 3 and it is still moving by a holomorphic conjugacy.

Now let φt : ∆(1/3) × Ĉ → Ĉ be the Bers-Royden extension of the motion
of Λt. For any g ∈ G, the holomorphic motion

ψt = ρt(g)−1 ◦ φt ◦ ρ0(g)

is also an extension of the motion of Λt, with µ(ψt) harmonic. Since the Bers-
Royden extension is unique subject to this condition, we have ψt = φt.

In other words, by naturality the Bers-Royden extension commutes with the
action of G, and therefore it provides a quasiconformal conjugacy between ρ0

and ρt whenever |t| < 1/3. This proves the Theorem locally, and the global
version follows from connectedness of X .

Here is a variant:

Theorem 7.15 Let ρt : G→ Aut Ĉ be a holomorphic family of representations
over a connected base X. If ρt(G) is discrete and nonelementary for all t, then
all the representations are quasiconformally conjugate.

Representation varieties. Fix a finitely-generate group G. Let us suppose
G is non-elementary; that is, any abelian subgroup has infinite index.

Let V(G) denote the algebraic variety of irreducible representations ρ : G→
Aut Ĉ modulo conjugacy. The functions g +→ tr ρ(g) provide a smooth embed-
ding of V(G) into affine space. Let AH(G) ⊂ V(G) denote the subset of discrete,
faithful representations. Let CC(G) ⊂ AH(G) denote the set of faithful repre-
sentations whose image is a convex cocompact Kleinian group. It is easy to see
that CC(G) is open, and in fact each component of CC(G) is parameterized by
an appropriate Teichmüller space.

We can now formulate a central conjecture, analogous to the density of
expanding rational maps in Ratd.

Conjecture 7.16 Suppose G does not contain Z ⊕ Z. Then CC(G) is dense
in AH(G).

It is certainly not true in general that AH(G) is dense in V(G). Indeed, if
any component of V(G) has positive dimension, then a trace is non-constant
there, which leads to an open set of indiscrete groups. In fact we have the
following basic result:

Theorem 7.17 The set of discrete faithful representations AH(G) ⊂ V(G) is
closed.

Structural stability implies hyperbolicity. Because of the quasiconfor-
mal conjugacy result, it is natural to say that a Kleinian group Γ ⊂ Aut Ĉ is
structurally stable if all representations ρ : Γ → Aut Ĉ close to the identity are
injective — there are no new relations.

Equivalently, the structurally stable groups correspond to the interior of
AH(G). We then have:
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Theorem 7.18 (Sullivan) A structurally stable finitely-generated Kleinian group
Γ is convex cocompact.

Corollary 7.19 The set CC(G) coincides with the interior of AH(G).

In other words, we do not yet know that structural stability is dense (in
AH(G)), but we do know that structural implies hyperbolicity (i.e. the ex-
panding property of G on its limit set).

Cusps. We remark that many important groups — since as the fundamental
groups of knot complements — do contain Z ⊕ Z. For these groups CC(G) is
empty, even though AH(G) may not be. To formulate an appropriate result in
this setting, one must restrict to the representations where the Z⊕Z subgroups
are parabolic.

Quasifuchsian groups. To explain Sullivan’s result, we will treat the case of
a surface group, G = π1(S) where S is a closed surface of genus g ≥ 2.

Theorem 7.20 A structurally stable Kleinian group isomorphic to π1(S) is
quasifuchsian.

First we need some topological arguments to recognize a quasifuchsian group.

Theorem 7.21 The limit set of any Kleinian group Γ ∼= π1(S) is connected.

Proof. Write S = H2/ΓS , take a smooth homotopy equivalent S →M = H3/Γ
and lift it to an equivariant map f : H2 → H3. Pick any basepoint p ∈ H2.
Since f has a compact fundamental domain, the limit points in S2

∞ of f(H)
coincide exactly with the limit set Λ(Γ). Since f is proper, we have

Λ(Γ) =
⋂

R>0

f(H−B(p, R)) ⊂ H3 ∪ S2
∞.

This expression presents Λ(Γ) as a nested intersection of connected sets, so it is
connected.

Theorem 7.22 Suppose Γ ∼= π1(S) has two invariant components in its domain
of discontinuity. Then Γ is quasifuchsian.

Proof. Let M = (H3 ∪ Ω)/Γ. Since the limit set is connected, ∂M is incom-
pressible. By assumption, there are two compact components X0 and X1 in ∂M
such that the inclusion of each is a homotopy equivalence. By taking a homotopy
from X0 to X1, we obtain a degree-one homotopy equivalence f : S× [0, 1]→M
sending S × {i} to Xi. Thus M is compact and ∂M = X0 ∪X1.

At this point we know Γ is convex cocompact. To prove Γ is quasifuchsian,
one can appeal to theorems in 3-dimensional topology that show M is homeo-
morphic to S × I (cf. [Hem, Ch. 10]).
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Compare [Msk].

Proof of Theorem 7.20. Let ρ0 : G = π1(S) → Γ be a point in V(G)
representing Γ. By assumption, all ρt close enough to ρ are quasiconformally
conjugate to ρ0.

By counting dimensions (2g generators, one relation, and one more conju-
gating element), we have

dimC V(S) = (2g − 2) dimAut Ĉ = 6g − 6.

Since ρ0 is structurally stable, 6g − 6 agrees with the dimension of the Te-
ichmüller space of Γ. Thus, letting X = Ω/Γ, we have

6g − 6 = dim Teich(Ĉ, Γ) = dimTeich(X).

By structurally stability, Γ has no parabolics. By the Ahlfors finiteness the-
orem, X is a closed surface. Therefore dimTeich(X) = 3|χ(X)|, which implies
χ(X) = 2χ(S).

Each component Xi ⊂ X can be expressed as Ωi/Γi, where Γi is the stabilizer
of a component of Ωi of Ω. Since Γi

∼= π1(Xi) is not a free group, it must have
finite index di in Γ. Then

∑
di = 2 since χ(X) = 2χ(S).

In the case 1 + 1 = 2 we have a quasifuchsian group by the preceding The-
orem. To rule out the case 2 = 2, note that in this case Γ1 is a quasifuchsian
subgroup of index two in Γ. Then M is homeomorphic to a properly twisted
I-bundle over S. But M is orientable, as is S, so the I-bundle must be trivial.

Components of the CC(G). In general the compact hyperbolic manifold
M has a constant homeomorphism type on each component U of CC(G) =
intAH(G), while manifolds in different components of CC(G) are homotopy
equivalent but not homeomorphic. Thus the classification of components of
CC(G) is bound up in the classification of homeomorphism types of 3-manifolds
with a fixed homotopy type.

For G = π1(S) only one (orientable) homeomorphism type arises (S × I),
but in general there are many possibilities, coming from different ways in which
π1(∂M) may be deployed in π1(M).

A similar situation arises already for surfaces; a pair of pants and a torus with
one boundary component are also homotopy equivalent but not homeomorphic.

7.5 Cusped tori

In this section we give an example of the shape of the domain of locally faithful
representations in a holomorphic family.

The representation variety and simple closed curves. Let S be a com-
pact surface of genus g = 1 with n = 1 boundary component. We will study
representations of the free-group

G = 〈a, b〉 ∼= π1(S),

130



subject to the relation that ρ([a, b]) is parabolic. Geometrically, this condition
forces ∂S to be realized as a cusp.

The traces (α,β, γ) of

(A, B, AB) = (ρ(a), ρ(b), ρ(ab))

determine ρ up conjugacy (when it is irreducible). In particular, the trace of
the commutator can be calculated from the relation

tr(A)2 + tr(B)2 + tr(AB)2 = tr(A) tr(B) tr(AB) + tr[A, B] + 2.

Imposing the condition tr[A, B] = −2 reduces one to a hypersurface

V0(G) ⊂ C3

defined by the equation
α2 + β2 + γ2 = αβγ. (7.1)

This slice of the representation variety of the group G contains a copy of the
quasifuchsian space QF(S), where S is a torus with one boundary component.

Note that once α and β are specified, there are two choices for γ. But these
two choices are related by the change of basis A +→ A−1. This change of basis
preserves trA and tr B but changes trAB to trA−1B. These two traces are
related by the important equation

tr AB + tr A−1B = trA tr B, (7.2)

coming from the relation A + A−1 = (tr A)I.
It is a useful coincidence that SL2(Z) is both a Fuchsian group and the

mapping-class group of a punctured torus. Thus SL2(Z) acts transitively on
pairs of generators of π1(S). The generators themselves correspond bijectively
to simple closed curves on S, which in turn correspond to lines of rational slope
in H1(S, R). Passing to projective space, we can identify the space of slopes
with the rational points (union infinity) on the boundary of the upper halfplane.
Then the action of Mod(S) on PH1(S, R) goes over to the usual action of SL2(Z)

on R̂.
The standard generators ( 1 1

0 1 ) and ( 1 0
1 1 ) for SL2(Z) act by the automorphism

of G given by:
〈a, b〉 → 〈a, ab〉 and〈a, b〉 → 〈ab, a〉.

Using equation (7.2), we obtain simple expressions for the action of SL2(Z) =
Mod(S) on V(S) ⊂ C3, namely:

(α,β, γ) +→ (α, γ,αγ − β) and(α,β, γ) +→ (γ,β,βγ − α).

Now for any slope s ∈ Q ∪ {∞}, there is a unique pair of conjugacy classes
w ∈ G ∼= π1(S) represented by simple closed curves of slope s. (There is a pair
because w and w−1 have the same slope.) It turns out that we have

Tr ρ(w) = Ps(α,β, γ),
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where Ps is a polynomial. This polynomial, and the words w representing a given
slope, are easily computed recursively using the action of SL2(Z). Namely, to
compute Ps we find an element T ∈ SL2(Z) sending s to 0; then we compute
the polynomial action of T on V(S); and finally we observe that Ps(α,β, γ) is
nothing more than the first coordinate of T .

The standard tiling of the unit disk by ideal triangles is a convenient way to
organize this computation. Starting with a pair of triangles forming a quadrilat-
eral, we recursively fill out the hyperbolic plane by inserting reflection through
the edges. Each time a new triangle is added along an edge E, the element w of
the free group for the new vertex v is the product of the elements at the vertices
of E. The trace of the new element is determined by the (previously calculated)
traces of other three elements on the vertices of the quadrilateral with diagonal
E. Finally the slope p/q of w is determined from the slopes a/b and c/d of the
words at the vertices of E by Farey addition:

p

q
=

a + c

b + d
·

In is thus straightforward to calculate Ps(α,β, γ) for any rational slope s = p/q.

AB^2

AB

A

B

AB^{−1}

A^2B

Figure 19. Farey triangles. We have trAB−1 + tr AB = tr A trB.

