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Let me begin with a personal reminiscence of Lars Ahlfors. My first
contact with him came when he was my undergraduate advisor at Harvard.
It was the advisor’s job to review and approve the courses that the student
had selected. When I entered his office and handed him my study card, he
looked it over quickly, said “You seem to know what you are doing,” and
signed the card. This was the only advice I ever got from him. Knowing
myself at the time, this was probably the only kind of advice I was likely to
accept, and perhaps Ahlfors sensed that. At any rate, it struck me as a good
example of how Ahlfors combined a great deal of insight with a minimum of
actual work.

Years later, at the conference in honor of his 75th birthday, I reminded
him of this story. He then asked me, “What was your name again?” When
I told him, he responded, “Well, T guess I was right.”

Ahlfors’ attitude towards Riemannian geometry per se seems to have been
somewhat mixed. In lecture notes he wrote on quasiconformal mappings in
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several variables [Ah4] . he refers to Riemannian geometry as “simply a set

" Nonetheless, a strong geometric feeling

of rules for changing coordinates.’
seems to have permeated Ahlfors’ work, in a way that may seem hard to
quantify.

Perhaps his greatest contribution to geometry was his book Complex
Analysis [Ah2]. T have yet to meet a geometer who prefers any other in-
troductory book in complex analysis to this masterpiece. When read with
sufficient tenacity, it makes the subject of complex analysis not only accessi-

ble but actually appealing to the geometer.

Some kind of explicit geometric feeling appears to have been in Ahlfors’
conscious thought from the very beginning. For instance, it appears that a
primary motivation for his work in Nevanlinna Theory was a certain dissat-
isfaction with the state of the art as he learned it from Nevanlinna. The
subject was not really properly understood, according to his view, unless it
was understood geometrically. This pedagogical insistence on geometry ap-
pears to have been a primary motivation in his early work, as one sees from
the commentary on his papers that he wrote for his collected works [Ah3].

If T were to try to quantify Ahlfors” attitude towards geometry, I would
put it this way: the proper way to do a calculation in complex analysis
is to be guided primarily by geometric intuition. Indeed, a calculation is
not properly understood, and probably not carried out properly, if it is not
primarily guided by geometric intuition.

Anyone who has spent time carefully going through the exercises in
Ahlfors” book will certainly be convinced that Ahlfors believed this. Indeed,
the book itself is a compelling argument for the truth of the proposition.

In the remainer of this paper, I would like to focus on the paper, “An
Extension of Schwarz’s Lemma,” Trans. AMS 43 (1938), pp. 359-364 [Ah1],
where Ahlfors proves the now-famous Ahlfors-Schwarz Lemma. In addition
to being a minor masterpiece on its own, this paper provides a great deal of
insight into how Ahlfors thought of and used geometry as a tool in complex
analysis.

In his commentary on his collected works [Ah3], Ahlfors wrote of this
paper that it “had more substance than I was aware of.” He also writes
that “Without applications, my lemma would have been too lightweight for
publication.” It is my belief that the Ahlfors-Schwarz LLemma continues to



have more substance than people are aware of, and that there remain many
opportunities for it to be put to good use. I would therefore like to put this
paper in both a historical and a contemporary setting.

I should add that most of what 1 learned about how to use the Ahlfors-
Schwarz Lemma comes from Scott Wolpert, who was using it to great effect
at the time we first met.

To recall the statement of the lemma, recall the classical Schwarz Lemma:
Lemma 1 Let D be the unit disk
D={z:]z] < 1}.
If f: D — D is any holomorphic map with f(0) =0, then
[f(2) < 2| and |f/(0)] <1,
with equality if and only if f is a rotation.

Ahlfors observes in his book [Ah2] that one should regard the assump-
tions of the lemma as normalizations. A more geometric version of the lemma
was given by Pick as:

Lemma 2 Any holomorphic map f : D — D is distance decreasing in the
hyperbolic metric, and strictly decreasing unless [ is an isometry.

It was Ahlfors’” insight to see that the essential point here is that the
curvature of the target metric be < —1, rather than just constant curvature:

Theorem 1 (Ahlfors-Schwarz [Ah1]) Let W be a Riemann surface car-

rying a conformal metric of curvature < —1, and
f:D—>W

a holomorphic map. If we denote by do the hyperbolic metric on D and ds
the “pulled-back metric” from W to D, then

ds < do.