The Maskit slice. To reduce to a 1-dimensional space, let us impose the
condition β = tr(B) = 2. Then the only essential remaining free parameter is
α = tr(A) ∈ C. More precisely, for every value of α there are two possible values
of γ, but for β = 2 equation (7.1) factors as

(γ − α)2 = −4,

so we can uniformly choose γ = α + 2i.
Indeed, once we have chosen

β = 2 and γ = α + 2i,

we can go further and obtain an explicit family of representations

ρα : G→ Aut C,
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α ∈ X = C, given by the matrices:

A =

(
0 i

i α

)

, B =

(
1 2

0 1

)

,

AB =

(
0 i

i α + 2i

)

, [A, B] =

(
1 −2

2 −3

)

.

Note that B and [A, B] together generate a Fuchsian subgroup of Γα =
ρα(G). In fact they generate the congruence subgroup Γ(2) ⊂ SL2(Z), which
uniformizes X = Ĉ − {0, 1,∞}. This comes from the fact that the condition
tr(B) = 2 pinches a loop on the torus to a cusp, resulting in one boundary com-
ponent becoming a triply-punctured sphere. Thus the limit set Λ(Γα) contains
a tree of circles, one for each conjugate of Γ(2) inside Γα. Its domain of dis-
continuity Ω consists of a single invariant component together with a countable
collection of round disks (see Figure 20).

Figure 20. Limit set for Γα in Maskits’ embedding of T1,1. The unbounded
domain uniformizes a punctured torus; the round disks, triply-punctured spheres.

The regime T ⊂ C where ρα is locally faithful is parameterized by the Te-
ichmüller space of X = Ω/Γ. It turns out that X consists of a triply-punctured
sphere (with no moduli) and a once-punctured torus. Then T is a natural model
for T1,1, namely Maskit’s embedding of Teichmüller space.

What does the domain T look like? To find T , we can look for solutions to
the polynomial equation Qs(α) = Ps(α,β, γ) as s ranges over Q ∪ {∞}. The
roots of Qs(α) are definitely outside T , since near these points ρα(w) becomes
parabolic for a word w ∈ G of slope s.

A plot of those points is shown in Figure 21. The zeros of Ps(α) as s varies
over many rational slopes, give rise to the points below the cusped curve in
Figure 21. The cusped curve itself, which forms the boundary of the stable
regime T , is obtained by connecting together the ‘highest’ zeros. (One should
take this terminology with a grain of salt, since the curve is not a graph — in
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 0.0

 2.0

Figure 21. Faithful representations. Dots represent relations.
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fact it winds an infinite amount around most boundary points that correspond
to quadratic irrationals.)

Notes. The case of punctured-torus groups we examine above has been much-
studied. See, for example, [Wr], [MMW], [Mc5, §3.7], [KS1], [KS2].

7.6 Structural stability of rational maps

We now turn to the study of stability for families of rational maps on the
Riemann sphere.

Definitions. Let X be a complex manifold. A holomorphic family of rational
maps fλ(z) over X is a holomorphic map X × Ĉ→ Ĉ, given by (λ, z) +→ fλ(z).

Let Xtop ⊂ X be the set of topologically stable parameters. That is, α ∈ Xtop

if and only if there is a neighborhood U of α such that fα and fβ are topologically
conjugate for all β ∈ U .2

The space Xqc ⊂ Xtop of quasiconformally stable parameters is defined sim-
ilarly, except the conjugacy is required to be quasiconformal.

Let X0 ⊂ X be the set of parameters such that the number of critical points
of fλ (counted without multiplicity) is locally constant. For λ ∈ X0 the critical
points can be locally labeled by holomorphic functions c1(λ), . . . , cn(λ). Indeed,
X0 is the maximal open set over which the projection C → X is a covering
space, where C is variety of critical points

{(λ, c) ∈ X × Ĉ : f ′
λ(c) = 0}.

A critical orbit relation of fλ is a set of integers (i, j, a, b) such that fa(ci(λ)) =
f b(cj(λ)); here a, b ≥ 0.

The set Xpost ⊂ X0 of postcritically stable parameters consists of those λ
such that the set of critical orbit relations is locally constant. That is, λ ∈ Xpost

if any coincidence between the forward orbits of two critical points persists
under a small change in λ. This is clearly necessary for topologically stability,
so Xtop ⊂ Xpost.

The main result of this section, whose proof is completed in the next, is:

Theorem 7.23 In any holomorphic family of rational maps, the topologically
stable parameters are open and dense.

Moreover the structurally stable, quasiconformally stable and postcritically
stable parameters coincide (X top = Xqc = Xpost).

This result was anticipated and nearly established in [MSS, Theorem D]. It
is completed in [McS].

Definition. Let fλ(z) be a holomorphic family of rational maps over (X, x).
A holomorphic motion respects the dynamics if it is a conjugacy: that is, if

φλ(fx(a)) = fλ(φλ(a))

whenever a and fx(a) both belong to A.

2In the terminology of smooth dynamics, these are the structurally stable parameters in
the family X.
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Theorem 7.24 For any x ∈ Xpost, there is a neighborhood U of x and a holo-
morphic motion of the sphere over (U, x) respecting the dynamics.

Proof. Choose a polydisk neighborhood V of x in Xpost. Then over V the
critical points of fλ can be labeled by distinct holomorphic functions ci(λ). In
other words,

{c1(λ), . . . , cn(λ)}

defines a holomorphic motion of the critical points of fx over V .
The condition of constant critical orbit relations is exactly what we need to

extend this motion to the forward orbits of the critical points. That is, if we
specify a correspondence between the forward orbits of the critical points of fx

and fλ by
fa

x (ci(x)) +→ fa
λ(ci(λ)),

the mapping we obtain is well-defined, injective and depends holomorphically
on λ.

Next we extend this motion to the grand orbits of the critical points. There
is a unique extension compatible with the dynamics. Indeed, consider a typical
point where the motion has already been defined, say by q(λ). Let

Z = {(λ, p) : fλ(p) = q(λ)} ⊂ V × Ĉ
π−−−−→ V

be the graph of the multivalued function f−1
λ (q(λ)). If q(λ) has a preimage under

fλ which is a critical point ci(λ), then this critical point has constant multiplicity
and the graph of ci forms one component of Z. The remaining preimages of q(λ)
have multiplicity one, and therefore π−1(λ) has constant cardinality as λ varies
in V . Consequently Z is a union of graphs of single-valued functions giving a
holomorphic motion of f−1

x (q(x)).
The preimages of q(λ) under fn

x are treated similarly, by induction on n,
giving a holomorphic motion of the grand orbits compatible with the dynamics.

By the λ-lemma, this motion extends to one sending P̂ (x) to P̂ (λ), where
P̂ (λ) denotes the closure of the grand orbits of the critical points of fλ.

If |P̂ (x)| ≤ 2, then fλ is conjugate to z +→ zn for all λ ∈ V ; the theorem is
easy in this special case. Otherwise P̂ (x) contains the Julia set of fx, and its
complement is a union of hyperbolic Riemann surfaces.

To conclude the proof, we apply the Bers-Royden Harmonic λ-lemma to
extend the motion of P̂ (x) to a unique motion φλ(z) of the whole sphere, such
that the Beltrami coefficient µλ(z) of φλ(z) is harmonic on Ĉ − P̂ (x). This
motion is defined on a polydisk neighborhood U of x of one-third the size of V .

For each λ in U the map

fλ : (Ĉ− P̂ (λ))→ (Ĉ− P̂ (λ))

is a covering map. Define another extension of the motion to the whole sphere
by

ψλ(z) = f−1
λ ◦ φλ ◦ fx(z),
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where z ∈ Ĉ− P̂ (x) and the branch of the inverse is chosen continuously so that
ψx(z) = z. (On P̂ (x) we set leave the motion the same, since it already respects
the dynamics).

The rational maps fλ and fx are conformal, so the Beltrami coefficient of
ψλ is simply f∗

x(µλ). But fx is a holomorphic local isometry for the hyperbolic
metric on Ĉ− P̂ (x), so it pulls back harmonic Beltrami differentials to harmonic
Beltrami differentials. By uniqueness of the Bers-Royden extension, we have
ψλ = φλ, and consequently the motion φ respects the dynamics.

Corollary 7.25 The postcritically stable, quasiconformally stable and topolog-
ically stable parameters coincide.

Proof. It is clear that Xqc ⊂ Xtop ⊂ Xpost. By the preceding theorem, if
x ∈ Xpost then for all λ in a neighborhood of x we have φλ ◦ fλ = fx ◦ φλ,
where φλ(z) is a holomorphic motion of the sphere. By the λ-lemma, φλ(z) is
quasiconformal, so Xpost ⊂ Xqc.

Remark. The monodromy of holomorphic motions in non-simply connected
families of rational maps can be quite interesting; see [Mc1], [Mc2], [GK], [BDK]
and [Br].

7.7 Postcritical stability

To establish the density of structural stability, we must bridge the gap between
J-stability (discussed in §7.2) and postcritical stability. We will show that Xpost

is only slightly smaller than Xstable, so it too is dense. Since Xpost = Xtop =
Xqc, the proof of Theorem 7.23 is completed by:

Theorem 7.26 The postcritically stable parameters are open and dense in the
set of J-stable parameters.

Proof. Using Corollary 7.25, we have Xpost ⊂ Xstable because Xpost = Xtop

and topological conjugacy preserves the number of attracting cycles. By defini-
tion Xpost is open, so it only remains to prove it is dense in Xstable.

Let V ∼= ∆m ⊂ Xstable be any polydisk on which number of critical points of
fλ is constant. The advantage of working on V is that we can label the critical
points of fλ(z) by holomorphic functions ci : V → Ĉ, i = 1, . . . , n.

Fixing i and j, we will show there is an open dense subset of V on which
the critical orbit relations between i and j are constant. This will suffice to
complete the proof, since the intersection of a finite number of open dense sets
is again open and dense.

Since V is a simply-connected subset of the J-stable regime, over V the
dynamics on the Julia set is canonically trivialized. In particular, the critical
points in the Julia set remain there and their critical orbit relations are constant.
So we may assume ci and cj lie outside the Julia set.
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For any κ,λ ∈ V , there is a canonical correspondence between the compo-
nents of the Fatou sets Ω(fκ) and Ω(fλ). This correspondence commutes with
the induced dynamics on the set of components. It also preserves the types of
periodic components, except that an attracting component may become super-
attracting or vice-versa.

We begin by considering the case i = j. Suppose the relation fa(ci) = f b(ci)
for some a < b holds throughout V . Then there are only a finite number of
possibilities for the set of all critical self-relations of ci. Each self-relation either
holds throughout V or on a proper complex-analytic subset of V . Thus there is
an open dense set — the complement of a complex subvariety — on which the
self-relations of ci are constant.

Next suppose the relation fa(ci) = f b(ci) holds at λ0 ∈ V but not through-
out V . Then there exists a periodic point p(λ) such that f b(ci) = p for λ = λ0.
The point p is the center of an attracting or superattracting basin, or a Siegel
disk. By assumption, the relation f b(ci) = p only holds on a proper analytic
subvariety W ⊂ V . For all λ ∈ V −W near λ0, the forward orbit of the critical
point lands near but not on the center of the basin. Thus ci has an infinite
forward orbit for such λ, and in particular its self-relations are constant on an
open dense set.

Finally it may be that no relation of the form fa(ci) = f b(ci) ever hold in
V . Then the forward orbit of ci is always infinite and the set of self-relations is
constant in this case as well.

Since we have shown the regime where the self-relations among critical points
are constant is open and dense, we may now replace V with a polydisk contained
in this regime.

Now consider two critical points ci, cj , i -= j, lying outside of the Julia set.
Suppose there is a critical point relation fa(ci) = f b(cj) for λ = λ0. Then ci

either both have infinite orbits or both have finite orbits. In the latter case,
only a finite number of patterns of orbit relations are possible. In the former
case, if the given relation holds throughout V then again only a finite number
of patterns are possible. In either case on such pattern holds outside a complex
subvariety of V , and hence on an open dense set.

So we are finally reduced to the case where ci and cj both have infinite for-
ward orbits, and the relation fa(ci) = f b(cj) holds only on a proper subvariety
W ⊂ V containing λ0. To complete the proof, we will show there is an open set
U with λ0 ∈ U such that ci and cj have no orbit relations for λ ∈ U .

Increasing a and b if necessary, we can assume the point

p = fa
λ0

(ci(λ0)) = f b
λ0

(cj(λ0))

lies in a periodic component of the Fatou set. If this periodic component is an
attracting, superattracting or parabolic basin, we may assume that p lies close
to the corresponding periodic cycle.

In the attracting and parabolic cases, we claim there is a ball B containing
p such that for all λ sufficiently close to λ0, the sets

〈fn
λ (B) : n = 0, 1, 2, . . .〉
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are disjoint and fn
λ |B is injective for all n > 0. This can be verified using the

local models of attracting and parabolic cycles. Now for λ near λ0 but outside
the subvariety where (∗) holds, fa

λ(ci(λ)) and f b
λ(cj(λ)) are distinct points in B.

Thus ci(λ) and cj(λ) have disjoint forward orbits and we have shown λ0 is in
the closure of the interior of Vij .

In the superattracting case, this argument breaks down because we cannot
obtain injectivity of all iterates of fλ on a neighborhood of p. Instead, we will
show that near λ0, ci and cj lie on different leaves of the canonical foliation of
the superattracting basin, and therefore have distinct grand orbits.

To make this precise, choose a local coordinate with respect to which the dy-
namics takes the form Z +→ Zd. More precisely, if the period of the superattract-
ing cycle is k, let Zλ(z) be a holomorphic function of (λ, z) in a neighborhood
of (λ0, p), which is a homeomorphism for each fixed λ and which satisfies

Zλ(f
k
λ (z)) = Zd

λ(z).

(The existence of Z follows from classical results on superattracting cycles; cf.
[CG, §II.4].) Since (∗) does not hold throughout V , there is a neighborhood V
of λ0 on which

Zλ(f
a
λ(ci(λ))) -= Zλ(f

b
λ(cj(λ)))

unless λ = λ0. Note too that neither quantity vanishes since each critical point
has an infinite forward orbit. Shrinking V if necessary we can assume

|Zλ(fa
λ(ci(λ)))|d < |Zλ(f b

λ(cj(λ)))| < |Zλ(fa
λ(ci(λ)))|1/d

for λ ∈ V . If we remove from V the proper real-analytic subset where

|Zλ(fa
λ(ci(λ)))| = |Zλ(f b

λ(cj(λ)))|,

we obtain an open subset of Vij with λ0 in its closure. (Here we use the fact
that two points where log log(1/|Z|) differs by more than zero and less than
log d cannot be in the same grand orbit.)

Finally we consider the case of a Siegel disk or Herman ring of period k. In
this case, for all λ ∈ V , the forward orbit of ci(λ) determines a dense subset
of Ci(λ), a union of k invariant real-analytic circles. This dynamically labeled
subset moves injectively as λ varies, so the λ-lemma gives a holomorphic motion

φ : V × Ci(λ0)→ Ĉ,

which respects the dynamics. For each fixed λ, φλ(z) is a holomorphic function
of z as well, since fλ is holomorphically conjugate to a linear rotation in domain
and range.

By assumption, f b
λ(cj(λ)) ∈ Ci(λ) when λ = λ0. If this relation holds on an

open subset V of V , then

g(λ) = φ−1
λ (f b

λ(cj(λ)))

is a holomorphic function on V with values in Ci(λ0), hence constant. It follows
that (∗) holds on V , and hence on all of V and we are done. Otherwise, ci(λ)
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and cj(λ) have disjoint forward orbits for all λ outside the proper real-analytic
subset of V where f b

λ(cj(λ)) ∈ Ci(λ).

From the proof we have a good qualitative description of the set of points
that must be removed to obtain Xtop from Xstable.

Corollary 7.27 The set Xstable is the union of the open dense subset X top and
a countable collection of proper complex and real-analytic subvarieties. Thus
X top has full measure in Xstable.

The real-analytic part occurs only when fλ has a foliated region (a Siegel
disk, Herman ring or a persistent superattracting basin) for some λ ∈ Xstable.

Corollary 7.28 If X is a connected J-stable family of rational maps with no fo-
liated regions, then Xpost is connected and π1(Xpost) maps surjectively to π1(X).

Proof. The complement X − Xpost is a countable union of proper complex
subvarieties, which have real codimension two.

7.8 No invariant line fields

In this section we formulate a conjecture about the ergodic theory of a single
rational map which implies the density of hyperbolicity.

Let X = C/Λ be a complex torus; then X also has a group structure coming

from addition on C. Let ℘ : X → Ĉ be a degree two holomorphic map to
the Riemann sphere such that ℘(−z) = ℘(z); such a map is unique up to

automorphisms of Ĉ and can be given by the Weierstrass ℘-function.
Let F : X → X be the endomorphism F (z) = nz for some integer n > 1.

Since n(−z) = −(nz), there is a unique rational map f on the sphere such that
the diagram

C/Λ
F−−−−→ C/Λ

℘

- ℘

-

Ĉ
f−−−−→ Ĉ

commutes. (Compare [Lat].)

Definition. A rational map f is double covered by an integral torus endomor-
phism if it arises by the above construction.

It is easy to see that repelling periodic points of F are dense on the torus,
and therefore the Julia set of f is equal to the whole sphere. Moreover, F and
z +→ −z preserve the line field tangent to geodesics of a constant slope on X
(or more formally, the Beltrami differential µ = dz/dz), and therefore f has an

invariant line field on Ĉ.

Conjecture 7.29 (No invariant line fields) A rational map f carries no in-
variant line field on its Julia set, except when f is double covered by an integral
torus endomorphism.
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Theorem 7.30 The no invariant line fields conjecture implies the density of
hyperbolic dynamics in the space of all rational maps.

Proof. Let X = Ratd be the space of all rational maps of a fixed degree d > 1,
and let Xqc be the open dense set of quasiconformally stable maps in this
universal family. Let f ∈ Xqc. Then Teich(Ĉ, f)/ Mod(Ĉ, f) parameterizes the

component of Xqc/ Aut(Ĉ) containing f . Since the modular group is discrete
and Aut(Ĉ) acts with finite stabilizers, we have

dimTeich(Ĉ, f) = dim Ratd− dimAut(Ĉ) = 2d− 2.

Clearly f has no indifferent cycles, since by J-stability these would have to
persist on an open neighborhood of f in Ratd and then on all of Ratd. Therefore
f has no Siegel disks or parabolic basins. Similarly f has no periodic critical
points, and therefore no superattracting basins. By a Theorem of Mañé, f has
no Herman rings [Me]. Thus all stable regions are attracting basins. Finally f
is not covered by an integral torus endomorphism because such rational maps
form a proper subvariety of Ratd.

By Theorem 5.41, the dimension of Teich(Ĉ, f) is given by nAC + nLF ,
the number of grand orbits of acyclic critical points in the Fatou set plus the
number of independent line fields on the Julia set. The no invariant line fields
conjecture then implies nLF = 0, so nAC = 2d− 2. Thus all critical points of f
lie in the Fatou set and converge to attracting periodic cycles, and therefore f
is hyperbolic.

By a similar argument one may establish:

Theorem 7.31 The no invariant line fields conjecture implies the density of
hyperbolic maps in the space of polynomials of any degree.

Remarks. If f is covered by an integral torus endomorphism, then Mod(Ĉ, f)
contains PSL2(Z) with finite index (compare [Her]). It seems likely that the
modular group is finite for any other rational map whose Julia set is the sphere.
This finiteness would follow from the no invariant line fields conjecture as well,
since then Mod(Ĉ, f) = Aut(f).

7.9 Centers of hyperbolic components

A rational map f is critically finite if every critical point of f has a finite forward
orbit.

Theorem 7.32 Let U ⊂ Ratd / Aut(Ĉ) be a component of the space of expand-
ing rational maps of degree d. Suppose J(f) is connected for f ∈ U . Then there
exists a unique critically finite map f0 ∈ U .

Compare [Mc1, §3].
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8 Iteration on Teichmüller space

In this section we will develop Thurston’s topological characterization of criti-
cally finite rational maps. Of central interest is the construction of a rational
map with given combinatorics, via iteration on Teichmüller space. This iteration
is similar to, but simpler than, the iteration leading to a hyperbolic structure
on an atoroidal Haken 3-manifold.

8.1 Critically finite rational maps

A rational map f is critically finite if |P (f)| <∞; that is, if every critical point
of f has a finite forward orbit.

Theorem 8.1 Let f be a critically finite rational map, and A its set of periodic
critical points. Then either

• A -= ∅, the Julia set J(f) has measure zero, and every z ∈ Ĉ − J(f) is
attracted to A; or

• A = ∅, J(f) = Ĉ and the action of f on the sphere is ergodic.

Proof. Assume A = ∅. Then J(f) = Ĉ by the classification of stable regions;
for example, there is no Siegel disks or Herman rings U since we would have
∂U ⊂ P (f), and this is impossible because P (f) is finite.

Similarly, all periodic cycles of f are repelling (since an indifferent cycle in
J(f) must be a limit point of P (f)). Thus under iteration, every critical point
of f lands on a repelling cycle. It follows that lim sup d(fnz, P (f)) > 0 for all z
outside the grand orbit of the critical points, a countable set. In particular, the
forward orbit of almost every z ∈ J(f) is a definite distance from P (f) infinitely
often; that is, lim sup d(fn(z), P (f)) > 0.