Proof: We first observe that the “pulled-back metric” needn’t be a metric
at all, because at the branch points of the map it is 0. But at these points,
0 = ds < do, so we may restrict attention to the points at which f is regular.

We now choose local holomorphic coordinates at a regular point, where
we can write any conformal metric as

Aldz|

for some positive function A. Our first observation is that the Gaussian
curvature is given by

L Allog)

— 0 ,
where 0 o2
A(f) = 922 T o

is the “analyst’s Laplacian”— that is to say, the Laplacian in the flat metric
in these coordinates, and not the geometric Laplacian.

It follows that the right-hand side is independent of the choice of local
holomorphic coordinates, even though the top and bottom terms are highly
dependent. Also, given two metrics, it is evident that the ratio ;—; is also
independent of the local coordinates.

We now pick a local coordinate z, and write
do = M\|dz| ds = Xq|dz].

Setting u; = log(\;), we then have that u; — us is independent of the local
coordinate, and
Aluy —uy) = — k1€ 4 goe?u2,

Hence, at a minimum, where A(u; — ug) > 0, we have
2uq > s
—K1€ ~ —Kgo€ “.
Assuming that k, is negative, this gives us that

K1 —
- Z 62u2 2u1 ,
K2

so that if k3 < Ky, and hence :—; < 1, we must have that u; > uy. Thus, at
an interior minimum of w; — uy, we must have uy > us,.
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We now must worry about boundary points. To that end, we will apply
the above argument to do = ds; equal to the hyperbolic metric on the disk
of radius R, for R < 1, and ds; = ds. Here there is no worry about boundary
points, since ds; is infinite on |z| = R, while ds is of course finite. Hence
an interior minimum must exist, and we conclude |ds,| < |ds;| everywhere.
Letting R tend to 1 gives us the theorem.

A particularly useful version of this was given by Scott Wolpert, as follows:

Theorem 2 ([W]) Let doy and doy be conformally eqivalent metrics on a
compact Riemann surface S, with negative curvature k, and ky respectively.
If k1 < kg, then doy < dos.

The proof is identical with the above, except that the compactness is used
to exclude worrying about the behavior at infinity.

We remark that Ahlfors’ original argument allows us to drop the com-
pactness assumption in Wolpert’s Theorem, at the expense of two additional
assumptions: first, that the metric doy be complete (which is automatic in
the compactness assertion), and secondly that the pointwise curvature esti-
mate be strengthened to a sup-norm estimate.

Here is one possible formulation, which would probably satisfy most ge-
ometers:

Theorem 3 Let ds; and dsy be conformal metrics on the disk, with ds,
complete.
If sup(k1) < inf(k2) < 0, then ds; < ds,.

As a corollary, we have:

Corollary 1 Suppose that ds; and dsy are conformal metrics on the disk
which are complete, and suppose there is a constant C' > 1 such that

Csup(k1) < ke < (1/C)inf(k1) < 0.

Then

(1/C)ds? < dsj < Cds].



The idea of the proof of the theorem is to pick r — 1, and let ds, 3 be the
pullback to the disk of radius r under the map z — (1/r)z. Completeness
then guarantees that this metric blows up on the circle of radius r, so that
an interior minimum must exist. We messed up the pointwise bounds in the
course of this argument, but the rest of the argument is intact.

To prove the corollary from the theorem, we merely multiply the metrics
by scalars until they are in the form of the theorem, and then switch the
roles of ds; and dss.

Wolpert’s result was employed in [PS] to deal with the following question:
suppose we have a Riemann surface S with a finite number of punctures
P1,...,pr. Then we may may compactify S in a canonical way by filling in
the punctures to get a surface S.

While this compactification process is easily described conformally, it is
hard in general to describe this process geometrically. Indeed, any Riemann
surface of negative Euler characteristic carries a hyperbolic metric in its con-
formal class, that is to say a complete metric of constant curvature —1. So
we can ask the following question: what is the relationship between the hy-
perbolic metric on S and the geometry of S?