Now let E ⊂ Ĉ be an f -invariant set of positive measure. Let z ∈ E be a
point of Lebesgue density, outside the grand orbit of P (f). Then ‖(fn)′(z)‖ →
∞ in the hyperbolic metric on Ĉ−P (f), so small balls about z can be blown up
to definite size in the hyperbolic metric. But fn(z) lands a definite distance from
P (f) infinitely often, so these balls can also be blown up to definite spherical
size. Taking a limit, we conclude there exists a spherical ball B such that
m(B ∩E) = m(B). But then E = Ĉ a.e., since fk(B) = Ĉ for some k.

The analysis of the case where A -= ∅ is similar.

8.2 Rigidity of critically finite rational maps

The orbifold of a critically finite map. Let f : S2 → S2 be a critically
finite rational map. Let deg(f, p) denote the local degree of f at p ∈ S2.

For each p ∈ S2, let

N(p) = lcmfn(q)=p deg(fn, q). (8.1)
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Note that N(p) > 1 iff p ∈ P (f). The orbifold of f , denote Of , has underlying
space S2 and a singular point of order N(p) at each point in P (f). If N(p) =∞
then we introduce a puncture at p. The list of values of N(p) along P (f) is the
signature of Of .

The Euler characteristic of the orbifold is given by

χ(Of ) = χ(S2)−
∑

P (f)

(
1− 1

N(p)

)
.

It is easy to prove that χ(Of ) ≤ 0. We say Of is Euclidean if χ(Of ) = 0;
else Of is hyperbolic. For example, if |P (f)| > 4 then clearly f has a hyperbolic
orbifold.

The Euclidean orbifolds are easily classified; the possible signatures are:

(∞,∞), (∞, 2, 2), (2, 2, 2, 2), (2, 4, 4), (3, 3, 3) and (2, 3, 6).

The complex structure on the sphere S2 ∼= Ĉ gives Of the structure of a
one-dimensional complex orbifold. Just as for Riemann surfaces, these orbifolds
can be uniformized; see [Mc4, Appendix A].

Theorem 8.2 (Uniformization) A complex orbifold O is covered by C if
χ(O) = 0, and by H if χ(O) < 0.

Corollary 8.3 Let f be a critically finite rational map; then ‖f ′z‖ > 1 for all
z with f(z) ∈ Of .

Proof. The main case occurs when Of is hyperbolic, so we treat this case first.
Let π : H→ Of be the universal covering map. Condition (8.1) guarantees that
for all q = f(p), we have

deg(f, p)N(p)|N(q).

Thus f−1 can be lifted to the local manifold coverings of Of at p and q: that
is, for uniformizing parameters z and w near p and q, we have

f(zN(p)) = zN(p) deg(f,p) = wN(q)

and therefore
z = f̃−1(w) = wN(q)/(N(p) deg(f,p)).

Because of this local lifting, on the universal cover we obtain a map f̃−1 such
that the diagram

H
gf−1

←−−−− H

π

- π

-

Ĉ
f−−−−→ Ĉ

commutes. If f̃−1 were an isometry, then f would be too, contradicting the

abundance of repelling cycles. Thus by the Schwarz lemma, f̃−1 contracts the
hyperbolic metric, and consequently ‖f ′‖ > 1.
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In the Euclidean case one finds f : Of → Of is a covering map, and ‖f ′‖ =
deg(f) or deg(f)1/2 depending on whether or not Of is compact.

Examples.

1. The orbifold for f(z) = zn is Euclidean, with signature (∞,∞).

2. The orbifold for f(z) = z2 − 1 in hyperbolic with signature (∞,∞,∞).

3. The map f(z) = z2+i has a hyperbolic orbifold with signature (∞, 2, 2, 2)
(here P (f) = {∞, i,−1 + i,−i}).

4. The Lattès example

f(z) =

(
z − i

z + i

)2

has P (f) = {0,∞,−1, 1} with signature (2, 2, 2, 2) and is thus Euclidean.

Affine maps. The orbifold provides a clean way to isolate exceptional branched
covers related to toral endomorphisms. Suppose Of has signature (2, 2, 2, 2).
Then Of is canonically double-covered by a torus T , and f lifts to an endo-
morphism F : T → T . The action of F on H1(T, Z) determines an element
A(f) ∈ GL2(Z)/{±1} with det(A(f)) = deg(f)2, and F is isotopic to the affine
linear map

A(f) : R2/Z2 → R2/Z2.

If A(f) = nI ∈ Z, we say f is an affine branched cover. Thus:

Theorem 8.4 A rational map is affine iff it is double-covered by an integral
torus endomorphism.

Here is another nice characterization.

Theorem 8.5 A rational map f is affine iff f∗φ = deg(f)φ for some nonzero
quadratic differential φ ∈ Q(Ĉ− P (f)).

Proof. If f is affine, say double-covered by F (z) = nz on C/Λ, then F ∗(dz2) =
n2 dz2 and so the pushforward of dz2 to Ĉ defines the require quadratic differ-
ential φ.

For the converse, suppose f∗φ = deg(f)φ. For z ∈ Ĉ let N(z) be the number
of leaves of F(φ) through z. Then N(z) = 2 except at the finitely many zeros
and poles of φ. Since the foliation of φ is f -invariant we have

N(f(z)) deg(f, z) = N(z).

In particular, N(z) is does not decrease under backwards iteration.
Now φ(z) = 0 iff N(z) ≥ 3, and thus a zero at z implies a zero along the

full inverse orbit of z, which is impossible since φ has only finitely many zeros.
(If z is exceptional, then φ must have a zero of infinite order at z, which is also
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impossible.) Therefore φ has no zeros, and thus φ(z) has exactly 4 poles. These
poles are located in P (f).

Moreover every point in P (f) must be a pole of φ. For if N(z) ≥ 2
and z ∈ P (f), then fn(w) = z for some critical point w, and thus N(w) =
deg(fn, w)N(z) > 2, contrary to the fact that φ has no zeros.

It now straightforward to see that f : Of → Of is a covering map of orbifolds,
and thus f lifts to an endomorphism F of the characteristic torus covering
T → Of . Then F preserves the pullback of φ, so F is an integral endomorphism.

Theorem 8.6 (Rigidity of rational maps) Let f and g be topologically con-
jugate critically finite rational maps. Then either

• f and g are conformally conjugate; or

• f and g are double-covered by integral torus endomorphisms.

Proof. Let Q(f) = f−1(P (f)) and similarly for Q(g). Let φ : Ĉ → Ĉ be a
topological conjugacy from f to g; then φ sends P (f) and Q(f) to P (g) and
Q(g), since these sets are topologically defined. Thus we have a commutative
diagram

Ĉ−Q(f)
φ−−−−→ Ĉ−Q(g)

f

- g

-

Ĉ− P (f)
φ−−−−→ Ĉ− P (g)

where the vertical maps f and g are covering maps between multiply-punctured
spheres.

Now tighten the lower arrow φ as much as possible relative to the post-critical
set. That is, deform φ to the Teichmüller mapping

ψ0 : Ĉ− P (f)→ Ĉ− P (g)

in the homotopy class of φ.
Lifting ψ0 to ψ1, using the theory of covering spaces, we obtain the diagram

Ĉ−Q(f)
ψ1−−−−→ Ĉ−Q(g)

f

- g

-

Ĉ− P (f)
ψ0−−−−→ Ĉ− P (g).

Since f and g are conformal maps, the dilatation satisfies K(ψ1) = K(ψ0). But
ψ0 and ψ1 are homotopic rel P (f), since they are both homotopic to φ (and
Q(f) ⊃ P (f)).

By uniqueness of the Teichmüller mapping, we have ψ0 = ψ1. So we will
remove the subscript and simply denote the Teichmüller map by ψ.
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If ψ is conformal, then it provides a conformal conjugacy between g and f ,
so we have proved rigidity.

Now suppose ψ is strictly quasiconformal, and let α be its associated quadratic
differential. Then f∗(α) = deg(f)α because f and ψ commute. More geomet-
rically, the foliations of α are invariant under f , so f∗α = Rα for some R > 0,
and

‖f∗α‖ =

∫

bC

|f∗α| = deg(f)

∫

bC

|α| = deg(f)‖α‖

determines R = deg(f).
By Theorem 8.5, f is affine, so we are done.

Corollary 8.7 (The Monotonicity Conjecture) The topological entropy h(t)
of the real quadratic map ft(x) = tx(1 − x) is a monotone function, increasing
from 0 to log 2 as t increases from 0 to 4.

Here the entropy can be defined as

h(ft) = lim
n→∞

log (number of fixed-points of fn
t )

log n
·

The idea of the proof is that if monotonicity fails, then the same finite
kneading sequence must occur twice in the quadratic family. But this would
contradict the uniqueness of a rational map with a given combinatorial type
[MeSt, II.10].

8.3 Branched coverings

Let F : S2 → S2 be a smooth map of positive degree. We say F is a branched
cover if near any point p, we can find smooth charts φ,ψ sending p and F (p) to
0 ∈ C, preserving orientation, such that

φ ◦ F ◦ ψ−1(z) = zd

for some d ≥ 1.
We wish to recognize rational maps among branched coverings of the sphere.

In the absence of dynamics, all branched coverings are representec by rational
maps.

Theorem 8.8 (Thom) Any branched covering F between a pair of spheres is
equivalent to a rational map f . That is, there is a rational map f : Ĉ→ Ĉ and
homeomorphisms h0, h1 such that the diagram

S2 F−−−−→ S2

h0

- h1

-

Ĉ
f−−−−→ Ĉ

commutes.
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Proof. Take the standard complex structure on S2, pull it back by f and apply
the uniformization theorem.

In more detail: identify S2 with Ĉ in the usual way, let h1 = id and let h0

solve the Beltrami equation

(h0)z

(h0)z
=

Fz

Fz
= µ.

Note that ‖µ‖∞ < 1 because F is everywhere locally the composition of a
holomorphic map and a diffeomorphism. Since h0 and F have the same complex
dilatation, the mapping f making the diagram above commute is holomorphic.

For dynamical applications, we want to identify the spheres in the domain
and range of F so iteration makes sense. That is, we would want to have h0 = h1

so that F is conjugate to a rational map. Equivalently, we would want to find
a complex structure on S2 that is preserved by F .

As one result in this direction we note:

Theorem 8.9 (Sullivan) A branched cover F is quasiconformally conjugate to
a rational map iff the iterates of F are uniformly quasiregular; that is, K(Fn) ≤
K0 <∞.

Proof. If F = φ ◦ f ◦ φ−1 with f rational and φ quasiconformal, then Fn =
φ ◦ fn ◦ φ−1 and thus K(Fn) ≤ K(φ)2 <∞ for all n.

For the converse, let for each z ∈ Ĉ let Hz = SL2(Tz)/ SO2(Tz) denote the

hyperbolic plane of conformal structures on the tangent space TzĈ. For almost
every z, all forward and backward iterates of F are smooth at z, and thus all
tangent spaces along the grand orbit of z can be identified with Tz use DFn.
Use this identification to transport the standard conformal structure along the
grand orbit to a set of conformal structures Ez ⊂ Hz. (The set Ez can also be
though of as the set of all Beltrami coefficients at z that arise from forward and
backwards iterates of f .)

Since Fn is uniformly quasiconformal, the set Ez is bounded. Let µz ∈ Hz be
the center of the smallest hyperbolic ball containing Ez. Then µz is preserved
by the dynamics, so it gives an F -invariant measurable complex structure at
bounded distance from the standard structure. Solving the Beltrami equation
φz/φz = µ, we obtain a rational map f by setting f = φ ◦ F ◦ φ−1.

Remark. By the same method one can show a uniformly quasiconformal group
Γ acting on Ĉ is quasiconformally conjugate to a subgroup of PSL2(C).

On the other hand, Freedman and Skora have constructed a uniformly qua-
siconformal group Γ ⊂ Diff(S3) that is not even topologically conjugate to
a Möbius group [FS]. Their proof uses the fact that a finite link of circles⋃

Ci ⊂ S3 is unlinked iff every pair of circles is unlinked. For example, the
Borromean rings cannot be made out of round rings.
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8.4 Combinatorial equivalence and Teichmüller space

Let f : S2 → S2 be a branched covering. Just as for a rational map, we say f is
critically finite if |P (f)| < ∞, in which case the orbifold Of with singularities
or punctures along P (f) is defined. For a branched covering, Of is simply a
smooth orbifold — it has no complex structure.

Let f and g be critically finite branched covers of the sphere. We say f and
g are combinatorially equivalent if there are homeomorphisms φ0,φ1 such that

(S2, P (f))
φ1−−−−→ (S2, P (g))

f

- g

-

(S2, P (f))
φ0−−−−→ (S2, P (g))

commutes, and φ1 is isotopic to φ0 rel P (f). This means there is a continuous
family of homeomorphisms

φt : (S2, P (f))→ (S2, P (g))

connecting φ0 and φ1.
Roughly speaking, two branched coverings are combinatorial equivalent if

they are isotopic rel their postcritical sets.
If f and g are rational, we can pull φ0 taut (take its Teichmüller representa-

tive); then its lift is the taut representative of φ1 rel Q(f), but generally it can
be relaxed by only pinning down its values on P (f) ⊂ Q(f). Thus the argument
proving the Rigidity Theorem 8.6 also shows:

Theorem 8.10 A critically finite branched covering of the sphere with hyper-
bolic orbifold is combinatorially equivalent to at most one rational map (up to
conformal conjugacy).

The goal of the remainder of this section is to answer the question:

Which branched coverings of the sphere are combinatorial rational
maps?

8.5 Iteration on Teichmüller space

We now show the classification of critically finite rational maps reduces to a
fixed-point problem on Teichmüller space.

Convention. For any finite set A ⊂ S2, we denote by Teich(S2, A) the Te-
ichmüller space of the sphere with the points in A marked. This space is the
same as Teich(S2 −N (A)), where N (A) is a regular neighborhood of A.

Since there is only one complex structure on S2, any point in Teich(S2, A)
is represented by a finite set B ⊂ Ĉ together with a marking homeomorphism

f : (S2, A)→ (Ĉ, B).
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The cotangent space is Q(Ĉ, B) = Q(Ĉ−B), the space of meromorphic quadratic

differentials on Ĉ with at worst simple poles on B and holomorphic elsewhere.

Iteration. Now let F : S2 → S2 be a critically finite branched cover. Starting
with a complex structure (Ĉ, P0) ∈ Teich(S2, P (F )), and use the covering

F : (S2, Q(F ))→ (S2, P (F )),

we can form a new Riemann surface

F ∗(Ĉ, P0) = (Ĉ, Q0) ∈ Teich(S2, Q(F ))

by pulling back the complex structure on (S2, P (F )). The Riemann surface

Ĉ−Q0 is just the covering space of Ĉ− P0 dictated by F .
The inclusion

I : (S2, P (F ))→ (S2, Q(F ))

permits us to mark a subset of Q0 by P (F ) and obtain a point

I∗(Ĉ, Q0) = (Ĉ, P1) ∈ Teich(S2, P (F )).

The covering Ĉ−Q0 → Ĉ− P0 then prolongs to a rational map

f0 : (Ĉ, P1)→ (Ĉ, P0).

On the level of marked surfaces the composition I∗ ◦ F ∗ gives a map

TF : Teich(S2, P (F ))→ Teich(S2, P (F )).

Now suppose (Ĉ, P0) = (Ĉ, P1) in Teich(S2, P (F )). Then after adjusting
by a Möbius transformation we can assume P0 = P1, and thus f0 is a rational
map with P (f0) = P0. Moreover the marking of domain and range gives a
combinatorial equivalence of f0 to F . The converse is also easy to check, so we
have:

Theorem 8.11 F is combinatorially equivalent to a rational map iff TF has a
fixed-point on Teichmüller space.

In general, even if we do not start with a fixed-point, we obtain a sequence of
marked spheres (Ĉ, Pi) = T i

F (Ĉ, P0) and of rational maps fi such that f(Pi+1) ⊂
Pi; that is, we have the tower of maps:

. . . (Ĉ, Pi+1)
fi−−−−→ (Ĉ, Pi)

fi−1−−−−→ . . .
f1−−−−→ (Ĉ, P1)

f0−−−−→ (Ĉ, P0).

If (Ĉ, Pi) converges in Teichmüller space, we will still obtain a fixed-point, and
indeed the mappings fi will converge to the desired rational map f .

Theorem 8.12 (Contraction) Let F : S2 → S2 be a critically finite branched
covering. Then either
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• Some iterate T k
F contracts the Teichmüller metric; that is,

‖DT k
F‖ < 1

at each point of Teich(S2, P (F )); or

• OF has signature (2, 2, 2, 2), and TF is an isometry.

Proof. Suppose TF (Ĉ, P0) = (Ĉ, P1). Then we have a rational map

f : (Ĉ, P1)→ (Ĉ, P0)

in the combinatorial class of F . A tangent vector to Teich(S2, P (F )) at (Ĉ, P0)
is specified by a Beltrami differential µ0, and

DTF (µ0) = µ1 = f∗(µ0).

Of course ‖µ0‖∞ = ‖µ1‖∞; to compute ‖DTF ‖, we must use the fact that
the tangent space is a quotient of the space of Beltrami differentials. To do this,
we consider the coderivative on quadratic differentials,

(DTF )∗ : Q(Ĉ− P1)→ Q(Ĉ− P0)

which is given by
(DTF )∗(φ1) = f∗(φ1) = φ0.

(Note that 〈φ1, f∗µ0〉 = 〈f∗φ1, µ0〉.) Under pushforward the total mass of the
area form |φ1| cannot increase, but there may be a decrease due to cancellation
between corresponding sheets of f . Thus

‖(DTF )∗‖ ≤ 1.

Now suppose ‖DTF‖ = 1. Then ‖(DTF )∗‖ = 1. Since Q(Ĉ − P1) is finite

dimensional, its unit ball is compact, and thus there exist φ1 ∈ Q(Ĉ− P1) and
φ0 ∈ Q(Ĉ − P0) such that φ0 = f∗(φ1) and ‖φ0‖ = ‖φ1‖ = 1. Because there
is no cancellation in the pushforward, φ1(z) must be a positive real multiple of
φ0(w) whenever f(z) = w. In other words, their foliations agree under f .

Thus φ1/f∗φ0 is a real-valued holomorphic function, hence a constant, and
therefore f∗(φ0) = deg(f)φ1. There are only finitely many possibilities for the
poles of φ0 and φ1 as a subset of P (f). Thus upon replacing Tf with a finite
iterate, we can assume the singularity structure (zeros and poles) of φ0 is the
same as the of φ1. By the same method as that used in the proof of Theorem
8.5, we conclude that OF is the (2, 2, 2, 2)-orbifold.

Since F preserves a foliation, the matrix A(F ) ∈ End(Z2) giving the action
on the homology of the torus is hyperbolic; that is, it has real eigenvalues. It is
easy to see that TF acts on Teich(S2, P (F )) ∼= H by the Möbius transformation
with matrix A(F ); in particular, TF is an isometry.
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Remark. There are examples where TF is not contracting but an iterate
is. For example, suppose F is a mating of two strictly pre-periodic quadratic
polynomials. Then there is a set E ⊂ P (f)| with |E| = 4 such that F−1(E) ⊂
P (f) ∪ C(f). Namely we can take E to consist of the critical values together
with the first periodic point in each of their forward orbits. A differential with
poles only at E has the property that its pullback has poles only on P (f), and
then its pushforward is not contracted.

The map TF is never uniformly contracting.

8.6 Thurston’s algorithm for real quadratics

Before discussing the general case of TF , we mention its relation to a practi-
cal algorithm for constructing real quadratic polynomials with given kneading
sequences.

-2 -1 1 2

-2

-1

1

2

Figure 22. A critically finite quadratic polynomial of period 7.

Let f : R → R be a critically finite polynomial f(x) = x2 + c, c ∈ R. Then
P (f) ⊂ R is a finite subset of the line. Furthermore we can write P (f) =
{p1, . . . , pn} such that pi = f i(0). In particular p1 = c. (For ease of notation,
we do not include ∞ in R, nor do we include ∞ in P (f).)

Now
Q(f) = f−1(P (f)) = {±

√
pi − p1, i = 1, . . . , n} ⊂ R. (8.2)

(Since every point in P (f) has one real preimage, the other preimage is also
real.)

The combinatorial type or kneading sequence of f determines which points
in Q(f) correspond to which points in P (f). That is, if we write

Q(f) = {q−n < q−n+1 < . . . < q−1 = 0 = q1 < q2 < . . . < qn},

then there is a unique index k(i) such that

pi = qk(i), i = 1, . . . , n. (8.3)
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Figure 22 shows the example f(x) = x2 − 1.83232 . . . with |P (f)| = 7. In
this example k assumes the values 〈−7, 5, 2,−6, 3,−4, 1〉 on 1, 2, . . . , 7.

We also know P (f) ⊂ J(f) ⊂ [−2, 2]. Using just the kneading data k(i), we
can define a map

Tk : [−2, 2]n → [−2, 2]n

by sending a candidate (p1, . . . , pn) for P (f) to a candidate Q(f) by (8.2), then
re-indexing a subset by (8.3) to obtain a new candidate P (f) ⊂ [−2, 2]. (The
new candidate lies in [−2, 2] since |

√
pi − p1| ≤

√
4 = 2.)

If the kneading data k conforms to an actual quadratic polynomial f , then
Tk(P (f)) = P (f) so Tk has a fixed-point. Conversely, if Tk fixes (p1, . . . , pn),
then f(x) = x2 + p1 has the kneading sequence k. By the rigidity theorem
proved before, we can conclude:

Theorem 8.13 The map Tk has at most one fixed-point (p1, . . . , pn) consisting
of n distinct points.