A moment’s reflection will convince one that the relationship need not
be close. For instance, S need not carry a hyperbolic metric at all, since
filling in points raises the Euler characteristic. So one would expect that in
general the process of conformal compactification does great damage to the
hyperbolic metric.

A key observation of [PS] is that this need not be the case when the
cusps of S are large, in a sense which we will now define.

If p; is a cusp, then a neighborhood of p; is isometric to

{z:0< Rz < 1,3(2) > yo}/(1y ~ 1 4 1y)
in the upper-half plane metric
1
ds* = E(dﬁ + dy?),
for some yq. The line

r4+ay:0< <1

is then a closed horocycle of length 1/yy. We will say that the cusp neigh-
borhood is large if we may choose yo small, so that the length of the closed



horocycle is large. We will further say that the cusp neighborhoods of S
are large if there are cusp neighborhoods of each of the p; such that these
neighborhoods are large and mutually disjoint.

Wolpert’s version of the Ahlfors-Schwarz Lemma then gives us:

Theorem 4 ([PS]) Suppose that the cusp neighborhoods of S are sufficiently
large. Then for each i there is a small neighborhood U; of p; such that outside
these neighborhoods, the hyperbolic metrics on S and S are uniformly quasi-
isometric, with the measure of quasi-isometry depending only on the size of
the cusp neighborhood and the size of U;.

Furthermore, the constant of quasi-isometry tends to 1 as the size of the
cusp netghborhood tends to infinity.

We are being a bit vague here, but refer the reader to [PS] for details.

The theorem has as a consequence that, for instance, if the cusp neigh-
borhoods are sufficiently large, then the Cheeger constants and hence the
first eigenvalue of the Laplacian of S and S are bounded uniformly in terms
of one another.

The idea of the proof is to use the largeness of the cusp neighborhood to
find a metric on S which has negative curvature, and arbitrarily close to -1 as
the size of the cusp increases, but which agrees with the hyperbolic metric on
S outside the cusp neighborhood. To see this, we may consider two metrics
ds%, and ds? on the punctured unit disk D —{0}: the metric ds?, is the usual
hyperbolic metric on the disk, and the metric ds? is the hyperbolic metric
on the punctured disk. We may write

dsg, = [*(r)dsp,

where f(r) is a function of the distance to 0.

The usual Schwarz Lemma tells us that f > 1, but it is not difficult to
see from direct computation that f — 1 and its derivatives — 0 as r — 1.
Using this, one can show that, given &, it is possible to find numbers rg, rq
and a function ¢ such that:

(i) g =1 for r < ro.

(ii) g = f for r > ry.



(iii) The metric g*ds% has curvature between —(1 —¢) and —(1 + ¢) every-
where.

If the cusps are sufficiently large, we may paste this metric in to each of
the cusp neighborhoods to get two metrics on S, one the usual hyperbolic
metric on S, and the other a metric which has curvature everywhere between
—(14¢) and —(1 — ¢), which furthermore agrees with the hyperbolic metric
on S outside the cusp neighborhoods.

Wolpert’s result then tells us that if the curvatures are quasi-equivalent,
then the metrics themselves are quasi-isometric, qed.

If we replace Theorem refscott by Theorem 3, then we may reverse the
roles of S and S in the above argument. To be precise, let S be a closed
Riemann surface, and let {p;,...,ps} be k points on S. Set S© = § —
{p1,...,pr}. We then have:

Theorem 5 Suppose that for some rq the injectivity radius at p; is greater
than rq for all 1, and the balls of radius ro about the p; are disjoint.

If ro is sufficiently large, then oulside the balls of radius rq, the hyper-
bolic metrics on S and S are uniformly quasi-isometric. Furthermore, the
measure of quasi-isometry — 1 as rg — 0o.

In particular, the cusps of S© are large.

The idea is identical to the idea in Theorem 4, except that one constructs
two metrics on SO rather than on S. One must therefore use Theorem 3
rather than Theorem 2.

In this manner, one may introduce cusps into a Riemann surface with
little alteration of geometric properties such as the Cheeger constant and the
first eigenvalue.

I regard the argument used in Theorems 4 and 5 as something of a pro-
totype, of which there should be many possible useful variations.