On the other hand, by Brouwer’s fixed-point theorem, Tk has at least one
fixed-point in [−2, 2]n. The only problem is that this fixed-point might involve
certain pi coalescing. Indeed, the point (0, . . . , 0) is always fixed by Tk.

Scaling. The iteration on [−2, 2]n is not quite the same as iteration on Te-
ichmüller space, since the rescaling (pi) +→ (αpi), α > 0, is trivial on Teich(S2, P (f)).
However if Tk(pi) = pi, then Tk(αpi) = (

√
αpi); since α1/2n → 1, Tk contracts

the rescaling direction.

8.7 Annuli in Euclidean and hyperbolic geometry

In this section we summarize some results on annuli and geodesics to be used
below.

Lemma 8.14 If f : A → B is a degree d covering map between annuli, then
mod(A) = mod(B)/d.

Proof. Reduce to the case A = {1 < |z| < r}, B = {1 < |z| < s} and
f(z) = zd; then r = s1/d.

Lemma 8.15 Let 1Ai ⊂ B be a collection of disjoint annuli Ai nested inside
in an annulus B (so π1(Ai) ∼= π1(B) ∀i). Then

mod(B) ≥
∑

mod(Ai).

Equality holds iff, in the extremal metric on B, each Ai is a right subcylinder
and

⋃
Ai = B.
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Proof. Let Γ be the set of arcs joining the ends of B. Let ρi be the extremal
metric on Ai, making Ai into a right unit cylinder of height mod(Ai); and let
ρ =

∑
ρi. Then areaρ(B) = 2π

∑
mod(Ai), and #ρ(γ) ≥

∑
mod(Ai) for any

arc γ ∈ Γ, so

mod(B) = 2πλ(Γ) ≥
∑

mod(A).

For equality to hold, ρ must be the extremal metric on B, and thus the Ai must
form a partition of B into right subcylinders.

Lemma 8.16 Let γ ⊂ X be a closed geodesic on a hyperbolic Riemann surface,
and let Xγ → X be the cyclic covering space corresponding to 〈γ〉 ⊂ π1(X).
Then Xγ is an annulus with

mod(Xγ) =
2π2

#X(γ)
·

Proof. We have Xγ ∼= H/〈z +→ eLz〉 where L = #X(γ). The invariant metric
|dz|/|z| makes Xγ into a right cylinder of height π and circumference L. Rescal-
ing to obtain circumference 2π, the height becomes 2π2/L.

Corollary 8.17 For any closed curve γ on S, #γ(X) is a continuous function
on Teich(S). In fact

1

K
#X(γ) ≤ #Y (γ) ≤ K#X(γ)

if X and Y are related by a K-quasiconformal map.

Proof. A K-quasiconformal map between X and Y lifts to a map between
their covering annuli, so mod(Yγ)/ mod(Xγ) ∈ [1/K, K].

Corollary 8.18 If γ ⊂ X is a simple geodesic, then

mod(A) ≤ 2π2

#X(γ)

for any annulus A ⊂ X embedded in the homotopy class of γ.

Proof. We can lift A to an annulus nested inside Xγ , so mod(A) ≤ mod(Xγ).

153



Lemma 8.19 Let A ⊂ C be an annulus. Then if mod(A) is large enough,
there is a round annulus B = {z : a < |z − c| < c} nested in A such that
mod(A) = mod(B) + O(1).

Proof. Consider any univalent map

f : {z : R−1 < |z| < R}→ C.

If R = ∞ then f(z) = az + b. By a normal families argument, once R is
large enough, f(S1) is convex and nearly round. Thus for A ∼= {z : S−1 <
|z| < S} with S 7 R, the part of A corresponding to |z| ∈ [(R2/S), (S/R2)] is
bounded by nearly round curves, and hence A contains a round annulus B with
mod(B) ≥ mod(A) − 4 logR.

Corollary 8.20 Let ι : X ↪→ Y be an inclusion between hyperbolic Riemann
surfaces of genus zero, where X is n-times punctured sphere. Then any short
geodesic loop γ on Y satisfies

1

#Y (γ)
≤

∑

ι(α)∼γ

1

#X(α)
+ O(1),

where the sum is over all short geodesics α on X with ι(α) homotopic to γ. Here
short means of length less than εn > 0, and the constant in O(1) also depends
on n.

Proof. Up to isomorphism we can assume X and Y are complements of finite
sets E ⊃ F in C, and ι is the identity map. Then when #γ(Y ) is sufficiently
short, the loop γ is in the same homotopy class as a maximal round annulus

B ⊂ Y = C− F

with
mod(B) = #Y (γ)−1 + O(1)7 1.

Now the circles through E ∩ B cut B into at most n concentric annuli
A1, . . . , Am, each in the homotopy class of a geodesic αi on X = C− E. Then

mod(B) =
∑

mod(Ai) =
∑ 1

#X(αi)
+ O(1).

The geodesics which are not short contribute O(1) to the sum, so we have the
Corollary.
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2 10 3 4

Figure 23. An impossible kneading sequence.

8.8 Invariant curve systems

We begin by detailing a potential obstruction to realizing a branched covering
F as a rational map.

Consider the combinatorial quadratic map f with |P (f)| = 4 depicted in
Figure 23. This kneading sequence cannot be realized by a quadratic polyno-
mial.

For a proof, consider the annulus

A = (C− R) ∪ (p2, p4) ∪ (p3, p1) ⊂ Ĉ− P (f).

It is not hard to see that A is the unique annulus of maximum modulus in
its homotopy class on Ĉ − P (f). (For a proof note that A lifts to an annulus
bounded by geodesics on the flat torus branched over (p2, p4, p3, p1).) On the
other hand, if f is a real quadratic then f−1(A) = B ∪ B′ will be a pair of
disjoint annuli, with mod(B) = mod(B′) = mod(A) and with B and A in
the same homotopy class on Ĉ − P (f). Clearly B -= A and this contradicts
uniqueness of the annulus of maximum modulus.

The eigenvalue of a curve system. We now formulate a general obstruction.
A simple closed curve γ ⊂ S2−P (F ) is essential if it does not bound a disk,

and nonperipheral if it does not bound a punctured disk. Two simple curves are
parallel if they bound an annulus. A curve system Γ on S2−P (F ) is a nonempty
collection of disjoint simple closed curves γ on S2 − P (F ), each essential and
nonperipheral and with no pair of curves parallel. By Euler characteristic con-
siderations we have |Γ| ≤ |P (F )|− 3.

A curve system determines a transition matrix M(Γ) : RΓ → RΓ by

Mγδ =
∑

α

1

deg(f : α→ δ)

where the sum is taken over components α of f−1(δ) which are isotopic to γ.
Let λ(Γ) ≥ 0 denote the spectral radius of M(Γ). By the Perron-Frobenius

theorem, λ(Γ) is an eigenvalue for M(Γ) with non-negative eigenvector.
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Theorem 8.21 Let f : Ĉ→ Ĉ be a critically finite rational map. Then either:

• f is affine, and λ(Γ) = 1 for any curve system; or

• f is not affine, and λ(Γ) < 1 for any curve system on Ĉ− P (f).

Proof. Let 〈Aγ〉 be any collection disjoint annuli in the homotopy classes

represented by Γ on Ĉ − P (f). Fixing γ ∈ Γ, consider the curves {α} ⊂
f−1(

⋃
Γ) with α isotopic to γ. For each such α, with f(α) = δ ∈ Γ, there is a

corresponding annulus Bα ⊂ f−1(Aδ) with

mod(Bα) =
mod(Aδ)

deg(f : α→ δ)
.

These Bα are disjoint and nested, so we can form a single annulus A′
γ ⊃

⋃
Bα

in the same homotopy class. Then

mod(A′
γ) ≥

∑

α

mod(Bα) =
∑

δ

Mγδmod(Aδ).

Now suppose λ(Γ) > 1. Starting with any system of annuli A0 = 〈A0
γ〉, by

pulling back and regrouping as above we obtain systems Ai with the vector of
moduli satisfying

mod(Ai) ≥M(Γ)i mod(A0).

If λ(Γ) > 1 then this vector grows without bound, contrary to the fact that
mod(Ai

γ) is bounded above in terms of the hyperbolic length of γ.
Thus λ(Γ) ≤ 1 for any rational map f .
In case λ(Γ) = 1, there is a vector of moduli (mγ) fixed by M(Γ). Using a

result of Strebel, one finds the extremal metrics for annuli of maximum moduli
proportional to (mγ) piece together to give a metric |φ| from a holomorphic
quadratic differential [Str2]. Because of equality the pullback annuli must dissect
the extremal ones into right cylinders, we find f∗φ = deg(f)φ, and thus f is
affine.

So in fact λ(Γ) < 1 unless f is affine. For an affine map, |P (f)| = 4 and
thus Γ consists of a single curve γ. This curve has n pre-images, each mapping
by degree n, as can be seen by lifting γ to a geodesic on the torus double cover
of Ĉ. Thus M(Γ) = 1.

8.9 Characterization of rational maps

Lemma 8.22 The moduli space M0,n is an algebraic variety.

Proof. Let E ⊂ C be a set of n−1 distinct points. Normalizing by a translation
we can assume

∑
E = 0. Then there is a unique monic polynomial

p(z) = zn−1 + a1z
n−3 + . . . + an−2
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whose roots coincide with E. Conversely, if the discriminant D(p) -= 0 then p
has n−1 distinct roots. If we send E to λE, λ ∈ C∗, then ai +→ λi+1ai. Modulo
this action, the coefficients of p determine a point [p] in a weighted projective
space P = Pn−3

w . The discriminant vanishes on a subvariety D ⊂ P , and we see:

P −D ∼= (n− 1-tuples E ⊂ C)/ Aut(C)

∼= (n-tuples F ⊂ Ĉ with one distinguished point)/ Aut(Ĉ).

By forgetting which point is distinguished, we obtain an n-to-1 covering map
P −D →M0,n, and thus the moduli space of n-tuples of distinct points on the
sphere is an algebraic variety (indeed an affine variety).

Remark. In fact Mg,n is a quasiprojective variety for every (g, n). It is
generally not affine.

Lemma 8.23 The graph of TF covers an algebraic subvariety

R ⊂M0,n ×M0,n,

n = |P (F )|. The variety R is the graph of a correspondence, and |R(X)| is
finite for every X ∈M0,n . In fact

|R(X)| ≤
(

nd

n

)
(d!)n−1,

where d = deg(F ).

Proof. We regard points X ∈ M0,n as Riemann surfaces of genus 0 with
n points removed. Let Vd ⊂ M0,n consists of those pairs (X0, X1) such that
X1 contains an embedded degree d (connected) covering of X0. By general
principles, Vd is an algebraic subvariety, and clearly the graph of TF covers
a component R of Vd. Thus R itself is a subvariety, in fact an irreducible
component of Vd.

To bound R(X0), note first that a covering space Y → X0 of degree d
is specified by a map π1(X0) → Sd. Since π1(X0) is a free group on n − 1
generators, there are (d!)n−1 such maps. Each Y has at most nd punctures, so
Y is contained in at most

(
nd
n

)
surfaces X0 with n punctures.

Lemma 8.24 We have ‖DTF (X)‖ < C([X ]) < 1 where C([X ]) is a continuous
function depending only on the location [X ] of X in the moduli space M0,n,
n = |P (F )|.

Proof. As in the preceding lemma, given (Ĉ, P0) representing a point in M0,n,
there are only finitely maps

f0 : (Ĉ, P1)→ (Ĉ, P0)

that arise from TF . Since ‖DTF ‖ = ‖f∗‖ < 1 for each of these maps, we obtain
a bound depending only on the location of (Ĉ, P0) in M0,n.
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Remark. Alternatively, let R0 ⊂ R denote the component of R covered by
the graph of TF . Then at any point ([X ], [Y ]) ∈ R0, the derivative DR0 of
the local correspondence in the Teichmüller metric on M0,n is well-defined, and
agrees with the derivative of TF over this pair. Thus ‖DTF (Xi)‖ → 1 implies
([Xi], [TF (Xi)])→∞ in R0, which implies Xi →∞ in M0,n.

Theorem 8.25 (Thurston) Let F : S2 → S2 be a critically finite branched
covering. Then F is combinatorially equivalent to a rational map f if and only
if:

(Torus case) OF has signature (2, 2, 2, 2) and TF : H → H is an elliptic
Möbius transformation; or

(General case) OF does not have signature (2, 2, 2, 2) and

λ(Γ) < 1

for every F -invariant curve system Γ on S2 − P (F ).
In the second case f is unique up to conformal conjugacy.

Proof. If OF has signature (2, 2, 2, 2), then TF is an isometry of Teich(S2, P (F )) ∼=
H, and F is rational ⇐⇒ TF has a fixed-point ⇐⇒ TF is elliptic (or the
identity). So we may suppose OF does not have signature (2, 2, 2, 2).

If F is equivalent to a rational map f , then λ(Γ) < 1 for every invariant
curve system, by Theorem 8.21. Uniqueness of f follows from contraction of
TF .

For the converse, assume F is not equivalent to any rational map. Then F
has no fixed point on Teichmüller space. To complete the proof, we will show

λ(Γ) ≥ 1

for some curve system Γ on S2 − P (F )
To construct Γ, pick any X0 ∈ Teich(S2, P (F )), and set

Xi = T i
F (X0).

Then ‖DTF (Xi)| < C(Xi) < 1 where C(Xi) depends only on the location of
[Xi] in moduli space M0,n. Let

p0 ⊂ Teich(S2, P (F ))

be the geodesic segment joining X0 to X1, and let pi = T i
F (p0). If [Xi] is

contained in a compact subset of M0,n, then so is [
⋃

pi]; then TF is uniformly
contracting on

⋃
pi, so Xi converges to a fixed-point, contrary to assumption.

Therefore [Xi] eventually leaves any compact subset of M0,n (although it
may return). By Mumford’s Theorem 4.18, this means for any ε > 0 there is an
i such that

L(Xi) = (length of the shortest geodesic on Xi) < ε.
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We will now show that for suitable ε > 0, the short curves Γ on Xi satisfy

[#γ(Xi+1)
−1] ≈M(Γ)[#γ(Xi)

−1],

and thus M(Γ) gives a linear approximation to the action of TF . If λ(Γ) < 1,
then M(Γ) is contracting and the short geodesics are forced to become long
again. Since lim inf L(Xi) = 0, we will eventually find a Γ with λ(Γ) ≥ 1 and
this will complete the proof.

To choose ε, first pick an ε0 > 0 such that ε0-short curves on any X ∈
Teich(S2, P (F )) are disjoint simple geodesics, and such that Corollary 8.20
holds for ε0-short curves on an nd-times punctured sphere. Next let K be
the dilatation of the extremal quasiconformal map from X0 to X1. Finally pick
M 7 max(K2, n) whose exact size will be fixed later, and set

ε = ε0/M
n.

Now consider any Xi with L(Xi) < ε. Since Xi has at most (n−3) geodesics
of length less than ε0, there must be a δ ∈ [ε, ε0] so the length spectrum of Xi

avoids the interval [δ, Mδ]. Let Γ denote the nonempty set of geodesic loops on
Xi of length less than δ. Then we have

#γ(Xi) <
#δ(Xi)

M
: #δ(Xi)

for any geodesic δ -∈ Γ.
We will now refer to geodesics of length less than

√
Mδ as short. Since

d(Xi, Xi+1) ≤ d(X1, X0), there is a K-quasiconformal map from Xi to Xi+1,
and hence the lengths of geodesics on Xi and Xi+1 agree to within a factor of K.
Since

√
M ≥ K, the length spectrum of Xi avoids [δ, K2δ], so Γ also represents

the set of all short geodesics on Xi+1.
On the other hand, we have a diagram

Yi
ι−−−−→ Xi+1

f

-

Xi

where f is a degree d = deg(F ) rational map and ι is an inclusion of genus zero
Riemann surfaces. By Corollary 8.20, for each γ ∈ Γ we have

1

#γ(Xi+1)
≤

∑

ι(α)∼γ

1

#α(Yi)
+ O(1),

where the sum includes only curves α with #Yi
(α) ≤ εnd (a constant depending

only on the number of punctures of Yi). The loops α which cover loops Γ on Xi

contribute most to the sum, since any other loop is at least M/d times longer,
and there are less than n other loops. Thus only a small error is committed if
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we leave out these other loops, and retain α only if it covers some δ ∈ Γ. More
precisely we have:

1

#γ(Xi+1)
≤

(
1 +

nd2

M

) ∑

ι(α)∼γ,f(α)=δ∈Γ

1

deg(f : α→ δ)
· 1

#α(Xi)
+ O(1).

The vector of inverse lengths

vi = [#γ(Xi)
−1]

therefore satisfies
vi+1 ≤ (1 + η)M(Γ)vi + O(1) (8.4)

where η → 0 as M →∞.
Although Γ ranges among the countably many different collections of curve

systems on S2 − P (F ), since n = |P (F )| and d = deg(F ) are fixed, there are
only a finite number of possibilities for the matrix M(Γ). Thus there is a λ0

such that λ(Γ) ≥ 1 or λ(Γ) < λ0 < 1. Since

λ(Γ) = lim ‖M(Γ)p‖1/p,

we can choose p such that ‖M(Γ)p‖ < 1/2 whenever λ(Γ) < 1.
Now if ‖vi‖ is large enough, we have L(Xi) ≤ ε/Kp and thus L(Xj) ≤ ε for

j = i, i+ 1, . . . , i+ p. For M ≥ K2p, the short geodesics Γ on Xi agree with the
short geodesics on Xj for i ≤ j ≤ i + p. Finally if λ(Γ) < 1 then by (8.4) we
find

‖vi+p‖ ≤
(1 + η)p

2
‖vi‖+ O(1) ≤ 2

3
‖vi‖

once M is large enough that η is negligible.
In other words, if ‖vi‖ gets large then it is forced to get small again within

p iterates. Noting that ‖vi+1‖ ≤ K‖vi‖, we conclude that supi ‖vi‖ < ∞. But
‖vi‖ ≥ 1/L(Xi), so we have contradicted the fact that lim inf L(Xi) = 0.

Thus to have ‖vi‖ → ∞, we must at some point obtain a curve system Γ
with

λ(Γ) ≥ 1.

This Γ is the desired topological obstruction to realizing F as a rational map.

8.10 Notes

Thom’s result is in [Thom]; Douady and Hubbard present Thurston’s charac-
terization of combinatorially rational branched covers in [DH]. For more on the
orbifold approach to critically finite rational maps, see [Mc4, Appendix A and
B].
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{ 2,0,4,3,1} 3

{ 2,0,3,4,1} 3

{ 2,3,0,5,4,1} 4

{ 2,3,0,4,5,1} 4

{ 2,3,4,0,6,5,1} 5

{ 2,3,4,0,5,6,1} 5

{ 2,5,3,0,6,4,1} 3

{ 2,3,5,0,4,6,1} 3

{ 2,3,4,5,0,7,6,1} 6

{ 2,3,4,5,0,6,7,1} 6

{ 2,3,6,4,0,7,5,1} 4

{ 2,3,4,6,0,5,7,1} 4

{ 2,5,3,0,7,6,4,1} 6

{ 2,5,3,0,6,7,4,1} 6

{ 2,5,7,0,3,6,4,1} 4

{ 2,5,0,3,7,6,4,1} 6

{ 2,5,0,3,6,7,4,1} 6

{ 2,7,5,0,3,4,6,1} 4

Table 24. Impossible kneading sequences.
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8.11 Appendix: Kneading sequences for real quadratics

Notation. The post-critical set is labeled with the integers 0 = critical point,
n = fn(critical point). To describe a real unimodal critically finite map, we list
the postcritical set in the order it appears on the real line, and give a single digit
indicating the image of the point with the highest label. For example, 2, 0, 1 2
indicates that 2, the image of the critical value, is a fixed point.

The following kneading sequences cannot be realized by quadratic polynomi-
als. In each case there is a finite collection of disjoint intervals Ik, with endpoints
in the post-critical set, permuted homeomorphically by the mapping.

The remaining kneading sequences can be realized as quadratic polynomials.
This table gives the kneading sequence and the value of t such that f(x) =
tx(1− x) has the same kneading behavior.

{ 0} 0 2.

{ 0,1} 0 3.23607

{ 2,0,1} 2 4.