Another prototype of applications of the Ahlfors-Schwarz Lemma is given
by the work of Phil Griffiths and his school on Nevanlinna Theory in several
variables. See Griffiths” Weyl lectures [Gr] for an excellent account of this.
Griffiths characterizes the Ahlfors-Schwarz Lemma as “ubiquitous” (that is,
present everywhere) in the subject. Basically, its unique role in the subject is
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given by the fact that it generalizes easily to higher dimensions. The complex
structure allows one to regard the Ricci tensor as a 2-form Ricc. If one is in
complex dimension n, one may then compare Ricc” with the volume form.
One may also put the hyperbolic metric on the polydisk. Once these two
moves are done, Ahlfors’ original arguments may be translated directly, with
very little change. In this way, one obtains estimates of key expressions which
one might think were only available by normal families arguments.

The prototype that Ahlfors had in mind was quite different. The appli-
cation he gave computing an explicit lower bound for the Bloch constant is
a very illustrative example:

Theorem 6 ([Ahl]) Let f be a holomorphic map from D to C salisfying
|f'(0)] = 1. Then there is a ball of radius B about some point z in the image
of f on which f is schlicht, i.e. there is a component of f~(Bg(z)) on which

f is 1-to-1, with
B= ? ~ 433,

The idea of the proof is to consider the function p(w) = the radius of
the largest ball about w on which f is schlicht. Now p is easily seen to be
continuous, but it is not smooth. Indeed, p is the Euclidean distance from
w to either a branch point or a boundary point of f. If w lies equidistant to
two such points, then p will not be smooth at w.

Let us set By = sup(p). The content of the theorem is then to say that
By > B.

We now consider the metric given by ¢g|dw|, with

A
I (AT =)

where A wil be chosen later. In order for this to be a metric, we must have
A > /B,.

This metric may be described geometrically as the orbifold hyperbolic
metric on the disk of radius A% with an orbifold point of order 2 at 0, as one
can see by comparing with the usual hyperbolic metric on the disk of radius
A given by



5| = ()l
From this it is clear that the metric has constant curvature —1, at least at
those points at which it is smooth. In order for this to be a metric, we must
have A > /By.

We now consider the pullback of this metric via f on the disk D, with
the aim of comparing it to the hyperbolic metricon D. If w is a point that is
closest to a unique branch point or boundary point, then it is easily seen that
the pullback of this metric has curvature -1, and that the pullback is finite
everywhere, and vanishes precisely at the branch points of order 3 or more.
Furthermore, if we choose A > /3By, then the denominator is an increasing
function of p in the range between 0 and By.

We would like to apply the lemma at z = 0. If it applied, then, using
that | f'(0)| = 1, we would get that

A B A
By2(A2 — By) ~ (p(J(0))'/2(A2 = p(f(0))) —

where we have used the fact that the denominator is increasing to replace

p(f(0)) by Bo.

We may then rewrite this as

A <2BY*(A% = By),

and letting A tend to /3By would then yield By > @, as desired.

The only problem is how to deal with the non-smoothness of p. So say
that w is equidistant to two (or more) branch points. We may consider
the corresponding functions p; and p,, which are the distance functions to
these points. Replacing p with either of these functions now gives a smooth
function, such that the metric computed with respect to this function is < to
the original metric everywhere, but agrees with the original metric at w. If w
is a local minimum for the expression occurring in the proof of the Ahlfors-
Schwarz Lemma, then it remains so for the new metric, which is now smooth,
and hence the Laplacian argument still applies.

In this way, the analytic difficulties caused by the non-smoothness of p

disappear, almost without effort.
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The main point here is that the metric Ahlfors considers is not really
a metric of variable negative curvature. Rather, it is a metric of constant
curvature, which is however not smooth. The non-smoothness of the metric
indeed captures the geometric difficulties of the problem. The resolution of
the difficulty is then that the same minimum argument which was available
in the smooth case can be made to work in the non-smooth case as well.
Thus, for practical purposes, these non-smooth constant curvature metrics
may be thought of in the same way as metrics of variable curvature.

All of the applications Ahlfors gives of his lemma in [Ah1] are of this
type. Rather than dealing with metrics of variable curvature, they deal with
metrics of constant curvature —1, which however are not smooth. The heart
of the argument is then to say that the non-smoothness does not really affect
the conclusion.
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