{ 2,0,1} 0 3.83187

{ 2,3,0,1} 0 3.96027

{ 2,0,3,1} 0 3.49856

{ 2,0,3,1} 3 3.67857

{ 2,3,4,0,1} 0 3.99027

{ 2,3,0,4,1} 3 3.89087

{ 2,3,0,4,1} 0 3.90571

{ 2,3,0,4,1} 4 3.92774

{ 2,0,3,4,1} 0 3.73891

{ 2,3,4,5,0,1} 0 3.99758

{ 2,3,4,0,5,1} 3 3.96792

{ 2,3,4,0,5,1} 4 3.97459

{ 2,3,4,0,5,1} 0 3.97777

{ 2,3,4,0,5,1} 5 3.98257

{ 2,5,3,0,4,1} 0 3.84457

{ 2,3,0,4,5,1} 3 3.94935

{ 2,3,0,4,5,1} 0 3.93754

{ 2,0,4,3,5,1} 0 3.62756

{ 2,5,0,3,4,1} 4 3.76495

{ 2,3,4,5,6,0,1} 0 3.9994

{ 2,3,4,5,0,6,1} 3 3.99125

{ 2,3,4,5,0,6,1} 4 3.99228

{ 2,3,4,5,0,6,1} 5 3.99378

{ 2,3,4,5,0,6,1} 0 3.99454

{ 2,3,4,5,0,6,1} 6 3.99569

{ 2,3,6,4,0,5,1} 0 3.96898

{ 2,3,4,0,5,6,1} 3 3.9891

{ 2,3,4,0,5,6,1} 4 3.98734

{ 2,3,4,0,5,6,1} 0 3.98475

{ 2,5,3,0,6,4,1} 0 3.88605

{ 2,5,3,0,6,4,1} 6 3.87654

{ 2,5,3,0,6,4,1} 4 3.8568

{ 2,3,0,5,4,6,1} 3 3.91694

{ 2,3,0,5,4,6,1} 0 3.92219

{ 2,6,3,0,4,5,1} 0 3.95103

{ 2,3,6,0,4,5,1} 5 3.94282

{ 2,6,0,4,3,5,1} 5 3.59257

{ 2,5,0,3,6,4,1} 0 3.77421

{ 2,5,0,3,6,4,1} 3 3.78088

{ 2,5,0,3,6,4,1} 6 3.7911

{ 2,0,5,3,4,6,1} 0 3.70177

{ 2,3,4,5,6,7,0,1} 0 3.99985

{ 2,3,4,5,6,0,7,1} 3 3.99771

{ 2,3,4,5,6,0,7,1} 4 3.99785

{ 2,3,4,5,6,0,7,1} 5 3.99809

{ 2,3,4,5,6,0,7,1} 6 3.99845

{ 2,3,4,5,6,0,7,1} 0 3.99864

{ 2,3,4,5,6,0,7,1} 7 3.99893

{ 2,3,4,7,5,0,6,1} 0 3.99252

{ 2,3,4,5,0,6,7,1} 3 3.99745

{ 2,3,4,5,0,6,7,1} 4 3.99726

{ 2,3,4,5,0,6,7,1} 5 3.99685

{ 2,3,4,5,0,6,7,1} 0 3.99622

{ 2,6,3,7,4,0,5,1} 0 3.96094

{ 2,3,6,4,0,7,5,1} 0 3.97372

{ 2,3,6,4,0,7,5,1} 7 3.97221

{ 2,3,6,4,0,7,5,1} 5 3.97032

{ 2,3,4,6,0,5,7,1} 3 3.97643

{ 2,3,4,0,6,5,7,1} 3 3.97898

{ 2,3,4,0,6,5,7,1} 4 3.98034

{ 2,3,4,0,6,5,7,1} 0 3.98141

{ 2,3,7,4,0,5,6,1} 0 3.98775

{ 2,3,4,7,0,5,6,1} 6 3.98597

{ 2,5,3,0,7,6,4,1} 4 3.88184

{ 2,5,3,0,6,7,4,1} 3 3.86828

{ 2,5,3,0,6,7,4,1} 0 3.87054

{ 2,7,3,5,0,4,6,1} 5 3.9006

{ 2,7,3,5,0,4,6,1} 0 3.89947

{ 2,7,3,0,5,4,6,1} 0 3.91205

{ 2,7,3,0,5,4,6,1} 5 3.91346

{ 2,3,7,0,5,4,6,1} 6 3.91879

{ 2,6,3,7,0,4,5,1} 5 3.9523

{ 2,3,6,0,4,7,5,1} 0 3.94421

{ 2,3,6,0,4,7,5,1} 4 3.94539

{ 2,3,6,0,4,7,5,1} 7 3.94655

{ 2,3,6,0,4,5,7,1} 3 3.94126

{ 2,3,0,6,4,5,7,1} 3 3.93342

{ 2,3,0,6,4,5,7,1} 0 3.93047

{ 2,6,0,4,3,7,5,1} 0 3.55465

{ 2,0,6,4,3,5,7,1} 0 3.66219

{ 2,5,0,3,6,7,4,1} 0 3.80077

{ 2,5,0,3,6,7,4,1} 3 3.79812

{ 2,7,0,5,3,4,6,1} 4 3.72029

{ 2,7,0,5,3,4,6,1} 6 3.71255

Table 25. Quadratic kneading sequences.
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9 Geometrization of 3-manifolds

9.1 Topology of hyperbolic manifolds

Let M be a closed orientable smooth 3-manifold. When can we expect M to
carry a hyperbolic structure? That is, when can we hope to write M = H3/Γ?
Here are some obvious constraints:

• First, M must be irreducible — that is, every embedded S2 ⊂ M must
bound a ball B3 ⊂M . To see this, just lift to the universal cover: we find
a collection Γ · S2 of disjoint 2-spheres in H3, and the balls Γ · B3 they
bound are disjoint, so they determine an embedded ball in H3.

Irreducibility means if M = A#B then A or B is S3.

• Second, π1(M) must be infinite — since the universal cover of M is not
compact.

• Finally, M must be atoroidal: that is, π1(M) cannot contain a copy of
Z⊕ Z.

For a proof, note that the centralizer of a hyperbolic element in Isom+(H3)
is isomorphic to C∗ = S1 ×R. If G ⊂ C∗ is a discrete, torsion-free group,
then G maps injectively by absolute value to a discrete subgroup of R∗,
and hence G is trivial or Z.

Conjecture 9.1 A closed, irreducible orientable 3-manifold is hyperbolic iff
π1(M) is infinite and does not contain Z⊕ Z.

Now suppose M is an oriented manifold with boundary, admitting a convex
hyperbolic structure. Let τ : ∂M → ∂M be a fixed-point free, orientation-
reversing involution. Then M/τ is also an orientable manifold. We will allow
M to be disconnected but require M/τ to be connected.

When can we expect the closed manifold M/τ to be hyperbolic? Let us
apply the criteria above.

1. First, M/τ must be irreducible. There is danger that a pair of properly
embedded 2-disks D1 1D2 ⊂M might get glued together by τ to form a
2-sphere. If ∂Di is nontrivial in π1(∂M), then D1 ∪ D2 cannot bound a
ball and so M/τ is reducible.

To guard against this possibility we will assume ∂M is incompressible.
This means

π1(∂M, ∗) ↪→ π1(M, ∗)

is injective for every choice of basepoint. Then M/τ is guaranteed to be
irreducible.

2. Since M is hyperbolic, each of its boundary components has genus g ≥ 2,
and by van Kampen’s theorem π1(∂M/τ) injects into π1(M). So π1(M)
is always infinite.

163



3. Finally M/τ must be atoroidal. Here the danger is that M might contain
two or more cylinders Ci — properly embedded copies of S1 × [0, 1] —
which are glued together by τ to form an incompressible torus in M .

To guard against this possibility, one can require that M is acylindrical —
i.e., that every cylinder C : S1 × [0, 1] → M is homotopic, rel boundary,
into ∂M .

More liberally, one can allow cylinders but require that they not be glued
together. That is, we can simply require that M/τ is atoroidal.

Theorem 9.2 (Thurston) Let M admit a convex hyperbolic structure. Then
M/τ is hyperbolic iff it is atoroidal.

9.2 The skinning map

Let M be an oriented compact 3-manifold with incompressible boundary, admit-
ting a convex hyperbolic structure. Let τ : M →M be an orientation-reversing
fixed-point free involution.

The skinning map

σ : Teich(∂M) ∼= GF (M)→ Teich(∂M)

is defined as follows. Given a Riemann surface X ∈ Teich(∂M), construct the
unique complete hyperbolic 3-manifold N ∈ GF (M) with ∂N ∼= X . Next, form
the covering space Q→ N corresponding to ∂N . Topologically we have:

Q ∼= (∂N)× R.

The manifold Q is convex cocompact, and naturally marked by ∂M , so we have

Q ∈ GF (∂M × [0, 1]) ∼= Teich(∂M)× Teich(∂M).

The projection to the second factor above is the skinning map. That is,

∂Q = ∂N 1 σ(∂N).

Theorem 9.3 The manifold M/τ is hyperbolic if

τ ◦ σ : Teich(∂M)→ Teich(∂M)

has a fixed-point.

Remark. This theorem is not quite iff. If M = S×[0, 1], then σ is the reflection
map, and M/τ is hyperbolic iff τ comes from a pseudo-Anosov automorphism
of S. But in the pseudo-Anosov case, τ ◦ σ has no fixed-point in Teichmüller
space. Indeed, τ ◦ σ has a fixed-point iff M/τ is finitely covered by S × S1 —
in which M admits an H2 × R structure but no H3 structure.
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\sigma(X)

U_X

\Sinf^2

Figure 26. The skinning map.

9.3 The Theta conjecture

Theorem 9.4 Let X = ∆/Γ be a finite-area hyperbolic surface presented as the
quotient of the unit disk by a Fuchsian group. Then the natural map

θ : Teich(X)→ Teich(∆)

is a contraction for the Teichmüller metric. In fact

‖dθ∗‖ = ‖Θ∆/X‖ < C(X) < 1

where C(X) depends only on the location of X in moduli space, and

Θ∆/X : Q(∆)→ Q(X)

is the Poincaré series operator given by

Θ∆/X(φ) =
∑

Γ

γ∗φ.

Corollary 9.5 Let f : X → Y be a Teichmüller mapping between two points in
Teich(S). Then the lift f̃ : ∆→ ∆ to the universal covers is not extremal among
all quasiconformal maps with the same boundary values, unless f is conformal.

Example [Str1]. Let f : X → Y be an affine stretch from a square torus to
a rectangular torus, respecting the origin. The punctured surfaces X∗ and Y ∗

obtained by removing the origin are hyperbolic, and f restricts to a Teichmüller
mapping between them.

The universal cover of X∗ (Y ∗) can be thought of as a countable collection
of squares (rectangles) with their vertices removed, and glued together along
their edges in the pattern of a free group Z ∗ Z to form a thickened tree. The
lifted map f̃ sends each square to the corresponding rectangle.

To make f̃ more nearly conformal, we want to make the target more nearly
square. A single rectangle R0 can be made more square (its modulus can be
moved towards 1) by bending its short edges in and its long edges out. Now
one edge Ei on each adjacent rectangle Ri has been bent the wrong way. The
remaining 3 edges, however, can be bent the right way, resulting in an overall
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improvement in shape (Figure 27). The next layer of 12 rectangles each have
only one edge committed, and similarly for each following layer of 4 · 3n rectan-
gles... so we can continue modifying f̃ to reduce its dilatation on each square,
in the end obtaining a map g with the same boundary values but K(g) < K(f).

Figure 27. Strebel’s idea of relaxation.

Corollary 9.6 If M is an acylindrical manifold, then the skinning map

σM : Teich(∂M)→ Teich(∂M)

satisfies
‖dσM (X)‖ ≤ C(X) < 1

with C(·) as above.
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